Science.gov

Sample records for active gravitational mass

  1. The interaction between active normal faulting and large scale gravitational mass movements revealed by paleoseismological techniques: A case study from central Italy

    NASA Astrophysics Data System (ADS)

    Moro, M.; Saroli, M.; Gori, S.; Falcucci, E.; Galadini, F.; Messina, P.

    2012-05-01

    Paleoseismological techniques have been applied to characterize the kinematic behaviour of large-scale gravitational phenomena located in proximity of the seismogenic fault responsible for the Mw 7.0, 1915 Avezzano earthquake and to identify evidence of a possible coseismic reactivation. The above mentioned techniques were applied to the surface expression of the main sliding planes of the Mt. Serrone gravitational deformation, located in the southeastern border of the Fucino basin (central Italy). The approach allows us to detect instantaneous events of deformation along the uphill-facing scarp. These events are testified by the presence of faulted deposits and colluvial wedges. The identified and chronologically-constrained episodes of rapid displacement can be probably correlated with seismic events determined by the activation of the Fucino seismogenic fault, affecting the toe of the gravitationally unstable rock mass. Indeed this fault can produce strong, short-term dynamic stresses able to trigger the release of local gravitational stress accumulated by Mt. Serrone's large-scale gravitational phenomena. The applied methodology could allow us to better understand the geometric and kinematic relationships between active tectonic structures and large-scale gravitational phenomena. It would be more important in seismically active regions, since deep-seated gravitational slope deformations can evolve into a catastrophic collapse and can strongly increase the level of earthquake-induced hazards.

  2. Oil, Earth mass and gravitational force.

    PubMed

    Moustafa, Khaled

    2016-04-01

    Fossil fuels are intensively extracted from around the world faster than they are renewed. Regardless of direct and indirect effects of such extractions on climate change and biosphere, another issue relating to Earth's internal structure and Earth mass should receive at least some interest. According to the Energy Information Administration (EIA), about 34 billion barrels of oil (~4.7 trillion metric tons) and 9 billion tons of coal have been extracted in 2014 worldwide. Converting the amounts of oil and coal extracted over the last 3 decades and their respective reserves, intended to be extracted in the future, into mass values suggests that about 355 trillion tons, or ~5.86∗10(-9) (~0.0000000058)% of the Earth mass, would be 'lost'. Although this is a tiny percentage, modeling the potential loss of Earth mass may help figuring out a critical threshold of mass loss that should not be exceeded. Here, I briefly discuss whether such loss would have any potential consequences on the Earth's internal structure and on its gravitational force based on the Newton's law of gravitation that links the attraction force between planets to their respective masses and the distance that separate them.

  3. Oil, Earth mass and gravitational force.

    PubMed

    Moustafa, Khaled

    2016-04-01

    Fossil fuels are intensively extracted from around the world faster than they are renewed. Regardless of direct and indirect effects of such extractions on climate change and biosphere, another issue relating to Earth's internal structure and Earth mass should receive at least some interest. According to the Energy Information Administration (EIA), about 34 billion barrels of oil (~4.7 trillion metric tons) and 9 billion tons of coal have been extracted in 2014 worldwide. Converting the amounts of oil and coal extracted over the last 3 decades and their respective reserves, intended to be extracted in the future, into mass values suggests that about 355 trillion tons, or ~5.86∗10(-9) (~0.0000000058)% of the Earth mass, would be 'lost'. Although this is a tiny percentage, modeling the potential loss of Earth mass may help figuring out a critical threshold of mass loss that should not be exceeded. Here, I briefly discuss whether such loss would have any potential consequences on the Earth's internal structure and on its gravitational force based on the Newton's law of gravitation that links the attraction force between planets to their respective masses and the distance that separate them. PMID:26850858

  4. Small neutrino masses from gravitational θ -term

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Funcke, Lena

    2016-06-01

    We present how a neutrino condensate and small neutrino masses emerge from a topological formulation of gravitational anomaly. We first recapitulate how a gravitational θ -term leads to the emergence of a new bound neutrino state analogous to the η' meson of QCD. Then we show the consequent formation of a neutrino vacuum condensate, which effectively generates small neutrino masses. Afterwards we outline numerous phenomenological consequences of our neutrino mass generation model. The cosmological neutrino mass bound vanishes since we predict the neutrinos to be massless until the phase transition in the late Universe, T ˜meV . Coherent radiation of new light particles in the neutrino sector can be detected in prospective precision experiments. Deviations from an equal flavor rate due to enhanced neutrino decays in extraterrestrial neutrino fluxes can be observed in future IceCube data. These neutrino decays may also necessitate modified analyses of the original neutrino spectra of the supernova SN 1987A. The current cosmological neutrino background only consists of the lightest neutrinos, which, due to enhanced neutrino-neutrino interactions, either bind up, form a superfluid, or completely annihilate into massless bosons. Strongly coupled relic neutrinos could provide a contribution to cold dark matter in the late Universe, together with the new proposed particles and topological defects, which may have formed during neutrino condensation. These enhanced interactions could also be a source of relic neutrino clustering in our Galaxy, which possibly makes the overdense cosmic neutrino background detectable in the KATRIN experiment. The neutrino condensate provides a mass for the hypothetical B -L gauge boson, leading to a gravity-competing force detectable in short-distance measurements. Prospective measurements of the polarization intensities of gravitational waves can falsify our neutrino mass generation model.

  5. Gravitational mass of relativistic matter and antimatter

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron-Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 - 4 ×10-7

  6. The single-mass gravitational slingshot

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2014-07-01

    This paper examines the dynamics of the gravitational slingshot, wherein the trajectory of a space probe moving at initial speed vo with impact parameter b toward a planet of mass M is deflected through some scattering angle φ. Expressions for the probe's trajectory, scattering angle, characteristic flyby time, and maximum linear and angular speeds are developed at a level appropriate to that of an advanced-undergraduate mechanics student familiar with the general integrals of central-force motions; no assumption is required as to the hyperbolic nature of the trajectory. It is emphasized that the dimensionless parameter \\varepsilon = {{bv_o^2 } \\mathord{\\left/ {\\vphantom {{bv_o^2 } {GM}}} \\right. \\kern-1.2pt} {GM}} characterizes much of the dynamics of this problem.

  7. Earth-orbiting resonant-mass gravitational wave detectors

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1989-01-01

    Earth-based gravitational wave detectors suffer from the need to support the large antenna masses against the earth's gravity without transmitting a significant amount of seismic noise. Passive vibration isolation is difficult to achieve below 1 Hz on the earth. Vibration-free space environment thus gives an opportunity to extend the frequency window of gravitational wave detection to ultralow frequencies. The weightless condition of a space laboratory also enables construction of a highly symmetric multimode antenna which is capable of resolving the direction of the source and the polarization of the incoming wave without resorting to multiantenna coincidence. Two types of earth-orbiting resonant-mass gravitational wave detectors are considered. One is a skyhook gravitational wave detector, proposed by Braginsky and Thorne (1985). The other is a spherical detector, proposed by Forward (1971) and analyzed by Wagoner and Paik (1976).

  8. Gravitational mass-shift effect in the standard model

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2012-02-01

    The gravitational mass-shift effect is investigated in the framework of the standard model with the energy cutoff regularization both for stationary and nonstationary backgrounds at the one-loop level. The problem of singularity of the effective potential of the Higgs field on the horizon of a black hole, which was reported earlier, is resolved. The equations characterizing the properties of a vacuum state are derived and solved in a certain approximation for the Schwarzschild black hole. The gravitational mass-shift effect is completely described in this case. The behavior of masses of the massive particles of the standard model depends on the value of the Higgs boson mass in a flat spacetime. If the Higgs boson mass in a flat spacetime is less than 263.6 GeV then a mass of any massive particle approaching a gravitating object grows. If the Higgs boson mass in a flat spacetime is greater than or equal to 278.2 GeV, the masses of all the massive particles decrease in a strong gravitational field. The Higgs boson masses lying between these two values prove to lead to instability, at least at the one-loop level, and so they are excluded. It turns out that the vacuum possesses the same properties as an ultrarelativistic fluid in a certain approximation. The expression for the entropy and enthalpy densities and the pressure of this fluid are obtained. The sound speed in this fluid is also derived.

  9. Unbound or distant planetary mass population detected by gravitational microlensing.

    PubMed

    2011-05-19

    Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8(+1.7)(-0.8)) as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.

  10. Gravitational lensing of active galactic nuclei.

    PubMed Central

    Hewitt, J N

    1995-01-01

    Most of the known cases of strong gravitational lensing involve multiple imaging of an active galactic nucleus. The properties of lensed active galactic nuclei make them promising systems for astrophysical applications of gravitational lensing; in particular, they show structure on scales of milliseconds of arc to tens of seconds of arc, they are variable, and they are polarized. More than 20 cases of strong gravitational lenses are now known, and about half of them are radio sources. High-resolution radio imaging is making possible the development of well-constrained lens models. Variability studies at radio and optical wavelengths are beginning to yield results of astrophysical interest, such as an independent measure of the distance scale and limits on source sizes. PMID:11607613

  11. Growing intermediate-mass black holes with gravitational waves

    NASA Astrophysics Data System (ADS)

    Gultekin, Kayhan

    2006-06-01

    We present results of numerical simulations of sequences of binary-single scattering events of black holes in dense stellar environments. The simulations cover a wide range of mass ratios from equal mass objects to 1000:10:10 [Special characters omitted.] and compare purely Newtonian simulations with a relativistic endpoint, simulations in which Newtonian encounters are interspersed with gravitational wave emission from the binary, and simulations that include the effects of gravitational radiation reaction by using equations of motion that include the 2.5-order post-Newtonian force terms, which are the leading-order terms of energy loss from gravitational waves. In all cases, the sequence is terminated when the binary's merger time due to gravitational radiation is less than the arrival time of the next interloper. We also examine the role of gravitational waves during an encounter and show that close approach cross-sections for three 1 [Special characters omitted.] objects are unchanged from the purely Newtonian dynamics except for close approaches smaller than 10-5 times the initial semimajor axis of the binary. We also present cross-sections for mergers resulting from gravitational radiation during three-body encounters for a range of binary semimajor axes and mass ratios including those of interest for intermediate-mass black holes (IMBHs). We find that black hole binaries typically merge with a very high eccentricity- --extremely high when gravitational waves are included during the encounter such that when the gravitational waves are detectable by LISA, most of the binaries will have eccentricities e > 0.9 though all will have circularized by the time they are detectable by LIGO. We also investigate the implications for the formation and growth of IMBHs and find that the inclusion of gravitational waves during the encounter results in roughly half as many black holes ejected from the host cluster for each black hole accreted onto the growing IMBH. The

  12. Gravitational and mass distribution effects on stationary superwinds

    NASA Astrophysics Data System (ADS)

    Añorve-Zeferino, G. A.

    2016-11-01

    Here, we model the effect of non-uniform dynamical mass distributions and their associated gravitational fields on the stationary galactic superwind solution. We do this by considering an analogue injection of mass and energy from stellar winds and SNe. We consider both compact dark-matter and baryonic haloes that does not extend further from the galaxies optical radii Ropt as well as extended gravitationally interacting ones. We consider halo profiles that emulate the results of recent cosmological simulations and coincide also with observational estimations from galaxy surveys. This allows us to compare the analytical superwind solution with outflows from different kinds of galaxies. We give analytical formulae that establish when an outflow is possible and also characterize distinct flow regimes and enrichment scenarios. We also constraint the parameter space by giving approximate limits above which gravitation, self-gravitation and radiative cooling can inhibit the stationary flow. We obtain analytical expressions for the free superwind hydrodynamical profiles. We find that the existence or inhibition of the superwind solution highly depends on the steepness and concentration of the dynamical mass and the mass and energy injection rates. We compare our results with observational data and a recent numerical work. We put our results in the context of the mass-metallicity relationship to discuss observational evidence related to the selective loss of metals from the least massive galaxies and also discuss the case of massive galaxies.

  13. Gravitational and mass distribution effects on stationary superwinds.

    NASA Astrophysics Data System (ADS)

    Añorve-Zeferino, G. A.

    2016-08-01

    Here, we model the effect of non-uniform dynamical mass distributions and their associated gravitational fields on the stationary galactic superwind solution. We do this by considering an analogue injection of mass and energy from stellar winds and SNe. We consider both compact dark-matter and baryonic haloes that does not extend further from the galaxies optical radii Ropt as well as extended gravitationally-interacting ones. We consider halo profiles that emulate the results of recent cosmological simulations and coincide also with observational estimations from galaxy surveys. This allows to compare the analytical superwind solution with outflows from different kinds of galaxies. We give analytical formulae that establish when an outflow is possible and also characterize distinct flow regimes and enrichment scenarios. We also constraint the parameter space by giving approximate limits above which gravitation, self-gravitation and radiative cooling can inhibit the stationary flow. We obtain analytical expressions for the free superwind hydrodynamical profiles. We find that the existence or inhibition of the superwind solution highly depends on the steepness and concentration of the dynamical mass and the mass and energy injection rates. We compare our results with observational data and a recent numerical work. We put our results in the context of the mass-metallicity relationship to discuss observational evidence related to the selective loss of metals from the least massive galaxies and also discuss the case of massive galaxies.

  14. Gravitational mass of positron from LEP synchrotron losses

    DOE PAGES

    Kalaydzhyan, Tigran

    2016-07-27

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen domore » not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). As a result, this serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.« less

  15. Gravitational mass of positron from LEP synchrotron losses

    PubMed Central

    Kalaydzhyan, Tigran

    2016-01-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials. PMID:27461548

  16. Gravitational mass of positron from LEP synchrotron losses

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2016-07-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton’s theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.

  17. Gravitational mass of positron from LEP synchrotron losses.

    PubMed

    Kalaydzhyan, Tigran

    2016-07-27

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton's theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials.

  18. Gravitational mass of positron from LEP synchrotron losses.

    PubMed

    Kalaydzhyan, Tigran

    2016-01-01

    General relativity(GR) is the current description of gravity in modern physics. One of the cornerstones of GR, as well as Newton's theory of gravity, is the weak equivalence principle (WEP), stating that the trajectory of a freely falling test body is independent of its internal structure and composition. WEP is known to be valid for the normal matter with a high precision. However, due to the rarity of antimatter and weakness of the gravitational forces, the WEP has never been confirmed for antimatter. The current direct bounds on the ratio between the gravitational and inertial masses of the antihydrogen do not rule out a repulsive nature for the antimatter gravity. Here we establish an indirect bound of 0.13% on the difference between the gravitational and inertial masses of the positron (antielectron) from the analysis of synchrotron losses at the Large Electron-Positron collider (LEP). This serves as a confirmation of the conventional gravitational properties of antimatter without common assumptions such as, e.g., coupling of gravity to virtual particles, dynamics of distant astrophysical sources and the nature of absolute gravitational potentials. PMID:27461548

  19. Mass Gauging Demonstrator for Any Gravitational Conditions

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Pedersen, Kevin W. (Inventor); Witherow, William K. (Inventor)

    2013-01-01

    The present invention is a mass gauging interferometry system used to determine the volume contained within a tank. By using an optical interferometric technique to determine gas density and/or pressure a much smaller compression volume or higher fidelity measurement is possible. The mass gauging interferometer system is comprised of an optical source, a component that splits the optical source into a plurality of beams, a component that recombines the split beams, an optical cell operatively coupled to a tank, a detector for detecting fringes, and a means for compression. A portion of the beam travels through the optical cell operatively coupled to the tank, while the other beam(s) is a reference.

  20. Pure gravitational dark matter, its mass and signatures

    NASA Astrophysics Data System (ADS)

    Tang, Yong; Wu, Yue-Liang

    2016-07-01

    In this study, we investigate a scenario that dark matter (DM) has only gravitational interaction. In the framework of effective field theory of gravity, we find that DM is still stable at tree level even if there is no symmetry to protect its longevity, but could decay into standard model particles due to gravitational loop corrections. The radiative corrections can lead to both higher- and lower-dimensional effective operators. We also first explore how DM can be produced in the early universe. Through gravitational interaction at high temperature, DM is then found to have mass around TeV ≲mX ≲1011 GeV to get the right relic abundance. When DM decays, it mostly decays into gravitons, which could be tested by current and future CMB experiments. We also estimate the resulting fluxes for cosmic rays, gamma-ray and neutrino.

  1. Mass Determination of QSOs Using Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Surdej, Jean

    1996-07-01

    Only four pairs of quasars with different redshifts and angular separations smaller than 5'' are presently known. We propose to directly image with the WFPC2 planetary camera these interesting quasar associations in order to search for the presence of a secondary lensed image of the background source near the foreground quasar. The detection {or non- detection} of these putative secondary images will enable us to weigh {or significantly improve the upper limit on} the mass of the foreground quasars. These QSO mass estimates will take into account the lensing effects due to the host galaxy of the foreground quasar{s} and/or other intervening galaxies, if detected on the high quality PC images. Furthermore, one of these quasars {Q 1009-0252} has recently been reported to be multiply imaged. The WFPC2 CCD frames will also enable us to search for the lensing object{s} and for additional macro- lensed images of the background quasar, and will thus provide essential constraints on the lensing model.

  2. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  3. Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.

    2012-01-01

    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.

  4. Anomalous center of mass shift: gravitational dipole moment.

    NASA Astrophysics Data System (ADS)

    Jeong, Eue Jin

    1997-02-01

    The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black hole accretion disc and the observed anomalous red shift from far away galaxies are considered to be the consequences of the two different aspects of the dipole gravity.

  5. Gravitational scattering of zero-rest-mass plane waves

    NASA Technical Reports Server (NTRS)

    De Logi, W. K.; Kovacs, S. J., Jr.

    1977-01-01

    The Feyman-diagram technique is used to calculate the differential cross sections for the scattering of zero-rest-mass plane waves of spin 0, 1, and 2 by linearized Schwarzschild and Kerr geometries in the long-wavelength weak-field limit. It is found that the polarization of right (or left) circularly polarized electromagnetic waves is unaffected by the scattering process (i.e., helicity is conserved) and that the two helicity (polarization) states of the photon are scattered differently by the Kerr geometry. This coupling between the photon helicity and the angular momentum of the scatterer also leads to a partial polarization of unpolarized incident light. For gravitational waves, on the other hand, there is neither helicity conservation nor helicity-dependent scattering; the angular momentum of the scatterer has no polarizing effect on incident unpolarized gravitational waves.

  6. Mass gap in the critical gravitational collapse of a kink

    NASA Astrophysics Data System (ADS)

    Barreto, W.; Crespo, J. A.; de Oliveira, H. P.; Rodrigues, E. L.; Rodriguez-Mueller, B.

    2016-03-01

    We study the gravitational collapse of a kink within spherical symmetry and the characteristic formulation of general relativity. We explore some expected but elusive gravitational collapse issues which have not been studied before in detail, finding new features. The numerical one-parametric solution and the structure of the spacetime are calculated using finite differences, Galerkin collocation techniques, and some scripting for automated grid coverage. We study the threshold of black hole formation and confirm a mass gap in the phase transition. In the supercritical case we find a mass scaling power law MBH=MBH*+K [λ -λ*]2γ+f (K [λ -λ*]2γ), with γ ≈0.37 independent of the initial data for the cases considered, and MBH*, K and λ* each depending on the initial datum. The spacetime has a self-similar structure with a period of Δ ≈3.4 . In the subcritical case the Bondi mass at null infinity decays in cascade with Δ /2 interval as expected.

  7. Experimental limit on the ratio of the gravitational mass to the inertial mass of antihydrogen

    NASA Astrophysics Data System (ADS)

    Fajans, Joel; Wurtele, Jonathan; Charman, Andrew; Zhmoginov, Andrey

    2012-10-01

    Physicists have long wondered if the gravitational interactions between matter and antimatter might be different from those between matter and itself. While there are many indirect indications that no such differences exist, i.e., that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. By searching for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap, we have determined that we can reject ratios of the gravitational mass to the inertial mass of antihydrogen greater than about 100 at a statistical significance level of 5%. A similar search places somewhat lower limits on a negative gravitational mass, i.e., on antigravity.

  8. Skeletal mass change as a function of gravitational loading

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.; Rahlmann, D. F.

    1985-01-01

    The hypothesis that increased loading on an animal by chronic centrifugation results in an increase in skeletal mass was tested, using metabolically mature hamsters, rats, guinea pigs, Dutch rabbits and New Zealand rabbits representing a body mass range from 0.15 to 3.8 kg. Groups of 12 male animals of each species were subjeted to 2.0 g for 6 weeks on a 2.74 radius centrifuge with one degree of freedom. Subsequently, six of the animals were killed to measure whole body composition, while the rest comprised the control group, recovering for four weeks at 1.0 g prior to composition analysis. Results show a significant increase in bone mineral mass at 2.0 g. These centrifuge experiment results were then compared with the results of the USSR Cosmos Biosatellite experiment, whereby five rats experienced osteoporosis after 18.5 days of weightlessness. The opposing nature of effects that occurred at 0 g and 2.0 g is indicated schematically of particular interest is the fact that the bone mineral mass of the Cosmos 1129 flight rats was 17 pct less than that of the 1.0 g controls; whereas the bone mineral mass of the centrifuge rats was 18 pct greater than that of their 1.0 g controls. It is concluded that the bone mineral mass of the rat is directly proportional to gravitational loading over the range of 0 g to 2.0 g.

  9. Gravitational sedimentation of flocculated waste activated sludge.

    PubMed

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  10. New exact solution for the exterior gravitational field of a spinning mass

    SciTech Connect

    Manko, V.S. Department of Theoretical Physics, Peoples' Friendship University, Ordzhonikidze Street 3, Moscow 117198, U.S.S.R. )

    1990-04-02

    An exact asymptotically flat solution of the vacuum Einstein equations representing the exterior gravitational field of a stationary axisymmetric mass with an arbitrary mass-multipole structure is presented.

  11. Statistical treatment of fluctuations in the gravitational focusing of light due to stellar masses within a gravitational lens

    NASA Technical Reports Server (NTRS)

    Deguchi, Shuji; Watson, William D.

    1987-01-01

    When light from small, distant sources in the universe is gravitationally focused by an intervening galaxy, the gravitational lens can be influenced by the granularity of the matter distribution which is caused by the stellar (or other compact) masses in the galaxy. A largely analytic, statistical calculation for a gravitational lens due to a collection of compact masses - valid for sources of finite size and for large (as well as small) 'optical depths' for the lens - is developed to treat fluctuations in the light caused by such 'microfocusing' effects. Previous treatments have been either numerical simulations of the Monte Carlo type or limited to single-star (i.e., low-optical-depth) effects.

  12. New exact solution for the exterior gravitational field of a charged spinning mass

    SciTech Connect

    Chamorro, A. ); Manko, V.S. ); Denisova, T.E. )

    1991-11-15

    An exact asymptotically flat solution of the Einstein-Maxwell equations describing the exterior gravitational field of a charged rotating axisymmetric mass possessing an arbitrary set of multipole moments is presented explicitly.

  13. Does lunisolar gravitational tide affect the activity of animals?

    NASA Astrophysics Data System (ADS)

    Deshcherevskii, A. V.; Sidorin, A. Ya.

    2010-12-01

    Multiyear time series obtained by the continuous instrumental monitoring of the electrical activity (EA) of weakly electric fish Gnathonemus leopoldianus and the motor activity (MA) of the freshwater catfish Hoplosternum thoracatum and the cockroach Blaberus craniifer are compared to the parameters of the lunisolar gravitational tide. These curves are observed to be very similar for a large number of time intervals. However, a more detailed analysis shows this to be only a superficial resemblance caused by the closeness of the periods of diurnal and semidiurnal rhythms of bioindicator activity (the dominant rhythms in EA and MA patterns) and the periods of main gravitational tidal waves. It is concluded that the lunisolar gravitational tide has no significant effect on animal behavior in our experiment.

  14. A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses

    NASA Astrophysics Data System (ADS)

    Schmöle, Jonas; Dragosits, Mathias; Hepach, Hans; Aspelmeyer, Markus

    2016-06-01

    This paper addresses a simple question: how small can one make a gravitational source mass and still detect its gravitational coupling to a nearby test mass? We describe an experimental scheme based on micromechanical sensing to observe gravity between milligram-scale source masses, thereby improving the current smallest source mass values by three orders of magnitude and possibly even more. We also discuss the implications of such measurements both for improved precision measurements of Newton’s constant and for a new generation of experiments at the interface between quantum physics and gravity.

  15. Black hole mass threshold from nonsingular quantum gravitational collapse.

    PubMed

    Bojowald, Martin; Goswami, Rituparno; Maartens, Roy; Singh, Parampreet

    2005-08-26

    Quantum gravity is expected to remove the classical singularity that arises as the end state of gravitational collapse. To investigate this, we work with a toy model of a collapsing homogeneous scalar field. We show that nonperturbative semiclassical effects of loop quantum gravity cause a bounce and remove the black hole singularity. Furthermore, we find a critical threshold scale below which no horizon forms: quantum gravity may exclude very small astrophysical black holes.

  16. CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?

    SciTech Connect

    Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J.; Philpott, L. C.; Abe, F.; Muraki, Y.; Albrow, M. D.; Bennett, D. P.; Bond, I. A.; Christie, G. W.; Natusch, T.; Dionnet, Z.; Gould, A.; Han, C.; Heyrovský, D.; McCormick, J. M.; Skowron, J.; and others

    2015-02-01

    Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.

  17. Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    Haster, Carl-Johan; Wang, Zhilu; Berry, Christopher P. L.; Stevenson, Simon; Veitch, John; Mandel, Ilya

    2016-04-01

    Gravitational waves from coalescences of neutron stars or stellar-mass black holes into intermediate-mass black holes (IMBHs) of ≳100 solar masses represent one of the exciting possible sources for advanced gravitational-wave detectors. These sources can provide definitive evidence for the existence of IMBHs, probe globular-cluster dynamics, and potentially serve as tests of general relativity. We analyse the accuracy with which we can measure the masses and spins of the IMBH and its companion in intermediate-mass-ratio coalescences. We find that we can identify an IMBH with a mass above 100 M⊙ with 95 per cent confidence provided the massive body exceeds 130 M⊙. For source masses above ˜200 M⊙, the best measured parameter is the frequency of the quasi-normal ringdown. Consequently, the total mass is measured better than the chirp mass for massive binaries, but the total mass is still partly degenerate with spin, which cannot be accurately measured. Low-frequency detector sensitivity is particularly important for massive sources, since sensitivity to the inspiral phase is critical for measuring the mass of the stellar-mass companion. We show that we can accurately infer source parameters for cosmologically redshifted signals by applying appropriate corrections. We investigate the impact of uncertainty in the model gravitational waveforms and conclude that our main results are likely robust to systematics.

  18. On the equilibrium of heated self-gravitating masses - Cooling by conduction

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Low, B. C.

    1980-01-01

    An investigation is given of the equilibrium states available to a self-gravitating mass of gas, cooling by conduction, and being heated at a rate proportional to the local gas density. The plane geometry situation is shown to be reducible to quadratures for the pressure, density, temperature, and gravitational potential. For a constant thermal conductivity it is shown that the gas density has either a central maximum or a central minimum, depending on the ratio of the thermal conductivity to a parameter taken to be a measure of the rate of heating. For a thermal conductivity which is a positive power of the temperature, it is shown that the gas density always has a central minimum and a maximum at the outer boundary of the configuration. For cylindrical and spherical geometrical configurations the same general properties are obtained. The physical origin of this behavior is discussed, and it is suggested that these exploratory calculations provide an effect which may not only aid in understanding thin filamentary structure observed in supernova remnants, but also help to assuage the difficulties of producing maser activity in the interior regions of 'cocoon' protostars.

  19. Mass and Motion: Topics at the Interface of General Relativity and Newtonian Gravitation

    NASA Astrophysics Data System (ADS)

    Weatherall, James Owen

    There is a long tradition, originating with Aristotle, of philosophers interested in the nature of unforced motion. How do bodies move in the absence of any external influence, and why? The modern answer to the "how'" half of this question is the subject of Newton's first law of motion, which states that in the absence of any external forces, a body traverses a straight line at constant velocity. Newton's first law, however, does not appear to provide an answer to the "why" half of the question. Indeed, many physicists and philosophers of physics, Einstein included, have held that this question cannot be answered until one moves to general relativity---and more, that general relativity is distinctive among spacetime theories precisely because it "explains" unforced motion, in the sense that the geodesic principle---the geometrical version of Newton's first law---can be proved as a theorem. In this dissertation, I argue that Newtonian gravitation provides an explanation of inertial motion almost identical to that of general relativity. However, the details of both cases are remarkably subtle, and considerable attention must be paid to the sense of "explain" being used. Four chapters of the dissertation are devoted to these considerations. The final chapter of the dissertation addresses a slightly different topic. In standard Newtonian gravitation, there are two distinct notions of mass: "inertial mass" and "(passive) gravitational mass". Yet it is an empirical fact that for any body, the values of these masses are always equal. Historically, many physicists have taken this fact to call for explanation. A natural place to look for an explanation of the coincidence of inertial and gravitational mass would be general relativity. In general relativity, however, there is no coherent notion of gravitational mass. This chapter shows how it is that gravitational mass arises as a distinct property of matter in the Newtonian limit of general relativity, and moreover, shows

  20. Conformal mapping of the Misner-Sharp mass from gravitational collapse

    NASA Astrophysics Data System (ADS)

    Hammad, Fayçal

    2016-04-01

    The conformal transformation of the Misner-Sharp mass is reexamined. It has recently been found that this mass does not transform like usual masses do under conformal mappings of spacetime. We show that when it comes to conformal transformations, the widely used geometric definition of the Misner-Sharp mass is fundamentally different from the original conception of the latter. Indeed, when working within the full hydrodynamic setup that gave rise to that mass, i.e. the physics of gravitational collapse, the familiar conformal transformation of a usual mass is recovered. The case of scalar-tensor theories of gravity is also examined.

  1. GRAVITATIONAL DRAG ON A POINT MASS IN HYPERSONIC MOTION WITHIN A GAUSSIAN DISK

    SciTech Connect

    Canto, J.; Sanchez-Salcedo, F. J.; Esquivel, A.; Raga, A. C. E-mail: esquivel@nucleares.una.mx

    2013-01-01

    We develop an analytical model for the accretion and gravitational drag on a point mass that moves hypersonically in the midplane of a gaseous disk with a Gaussian vertical density stratification. Such a model is of interest for studying the interaction between a planet and a protoplanetary disk, as well as the dynamical decay of massive black holes in galactic nuclei. The model assumes that the flow is ballistic, and gives fully analytical expressions for both the accretion rate onto the point mass and the gravitational drag it suffers. The expressions are further simplified by taking the limits of a thick and of a thin disk. The results for the thick disk reduce correctly to those for a uniform density environment. We find that for a thin disk (small vertical scaleheight compared to the gravitational radius), the accretion rate is proportional to the mass of the moving object and to the surface density of the disk, while the drag force is independent of the velocity of the object. The gravitational deceleration of the hypersonic perturber in a thin disk was found to be independent of its parameters (i.e., mass or velocity) and depends only on the surface mass density of the disk. The predictions of the model are compared to the results of three-dimensional hydrodynamical simulations, with reasonable agreement.

  2. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    NASA Astrophysics Data System (ADS)

    Alpha Collaboration; Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-04-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5% worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.

  3. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    PubMed Central

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime. PMID:23653197

  4. Description and first application of a new technique to measure the gravitational mass of antihydrogen.

    PubMed

    Charman, A E; Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Cesar, C L; Charlton, M; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.

  5. Saturn Ring Mass and Zonal Gravitational Harmonics Estimate at the End of the Cassini "Grand Finale"

    NASA Astrophysics Data System (ADS)

    Brozovic, M.; Jacobson, R. A.; Roth, D. C.

    2015-12-01

    "Solstice" mission is the 7-year extension of the Cassini-Huygens spacecraft exploration of the Saturn system that will culminate with the "Grand Finale". Beginning in mid-2017, the spacecraft is scheduled to execute 22 orbits that have their periapses between the innermost D-ring and the upper layers of Saturn's atmosphere. These orbits will be perturbed by the gravitational field of Saturn as well as by the rings. We present an analysis of simulated "Grand Finale" radiometric data, and we investigate their sensitivity to the ring mass and higher zonal gravitational harmonics of the planet. We model the data quantity with respect to the available coverage of the tracking stations on Earth, and we account for the times when the spacecraft is occulted either by Saturn or the rings. We also use different data weights to simulate changes in the data quality. The dynamical model of the spacecraft motion includes both gravitational and non-gravitational forces, such as the daily momentum management due to Reaction Wheel Assembly and radioisotope thermo-electric generator accelerations. We solve the equations of motion and use a weighted-least squares fit to obtain spacecraft's state vector, mass(es) of the ring or the individual rings, zonal harmonics, and non-gravitational accelerations. We also investigate some a-priori values of the A- and B-ring masses from Tiscareno et al. (2007) and Hedman et al. (2015) analyses. The preliminary results suggest that the "Grand Finale" orbits should remain sensitive to the ring mass even for GMring<2 km3/s2 and that they will also provide high accuracy estimates of the zonal harmonics J8, J10, and J12.

  6. A Gravitational Redshift Determination of the Mean Mass of White Dwarfs. DA Stars

    NASA Astrophysics Data System (ADS)

    Falcon, Ross E.; Winget, D. E.; Montgomery, M. H.; Williams, Kurtis A.

    2010-03-01

    We measure apparent velocities (v app) of the Hα and Hβ Balmer line cores for 449 non-binary thin disk normal DA white dwarfs (WDs) using optical spectra taken for the European Southern Observatory SN Ia progenitor survey (SPY). Assuming these WDs are nearby and comoving, we correct our velocities to the local standard of rest so that the remaining stellar motions are random. By averaging over the sample, we are left with the mean gravitational redshift, [vg]: we find [vg] = [vapp] = 32.57 ± 1.17 km s-1. Using the mass-radius relation from evolutionary models, this translates to a mean mass of 0.647+0.013 -0.014 Msun. We interpret this as the mean mass for all DAs. Our results are in agreement with previous gravitational redshift studies but are significantly higher than all previous spectroscopic determinations except the recent findings of Tremblay & Bergeron. Since the gravitational redshift method is independent of surface gravity from atmosphere models, we investigate the mean mass of DAs with spectroscopic T eff both above and below 12,000 K fits to line profiles give a rapid increase in the mean mass with decreasing Teff. Our results are consistent with no significant change in mean mass: [M]hot = 0.640 ± 0.014 M⊙ and [M]cool = 0.686+0.035 -0.039 M⊙.

  7. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  8. kg-mass prototype demonstrator for dual gravitational wave detector: Optomechanical excitation and cooling

    SciTech Connect

    Anderlini, M.; Marino, F.; Marin, F.

    2009-07-01

    The next generation of gravitational wave (gw) detectors is expected to fully enter into the quantum regime of force and displacement detection. With this aim, it is important to scale up the experiments on opto-mechanical effects from the microscopic regime to large mass systems and test the schemes that should be applied to reach the quantum regime of detection. In this work we present the experimental characterization of a prototype of massive gw detector, composed of two oscillators with a mass of the order of the kg, whose distance is read by a high finesse optical cavity. The mechanical response function is measured by exciting the oscillators through modulated radiation pressure. We demonstrate two effects crucial for the next generation of massive, cryogenic gw detectors (DUAL detectors): (a) the reduction of the contribution of 'local' susceptibility thanks to an average over a large interrogation area. Such effect is measured on the photo-thermal response thanks to the first implementation of a folded-Fabry-Perot cavity; (b) the 'backaction reduction' due to negative interference between acoustic modes. Moreover, we obtain the active cooling of an oscillation mode through radiation pressure, on the described mechanical device which is several orders of magnitude heavier than previously demonstrated radiation-pressure cooled systems.

  9. Center of mass and spin for isolated sources of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Kozameh, Carlos N.; Quiroga, Gonzalo D.

    2016-03-01

    We define the center of mass and spin of an isolated system in general relativity. The resulting relationships between these variables and the total linear and angular momentum of the gravitational system are remarkably similar to their Newtonian counterparts, though only variables at the null boundary of an asymptotically flat spacetime are used for their definition. We also derive equations of motion linking their time evolution to the emitted gravitational radiation. The results are then compared to other approaches. In particular, one obtains unexpected similarities as well as some differences with results obtained in the post-Newtonian literature. These equations of motion should be useful when describing the radiation emitted by compact sources, such as coalescing binaries capable of producing gravitational kicks, supernovas, or scattering of compact objects.

  10. THE MASS OF (4) VESTA DERIVED FROM ITS LARGEST GRAVITATIONAL EFFECTS

    SciTech Connect

    Kuzmanoski, Mike; Novakovic, Bojan; Apostolovska, Gordana E-mail: bojan@matf.bg.ac.r

    2010-09-15

    In this paper, we present a recalculated value of the mass of (4) Vesta, derived from its largest gravitational perturbations on selected asteroids during their mutual close encounters. This was done by using a new method for mass determination, which is based on the linking of pre-encounter observations to the orbit determined from post-encounter ones. The estimated weighted mean of the mass of (4) Vesta is (1.300 {+-} 0.001) x 10{sup -10} M{sub sun}.

  11. Gravitational waveforms from unequal-mass binaries with arbitrary spins under leading order spin-orbit coupling

    SciTech Connect

    Tessmer, Manuel

    2009-12-15

    This paper generalizes the structure of gravitational waves from orbiting spinning binaries under leading order spin-orbit coupling, as given in the work by Koenigsdoerffer and Gopakumar [Phys. Rev. D 71, 024039 (2005)] for single-spin and equal-mass binaries, to unequal-mass binaries and arbitrary spin configurations. The orbital motion is taken to be quasicircular and the fractional mass difference is assumed to be small against one. The emitted gravitational waveforms are given in analytic form.

  12. Becoming angular momentum density flow through nonlinear mass transfer into a gravitating spheroidal body

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2009-04-01

    A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This

  13. Gravitational waves from extreme mass-ratio inspirals in dynamical Chern-Simons gravity

    SciTech Connect

    Pani, Paolo; Cardoso, Vitor; Gualtieri, Leonardo

    2011-05-15

    Dynamical Chern-Simons gravity is an interesting extension of general relativity, which finds its way in many different contexts, including string theory, cosmological settings, and loop quantum gravity. In this theory, the gravitational field is coupled to a scalar field by a parity-violating term, which gives rise to characteristic signatures. Here we investigate how Chern-Simons gravity would affect the quasicircular inspiralling of a small, stellar-mass object into a large nonrotating supermassive black hole, and the accompanying emission of gravitational and scalar waves. We find the relevant equations describing the perturbation induced by the small object, and we solve them through the use of Green's function techniques. Our results show that for a wide range of coupling parameters, the Chern-Simons coupling gives rise to an increase in total energy flux, which translates into a fewer number of gravitational-wave cycles over a certain bandwidth. For space-based gravitational-wave detectors such as LISA, this effect can be used to constrain the coupling parameter effectively.

  14. A GRAVITATIONAL REDSHIFT DETERMINATION OF THE MEAN MASS OF WHITE DWARFS. DA STARS

    SciTech Connect

    Falcon, Ross E.; Winget, D. E.; Montgomery, M. H.; Williams, Kurtis A. E-mail: dew@astro.as.utexas.ed E-mail: kurtis@astro.as.utexas.ed

    2010-03-20

    We measure apparent velocities (v{sub app}) of the Halpha and Hbeta Balmer line cores for 449 non-binary thin disk normal DA white dwarfs (WDs) using optical spectra taken for the European Southern Observatory SN Ia progenitor survey (SPY). Assuming these WDs are nearby and comoving, we correct our velocities to the local standard of rest so that the remaining stellar motions are random. By averaging over the sample, we are left with the mean gravitational redshift, (v{sub g}): we find (v{sub g}) = (v{sub app}) = 32.57 +- 1.17 km s{sup -1}. Using the mass-radius relation from evolutionary models, this translates to a mean mass of 0.647{sup +0.013}{sub -0.014} M{sub sun}. We interpret this as the mean mass for all DAs. Our results are in agreement with previous gravitational redshift studies but are significantly higher than all previous spectroscopic determinations except the recent findings of Tremblay and Bergeron. Since the gravitational redshift method is independent of surface gravity from atmosphere models, we investigate the mean mass of DAs with spectroscopic T{sub eff} both above and below 12,000 K; fits to line profiles give a rapid increase in the mean mass with decreasing T{sub eff}. Our results are consistent with no significant change in mean mass: (M){sup hot} = 0.640 +- 0.014 M{sub sun} and (M){sup cool} = 0.686{sup +0.035}{sub -0.039} M{sub sun}.

  15. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  16. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  17. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity. PMID:27367379

  18. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  19. Intermediate-mass-ratio black hole binaries. II. Modeling trajectories and gravitational waveforms

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroyuki; Zlochower, Yosef; Lousto, Carlos O.; Campanelli, Manuela

    2011-12-01

    We revisit the scenario of small-mass-ratio (q) black hole binaries; performing new, more accurate, simulations of mass ratios 10:1 and 100:1 for initially nonspinning black holes. We propose fitting functions for the trajectories of the two black holes as a function of time and mass ratio (in the range 1/100≤q≤1/10) that combine aspects of post-Newtonian trajectories at smaller orbital frequencies and plunging geodesics at larger frequencies. We then use these trajectories to compute waveforms via black hole perturbation theory. Using the advanced LIGO noise curve, we see a match of ˜99.5% for the leading (ℓ,m)=(2,2) mode between the numerical relativity and perturbative waveforms. Nonleading modes have similarly high matches. We thus prove the feasibility of efficiently generating a bank of gravitational waveforms in the intermediate-mass-ratio regime using only a sparse set of full numerical simulations.

  20. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    PubMed

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-01

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater. PMID:26551801

  1. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    PubMed

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-01

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  2. MASS AND MAGNETIC DISTRIBUTIONS IN SELF-GRAVITATING SUPER-ALFVENIC TURBULENCE WITH ADAPTIVE MESH REFINEMENT

    SciTech Connect

    Collins, David C.; Norman, Michael L.; Padoan, Paolo; Xu Hao

    2011-04-10

    In this work, we present the mass and magnetic distributions found in a recent adaptive mesh refinement magnetohydrodynamic simulation of supersonic, super-Alfvenic, self-gravitating turbulence. Power-law tails are found in both mass density and magnetic field probability density functions, with P({rho}) {proportional_to} {rho}{sup -1.6} and P(B) {proportional_to} B{sup -2.7}. A power-law relationship is also found between magnetic field strength and density, with B {proportional_to} {rho}{sup 0.5}, throughout the collapsing gas. The mass distribution of gravitationally bound cores is shown to be in excellent agreement with recent observation of prestellar cores. The mass-to-flux distribution of cores is also found to be in excellent agreement with recent Zeeman splitting measurements. We also compare the relationship between velocity dispersion and density to the same cores, and find an increasing relationship between the two, with {sigma} {proportional_to} n{sup 0.25}, also in agreement with the observations. We then estimate the potential effects of ambipolar diffusion in our cores and find that due to the weakness of the magnetic field in our simulation, the inclusion of ambipolar diffusion in our simulation will not cause significant alterations of the flow dynamics.

  3. Dynamic Universe Model predicts frequency shifting in electromagnetic radiation near gravitating masses

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    In this paper, Dynamic Universe Model studies the light rays and other electromagnetic radiation passing grazingly near any gravitating mass. This change in frequency will depend on relative direction of movement between mass and radiation. Change in frequency depends on relative direction between ray and the Gravitating mass. Here in this paper we will mathematically derive the results and show these predictions. Dynamic Universe Model uses a new type of Tensor. There are no differential or integral equations here. No singularities and body to body collisions in this model. Many papers were published in USA and CANADA. See Dynamic Universe Model Blog for further details and papers Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step Keywords: Dynamic Universe Model, Hubble Space telescope (HST), SITA simulations , singularity-free cosmology,

  4. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Sotani, Hajime; Berti, Emanuele

    2016-07-01

    The lowest neutron star masses currently measured are in the range 1.0-1.1 M⊙, but these measurement have either large uncertainties or refer to isolated neutron stars. The recent claim of a precisely measured mass M/M⊙ = 1.174 ± 0.004 (Martinez et al. 2015) in a double neutron star system suggests that low-mass neutron stars may be an interesting target for gravitational-wave detectors. Furthermore, Sotani et al. recently found empirical formulas relating the mass and surface redshift of non-rotating neutron stars to the star's central density and to the parameter η ≡ (K0L2)1/3, where K0 is the incompressibility of symmetric nuclear matter and L is the slope of the symmetry energy at saturation density. Motivated by these considerations, we extend the work by Sotani et al. to slowly rotating and tidally deformed neutron stars. We compute the moment of inertia, quadrupole moment, quadrupole ellipticity, tidal and rotational Love number and apsidal constant of slowly rotating neutron stars by integrating the Hartle-Thorne equations at second order in rotation, and we fit all of these quantities as functions of η and of the central density. These fits may be used to constrain η, either via observations of binary pulsars in the electromagnetic spectrum, or via near-future observations of inspiralling compact binaries in the gravitational-wave spectrum.

  5. Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses

    SciTech Connect

    Blanchet, Luc; Esposito-Farese, Gilles; Damour, Thibault; Iyer, Bala R.

    2005-06-15

    Dimensional regularization is applied to the computation of the gravitational wave field generated by compact binaries at the third post-Newtonian (3PN) approximation. We generalize the wave generation formalism from isolated post-Newtonian matter systems to d spatial dimensions, and apply it to point masses (without spins), modeled by delta-function singularities. We find that the quadrupole moment of point-particle binaries in harmonic coordinates contains a pole when {epsilon}{identical_to}d-3{yields}0 at the 3PN order. It is proved that the pole can be renormalized away by means of the same shifts of the particle world lines as in our recent derivation of the 3PN equations of motion. The resulting renormalized (finite when {epsilon}{yields}0) quadrupole moment leads to unique values for the ambiguity parameters {xi}, {kappa}, and {zeta}, which were introduced in previous computations using Hadamard's regularization. Several checks of these values are presented. These results complete the derivation of the gravitational waves emitted by inspiralling compact binaries up to the 3.5PN level of accuracy which is needed for detection and analysis of the signals in the gravitational wave antennas LIGO/VIRGO and LISA.

  6. CONVERGENCE STUDIES OF MASS TRANSPORT IN DISKS WITH GRAVITATIONAL INSTABILITIES. II. THE RADIATIVE COOLING CASE

    SciTech Connect

    Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Michael, Scott; McConnell, Caitlin R.; Boley, Aaron C. E-mail: durisen@astro.indiana.edu E-mail: carmccon@indiana.edu

    2013-05-10

    We conduct a convergence study of a protoplanetary disk subject to gravitational instabilities (GIs) at a time of approximate balance between heating produced by the GIs and radiative cooling governed by realistic dust opacities. We examine cooling times, characterize GI-driven spiral waves and their resultant gravitational torques, and evaluate how accurately mass transport can be represented by an {alpha}-disk formulation. Four simulations, identical except for azimuthal resolution, are conducted with a grid-based three-dimensional hydrodynamics code. There are two regions in which behaviors differ as resolution increases. The inner region, which contains 75% of the disk mass and is optically thick, has long cooling times and is well converged in terms of various measures of structure and mass transport for the three highest resolutions. The longest cooling times coincide with radii where the Toomre Q has its minimum value. Torques are dominated in this region by two- and three-armed spirals. The effective {alpha} arising from gravitational stresses is typically a few Multiplication-Sign 10{sup -3} and is only roughly consistent with local balance of heating and cooling when time-averaged over many dynamic times and a wide range of radii. On the other hand, the outer disk region, which is mostly optically thin, has relatively short cooling times and does not show convergence as resolution increases. Treatment of unstable disks with optical depths near unity with realistic radiative transport is a difficult numerical problem requiring further study. We discuss possible implications of our results for numerical convergence of fragmentation criteria in disk simulations.

  7. Gravitational Wave Modelling of Extreme Mass Ratio Inspirals and the Effective-One-Body Approach

    NASA Astrophysics Data System (ADS)

    Yunes, Nicolás

    2009-11-01

    Accurate and efficient models to calculate the gravitational wave response of the proposed Laser Interferometer Space Antenna are crucial for the accurate extraction of physical parameters from noisy data, especially for moderate signal-to-noise ratio events. One of the most challenging and interesting sources of such waves are extreme-mass ratio inspirals, where a small compact object winds into a supermassive black hole in a generic orbit. The interest in these sources stems from their ability to accurately map the spacetime around supermassive black holes, thus revealing otherwise inaccessible astrophysical information and allowing for exquisite tests of general relativity. The difficulty in modelling gravitational waves produced in such inspirals is two-fold. First, extreme-mass ratio orbits are generic, including zoom-whirl episodes where the small object pirouettes in the strong gravitational field of the supermassive black hole at large velocities. Second, gravitat! ional waves generated by these sources can contain millions of cycles in the detector's sensitivity band, and thus a small error in the modelling can lead to a large accumulated error in the template after a one-year observation. For these reasons, one must develop sophisticated techniques to approximate these waves as accurately and efficiently as possible. This article focuses on these techniques, explaining the difficulty in the modelling and suggesting possible routes to their resolution. We first set the stage through a brief summary of some of the current models available for constructing approximate extreme-mass ratio inspiral templates. We then introduce in detail a new scheme that combines ingredients from both black hole perturbation theory and the effective-one-body approach. We conclude with comparisons between this new scheme and Teukolsky-based waveforms for quasi-circular inspirals into non-spinning supermassive black holes.

  8. A Gravitational Redshift Determination of the Mean Mass of DBA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Falcon, Ross E.; Winget, D. E.; Montgomery, M. H.; Williams, Kurtis A.

    2010-11-01

    We measure apparent velocities (νapp) of the Hα and Hβ Balmer line cores for 16 helium-dominated white dwarfs (WDs) using optical spectra taken for the European Southern Observatory SN Ia progenitor survey (SPY). Following the gravitational redshift method employed by Falcon et al. [1], we find a mean apparent velocity of <νapp> = 39.58+/-4.41 km s-1 and use it to derive a mean mass of = 0.701-0.046+0.042Msolar. Though the sample is small, the mean mass appears to be larger than the mean mass of DAs derived using the same method [0.647-0.014+0.013Msolar,1].

  9. The binary Feige 24 - The mass, radius, and gravitational redshift of the DA white dwarf

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Shipman, Harry L.; Thorstensen, John R.; Thejll, Peter

    1991-01-01

    Observations are reported which refine the binary ephemeris of the Feige 24 system, which contains a peculiar hot DA white dwarf and an M dwarf with an atmosphere illuminated by extreme ultraviolet radiation from the white dwarf. With the new ephemeris and a set of IUE high-dispersion spectra, showing phase-dependent redshifted C IV, N V, and Si IV resonance lines, the orbital velocity, and hence the mass (0.54 + or - 0.20 solar masses), and the gravitational redshift of the white dwarf (14.1 + or - 5.2 km/s) are determined independently. It is shown that the measured Einstein redshift is consistent with an estimated radius for the white dwarf obtained from a model atmosphere solid angle and a parallax measurement. This radius is twice the Hamada-Salpeter radius for the given mass and offers a prospect to investigate the presence of a massive hydrogen envelope in that white dwarf star.

  10. Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals.

    PubMed

    Yunes, Nicolás; Kocsis, Bence; Loeb, Abraham; Haiman, Zoltán

    2011-10-21

    We study the effects of a thin gaseous accretion disk on the inspiral of a stellar-mass black hole into a supermassive black hole. We construct a phenomenological angular momentum transport equation that reproduces known disk effects. Disk torques modify the gravitational wave phase evolution to detectable levels with LISA for reasonable disk parameters. The Fourier transform of disk-modified waveforms acquires a correction with a different frequency trend than post-Newtonian vacuum terms. Such inspirals could be used to detect accretion disks with LISA and to probe their physical parameters. PMID:22107500

  11. Detection and Analysis of Deep Seated Gravitational Slope Deformation and Relations with the Active Tectonics

    NASA Astrophysics Data System (ADS)

    Moro, M.; Saroli, M.; Lancia, M.; Albano, M.; Lo Sardo, L.; Stramondo, S.

    2015-12-01

    Modern geomorphological investigations focused on the definition of major factors conditioning the landscape evolution. The interaction of some of these factors as the litho-structural setting, the local relief, the tectonic activity, the climatic conditions and the seismicity plays a key-role in determining large scale slope instability phenomena which display the general morphological features of deep seated gravitational deformations (DSGD). The present work aims to detect the large scale gravitational deformation and relations with the active tectonics affecting the Abruzzo Region and to provide a description of the morphologic features of the deformations by means of aerial photograph interpretation, geological/geomorphological field surveys and DInSAR data. The investigated areas are morphologically characterized by significant elevation changes due to the presence of high mountain peaks, separated from surrounding depressed areas by steep escarpments, frequently represented by active faults. Consequently, relief energy favours the development of gravity-driven deformations. These deformations seem to be superimposed on and influenced by the inherited structural and tectonic pattern, related to the sin- and post-thrusting evolution. The morphological evidences of these phenomena, are represented by landslides, sackungen or rock-flows, lateral spreads and block slides. DInSAR analysis measured deformation of the large scale gravitative phenomena previously identified through aerial-photo analysis. DSGD may evolve in rapid, catastrophic mass movements and this paroxistic evolution of the deformations may be triggered by high magnitude seismic events. These assumptions point out the great importance of mapping in detail large scale slope instability phenomena in relation to the active faults, in a perspective of land-use planning such as the Abruzzo Region characterized by a high magnitude historical seismicity.

  12. GRAVITATIONAL CONUNDRUM? DYNAMICAL MASS SEGREGATION VERSUS DISRUPTION OF BINARY STARS IN DENSE STELLAR SYSTEMS

    SciTech Connect

    De Grijs, Richard; Li, Chengyuan; Zheng, Yong; Kouwenhoven, M. B. N.; Deng, Licai; Hu, Yi; Wicker, James E.

    2013-03-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the {approx}> 2{sigma} level of significance (>3{sigma} if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M {sub Sun }) with increasing distance from the cluster center, specifically between the inner 10''-20'' (approximately equivalent to the cluster's core and half-mass radii) and the outer 60''-80''. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of 'soft' binary systems-with relatively low binding energies compared to the kinetic energy of their stellar members-in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.

  13. Gravitational microlensing by low-mass objects in the globular cluster M22.

    PubMed

    Sahu, K C; Casertano, S; Livio, M; Gilliland, R L; Panagia, N; Albrow, M D; Potter, M

    2001-06-28

    Gravitational microlensing offers a means of determining directly the masses of objects ranging from planets to stars, provided that the distances and motions of the lenses and sources can be determined. A globular cluster observed against the dense stellar field of the Galactic bulge presents ideal conditions for such observations because the probability of lensing is high and the distances and kinematics of the lenses and sources are well constrained. The abundance of low-mass objects in a globular cluster is of particular interest, because it may be representative of the very early stages of star formation in the Universe, and therefore indicative of the amount of dark baryonic matter in such clusters. Here we report a microlensing event associated with the globular cluster M22. We determine the mass of the lens to be 0.13(+0.03)(-0.02) solar masses. We have also detected six events that are unresolved in time. If these are also microlensing events, they imply that a non-negligible fraction of the cluster mass resides in the form of free-floating planetary-mass objects.

  14. Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in LIGO-Virgo Data from 2005-2010

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackburn, Lindy L.; Camp, J. B.; Gehrels, N.; Graff, P. B.

    2014-01-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 less than or equal to italic f0/Hz less than or equal to 2000 and decay timescale 0.0001 approximately less than t/s approximately less than 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 less than or equal to M/solar mass less than or equal to 450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100 less than or equal to M/solar mass 150, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of 6:9 x 10(exp 8) Mpc(exp -3)yr(exp -1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l=m=2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.

  15. New template family for the detection of gravitational waves from comparable-mass black hole binaries

    SciTech Connect

    Porter, Edward K.

    2007-11-15

    In order to improve the phasing of the comparable-mass waveform as we approach the last stable orbit for a system, various resummation methods have been used to improve the standard post-Newtonian waveforms. In this work we present a new family of templates for the detection of gravitational waves from the inspiral of two comparable-mass black hole binaries. These new adiabatic templates are based on reexpressing the derivative of the binding energy and the gravitational wave flux functions in terms of shifted Chebyshev polynomials. The Chebyshev polynomials are a useful tool in numerical methods as they display the fastest convergence of any of the orthogonal polynomials. In this case they are also particularly useful as they eliminate one of the features that plagues the post-Newtonian expansion. The Chebyshev binding energy now has information at all post-Newtonian orders, compared to the post-Newtonian templates which only have information at full integer orders. In this work, we compare both the post-Newtonian and Chebyshev templates against a fiducially exact waveform. This waveform is constructed from a hybrid method of using the test-mass results combined with the mass dependent parts of the post-Newtonian expansions for the binding energy and flux functions. Our results show that the Chebyshev templates achieve extremely high fitting factors at all post-Newtonian orders and provide excellent parameter extraction. We also show that this new template family has a faster Cauchy convergence, gives a better prediction of the position of the last stable orbit and in general recovers higher Signal-to-Noise ratios than the post-Newtonian templates.

  16. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance.

    PubMed

    Vegetti, S; Lagattuta, D J; McKean, J P; Auger, M W; Fassnacht, C D; Koopmans, L V E

    2012-01-19

    The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found using a method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9 ± 0.1) × 10(8) M dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where M denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be 1.1(+0.6)(-0.4), with an average mass fraction of 3.3(+3.6)(-1.8) per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.

  17. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance.

    PubMed

    Vegetti, S; Lagattuta, D J; McKean, J P; Auger, M W; Fassnacht, C D; Koopmans, L V E

    2012-01-19

    The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found using a method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9 ± 0.1) × 10(8) M dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where M denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be 1.1(+0.6)(-0.4), with an average mass fraction of 3.3(+3.6)(-1.8) per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter. PMID:22258612

  18. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Bustillo, J. Calderón; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.

    2014-05-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50≤f0/Hz≤2000 and decay timescale 0.0001≲τ/s≲0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50≤M/M⊙≤450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100≤M/M⊙≤150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9×10-8 Mpc-3 yr-1. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, ℓ=m =2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.

  19. Low mass binary neutron star mergers : gravitational waves and neutrino emission

    NASA Astrophysics Data System (ADS)

    Foucart, Francois; SXS Collaboration Collaboration

    2016-03-01

    We present numerical simulations of low mass binary neutron star mergers (1 . 2M⊙ - 1 . 2M⊙) with the SpEC code for a set of three nuclear-theory based, finite temperature equations of state. The merger remnant is a massive neutron star which is either permanently stable or long-lived. We focus on the post-merger gravitational wave signal, and on neutrino-matter interactions in the merger remnant. We show that the frequency peaks of the post-merger gravitational wave signal are in good agreement with predictions obtained from simulations using a simpler treatment of gravity. We then estimate the neutrino emission of the remnant using a neutrino leakage scheme and, in one case, compare these results with a gray two-moment neutrino transport scheme. We confirm the complex geometry of the neutrino emission, also observed in previous simulations with neutrino leakage, and show explicitly the presence of important differences in the neutrino luminosity, disk composition, and outflow properties between the neutrino leakage and transport schemes. We discuss the impact of our results on our ability to measure the neutron star equation of state, and on the post-merger electromagnetic signal and r-process nucleosynthesis in neutron star mergers. Einstein Fellow.

  20. Searching for intermediate-mass black holes in globular clusters with gravitational microlensing

    NASA Astrophysics Data System (ADS)

    Kains, N.; Bramich, D. M.; Sahu, K. C.; Calamida, A.

    2016-08-01

    We discuss the potential of the gravitational microlensing method as a unique tool to detect unambiguous signals caused by intermediate-mass black holes in globular clusters. We select clusters near the line of sight to the Galactic bulge and the Small Magellanic Cloud, estimate the density of background stars for each of them, and carry out simulations in order to estimate the probabilities of detecting the astrometric signatures caused by black hole lensing. We find that for several clusters, the probability of detecting such an event is significant with available archival data from the Hubble Space Telescope. Specifically, we find that M 22 is the cluster with the best chances of yielding an intermediate-mass black hole (IMBH) detection via astrometric microlensing. If M 22 hosts an IMBH of mass 105 M⊙, then the probability that at least one star will yield a detectable signal over an observational baseline of 20 years is ˜86 per cent, while the probability of a null result is around 14 per cent. For an IMBH of mass 106 M⊙, the detection probability rises to >99 per cent. Future observing facilities will also extend the available time baseline, improving the chance of detections for the clusters we consider.

  1. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  2. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies. II: The Effects of Star Formation Feedback

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.

    2016-08-01

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ˜1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ˜5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ˜ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  3. A linear MHD instability analysis of solar mass ejections with gravitation

    NASA Technical Reports Server (NTRS)

    Song, M. T.; Wu, S. T.; Dryer, M.

    1987-01-01

    The linear MHD instability of a cylindrical plasma is used to investigate the origin of solar mass ejections, and the dispersion relation is solved numerically. The initial plasma-flow velocity is found to have a significant effect on the instability criteria and growth rate, and the instability growth-rate is shown to be larger in cases where plasma flow exists, relative to the static case. Results suggest that the plasma column may break into small pieces. Assuming a thin-tube approximation, gravity is found to have little effect on the instability of quasi-horizontal ejection, but to have considerable effect on the vertical ejection. In considering the gravitational force, an exact analytical solution is found for the vertical case, while asymptotic solutions are given for the horizontal and oblique cases.

  4. Search for low-mass exoplanets by gravitational microlensing at high magnification.

    PubMed

    Abe, F; Bennett, D P; Bond, I A; Eguchi, S; Furuta, Y; Hearnshaw, J B; Kamiya, K; Kilmartin, P M; Kurata, Y; Masuda, K; Matsubara, Y; Muraki, Y; Noda, S; Okajima, K; Rakich, A; Rattenbury, N J; Sako, T; Sekiguchi, T; Sullivan, D J; Sumi, T; Tristram, P J; Yanagisawa, T; Yock, P C M; Gal-Yam, A; Lipkin, Y; Maoz, D; Ofek, E O; Udalski, A; Szewczyk, O; Zebrun, K; Soszynski, I; Szymanski, M K; Kubiak, M; Pietrzynski, G; Wyrzykowski, L

    2004-08-27

    Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star. PMID:15333833

  5. Probabilities for gravitational lensing by point masses in a locally inhomogeneous universe

    NASA Technical Reports Server (NTRS)

    Isaacson, Jeffrey A.; Canizares, Claude R.

    1989-01-01

    Probability functions for gravitational lensing by point masses that incorporate Poisson statistics and flux conservation are formulated in the Dyer-Roeder construction. Optical depths to lensing for distant sources are calculated using both the method of Press and Gunn (1973) which counts lenses in an otherwise empty cone, and the method of Ehlers and Schneider (1986) which projects lensing cross sections onto the source sphere. These are then used as parameters of the probability density for lensing in the case of a critical (q0 = 1/2) Friedmann universe. A comparison of the probability functions indicates that the effects of angle-averaging can be well approximated by adjusting the average magnification along a random line of sight so as to conserve flux.

  6. Low mass binary neutron star mergers: Gravitational waves and neutrino emission

    NASA Astrophysics Data System (ADS)

    Foucart, Francois; Haas, Roland; Duez, Matthew D.; O'Connor, Evan; Ott, Christian D.; Roberts, Luke; Kidder, Lawrence E.; Lippuner, Jonas; Pfeiffer, Harald P.; Scheel, Mark A.

    2016-02-01

    Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of short gamma-ray bursts, infrared/optical transients powered by r-process nucleosynthesis in neutron-rich material ejected by the merger, and radio emission from the interaction of that ejecta with the interstellar medium. Simulations of these mergers with fully general relativistic codes are critical to understand the merger and postmerger gravitational wave signals and their neutrinos and electromagnetic counterparts. In this paper, we employ the Spectral Einstein Code to simulate the merger of low mass neutron star binaries (two 1.2 M⊙ neutron stars) for a set of three nuclear-theory-based, finite temperature equations of state. We show that the frequency peaks of the postmerger gravitational wave signal are in good agreement with predictions obtained from recent simulations using a simpler treatment of gravity. We find, however, that only the fundamental mode of the remnant is excited for long periods of time: emission at the secondary peaks is damped on a millisecond time scale in the simulated binaries. For such low mass systems, the remnant is a massive neutron star which, depending on the equation of state, is either permanently stable or long lived (i.e. rapid uniform rotation is sufficient to prevent its collapse). We observe strong excitations of l =2 , m =2 modes, both in the massive neutron star and in the form of hot, shocked tidal arms in the surrounding accretion torus. We estimate the neutrino emission of the remnant using a neutrino leakage scheme and, in one case, compare these results with a gray two-moment neutrino transport scheme. We confirm the complex geometry of the neutrino emission, also observed in previous simulations with neutrino leakage, and show explicitly the presence of important differences in the neutrino luminosity, disk

  7. First gravitational lensing mass estimate of a damped Lyman α galaxy at z = 2.2

    NASA Astrophysics Data System (ADS)

    Grillo, C.; Fynbo, J. P. U.

    2014-03-01

    We present the first lensing total mass estimate of a galaxy, at redshift 2.207, that acts as a gravitational deflector and damped Lyman α absorber on the background QSO SDSS J1135-0010, at redshift 2.888. The remarkably small projected distance, or impact parameter, between the lens and the source has been estimated to be 0.8 ± 0.1 kpc in a recent work. By exploiting the Sloan Digital Sky Survey data base, we establish a likely lensing magnification signal in the photometry of the QSO. This is determined to be 2.2 mag brighter (or eight times more luminous) than the median QSO at comparable redshifts. We describe the total mass distribution of the lens galaxy with a one-component singular isothermal sphere model and contrast the values of the observed and model-predicted magnification factors. For the former, we use conservatively the photometric data of the 95 per cent of the available distant QSO population. We estimate that the values of the lens effective velocity dispersion and two-dimensional total mass, projected within a cylinder with radius equal to the impact parameter, are included between 60 and 170 km s-1 and 2.1 × 109 and 1.8 × 1010 M⊙, respectively. We conclude by remarking that analyses of this kind are crucial to exploring the relation between the luminous and dark-matter components of galaxies in the high-redshift Universe.

  8. A GRAVITATIONAL REDSHIFT DETERMINATION OF THE MEAN MASS OF WHITE DWARFS: DBA AND DB STARS

    SciTech Connect

    Falcon, Ross E.; Winget, D. E.; Montgomery, M. H.; Williams, Kurtis A. E-mail: dew@astro.as.utexas.edu E-mail: kurtis.williams@tamuc.edu

    2012-10-01

    We measure apparent velocities (v{sub app}) of absorption lines for 36 white dwarfs (WDs) with helium-dominated atmospheres-16 DBAs and 20 DBs-using optical spectra taken for the European Southern Observatory SN Ia progenitor survey. We find a difference of 6.9 {+-} 6.9 km s{sup -1} in the average apparent velocity of the H{alpha} lines versus that of the He I 5876 A lines for our DBAs. This is a measure of the blueshift of this He line due to pressure effects. By using this as a correction, we extend the gravitational redshift method employed by Falcon et al. to use the apparent velocity of the He I 5876 A line and conduct the first gravitational redshift investigation of a group of WDs without visible hydrogen lines. We use biweight estimators to find an average apparent velocity, (v{sub app}){sub BI}, (and hence average gravitational redshift, (v{sub g}){sub BI}) for our WDs; from that we derive an average mass, (M){sub BI}. For the DBAs, we find (v{sub app}){sub BI} = 40.8 {+-} 4.7 km s{sup -1} and derive (M){sub BI} = 0.71{sup +0.04}{sub -0.05} M{sub Sun }. Though different from (v{sub app}) of DAs (32.57 km s{sup -1}) at the 91% confidence level and suggestive of a larger DBA mean mass than that for normal DAs derived using the same method (0.647{sup +0.013}{sub -0.014} M{sub Sun }; Falcon et al.), we do not claim this as a stringent detection. Rather, we emphasize that the difference between (v{sub app}){sub BI} of the DBAs and (v{sub app}) of normal DAs is no larger than 9.2 km s{sup -1}, at the 95% confidence level; this corresponds to roughly 0.10 M{sub Sun }. For the DBs, we find (v {sup He}{sub app}){sub BI} = 42.9 {+-} 8.49 km s{sup -1} after applying the blueshift correction and determine (M){sub BI} = 0.74{sup +0.08}{sub -0.09} M{sub Sun }. The difference between (v{sup He}{sub app}){sub BI} of the DBs and (v{sub app}) of DAs is {<=}11.5 km s{sup -1} ({approx}0.12 M{sub Sun }), at the 95% confidence level. The gravitational redshift method indicates

  9. Gravitational energy

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2005-12-01

    Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass + internal energies + kinetic energies + pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total 'matter energy', EM, for those observers. If Mc2 is the total mass energy, the difference Mc2 - EM is the binding gravitational energy. Misner, Thorne and Wheeler (MTW) evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetimes with isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy momentum tensor satisfies usual energy conditions.

  10. Constraining Warm Dark Matter Mass with Cosmic Reionization and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Tan, Wei-Wei; Wang, F. Y.; Cheng, K. S.

    2016-09-01

    We constrain the warm dark matter (WDM) particle mass with observations of cosmic reionization and CMB optical depth. We suggest that the gravitational waves (GWs) from stellar-mass black holes (BHs) could give a further constraint on WDM particle mass for future observations. The star formation rates (SFRs) of Population I/II (Pop I/II) and Population III (Pop III) stars are also derived. If the metallicity of the universe is enriched beyond the critical value of {Z}{{crit}}={10}-3.5 {Z}⊙ , the star formation shifts from Pop III to Pop I/II stars. Our results show that the SFRs are quite dependent on the WDM particle mass, especially at high redshifts. Combined with the reionization history and CMB optical depth derived from the recent Planck mission, we find that the current data require the WDM particle mass to be in a narrow range of 1 {{keV}}≲ {m}{{x}}≲ 3 {{keV}}. Furthermore, we suggest that the stochastic gravitational wave background (SGWB) produced by stellar BHs could give a further constraint on the WDM particle mass for future observations. For {m}{{x}}=3 {{keV}}, with Salpeter (Chabrier) initial mass function (IMF), the SGWB from Pop I/II BHs has a peak amplitude of {{{Ω }}}{{GW}}≈ 2.8× {10}-9 (5.0× {10}-9) at f=316{{Hz}}, while the GW radiation at f\\lt 10 Hz is seriously suppressed. For {m}{{x}}=1 {{keV}}, the SGWB peak amplitude is the same as that for {m}{{x}}=1 {{keV}}, but a little lower at low frequencies. Therefore, it is hard to constrain the WDM particle mass by the SGWB from Pop I/II BHs. To assess the detectability of the GW signal, we also calculate the signal-to-noise ratios (S/N), which are {{S}}/{{N}}=37.7 (66.5) and 27 (47.7) for {m}{{x}}=3 {{keV}} and {m}{{x}}=1 {{keV}} for the Einstein Telescope with Salpeter (Chabrier) IMF, respectively. The SGWB from Pop III BHs is very dependent on the WDM particle mass, the GW strength could be an order of magnitude different, and the frequency band could be two times different for {m

  11. Hadamard regularization of the third post-Newtonian gravitational wave generation of two point masses

    SciTech Connect

    Blanchet, Luc; Iyer, Bala R.

    2005-01-15

    Continuing previous work on the 3PN-accurate gravitational-wave generation from point-particle binaries, we obtain the binary's 3PN mass-type quadrupole and dipole moments for general (not necessarily circular) orbits in harmonic coordinates. The final expressions are given in terms of their core parts, resulting from the application of the pure-Hadamard-Schwartz self-field regularization scheme, and augmented by an ambiguous part. In the case of the 3PN quadrupole we find three ambiguity parameters, {xi}, {kappa} and {zeta}, but only one for the 3PN dipole, in the form of the particular combination {xi}+{kappa}. Requiring that the dipole moment agree with the center-of-mass position deduced from the 3PN equations of motion in harmonic coordinates yields the relation {xi}+{kappa}=-9871/9240. Our results will form the basis of the complete calculation of the 3PN radiation field of compact binaries by means of dimensional regularization.

  12. Gravitational fragmentation in turbulent primordial gas and the initial mass function of Population III stars

    SciTech Connect

    Clark, Paul C.; Glover, Simon C.O.; Klessen, Ralf S.; Bromm, Volker; /Texas U., Astron. Dept.

    2010-08-25

    We report results from numerical simulations of star formation in the early universe that focus on the dynamical behavior of metal-free gas under different initial and environmental conditions. In particular we investigate the role of turbulence, which is thought to ubiquitously accompany the collapse of high-redshift halos. We distinguish between two main cases: the birth of Population III.1 stars - those which form in the pristine halos unaffected by prior star formation - and the formation of Population III.2 stars - those forming in halos where the gas is still metal free but has an increased ionization fraction. This latter case can arise either from exposure to the intense UV radiation of stellar sources in neighboring halos, or from the high virial temperatures associated with the formation of massive halos, that is, those with masses greater than {approx} 10{sup 8} M{sub {circle_dot}}. We find that turbulent primordial gas is highly susceptible to fragmentation in both cases, even for turbulence in the subsonic regime, i.e. for rms velocity dispersions as low as 20 % of the sound speed. Contrary to our original expectations, fragmentation is more vigorous and more widespread in pristine halos compared to pre-ionized ones. We therefore predict Pop III.1 stars to be on average of somewhat lower mass, and form in larger groups, than Pop III.2 stars. We find that fragment masses cover over two orders of magnitude, indicating that the resulting Population III initial mass function was significantly extended in mass as well. Our results suggest that the details of the fragmentation process depend on the local properties of the turbulent velocity field and hence we expect considerable variations in the resulting stellar mass spectrum in different halos. In particular, the lowest-mass objects in our sample should have survived to the present day and could potentially provide a unique record of the physical conditions of stellar birth in the primordial universe

  13. Testing Chern-Simons modified gravity with gravitational-wave detections of extreme-mass-ratio binaries

    NASA Astrophysics Data System (ADS)

    Canizares, Priscilla; Gair, Jonathan R.; Sopuerta, Carlos F.

    2012-08-01

    The detection of gravitational waves from extreme-mass-ratio inspirals (EMRI) binaries, comprising a stellar-mass compact object orbiting around a massive black hole, is one of the main targets for low-frequency gravitational-wave detectors in space, like the Laser Interferometer Space Antenna (LISA) or evolved LISA/New Gravitational Observatory (eLISA/NGO). The long-duration gravitational-waveforms emitted by such systems encode the structure of the strong field region of the massive black hole, in which the inspiral occurs. The detection and analysis of EMRIs will therefore allow us to study the geometry of massive black holes and determine whether their nature is as predicted by general relativity and even to test whether general relativity is the correct theory to describe the dynamics of these systems. To achieve this, EMRI modeling in alternative theories of gravity is required to describe the generation of gravitational waves. However, up to now, only a restricted class of theories has been investigated. In this paper, we explore to what extent EMRI observations with a space-based gravitational-wave observatory like LISA or eLISA/NGO might be able to distinguish between general relativity and a particular modification of it, known as dynamical Chern-Simons modified gravity. Our analysis is based on a parameter estimation study which uses approximate gravitational waveforms obtained via a radiative-adiabatic method. In this framework, the trajectory of the stellar object is modeled as a sequence of geodesics in the spacetime of the modified-gravity massive black hole. The evolution between geodesics is determined by flux formulae based on general relativistic post-Newtonian and black hole perturbation theory computations. Once the trajectory of the stellar compact object has been obtained, the waveforms are computed using the standard multipole formulae for gravitational radiation applied to this trajectory. Our analysis is restricted to a five

  14. The gravitational wave contribution to cosmic microwave background anisotropies and the amplitude of mass fluctuations from COBE results

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Mollerach, Silvia

    1992-01-01

    A stochastic background of primordial gravitational waves may substantially contribute, via the Sachs-Wolfe effect, to the large-scale cosmic microwave background (CMB) anisotropies recently detected by COBE. This implies a bias in any resulting determination of the primordial amplitude of density fluctuations. We consider the constraints imposed on n is less than 1 ('tilted') power-law fluctuation spectra, taking into account the contribution from both scalar and tensor waves, as predicted by power-law inflation. The gravitational wave contribution to CMB anisotropies generally reduces the required rms level of mass fluctuation, thereby increasing the linear bias parameter, even in models where the spectral index is close to the Harrison-Zel'dovich value n = 1. This 'gravitational wave bias' helps to reconcile the predictions of CDM models with observations on pairwise galaxy velocity dispersion on small scales.

  15. Gravitational and Electromagnetic Signatures from the Tidal Disruption of a White Dwarf by an Intermediate Mass Black Hole

    NASA Astrophysics Data System (ADS)

    Haas, Roland; Bode, Tanja; Laguna, Pablo

    2010-02-01

    Observations of the gravitational and electromagnetic radiation from the tidal disruption of a white dwarf by an intermediate mass black hole (IMBH) could provide evidence for the existence of IMBHs. During the inspiral and violent disruption of the star, the system will emit both gravitational waves and possibly X-ray radiation from the remnant accretion disk around the IMBH, which together will allow both the system's location and internal parameters to be measured. We present results for the first fully general relativistic hydrodynamics simulations of these encounters focusing not only on the gravitational wave emission not but also the electromagnetic signatures during the disruption and subsequent accretion. Our code uses the successful puncture recipe as implemented in an enhanced version our vacuum MayaKranc code coupled to the hydrodynamics code Whisky. )

  16. Effects of non-gravitational forces on orbital evolution of active Centaurs

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Kovalenko, Nataliya

    2016-07-01

    Currently there are 26 active Centaurs known among 121 discovered .In the present study we have investigated the influence of cometary activity on their orbital evolution by using orbital evolution integrators. Since there is no information on exact values of non-gravitational forces for these cometary Centaurs, because of their large heliocentric distances, we assumed their non-gravitational forces as the one for comet Halley with coefficient of 1/r^{2}, where r is perihelion distance. As a result we got the differences in perihelion passage dates for active Centaurs and differences in their perihelion distances during one period around the Sun and longer time-span.

  17. The Effect of Mass Segregation on Gravitational Wave Sources near Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Hopman, Clovis; Alexander, Tal

    2006-07-01

    Gravitational waves (GWs) from the inspiral of compact remnants (CRs) into massive black holes (MBHs) will be observable to cosmological distances. While a CR spirals in, two-body scattering by field stars may cause it to fall into the central MBH before reaching a short-period orbit that would give an observable signal. As a result, only CRs very near (~0.01 pc) the MBH can spiral in successfully. In a multimass stellar population, the heaviest objects sink to the center, where they are more likely to slowly spiral into the MBH without being swallowed prematurely. We study how mass segregation modifies the stellar distribution and the rate of GW events. We find that the inspiral rate per galaxy is 30 Gyr-1 for white dwarfs, 6 Gyr-1 for neutron stars, and 250 Gyr-1 for 10 Msolar stellar black holes (SBHs). The high rate for SBHs is due to their extremely steep density profile, nBH(r)~r-2. The GW detection rate will be dominated by SBHs.

  18. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  19. Gravitational-wave stochastic background detection with resonant-mass detectors

    NASA Astrophysics Data System (ADS)

    Vitale, S.; Cerdonio, M.; Coccia, E.; Ortolan, A.

    1997-02-01

    In this paper we discuss how the standard optimal Wiener filter theory can be applied, within a linear approximation, to the detection of an isotropic stochastic gravitational-wave background with two or more detectors. We apply then the method to the AURIGA-NAUTILUS pair of ultralow temperature bar detectors, soon to operate in coincidence in Italy, obtaining an estimate for the sensitivity to the background spectral density of ~10-49 Hz-1, that converts to an energy density per unit logarithmic frequency of ~8×10-5×ρc, with ρc~1.9×10-26 kg/m3 the closure density of the Universe. We also show that by adding the VIRGO interferometric detector under construction in Italy to the array, and by properly reorienting the detectors, one can reach a sensitivity of ~6×10-5×ρc. We then calculate that the pair formed by VIRGO and one large mass spherical detector properly located in one of the nearby available sites in Italy can reach a sensitivity of ~2×10-5×ρc while a pair of such spherical detectors at the same sites of AURIGA and NAUTILUS can achieve sensitivities of ~2×10-6×ρc.

  20. GRAVITATIONAL INSTABILITY OF SOLIDS ASSISTED BY GAS DRAG: SLOWING BY TURBULENT MASS DIFFUSIVITY

    SciTech Connect

    Shariff, Karim; Cuzzi, Jeffrey N.

    2011-09-01

    The Goldreich and Ward (axisymmetric) gravitational instability of a razor thin particle layer occurs when the Toomre parameter Q{sub T} {identical_to} c{sub p}{Omega}{sub 0}/{pi}G{Sigma}{sub p} < 1 (c{sub p} being the particle dispersion velocity). Ward extended this analysis by adding the effect of gas drag upon particles and found that even when Q{sub T} > 1, sufficiently long waves were always unstable. Youdin carried out a detailed analysis and showed that the instability allows chondrule-sized ({approx}1 mm) particles to undergo radial clumping with reasonable growth times even in the presence of a moderate amount of turbulent stirring. The analysis of Youdin includes the role of turbulence in setting the thickness of the dust layer and in creating a turbulent particle pressure in the momentum equation. However, he ignores the effect of turbulent mass diffusivity on the disturbance wave. Here, we show that including this effect reduces the growth rate significantly, by an amount that depends on the level of turbulence, and reduces the maximum intensity of turbulence the instability can withstand by 1-3 orders of magnitude. The instability is viable only when turbulence is extremely weak and the solid to gas surface density of the particle layer is considerably enhanced over minimum-mass-nebula values. A simple mechanistic explanation of the instability shows how the azimuthal component of drag promotes instability while the radial component hinders it. A gravito-diffusive overstability is also possible but never realized in the nebula models.

  1. FY15 Gravitational-Wave Mission Activities Project

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2014-01-01

    The Gravitational-Wave (GW) team at Goddard provides leadership to both the US and international research communities through science and conceptual design competencies. To sustain the US effort to either participate in the GW mission that ESA selected for the L3 opportunity or to initiate a NASA-led mission, the Goddard team will engage in the advancement of the science and the conceptual design of a future GW mission. We propose two tasks: (1) deliver new theoretical tools to help the external research community understand how GW observations can contribute to their science and (2) explore new implementations for laser metrology systems based on techniques from time-domain reflectometry and laser communications.

  2. Gravitational signature and apparent mass changes in Amundsen Embayment caused by low viscosity GIA model constrained by rapid bedrock displacement

    NASA Astrophysics Data System (ADS)

    Barletta, V. R.; Bevis, M.; Smith, B. E.; Wilson, T. J.; Willis, M. J.; Brown, A.; Bordoni, A.; Khan, S. A.; Smalley, R., Jr.; Kendrick, E. C.; Konfal, S. A.; Caccamise, D.; Aster, R.; Chaput, J. A.; Heeszel, D.; Wiens, D.; Lloyd, A. J.

    2014-12-01

    The Amundsen Embayment sector of West Antarctica is experiencing some of the fastest sustained bedrock uplift rates in the world. These motions, recorded by the Antarctic GPS Network (ANET), cannot be explained in terms of the earth's elastic response to contemporary ice loss, and the residues are far too rapid to be explained using traditional GIA models. We use 13 years of very high resolution DEM-derived ice mass change fields over the Amundsen sector to compute the elastic signal and remove it from the observed geodetic time series. We obtain a very large residual - up to 5 times larger than the computed elastic response. Low or very low mantle viscosities are expected in this area based on existing heat flow estimates, seismic velocity anomalies, thin crust, and active volcanism, all of which are associated with geologically recent rifting. We hypothesize that the rapid crustal displacement manifests a low viscosity short-time-scale response to post- Little Ice Age ice mass changes, including ice losses developed in the last decade or so. A plausible ice history for the last hundred years is made by using the actual measurements from 2002 to 2014, and 25% of the present day melting rate before 2002. We then simulate and fit the bedrock displacement - both vertical and horizontal - with a spherical compressible viscoelastic Earth model having a low viscosity shallow upper mantle. We show that we can constrain the shallow upper mantle viscosity very well and also explain most of the signal (amplitude and direction) by using 2 x10^18 Pa s. However we are not able to precisely constrain the thickness of the lithosphere (the preferred thickness is more than 50 km, quite thick for that region) or ice history. By using our preferred set up (earth model + ice history) we compute the GIA gravitational signature and convert it in equivalent superficial water density (see figure) that can be directly used to correct the mass changes observed by GRACE.For the Amundsen

  3. Gravitational signature and apparent mass changes in Amundsen Embayment caused by low viscosity GIA model constrained by rapid bedrock displacement

    NASA Astrophysics Data System (ADS)

    Barletta, V. R.; Bevis, M.; Smith, B. E.; Wilson, T. J.; Willis, M. J.; Brown, A.; Bordoni, A.; Khan, S. A.; Smalley, R., Jr.; Kendrick, E. C.; Konfal, S. A.; Caccamise, D.; Aster, R.; Chaput, J. A.; Heeszel, D.; Wiens, D.; Lloyd, A. J.

    2015-12-01

    The Amundsen Embayment sector of West Antarctica is experiencing some of the fastest sustained bedrock uplift rates in the world. These motions, recorded by the Antarctic GPS Network (ANET), cannot be explained in terms of the earth's elastic response to contemporary ice loss, and the residues are far too rapid to be explained using traditional GIA models. We use 13 years of very high resolution DEM-derived ice mass change fields over the Amundsen sector to compute the elastic signal and remove it from the observed geodetic time series. We obtain a very large residual - up to 5 times larger than the computed elastic response. Low or very low mantle viscosities are expected in this area based on existing heat flow estimates, seismic velocity anomalies, thin crust, and active volcanism, all of which are associated with geologically recent rifting. We hypothesize that the rapid crustal displacement manifests a low viscosity short-time-scale response to post- Little Ice Age ice mass changes, including ice losses developed in the last decade or so. A plausible ice history for the last hundred years is made by using the actual measurements from 2002 to 2014, and 25% of the present day melting rate before 2002. We then simulate and fit the bedrock displacement - both vertical and horizontal - with a spherical compressible viscoelastic Earth model having a low viscosity shallow upper mantle. We show that we can constrain the shallow upper mantle viscosity very well and also explain most of the signal (amplitude and direction) by using 2 x10^18 Pa s. However we are not able to precisely constrain the thickness of the lithosphere (the preferred thickness is more than 50 km, quite thick for that region) or ice history. By using our preferred set up (earth model + ice history) we compute the GIA gravitational signature and convert it in equivalent superficial water density (see figure) that can be directly used to correct the mass changes observed by GRACE.For the Amundsen

  4. PRELUDE TO A DOUBLE DEGENERATE MERGER: THE ONSET OF MASS TRANSFER AND ITS IMPACT ON GRAVITATIONAL WAVES AND SURFACE DETONATIONS

    SciTech Connect

    Dan, Marius; Rosswog, Stephan; Guillochon, James; Ramirez-Ruiz, Enrico E-mail: rosswog@jacobs-university.de E-mail: enrico@ucolick.org

    2011-08-20

    We present the results of a systematic numerical study of the onset of mass transfer in double degenerate binary systems and its impact on the subsequent evolution. All investigated systems belong to the regime of direct impact, unstable mass transfer. In all of the investigated cases, even those considered unstable by conventional stability analysis, we find a long-lived mass transfer phase continuing for as many as several dozen orbital periods. This settles a recent debate sparked by a discrepancy between earlier smoothed particle hydrodynamics (SPH) calculations that showed disruptions after a few orbital periods and newer grid-based studies in which mass transfer continued for tens of orbits. The number of orbits a binary survives sensitively depends on the exact initial conditions. We find that the approximate initial conditions that have been used in most previous SPH calculations have a serious impact on all stages of the evolution from the onset of mass transfer up to the final structure of the remnant. We compare 'approximate' initial conditions where spherical stars are placed at an initial separation obtained from an estimate of the Roche lobe size with 'accurate' initial conditions that were constructed by carefully driving the binary system to equilibrium by a relaxation scheme. Simulations that use the approximate initial conditions underestimate the initial separation when mass transfer sets in, which yields a binary that only survives for only a few orbits and thus a rapidly fading gravitational wave signal. Conversely, the accurate initial conditions produce a binary system in which the mass transfer phase is extended by almost two orders of magnitude in time, resulting in a gravitational wave signal with amplitude and frequency that remain essentially constant up until merger. As we show that these binaries can survive at small separation for hundreds of orbital periods, their associated gravitational wave signal should be included when

  5. Gravitating Hopfions

    SciTech Connect

    Shnir, Ya. M.

    2015-12-15

    We construct solutions of the 3 + 1 dimensional Faddeev–Skyrme model coupled to Einstein gravity. The solutions are static and asymptotically flat. They are characterized by a topological Hopf number. We investigate the dependence of the ADM masses of gravitating Hopfions on the gravitational coupling. When gravity is coupled to flat space solutions, a branch of gravitating Hopfion solutions arises and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead, in the limit of a vanishing coupling constant, it connects to either the Bartnik–McKinnon or a generalized Bartnik–McKinnon solution. We further find that in the strong-coupling limit, there is no difference between the gravitating solitons of the Skyrme model and the Faddeev–Skyrme model.

  6. CONVERGENCE STUDIES OF MASS TRANSPORT IN DISKS WITH GRAVITATIONAL INSTABILITIES. I. THE CONSTANT COOLING TIME CASE

    SciTech Connect

    Michael, Scott; Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Boley, Aaron C. E-mail: tomsc@astro.indiana.edu E-mail: aaron.boley@gmail.com

    2012-02-10

    We conduct a convergence study of a protostellar disk, subject to a constant global cooling time and susceptible to gravitational instabilities (GIs), at a time when heating and cooling are roughly balanced. Our goal is to determine the gravitational torques produced by GIs, the level to which transport can be represented by a simple {alpha}-disk formulation, and to examine fragmentation criteria. Four simulations are conducted, identical except for the number of azimuthal computational grid points used. A Fourier decomposition of non-axisymmetric density structures in cos (m{phi}), sin (m{phi}) is performed to evaluate the amplitudes A{sub m} of these structures. The A{sub m} , gravitational torques, and the effective Shakura and Sunyaev {alpha} arising from gravitational stresses are determined for each resolution. We find nonzero A{sub m} for all m-values and that A{sub m} summed over all m is essentially independent of resolution. Because the number of measurable m-values is limited to half the number of azimuthal grid points, higher-resolution simulations have a larger fraction of their total amplitude in higher-order structures. These structures act more locally than lower-order structures. Therefore, as the resolution increases the total gravitational stress decreases as well, leading higher-resolution simulations to experience weaker average gravitational torques than lower-resolution simulations. The effective {alpha} also depends upon the magnitude of the stresses, thus {alpha}{sub eff} also decreases with increasing resolution. Our converged {alpha}{sub eff} is consistent with predictions from an analytic local theory for thin disks by Gammie, but only over many dynamic times when averaged over a substantial volume of the disk.

  7. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies. I. The Case of Pure Self-gravity

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.

    2015-12-01

    The role of gravitational instability-driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feedback can explain galaxy properties, remains an open question. To address it, we present high-resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation, but no form of star formation feedback. After an initial transient, our galaxies reach a state of fully nonlinear gravitational instability. In this state, gravity drives turbulence and radial inflow. Despite the lack of feedback, the gas in our galaxy models shows substantial turbulent velocity dispersions, indicating that gravitational instability alone may be able to power the velocity dispersions observed in nearby disk galaxies on 100 pc scales. Moreover, the rate of mass transport produced by this turbulence approaches ˜ 1 {M}⊙ yr-1 for Milky Way-like conditions, sufficient to fully fuel star formation in the inner disks of galaxies. In a companion paper, we add feedback to our models, and use the comparison between the two cases to understand which galaxy properties depend sensitively on feedback and which can be understood as the product of gravity alone. All of the code, initial conditions, and simulation data for our model are publicly available.

  8. Accuracy in measuring the neutron star mass in the gravitational wave parameter estimation for black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Cho, Hee-Suk

    2016-09-01

    Recently, two gravitational wave (GW) signals, named as GW150914 and GW151226, have been detected by the two LIGO detectors. Although both signals were identified as originating from merging black hole (BH) binaries, GWs from systems containing neutron stars (NSs) are also expected to be detected in the near future by the advanced detector network. In this work, we assess the accuracy in measuring the NS mass ( M NS) for the GWs from BH-NS binaries adopting the Advanced LIGO sensitivity with a signal-to-noise ratio of 10. By using the Fisher matrix method, we calculate the measurement errors ( σ) in M NS assuming a NS mass of 1 ≤ M NS/ M ⊙ ≤ 2 and low-mass BHs with masses in the range of 4 ≤ M BH/ M ⊙ ≤ 10. We use the TaylorF2 waveform model in which the spins are aligned with the orbital angular momentum, but here we only consider the BH spins. We find that the fractional errors ( σ/ M NS × 100) are in the range of 10% - 50% in our mass region for a given dimensionless BH spin χBH = 0. The errors tend to increase as the BH spin increases, and this tendency is stronger for higher NS masses (or higher total masses). In particular, for the highest mass NSs ( M NS = 2 M ⊙), the errors σ can be larger than the true value of M NS if the dimensionless BH spin exceeds ~ 0.6.

  9. Gravitational waves from sub-lunar-mass primordial black-hole binaries: a new probe of extradimensions.

    PubMed

    Inoue, Kaiki Taro; Tanaka, Takahiro

    2003-07-11

    In many brane world models, gravity is largely modified at the electroweak scale approximately 1 TeV. In such models, primordial black holes (PBHs) with a lunar mass M approximately 10(-7)M([circle dot]) might have been produced when the temperature of the Universe was at approximately 1 TeV. If a significant fraction of the dark halo of our galaxy consists of these lunar mass PBHs, a huge number of BH binaries will exist in our neighborhood. Third generation detectors such as EURO can detect gravitational waves from these binaries, and can also determine their chirp mass. With a new detector designed to be sensitive at high frequency bands greater, similar 1 kHz, the existence of extradimensions could be confirmed.

  10. Gravitational mechanism of active life of the Earth, planets and satellites

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial

  11. General polytropic self-gravitating cylinder free-fall and accreting mass string with a chain of collapsed objects

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Hu, Xu-Yao

    2016-06-01

    We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.

  12. Study of gravitational clustering of non-point mass system of galaxies

    NASA Astrophysics Data System (ADS)

    Wahid, Abdul; Ahmad, Ajaz

    2016-07-01

    Cosmic energy equation is actually the representation of law of conservation of energy in the region expanding with time as Universe expands. It gives the evolution of kinetic and gravitational correlation potential energies with time in a cluster expanding as Universe expands. In order to understand the gravitational galaxy clustering in the expanding Universe, cosmic energy equation is very important tool. We use Cosmic energy equation for extended structures (galaxies with halos) to obtain an expression for correlation parameter bV. Correlation parameter bV is an essential parameter as it provides an information regarding the extent up to which galaxies are clustered under the influence of gravitational force. The expression obtained for correlation parameter bV may help us to understand the different states of clustering because it depends on evolution time for a cluster. Further, Cosmic energy equation for extended structures is used to derive an expression for the asymptotic behavior of correlation parameter. A condition for virialization of a cluster of galaxies is also obtained from the same Cosmic energy equation.

  13. Intrinsic selection biases of ground-based gravitational wave searches for high-mass black hole-black hole mergers

    SciTech Connect

    O'Shaughnessy, R.; Vaishnav, B.; Healy, J.; Shoemaker, D.

    2010-11-15

    The next generation of ground-based gravitational wave detectors may detect a few mergers of comparable-mass M{approx_equal}100-1000M{sub {center_dot}}[''intermediate-mass'' (IMBH)] spinning black holes. Black hole spin is known to have a significant impact on the orbit, merger signal, and post-merger ringdown of any binary with non-negligible spin. In particular, the detection volume for spinning binaries depends significantly on the component black hole spins. We provide a fit to the single-detector and isotropic-network detection volume versus (total) mass and arbitrary spin for equal-mass binaries. Our analysis assumes matched filtering to all significant available waveform power (up to l=6 available for fitting, but only l{<=}4 significant) estimated by an array of 64 numerical simulations with component spins as large as S{sub 1,2}/M{sup 2{<=}}0.8. We provide a spin-dependent estimate of our uncertainty, up to S{sub 1,2}/M{sup 2{<=}}1. For the initial (advanced) LIGO detector, our fits are reliable for M(set-membership sign)[100,500]M{sub {center_dot}} (M(set-membership sign)[100,1600]M{sub {center_dot}}). In the online version of this article, we also provide fits assuming incomplete information, such as the neglect of higher-order harmonics. We briefly discuss how a strong selection bias towards aligned spins influences the interpretation of future gravitational wave detections of IMBH-IMBH mergers.

  14. Effects of the gravitational waves emission on the orbit of the binary neutron stars considering the mass variation.

    NASA Astrophysics Data System (ADS)

    Mabrouk, Zeinab; Rahoma, W. A.

    2016-07-01

    Gravitational waves which have been announced finally to be detected in February 11, 2016 are believed to be emitted from many sources and phenomena in the universe, the binary neutron stars systems specially the inspirals are one kind of them. In this paper we are going to calculate the effects of this emission on the elements of the elliptical orbits of such binary neutron stars before the onset of the mass exchange. We based our work on the Imshennik and Popov (1994) paper then we do some modifications. The main and important results that Imshennik and Popov get were the rate of change of the eccentricity e, the rate of change of the semi major axis a, and the monotonic dependence between them a=a(e). Finally they concluded the smallness of the final eccentricity which make the orbits to be near-circular due to the emission of the gravitational waves. Our modification is to consider the masses of the two binary stars to be varied using the famous Eddington-Jeams law, then we expand them around the time t using Taylor expansion. we do this variation first for one mass with the constancy of the second one, then we let both mosses to vary together. We start the algorithm from the beginning substituting with our new series of masses in the two main equations, the average rate of change of the total energy of the system (dE/dt) , and the average rate of change of the angular momentum (dJ/dt). This modification leads to new expressions of the previous mentioned rate of changes of the orbital elements obtained by Imshennik and Popov, some of them we obtained and still working in the rest.

  15. Gravitational Signal of Mass Redistribution Due to Interannual Meteorological Oscillations in Atmosphere and Ocean

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Au, A. Y.; Johnson, T.; Smith, David E. (Technical Monitor)

    2001-01-01

    Interannual meteorological oscillations (ENSO, QBO, NAO, etc.) have demonstrable influences on Earth's rotation. Here we study their effects on global gravitational field, whose temporal variations are being studied using SLR (satellite laser ranging) data and in anticipation of the new space mission GRACE. The meteorological oscillation modes are identified using the EOF (empirical orthogonal function)/PC (principal component) decomposition of surface fields (in which we take care of issues associated with the area-weighting and non-zero mean). We examine two fields, one for the global surface pressure field for the atmosphere obtained from the NCEP reanalysis (for the past 40 years), one for the surface topography field for the ocean from the Topex/Poseidon (T/P) data (for the past 8 years). We use monthly maps, and remove the mean-monthly ("climatology") values from each grid point, hence focusing only on non-seasonal signals. The T/P data were first subject to a steric correction where the steric contribution to the ocean surface topography was removed according to output of the numerical POCM model. The respective atmospheric and oceanic contributions to the gravitational variation, in terms of harmonic Stokes coefficients, are then combined mode-by-mode. Since the T/P data already contain the oceanic response to overlying atmospheric pressure, no regards to the inverted-barometer behavior for the ocean need be considered. Results for the lowest-degree Stokes coefficients can then be compared with space geodetic observations including the Earth's rotation and the SLR data mentioned above, to identify the importance of each meteorological oscillations in gravitational variation signals.

  16. Inferring Gravitational Potentials from Mass Densities in Cluster-sized Halos

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J.; Stark, Alejo; Gifford, Daniel; Kern, Nicholas

    2016-05-01

    We use N-body simulations to quantify how the escape velocity in cluster-sized halos maps to the gravitational potential in a ΛCDM universe. Using spherical density-potential pairs and the Poisson equation, we find that the matter density inferred gravitational potential profile predicts the escape velocity profile to within a few percent accuracy for group and cluster-sized halos (10{}13\\lt {M}200\\lt {10}15 M {}⊙ , with respect to the critical density). The accuracy holds from just outside the core to beyond the virial radius. We show the importance of explicitly incorporating a cosmological constant when inferring the potential from the Poisson equation. We consider three density models and find that the Einasto and Gamma profiles provide a better joint estimate of the density and potential profiles than the Navarro, Frenk, and White profile, which fails to accurately represent the escape velocity. For individual halos, the 1σ scatter between the measured escape velocity and the density-inferred potential profile is small (<5%). Finally, while the sub-halos show 15% biases in their representation of the particle velocity dispersion profile, the sub-halo escape velocity profile matches the dark matter escape velocity profile to high accuracy with no evidence of velocity bias outside 0.4r 200.

  17. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    NASA Astrophysics Data System (ADS)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On

  18. What powers the starburst activity of NGC 1068? Star-driven gravitational instabilities caught in the act

    NASA Astrophysics Data System (ADS)

    Romeo, Alessandro B.; Fathi, Kambiz

    2016-08-01

    We explore the role that gravitational instability plays in NGC 1068, a nearby Seyfert galaxy that exhibits unusually vigorous starburst activity. For this purpose, we use the Romeo-Falstad disc instability diagnostics and data from the BIMA Survey of Nearby Galaxies, the Sloan Digital Sky Survey and the Spectrographic Areal Unit for Research on Optical Nebulae. Our analysis illustrates that NGC 1068 is a gravitationally unstable `monster'. Its starburst disc is subject to unusually powerful instabilities. Several processes, including feedback from the active galactic nucleus and starburst activity, try to quench such instabilities from inside out by depressing the surface density of molecular gas across the central kpc, but they do not succeed. Gravitational instability `wins' because it is driven by the stars via their much higher surface density. In this process, stars and molecular gas are strongly coupled, and it is such a coupling that ultimately triggers local gravitational collapse/fragmentation in the molecular gas.

  19. Effects of the dark energy and flat rotation curve on the gravitational time delay of particle with non-zero mass

    NASA Astrophysics Data System (ADS)

    Sarkar, Tamal; Ghosh, Shubhrangshu; Bhadra, Arunava

    2016-07-01

    The effects of several dark energy models on gravitational time delay of particles with non-zero mass are investigated and analytical expressions for the same are obtained at the first order accuracy. Also the expression for gravitational time delay under the influence of conformal gravity potential that well describes the flat rotation curve of spiral galaxies is derived. The findings suggest that (i) the conformal gravity description of dark matter reduces the net time delay in contrast to the effect of normal dark matter, and therefore in principle the models can be discriminated using gravitational time delay observations, and (ii) the effect of dark energy/flat rotation curve may be revealed from high-precision measurements of gravitational time delay of particles involving the megaparsec and beyond distance scale.

  20. Limits on a gravitational field dependence of the proton-electron mass ratio from H2 in white dwarf stars.

    PubMed

    Bagdonaite, J; Salumbides, E J; Preval, S P; Barstow, M A; Barrow, J D; Murphy, M T; Ubachs, W

    2014-09-19

    Spectra of molecular hydrogen (H2) are employed to search for a possible proton-to-electron mass ratio (μ) dependence on gravity. The Lyman transitions of H2, observed with the Hubble Space Telescope towards white dwarf stars that underwent a gravitational collapse, are compared to accurate laboratory spectra taking into account the high temperature conditions (T∼13 000  K) of their photospheres. We derive sensitivity coefficients Ki which define how the individual H2 transitions shift due to μ dependence. The spectrum of white dwarf star GD133 yields a Δμ/μ constraint of (-2.7±4.7stat±0.2syst)×10(-5) for a local environment of a gravitational potential ϕ∼10(4) ϕEarth, while that of G29-38 yields Δμ/μ=(-5.8±3.8stat±0.3syst)×10(-5) for a potential of 2×10(4) ϕEarth. PMID:25279624

  1. Limits on a gravitational field dependence of the proton-electron mass ratio from H2 in white dwarf stars.

    PubMed

    Bagdonaite, J; Salumbides, E J; Preval, S P; Barstow, M A; Barrow, J D; Murphy, M T; Ubachs, W

    2014-09-19

    Spectra of molecular hydrogen (H2) are employed to search for a possible proton-to-electron mass ratio (μ) dependence on gravity. The Lyman transitions of H2, observed with the Hubble Space Telescope towards white dwarf stars that underwent a gravitational collapse, are compared to accurate laboratory spectra taking into account the high temperature conditions (T∼13 000  K) of their photospheres. We derive sensitivity coefficients Ki which define how the individual H2 transitions shift due to μ dependence. The spectrum of white dwarf star GD133 yields a Δμ/μ constraint of (-2.7±4.7stat±0.2syst)×10(-5) for a local environment of a gravitational potential ϕ∼10(4) ϕEarth, while that of G29-38 yields Δμ/μ=(-5.8±3.8stat±0.3syst)×10(-5) for a potential of 2×10(4) ϕEarth.

  2. Mass loss and longevity of gravitationally bound oscillating scalar lumps (oscillatons) in D dimensions

    NASA Astrophysics Data System (ADS)

    Fodor, Gyula; Forgács, Péter; Mezei, Márk

    2010-03-01

    Spherically symmetric oscillatons (also referred to as oscillating soliton stars) i.e. gravitationally bound oscillating scalar lumps are considered in theories containing a massive self-interacting real scalar field coupled to Einstein’s gravity in 1+D dimensional spacetimes. Oscillations are known to decay by emitting scalar radiation with a characteristic time scale which is, however, extremely long, it can be comparable even to the lifetime of our universe. In the limit when the central density (or amplitude) of the oscillaton tends to zero (small-amplitude limit) a method is introduced to compute the transcendentally small amplitude of the outgoing waves. The results are illustrated in detail on the simplest case, a single massive free scalar field coupled to gravity.

  3. Mass loss and longevity of gravitationally bound oscillating scalar lumps (oscillatons) in D dimensions

    SciTech Connect

    Fodor, Gyula; Forgacs, Peter; Mezei, Mark

    2010-03-15

    Spherically symmetric oscillatons (also referred to as oscillating soliton stars) i.e. gravitationally bound oscillating scalar lumps are considered in theories containing a massive self-interacting real scalar field coupled to Einstein's gravity in 1+D dimensional spacetimes. Oscillations are known to decay by emitting scalar radiation with a characteristic time scale which is, however, extremely long, it can be comparable even to the lifetime of our universe. In the limit when the central density (or amplitude) of the oscillaton tends to zero (small-amplitude limit) a method is introduced to compute the transcendentally small amplitude of the outgoing waves. The results are illustrated in detail on the simplest case, a single massive free scalar field coupled to gravity.

  4. Studies of waveform requirements for intermediate mass-ratio coalescence searches with advanced gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Smith, R. J. E.; Mandel, I.; Vecchio, A.

    2013-08-01

    The coalescence of a stellar-mass compact object into an intermediate-mass black hole (intermediate mass-ratio coalescence; IMRAC) is an important astrophysical source for ground-based gravitational-wave interferometers in the so-called advanced (or second-generation) configuration. However, the ability to carry out effective matched-filter-based searches for these systems is limited by the lack of reliable waveforms. Here we consider binaries in which the intermediate-mass black hole has a mass in the range 24M⊙-200M⊙ with a stellar-mass companion having masses in the range 1.4M⊙-18.5M⊙. In addition, we constrain the mass ratios, q, of the binaries to be in the range 1/140≤q≤1/10 and we restrict our study to the case of circular binaries with nonspinning components. We investigate the relative contribution to the signal-to-noise ratio (SNR) of the three different phases of the coalescence—inspiral, merger and ringdown—using waveforms computed within the effective one-body formalism matched to numerical relativity. We show that merger and ringdown contribute to a substantial fraction of the total SNR over a large portion of the mass parameter space, although in a limited portion the SNR is dominated by the inspiral phase. We further identify three regions in the IMRAC mass space in which (i) inspiral-only searches could be performed with losses in detection rates L in the range 10%≲L≲27%, (ii) searches based on inspiral-only templates lead to a loss in detection rates in the range 27%≲L≲50%, and (iii) templates that include merger and ringdown are essential to prevent losses in detection rates greater than 50%. In addition we find that using inspiral-only templates as filters can lead to large biases in the estimates of the mass parameters of IMRACs. We investigate the effectiveness with which the inspiral-only portion of the IMRAC waveform space is covered by comparing several existing waveform families in this regime. We find that

  5. Temporal variation of the earth's low-degree zonal gravitational field caused by atmospheric mass redistribution - 1980-1988

    NASA Technical Reports Server (NTRS)

    Chao, B. Fong; Au, Andrew Y.

    1991-01-01

    Temporal variations in the low-degree zonal harmonics of the earth's gravitational field have recently been observed by satellite laser ranging. A host of geophysical processes contribute to these variations. The present paper studies quantitatively a prime contributor, atmospheric mass redistribution, using ECMWF global surface pressure data for the period of 1980-1988. The annual and semiannual amplitudes and phases of the zonal J(l) coefficient with degree l = 2-6 with and without the oceanic inverted-barometer (IB) effect are computed to obtain the predicted effects on the orbit nodal residuals of Lageos and Starlette. These predicted values are then compared with observations. It is found that the atmospheric influence, combined with the hydrological influence agree well with the Lageos observation for the annual term. The corresponding match appears poorer for Starlette.

  6. Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Saha, P.; Murdin, P.

    2000-11-01

    Gravity bends light rays in a way analogous to, but quantitatively different from, the way it bends trajectories of passing particles. If light from some bright object passes close enough to some foreground mass, that object's image will be altered. The effect is more like a piece of bathroom glass in the sky than a precision-ground and well-focused lens, but the terms `gravitational lensing' or ...

  7. The Impact of Mass Segregation and Star Formation on the Rates of Gravitational-wave Sources from Extreme Mass Ratio Inspirals

    NASA Astrophysics Data System (ADS)

    Aharon, Danor; Perets, Hagai B.

    2016-10-01

    Compact stellar objects inspiraling into massive black holes (MBHs) in galactic nuclei are some of the most promising gravitational-wave (GWs) sources for next-generation GW detectors. The rates of such extreme mass ratio inspirals (EMRIs) depend on the dynamics and distribution of compact objects (COs) around the MBH. Here, we study the impact of mass-segregation processes on EMRI rates. In particular, we provide the expected mass function (MF) of EMRIs, given an initial MF of stellar black holes (SBHs), and relate it to the mass-dependent detection rate of EMRIs. We then consider the role of star formation (SF) on the distribution of COs and its implication on EMRI rates. We find that the existence of a wide spectrum of SBH masses leads to the overall increase of EMRI rates and to high rates of the EMRIs from the most massive SBHs. However, it also leads to a relative quenching of EMRI rates from lower-mass SBHs, and together produces a steep dependence of the EMRI MF on the highest-mass SBHs. SF history plays a relatively small role in determining the EMRI rates of SBHs, since most of them migrate close to the MBH through mass segregation rather than forming in situ. However, the EMRI rate of neutron stars (NSs) can be significantly increased when they form in situ close to the MBH, as they can inspiral before relaxation processes significantly segregate them outward. A reverse but weaker effect of decreasing the EMRI rates from NSs and white dwarfs occurs when SF proceeds far from the MBH.

  8. A weak gravitational lensing recalibration of the scaling relations linking the gas properties of dark haloes to their mass

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; White, Simon D. M.; Mandelbaum, Rachel; Henriques, Bruno; Anderson, Michael E.; Han, Jiaxin

    2016-03-01

    We use weak gravitational lensing to measure mean mass profiles around locally brightest galaxies (LBGs). These are selected from the Seventh Data Release of the Sloan Digital Sky Survey spectroscopic and photometric catalogues to be brighter than any neighbour projected within 1.0 Mpc and differing in redshift by <1000 km s-1. Most (>83 per cent) are expected to be the central galaxies of their dark matter haloes. Previous stacking analyses have used this LBG sample to measure mean Sunyaev-Zeldovich flux and mean X-ray luminosity as a function of LBG stellar mass. In both cases, a simulation of the formation of the galaxy population was used to estimate effective halo mass for LBGs of given stellar mass, allowing the derivation of scaling relations between the gas properties of haloes and their mass. By comparing results from a variety of simulations to our lensing data, we show that this procedure has significant model dependence reflecting: (i) the failure of any given simulation to reproduce observed galaxy abundances exactly; (ii) a dependence on the cosmology underlying the simulation; and (iii) a dependence on the details of how galaxies populate haloes. We use our lensing results to recalibrate the scaling relations, eliminating most of this model dependence and explicitly accounting both for residual modelling uncertainties and for observational uncertainties in the lensing results. The resulting scaling relations link the mean gas properties of dark haloes to their mass over an unprecedentedly wide range, 1012.5 < M500/M⊙ < 1014.5, and should fairly and robustly represent the full halo population.

  9. Limits on the power-law mass and luminosity density profiles of elliptical galaxies from gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Biesiada, Marek; Yao, Meng; Zhu, Zong-Hong

    2016-09-01

    We use 118 strong gravitational lenses observed by the SLACS, BOSS emission-line lens survey (BELLS), LSD and SL2S surveys to constrain the total mass profile and the profile of luminosity density of stars (light tracers) in elliptical galaxies up to redshift z ˜ 1. Assuming power-law density profiles for the total mass density, ρ = ρ0(r/r0)-α, and luminosity density, ν = ν0(r/r0)-δ, we investigate the power-law index and its first derivative with respect to the redshift. Using Monte Carlo simulations of the posterior likelihood taking the Planck's best-fitting cosmology as a prior, we find γ = 2.132 ± 0.055 with a mild trend ∂γ/∂zl = -0.067 ± 0.119 when α = δ = γ, suggesting that the total density profile of massive galaxies could have become slightly steeper over cosmic time. Furthermore, similar analyses performed on sub-samples defined by different lens redshifts and velocity dispersions indicate the need of treating low-, intermediate- and high-mass galaxies separately. Allowing δ to be a free parameter, we obtain α = 2.070 ± 0.031, ∂α/∂zl = -0.121 ± 0.078 and δ = 2.710 ± 0.143. The model in which mass traces light is rejected at >95 per cent confidence, and our analysis robustly indicates the presence of dark matter in the form of a mass component that is differently spatially extended than the light. In this case, intermediate-mass elliptical galaxies (200 km s-1 <σap ≤ 300 km s-1) show the best consistency with the singular isothermal sphere as an effective model of galactic lenses.

  10. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing.

    PubMed

    Beaulieu, J-P; Bennett, D P; Fouqué, P; Williams, A; Dominik, M; Jørgensen, U G; Kubas, D; Cassan, A; Coutures, C; Greenhill, J; Hill, K; Menzies, J; Sackett, P D; Albrow, M; Brillant, S; Caldwell, J A R; Calitz, J J; Cook, K H; Corrales, E; Desort, M; Dieters, S; Dominis, D; Donatowicz, J; Hoffman, M; Kane, S; Marquette, J-B; Martin, R; Meintjes, P; Pollard, K; Sahu, K; Vinter, C; Wambsganss, J; Woller, K; Horne, K; Steele, I; Bramich, D M; Burgdorf, M; Snodgrass, C; Bode, M; Udalski, A; Szymański, M K; Kubiak, M; Wieckowski, T; Pietrzyński, G; Soszyński, I; Szewczyk, O; Wyrzykowski, L; Paczyński, B; Abe, F; Bond, I A; Britton, T R; Gilmore, A C; Hearnshaw, J B; Itow, Y; Kamiya, K; Kilmartin, P M; Korpela, A V; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okada, C; Ohnishi, K; Rattenbury, N J; Sako, T; Sato, S; Sasaki, M; Sekiguchi, T; Sullivan, D J; Tristram, P J; Yock, P C M; Yoshioka, T

    2006-01-26

    In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M(o)) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a 5.5(+5.5)(-2.7) M(o) planetary companion at a separation of 2.6+1.5-0.6 au from a 0.22+0.21-0.11 M(o) M-dwarf star, where M(o) refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory. PMID:16437108

  11. Vibration, acceleration, gravitation, and movement: activity controlled rate adaptive pacing during treadmill exercise testing and daily life activities.

    PubMed

    Candinas, R; Jakob, M; Buckingham, T A; Mattmann, H; Amann, F W

    1997-07-01

    Activity-based sensors for rate adaptive pacing have been available for several years and now include several different types: vibration; acceleration; gravitation; and movement. However, a systematic comparison evaluating the relative advantages and disadvantages of these various sensors has received little study. The purpose of the present study was to compare these sensor subtypes using treadmill testing and an outdoor test circuit, which simulated daily life activities and included both uphill and downhill walking. Pacemakers were strapped on the chest of healthy volunteers and connected to one channel of an ambulatory recording device, which also recorded the subject's intrinsic heart rate. The pacemakers were programmed using an initial treadmill test to standardize the rate responsive parameters for each device. Nine different pacemaker models were studied including 3 vibration-based (Elite, Synchrony, Metros), 4 acceleration-based (Relay, Excel, Ergos, Trilogy), 1 gravitational-based (Swing), and 1 movement-based (Sensorithm) device. All devices demonstrated a prompt rate response with casual walking on flat ground. The vibration-, gravitational-, and movement-based pacemakers showed a pronounced rate decline during more strenuous work, e.g., walking uphill. This phenomenon was absent in the accelerometer-based units. In particular, the vibration- and movement-based units showed a higher rate with walking downhill compared to uphill. An optimally tuned rate behavior on the treadmill usually did not provide an optimal rate behavior during daily activities and there was a tendency to overstimulation during low workload. The development of the two newest sensors (gravitational and movement) did not result in an improved performance of rate response behavior. Overall, the accelerometer-based pacemakers simulated or paralleled sinus rate behavior the most closely.

  12. PROSPECTS FOR MEASURING THE MASS OF BLACK HOLES AT HIGH REDSHIFTS WITH RESOLVED KINEMATICS USING GRAVITATIONAL LENSING

    SciTech Connect

    Hezaveh, Yashar D.

    2014-08-20

    Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20% of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.

  13. Generalization of Ryan's theorem: Probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals

    SciTech Connect

    Li Chao; Lovelace, Geoffrey

    2008-03-15

    Extreme-mass-ratio inspirals (EMRIs) and intermediate-mass-ratio inspirals (IMRIs) - binaries in which a stellar-mass object spirals into a massive black hole or other massive, compact body - are important sources of gravitational waves for LISA and LIGO, respectively. Thorne has speculated that the waves from EMRIs and IMRIs encode, in principle, all the details of (i) the central body's spacetime geometry (metric), (ii) the tidal coupling (energy and angular momentum exchange) between the central body and orbiting object, and (iii) the evolving orbital elements. Fintan Ryan has given a first partial proof that this speculation is correct: Restricting himself to nearly circular, nearly equatorial orbits and ignoring tidal coupling, Ryan proved that the central body's metric is encoded in the waves. In this paper we generalize Ryan's theorem. Retaining Ryan's restriction to nearly circular and nearly equatorial orbits, and dropping the assumption of no tidal coupling, we prove that Thorne's conjecture is nearly fully correct: the waves encode not only the central body's metric but also the evolving orbital elements and (in a sense slightly different from Thorne's conjecture) the evolving tidal coupling.

  14. Measurements of mechanical dissipation in high sound velocity materials: implications for resonant-mass gravitational radiation detectors

    NASA Astrophysics Data System (ADS)

    Hu, En-Ke; Zhou, C.; Mann, L.; Michelson, P. F.; Price, J. C.

    1991-07-01

    The sensitivity of resonant-mass gravitational radiation detectors depends on both the antenna cross-section and the detector noise. The cross-section is determined by the sound velocity vs and density ϱ of the antenna material, while the principal detector noise sources are thermal Nyquist noise and noise due to the readout electromechanical amplifier. The thermal noise is proportional to T/Q, where T is the temperature and Q is the antenna's mechanical quality factor. For a given frequency and antenna geometry, the cross-section is proportional to ϱ v5s. Thus the speed of sound and Q are important figures-of-merit in selecting the antenna material. Materials with high vs are available that in principle could provide about a hundred-fold increase in the cross-section of resonant-mass gravity wave detectors as compared to current generation detectors. In this Letter we report the results of measurements of the temperature-dependent mechanical losses associated with excitation of the fundamental longitudinal acoustic mode in several potentially suitable materials. We also discuss the impact that these materials could have on the sensitivity of resonant-mass detectors.

  15. Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing

    NASA Astrophysics Data System (ADS)

    Istrate, A. G.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.

    2016-10-01

    A large number of extremely low-mass helium white dwarfs (ELM WDs) have been discovered in recent years. The majority of them are found in close binary systems suggesting they are formed either through a common-envelope phase or via stable mass transfer in a low-mass X-ray binary (LMXB) or a cataclysmic variable (CV) system. Here, we investigate the formation of these objects through the LMXB channel with emphasis on the proto-WD evolution in environments with different metallicities. We study for the first time the combined effects of rotational mixing and element diffusion (e.g. gravitational settling, thermal and chemical diffusion) on the evolution of proto-WDs and on the cooling properties of the resulting WDs. We present state-of-the-art binary stellar evolution models computed with MESA for metallicities of Z = 0.02, 0.01, 0.001 and 0.0002, producing WDs with masses between 0.16-0.45 M⊙. Our results confirm that element diffusion plays a significant role in the evolution of proto-WDs that experience hydrogen shell flashes. The occurrence of these flashes produces a clear dichotomy in the cooling timescales of ELM WDs, which has important consequences e.g. for the age determination of binary millisecond pulsars. In addition, we confirm that the threshold mass at which this dichotomy occurs depends on metallicity. Rotational mixing is found to counteract the effect of gravitational settling in the surface layers of young, bloated ELM proto-WDs and therefore plays a key role in determining their surface chemical abundances, i.e. the observed presence of metals in their atmospheres. We predict that these proto-WDs have helium-rich envelopes through a significant part of their lifetime. This is of great importance as helium is a crucial ingredient in the driving of the κ-mechanism suggested for the newly observed ELM proto-WD pulsators. However, we find that the number of hydrogen shell flashes and, as a result, the hydrogen envelope mass at the beginning of

  16. Gravitational waves, pulsations, and more : high-speed photometry of low-mass, He-core white dwarfs

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.

    2013-08-01

    This dissertation is an observational exploration of the exciting physics that can be enabled by high-speed photometric monitoring of extremely low-mass (< 0.25 Msun) white dwarf stars, which are found in some of the most compact binaries known. It includes the cleanest indirect detection of gravitational waves at visible wavelengths, the discovery of pulsations in He-core WDs, the strongest evidence for excited p-mode pulsations in a WD, the discovery of the first tidally distorted WDs and their use to constrain the low-end of the WD mass-radius relationship, and the strongest cases of Doppler beaming observed in a binary system. It is the result of the more than 220 nights spent at McDonald Observatory doing high-speed photometry with the Argos instrument on the 2.1 m Otto Struve telescope, which has led to a number of additional exciting results, including the discovery of an intermediate timescale in the evolution of cooling DA WDs and the discovery of the most massive pulsating WD, which should have an ONe-core and should be highly crystallized.

  17. The mass-zero spin-two field and gravitational theory.

    NASA Technical Reports Server (NTRS)

    Coulter, C. A.

    1972-01-01

    Demonstration that the conventional theory of the mass-zero spin-two field with sources introduces extraneous nonspin-two field components in source regions and fails to be covariant under the full or restricted conformal group. A modified theory is given, expressed in terms of the physical components of mass-zero spin-two field rather than in terms of 'potentials,' which has no extraneous components inside or outside sources, and which is covariant under the full conformal group. For a proper choice of source term, this modified theory has the correct Newtonian limit and automatically implies that a symmetric second-rank source tensor has zero divergence. It is shown that possibly a generally covariant form of the spin-two theory derived here can be constructed to agree with general relativity in all currently accessible experimental situations.

  18. Cardiovascular Adjustments to Gravitational Stress

    NASA Technical Reports Server (NTRS)

    Blomqvist, C. Gunnar; Stone, H. Lowell

    1991-01-01

    The effects of gravity on the cardiovascular system must be taken into account whenever a hemodynamic assessment is made. All intravascular pressure have a gravity-dependent hydrostatic component. The interaction between the gravitational field, the position of the body, and the functional characteristics of the blood vessels determines the distribution of intravascular volume. In turn this distribution largely determines cardiac pump function. Multiple control mechanisms are activated to preserve optimal tissue perfusion when the magnitude of the gravitational field or its direction relative to the body changes. Humans are particularly sensitive to such changes because of the combination of their normally erect posture and the large body mass and blood volume below the level of the heart. Current aerospace technology also exposes human subjects to extreme variations in the gravitational forces that range from zero during space travel to as much an nine-times normal during operation of high-performance military aircraft. This chapter therefore emphasizes human physiology.

  19. Can deep seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitroviċ, Ivanka; Lenhardt, Wolfgang; Hausmann, Helmut; Stemberk, Josef

    2016-04-01

    Tectonic elastic strain and ground deformations are documented as the most remarkable environmental phenomena occurring prior to local earthquakes in tectonically active areas. The question arises if such strain would be able to trigger mass movements. We discuss a directly observed fault slip and a subsequent minor activation of a deep-seated gravitational slope deformation prior to the M = 3 Bad Fischau earthquake between end of November and early December 2013 in NE Austria. The data originate from two faults in the Emmerberg and Eisenstein Caves in the transition zone between the Eastern Alps and the Vienna Basin, monitored in the framework of the FWF "Speleotect" project. The fault slips have been observed at the micrometer-level by means of an opto-mechanical 3D crack gauge TM-71. The discussed event started with the fault activation in the Emmerberg Cave on 25 November 2013 recorded by measurements of about 2 μm shortening and 1 μm sinistral parallel slip, which was fully in agreement with the macroscopically documented past fault kinematics. One day later, the mass (micro) movement activated on the opposite side of the mountain ridge in the Eisenstein Cave and it continued on three consecutive days. Further, the fault in the Emmerberg Cave experienced also a subsequent gravitational relaxation on 2/3 December 2013, when the joint opened and the southern block subsided towards the valley, while the original sinistral displacement remained irreversible. The process was followed by the M = 3 earthquake in Bad Fischau on 11 December 2013. Our data suggest that tectonic strain could play a higher role on the activation of slow mass movements in the area than expected. Although we cannot fully exclude the co-activation of the mass movement in the Eisenstein Cave by water saturation, the presented data bring new insight into recent geodynamics of the Eastern Alps and the Vienna Basin. For better interpretations and conclusions however, we need a much longer

  20. Influence of the atmospheric masses on the gravitational field of the earth

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.

    1979-01-01

    Seasonal and latitude dependent corrections to the gravity and height anomalies are developed in order to account for the neglect of the atmospheric masses outside the geoid, when using Stokes' equation. It is shown that the atmospheric correction to gravity at sea level is almost constant, equal to 0.871 mgals with a variation of 2 microgals whereas the height anomaly correction varies between -0.1 cm and -1.3 cm. Further, when the combined latitudinal/seasonal dependence is neglected in the atmospheric corrections, the maximum error introduced is on the order of 40 microgals for the gravity corrections and 0.7 cm for the height anomaly corrections.

  1. The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Holz, Daniel E.; Bulik, Tomasz; O’Shaughnessy, Richard

    2016-06-01

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40–100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20–80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  2. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Holz, Daniel E.; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-01

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  3. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.

    PubMed

    Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-23

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity. PMID:27337338

  4. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.

    PubMed

    Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-22

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  5. Eccentric-orbit extreme-mass-ratio inspiral gravitational wave energy fluxes to 7PN order

    NASA Astrophysics Data System (ADS)

    Forseth, Erik; Evans, Charles R.; Hopper, Seth

    2016-03-01

    We present new results through 7PN order on the energy flux from eccentric extreme-mass-ratio binaries. The black hole perturbation calculations are made at very high accuracy (200 decimal places) using a Mathematica code based on the Mano-Suzuki-Takasugi analytic function expansion formalism. All published coefficients in the expansion through 3PN order at lowest order in the mass ratio are confirmed and new analytic and numeric terms are found to high order in powers of e2 at post-Newtonian orders between 3.5PN and 7PN. We also show original work in finding (nearly) arbitrarily accurate expansions for hereditary terms at 1.5PN, 2.5PN, and 3PN orders. An asymptotic analysis is developed that guides an understanding of eccentricity singular factors, which diverge at unit eccentricity and which appear at each PN order. We fit to a model at each PN order that includes these eccentricity singular factors, which allows the flux to be accurately determined out to e →1 .

  6. Mass-energy and momentum extraction by gravitational wave emission in the merger of two colliding black holes: The non-head-on case

    NASA Astrophysics Data System (ADS)

    Aranha, R. F.; Soares, I. Damião; Tonini, E. V.

    2012-01-01

    We examine numerically the post-merger regime of two nonspining holes in non-head-on collisions in the realm of nonaxisymmetric Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed and evolved via the Robinson-Trautman equation. The numerical integration is performed using a Galerkin spectral method which is sufficiently stable to reach the final configuration of the remnant black hole, when the gravitational wave emission ceases. The initial data contains three independent parameters, the ratio mass α of the individual colliding black holes, their initial premerger infalling velocity and the incidence angle of collision ρ0. The remnant black hole is characterized by its final boost parameter, rest mass and scattering angle. The motion of the remnant black hole is restricted to the plane determined by the directions of the two initial colliding black holes, characterizing a planar collision. The net momentum fluxes carried out by gravitational waves are confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole for a large domain of initial data parameters. Our analysis is based on the Bondi-Sachs four-momentum conservation laws. The process of mass-energy extraction is shown to be less efficient as the initial data departs from the head-on configuration. Head-on collisions (ρ0=0o) and orthogonal collisions (ρ0=90°) constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extraction. On the contrary, head-on collisions and orthogonal collisions constitute, respectively, lower and upper bounds for the momentum of the remnant. Distinct regimes of gravitational wave emission (bursts or quiescent emission) are characterized by the analysis of the time behavior of the gravitational wave power as a function of α. In particular, the net

  7. The Origin of Gravitation

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng Ming

    2012-10-01

    In the natural world, people have discovered four kinds of forces: electromagnetic force, gravitation, weak force, and strong force. Although the gravitation has been discovered more than three hundred years, its mechanism of origin is unclear until today. While investigating the origin of gravitation, I do some experiments discover the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I do some experiments discover the light interference fringes are produced by the gravitation: my discovery demonstrate light is a particle, but is not a wave-particle duality. Furthermore, applications of this discovery to other moving particles show a similar effect. In a word: the micro particle moving produce gravitation and electromagnetic force. Then I do quantity experiment get a general formula: Reveal the essence of gravitational mass and the essence of electric charge; reveal the origin of gravitation and the essence of matter wave. Along this way, I unify the gravitation and electromagnetic force. Namely I find a natural law that from atomic world to star world play in moving track. See website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter

  8. Beyond the Horizon Distance: LIGO-Virgo can Boost Gravitational-Wave Detection Rates by Exploiting the Mass Distribution of Neutron Stars.

    PubMed

    Bartos, I; Márka, S

    2015-12-01

    The masses of neutron stars in neutron star binaries are observed to fall in a narrow mass range around ∼1.33M_{⊙}. We explore the advantage of focusing on this region of the parameter space in gravitational-wave searches. We find that an all-sky (externally triggered) search with an optimally reduced template bank is expected to detect 14% (61%) more binary mergers than without the reduction. A reduced template bank can also represent significant improvement in technical cost. We also develop a more detailed search method using binary mass distribution, and find a sensitivity increase similar to that due to the reduced template bank. PMID:26684105

  9. Active damping with a reaction mass actuator

    NASA Technical Reports Server (NTRS)

    Spanos, John; O'Brien, John

    1992-01-01

    This paper presents analytical and experimental results in actively damping flexible structures with reaction mass actuators. A two degree of freedom spring-mass model of a flexible structure is analyzed and the key parameters of actuator mass participation and pole-zero separation are related to the maximum damping achievable from rate feedback control. The main conclusion of the paper is that the larger the pole-zero separation the larger the amount of damping that can be imparted to a structural mode. Laboratory experiments conducted on an 8-foot truss structure support the analytical predictions.

  10. Gravitational force modulates muscle activity during mechanical oscillation of the tibia in humans.

    PubMed

    Chang, Shuo-Hsiu; Dudley-Javoroski, Shauna; Shields, Richard K

    2011-10-01

    Mechanical oscillation (vibration) is an osteogenic stimulus for bone in animal models and may hold promise as an anti-osteoporosis measure in humans with spinal cord injury (SCI). However, the level of reflex induced muscle contractions associated with various loads (g force) during limb segment oscillation is uncertain. The purpose of this study was to determine whether certain gravitational loads (g forces) at a fixed oscillation frequency (30 Hz) increases muscle reflex activity in individuals with and without SCI. Nine healthy subjects and two individuals with SCI sat with their hip and knee joints at 90° and the foot secured on an oscillation platform. Vertical mechanical oscillations were introduced at 0.3, 0.6, 1.2, 3 and 5 g force for 20 s at 30 Hz. Non-SCI subjects received the oscillation with and without a 5% MVC background contraction. Peak soleus and tibialis anterior (TA) EMG were normalized to M-max. Soleus and TA EMG were <2.5% of M-max in both SCI and non-SCI subjects. The greatest EMG occurred at the highest acceleration (5 g). Low magnitude mechanical oscillation, shown to enhance bone anabolism in animal models, did not elicit high levels of reflex muscle activity in individuals with and without SCI. These findings support the g force modulated background muscle activity during fixed frequency vibration. The magnitude of muscle activity was low and likely does not influence the load during fixed frequency oscillation of the tibia.

  11. Multi-band Emission of Active Galactic Nuclei: the Relationship of Stellar and Gravitational-Accretion Activity

    NASA Astrophysics Data System (ADS)

    Feltre, Anna

    2013-07-01

    One of the remaining open issues in the context of the analysis of active galactic nuclei is the evidence that nuclear gravitational accretion is often accompanied by a concurrent starburst activity. What is, in this picture, the role played by the obscuring dust around the nucleus and what does the state of the art models have to say? Can the infrared data provided by Spitzer and Herschel help us in extensively investigate both phenomena and, if so, how and with what limitations? Does the presence of an active nucleus have an impact in the mid- and far-infrared properties of galaxies? Which are the effects of simultaneous nuclear gravitational accretion and starburst activities in these same galaxies? This Thesis presents our contribution to the efforts of answering these questions. I report on results coming from a comparative study of various approaches adopted while modelling active galactic nuclei, focusing mostly on the much-debated issue about the morphology of the dust distribution in the toroidal structure surrounding their nuclear centre. We largely illustrate that properties of dust in active galactic nuclei as measured by matching observations (be it broad band infrared photometry or infrared spectra) with models strongly depend on the choice of the dust distribution. Further, I describe a spectral energy distribution fitting tool appositely developed to derive simultaneously the physical properties of active nuclei and coexisting starbursts. The procedure was developed to make the best use of Spitzer and Herschel mid- and far-infrared observations. Such data play a crucial role in this context, providing much stronger constraints on the models with respect to the previous observing facilities. The tool has been applied to a large sample of extragalactic sources representing the Herschel/Multi-tiered Extragalactic Survey population with mid-infrared spectra from Spitzer and with a plethora of multi-wavelength data (SDSS, Spitzer and Herschel/SPIRE). The

  12. Einstein's Gravitational Field Approach to Dark Matter and Dark Energy-Geometric Particle Decay into the Vacuum Energy Generating Higgs Boson and Heavy Quark Mass

    NASA Astrophysics Data System (ADS)

    Christensen, Walter James

    2015-08-01

    During an interview at the Niels Bohr Institute David Bohm stated, "according to Einstein, particles should eventually emerge as singularities, or very strong regions of stable pulses of (the gravitational) field" [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass; and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.

  13. New probe of dark-matter properties: gravitational waves from an intermediate-mass black hole embedded in a dark-matter minispike.

    PubMed

    Eda, Kazunari; Itoh, Yousuke; Kuroyanagi, Sachiko; Silk, Joseph

    2013-05-31

    An intermediate-mass black hole (IMBH) may have a dark-matter (DM) minihalo around it and develop a spiky structure within less than a parsec from the IMBH. When a stellar mass object is captured by the minihalo, it eventually infalls into such an IMBH due to gravitational wave backreaction which in turn could be observed directly by future space-borne gravitational wave experiments such as eLISA and NGO. In this Letter, we show that the gravitational wave (GW) detectability strongly depends on the radial profile of the DM distribution. So if the GW is detected, the power index, that is, the DM density distribution, would be determined very accurately. The DM density distribution obtained would make it clear how the IMBH has evolved from a seed black hole and whether the IMBH has experienced major mergers in the past. Unlike the γ-ray observations of DM annihilation, GW is just sensitive to the radial profile of the DM distribution and even to noninteracting DM. Hence, the effect we demonstrate here can be used as a new and powerful probe into DM properties.

  14. Gravitational collapse of Vaidya spacetime

    NASA Astrophysics Data System (ADS)

    Vertogradov, Vitalii

    2016-03-01

    The gravitational collapse of generalized Vaidya spacetime is considered. It is known that the endstate of gravitational collapse, as to whether a black hole or a naked singularity is formed, depends on the mass function M(v,r). Here we give conditions for the mass function which corresponds to the equation of the state P = αρ where α ∈ (0, 1 3] and according to these conditions we obtain either a black hole or a naked singularity at the endstate of gravitational collapse. Also we give conditions for the mass function when the singularity is gravitationally strong.

  15. Physical activity increases bone mass during growth

    PubMed Central

    Karlsson, Magnus K.; Nordqvist, Anders; Karlsson, Caroline

    2008-01-01

    Background The incidence of fragility fractures has increased during the last half of the 1990′s. One important determinant of fractures is the bone mineral content (BMC) or bone mineral density (BMD), the amount of mineralised bone. If we could increase peak bone mass (the highest value of BMC reached during life) and/or decrease the age-related bone loss, we could possibly improve the skeletal resistance to fracture. Objective This review evaluates the importance of exercise as a strategy to improve peak bone mass, including some aspects of nutrition. Design Publications within the field were searched through Medline (PubMed) using the search words: exercise, physical activity, bone mass, bone mineral content, bone mineral density, BMC, BMD, skeletal structure and nutrition. We included studies dealing with exercise during growth and young adolescence. We preferably based our inferences on randomised controlled trials (RCT), which provide the highest level of evidence. Results Exercise during growth increases peak bone mass. Moderate intensity exercise intervention programs are beneficial for the skeletal development during growth. Adequate nutrition must accompany the exercise to achieve the most beneficial skeletal effects by exercise. Conclusion Exercise during growth seems to enhance the building of a stronger skeleton through a higher peak bone mass and a larger bone size. PMID:19109652

  16. THE REMARKABLE {gamma}-RAY ACTIVITY IN THE GRAVITATIONALLY LENSED BLAZAR PKS 1830-211

    SciTech Connect

    Donnarumma, I.; De Rosa, A.; Vittorini, V.; Tavani, M.; Striani, E.; Pacciani, L.; Popovic, L. C.; Simic, S.; Kuulkers, E.; Vercellone, S.; Verrecchia, F.; Pittori, C.; Giommi, P.; Barbiellini, G.; Bulgarelli, A.

    2011-08-01

    We report the extraordinary {gamma}-ray activity (E > 100 MeV) of the gravitationally lensed blazar PKS 1830-211 (z = 2.507) detected by AGILE between 2010 October and November. On October 14, the source experienced a factor of {approx}12 flux increase with respect to its average value and remained brightest at this flux level ({approx}500 x 10{sup -8} photons cm{sup -2} s{sup -1}) for about four days. The one-month {gamma}-ray light curve across the flare showed a mean flux F(E > 100 MeV) = 200 x 10{sup -8} photons cm{sup -2} s{sup -1}, which resulted in a factor of four enhancement with respect to the average value. Following the {gamma}-ray flare, the source was observed in near-IR (NIR)-optical energy bands at the Cerro Tololo Inter-American Observatory and in X-Rays by Swift/X-Ray Telescope and INTEGRAL/IBIS. The main result of these multifrequency observations is that the large variability observed in {gamma}-rays does not have a significant counterpart at lower frequencies: no variation greater than a factor of {approx}1.5 appeared in the NIR and X-Ray energy bands. PKS 1830-211 is then a good '{gamma}-ray only flaring' blazar showing substantial variability only above 10-100 MeV. We discuss the theoretical implications of our findings.

  17. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Ceron, E. Amador; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Blackburn, L.; Camp, J. B.; Cannizzo, J.

    2012-01-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  18. Determination of mass of an isolated neutron star using continuous gravitational waves with two frequency modes: an effect of a misalignment angle

    NASA Astrophysics Data System (ADS)

    Eda, Kazunari; Ono, Kenji; Itoh, Yousuke

    2016-05-01

    A rapidly spinning neutron star (NS) would emit a continuous gravitational wave (GW) detectable by the advanced LIGO, advanced Virgo, KAGRA and proposed third generation detectors such as the Einstein Telescope (ET). Such a GW does not propagate freely, but is affected by the Coulomb-type gravitational field of the NS itself. This effect appears as a phase shift in the GW depending on the NS mass. We have shown that mass of an isolated NS can, in principle, be determined if we could detect the continuous GW with two or more frequency modes. Indeed, our Monte Carlo simulations have demonstrated that mass of a NS with its ellipticity 10-6 at 1 kpc is typically measurable with precision of 20% using the ET, if the NS is precessing or has a pinned superfluid core and emits GWs with once and twice the spin frequencies. After briefly explaining our idea and results, this paper concerns with the effect of misalignment angle (“wobble angle” in the case of a precessing NS) on the mass measurement precision.

  19. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  20. Numerical computation of gravitational field of infinitely thin axisymmetric disc with arbitrary surface mass density profile and its application to preliminary study of rotation curve of M33

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2016-03-01

    We developed a numerical method to compute the gravitational field of an infinitely thin axisymmetric disc with an arbitrary surface mass density profile. We evaluate the gravitational potential by a split quadrature using the double exponential rule and obtain the acceleration vector by numerically differentiating the potential by Ridder's algorithm. The new method is of around 12 digit accuracy and sufficiently fast because requiring only one-dimensional integration. By using the new method, we show the rotation curves of some non-trivial discs: (i) truncated power-law discs, (ii) discs with a non-negligible centre hole, (iii) truncated Mestel discs with edge softening, (iv) double power-law discs, (v) exponentially damped power-law discs, and (vi) an exponential disc with a sinusoidal modulation of the density profile. Also, we present a couple of model fittings to the observed rotation curve of M33: (i) the standard deconvolution by assuming a spherical distribution of the dark matter and (ii) a direct fit of infinitely thin disc mass with a double power-law distribution of the surface mass density. Although the number of free parameters is a little larger, the latter model provides a significantly better fit. The FORTRAN 90 programs of the new method are electronically available.

  1. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    PubMed

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  2. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    PubMed

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption. PMID:22629647

  3. Dynamic Stability and Gravitational Balancing of Multiple Extended Bodies

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco

    2008-01-01

    Feasibility of a non-invasive compensation scheme was analyzed for precise positioning of a massive extended body in free fall using gravitational forces influenced by surrounding source masses in close proximity. The N-body problem of classical mechanics is a paradigm used to gain insight into the physics of the equivalent N-body problem subject to control forces. The analysis addressed how a number of control masses move around the proof mass so that the proof mass position can be accurately and remotely compensated when exogenous disturbances are acting on it, while its sensitivity to gravitational waves remains unaffected. Past methods to correct the dynamics of the proof mass have considered active electrostatic or capacitive methods, but the possibility of stray capacitances on the surfaces of the proof mass have prompted the investigation of other alternatives, such as the method presented in this paper. While more rigorous analyses of the problem should be carried out, the data show that, by means of a combined feedback and feed-forward control approach, the control masses succeeded in driving the proof mass along the specified trajectory, which implies that the proof mass can, in principle, be balanced via gravitational forces only while external perturbations are acting on it. This concept involves the dynamic stability of a group of massive objects interacting gravitationally under active control, and can apply to drag-free control of spacecraft during missions, to successor gravitational wave space borne sensors, or to any application requiring flying objects to be precisely controlled in position and attitude relative to another body via gravitational interactions only.

  4. THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE

    SciTech Connect

    Bolton, Adam S.; Brownstein, Joel R.; Shu Yiping; Arneson, Ryan A.; Kochanek, Christopher S.; Schlegel, David J.; Eisenstein, Daniel J.; Wake, David A.; Connolly, Natalia; Maraston, Claudia; Weaver, Benjamin A.

    2012-09-20

    We present an analysis of the evolution of the central mass-density profile of massive elliptical galaxies from the SLACS and BELLS strong gravitational lens samples over the redshift interval z Almost-Equal-To 0.1-0.6, based on the combination of strong-lensing aperture mass and stellar velocity-dispersion constraints. We find a significant trend toward steeper mass profiles (parameterized by the power-law density model with {rho}{proportional_to}r {sup -{gamma}}) at later cosmic times, with magnitude d < {gamma} > /dz = -0.60 {+-} 0.15. We show that the combined lens-galaxy sample is consistent with a non-evolving distribution of stellar velocity dispersions. Considering possible additional dependence of <{gamma} > on lens-galaxy stellar mass, effective radius, and Sersic index, we find marginal evidence for shallower mass profiles at higher masses and larger sizes, but with a significance that is subdominant to the redshift dependence. Using the results of published Monte Carlo simulations of spectroscopic lens surveys, we verify that our mass-profile evolution result cannot be explained by lensing selection biases as a function of redshift. Interpreted as a true evolutionary signal, our result suggests that major dry mergers involving off-axis trajectories play a significant role in the evolution of the average mass-density structure of massive early-type galaxies over the past 6 Gyr. We also consider an alternative non-evolutionary hypothesis based on variations in the strong-lensing measurement aperture with redshift, which would imply the detection of an 'inflection zone' marking the transition between the baryon-dominated and dark-matter halo-dominated regions of the lens galaxies. Further observations of the combined SLACS+BELLS sample can constrain this picture more precisely, and enable a more detailed investigation of the multivariate dependences of galaxy mass structure across cosmic time.

  5. Comment on ``Atomic gravitational wave interferometric sensor''

    NASA Astrophysics Data System (ADS)

    Bender, Peter L.

    2011-07-01

    The use of laser interferometers for detecting and studying gravitational-wave signals from many types of astronomical sources is being pursued actively by a number of groups in different countries. However, it has been suggested recently that cooled atom clouds in atom interferometers could be used to replace the test masses in space-based gravitational-wave detectors and the end mirrors in ground-based detectors [S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, Phys. Rev. DPRVDAQ1550-7998 78, 122002 (2008).10.1103/PhysRevD.78.122002]. Some new error sources that apparently have not been included in proposals of atom interferometer gravitational-wave detectors will be discussed in this comment. They are based on additional effects of aberrations in the laser wave fronts that interact with the atom clouds.

  6. Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. I. Analytical results

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2011-08-01

    We provide an approximate analytical expression of the mass-radius relation of a Newtonian self-gravitating Bose-Einstein condensate (BEC) with short-range interactions described by the Gross-Pitaevskii-Poisson system. These equations model astrophysical objects such as boson stars and, presumably, dark matter galactic halos. Our study connects the noninteracting case studied by Ruffini and Bonazzola (1969) to the Thomas-Fermi limit studied by Böhmer and Harko (2007). For repulsive short-range interactions (positive scattering lengths), there exists configurations of arbitrary mass but their radius is always larger than a minimum value. For attractive short-range interactions (negative scattering lengths), equilibrium configurations only exist below a maximum mass. Above that mass, the system is expected to collapse and form a black hole. We also study the radius versus scattering length relation for a given mass. We find that equilibrium configurations only exist above a (negative) minimum scattering length. Our approximate analytical solution, based on a Gaussian ansatz, provides a very good agreement with the exact solution obtained by numerically solving a nonlinear differential equation representing hydrostatic equilibrium. Our analytical treatment is, however, easier to handle and permits one to study the stability problem, and derive an expression of the pulsation period, by developing an analogy with a simple mechanical problem.

  7. Gravitation research

    NASA Technical Reports Server (NTRS)

    Weiss, R.; Muehlner, D. J.; Benford, R. L.; Owens, D. K.; Pierre, N. A.; Rosenbluh, M.

    1972-01-01

    Balloon measurements were made of the far infrared background radiation. The radiometer used and its calibration are discussed. An electromagnetically coupled broadband gravitational antenna is also considered. The proposed antenna design and noise sources in the antenna are reviewed. A comparison is made between interferometric broadband and resonant bar antennas for the detection of gravitational wave pulses.

  8. Saturn's Gravitational Field And Ring Mass Sensitivity Study From The F-ring And The Proximal Orbits Of The Solstice Mission

    NASA Astrophysics Data System (ADS)

    Brozovic, Marina; Jacobson, R. A.; Roth, D. C.; Nicholson, P. D.; Hedeman, M. M.

    2012-10-01

    "Solstice" mission is the 7-year extension of the Cassini-Huygens spacecraft exploration of the Saturn system. Beginning in late 2016, the spacecraft is scheduled to execute 20 F-ring and 22 proximal orbits during which the spacecraft trajectory will be perturbed by the gravitational field of Saturn as well as the ring mass. F-ring orbits bring the spacecraft close to the ring plane during the descent/ascent from the periapses that is just outside the F-ring, while the proximal orbits, with their periapses between the innermost D-ring and the upper layer of Saturn's atmosphere, bring the spacecraft close to the innermost part of the ring. We used an optical depth profile in combination with estimates of opacity to obtain a surface mass density profile for the rings. The ring mass (GM 2.3 km3s-2) was subdivided into 6 major parts: A-ring, C-ring, and 3 parts for B-ring. The orbital model includes various sources of non-gravitational perturbations on the spacecraft. Furthermore, we simulate two-way Doppler radio-tracking of the spacecraft. Our analysis shows that both proximal orbits and F-ring orbits have ring mass sensitivity and that the Doppler measurements from 3-6 orbits can estimate the overall ring mass to within 10%. F-ring and proximal orbits have different geometry with respect to the ring plane, but there is still a significant correlation between the individual rings when we try to estimate their separate masses. Ring mass estimate is not correlated with the zonal harmonics, but the higher zonal harmonics are correlated between themselves. Our analysis shows that it is best to use proximal tracks separately for the zonal harmonics measurements, as the geometry of F-ring orbits does not bring the spacecraft close enough to the planet. We can expect that J8, J10 and J12 measurements all have better than 10-8 sensitivity which translates to better than 10% accuracy.

  9. The gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John

    2016-03-01

    With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.

  10. Influence of gravitational and vibrational convection on the heat- and mass transfer in the melt during crystal growing by Bridgman and floating zone methods

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    2016-07-01

    Space materials science is one of the priorities of different national and international space programs. The physical processes of heat and mass transfer in microgravity (including effect of g-jitter) is far from complete clarity, especially for important practical technology for producing crystals from the melt. The idea of the impact on crystallizing melt by low frequency vibration includes not only the possibility to suppress unwanted microaccelerations, but also to actively influence the structure of the crystallization front. This approach is one of the most effective ways to influence the quality of materials produced in flight conditions. The subject of this work is the effect of vibrations on the thermal and hydrodynamic processes during crystal growth using Bridgman and floating zone techniques, which have the greatest prospect of practical application in space. In the present approach we consider the gravitational convection, Marangoni convection, as well as the effect of vibration on the melt for some special cases. The results of simulation were compared with some experimental data obtained by the authors using a transparent model substance - succinonitrile (Bridgman method), and silicon (floating zone method). Substances used, process parameters and characteristics of the experimental units correspond the equipment developed for onboard research and serve as a basis for selecting optimum conditions vibration exposure as a factor affecting the solidification pattern. The direction of imposing vibrations coincides with the axis of the crystal, the frequency is presented by the harmonic law, and the force of gravity was varied by changing its absolute value. Mathematical model considered axisymmetric approximation of joint convective-conductive energy transfer in the system crystal - melt. Upon application of low-frequency oscillations of small amplitude along the axis of growing it was found the suppression of the secondary vortex flows near the

  11. Dependence of the Observed Properties of Type Ia Supernovae on the Mass of the Progenitor White Dwarf in the Gravitationally Confined Detonation Model

    NASA Astrophysics Data System (ADS)

    Lamb, Don Q.; Jordan, George C; Wuyts, Eva; Jumper, Kevin A.; Fisher, Robert

    2014-08-01

    We investigate the dependence of the observed properties of Type Ia supernovae on the mass MWD of the white dwarf star in the single degenerate model. We find that, within the gravitationally confined detonation (GCD) model and the treatment we use for buoyancy-driven turbulent nuclear burning, the outcome of the explosion is highly sensitive to MWD. Specifically, we find that the nuclear energy released during the deflagration phase, and therefore the amount by which the white dwarf expands prior to initiation of the detonation wave, increase rapidly as MWD increases. Consequently, the amount of radioactive nickel produced, and thus the peak luminosity of the supernova, decrease rapidly as MWD increases. We find that, as a result, ignition at a single point (which is favored by simulations of the prior smoldering phase) and a variation in MWD of as little as ~ 2% can produce the observed range of peak luminosities of normal Type Ia supernovae.

  12. ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change

    NASA Astrophysics Data System (ADS)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric

    2016-03-01

    A classical Green's function approach for computing gravitationally consistent sea-level variations associated with mass redistribution on the earth's surface employed in contemporary sea-level models naturally suits the spectral methods for numerical evaluation. The capability of these methods to resolve high wave number features such as small glaciers is limited by the need for large numbers of pixels and high-degree (associated Legendre) series truncation. Incorporating a spectral model into (components of) earth system models that generally operate on a mesh system also requires repetitive forward and inverse transforms. In order to overcome these limitations, we present a method that functions efficiently on an unstructured mesh, thus capturing the physics operating at kilometer scale yet capable of simulating geophysical observables that are inherently of global scale with minimal computational cost. The goal of the current version of this model is to provide high-resolution solid-earth, gravitational, sea-level and rotational responses for earth system models operating in the domain of the earth's outer fluid envelope on timescales less than about 1 century when viscous effects can largely be ignored over most of the globe. The model has numerous important geophysical applications. For example, we compute time-varying computations of global geodetic and sea-level signatures associated with recent ice-sheet changes that are derived from space gravimetry observations. We also demonstrate the capability of our model to simultaneously resolve kilometer-scale sources of the earth's time-varying surface mass transport, derived from high-resolution modeling of polar ice sheets, and predict the corresponding local and global geodetic signatures.

  13. Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.

    2014-06-01

    This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to ˜200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M⊙ and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M⊙ black holes and is equal to 0.12 Mpc-3 Myr-1 at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by ˜20%.

  14. The Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Blair, David G.

    2005-10-01

    Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.

  15. Gravitational waves from gravitational collapse

    SciTech Connect

    Fryer, Christopher L; New, Kimberly C

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  16. Masses of Black Holes in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2003-01-01

    We present a progress report on a project whose goal is to improve both the precision and accuracy of reverberation-based black-hole masses. Reverberation masses appear to be accurate to a factor of about three, and the black-hole mass/bulge velocity dispersion (M-sigma) relationship appears to be the same in active and quiescent galaxies.

  17. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.

  18. Gravitational Repulsion and Dirac Antimatter

    NASA Astrophysics Data System (ADS)

    Kowitt, Mark E.

    1996-03-01

    Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.

  19. A systematic review of strong gravitational lens modeling software

    NASA Astrophysics Data System (ADS)

    Lefor, Alan T.; Futamase, Toshifumi; Akhlaghi, Mohammad

    2013-07-01

    Despite expanding research activity in gravitational lens modeling, there is no particular software which is considered a standard. Much of the gravitational lens modeling software is written by individual investigators for their own use. Some gravitational lens modeling software is freely available for download but is widely variable with regard to ease of use and quality of documentation. This review of 13 software packages was undertaken to provide a single source of information. Gravitational lens models are classified as parametric models or non-parametric models, and can be further divided into research and educational software. Software used in research includes the GRAVLENS package (with both gravlens and lensmodel), Lenstool, LensPerfect, glafic, PixeLens, SimpLens, Lensview, and GRALE. In this review, GravLensHD, G-Lens, Gravitational Lensing, lens and MOWGLI are categorized as educational programs that are useful for demonstrating various aspects of lensing. Each of the 13 software packages is reviewed with regard to software features (installation, documentation, files provided, etc.) and lensing features (type of model, input data, output data, etc.) as well as a brief review of studies where they have been used. Recent studies have demonstrated the utility of strong gravitational lensing data for mass mapping, and suggest increased use of these techniques in the future. Coupled with the advent of greatly improved imaging, new approaches to modeling of strong gravitational lens systems are needed. This is the first systematic review of strong gravitational lens modeling software, providing investigators with a starting point for future software development to further advance gravitational lens modeling research. http://www.ephysics.org/mowgli/

  20. [Electrogenic activity of Na-K-ATPase and calcium ions in m. soleus fibers of rats and Mongolian gerbil during simulation of gravitational unloading].

    PubMed

    Kravtsova, V V; Ogneva, I V; Altaeva, E G; Razgovorova, I A; Tiapkina, O V; Nikol'skiĭ, E E; Shenkman, B S; Krivoĭ, I I

    2010-01-01

    Some of the electrophysiological parameters of m. soleus of rat and Mongolian gerbil, and Ca ions content in fiber myoplasm were compared in different periods of gravitational unloading simulated by tail-suspension. No difference was found between the control animals as for membrane potential at rest, electrogenic activities of Na-K-ATPase and its isoforms, and input resistance of m. soleus fibers. At the same time, unlike rats, gerbils exhibited a substantial Ca decrease in myoplasm. From day one to 14 of gravitational unloading the pace of electrophysiological changes in gerbil's m. soleus was noticeably slower than of rat's, whereas Ca ions depositing in myoplasm was observed in both species already at the beginning ofsuspension. Analysis of the results suggests that adaptive changes in m. soleus of Mongolian gerbil and rat during simulated gravitational unloading are fundamentally different due to, probably, peculiar water-electrolyte metabolism, type of locomotion, and other factors which are still unclear. PMID:20799658

  1. Effects of gravitational unloading on activity of motoneurones of m. soleus in man

    NASA Astrophysics Data System (ADS)

    Zakirova, Albina; Shigueva, Tatiana; Tomilovskaya, Elena

    The aim of recent work was to study of participation of spinal and supraspinal structures (motor cortex) in the development of hypogravitational hyperreflexia of stretch reflexes observed under weightlessness (Kozlovskaya I.B. et. al., 1981; Reschke M.F. et al., 1984; Saenko I.V., 2007). Methods. 11 healthy volunteers took part in the research. Dry immersion (DI) with the duration of 3 and 5 days was used as onground model of weightlessness. Before and after DI thresholds and amplitudes of m. soleus H-reflex; as well as thresholds and amplitudes of m. soleus motor potentials (MEPs) evoked by magnetic stimulation of spinal roots at L5-S1 segments and cortex motor zones were defined. Results. Exposure to DI was accompanied with significant decrease of the H-reflex threshold by 23.8±8.2%, and with an increase of the relative H-reflex amplitudes by 12.89±8.3% in comparison with background. At the same time thresholds of spinal MEPs were reduced by 5% as well as and their amplitudes were increased significantly by 13.8±4.2%. The obtained data indicate an increase of motoneurones pool’s excitability of m. soleus under gravitational unloading conditions. At the same time after DI exposure a tendency to increase of thresholds of cortical MEPs was observed by 11.7±6.8% from background, and their amplitudes didn’t change in comparison with background, which gives evidence of a non-changed excitability of the motor cortex structures. In general the results of the experiments indicate the spinal nature of the hypogravitational hyperreflexia. The work was supported by RFBR projects NN 13-04-12091 Ofi-m and 11-04-01240-а.

  2. Gravitational lenses

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1989-01-01

    Recent observational and theoretical investigations of gravitational-lens phenomena are reviewed, and sample numerical data are presented in tables. Particular attention is given to luminous arcs, radio rings, galaxy-quasar associations, the problem of deriving actually or practically unique models of individual lens systems, and time delays and the Hubble constant.

  3. Methodological Gravitism

    ERIC Educational Resources Information Center

    Zaman, Muhammad

    2011-01-01

    In this paper the author presents the case of the exchange marriage system to delineate a model of methodological gravitism. Such a model is not a deviation from or alteration to the existing qualitative research approaches. I have adopted culturally specific methodology to investigate spouse selection in line with the Grounded Theory Method. This…

  4. Gravitational Waves in Effective Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Kuntz, Iberê; Mohapatra, Sonali

    2016-08-01

    In this short paper we investigate quantum gravitational effects on Einstein's equations using Effective Field Theory techniques. We consider the leading order quantum gravitational correction to the wave equation. Besides the usual massless mode, we find a pair of modes with complex masses. These massive particles have a width and could thus lead to a damping of gravitational waves if excited in violent astrophysical processes producing gravitational waves such as e.g. black hole mergers. We discuss the consequences for gravitational wave events such as GW 150914 recently observed by the Advanced LIGO collaboration.

  5. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approx. 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters, through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  6. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approximately 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  7. How Spherical Is a Cube (Gravitationally)?

    ERIC Educational Resources Information Center

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  8. Applications of gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dalal, Neal

    I derive the basic principles of gravitational lensing, and proceed to describe several astrophysical applications. First, invariants in gravitational lensing magnification are derived using techniques of multidimensional residue calculus, and illustrated with example calculations. Then I discuss how these invariant quantities may be useful for measuring the properties of lenses. Next, I discuss the use of astrometric microlensing for studying extrasolar planets. Finally, the use of lensing for the study of substructure in dark matter halos is presented, along with ramifications for the small-scale power spectrum of matter fluctuations. The strongest bounds to date are placed on the mass of the dark matter particle, as well as bounds on the neutrino mass and slope of the primordial power spectrum.

  9. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  10. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  11. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  12. The impact of chromospheric activity on observed initial mass functions

    SciTech Connect

    Stassun, Keivan G.; Scholz, Aleks; Dupuy, Trent J.; Kratter, Kaitlin M.

    2014-12-01

    Using recently established empirical calibrations for the impact of chromospheric activity on the radii, effective temperatures, and estimated masses of active low-mass stars and brown dwarfs, we reassess the shape of the initial mass function (IMF) across the stellar/substellar boundary in the Upper Sco star-forming region (age ∼ 5-10 Myr). We adjust the observed effective temperatures to warmer values using the observed strength of the chromospheric Hα emission, and redetermine the estimated masses of objects using pre-main-sequence evolutionary tracks in the H-R diagram. The effect of the activity-adjusted temperatures is to shift the objects to higher masses by 3%-100%. While the slope of the resulting IMF at substellar masses is not strongly changed, the peak of the IMF does shift from ≈0.06 to ≈0.11 M {sub ☉}. Moreover, for objects with masses ≲ 0.2 M {sub ☉}, the ratio of brown dwarfs to stars changes from ∼80% to ∼33%. These results suggest that activity corrections are essential for studies of the substellar mass function, if the masses are estimated from spectral types or from effective temperatures.

  13. Physical Activity and Body Mass Index

    PubMed Central

    Nelson, Candace C.; Wagner, Gregory R.; Caban-Martinez, Alberto J.; Buxton, Orfeu M.; Kenwood, Christopher T.; Sabbath, Erika L.; Hashimoto, Dean M.; Hopcia, Karen; Allen, Jennifer; Sorensen, Glorian

    2014-01-01

    Background The workplace is an important domain for adults, and many effective interventions targeting physical activity and weight reduction have been implemented in the workplace. However, the U.S. workforce is aging and few studies have examined the relationship of BMI, physical activity, and age as they relate to workplace characteristics. Purpose This paper reports on the distribution of physical activity and BMI by age in a population of hospital-based healthcare workers and investigates the relationships among workplace characteristics, physical activity, and BMI. Methods Data from a survey of patient care workers in two large academic hospitals in the Boston area were collected in late 2009 and analyzed in early 2013. Results In multivariate models, workers reporting greater decision latitude (OR=1.02; 95% CI=1.01, 1.03) and job flexibility (OR=1.05; 95% CI=1.01, 1.10) reported greater physical activity. Overweight and obesity increased with age (p<0.01), even after adjusting for workplace characteristics. Sleep deficiency (OR=1.56; 95% CI=1.15, 2.12) and workplace harassment (OR= 1.62; 95% CI=1.20, 2.18) were also associated with obesity. Conclusions These findings underscore the persistent impact of the work environment for workers of all ages. Based on these results, programs or policies aimed at improving the work environment, especially decision latitude, job flexibility and workplace harassment should be included in the design of worksite-based health promotion interventions targeting physical activity or obesity. PMID:24512930

  14. Numerical simulation of gravitational lenses

    NASA Astrophysics Data System (ADS)

    Cherniak, Yakov

    Gravitational lens is a massive body or system of bodies with gravitational field that bends directions of light rays propagating nearby. This may cause an observer to see multiple images of a light source, e.g. a star, if there is a gravitational lens between the star and the observer. Light rays that form each individual image may have different distances to travel, which creates time delays between them. In complex gravitational fields generated by the system of stars, analytical calculation of trajectories and light intensities is virtually impossible. Gravitational lens of two massive bodies, one behind another, are able to create four images of a light source. Furthermore, the interaction between the four light beams can form a complicated interference pattern. This article provides a brief theory of light behavior in a gravitational field and describes the algorithm for constructing the trajectories of light rays in a gravitational field, calculating wave fronts and interference pattern of light. If you set gravitational field by any number of transparent and non- transparent objects (stars) and set emitters of radio wave beams, it is possible to calculate the interference pattern in any region of space. The proposed method of calculation can be applied even in the case of the lack of continuity between the position of the emitting stars and position of the resulting image. In this paper we propose methods of optimization, as well as solutions for some problems arising in modeling of gravitational lenses. The simulation of light rays in the sun's gravitational field is taken as an example. Also caustic is constructed for objects with uniform mass distribution.

  15. Gravitational Lensing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  16. Gravitational Lensing

    SciTech Connect

    Lincoln, Don

    2015-06-24

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  17. Gravitational lenses

    SciTech Connect

    Turner, E.L.

    1988-07-01

    For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.

  18. Experimental gravitation

    NASA Astrophysics Data System (ADS)

    Lämmerzahl, Claus; di Virgilio, Angela

    2016-06-01

    100 years after the invention of General Relativity (GR) and 110 years after the development of Special Relativity (SR) we have to state that until now no single experiment or observation allows any doubt about the validity of these theories within the accuracy of the available data. Tests of GR can be divided into three categories: (i) test of the foundations of GR, (ii) tests of the consequences of GR, and (iii) test of the interplay between GR and quantum mechanics. In the first category, we have tests of the Einstein Equivalence Principle and the structure of the Newton axioms, in the second category we have effects like the gravitational redshift, light defection, gravitational time delay, the perihelion shift, the gravitomagnetic effects as the Lense-Thirring and Schiff effect, and gravitational waves. Tests of the effects of gravity on quantum systems are a first step towards experiments searching for a quantum gravity theory. In this paper, we also highlight practical applications in positioning, geodesy, and the International Atomic Time. After 100 years, GR can now definitely be regarded also as practical and applied science.

  19. Gravitinos from gravitational collapse

    SciTech Connect

    Grifols, J.A.; Masso, E.; Toldra, R.

    1998-01-01

    We reanalyze the limits on the gravitino mass m{sub 3/2} in superlight gravitino scenarios derived from arguments on energy loss during gravitational collapse. We conclude that the mass range 10{sup {minus}6} eV{le}m{sub 3/2}{le}2.3{times}10{sup {minus}5} eV is excluded by SN 1987A data. In terms of the scale of supersymmetry breaking {Lambda}, the range 70 GeV {le}{Lambda}{le}300 GeV is not allowed. {copyright} {ital 1997} {ital The American Physical Society}

  20. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wardle, Mark; Yusef-Zadeh, Farhad E-mail: zadeh@northwestern.edu

    2012-05-10

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H{sub 2}O masers. For initial cloud column densities {approx}< 10{sup 23.5} cm{sup -2} the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  1. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre

    2012-03-01

    , which affects the evolution of structures. Gravitational lensing is the process by which light from distant galaxies is bent by the gravity of intervening mass in the Universe as it travels toward us. This bending causes the images of background galaxies to appear slightly distorted, and can be used to extract important cosmological information. In the beginning of the twentieth century, A. Einstein predicted that massive bodies could be seen as gravitational lenses that bend the path of light rays by creating a local curvature in space time. One of the first confirmations of Einstein's new theory was the observation during the 1919 solar eclipse of the deflection of light from distant stars by the sun. Since then, a wide range of lensing phenomena have been detected. The gravitational deflection of light by mass concentrations along light paths produces magnification, multiplication, and distortion of images. These lensing effects are illustrated by Figure 14.2, which shows one of the strongest lenses observed: Abell 2218, a very massive and distant cluster of galaxies in the constellation Draco. The observed gravitational arcs are actually the magnified and strongly distorted images of galaxies that are about 10 times more distant than the cluster itself. These strong gravitational lensing effects are very impressive but they are very rare. Far more prevalent are weak gravitational lensing effects, which we consider in this chapter, and in which the induced distortion in galaxy images is much weaker. These gravitational lensing effects are now widely used, but the amplitude of the weak lensing signal is so weak that its detection relies on the accuracy of the techniques used to analyze the data. Future weak lensing surveys are already planned in order to cover a large fraction of the sky with high accuracy, such as Euclid [68]. However, improving accuracy also places greater demands on the methods used to extract the available information.

  2. Active and sterile neutrino mass effects on beta decay spectra

    SciTech Connect

    Boillos, Juan Manuel; Moya de Guerra, Elvira

    2013-06-10

    We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.

  3. Gravitational lensing by gravastars

    NASA Astrophysics Data System (ADS)

    Kubo, Tomohiro; Sakai, Nobuyuki

    2016-04-01

    As a possible method to detect gravastars (gravitational-vacuum-star), which was originally proposed by Mazur and Mottola, we study their gravitational lensing effects. Specifically, we adopt a spherical thin-shell model of a gravastar developed by Visser and Wiltshire, which connects interior de Sitter geometry and exterior Schwarzschild geometry, and assume that its surface is optically transparent. We calculate the image of a companion which rotates around the gravastar; we find that some characteristic images appear, depending on whether the gravastar possess unstable circular orbits of photons (Model 1) or not (Model 2). For Model 2, we calculate the total luminosity change, which is called microlensing effects; the maximal luminosity could be considerably larger than the black hole with the same mass.

  4. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  5. Gravitational energy sources in Jupiter

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1973-01-01

    Gravitational sources of the intrinsic luminosity of Jupiter are examined in the context of current hydrogen-helium models. When no gravitational separation of matter occurs, the amount of heat which can be released over the remaining lifetime of the planet is necessarily limited by the size of its existing reservoir of thermal energy. This conclusion rests only on the assumption that its interior is relatively cold and degenerate. If gravitational unmixing occurs, the size of the thermal reservoir does not necessarily limit the heat output. If core formation occurs, for example, then the size of the core formed will be a limiting factor. The energy released with the formation of a helium core is computed for Jupiter. A core growth rate, averaged over several billion years, of 20 trillionths of Jupiter's mass per year is required if gravitational separation is to play a significant role in the thermal evolution.

  6. Five years' gravity observation with the superconducting gravimeter OSG#058 at Syowa Station, East Antarctica: gravitational effects of accumulated snow mass

    NASA Astrophysics Data System (ADS)

    Aoyama, Yuichi; Doi, Koichiro; Ikeda, Hiroshi; Hayakawa, Hideaki; Shibuya, Kazuo

    2016-05-01

    Continuous gravimetric observations have been made with three successive generations of superconducting gravimeter over 20 yr at Syowa Station (39.6°E, 69.0°S), East Antarctica. The third-generation instrument, OSG#058, was installed in January 2010 and was calibrated by an absolute gravimeter during January and February, 2010. The estimated scale factor was -73.823 ± 0.053 μGal V-1 (1 μGal = 10-8 m s-2). The first 5 yr of OSG#058 data from 2010 January 7 to 2015 January 10 were decomposed into tidal waves (M3 to Ssa) and other non-tidal components by applying the Bayesian tidal analysis program BAYTAP. Long-term non-tidal gravity residuals, which were obtained by subtracting annual and 18.6 year tidal waves and the predicted gravity response to the Earth's variable rotation, showed significant correlation with the accumulated snow depth measured at Syowa Station. The greatest correlation occurred when the gravity variations lagged the accumulated snow depth by 21 d. To estimate the gravitational effect of the accumulated snow mass, we inferred a conversion factor of 3.13 ± 0.08 μGal m-1 from this relation. The accumulated snow depth at Syowa Station was found to represent an extensive terrestrial water storage (the snow accumulation) around Syowa Station, which was estimated from the Gravity Recovery and Climate Experiment satellite gravity data. The snow accumulation around Syowa Station was detectable by the superconducting gravimeter.

  7. Gravitational search for cryptovolcanism on the Moon: Evidence for large volumes of early igneous activity

    NASA Astrophysics Data System (ADS)

    Sori, Michael M.; Zuber, Maria T.; Head, James W.; Kiefer, Walter S.

    2016-07-01

    We define lunar cryptovolcanism as volcanic deposits on the Moon hidden by overlying material. Notably, cryptovolcanism includes both cryptomaria (subsurface extrusive basaltic deposits that are obscured by overlying higher albedo basin and crater ejecta) and earlier candidate extrusives, such as the Mg-suite. Knowledge of the volume and extent of cryptovolcanism is necessary for a comprehensive understanding of lunar volcanic history, particularly in early (pre 3.8 Ga) epochs when abundant impact craters and basins obscured surface volcanic deposits by lateral emplacement of ejecta. We use Gravity Recovery and Interior Laboratory (GRAIL) gravity and Lunar Orbiter Laser Altimeter (LOLA) topography data to construct maps of the Moon's positive Bouguer and isostatic gravity anomalies, and explore the possibility that these features are due to mass excesses associated with cryptovolcanism by cross-referencing the regions with geologic data such as dark halo craters. We model the potential cryptovolcanic deposits as buried high-density rectangular prisms at depth in the upper crust, and find a volume of candidate buried cryptovolcanism between 0.4 × 106 km3 and 4.8 × 106 km3, depending on assumptions about density and crustal compensation state. These candidate deposits correspond to a surface area of between 0.50 × 106 km2 and 1.14 × 106 km2, which would increase the amount of the lunar surface containing volcanic deposits from 16.6% to between 17.9% and 19.5%. The inferred volume of cryptovolcanism is comparable to the smallest estimates of the volume of visible mare basalts and up to ∼50% of the largest estimates; the high-resolution GRAIL and LOLA observations thus would collectively indicate that early (pre 3.8 Ga) lunar volcanism is an important element of lunar thermal evolution. Alternatively, the buried material could represent the presence of intrusive Mg-suite sills or plutons.

  8. Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Ł.; Moniez, M.; Horne, K.; Street, R.

    2012-04-01

    Gravitational microlensing is a well established and unique field of time-domain astrophysics. For two decades microlensing surveys have been regularly observing millions of stars to detect elusive events that follow a characteristic Paczyński lightcurve. This workshop reviewed the current state of the field, and covered the major topics related to microlensing: searches for extrasolar planets, and studies of dark matter. There were also discussions of issues relating to the organisation of follow-up observations for microlensing, as well as serendipitous scientific outcomes resulting from extensive microlensing data.

  9. Testing Gravitational Physics with Space-based Gravitational-wave Observations

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2011-01-01

    Gravitational wave observations provide exceptional and unique opportunities for precision tests of gravitational physics, as predicted by general relativity (GR). Space-based gravitational wave measurements, with high signal-to-noise ratios and large numbers of observed events may provide the best-suited gravitational-wave observations for testing GR with unprecedented precision. These observations will be especially useful in testing the properties of gravitational waves and strong-field aspects of the theory which are less relevant in other observations. We review the proposed GR test based on observations of massive black hole mergers, extreme mass ratio inspirals, and galactic binary systems.

  10. Outlook for Detecting Gravitational Waves with Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Though the recent discovery of GW150914 is a thrilling success in the field of gravitational-wave astronomy, LIGO is only one tool the scientific community is using to hunt for these elusive signals. After 10 years of unsuccessful searching, how likely is it that pulsar-timing-array projects will make their own first detection soon?Frequency ranges for gravitational waves produced by different astrophysical sources. Pulsar timing arrays such as the EPTA and IPTA are used to detect low-frequency gravitational waves generated by the stochastic background and supermassive black hole binaries. [Christopher Moore, Robert Cole and Christopher Berry]Supermassive BackgroundGround-based laser interferometers like LIGO are ideal for probing ripples in space-time caused by the merger of stellar-mass black holes; these mergers cause chirps in the frequency range of tens to thousands of hertz. But how do we pick up the extremely low-frequency, nanohertz background signal caused by the orbits of pairs of supermassive black holes? For that, we need pulsar timing arrays.Pulsar timing arrays are sets of pulsars whose signals are analyzed to look for correlations in the pulse arrival time. As the space-time between us and a pulsar is stretched and then compressed by a passing gravitational wave, the pulsars pulses should arrive a little late and then a little early. Comparing these timing residuals in an array of pulsars could theoretically allow for the detection of the gravitational waves causing them.Globally, there are currently four pulsar timing array projects actively searching for this signal, with a fifth planned for the future. Now a team of scientists led by Stephen Taylor (NASA-JPL/Caltech) has estimated the likelihood that these projects will successfully detect gravitational waves in the future.Probability for SuccessExpected detection probability of the gravitational-wave background as a function of observing time, for five different pulsar timing arrays. Optimistic

  11. Dissipation of modified entropic gravitational energy through gravitational waves

    NASA Astrophysics Data System (ADS)

    de Matos, Clovis Jacinto

    2012-01-01

    The phenomenological nature of a new gravitational type interaction between two different bodies derived from Verlinde's entropic approach to gravitation in combination with Sorkin's definition of Universe's quantum information content, is investigated. Assuming that the energy stored in this entropic gravitational field is dissipated under the form of gravitational waves and that the Heisenberg principle holds for this system, one calculates a possible value for an absolute minimum time scale in nature tau=15/16 Λ^{1/2}hbar G/c4˜9.27×10^{-105} seconds, which is much smaller than the Planck time t P =( ħG/ c 5)1/2˜5.38×10-44 seconds. This appears together with an absolute possible maximum value for Newtonian gravitational forces generated by matter Fg=32/30c7/Λ hbar G2˜ 3.84× 10^{165} Newtons, which is much higher than the gravitational field between two Planck masses separated by the Planck length F gP = c 4/ G˜1.21×1044 Newtons.

  12. The Nuclear Electromagnetic Graviton, Basis of Gravity-Gravitation and Nuclear Quantum Gravitation

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald

    2003-04-01

    The basic attraction of two nuclei at an average .8546Angstroms apart, and the dynamic Electromagnetic factor included in the Newtonian formula equals Gq = 1.010334x10-48 Newtons. This is the basic Graviton function. This ALTERNATING ELECTROMAGNETIC DYNAMIC FORCE couples between the nuclei in masses according to the type of mass, the number of nuclei, and through the mass that produces a gravitating body. Nuclei linearly and dynamically couple in gravitating mass to produce maximum Gravity at the surface. Nucleon polar Electromagnetic build-up is what causes Gravity on a Gravitating Body. The Electromagnetic Graviton also propagates through space and produces Gravitation between Gravitating masses. Electromagnetic Graviton energy has to have a wavelength approximately the size of one nuclei, 2.98x10-15 meters and a frequency of 1.007 x10-23 Hertz. There are many proofs that Gravity and Gravitation are Electromagnetic. Clearly, there is ONE FORCE that acts at a distance in many ways. It is very apparent that this ONE FORCE is ELECTROMAGNETISM. This is the cause of the nuclear strong force, the nuclear weak force, Gravity and Gravitation. Gravity and Gravitation are Electromagnetic - NUCLEAR QUANTUM GRAVITATION. See: http://www.physicaloverviews.org

  13. Hypermass generalization of Einstein's gravitation theory

    NASA Technical Reports Server (NTRS)

    Edmonds, J. D., Jr.

    1973-01-01

    The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.

  14. Gravitational bending of light rays in plasma

    SciTech Connect

    Tsupko, O. Yu.; Bisnovatyi-Kogan, G. S.

    2010-01-01

    We investigate the gravitational lensing effect in presence of plasma. We observe that in a homogeneous plasma the gravitational deflection angle differs from that in vacuum, and it depends on the frequency of the photon. We discuss observational consequences of this dependence for the point-mass lensing and estimate possibility of the observation of this effect by the planned project Radioastron.

  15. Nuclear Quantum Gravitation and General Relativity Compared

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald

    2006-04-01

    Nuclear Quantum Gravitation has 18 proofs and indications with a reasonable, non-fallacious explanation stating Gravity and Gravitation are electromagnetic and alternating, functioning in nuclei and alternating electromagnetic coupling between nuclei and other nuclei in other masses. This is according to Maxwell, Quantum, and Newtonian Laws. Nuclear Quantum Gravitation passes the Cavendish test. With the 18 proofs and indications of NQG it is clear that Gravity and Gravitation are electromagnetic and thoroughly explained by the Nuclear Quantum Gravitation theory. In comparison, General Relativity pictures mass somehow effects ``Time-Space'' about the mass, producing gravity about that mass. This is not described as an electromagnetic effect, but as a geometric function; the changing of geometry about mass. GR lists as a proof the bending of light in the area near the Sun. However, recently it was observed that the temperature of the Sun's corona is in the millions of degrees, and thus the bending of light and other electromagnetic radiation is caused by the refraction effects of the corona and heliosphere; NOT GR. The other ``proofs'' of GR are not definitive, and no one has yet explained the ``somehow'' of GR. General Relativity fails the Cavendish experiment and cannot account for the attractions between masses. It should be realized that Nuclear Quantum Gravitation provides a coherent, factual, scientific and direct physical explanation of Gravity and Gravitation thus Unifying the Physical Forces.

  16. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    A new era in time-domain astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multimessenger astronomy across the gravitational wave spectrum.

  17. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  18. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years) as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves) these signals carry direct information about their sources - such as masses) spins) luminosity distances) and orbital parameters - through dense) obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers) highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  19. Evidence of cosmic recurrent and lagged millennia-scale patterns and consequent forecasts: multi-scale responses of solar activity (SA) to planetary gravitational forcing (PGF)

    NASA Astrophysics Data System (ADS)

    Sánchez-Sesma, Jorge

    2016-07-01

    Solar activity (SA) oscillations over the past millennia are analyzed and extrapolated based on reconstructed solar-related records. Here, simple recurrent models of SA signal are applied and tested. The consequent results strongly suggest the following: (a) the existence of multi-millennial ( ˜ 9500-year) scale solar patterns linked with planetary gravitational forcing (PGF), and (b) their persistence, over at least the last glacial-interglacial cycle, but possibly since the Miocene (10.5 Myr ago). This empirical modeling of solar recurrent patterns has also provided a consequent multi-millennial-scale experimental forecast, suggesting a solar decreasing trend toward grand (super) minimum conditions for the upcoming period, AD 2050-2250 (AD 3750-4450). Taking into account the importance of these estimated SA scenarios, a comparison is made with other SA forecasts. In Appendixes A and B, we provide further verification, testing and analysis of solar recurrent patterns since geological eras, and their potential gravitational forcing.

  20. Fundamental Constraints on Physical Systems due to Their Own Gravitation

    NASA Astrophysics Data System (ADS)

    Kauffmann, S. K.

    2014-04-01

    In black-hole gravitational collapse calculations, e.g., that of Oppenheimer and Snyder, gravitational feedback keeps the local gravitational redshift factor finite (although it grows exponentially), which precludes the existence of gravitational horizons. In spherically-symmetric static gravitational calculations we also find that gravitational feedback keeps the local gravitational redshift factor finite, which likewise precludes gravitational horizons. If such a system is localized, the finitude of the local gravitational redshift factor caps its possible energy by a universal constant times its radius (which precludes nontrivial point masses). We apply that fact to a crude model of the universe, namely a spherical system whose radius is its age times the speed of light, and whose energy is the maximum value which this radius permits, since the universe is suffused with the formally infinite vacuum energy density of quantized fields. This crude model gives the correct order of magnitude for dark energy.

  1. Collisional activation with random noise in ion trap mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.

  2. Dynamics of dissipative gravitational collapse

    SciTech Connect

    Herrera, L.; Santos, N.O.

    2004-10-15

    The Misner and Sharp approach to the study of gravitational collapse is extended to the dissipative case in, both, the streaming out and the diffusion approximations. The role of different terms in the dynamical equation are analyzed in detail. The dynamical equation is then coupled to a causal transport equation in the context of Israel-Stewart theory. The decreasing of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamics state, is reobtained, at any time scale. In accordance with the equivalence principle, the same decreasing factor is obtained for the gravitational force term. Prospective applications of this result to some astrophysical scenarios are discussed.

  3. THE SL2S GALAXY-SCALE GRAVITATIONAL LENS SAMPLE. I. THE ALIGNMENT OF MASS AND LIGHT IN MASSIVE EARLY-TYPE GALAXIES AT z = 0.2-0.9

    SciTech Connect

    Gavazzi, Raphaeel; Brault, Florence; Treu, Tommaso; Marshall, Philip J.; Ruff, Andrea

    2012-12-20

    We study the relative alignment of mass and light in a sample of 16 massive early-type galaxies at z = 0.2-0.9 that act as strong gravitational lenses. The sample was identified from deep multi-band images obtained as part of the Canada-France-Hawaii Telescope Legacy Survey and as part of the Strong Lensing Legacy Survey (SL2S). Higher resolution follow-up imaging is available for a subset of 10 systems. We construct gravitational lens models and infer total enclosed mass, elongation, and position angle of the mass distribution. By comparison with the observed distribution of light we infer that there is a substantial amount of external shear with mean value ({gamma}{sub ext}) = 0.12 {+-} 0.05, arising most likely from the environment of the SL2S lenses. In a companion paper, we combine these measurements with follow-up Keck spectroscopy to study the evolution of the stellar and dark matter content of early-type galaxies as a function of cosmic time.

  4. Oxidative stress, activity behaviour and body mass in captive parrots.

    PubMed

    Larcombe, S D; Tregaskes, C A; Coffey, J; Stevenson, A E; Alexander, L G; Arnold, K E

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally 'active' individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes.

  5. Oxidative stress, activity behaviour and body mass in captive parrots.

    PubMed

    Larcombe, S D; Tregaskes, C A; Coffey, J; Stevenson, A E; Alexander, L G; Arnold, K E

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally 'active' individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes. PMID:27293729

  6. Twin Knudsen Cell Configuration for Activity Measurements by Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.

    1996-01-01

    A twin Knudsen cell apparatus for alloy activity measurements by mass spectrometry is described. Two Knudsen cells - one containing an alloy and one containing a pure component - are mounted on a single flange and translated into the sampling region via a motorized x-y table. Mixing of the molecular beams from the cells is minimized by a novel system of shutters. Activity measurements were taken on two well-characterized alloys to verify the operation of the system. Silver activity measurements are reported for Ag-Cu alloys and aluminum activity measurements are reported for Fe-Al alloys. The temperature dependence of activity for a 0.474 mol fraction Al-Fe alloy gives a partial molar heat of aluminum. Measurements taken with the twin cell show good agreement with literature values for these alloys.

  7. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  8. How To Measure Gravitational Aberration?

    NASA Astrophysics Data System (ADS)

    Krizek, M.; Solcova, A.

    2007-08-01

    In 1905, Henri Poincaré predicted the existence of gravitational waves and assumed that their speed c[g] would be that of the speed of light c. If the gravitational aberration would also have the same magnitude as the aberration of light, we would observe several paradoxical phenomena. For instance, the orbit of two bodies of equal mass would be unstable, since two attractive forces arise that are not in line and hence form a couple. This tends to increase the angular momentum, period, and total energy of the system. This can be modelled by a system of ordinary differential equations with delay. A big advantage of computer simulation is that we can easily perform many test for various possible values of the speed of gravity [1]. In [2], Carlip showed that gravitational aberration in general relativity is almost cancelled out by velocity-dependent interactions. This means that rays of sunlight are not parallel to the attractive gravitational force of the Sun, i.e., we do not see the Sun in the direction of its attractive force, but slightly shifted about an angle less than 20``. We show how the actual value of the gravitational aberration can be obtained by measurement of a single angle at a suitable time instant T corresponding to the perihelion of an elliptic orbit. We also derive an a priori error estimate that expresses how acurately T has to be determined to attain the gravitational aberration to a prescribed tolerance. [1] M. Křížek: Numerical experience with the finite speed of gravitational interaction, Math. Comput. Simulation 50 (1999), 237-245. [2] S. Carlip: Aberration and the speed of gravity, Phys. Lett. A 267 (2000), 81-87.

  9. Computing Gravitational Fields of Finite-Sized Bodies

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco

    2005-01-01

    A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.

  10. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  11. NUMERICAL MODELING OF THE INITIATION OF CORONAL MASS EJECTIONS IN ACTIVE REGION NOAA 9415

    SciTech Connect

    Zuccarello, F. P.; Poedts, S.; Meliani, Z. E-mail: Stefaan.Poedts@wis.kuleuven.be

    2012-10-20

    Coronal mass ejections (CMEs) and solar flares are the main drivers of weather in space. Understanding how these events occur and what conditions might lead to eruptive events is of crucial importance for up to date and reliable space weather forecasting. The aim of this paper is to present a numerical magnetohydrodynamic (MHD) data-inspired model suitable for the simulation of the CME initiation and their early evolution. Starting from a potential magnetic field extrapolation of the active region (AR) NOAA 9415, we solve the full set of ideal MHD equations in a non-zero plasma-{beta} environment. As a consequence of the applied twisting motions, a force-free-magnetic field configuration is obtained, which has the same chirality as the investigated AR. We investigate the response of the solar corona when photospheric motions resembling the ones observed for AR 9415 are applied at the inner boundary. As a response to the converging shearing motions, a flux rope is formed that quickly propagates outward, carrying away the plasma confined inside the flux rope against the gravitational attraction by the Sun. Moreover, a compressed leading edge propagating at a speed of about 550 km s{sup -1} and preceding the CME is formed. The presented simulation shows that both the initial magnetic field configuration and the plasma-magnetic-field interaction are relevant for a more comprehensive understanding of the CME initiation and early evolution phenomenon.

  12. Testing the gravitational instability hypothesis?

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests

  13. The Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Braccini, Stefano; Fidecaro, Francesco

    The detection of gravitational waves is challenging researchers since half a century. The relative precision required, 10^{-21}, is difficult to imagine, this is 10^{-5} the diameter of a proton over several kilometres, using masses of tens of kilograms, or picometres over millions of kilometres. A theoretical description of gravitational radiation and its effects on matter, all consequence of the general theory of relativity, is given. Then the astrophysical phenomena that are candidates of gravitational wave emission are discussed, considering also amplitudes and rates. The binary neutron star system PSR1913+16, which provided the first evidence for energy loss by gravitational radiation in 1975, is briefly discussed. Then comes a description of the experimental developments, starting with ground-based interferometers, their working principles and their most important sources of noise. The earth-wide network that is being built describes how these instruments will be used in the observation era. Several other detection techniques, such as space interferometry, pulsar timing arrays and resonant detectors, covering different bands of the gravitational wave frequency spectrum complete these lectures.

  14. Gravitational instabilities in protostellar disks

    NASA Technical Reports Server (NTRS)

    Tohline, J. E.

    1994-01-01

    The nonaxisymmetric stability of self-gravitating, geometrically thick accretion disks has been studied for protostellar systems having a wide range of disk-to-central object mass ratios. Global eigenmodes with four distinctly different characters were identified using numerical, nonlinear hydrodynamic techniques. The mode that appears most likely to arise in normal star formation settings, however, resembles the 'eccentric instability' that was identified earlier in thin, nearly Keplerian disks: It presents an open, one-armed spiral pattern that sweeps continuously in a trailing direction through more than 2-pi radians, smoothly connecting the inner and outer edges of the disk, and requires cooperative motion of the point mass for effective amplification. This particular instability promotes the development of a single, self-gravitating clump of material in orbit about the point mass, so its routine appearance in our simulations supports the conjecture that the eccentric instability provides a primary route to the formation of short-period binaries in protostellar systems.

  15. Oxidative stress, activity behaviour and body mass in captive parrots

    PubMed Central

    Larcombe, S. D.; Tregaskes, C. A.; Coffey, J.; Stevenson, A. E.; Alexander, L. G.; Arnold, K. E.

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally ‘active’ individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes. PMID

  16. Gravitational lens time delays and gravitational waves

    SciTech Connect

    Frieman, J.A. Department of Astronomy Astrophysics, University of Chicago, Chicago, Illinois 60637 ); Harari, D.D.; Surpi, G.C. )

    1994-10-15

    Using Fermat's principle, we analyze the effects of very long wavelength gravitational waves upon the images of a gravitationally lensed quasar. We show that the lens equation in the presence of gravity waves is equivalent to that of a lens with a different alignment between source, deflector, and observer in the absence of gravity waves. Contrary to a recent claim, we conclude that measurements of time delays in gravitational lenses cannot serve as a method to detect or constrain a stochastic background of gravitational waves of cosmological wavelengths, because the wave-induced time delay is observationally indistinguishable from an intrinsic time delay due to the lens geometry.

  17. Activation of large ions in FT-ICR mass spectrometry.

    PubMed

    Laskin, Julia; Futrell, Jean H

    2005-01-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has enabled the extension of mass spectrometric methods to large molecules and molecular complexes. This both greatly extends the applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of these applications. This review emphasizes the most promising methods for activation and dissociation of complex ions and presents this discussion in the context of general knowledge of reaction kinetics and dynamics largely established for small ions. We then introduce the characteristic differences associated with the higher number of internal degrees of freedom and high density of states associated with molecular complexity. This is reflected primarily in the kinetics of unimolecular dissociation of complex ions, particularly their slow decay and the higher energy content required to induce decomposition--the kinetic shift (KS). The longer trapping time of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) significantly reduces the KS, which presents several advantages over other methods for the investigation of dissociation of complex molecules. After discussing general principles of reaction dynamics related to collisional activation of ions, we describe conventional ways to achieve single- and multiple-collision activation in FT-ICR MS. Sustained off-resonance irradiation (SORI)--the simplest and most robust means of introducing the multiple collision activation process--is discussed in greatest detail. Details of implementation of this technique, required control of experimental parameters, limitations, and examples of very successful application of SORI-CID are described. The advantages of high mass resolving power and the ability to carry out several stages of mass selection and activation intrinsic to FT-ICR MS are demonstrated in several examples. Photodissociation of ions from small molecules

  18. Physical activity in the mass media: an audience perspective.

    PubMed

    Smith, Ben J; Bonfiglioli, Catriona M F

    2015-04-01

    Physical activity's role in promoting health is highlighted in public health campaigns, news and current affairs, reality television and other programs. An investigation of audience exposure, beliefs and reactions to media portrayals of physical activity offers insights into the salience and influence of this communication. An audience reception study was conducted involving in-depth interviews with 46 adults in New South Wales, Australia. The sample was stratified by gender, age group, area of residence and body mass index. Most respondents could only recall media coverage of physical activity with prompting. Television was the primary channel of exposure, with reality television the dominant source, followed by news programs and sports coverage. The messages most readily recalled were the health risks of inactivity, especially obesity, and the necessity of keeping active. Physical activity was regarded as a matter of personal volition, or for children, parental responsibility. Respondents believed that the media had given physical activity inadequate attention, focused too heavily on risks and not provided practical advice. In Australia, there is a need to counter the framing of physical activity by reality television, and engage the media to generate understanding of the socioecological determinants of inactivity. Physical activity campaigns should deliver positive and practical messages. PMID:25697582

  19. Physical activity in the mass media: an audience perspective.

    PubMed

    Smith, Ben J; Bonfiglioli, Catriona M F

    2015-04-01

    Physical activity's role in promoting health is highlighted in public health campaigns, news and current affairs, reality television and other programs. An investigation of audience exposure, beliefs and reactions to media portrayals of physical activity offers insights into the salience and influence of this communication. An audience reception study was conducted involving in-depth interviews with 46 adults in New South Wales, Australia. The sample was stratified by gender, age group, area of residence and body mass index. Most respondents could only recall media coverage of physical activity with prompting. Television was the primary channel of exposure, with reality television the dominant source, followed by news programs and sports coverage. The messages most readily recalled were the health risks of inactivity, especially obesity, and the necessity of keeping active. Physical activity was regarded as a matter of personal volition, or for children, parental responsibility. Respondents believed that the media had given physical activity inadequate attention, focused too heavily on risks and not provided practical advice. In Australia, there is a need to counter the framing of physical activity by reality television, and engage the media to generate understanding of the socioecological determinants of inactivity. Physical activity campaigns should deliver positive and practical messages.

  20. Gravitational Assist

    NASA Technical Reports Server (NTRS)

    Diehl, R.

    1995-01-01

    Deep-space missions some times use close gravity-assist 'swingbys' of planets and moons to gain or lose velocity. These maneuvers increase the amount of mass that can be delivered and/or decrease mission flight times. The two Voyager spacecraft used gravity assists to leave the solar system. The Galileo spacecraft is using gravity assists to move among the various moons of Jupiter and the Cassini spacecraft will do similar maneuvers around Saturn.

  1. Vortical ciliary flows actively enhance mass transport in reef corals.

    PubMed

    Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-09-16

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.

  2. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  3. Gravitating lepton bag model

    NASA Astrophysics Data System (ADS)

    Burinskii, A.

    2015-08-01

    The Kerr-Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr's gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring-string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag-string-quark system.

  4. Gravitating lepton bag model

    SciTech Connect

    Burinskii, A.

    2015-08-15

    The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system.

  5. Gravitational wave asteroseismology with protoneutron stars

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Takiwaki, Tomoya

    2016-08-01

    We examine the time evolution of the frequencies of the gravitational wave after the bounce within the framework of relativistic linear perturbation theory using the results of one-dimensional numerical simulations of core-collapse supernovae. Protoneutron star models are constructed in such a way that the mass and the radius of the protoneutron star become equivalent to the results obtained from the numerical simulations. Then we find that the frequencies of gravitational waves radiating from protoneutron stars strongly depend on the mass and the radius of protoneutron stars, but almost independently of the profiles of the electron fraction and the entropy per baryon inside the star. Additionally, we find that the frequencies of gravitational waves can be characterized by the square root of the average density of the protoneutron star irrespective of the progenitor models, which are completely different from the empirical formula for cold neutron stars. The dependence of the spectra on the mass and the radius is different from that of the g -mode: the oscillations around the surface of protoneutron stars due to the convection and the standing accretion-shock instability. Careful observation of these modes of gravitational waves can determine the evolution of the mass and the radius of protoneutron stars after core bounce. Furthermore, the expected frequencies of gravitational waves are around a few hundred hertz in the early stages after bounce, which must be a good candidate for the ground-based gravitational wave detectors.

  6. Gravitation in Material Media

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  7. Omnidirectional Gravitational Radiation Observatory: Proceedings of the First International Workshop

    NASA Astrophysics Data System (ADS)

    Velloso, W. F.; Aguiar, O. D.; Magalhães, N. S.

    1997-08-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Introduction: The OMNI-1 Workshop and the beginning of the International Gravitational Radiation Observatory * Opening Talks * Gravitational radiation sources for Acoustic Detectors * The scientific and technological benefits of gravitational wave research * Operating Second and Third Generation Resonant-Mass Antennas * Performance of the ALLEGRO detector -- and what our experience tells us about spherical detectors * The Perth Niobium resonant mass antenna with microwave parametric transducer * The gravitational wave detectors EXPLORER and NAUTILUS * Gravitational Waves and Astrophysical Sources for the Next Generation Observatory * What is the velocity of gravitational waves? * Superstring Theory: how it change our ideas about the nature of Gravitation * Statistical approach to the G.W. emission from radio pulsars * Gravitational waves from precessing millisecond pulsars * The production rate of compact binary G.W. sources in elliptical galaxies * On the possibility to detect Gravitational Waves from precessing galactic neutron stars * Gravitational wave output of the head-on collision of two black holes * SN as a powerfull source of gravitational radiation * Long thick cosmic strings radiating gravitational waves and particles * Non-Parallel Electric and Magnetic Fields in a gravitational background, stationary G.W. and gravitons * Exact solutions of gravitational waves * Factorization method for linearized quantum gravity at tree-level. Graviton, photon, electron processes * Signal Detection with Resonant-Mass Antennas * Study of coalescing binaries with spherical gravitational waves detectors * Influence of transducer asymmetries on the isotropic response of a spherical gravitational wave antenna * Performances and preliminary results of the cosmic-ray detector associated with NAUTILUS * Possible transducer configurations for a spherical gravitational wave antenna * Detectability of

  8. Gravitational waves and light cosmic strings

    NASA Astrophysics Data System (ADS)

    Depies, Matthew

    Gravitational wave signatures from cosmic strings are analyzed numerically. Cosmic string networks form during phase transistions in the early universe and these networks of long cosmic strings break into loops that radiate energy in the form of gravitational waves until they decay. The gravitational waves come in the form of harmonic modes from individual string loops, a "confusion noise" from galactic loops, and a stochastic background of gravitational waves from a network of loops. In this study string loops of larger size a and lower string tensions G m, (where m the mass per unit length of the string) are investigated than in previous studies. Several detectors are currently searching for gravitational waves and a space based satellite, the Laser Interferometer Space Antenna (LISA), is in the final stages of pre-flight. The results for large loop sizes (a = 0.1) put an upper limit of about G m < 10 -9 and indicate that gravitational waves from string loops down to G m [approximate] 10 -20 could be detectabe by LISA. The string tension is related to the energy scale of the phase transition and the Planck mass via Gm = [Special characters omitted.] , so the limits on G m set the energy scale of any phase transition L s < 10^-4.5 m pl . Our results indicate that loops may form a significant gravitational wave signal, even for string tensions too low to have larger cosmological effects.

  9. Gravitational Wave Detection with Atom Interferometry

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.

    2008-01-23

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. The terrestrial experiment can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment probes the same frequency spectrum as LISA with better strain sensitivity {approx} 10{sup -20}/{radical}Hz. Each configuration compares two widely separated atom interferometers run using common lasers. The effect of the gravitational waves on the propagating laser field produces the main effect in this configuration and enables a large enhancement in the gravitational wave signal while significantly suppressing many backgrounds. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations and acceleration noise, and reduces spacecraft control requirements.

  10. Newtorites in bar detectors of gravitational wave

    NASA Astrophysics Data System (ADS)

    Ronga, F.; ROG Collaboration

    2016-05-01

    The detection of particles with only gravitational interactions (Newtorites) in gravitational bar detectors was studied in 1984 by Bernard, De Rujula and Lautrup. The negative results of dark matter searches suggest to look to exotic possibilities like Newtorites. The limits obtained with the Nautilus bar detector will be presented and the possible improvements will be discussed. Since the gravitational coupling is very weak, the possible limits are very far from what is needed for dark matter, but for large masses are the best limits obtained on the Earth. An update of limits for MACRO particles will be given.

  11. The gravitational control for drag-free missions

    NASA Astrophysics Data System (ADS)

    Ferroni, Valerio; Trenkel, Christian; Weber, William Joseph

    The suppression of the static gravitational field and field gradient due to the satellite is very important in gravitational missions that use free falling test-masses. Indeed the residual field needs to be balanced to some extent by applied electromagnetic force that invariably fluctuate in time, and both field and gradient convert the satellite motion into fluctuating forces on the test-masses. In LISA Pathfinder, the gravitational field on the test masses is estimated and balanced with sub-nano-g accuracy, by a control protocol based on measurements of the position and the mass of all parts that constitute the satellite, and on a finite element calculation tool. We describe the method, how the uncertainties on the mass and the position are propagated to the final results and the overall expected accuracy. We also discuss the relevance of the method for other gravitational missions, including space based gravitational wave observatories like eLISA.

  12. Anatomy of gravitationally deformed slopes

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Yamasaki, Shintaro; Hariyama, Takehiro

    2010-05-01

    Deep-seated gravitational slope deformation is the deformation of rocks as well as slope surfaces, but the internal structures have not been well observed and described before. This is mainly due to the difficulty in obtaining undisturbed samples from underground. We analyzed the internal deformational structures of gravitationally deformed slopes by using high quality drilled cores obtained by hybrid drilling technique, which has been recently developed and can recover very fragile materials that could not be taken by the conventional drilling techniques. Investigated slopes were gravitationally deformed out-facing slopes of pelitic schist and shale. The slope surfaces showed deformational features of small steps, depressions, knobs, and linear depressions, but had no major main scarp and landslide body with well-defined outline. This is indicative of slow, deep-seated gravitational deformation. Most of these small deformational features are hidden by vegetations, but they are detected by using airborne laser scanner. Drilled cores showed that the internal deformation is dominated by the slip and tearing off along foliations. Slippage along foliations is conspicuous in pelitic schist: Pelitic schist is sheared, particularly along black layers, which are rich in graphite and pyrite. Graphite is known to be a solid lubricant in material sciences, which seems to be why shearing occurs along the black layers. Rock mass between two slip layers is sheared, rotated, fractured, and pulverized; undulation of bedding or schistosity could be the nucleation points of fracturing. Tearing off along foliations is also the major deformation mode, which forms jagged morphology of rock fragments within shear zones. Rock fragments with jagged surface are commonly observed in "gouge", which is very different from tectonic gouge. This probably reflects the low confining pressures during their formation. Microscopic to mesoscopic openings along fractures are commonly observed with

  13. Thought experiments on gravitational forces

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.; Katz, Joseph

    2014-03-01

    Large contributions to the near closure of the Universe and to the acceleration of its expansion are due to the gravitation of components of the stress-energy tensor other than its mass density. To familiarize astronomers with the gravitation of these components we conduct thought experiments on gravity, analogous to the real experiments that our forebears conducted on electricity. By analogy to the forces due to electric currents we investigate the gravitational forces due to the flows of momentum, angular momentum and energy along a cylinder. Under tension the gravity of the cylinder decreases but the `closure' of the 3-space around it increases. When the cylinder carries a torque the flow of angular momentum along it leads to a novel helical interpretation of Levi-Civita's external metric and a novel relativistic effect. Energy currents give gravomagnetic effects in which parallel currents repel and antiparallel currents attract, though such effects must be added to those of static gravity. The gravity of beams of light give striking illustrations of these effects and a re-derivation of light bending via the gravity of the light itself. Faraday's experiments lead us to discuss lines of force of both gravomagnetic and gravity fields. A serious conundrum arises if Landau and Lifshitz's definition of gravitational force is adopted.

  14. Gravitational Wave Propulsion

    NASA Astrophysics Data System (ADS)

    Fontana, Giorgio

    2005-02-01

    There is only one experimental proof that gravitational waves exist. With such a limitation, it may seem premature to suggest the possibility that gravitational waves can became a preferred space propulsion technique. The present understanding of the problem indicates that this is not the case. The emission of gravitational waves from astrophysical sources has been confirmed by observation, the respective detection at large distance from the source is difficult and actually we have no confirmation of a successful detection. Therefore the required preliminary discovery has been already made. This opinion is enforced by many different proposals for building the required powerful gravitational wave generators that have recently appeared in the literature and discussed at conferences. It is no longer reasonable to wait for additional confirmation of the existence of gravitational waves to start a program for building generators and testing their possible application to space travel. A vast literature shows that gravitational waves can be employed for space propulsion. Gravitational wave rockets have been proposed, non-linearity of Einstein equations allows the conversion of gravitational waves to a static gravitational field and ``artificial gravity assist'' may become a new way of travelling in space-time. Different approaches to gravitational wave propulsion are reviewed and compared. Gravitational wave propulsion is also compared to traditional rocket propulsion and an undeniable advantage can be demonstrated in terms of efficiency and performance. Testing the predictions will require gravitational wave generators with high power and wavelength short enough for producing high energy densities. Detectors designed for the specific application must be developed, taking into account that non-linearity effects are expected. The study and development of Gravitational wave propulsion is a very challenging endeavor, involving the most complex theories, sophisticated

  15. Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Coupling the Knudsen effusion method with mass spectrometry has proven to be one of the most useful experimental techniques for studying the equilibrium between condensed phases and complex vapors. The Knudsen effusion method involves placing a condensed sample in a Knudsen cell, a small "enclosure", that is uniformly heated and held until equilibrium is attained between the condensed and vapor phases. The vapor is continuously sampled by effusion through a small orifice in the cell. A molecular beam is formed from the effusing vapor and directed into a mass spectrometer for identification and pressure measurement of the species in the vapor phase. Knudsen cell mass spectrometry (KCMS) has been used for nearly fifty years now and continues to be a leading technique for obtaining thermodynamic data. Indeed, much of the well-established vapor specie data in the JANAF tables has been obtained from this technique. This is due to the extreme versatility of the technique. All classes of materials can be studied and all constituents of the vapor phase can be measured over a wide range of pressures (approximately 10(exp -4) to 10(exp -11) bar) and temperatures (500-2800 K). The ability to selectively measure different vapor species makes KCMS a very powerful tool for the measurement of component activities in metallic and ceramic solutions. Today several groups are applying KCMS to measure thermodynamic functions in multicomponent metallic and ceramic systems. Thermodynamic functions, especially component activities, are extremely important in the development of CALPHAD (Calculation of Phase Diagrams) type thermodynamic descriptions. These descriptions, in turn, are useful for modeling materials processing and predicting reactions such as oxide formation and fiber/matrix interactions. The leading experimental methods for measuring activities are the Galvanic cell or electro-motive force (EMF) technique and the KCMS technique. Each has specific advantages, depending on

  16. CHAOTIC ZONES AROUND GRAVITATING BINARIES

    SciTech Connect

    Shevchenko, Ivan I.

    2015-01-20

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

  17. Mass Loss from the Nuclei of Active Galaxies

    NASA Technical Reports Server (NTRS)

    Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.

    2003-01-01

    Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .

  18. Gravitational polarizability of black holes

    SciTech Connect

    Damour, Thibault; Lecian, Orchidea Maria

    2009-08-15

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h{sub l} of a black hole are defined and computed. They are then compared to their electromagnetic analogs h{sub l}{sup EM}. The Love numbers h{sub l} give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  19. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U...

  20. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U...

  1. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U...

  2. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U...

  3. 49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U...

  4. GAMMA-RAY FLARING ACTIVITY FROM THE GRAVITATIONALLY LENSED BLAZAR PKS 1830–211 OBSERVED BY Fermi LAT

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Buehler, R.; Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Borgland, A. W.; Caliandro, G. A.; Cameron, R. A.; Amin, M. A.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bonamente, E.; Bregeon, J.; Bulmash, D. E-mail: stefano.ciprini@asdc.asi.it E-mail: dammando@ira.inaf.it E-mail: sara.buson@pd.infn.it E-mail: dammando@ira.inaf.it; and others

    2015-02-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the MeV-peaked flat-spectrum radio quasar PKS 1830–211 (z = 2.507). Its apparent isotropic γ-ray luminosity (E > 100 MeV), averaged over ∼3 years of observations and peaking on 2010 October 14/15 at 2.9 × 10{sup 50} erg s{sup –1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time-delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large γ-ray flares of PKS 1830–211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the γ-ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X-ray flux with the γ-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and γ-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.

  5. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  6. Gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  7. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)

    2002-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  8. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrara (Inventor); Fossum, Eric (Inventor)

    2006-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  9. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)

    2005-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  10. NEW OPPORTUNITIES IN GRAVITATIONAL MICROLENSING AND MESOLENSING

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne

    2014-06-01

    It took more than fifty years and the development of computer technology to transform Einstein's theoretical work on what we now call "gravitational microlensing" into an active and successful field of observational research. The first microlensing events were announced in 1993, and today's monitoring teams discover roughly 2000 candidate events each year. Binaries and planets have been discovered, and the masses of nearby stars and brown dwarfs have been measured. The total numbers of planets discovered through lensing is still small, but the field is young, and new methods and techniques are being developed. I will summarize the successes to date, and will then focus on some intriguing new opportunities. One of these opportunities is suggested by theoretical work that will allow observers to search for planets in a wider range of orbits, thereby increasing the discovery rate. Another opportunity is provided by counterpart searches and parallax signatures in the lensing light curves, which are helping us to identify those events caused by nearby lenses (mesolenses), located within about a kiloparsec. We can learn a great deal more about mesolenses, and therefore expect to systematically discover and measure masses of nearby brown dwarfs, neutron stars and black holes, and also to find nearby planets that can be be studied with other techniques as well. Finally, mesolensing events can be predicted in advance, providing a new avenue to measure the masses and multiplicity of nearby stars. Gravitational lensing events have a rich potential to contribute to astronomy, and we are presently exploring new possibilities and establishing the framework that will allow more of this potential to be realized.

  11. Landscape evolution in relation with occurrence of gravitational slope deformation and catastrophic landslides

    NASA Astrophysics Data System (ADS)

    Tsou, Ching-Ying; Chigira, Masahiro; Matsushi, Yuki; Chen, Su-Chin

    2013-04-01

    The Central Range of Taiwan is an example of a tectonically active orogen. The topography of a mountainous catchment of the Dahan River in northern side of the Central Range exhibits V-shaped inner valleys where landsliding is the dominant process of hillslope erosion and bedrock rivers are incising into the landscape. We take two approaches including (i) the study of present day morphostructural features of gravitationally deformed slopes and (ii) the study of the relationship between the gravitational slope deformation and fluvial incision to research the linkage of gravitational slope deformations, catastrophic landslides, and landscape evolution for the prediction of potential sites of future landslides. Mapped deep-seated gravitational slope deformations and scars of rainfall-induced rock/debris avalanches imply that their distributions are closely related to three series of convex slope breaks relating to the rejuvenation of topography by a three-phase fluvial incision leaded by three series of knickpoints migration. Many shallow rock/debris avalanches have occurred below the lowest slope break. By contrast, majority of gravitational slope deformations have occurred at the margins of the highest slope break around the paleosurface remnants, suggesting that the rejuvenation caused debuttressing of hillslopes and subsequent stress-release led to large scale slope destabilization, resulting in gravitational slope deformations. Catastrophic landslides in many locations deem to be preceded by gravitational slope deformation of rocks with adverse geological structures, many of which are buckling of alternating beds of sandstone and mudstone, and toppling of argillite and slate. The gravitationally deformed slopes change the topography and remain for a long time, and commonly accompany with some other types of mass movements (e.g. debris flows, rock/debris avalanches, and rockfalls). The results suggest that landslides are strongly controlled by geomorphology and

  12. Self-gravitating system made of axions

    SciTech Connect

    Barranco, J.; Bernal, A.

    2011-02-15

    We show that the inclusion of an axionlike effective potential in the construction of a self-gravitating system of scalar fields decreases its compactness when the value of the self-interaction coupling constant is increased. By including the current values for the axion mass m and decay constant f{sub a}, we have computed the mass and the radius for self-gravitating systems made of axion particles. It is found that such objects will have asteroid size masses and radii of a few meters, thus a self-gravitating system made of axions could play the role of scalar mini-MACHOs and mimic a cold dark matter model for the galactic halo.

  13. Parameter identification for active mass damper controlled systems

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Wang, J. F.; Lin, C. C.

    2016-09-01

    Active control systems have already been installed in real structures and are able to decrease the wind- and earthquake-induced responses, while the active mass damper (AMD) is one of the most popular types of such systems. In practice, an AMD is generally assembled in- situ along with the construction of a building. In such a case, the AMD and the building is coupled as an entire system. After the construction is completed, the dynamic properties of the AMD subsystem and the primary building itself are unknown and cannot be identified individually to verify their design demands. For this purpose, a methodology is developed to obtain the feedback gain of the AMD controller and the dynamic properties of the primary building based on the complex eigen-parameters of the coupled building-AMD system. By means of the theoretical derivation in state-space, the non-classical damping feature of the system is characterized. This methodology can be combined with any state-space based system identification technique as a procedure to achieve the goal on the basis of the acceleration measurements of the building-AMD system. Results from numerical verifications show that the procedure is capable of extracting parameters and is applicable for AMD implementation practices.

  14. Nonadiabatic charged spherical gravitational collapse

    SciTech Connect

    Di Prisco, A.; Herrera, L.; Le Denmat, G.; MacCallum, M. A. H.; Santos, N. O.

    2007-09-15

    We present a complete set of the equations and matching conditions required for the description of physically meaningful charged, dissipative, spherically symmetric gravitational collapse with shear. Dissipation is described with both free-streaming and diffusion approximations. The effects of viscosity are also taken into account. The roles of different terms in the dynamical equation are analyzed in detail. The dynamical equation is coupled to a causal transport equation in the context of Israel-Stewart theory. The decrease of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamic state, is reobtained, with the viscosity terms included. In accordance with the equivalence principle, the same decrease factor is obtained for the gravitational force term. The effect of the electric charge on the relation between the Weyl tensor and the inhomogeneity of the energy density is discussed.

  15. The Rotational and Gravitational Effect of Earthquakes

    NASA Technical Reports Server (NTRS)

    Gross, Richard

    2000-01-01

    The static displacement field generated by an earthquake has the effect of rearranging the Earth's mass distribution and will consequently cause the Earth's rotation and gravitational field to change. Although the coseismic effect of earthquakes on the Earth's rotation and gravitational field have been modeled in the past, no unambiguous observations of this effect have yet been made. However, the Gravity Recovery And Climate Experiment (GRACE) satellite, which is scheduled to be launched in 2001, will measure time variations of the Earth's gravitational field to high degree and order with unprecedented accuracy. In this presentation, the modeled coseismic effect of earthquakes upon the Earth's gravitational field to degree and order 100 will be computed and compared to the expected accuracy of the GRACE measurements. In addition, the modeled second degree changes, corresponding to changes in the Earth's rotation, will be compared to length-of-day and polar motion excitation observations.

  16. Hunting for dark particles with gravitational waves

    NASA Astrophysics Data System (ADS)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-10-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  17. Gravitational Wave Physics with Binary Love Relations

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolas

    2016-03-01

    Gravitational waves from the late inspiral of neutron star binaries encode rich information about their internal structure at supranuclear densities through their tidal deformabilities. However, extracting the individual tidal deformabilities of the components of a binary is challenging with future ground-based gravitational wave interferometers due to degeneracies between them. We overcome this difficulty by finding new, approximate universal relations between the individual tidal deformabilities that depend on the mass ratio of the two stars and are insensitive to their internal structure. Such relations have applications not only to gravitational wave astrophysics, but also to nuclear physics as they improve the measurement accuracy of tidal parameters. Moreover, the relations improve our ability to test extreme gravity and perform cosmology with gravitational waves emitted from neutron star binaries.

  18. An Application of the Topological Degree to Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Lombardi, Marco

    In this letter we provide a new proof of a general theorem on gravitational lenses, first proven by Burke (1981) for the special case of thin lenses. The theorem states that a transparent gravitational lens with non-singular mass distribution produces an odd number of images of a point source. Our general proof shows that the topological degree finds natural and interesting applications in the theory of gravitational lenses.

  19. Gravitation in material media

    NASA Astrophysics Data System (ADS)

    Ridgely, Charles T.

    2011-03-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  20. Gravitational lenses and dark matter - Observations

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1987-01-01

    Following a few general comments on gravitational lenses from an observer's perspective, the currently available observations of the six known gravitational lenses are summarized. Attention is called to some regularities and peculiarities of the properties of the known lenses and to how they might be interpreted. The most important conclusions, relevant to the dark matter problem, which can be obtained from current observations are that the distributions of mass and light appear to be quite different in at least some of the lensing objects and that objects with projected mass/brightness values about 10 times larger than those ordinarily associated with galaxies exist and are not too rare.

  1. SimpLens: Interactive gravitational lensing simulator

    NASA Astrophysics Data System (ADS)

    Saha, Prasenjit; Williams, Liliya L. R.

    2016-06-01

    SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.

  2. Gravitationally coupled electroweak monopole

    NASA Astrophysics Data System (ADS)

    Cho, Y. M.; Kimm, Kyoungtae; Yoon, J. H.

    2016-10-01

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein-Weinberg-Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  3. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  4. Gravitational Corrections to Yukawa and phi{sup 4} Interactions

    SciTech Connect

    Rodigast, Andreas; Schuster, Theodor

    2010-02-26

    We consider the lowest order quantum gravitational corrections to Yukawa and phi{sup 4} interactions. Our results show that quantum gravity leads to contributions to the running coupling constants if the particles are massive and therefore alters the scaling behavior of the standard model. Furthermore, we find that the gravitational contributions to the running of the masses vanish.

  5. Detecting high-frequency gravitational waves with optically levitated sensors.

    PubMed

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  6. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  7. NUCLEAR QUANTUM GRAVITATION - Further Explanations and Proofs

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald R.

    2002-04-01

    It is obvious that Electromagnetism encompasses all of physical nature, including gravity. Electromagnetism is the only entity in nature that propagates force at a distance. This extends and couples into the Universe, and is based on Atoms and Nuclei of Matter. NUCLEAR QUANTUM GRAVITATION states that Electromagnetic functions in Nuclei, Electromagnetically couple between Nuclei and Matter to produce Gravity - Gravitation. Some indications and proofs of this are: the levitation of glass spheres with an argon laser producing far greater results than explained by light pressure; Naval Seasat measurements of ocean elevations showing seawater dynamically collecting around sea mounts; the 13.5 degree shift of Foucault Pendulum during a solar eclipse; Fischbach studies of Evotos data showing a variation in the rate of gravitational accelerations equal to the Electromagnetic Force Constant; variation in gravity measurement devices when near more mass; accomplishment of faster than light speed by Doctor Ishii of Marquette University; accomplishment of faster than light speed by the University of California; Electromagnetic levitations by National High Magnetic Field Laboratory; laser tweezers equivalent to a traction beam, Scientific American; studies by the Naval Research Labs showing the neutron beam defraction pattern difference between Earth days and nights respective to the Sun and Moon; the Mercury two-thirds ratio phase locked to the Sun's gravity; and the 1 to 1 Electromagnetic gravitational locking of our own Moon to the Earth. It is very apparent that Gravity and Gravitation are Electromagnetic - NUCLEAR QUANTUM GRAVITATION.

  8. Gravitational Instabilities in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  9. A VLA gravitational lens survey

    NASA Technical Reports Server (NTRS)

    Hewitt, J. N.; Turner, E. L.; Burke, B. F.; Lawrence, C. R.; Bennett, C. L.

    1987-01-01

    A VLA survey designed to detect gravitational lensing on sub-arc second and arc second scales is described, and preliminary results of radio data are presented. In particular, it is found that the density of matter in the form of a uniform comoving number density of 10 to the 11th - 10 to the 12th solar mass compact objects, luminous or dark, must be substantially less than the critical density. Data obtained for the radio source 1042+178 are briefly examined.

  10. Gravitational wave astronomy: the current status

    NASA Astrophysics Data System (ADS)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Chu, Qi; Fang, Qi; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Reitze, David H.; Arai, Koji; Zhang, Fan; Flaminio, Raffaele; Zhu, XingJiang; Hobbs, George; Manchester, Richard N.; Shannon, Ryan M.; Baccigalupi, Carlo; Gao, Wei; Xu, Peng; Bian, Xing; Cao, ZhouJian; Chang, ZiJing; Dong, Peng; Gong, XueFei; Huang, ShuangLin; Ju, Peng; Luo, ZiRen; Qiang, Li'E.; Tang, WenLin; Wan, XiaoYun; Wang, Yue; Xu, ShengNian; Zang, YunLong; Zhang, HaiPeng; Lau, Yun-Kau; Ni, Wei-Tou

    2015-12-01

    In the centenary year of Einstein's General Theory of Relativity, this paper reviews the current status of gravitational wave astronomy across a spectrum which stretches from attohertz to kilohertz frequencies. Sect. 1 of this paper reviews the historical development of gravitational wave astronomy from Einstein's first prediction to our current understanding the spectrum. It is shown that detection of signals in the audio frequency spectrum can be expected very soon, and that a north-south pair of next generation detectors would provide large scientific benefits. Sect. 2 reviews the theory of gravitational waves and the principles of detection using laser interferometry. The state of the art Advanced LIGO detectors are then described. These detectors have a high chance of detecting the first events in the near future. Sect. 3 reviews the KAGRA detector currently under development in Japan, which will be the first laser interferometer detector to use cryogenic test masses. Sect. 4 of this paper reviews gravitational wave detection in the nanohertz frequency band using the technique of pulsar timing. Sect. 5 reviews the status of gravitational wave detection in the attohertz frequency band, detectable in the polarisation of the cosmic microwave background, and discusses the prospects for detection of primordial waves from the big bang. The techniques described in sects. 1-5 have already placed significant limits on the strength of gravitational wave sources. Sects. 6 and 7 review ambitious plans for future space based gravitational wave detectors in the millihertz frequency band. Sect. 6 presents a roadmap for development of space based gravitational wave detectors by China while sect. 7 discusses a key enabling technology for space interferometry known as time delay interferometry.

  11. Space Detection of Gravitational Waves (lisa)

    NASA Astrophysics Data System (ADS)

    de Araujo, J. C. Neves; Buchman, S.; Cavalleri, A.; Danzmann, K.; Doles, R.; Fontana, G.; Hanso, J.; Hueller, M.; Sigurdsso, S.; Turneaure, J.; Ungarell, C.; Vecchi, A.; Vital, S.; Webe, W.

    2002-12-01

    The Laser Interferometer Space Antenna (LISA) mission is designed to observe gravitational waves from galactic and extra-galactic binary systems, including gravitational waves generated in the vicinity of the very massive black holes found in the centers of many galaxies. Acting as a giant Michelson interferometer the three spacecraft flying 5 million km apart will open the era of astronomy in the gravitational spectrum. We give an introduction to the mission and describe the status of selected experimental, theoretical, and planning LISA work, as reported at the Ninth Marcel Grossman Meeting in 2000 in Rome. We discuss the three areas of technology challenges facing the mission inertial sensors, micronewton thrusters, and picometer interferometry. We report on the progress in the development of free falling moving test-masses for LISA and for the related technology demonstration mission. We present simple formulas to evaluate the performance of the device as a function of the various design parameters, and we compare them with preliminary experimental results from a test prototype we are developing. Quantitative agreement is found. The gravitational radiation emitted during the final stages of coalescence of stellar mass compact objects with low massive black holes is a signal detectable by LISA. It will also provide the opportunity of measuring relativistic strong field effects. A brief discussion addresses the detection by LISA of gravitational waves generated by cataclysmic binary variables at frequencies below 1 mHz. Finally the prospects for cosmology work with LISA type antennas are being analyzed.

  12. Gravitational Instability of a Nonrotating Galaxy

    SciTech Connect

    Chao, Alexander W.; /SLAC

    2005-12-14

    Gravitational instability of the distribution of stars in a galaxy is a well-known phenomenon in astrophysics. This work is a preliminary attempt to analyze this phenomenon using the standard tools developed in accelerator physics. By applying this analysis, it is found that a stable nonrotating galaxy would become unstable if its size exceeds a certain limit that depends on its mass density.

  13. Gravitational Instability of a Nonrotating Galaxy

    SciTech Connect

    Chao, Alex; /SLAC

    2009-06-23

    Gravitational instability of the distribution of stars in a galaxy is a well-known phenomenon in astrophysics. This report is an attempt to analyze this phenomenon by applying standard tools developed in accelerator physics. It is found that a nonrotating galaxy would become unstable if its size exceeds a certain limit that depends on its mass density and its velocity spread.

  14. A Nature of Gravitation and the Problem of the Laboratory Gravitational Waves Generation

    NASA Astrophysics Data System (ADS)

    Kanibolotsky, Valentyn

    2010-01-01

    This work sheds light on nature of gravitation and vacuum structure to offer new possibilities for the laboratory HFGWs generation, since neither Einstein's GR nor any another theory of gravity not make answer on this question. Well-known hypothesis about non-materiality of gravitation field unambiguously leads to representation that the elemental particles (EPs) are gravitational stabilized substance. By their nature EPs would constitute microscopic black holes with extreme curved space-time into their bulk and in the vicinity. Since EPs birth take place at interaction of photons with polarized vacuum, this latter represents medium consisting from massless gravitational skeletons of known EPs. So the particle can be not born without its antiparticle and vacuum is gravitationally neutral, particle and antiparticle skeleton, must possess gravitation and antigravitation, correspondingly. GWs would be represented oscillations of the EPs gravitational and antigravitational skeletons around the common centre and in consequence they would be transverse. The high penetrating ability of GWs is a result that neither vacuum, in which HFGWs are propagated, nor HFGWs, does not have mass (energy). In the concept frameworks a new RTG, which must be confirmed these representations, is developed. However, already the fact by itself the laboratory generation of GWs is the direct proof of correctness of these representations.

  15. Gravitational wave astrophysics with compact binary systems

    NASA Astrophysics Data System (ADS)

    Addison, Eric

    2014-10-01

    Gravitational waves are ripples in the fabric of spacetime that convey information about changing gravitational fields. Large-scale detection projects are currently in operation, and more advanced detectors are being designed and built. Though we have yet to make a direct detection of a gravitational wave signal, upgrades to current detectors are expected to bring the first detections within the next year or two. Gravitational waves will bring us information about astrophysical phenomena that is complementary to the information gained from photon-based observations (e.g., telescopes and radio receivers). One of the primary sources of gravitational waves are binary systems: two massive objects that orbit around each other due to their mutual gravitational attraction. These systems can have very predictable gravitational wave signatures due to their repetitive motions, making them ideal gravitational wave sources. In this dissertation, I present two research projects pertaining to gravitational wave astrophysics and compact binary systems. In the first, I explore interactions between compact binary systems near the center of our galaxy with the supermassive black hole that resides there. I am interested in the final state of the binary as a result of the interaction, ranging from small perturbations to the orbit up to total disruption. In the case of disruption, I characterize the new orbits formed between the binary components and the central black hole, known as extreme mass ratio inspirals. For binaries that survive the encounter, I examine the changes they experience, and find on average, they will merge together as a result of gravitational wave emission faster than before the encounter. In the second project, I propose a new method of measuring the radius of the swirling disc of gas and dust that encircles some stars in compact binary systems, known as the accretion disc. This method relies on the use of coupled electromagnetic and gravitational wave

  16. Towards Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Losurdo, Giovanni

    This chapter is meant to introduce the reader to the forthcoming network of second-generation interferometric detectors of gravitational waves, at a time when their construction is close to completion and there is the ambition to detect gravitational waves for the first time in the next few years and open the way to gravitational wave astronomy. The legacy of first-generation detectors is discussed before giving an overview of the technology challenges that have been faced to make advanced detectors possible. The various aspects outlined here are then discussed in more detail in the subsequent chapters of the book.

  17. Inverting Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Newbury, P. R.; Spiteri, R. J.

    2002-02-01

    Gravitational lensing provides a powerful tool to study a number of fundamental questions in astrophysics. Fortuitously, one can begin to explore some non-trivial issues associated with this phenomenon without a lot of very sophisticated mathematics, making an elementary treatment of this topic tractable even to senior undergraduates. In this paper, we give a relatively self-contained outline of the basic concepts and mathematics behind gravitational lensing as a recent and exciting topic for courses in mathematical modeling or scientific computing. To this end, we have designed and made available some interactive software to aid in the simulation and inversion of gravitational lenses in a classroom setting.

  18. Gravitational Self-Force: Orbital Mechanics Beyond Geodesic Motion

    NASA Astrophysics Data System (ADS)

    Barack, Leor

    The question of motion in a gravitationally bound two-body system is a longstanding open problem of General Relativity. When the mass ratio η is small, the problem lends itself to a perturbative treatment, wherein corrections to the geodesic motion of the smaller object (due to radiation reaction, internal structure, etc.) are accounted for order by order in η, using the language of an effective gravitational self-force. The prospect for observing gravitational waves from compact objects inspiralling into massive black holes in the foreseeable future has in the past 15 years motivated a program to obtain a rigorous formulation of the self-force and compute it for astrophysically interesting systems. I will give a brief survey of this activity and its achievements so far, and will identify the challenges that lie ahead. As concrete examples, I will discuss recent calculations of certain conservative post-geodesic effects of the self-force, including the O(η ) correction to the precession rate of the periastron. I will highlight the way in which such calculations allow us to make a fruitful contact with other approaches to the two-body problem.

  19. Report from the Gravitational Observatory Advisory Team

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Gravitational Observatory Advisory Team

    2016-03-01

    As a response to the selection of the Gravitational Universe as the science theme for ESA's L3 mission, ESA formed the Gravitational-Wave Observatory Advisory Team (GOAT) to advise ESA on the scientific and technological approach for a gravitational wave observatory. NASA is participating with three US scientists and one NASA observer; JAXA was also invited and participates with one observer. The GOAT looked at a range of mission technologies and designs, discussed their technical readiness with respect to the ESA schedule, recommended technology development activities for selected technologies, and worked with the wider gravitational-wave community to analyze the impact on the science of the various mission designs. The final report is expected to be submitted to ESA early March and I plan to summarize its content.

  20. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  1. Visualization of Merging Black Holes and Gravitational Waves

    NASA Video Gallery

    This visualization shows gravitational waves emitted by two black holes of nearly equal mass as they spiral together and merge. Orange ripples represent distortions of space-time caused by the rapi...

  2. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina

    2012-06-01

    The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.

  3. Gravitational-wave joy

    NASA Astrophysics Data System (ADS)

    seyithocuk; jjeherrera; eltodesukane; GrahamRounce; rloldershaw; Beaker, Dr; Sandhu, G. S.; Ophiuchi

    2016-03-01

    In reply to the news article on the LIGO collaboration's groundbreaking detection of gravitational waves, first predicted by Einstein 100 years ago, from two black holes colliding (pp5, 6-7 and http://ow.ly/Ylsyt).

  4. Gravitational clustering: an overview

    NASA Astrophysics Data System (ADS)

    Labini, Francesco Sylos

    2008-01-01

    We discuss the differences and analogies of gravitational clustering in finite and infinite systems. The process of collective, or violent, relaxation leading to the formation of quasi-stationary states is one of the distinguished features in the dynamics of self-gravitating systems. This occurs, in different conditions, both in a finite than in an infinite system, the latter embedded in a static or in an expanding background. We then discuss, by considering some simple and paradigmatic examples, the problems related to the definition of a mean-field approach to gravitational clustering, focusing on role of discrete fluctuations. The effect of these fluctuations is a basic issue to be clarified to establish the range of scales and times in which a collision-less approximation may describe the evolution of a self-gravitating system and for the theoretical modeling of the non-linear phase.

  5. Gravitational Particle Production in Braneworld Cosmology

    SciTech Connect

    Bambi, C.; Urban, F. R.

    2007-11-09

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{sub Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.

  6. Gravitational particle production in braneworld cosmology.

    PubMed

    Bambi, C; Urban, F R

    2007-11-01

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed. PMID:18233059

  7. Gravitational particle production in braneworld cosmology.

    PubMed

    Bambi, C; Urban, F R

    2007-11-01

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.

  8. Quantum metrology for gravitational wave astronomy.

    PubMed

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-11-16

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.

  9. Gravitation and celestial mechanics investigations with Galileo

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Armstrong, J. W.; Campbell, J. K.; Estabrook, F. B.; Krisher, T. P.; Lau, E. L.

    1992-01-01

    The gravitation and celestial mechanics investigations that are to be conducted during the cruise and Orbiter phases of the Galileo Mission cover four investigation categories: (1) the gravity fields of Jupiter and its four major satellites; (2) a search for gravitational radiation; (3) mathematical modeling of general relativistic effects on Doppler ranging data; and (4) improvements of the Jupiter ephemeris via Orbiter ranging. Also noted are two secondary objectives, involving a range fix during Venus flyby and the determination of the earth's mass on the bases of the two earth gravity assists used by the mission.

  10. Quantum metrology for gravitational wave astronomy.

    PubMed

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-01-01

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy. PMID:21081919

  11. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth

    PubMed Central

    Vicente-Rodriguez, G; Ara, I; Perez-Gomez, J; Dorado, C; Calbet, J

    2005-01-01

    Objectives: To investigate to what extent bone mass accrual is determined by physical activity and changes in lean, fat, and total body mass during growth. Methods: Twenty six physically active and 16 age matched control boys were followed up for three years. All subjects were prepubertal at the start of the survey (mean (SEM) age 9.4 (0.3) years). The weekly physical activity of the active boys included compulsory physical education sessions (80–90 minutes a week), three hours a week of extracurricular sports participation, and occasional sports competitions at weekends. The physical activity of the control group was limited to the compulsory physical education curriculum. Bone mineral content (BMC) and areal density (BMD), lean mass, and fat mass were measured by dual energy x ray absorptiometry. Results: The effect of sports participation on femoral bone mass accrual was remarkable. Femoral BMC and BMD increased twice as much in the active group as in the controls over the three year period (p<0.05). The greatest correlation was found between the increment in femoral bone mass and the increment in lean mass (BMC r = 0.67 and BMD r = 0.69, both p<0.001). Multiple regression analysis revealed enhancement in lean mass as the best predictor of the increment in femoral bone BMC (R = 0.65) and BMD (R = 0.69). Conclusions: Long term sports participation during early adolescence results in greater accrual of bone mass. Enhancement of lean mass seems to be the best predictor of this bone mass accumulation. However, for a given muscle mass, a greater level of physical activity is associated with greater bone mass and density in peripubertal boys. PMID:16118297

  12. Modeling Gravitational Radiation Waveforms from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, J. G.; Centrelia, J. M.; Choi, D.; Koppitz, M.; VanMeter, J.

    2006-01-01

    Gravitational radiation from merging binary black hole systems is anticipated as a key source for gravitational wave observations. Ground-based instruments, such as the Laser Interferometer Gravitational-wave Observatory (LIGO) may observe mergers of stellar-scale black holes, while the space-based Laser Interferometer Space Antenna (LISA) observatory will be sensitive to mergers of massive galactic-center black holes over a broad range of mass scales. These cataclysmic events may emit an enormous amount of energy in a brief time. Gravitational waves from comparable mass mergers carry away a few percent of the system's mass-energy in just a few wave cycles, with peak gravitational wave luminosities on the order of 10^23 L_Sun. Optimal analysis and interpretation of merger observation data will depend on developing a detailed understanding, based on general relativistic modeling, of the radiation waveforms. We discuss recent progress in modeling radiation from equal mass mergers using numerical simulations of Einstein's gravitational field equations, known as numerical relativity. Our simulations utilize Adaptive Mesh Refinement (AMR) to allow high-resolution near the black holes while simultaneously keeping the outer boundary of the computational domain far from the black holes, and making it possible to read out gravitational radiation waveforms in the weak-field wave zone. We discuss the results from simulations beginning with the black holes orbiting near the system's innermost stable orbit, comparing the recent simulations with earlier "Lazarus" waveform estimates based on an approximate hybrid numerical/perturbative technique.

  13. Nestling activity levels during begging behaviour predicts activity level and body mass in adulthood

    PubMed Central

    Griffith, Simon C.

    2014-01-01

    Across a range of species including humans, personality traits, or differences in behaviour between individuals that are consistent over time, have been demonstrated. However, few studies have measured whether these consistent differences are evident in very young animals, and whether they persist over an individual’s entire lifespan. Here we investigated the begging behaviour of very young cross-fostered zebra finch nestlings and the relationship between that and adult activity levels. We found a link between the nestling activity behaviour head movements during begging, measured at just five and seven days after hatching, and adult activity levels, measured when individuals were between three and three and a half years old. Moreover, body mass was found to be negatively correlated with both nestling and adult activity levels, suggesting that individuals which carry less body fat as adults are less active both as adults and during begging as nestlings. Our work suggests that the personality traits identified here in both very young nestlings and adults may be linked to physiological factors such as metabolism or environmental sources of variation. Moreover, our work suggests it may be possible to predict an individual’s future adult personality at a very young age, opening up new avenues for future work to explore the relationship between personality and a number of aspects of individual life history and survival. PMID:25279258

  14. Accretion disk dynamics. α-viscosity in self-similar self-gravitating models

    NASA Astrophysics Data System (ADS)

    Kubsch, Marcus; Illenseer, Tobias F.; Duschl, Wolfgang J.

    2016-04-01

    Aims: We investigate the suitability of α-viscosity in self-similar models for self-gravitating disks with a focus on active galactic nuclei (AGN) disks. Methods: We use a self-similar approach to simplify the partial differential equations arising from the evolution equation, which are then solved using numerical standard procedures. Results: We find a self-similar solution for the dynamical evolution of self-gravitating α-disks and derive the significant quantities. In the Keplerian part of the disk our model is consistent with standard stationary α-disk theory, and self-consistent throughout the self-gravitating regime. Positive accretion rates throughout the disk demand a high degree of self-gravitation. Combined with the temporal decline of the accretion rate and its low amount, the model prohibits the growth of large central masses. Conclusions: α-viscosity cannot account for the evolution of the whole mass spectrum of super-massive black holes (SMBH) in AGN. However, considering the involved scales it seems suitable for modelling protoplanetary disks.

  15. UM 425: a new gravitational lens candidate.

    NASA Astrophysics Data System (ADS)

    Meylan, G.; Djorgovski, S.

    1988-12-01

    Since the first theoretical discussions more than 50 years ago on the phenomenon of light rays bent by intervening mass in the universe (Eddington 1920, Einstein 1936, Zwicky 1937 a, b), gravitational lensing has steadily grown to become one of the most active fields of research in extragalactic astronomy today. There are numerous theoretical investigations (Refsdal 1964, 1966, Turner et al. 1984, Blandford and Narayan 1986, Blandford and Kochanek 1987a, b), but the observations of good gravitationallens candidates are still rare. It is only during the last decade that a few quasar systems have been found in reasonable agreement with the gravitational lensing interpretation, viz., 0957 + 561 (Walsh et al. 1979), 1115 + 080 (Weymann et al. 1980), 2016 + 112 (Lawrence et al. 1983), 2237 + 030 (Huchra et al. 1985), 0142-100 (Surdej et al. 1987), and 1413+ 117 (Magain et al. 1988). In other possible cases, e.g., 2345+007 ryveedman et al. 1982), and 1635+267 (Djorgovski and Spinrad 1984), there has so far been no detection of lensing galaxies, and thus they should possibly be considered as genuine pairs of interacting quasars, similar to the probable binary quasar PKS 1145-071 (Djorgovski et al. 1987). Recently, so-called giant luminous arcs have been observed in a few clusters of galaxies. They are interpreted as segments of Einstein rings, created because of an almost perfect alignment of the lensing cluster potential weil with the lensed background object (Soucail et al. 1988, Lynds and Petrosian 1988). Blandford and Kochanek (1987) provide the most comprehensive and updated review on these subjects.

  16. Physical Activity in the Mass Media: An Audience Perspective

    ERIC Educational Resources Information Center

    Smith, Ben J.; Bonfiglioli, Catriona M. F.

    2015-01-01

    Physical activity's role in promoting health is highlighted in public health campaigns, news and current affairs, reality television and other programs. An investigation of audience exposure, beliefs and reactions to media portrayals of physical activity offers insights into the salience and influence of this communication. An audience reception…

  17. Comparison of Mass-loading around Active Comets and Planetary Induced Magnetospheres

    NASA Astrophysics Data System (ADS)

    Mazelle, C. X.; Bertucci, C.; Romanelli, N. J.; Andres, N.; Meziane, K.; Delva, M.; Gomez, D. O.

    2015-12-01

    The phenomenon of massloading is ubiquitous in space plasmas. In situ observations in our solar system have shown that massloading is most conspicuous at active comets as their extended exospheres facilitate the implantation of cometary ions up to a few million km away from their nuclei. But massloading is also important in planetary induced magnetospheres as it contributes to the formation of the obstacle to the incoming plasma winds in addition to gravitationally bound ionosphere. In this work we revisit observations around planets, moons, and active comets with different degree of massloading and discuss the importance of planetary exospheres in the formation of induced magnetospheres. In particular, we focus on the formation of plasma boundaries (induced magnetospheric boundary, bow shock) and in particular the phenomena of accreted, 'fossil' magnetic flux tubes fields - first unveiled at comet P/Halley and more recently observed at Titan.

  18. Sources of gravitational waves

    NASA Technical Reports Server (NTRS)

    Schutz, Bernard F.

    1989-01-01

    Sources of low frequency gravitational radiation are reviewed from an astrophysical point of view. Cosmological sources include the formation of massive black holes in galactic nuclei, the capture by such holes of neutron stars, the coalescence of orbiting pairs of giant black holes, and various means of producing a stochastic background of gravitational waves in the early universe. Sources local to our Galaxy include various kinds of close binaries and coalescing binaries. Gravitational wave astronomy can provide information that no other form of observing can supply; in particular, the positive identification of a cosmological background originating in the early universe would be an event as significant as was the detection of the cosmic microwave background.

  19. X ray timing observations and gravitational physics

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.; Wood, Kent S.

    1989-01-01

    Photon-rich x ray observations on bright compact galactic sources will make it possible to detect many fast processes that may occur in these systems on millisecond and submillisecond timescales. Many of these processes are of direct relevance to gravitational physics because they arise in regions of strong gravity near neutron stars and black holes where the dynamical timescales for compact objects of stellar mass are milliseconds. To date, such observations have been limited by the detector area and telemetry rates available. However, instruments such as the proposed X ray Large Array (XLA) would achieve collecting areas of about 100 sq m. This instrument has been described elsewhere (Wood and Michelson 1988) and was the subject of a recent prephase A feasibility study at Marshall Space Flight Center. Observations with an XLA class instrument will directly impact five primary areas of astrophysics research: the attempt to detect gravitational radiation, the study of black holes, the physics of mass accretion onto compact objects, the structure of neutron stars and nuclear matter, and the characterization of dark matter in the universe. Those observations are discussed that are most directly relevant to gravitational physics: the search for millisecond x ray pulsars that are potential sources of continuous gravitational radiation; and the use of x ray timing observations to probe the physical conditions in extreme relativistic regions of space near black holes, both stellar-sized and supermassive.

  20. Investigations of Galaxy Clusters Using Gravitational Lensing

    SciTech Connect

    Wiesner, Matthew P.

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  1. On the gravitational redshift

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2014-08-01

    The study of the gravitational redshift-a relative wavelength increase of ≈2×10-6 was predicted for solar radiation by Einstein in 1908-is still an important subject in modern physics. In a dispute whether or not atom interferometry experiments can be employed for gravitational redshift measurements, two research teams have recently disagreed on the physical cause of the shift. Regardless of any discussion on the interferometer aspect-we find that both groups of authors miss the important point that the ratio of gravitational to the electrostatic forces is generally very small. For instance, the ratio of the gravitational force acting on an electron in a hydrogen atom situated in the Sun’s photosphere to the electrostatic force between the proton and the electron in such an atom is approximately 3×10-21. A comparison of this ratio with the predicted and observed solar redshift indicates a discrepancy of many orders of magnitude. With Einstein’s early assumption that the frequencies of spectral lines depend only on the generating ions themselves as starting point, we show that a solution can be formulated based on a two-step process in analogy with Fermi’s treatment of the Doppler effect. It provides a sequence of physical processes in line with the conservation of energy and momentum resulting in the observed shift and does not employ a geometric description. The gravitational field affects the release of the photon and not the atomic transition. The control parameter is the speed of light. The atomic emission is then contrasted with the gravitational redshift of matter-antimatter annihilation events.

  2. Field theoretic treatment of gravitational interaction in electrodynamics

    NASA Astrophysics Data System (ADS)

    Serdyukov, A. N.

    2011-03-01

    A theory of gravitational interaction in classical electrodynamics is developed on the basis of an earlier-proposed minimal relativistic model of gravitation. From the variation principle, a system of gaugeinvariant equations of the interacting electromagnetic and gravitational fields is deduced and their common energy-momentum tensor is constructed. A rigorous solution to the problem of regularizing the field mass of a point charge is given with consideration for the coupling energy of the gravitational interaction. The propagation of electromagnetic waves in the gravitational field is discussed. It is shown that, under the condition of the existing resonant ratio 2: 3 for the periods of Mercury's orbital revolution and daily rotation, tidal forces cause a regular shift in the planet's perihelion in an observable forward direction.

  3. Dyadosphere formed in gravitational collapse

    SciTech Connect

    Ruffini, Remo; Xue Shesheng

    2008-10-10

    We first recall the concept of Dyadosphere (electron-positron-photon plasma around a formed black holes) and its motivation, and recall on (i) the Dirac process: annihilation of electron-positron pairs to photons; (ii) the Breit-Wheeler process: production of electron-positron pairs by photons with the energy larger than electron-positron mass threshold; the Sauter-Euler-Heisenberg effective Lagrangian and rate for the process of electron-positron production in a constant electric field. We present a general formula for the pair-production rate in the semi-classical treatment of quantum mechanical tunneling. We also present in the Quantum Electro-Dynamics framework, the calculations of the Schwinger rate and effective Lagrangian for constant electromagnetic fields. We give a review on the electron-positron plasma oscillation in constant electric fields, and its interaction with photons leading to energy and number equipartition of photons, electrons and positrons. The possibility of creating an overcritical field in astrophysical condition is pointed out. We present the discussions and calculations on (i) energy extraction from gravitational collapse; (ii) the formation of Dyadosphere in gravitational collapsing process, and (iii) its hydrodynamical expansion in Reissner Nordstroem geometry. We calculate the spectrum and flux of photon radiation at the point of transparency, and make predictions for short Gamma-Ray Bursts.

  4. Gravitational-Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  5. Supersymmetry and gravitational duality

    SciTech Connect

    Argurio, Riccardo; Dehouck, Francois; Houart, Laurent

    2009-06-15

    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.

  6. Galaxies as gravitational lenses.

    PubMed

    Barnothy, J; Barnothy, M F

    1968-10-18

    Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies. PMID:17836654

  7. Gravitation: Foundations and Frontiers

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.

    2010-01-01

    1. Special relativity; 2. Scalar and electromagnetic fields in special relativity; 3. Gravity and spacetime geometry: the inescapable connection; 4. Metric tensor, geodesics and covariant derivative; 5. Curvature of spacetime; 6. Einstein's field equations and gravitational dynamics; 7. Spherically symmetric geometry; 8. Black holes; 9. Gravitational waves; 10. Relativistic cosmology; 11. Differential forms and exterior calculus; 12. Hamiltonian structure of general relativity; 13. Evolution of cosmological perturbations; 14. Quantum field theory in curved spacetime; 15. Gravity in higher and lower dimensions; 16. Gravity as an emergent phenomenon; Notes; Index.

  8. Scalar Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Mottola, Emil

    2016-03-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.

  9. What's the Diagnosis? An Inquiry-Based Activity Focusing on Mole-Mass Conversions

    ERIC Educational Resources Information Center

    Bruck, Laura B.; Towns, Marcy H.

    2011-01-01

    An inquiry-based mole-to-mass activity is presented associated with the analysis of blood. Students working in groups choose between two medical cases to determine if the "patient" has higher or lower concentrations of minerals than normal. The data are presented such that students must convert moles to mass in order to compare the patient values…

  10. Gravitational Waves: The Evidence Mounts

    ERIC Educational Resources Information Center

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  11. Gravitational lenses and particle properties

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1986-01-01

    The potential of observations of gravitational lens systems for the determination of cosmological constants and for tests of the nature and distribution of dark matter is illustrated. The advantages and disadvantages of gravitational lenses as cosmological probes are evaluated.

  12. LISA in the gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John; Cornish, Neil

    2015-04-01

    With the expected direct detection of gravitational waves in the second half of this decade by Advanced LIGO and pulsar timing arrays, and with the launch of LISA Pathfinder in the summer of this year, this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. Recently, NASA has decided to join with ESA on the L3 mission as a junior partner. Both agencies formed a committee to advise them on the scientific and technological approaches for a space based gravitational wave observatory. The leading mission design, Evolved LISA or eLISA, is a slightly de-scoped version of the earlier LISA design. This talk will describe activities of the Gravitational Wave Science Interest Group (GWSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG), focusing on LISA technology development in both the U.S. and Europe, including the LISA Pathfinder mission.

  13. Research on gravitational physiology

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Dahl, A. O.

    1974-01-01

    The topic of gravitational plant physiology was studied through aspects of plant development (in ARABIDOPSIS) and of behavior (in HELIANTHUS) as these were affected by altered g experience. The effect of increased g levels on stem polarity (in COLEUS) was also examined.

  14. Probing gravitational dark matter

    NASA Astrophysics Data System (ADS)

    Ren, Jing; He, Hong-Jian

    2015-03-01

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χs. It is a Bbb Z2 odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξsχs2Script R, where ξs is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξsχs2Script R, together with Higgs-curvature nonminimal coupling term ξhH†HScript R, induces effective couplings between χs2 and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  15. Probing gravitational dark matter

    SciTech Connect

    Ren, Jing; He, Hong-Jian

    2015-03-27

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  16. Gravitational waves from self-ordering scalar fields

    SciTech Connect

    Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan E-mail: daniel.figueroa@uam.es E-mail: juan.garciabellido@uam.es

    2009-10-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω{sub GW}(f) ∝ f{sup 3} with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη{sub *} << 1), enters the horizon, for kη ∼> 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information.

  17. Runners do not push off the ground but fall forwards via a gravitational torque.

    PubMed

    Romanov, Nicholas; Fletcher, Graham

    2007-09-01

    The relationship between the affect and timing of the four forces involved in running (gravity, ground reaction force, muscle force, and potential strain energy) is presented. These forces only increase horizontal acceleration of the centre of mass during stance but not flight. The current hierarchical models of running are critiqued because they do not show gravity, a constant force, in affect during stance. A new gravitational model of running is developed, which shows gravity as the motive force. Gravity is shown to cause a torque as the runner's centre of mass moves forward of the support foot. Ground reaction force is not a motive force but operates according to Newton's third law; therefore, the ground can only propel a runner forward in combination with muscle activity. However, leg and hip extensor muscles have consistently proven to be silent during leg extension (mid-terminal stance). Instead, high muscle-tendon forces at terminal stance suggest elastic recoil regains most of the centre of mass's height. Therefore, the only external motive force from mid-terminal stance is gravity via a gravitational torque, which causes a horizontal displacement. The aim of this paper is to establish a definitive biomechanical technique (Pose method) that is easily taught to runners (Romanov, 2002): falling forwards via a gravitational torque while pulling the support foot rapidly from the ground using the hamstring muscles.

  18. Gravitational radiation and the ultimate speed in Rosen's bimetric theory of gravity

    NASA Technical Reports Server (NTRS)

    Caves, C. M.

    1980-01-01

    In Rosen's bimetric theory of gravity the (local) speed of gravitational radiation is determined by the combined effects of cosmological boundary values and nearby concentrations of matter. It is possible for the speed of gravitational radiation to be less than the speed of light. It is here shown that the emission of gravitational radiation prevents particles of nonzero rest mass from exceeding the speed of gravitational radiation. Observations of relativistic particles place limits on the speed of gravitational radiation and the cosmological boundary values today, and observations of synchroton radiation from compact radio sources place limits on the cosmological boundary values in the past.

  19. Studying planet populations by gravitational microlensing

    NASA Astrophysics Data System (ADS)

    Dominik, Martin

    2010-09-01

    The ‘most curious’ effect of the bending of light by the gravity of stars has evolved into a successful technique unlike any other for studying planets within the Milky Way and even other galaxies. With a sensitivity to cool planets around low-mass stars even below the mass of Earth, gravitational microlensing fits in between other planet search techniques to form a complete picture of planet parameter space, which is required to understand their origin in general, that of habitable planets more particularly, and that of planet Earth especially. Current campaigns need to evolve from first detections to obtaining a sample with well-understood selection bias that allows to draw firm conclusions about the planet populations. With planetary signals being a transient phenomenon, gravitational microlensing is a driver for new technologies in scheduling and management of non-proprietary heterogeneous telescope networks, and can serve to demonstrate forefront science live to the general public.

  20. Simple Pendulum Determination of the Gravitational Constant

    SciTech Connect

    Parks, Harold V.; Faller, James E.

    2010-09-10

    We determined the Newtonian constant of gravitation G by interferometrically measuring the change in spacing between two free-hanging pendulum masses caused by the gravitational field from large tungsten source masses. We find a value for G of (6.672 34{+-}0.000 14)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}. This value is in good agreement with the 1986 Committee on Data for Science and Technology (CODATA) value of (6.672 59{+-}0.000 85)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}[Rev. Mod. Phys. 59, 1121 (1987)] but differs from some more recent determinations as well as the latest CODATA recommendation of (6.674 28{+-}0.000 67)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}[Rev. Mod. Phys. 80, 633 (2008)].

  1. Gravitational collapse of generalized Vaidya spacetime

    NASA Astrophysics Data System (ADS)

    Mkenyeleye, Maombi D.; Goswami, Rituparno; Maharaj, Sunil D.

    2014-09-01

    We study the gravitational collapse of a generalized Vaidya spacetime in the context of the cosmic censorship hypothesis. We develop a general mathematical framework to study the conditions on the mass function so that future directed nonspacelike geodesics can terminate at the singularity in the past. Thus our result generalizes earlier works on gravitational collapse of the combinations of Type-I and Type-II matter fields. Our analysis shows transparently that there exist classes of generalized Vaidya mass functions for which the collapse terminates with a locally naked central singularity. We calculate the strength of these singularities to show that they are strong curvature singularities and there can be no extension of spacetime through them.

  2. LIGO/VIRGO Searches for Gravitational Radiation in Hypernovae

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.

    2002-08-01

    A torus around a stellar-mass Kerr black hole can emit about 10% of the spin energy of a black hole in gravitational radiation, which is potentially associated with a gamma-ray burst (GRB). Wide tori may develop buckling modes by the Papaloizou-Pringle instability and gravitational radiation-reaction forces in the Burke-Thorne approximation. Gravitational-wave experiments may discover these emissions in a fraction of nearby supernovae. This provides a test for Kerr black holes and for GRB inner engines by a comparison with the deredshifted durations of long GRBs.

  3. Lepton asymmetry in the primordial gravitational wave spectrum

    SciTech Connect

    Ichiki, Kiyotomo; Yamaguchi, Masahide; Yokoyama, Jun'Ichi

    2007-04-15

    Effects of neutrino free streaming are evaluated on the primordial spectrum of gravitational radiation taking both neutrino chemical potential and masses into account. The former or the lepton asymmetry induces two competitive effects, namely, to increase anisotropic stress, which damps the gravitational wave more, and to delay the matter-radiation equality time, which reduces the damping. The latter effect is more prominent and a large lepton asymmetry would reduce the damping. We may thereby be able to measure the magnitude of lepton asymmetry from the primordial gravitational wave spectrum.

  4. Proposal for the proper gravitational energy-momentum tensor

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsutaro

    2016-08-01

    We propose a gravitational energy-momentum (GEMT) tensor of the general relativity obtained using Noether’s theorem. It transforms as a tensor under general coordinate transformations. One of the two indices of the GEMT labels a local Lorentz frame that satisfies the energy-momentum conservation law. The energies for a gravitational wave, a Schwarzschild black hole and a Friedmann-Lemaitre-Robertson-Walker (FLRW) universe are calculated as examples. The gravitational energy of the Schwarzschild black hole exists only outside the horizon, its value being the negative of the black hole mass.

  5. Planetesimal Formation by Gravitational Instability of a Porous Dust Disk

    NASA Astrophysics Data System (ADS)

    Michikoshi, Shugo; Kokubo, Eiichiro

    2016-07-01

    It has recently been proposed that porous icy dust aggregates are formed by the pairwise accretion of dust aggregates beyond the snowline. We calculate the equilibrium random velocity of porous dust aggregates, taking into account mutual gravitational scattering, collisions, gas drag, and turbulent stirring and scattering. We find that the disk of porous dust aggregates becomes gravitationally unstable as the aggregates evolve through gravitational compression in the minimum-mass solar nebula model for a reasonable range of turbulence strength, which leads to rapid formation of planetesimals.

  6. Recurrence analysis of the mass movement activity at Stambach (Austria) based on radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Unkel, Ingmar; Ehret, Dominik; Rohn, Joachim

    2013-05-01

    The Stambach mass movement (Austria) is a large and deep-seated mass movement in the Austrian Alps. It consists of a complex and compound mass movement system. The latest major reactivation of the Stambach mass movement was initiated in 1982 by rock fall activity that triggered an earth flow, which transformed into a mud flow. Six sediment cores were taken along the entire earth flow body showing a complex mixture of rock fall blocks and earth flow material. Whenever the earth flow was active, numerous wooden remains were buried within the flow mass. Thirteen of these remains sampled from the sediment cores were radiocarbon dated. The results indicate that the first activation of the Stambach mass movement occurred at least around 9750-9900 cal BP, followed by at least three further events during the Holocene, around 6310-5650, 2320-1880, and 1600-1180 cal BP. Accumulation of toppled rock towers in the head area of the earth flow, followed by a sudden collapse and saturated, undrained loading of the earth flow body, is the main trigger for activating the earth flow. These long lasting preparatory processes make it difficult to determine certain recurrence intervals. However, our data show that the Stambach mass movement was (and most probably still can be) reactivated after more than 3000 years of dormancy.

  7. Exploring Gravitational Waves in the Classroom

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, Kevin M.; Peruta, Carolyn; Simonnet, Aurore

    2016-04-01

    On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) received the first confirmed gravitational wave signals. Now known as GW150914 (for the date on which the signals were received), the event represents the coalescence of two black holes that were previously in mutual orbit. LIGO’s exciting discovery provides direct evidence of what is arguably the last major unconfirmed prediction of Einstein’s General Theory of Relativity. The Education and Public Outreach group at Sonoma State University has created an educator's guide that provides a brief introduction to LIGO and to gravitational waves, along with two simple demonstration activities that can be done in the classroom to engage students in understanding LIGO’s discovery. Additional resources have also been provided to extend student explorations of Einstein’s Universe.

  8. Large-amplitude solitons in gravitationally balanced quantum plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-08-15

    Using the quantum fluid model for self-gravitating quantum plasmas with the Bernoulli pseudopotential method and taking into account the relativistic degeneracy effect, it is shown that gravity-induced large-amplitude density rarefaction solitons can exist in gravitationally balanced quantum plasmas. These nonlinear solitons are generated due to the force imbalance between the gravity and the quantum fluid pressure via local density perturbations, similar to that on shallow waters. It is found that both the fluid mass-density and the atomic-number of the constituent ions have significant effect on the amplitude and width of these solitonic profiles. Existence of a large-scale gravity-induced solitonic activities on neutron-star surface, for instance, can be a possible explanation for the recently proposed resonant shattering mechanism [D. Tsang et al., Phys. Rev. Lett. 108, 011102 (2012)] causing the intense short gamma ray burst phenomenon, in which release of ≃10{sup 46}–10{sup 47} ergs would be possible from the surface. The resonant shattering of the crust in a neutron star has been previously attributed to the crust-core interface mode and the tidal surface tensions. We believe that current model can be a more natural explanation for the energy liberation by solitonic activities on the neutron star surfaces, without a requirement for external mergers like other neutron stars or black holes for the crustal shatter.

  9. The Excellence of Einstein's Theory of Gravitation.

    ERIC Educational Resources Information Center

    Dirac, P. A. M.

    1979-01-01

    This article is adapted from a presentation made in 1978 at the symposium on the Impact of Modern Scientific Ideas on Society organized by UNESCO in Ulm, West Germany. It discusses Einstein's theory of gravitation and how it started a new line of activity for physicists. (HM)

  10. The generation of gravitational waves. III - Derivation of bremsstrahlung formulae

    NASA Technical Reports Server (NTRS)

    Kovacs, S. J.; Thorne, K. S.

    1977-01-01

    Formulas are derived describing the gravitational waves produced by a stellar encounter of the following type. The two stars have stationary (i.e., nonpulsating) nearly Newtonian structures with arbitrary relative masses; they fly past each other with an arbitrary relative velocity; and their impact parameter is sufficiently large that they gravitationally deflect each other through an angle that is small as compared with 90 deg.

  11. Speed, Acceleration, and Velocity: Level II, Unit 9, Lesson 1; Force, Mass, and Distance: Lesson 2; Types of Motion and Rest: Lesson 3; Electricity and Magnetism: Lesson 4; Electrical, Magnetic, and Gravitational Fields: Lesson 5; The Conservation and Conversion of Matter and Energy: Lesson 6; Simple Machines and Work: Lesson 7; Gas Laws: Lesson 8; Principles of Heat Engines: Lesson 9; Sound and Sound Waves: Lesson 10; Light Waves and Particles: Lesson 11; Program. A High.....

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…

  12. Physical Activity Mass Media Campaigns and Their Evaluation: A Systematic Review of the Literature 2003-2010

    ERIC Educational Resources Information Center

    Leavy, Justine E.; Bull, Fiona C.; Rosenberg, Michael; Bauman, Adrian

    2011-01-01

    Internationally, mass media campaigns to promote regular moderate-intensity physical activity have increased recently. Evidence of mass media campaign effectiveness exists in other health areas, however the evidence for physical activity is limited. The purpose was to systematically review the literature on physical activity mass media campaigns,…

  13. On the virialization of disk winds: Implications for the black hole mass estimates in active galactic nuclei

    SciTech Connect

    Kashi, Amit; Proga, Daniel; Nagamine, Kentaro; Greene, Jenny; Barth, Aaron J.

    2013-11-20

    Estimating the mass of a supermassive black hole in an active galactic nucleus usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems to be invalid in BLR models that consist of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, beyond a certain point, the wind material must be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray-heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we determine whether gravity governs the flow properties by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies. We find that in the first two models, the winds are non-virialized, whereas the two line-driven disk winds are virialized up to a relatively large distance. The line-driven winds are virialized because they accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For the two virialized winds, the so-called projected virial factor scales with inclination angle as 1/sin {sup 2} i. Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly when it conserves the gas specific angular momentum, as in the models considered here, than when it conserves the angular velocity, as in the so-called magneto-centrifugal winds.

  14. Testing gravity with gravitational wave source counts

    NASA Astrophysics Data System (ADS)

    Calabrese, Erminia; Battaglia, Nicholas; Spergel, David N.

    2016-08-01

    We show that the gravitational wave source counts distribution can test how gravitational radiation propagates on cosmological scales. This test does not require obtaining redshifts for the sources. If the signal-to-noise ratio (ρ) from a gravitational wave source is proportional to the strain then it falls as {R}-1, thus we expect the source counts to follow {{d}}{N}/{{d}}ρ \\propto {ρ }-4. However, if gravitational waves decay as they propagate or propagate into other dimensions, then there can be deviations from this generic prediction. We consider the possibility that the strain falls as {R}-γ , where γ =1 recovers the expected predictions in a Euclidean uniformly-filled Universe, and forecast the sensitivity of future observations to deviations from standard General Relativity. We first consider the case of few objects, seven sources, with a signal-to-noise from 8 to 24, and impose a lower limit on γ, finding γ \\gt 0.33 at 95% confidence level. The distribution of our simulated sample is very consistent with the distribution of the trigger events reported by Advanced LIGO. Future measurements will improve these constraints: with 100 events, we estimate that γ can be measured with an uncertainty of 15%. We generalize the formalism to account for a range of chirp masses and the possibility that the signal falls as {exp}(-R/{R}0)/{R}γ .

  15. Strong Gravitational Lensing: Relativity in Action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2009-05-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a "relativistic eclipse" as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated since: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications -- with both photometric and astrometric signatures of lensing being discussed -- will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  16. Strong gravitational lensing: relativity in action

    NASA Astrophysics Data System (ADS)

    Wambsganss, Joachim

    2010-01-01

    Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.

  17. The Scientific Potential of Space-Based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.

    The millihertz gravitational wave band can only be accessed with a space-based interferometer, but it is one of the richest in potential sources. Observations in this band have amazing scientific potential. The mergers between massive black holes with mass in the range 104-107M_{⊙}, which are expected to occur following the mergers of their host galaxies, produce strong millihertz gravitational radiation. Observations of these systems will trace the hierarchical assembly of structure in the Universe in a mass range that is very difficult to probe electromagnetically. Stellar mass compact objects falling into such black holes in the centres of galaxies generate detectable gravitational radiation for several years prior to the final plunge and merger with the central black hole. Measurements of these systems offer an unprecedented opportunity to probe the predictions of general relativity in the strong-field and dynamical regime. Millihertz gravitational waves are also generated by millions of ultra-compact binaries in the Milky Way, providing a new way to probe galactic stellar populations. ESA has recognised this great scientific potential by selecting The Gravitational Universe as its theme for the L3 large satellite mission, scheduled for launch in ˜ 2034. In this article we will review the likely sources for millihertz gravitational wave detectors and describe the wide applications that observations of these sources could have for astrophysics, cosmology and fundamental physics.

  18. Geodynamical evolution of the Southern Carpathians: inferences from computational models of lithospheric gravitational instability

    NASA Astrophysics Data System (ADS)

    Lorinczi, Piroska; Houseman, Gregory

    2010-05-01

    The Carpathians are a geologically young mountain chain which, together with the Alps and the Dinarides, surround the extensional Pannonian and Transylvanian basins of Central Europe. The tectonic evolution of the Alpine-Carpathian-Pannonian system was controlled by convergence between the Adriatic and European plates, by the extensional collapse of thickened Alpine crust and by the retreat of the Eastern Carpathians driven by either a brief episode of subduction or by gravitational instability of the continental lithospheric mantle. The Southeast corner of the Carpathians has been widely studied due to its strong seismic activity. The distribution and rate of moment release of this seismic activity provides convincing evidence of a mantle drip produced by gravitational instability of the lithospheric mantle developing beneath the Vrancea region now. The question of why gravitational instability is strongly evident beneath Vrancea and not elsewhere beneath the Southern Carpathians is unresolved. Geological and geophysical interpretations of the Southern Carpathians emphasise the transcurrent deformation that has dominated recent tectonic evolution of this mountain belt. We use computational models of gravitational instability in order to address the question of why the instability appears to have developed strongly only at the eastern end of this mountain chain. We use a parallelised 3D Lagrangean-frame finite deformation algorithm, which solves the equations of momentum and mass conservation in an incompressible viscous fluid, assuming a non-linear power-law that relates deviatoric stress and strain-rate. We consider a gravitationally unstable system, with a dense mantle lithosphere overlying a less dense asthenosphere, subject to boundary conditions which simulate the combination of shear and convergence that are thought to have governed the evolution of the South Carpathians. This program (OREGANO) allows 3D viscous flow fields to be computed for spatially

  19. Gravitational effects on electrochemical batteries

    NASA Technical Reports Server (NTRS)

    Meredith, R. E.; Juvinall, G. L.; Uchiyama, A. A.

    1972-01-01

    The existing work on gravitational effects on electrochemical batteries is summarized, certain conclusions are drawn, and recommendations are made for future activities in this field. The effects of sustained high-G environments on cycle silver-zinc and nickel-cadmium cells have been evaluated over four complete cycles in the region of 10 to 75 G. Although no effects on high current discharge performances or on ampere-hour capacity were noted, severe zinc migration and sloughing of active material from the zinc electrode were observed. This latter effect constitutes real damage, and over a long period of time would result in loss of capacity. It is recommended that a zero-G battery experiment be implemented. Both an orbiting satellite and a sounding rocket approach are being considered.

  20. Gravitational coset models

    NASA Astrophysics Data System (ADS)

    Cook, Paul P.; Fleming, Michael

    2014-07-01

    The algebra A {/D - 3 + + +} dimensionally reduces to the E D-1 symmetry algebra of (12 - D)-dimensional supergravity. An infinite set of five-dimensional gravitational objects embedded in D-dimensions is constructed by identifying the null geodesic motion on cosets embedded in the generalised Kac-Moody algebra A {/D - 3 + + +}. By analogy with super-gravity these are bound states of dual gravitons. The metric interpolates continuously between exotic gravitational solutions generated by the action of an affine sub-group. We investigate mixed-symmetry fields in the brane sigma model, identify actions for the full interpolating bound state and investigate the dualisation of the bound state to a solution of the Einstein-Hilbert action via the Hodge dual on multiforms. We conclude that the Hodge dual is insufficient to reconstruct solutions to the Einstein-Hilbert action from mixed-symmetry tensors.

  1. Self-gravitating skyrmions

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; Canfora, Fabrizio; Zanelli, Jorge

    2016-05-01

    A self-gravitating Skyrmion is an analytic and globally regular solution of the Einstein-Skyrme system with nonvanishing topological charge. The spacetime is the direct product R × S3 and the Skyrmion is the self-gravitating generalization of the static hedgehog solution of Manton and Ruback. This solution can be promoted to a dynamical one in which the spacetime is a cosmology of the Bianchi type-IX and, through an analytic continuation, it can also be turned into a transversable asymptotically AdS Lorentzian wormhole. The stress-energy of this wormhole satisfies physically realistic energy conditions and the only “exotic matter” required by it is a negative cosmological constant.

  2. Linked Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Thompson, Amy; Swearngin, Joseph; Wickes, Alexander; Willem Dalhuisen, Jan; Bouwmeester, Dirk

    2013-04-01

    The electromagnetic knot is a topologically nontrivial solution to the vacuum Maxwell equations with the property that any two field lines belonging to either the electric, magnetic, or Poynting vector fields are closed and linked exactly once [1]. The relationship between the vacuum Maxwell and linearized Einstein equations, as expressed in the form of the spin-N massless field equations, suggests that gravitational radiation possesses analogous topologically nontrivial field configurations. Using twistor methods we find the analogous spin-2 solutions of Petrov types N, D, and III. Aided by the concept of tendex and vortex lines as recently developed for the physical interpretation of solutions in general relativity [2], we investigate the physical properties of these knotted gravitational fields by characterizing the topology of their associated tendex and vortex lines.[4pt] [1] Ranada, A. F. and Trueba, J. L., Mod. Nonlinear Opt. III, 119, 197 (2002).[2] Nichols, D. A., et al., Phys. Rev. D, 84 (2011).

  3. The gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.

    1992-01-01

    Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.

  4. Gravitational wave astronomy.

    NASA Astrophysics Data System (ADS)

    Finn, L. S.

    Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.

  5. Spacetime and gravitation.

    NASA Astrophysics Data System (ADS)

    Kopczyński, W.; Trautman, A.

    This book is a revised translation of the Polish original "Czasoprzestrzeń i grawitacja", Warszawa (Poland), Państwowe Wydawnictwo Naukowe, 1984. Ideas about space and time are at the root of one's understanding of nature, both at the intuitive level of everyday experience and in the framework of sophisticated physical theories. These ideas have led to the development of geometry and its applications to physics. The contemporary physical theory of space and time, including its extention to the phenomena of gravitation, is Einstein's theory of relativity. The book is a short introduction to this theory. A great deal of emphasis is given to the geometrical aspects of relativity theory and its comparison with the Newtonian view of the world. There are short chapters on the origins of Einstein's theory, gravitational waves, cosmology, spinors and the Einstein-Cartan theory.

  6. University Students Meeting the Recommended Standards of Physical Activity and Body Mass Index

    ERIC Educational Resources Information Center

    Deng, Xiaofen; Castelli, Darla; Castro-Pinero, Jose; Guan, Hongwei

    2011-01-01

    This study investigated student physical activity (PA) and body mass index (BMI) in relation to the "Healthy Campus 2010" objectives set by the American College Health Association in 2002. Students (N = 1125) at a U.S. southern state university participated in the study. The percentages of students who were physically active and whose BMI were…

  7. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity

    PubMed Central

    Kalb, Suzanne R.; Boyer, Anne E.; Barr, John R.

    2015-01-01

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A–G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin. PMID:26404376

  8. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    PubMed

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-08-31

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin.

  9. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    PubMed

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-09-01

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin. PMID:26404376

  10. Quasars and gravitational lenses.

    PubMed

    Turner, E L

    1984-03-23

    Despite the expenditure of large amounts of telescope time and other resources, most of the fundamental questions concerning quasi-stellar objects (quasars) remain unanswered. A complex phenomenology of radio, infrared, optical, and x-ray properties has accumulated but has not yielded even a satisfactory classification system. The large red shifts (distances) of quasars make them very valuable tools for studying cosmology and the properties of intervening matter in the Universe through observations of absorption lines and gravitational lenses.

  11. Undulator Gravitational Deflection

    SciTech Connect

    Bowden, G.

    2005-01-31

    This note estimates distortions imposed by gravity on LCLS undulator strong-backs. Because of the strongback's asymmetric cross section, gravitational forces cause both torsion as well as simple bending. The superposition of these two effects yields a 4.4 {micro}m maximum deflection and a 0.16 milli radian rotation of the undulator axis. The choice of titanium is compared to aluminum.

  12. Bayesian analysis on gravitational waves and exoplanets

    NASA Astrophysics Data System (ADS)

    Deng, Xihao

    Attempts to detect gravitational waves using a pulsar timing array (PTA), i.e., a collection of pulsars in our Galaxy, have become more organized over the last several years. PTAs act to detect gravitational waves generated from very distant sources by observing the small and correlated effect the waves have on pulse arrival times at the Earth. In this thesis, I present advanced Bayesian analysis methods that can be used to search for gravitational waves in pulsar timing data. These methods were also applied to analyze a set of radial velocity (RV) data collected by the Hobby- Eberly Telescope on observing a K0 giant star. They confirmed the presence of two Jupiter mass planets around a K0 giant star and also characterized the stellar p-mode oscillation. The first part of the thesis investigates the effect of wavefront curvature on a pulsar's response to a gravitational wave. In it we show that we can assume the gravitational wave phasefront is planar across the array only if the source luminosity distance " 2piL2/lambda, where L is the pulsar distance to the Earth (˜ kpc) and lambda is the radiation wavelength (˜ pc) in the PTA waveband. Correspondingly, for a point gravitational wave source closer than ˜ 100 Mpc, we should take into account the effect of wavefront curvature across the pulsar-Earth line of sight, which depends on the luminosity distance to the source, when evaluating the pulsar timing response. As a consequence, if a PTA can detect a gravitational wave from a source closer than ˜ 100 Mpc, the effects of wavefront curvature on the response allows us to determine the source luminosity distance. The second and third parts of the thesis propose a new analysis method based on Bayesian nonparametric regression to search for gravitational wave bursts and a gravitational wave background in PTA data. Unlike the conventional Bayesian analysis that introduces a signal model with a fixed number of parameters, Bayesian nonparametric regression sets

  13. Influence of Helium in Gravitational Instabilities

    NASA Astrophysics Data System (ADS)

    Corona-Galindo, M. G.; Cardona, O.; Klapp, J.

    1990-11-01

    RESUMEN. Hemos analizado los modos hid rod inamicos de un modelo de fluido de dos componentes (hidr6geno y helio), y hemos obtenido la condici6n de inestabilidad para masas mayores que 1.39 veces la bien conocida masa dejeans. ABSTRACT, We have analysed the hydrodynamical modes of a two component fluid model (hydrogen and helium), and we have obtained the instability condition for masses greater than 1.39 times the well-known Jeans mass. K words: COSMOLOGY - GRAVITATION - INSTABILITIES

  14. Mass transfer and adsorption equilibrium for low volatility alkanes in BPL activated carbon.

    PubMed

    Wang, Yu; Mahle, John J; Furtado, Amanda M B; Glover, T Grant; Buchanan, James H; Peterson, Gregory W; LeVan, M Douglas

    2013-03-01

    The structure of a molecule and its concentration can strongly influence diffusional properties for transport in nanoporous materials. We study mass transfer of alkanes in BPL activated carbon using the concentration-swing frequency response method, which can easily discriminate among mass transfer mechanisms. We measure concentration-dependent diffusion rates for n-hexane, n-octane, n-decane, 2,7-dimethyloctane, and cyclodecane, which have different carbon numbers and geometries: straight chain, branched chain, and cyclic. Micropore diffusion is determined to be the controlling mass transfer resistance except at low relative saturation for n-decane, where an external mass transfer resistance also becomes important, showing that the controlling mass transfer mechanism can change with system concentration. Micropore diffusion coefficients are found to be strongly concentration dependent. Adsorption isotherm slopes obtained from measured isotherms, the concentration-swing frequency response method, and a predictive method show reasonably good agreement.

  15. Gravitational Reference Sensor Technology Development at the University of Florida

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Chiani, Giacomo; Mueller, Guido; Shelley, Ryan

    2013-04-01

    The Laser Interferometer Space Antenna (LISA), the most mature concept for detecting gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million kilometer-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics. A single TM together with its protective housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3 x 10-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2014. In order to increase U.S. competency in GRS technologies, various research activities at the University of Florida (UF) have been initiated. The first is the development of a nearly thermally noise limited torsion pendulum for testing the GRS and for understanding the dozens of acceleration noise sources that affect the performance of the LISA GRS. The team at UF also collaborates with Stanford and NASA Ames on a small satellite mission that will test the performance of UV LEDs for ac charge control in space. This presentation will describe the design of the GRS testing facility at UF, the status of the UV LED small satellite mission, and plans for UF participation in the LISA Pathfinder mission.

  16. Active mass damper system for high-rise buildings using neural oscillator and position controller considering stroke limitation of the auxiliary mass

    NASA Astrophysics Data System (ADS)

    Hongu, J.; Iba, D.; Nakamura, M.; Moriwaki, I.

    2016-04-01

    This paper proposes a problem-solving method for the stroke limitation problem, which is related to auxiliary masses of active mass damper systems for high-rise buildings. The proposed method is used in a new simple control system for the active mass dampers mimicking the motion of bipedal mammals, which has a neural oscillator synchronizing with the acceleration response of structures and a position controller. In the system, the travel distance and direction of the auxiliary mass of the active mass damper is determined by reference to the output of the neural oscillator, and then, the auxiliary mass is transferred to the decided location by using a PID controller. The one of the purpose of the previouslyproposed system is stroke restriction problem avoidance of the auxiliary mass during large earthquakes by the determination of the desired value within the stroke limitation of the auxiliary mass. However, only applying the limited desired value could not rigorously restrict the auxiliary mass within the limitation, because the excessive inertia force except for the control force produced by the position controller affected on the motion of the auxiliary mass. In order to eliminate the effect on the auxiliary mass by the structural absolute acceleration, a cancellation method is introduced by adding a term to the control force of the position controller. We first develop the previously-proposed system for the active mass damper and the additional term for cancellation, and verity through numerical experiments that the new system is able to operate the auxiliary mass within the restriction during large earthquakes. Based on the comparison of the proposed system with the LQ system, a conclusion was drawn regarding which the proposed neuronal system with the additional term appears to be able to limit the stroke of the auxiliary mass of the AMD.

  17. More Chemistry in a Soda Bottle: A Conservation of Mass Activity

    NASA Astrophysics Data System (ADS)

    Duffy, Daniel Q.; Shaw, Stephanie A.; Bare, William O.; Goldsby, Kenneth A.

    1995-08-01

    A simple activity designed to illustrate conservation of mass is reported. The activity uses a two-liter soda bottle to contain the products of a gas-evolving reaction. While any number of gas-evolving reactions could be used in this activity, a specific procedure for vinegar and baking soda is given since these materials present nominal hazards and are readily available to K-12 teachers.

  18. Parallels between nutrition and physical activity: research questions in development of peak bone mass.

    PubMed

    Weaver, Connie M

    2015-06-01

    Lifestyle choices are attributed to 40% to 60% of adult peak bone mass. The National Osteoporosis Foundation (NOF) sought to update its 2000 consensus statement on peak bone mass and partnered with the American Society for Nutrition, which, in turn, charged a 9-member writing committee with using a systematic review approach to update the previous NOF guidelines. PubMed searches of the scientific literature from January 2000 through December 2014 were conducted on all relevant lifestyle choice factors and their relation to increasing bone mass during childhood and adolescence. The writing group concluded that there is strong evidence for the benefits of physical activity and calcium intake on bone mass accretion, moderately strong evidence for the benefits of vitamin D and dairy intake on bone mass and for physical activity on bone structure, and weaker evidence for other lifestyle choices. There were parallels and synergies between the benefits of diet and exercise on development of peak bone mass, but the type of evidence and public policy recommendations in the two disciplines differ in several important ways. Nutrition uses a more reductionist approach in contrast to physical activity, which uses a more global approach. This leads to differences in research priorities in the 2 disciplines. The disciplines can advance more quickly through collaboration and adoption of the best approaches from each other. PMID:25965111

  19. Cosmology without Einstein's assumption that inertial mass produces gravity

    NASA Astrophysics Data System (ADS)

    Ellis, Homer G.

    2015-06-01

    Giving up Einstein's assumption, implicit in his 1916 field equations, that inertial mass, even in its appearance as energy, is equivalent to active gravitational mass and therefore is a source of gravity allows revising the field equations to a form in which a positive cosmological constant is seen to (mis)represent a uniform negative net mass density of gravitationally attractive and gravitationally repulsive matter. Field equations with both positive and negative active gravitational mass densities of both primordial and continuously created matter, incorporated along with two scalar fields to 'relax the constraints' on the spacetime geometry, yield cosmological solutions that exhibit inflation, deceleration, coasting, acceleration, and a 'big bounce' instead of a 'big bang,' and provide good fits to a Hubble diagram of Type Ia supernovae data. The repulsive matter is identified as the back sides of the 'drainholes' introduced by the author in 1973 as solutions of those same field equations. Drainholes (prototypical examples of 'traversable wormholes') are topological tunnels in space which gravitationally attract on their front, entrance sides, and repel more strongly on their back, exit sides. The front sides serve both as the gravitating cores of the visible, baryonic particles of primordial matter and as the continuously created, invisible particles of the 'dark matter' needed to hold together the large-scale structures seen in the universe; the back sides serve as the misnamed 'dark energy' driving the current acceleration of the expansion of the universe. Formation of cosmic voids, walls, filaments and nodes is attributed to expulsion of drainhole entrances from regions populated by drainhole exits and accumulation of the entrances on boundaries separating those regions.

  20. eLISA and the Gravitational Universe

    NASA Astrophysics Data System (ADS)

    Danzmann, Karsten

    2015-08-01

    The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.

  1. Collective Baryon Decay and Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Chapline, George; Barbieri, James

    2014-01-01

    While it is widely believed that the gravitational collapse of a sufficiently large mass will lead to a density singularity and an event horizon, we propose that this never happens when quantum effects are taken into account. In particular, we propose that when the conditions become ripe for the formation of a trapped surface, a quantum critical firewall sweeps over the collapsing body, transforming the nucleons in the collapsing matter into a lepton/photon gas together with droplets of a positive vacuum energy. This will happen regardless of the matter density at the time a trapped surface starts to form, and as a result, we predict that at least in all cases of gravitational collapse involving ordinary matter, a large fraction of the rest mass of the collapsing matter will be converted into a burst of neutrinos and γ-rays. We predict that the peak luminosity of these bursts is only weakly dependent on the mass of the collapsing object, and on the order of (ɛq/mPc2)1/4c5/G where ɛq is the mean energy of a nucleon parton and mP is the Planck mass. The duration of the bursts will depend on the mass of the collapsing object; in the case of stellar core collapse, we predict that the duration of both the neutrino and γ-ray bursts will be on the order of 10s.

  2. CONNECTING FLARES AND TRANSIENT MASS-LOSS EVENTS IN MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Osten, Rachel A.; Wolk, Scott J.

    2015-08-10

    We explore the ramification of associating the energetics of extreme magnetic reconnection events with transient mass-loss in a stellar analogy with solar eruptive events. We establish energy partitions relative to the total bolometric radiated flare energy for different observed components of stellar flares and show that there is rough agreement for these values with solar flares. We apply an equipartition between the bolometric radiated flare energy and kinetic energy in an accompanying mass ejection, seen in solar eruptive events and expected from reconnection. This allows an integrated flare rate in a particular waveband to be used to estimate the amount of associated transient mass-loss. This approach is supported by a good correspondence between observational flare signatures on high flaring rate stars and the Sun, which suggests a common physical origin. If the frequent and extreme flares that young solar-like stars and low-mass stars experience are accompanied by transient mass-loss in the form of coronal mass ejections, then the cumulative effect of this mass-loss could be large. We find that for young solar-like stars and active M dwarfs, the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.

  3. Nuclear and gravitational energies in stars

    SciTech Connect

    Meynet, Georges; Ekström, Sylvia; Courvoisier, Thierry

    2014-05-09

    The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M < 8 M{sub ⊙}) extract roughly 90 times more energy from their nuclear reservoir than from their gravitational one, while massive stars (M > 8 M{sub ⊙}), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

  4. The gravitational analog of Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Zile, Daniel; Overduin, James

    2015-04-01

    Michael Faraday, the discoverer of electromagnetic induction, was convinced that there must also be a gravitational analog of this law, and he carried out drop-tower experiments in 1849 to look for the electric current induced in a coil by changes in gravitational flux through the coil. This work, now little remembered, was in some ways the first investigation of what we would now call a unified-field theory. We revisit Faraday's experiments in the light of current knowledge and ask what might be learned if they were to be performed today. We then review the gravitational analog for Faraday's law that arises within the vector (or gravito-electromagnetic) approximation to Einstein's theory of general relativity in the weak-field, low-velocity limit. This law relates spinning masses and induced ``mass currents'' rather than spinning charges and electric currents, but is otherwise remarkably similar to its electromagnetic counterpart. The predicted effects are completely unobservable in everyday settings like those envisioned by Faraday, but are thought to be relevant in astrophysical contexts like the accretion disks around collapsed stars, thus bearing out Faraday's remarkable intuition. Undergraduate student.

  5. Gravitational waves in viable f(R) models

    SciTech Connect

    Yang, Louis; Lee, Chung-Chi; Geng, Chao-Qiang E-mail: geng@phys.nthu.edu.tw

    2011-08-01

    We study gravitational waves in viable f(R) theories under a non-zero background curvature. In general, an f(R) theory contains an extra scalar degree of freedom corresponding to a massive scalar mode of gravitational wave. For viable f(R) models, since there always exits a de-Sitter point where the background curvature in vacuum is non-zero, the mass squared of the scalar mode of gravitational wave is about the de-Sitter point curvature R{sub d} ∼ 10{sup −66}eV{sup 2}. We illustrate our results in two types of viable f(R) models: the exponential gravity and Starobinsky models. In both cases, the mass will be in the order of 10{sup −33}eV when it propagates in vacuum. However, in the presence of matter density in galaxy, the scalar mode can be heavy. Explicitly, in the exponential gravity model, the mass becomes almost infinity, implying the disappearance of the scalar mode of gravitational wave, while the Starobinsky model gives the lowest mass around 10{sup −24}eV, corresponding to the lowest frequency of 10{sup −9} Hz, which may be detected by the current and future gravitational wave probes, such as LISA and ASTROD-GW.

  6. Multiplane gravitational lensing. III. Upper bound on number of images

    NASA Astrophysics Data System (ADS)

    Petters, A. O.

    1997-03-01

    The total number of lensed images of a light source undergoing gravitational lensing varies as the source traverses a caustic network. It is rigorously shown that for a pointlike light source not on any caustic, a three-dimensional distribution of g point masses on g lens planes creates at most 2(22(g-1)-1) lensed images of the source (g⩾2). This complements previous work [Paper I, J. Math. Phys. 36, 4263 (1995)] that showed at least 2g lensed images occur. Application of the upper bound to the global geometry of caustics is also presented. Our methods are based on a complex formulation of point-mass gravitational lensing and techniques from the theory of resultants. The latter yields a new approach to studying upper bounds on number of lensed images due to point-mass gravitational lens systems.

  7. Images of gravitational and magnetic phenomena derived from two-dimensional back-projection Doppler tomography of interacting binary stars

    SciTech Connect

    Richards, Mercedes T.; Cocking, Alexander S.; Fisher, John G.; Conover, Marshall J. E-mail: asc5097@psu.edu

    2014-11-10

    We have used two-dimensional back-projection Doppler tomography as a tool to examine the influence of gravitational and magnetic phenomena in interacting binaries that undergo mass transfer from a magnetically active star onto a non-magnetic main-sequence star. This multitiered study of over 1300 time-resolved spectra of 13 Algol binaries involved calculations of the predicted dynamical behavior of the gravitational flow and the dynamics at the impact site, analysis of the velocity images constructed from tomography, and the influence on the tomograms of orbital inclination, systemic velocity, orbital coverage, and shadowing. The Hα tomograms revealed eight sources: chromospheric emission, a gas stream along the gravitational trajectory, a star-stream impact region, a bulge of absorption or emission around the mass-gaining star, a Keplerian accretion disk, an absorption zone associated with hotter gas, a disk-stream impact region, and a hot spot where the stream strikes the edge of a disk. We described several methods used to extract the physical properties of the emission sources directly from the velocity images, including S-wave analysis, the creation of simulated velocity tomograms from hydrodynamic simulations, and the use of synthetic spectra with tomography to sequentially extract the separate sources of emission from the velocity image. In summary, the tomography images have revealed results that cannot be explained solely by gravitational effects: chromospheric emission moving with the mass-losing star, a gas stream deflected from the gravitational trajectory, and alternating behavior between stream state and disk state. Our results demonstrate that magnetic effects cannot be ignored in these interacting binaries.

  8. Gravitational Waves from Core Collapse Supernovae

    SciTech Connect

    Yakunin, Konstantin; Marronetti, Pedro; Mezzacappa, Anthony; Bruenn, S. W.; Lee, Ching-Tsai; Chertkow, Merek A; Hix, William Raphael; Blondin, J. M.; Lentz, Eric J; Messer, Bronson; Yoshida, S.

    2010-01-01

    We present the gravitational wave signatures for a suite of axisymmetric core collapse supernova models with progenitor masses between 12 and 25 M{sub odot}. These models are distinguished by the fact that they explode and contain essential physics (in particular, multi-frequency neutrino transport and general relativity) needed for a more realistic description. Thus, we are able to compute complete waveforms (i.e. through explosion) based on non-parameterized, first-principles models. This is essential if the waveform amplitudes and time scales are to be computed more precisely. Fourier decomposition shows that the gravitational wave signals we predict should be observable by AdvLIGO across the range of progenitors considered here. The fundamental limitation of these models is in their imposition of axisymmetry. Further progress will require counterpart three-dimensional models.

  9. Quantum Emulation of Gravitational Waves

    PubMed Central

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-01-01

    Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801

  10. Quantum Emulation of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-01

    Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  11. Quantum Emulation of Gravitational Waves.

    PubMed

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  12. Quantum Emulation of Gravitational Waves.

    PubMed

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-01-01

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801

  13. Gravitational-Wave Detectors: First, Second, and Third Generation

    SciTech Connect

    Mandic, Vuk

    2011-11-02

    Gravitational waves are predicted by the general theory of relativity to be produced by accelerating mass systems with quadrupole (or higher) moment. The amplitude of gravitational waves is expected to be very small, so the best chance of their direct detection lies with some of the most energetic events in the universe, such as mergers of two neutron stars or black holes, supernova explosions, or the Big Bang itself. Over the past decade several detectors have been built to search for such gravitational-wave sources. This talk will review the current status of these detectors, as well as some of their most recent results, and will cover plans and expectations for the future generations of gravitational wave detectors.

  14. Constraint on ghost-free bigravity from gravitational Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Kimura, Rampei; Tanaka, Takahiro; Yamamoto, Kazuhiro; Yamashita, Yasuho

    2016-09-01

    We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the ghost-free bigravity model. In this model, because of the modification of dispersion relations, each polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process of the gravitational Cherenkov radiation to occur and estimate the energy emission rate for each polarization mode. We found that the gravitational Cherenkov radiation emitted even from an ultrahigh energy cosmic ray is sufficiently suppressed for the graviton's effective mass less than 100 eV, and the bigravity model with dark matter coupled to the hidden metric is therefore consistent with observations of high energy cosmic rays.

  15. Two Timescale Approximation Applied to Gravitational Waves from Eccentric EMRIs

    NASA Astrophysics Data System (ADS)

    Moxon, Jordan; Flanagan, Eanna; Hinderer, Tanja; Pound, Adam

    2016-03-01

    Gravitational-wave driven inspirals of compact objects into massive black holes (Extreme Mass Ratio Inspirals - EMRIs) form an interesting, long-lived signal for future space-based gravitational wave detectors. Accurate signal predictions will be necessary to take full advantage of matched filtering techniques, motivating the development of a calculational technique for deriving the gravitational wave signal to good approximation throughout the inspiral. We report on recent work on developing the two-timescale technique with the goal of predicting waveforms from eccentric equatorial systems to subleading (post-adiabatic) order in the phase, building on recent work by Pound in the scalar case. The computation requires us to understand the dissipative component of the second-order self force. It also demands careful consideration of how the two timescale (near-zone) approximation should match with the post-Minkowski approximation of the gravitational waves at great distances.

  16. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    ScienceCinema

    None

    2016-07-12

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  17. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    SciTech Connect

    2010-04-29

    A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  18. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    SciTech Connect

    Datta, T.; Yin Ming; Vargas, Jose

    2004-02-04

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kaehler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  19. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    NASA Astrophysics Data System (ADS)

    Datta, T.; Yin, Ming; Vargas, Jose

    2004-02-01

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kähler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  20. Gravitational lenses and dark matter - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1987-01-01

    Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.

  1. Gravitational lensing statistics of amplified supernovae

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.; Wagoner, Robert V.; Schneider, P.

    1988-01-01

    Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.

  2. Gravitational Physics Research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  3. A large difference in the progenitor masses of active and passive galaxies in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Clauwens, Bart; Franx, Marijn; Schaye, Joop

    2016-11-01

    Cumulative number density matching of galaxies is a method to observationally connect descendent galaxies to their typical main progenitors at higher redshifts and thereby to assess the evolution of galaxy properties. The accuracy of this method is limited due to galaxy merging and scatter in the stellar mass growth history of individual galaxies. Behroozi et al. (2013) have introduced a refinement of the method, based on abundance matching of observed galaxies to the Bolshoi dark-matter-only simulation. The EAGLE cosmological hydro-simulation is well suited to test this method, because it reproduces the observed evolution of the galaxy stellar mass function and the passive fraction. We find agreement with the Behroozi et al. (2013) method for the complete sample of main progenitors of z = 0 galaxies, but we also find a strong dependence on the current star formation rate. Passive galaxies with a stellar mass up to 10^10.75 Msun have a completely different median mass history than active galaxies of the same mass. This difference persists if we only select central galaxies. This means that the cumulative number density method should be applied separately to active and passive galaxies. Even then, the typical main progenitor of a z = 0 galaxy already spans two orders of magnitude in stellar mass at z = 2.

  4. Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore; Reale, Fabio; Peres, Giovanni; Mignone, Andrea

    2014-11-01

    According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a signicant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results obtained in the field and the future perspectives.

  5. Increased Cloud Activation Potential of Secondary Organic Aerosol for Atmospheric Mass Loadings

    SciTech Connect

    King, Stephanie M.; Rosenoern, Thomas; Shilling, John E.; Chen, Qi; Martin, Scot T.

    2009-05-01

    The effect of organic particle mass loading from 1 to ≥100 μg m-3 on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m-3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m-3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. Of possible changes in surface tension, effective molecular weight, and effective density, a sensitivity analysis implicated a decrease of up to 10% in surface tension at low mass loadings as the plausible dominant mechanism for the observed increase in CCN activity.

  6. Regular gravitational lagrangians

    NASA Astrophysics Data System (ADS)

    Dragon, Norbert

    1992-02-01

    The Einstein action with vanishing cosmological constant is for appropriate field content the unique local action which is regular at the fixed point of affine coordinate transformations. Imposing this regularity requirement one excludes also Wess-Zumino counterterms which trade gravitational anomalies for Lorentz anomalies. One has to expect dilatational and SL (D) anomalies. If these anomalies are absent and if the regularity of the quantum vertex functional can be controlled then Einstein gravity is renormalizable. On leave of absence from Institut für Theoretische Physik, Universität Hannover, W-3000 Hannover 1, FRG.

  7. A MASSive laboratory tour. An interactive mass spectrometry outreach activity for children.

    PubMed

    Jungmann, Julia H; Mascini, Nadine E; Kiss, Andras; Smith, Donald F; Klinkert, Ivo; Eijkel, Gert B; Duursma, Marc C; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M A

    2013-07-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips. PMID:23681852

  8. Active galactic nucleus black hole mass estimates in the era of time domain astronomy

    SciTech Connect

    Kelly, Brandon C.; Treu, Tommaso; Pancoast, Anna; Malkan, Matthew; Woo, Jong-Hak

    2013-12-20

    We investigate the dependence of the normalization of the high-frequency part of the X-ray and optical power spectral densities (PSDs) on black hole mass for a sample of 39 active galactic nuclei (AGNs) with black hole masses estimated from reverberation mapping or dynamical modeling. We obtained new Swift observations of PG 1426+015, which has the largest estimated black hole mass of the AGNs in our sample. We develop a novel statistical method to estimate the PSD from a light curve of photon counts with arbitrary sampling, eliminating the need to bin a light curve to achieve Gaussian statistics, and we use this technique to estimate the X-ray variability parameters for the faint AGNs in our sample. We find that the normalization of the high-frequency X-ray PSD is inversely proportional to black hole mass. We discuss how to use this scaling relationship to obtain black hole mass estimates from the short timescale X-ray variability amplitude with precision ∼0.38 dex. The amplitude of optical variability on timescales of days is also anticorrelated with black hole mass, but with larger scatter. Instead, the optical variability amplitude exhibits the strongest anticorrelation with luminosity. We conclude with a discussion of the implications of our results for estimating black hole mass from the amplitude of AGN variability.

  9. A MASSive Laboratory Tour. An Interactive Mass Spectrometry Outreach Activity for Children

    NASA Astrophysics Data System (ADS)

    Jungmann, Julia H.; Mascini, Nadine E.; Kiss, Andras; Smith, Donald F.; Klinkert, Ivo; Eijkel, Gert B.; Duursma, Marc C.; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M. A.

    2013-07-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips.

  10. A MASSive laboratory tour. An interactive mass spectrometry outreach activity for children.

    PubMed

    Jungmann, Julia H; Mascini, Nadine E; Kiss, Andras; Smith, Donald F; Klinkert, Ivo; Eijkel, Gert B; Duursma, Marc C; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M A

    2013-07-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips.

  11. Mass spectrometry study of N-alkylbenzenesulfonamides with potential antagonist activity to potassium channels.

    PubMed

    Martins, Carina C; Bassetto, Carlos A Zanutto; Santos, Jandyson M; Eberlin, Marcos N; Magalhães, Alvicler; Varanda, Wamberto; Gonzalez, Eduardo R Perez

    2016-02-01

    Herein, we report the synthesis and mass spectrometry studies of several N-alkylbenzenesulfonamides structurally related to sulfanilic acid. The compounds were synthesized using a modified Schotten-Baumann reaction coupled with Meisenheimer arylation. Sequential mass spectrometry by negative mode electrospray ionization (ESI(-)-MS/MS) showed the formation of sulfoxylate anion (m/z 65) observed in the mass spectrum of p-chloro-N-alkylbenzenesulfonamides. Investigation of the unexpected loss of two water molecules, as observed by electron ionization mass spectrometry (EI-MS) analysis of p-(N-alkyl)lactam sulfonamides, led to the proposal of corresponding fragmentation pathways. These compounds showed loss of neutral iminosulfane dioxide molecule (M-79) with formation of ions observed at m/z 344 and 377. These ions were formed by rearrangement on ESI(+)-MS/MS analysis. Some of the molecules showed antagonistic activity against Kv3.1 voltage-gated potassium channels.

  12. Analytic Models of Plausible Gravitational Lens Potentials

    SciTech Connect

    Baltz, Edward A.; Marshall, Phil; Oguri, Masamune

    2007-05-04

    Gravitational lenses on galaxy scales are plausibly modeled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sersic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasizing that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential.We also provide analytic formulae for the lens potentials of Sersic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modeled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses.

  13. Gravitational radiation, inspiraling binaries, and cosmology

    NASA Technical Reports Server (NTRS)

    Chernoff, David F.; Finn, Lee S.

    1993-01-01

    We show how to measure cosmological parameters using observations of inspiraling binary neutron star or black hole systems in one or more gravitational wave detectors. To illustrate, we focus on the case of fixed mass binary systems observed in a single Laser Interferometer Gravitational-wave Observatory (LIGO)-like detector. Using realistic detector noise estimates, we characterize the rate of detections as a function of a threshold SNR Rho(0), H0, and the binary 'chirp' mass. For Rho(0) = 8, H0 = 100 km/s/Mpc, and 1.4 solar mass neutron star binaries, the sample has a median redshift of 0.22. Under the same assumptions but independent of H0, a conservative rate density of coalescing binaries implies LIGO will observe about 50/yr binary inspiral events. The precision with which H0 and the deceleration parameter q0 may be determined depends on the number of observed inspirals. For fixed mass binary systems, about 100 observations with Rho(0) = 10 in the LIGO will give H0 to 10 percent in an Einstein-DeSitter cosmology, and 3000 will give q0 to 20 percent. For the conservative rate density of coalescing binaries, 100 detections with Rho(0) = 10 will require about 4 yrs.

  14. Gravitational Interactions of White Dwarf Double Stars

    NASA Astrophysics Data System (ADS)

    McKeough, James; Robinson, Chloe; Ortiz, Bridget; Hira, Ajit

    2016-03-01

    In the light of the possible role of White Dwarf stars as progenitors of Type Ia supernovas, we present computational simulations of some astrophysical phenomena associated with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.5 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We will extend our computational studies to blue giant and red giant stars in the future. Funding from National Science Foundation.

  15. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss

    USGS Publications Warehouse

    Sinsabaugh, R. L.; Carreiro, M.M.; Repert, D.A.

    2002-01-01

    Decomposition of plant material is a complex process that requires interaction among a diversity of microorganisms whose presence and activity is subject to regulation by a wide range of environmental factors. Analysis of extracellular enzyme activity (EEA) provides a way to relate the functional organization of microdecomposer communities to environmental variables. In this study, we examined EEA in relation to litter composition and nitrogen deposition. Mesh bags containing senescent leaves of Quercus borealis (red oak), Acer rubrum (red maple) and Cornus florida (flowering dogwood) were placed on forest floor plots in southeastern New York. One-third of the plots were sprayed monthly with distilled water. The other plots were sprayed monthly with NH4NO3 solution at dose rates equivalent to 2 or 8 g N m-2 y-1. Mass loss, litter composition, fungal mass, and the activities of eight enzymes were measured on 13 dates for each litter type. Dogwood was followed for one year, maple for two, oak for three, For each litter type and treatment, enzymatic turnover activities were calculated from regressions of LN (%mass remaining) vs. cumulative activity. The decomposition of dogwood litter was more efficient than that of maple and oak. Maple litter had the lowest fungal mass and required the most enzymatic work to decompose, even though its mass loss rate was twice that of oak. Across litter types, N amendment reduced apparent enzymatic efficiencies and shifted EEA away from N acquisition and toward P acquisition, and away from polyphenol oxidation and toward polysaccharide hydrolysis. The effect of these shifts on decomposition rate varied with litter composition: dogwood was stimulated, oak was inhibited and maple showed mixed effects. The results show that relatively small shifts in the activity of one or two critical enzymes can significantly alter decomposition rates.

  16. EDITORIAL: Focus on Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Jain, Bhuvnesh

    2007-11-01

    Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies

  17. Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings

    NASA Astrophysics Data System (ADS)

    King, S. M.; Rosenoern, T.; Shilling, J. E.; Chen, Q.; Martin, S. T.

    2009-05-01

    The effect of organic particle mass loading from 1 to ≥100 μg m-3 on the cloud condensation nuclei (CCN) properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate) Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m-3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m-3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. A sensitivity analysis suggests that a drop in surface tension must be invoked to explain quantitatively the CCN observations at low SOA particle mass loadings. Other factors, such as decreased molecular weight, increased density, or increased van't Hoff factor, can contribute to the explanation but are quantitatively insufficient as the full explanation.

  18. General Relativity and Gravitation

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  19. Gravitational Neurobiology of Fish

    NASA Astrophysics Data System (ADS)

    Rahmann, H.; Anken, R. H.

    In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses - particularly of fish - observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena

  20. An effective selection method for low-mass active black holes and first spectroscopic identification

    NASA Astrophysics Data System (ADS)

    Morokuma, Tomoki; Tominaga, Nozomu; Tanaka, Masaomi; Yasuda, Naoki; Furusawa, Hisanori; Taniguchi, Yuki; Kato, Takahiro; Jiang, Ji-an; Nagao, Tohru; Kuncarayakti, Hanindyo; Morokuma-Matsui, Kana; Ikeda, Hiroyuki; Blinnikov, Sergei; Nomoto, Ken'ichi; Kokubo, Mitsuru; Doi, Mamoru

    2016-06-01

    We present a new method for effectively selecting objects which may be low-mass active black holes (BHs) at galaxy centers using high-cadence optical imaging data, and our first spectroscopic identification of an active 2.7 × 106 M⊙ BH at z = 0.164. This active BH was originally selected due to its rapid optical variability, from a few hours to a day, based on Subaru Hyper Suprime-Cam g-band imaging data taken with a 1 hr cadence. Broad and narrow Hα lines and many other emission ones are detected in our optical spectra taken with Subaru FOCAS, and the BH mass is measured via the broad Hα emission line width (1880 km s-1) and luminosity (4.2 × 1040 erg s-1) after careful correction to the atmospheric absorption around 7580-7720 Å. We measure the Eddington ratio and find it to be as low as 0.05, considerably smaller than those in a previous SDSS sample with similar BH mass and redshift, which indicates one of the special potentials of our Subaru survey. The g - r color and morphology of the extended component indicate that the host galaxy is a star-forming galaxy. We also show the effectiveness of our variability selection for low-mass active BHs.

  1. Links between Adolescent Physical Activity, Body Mass Index, and Adolescent and Parent Characteristics

    ERIC Educational Resources Information Center

    Williams, Susan Lee; Mummery, W. Kerry

    2011-01-01

    Identification of the relationships between adolescent overweight and obesity and physical activity and a range of intrapersonal and interpersonal factors is necessary to develop relevant interventions which target the health needs of adolescents. This study examined adolescent body mass index (BMI) and participation in moderate and vigorous…

  2. Testing Modified Gravity with Gravitational-Wave Observations from Space

    NASA Astrophysics Data System (ADS)

    Sopuerta, Carlos F.; Yunes, Nicolas

    The inspiral of stellar compact objects into massive black holes sitting at galactic centers, usually known as extreme-mass-ratio inspirals (EMRIs), is one of the most important sources of gravitational radiation for the future Laser Interferometer Space Antenna (LISA), an ESA-NASA mission. It is expected that LISA will determine the physical parameters of these sources with a high precision. These precise measurements open the possibility of making robust tests of the existence of black holes, of their geometry, and even of the gravitational interaction. In relation to this, intermediate-mass-ratio inspirals (IMRIs) are also of interest to advance ground-based gravitational-wave observatories. In this talk, we discuss how modifications to the gravitational interaction can affect the signals emitted by EMRIs and the detectability of these modifications by LISA. To that end, we present results from an study of a particular modification of General Relativity (GR): Chern-Simons modified gravity, a theory that emerges in different quantum gravitational approaches and where spinning black holes have a geometry different from the Kerr geometry predicted by GR. References: C. F. Sopuerta and N. Yunes "Extreme and Intermediate-Mass Ratio Inspirals in Dynamical Chern-Simons Modified Gravity" Physical Review D80, 064006 (2009). e-Print: arXiv:0904.4501 [gr-qc

  3. Observation of Gravitational Waves from a Binary Black Hole Merger.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger. PMID:26918975

  4. Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 ×10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 41 0-180+160 Mpc corresponding to a redshift z =0.0 9-0.04+0.03 . In the source frame, the initial black hole masses are 3 6-4+5M⊙ and 2 9-4+4M⊙ , and the final black hole mass is 6 2-4+4M⊙ , with 3. 0-0.5+0.5M⊙ c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  5. Observation of Gravitational Waves from a Binary Black Hole Merger.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  6. Self-gravitating disc candidates around massive young stars

    NASA Astrophysics Data System (ADS)

    Forgan, D. H.; Ilee, J. D.; Cyganowski, C. J.; Brogan, C. L.; Hunter, T. R.

    2016-11-01

    There have been several recent detections of candidate Keplerian discs around massive young protostars. Given the relatively large disc-to-star mass ratios in these systems, and their young ages, it is worth investigating their propensity to becoming self-gravitating. To this end, we compute self-consistent, semi-analytic models of putative self-gravitating discs for five candidate disc systems. Our aim is not to fit exactly the observations, but to demonstrate that the expected dust continuum emission from marginally unstable self-gravitating discs can be quite weak, due to high optical depth at the mid-plane even at millimetre wavelengths. In the best cases, the models produce `observable' disc masses within a factor of <1.5 of those observed, with mid-plane dust temperatures comparable to measured temperatures from molecular line emission. We find in two cases that a self-gravitating disc model compares well with observations. If these discs are self-gravitating, they satisfy the conditions for disc fragmentation in their outer regions. These systems may hence have as-yet-unresolved low-mass stellar companions, and are thus promising targets for future high angular resolution observations.

  7. Gravitating toward Science: Parent-Child Interactions at a Gravitational-Wave Observatory

    ERIC Educational Resources Information Center

    Szechter, Lisa E.; Carey, Elizabeth J.

    2009-01-01

    This research examined the nature of parent-child conversations at an informal science education center housed in an active gravitational-wave observatory. Each of 20 parent-child dyads explored an interactive exhibit hall privately, without the distraction of other visitors. Parents employed a variety of strategies to support their children's…

  8. Learning about compact binary merger: The interplay between numerical relativity and gravitational-wave astronomy

    SciTech Connect

    Baumgarte, Thomas; Brady, Patrick R.; Creighton, Jolien D E; Lehner, Luis; Pretorius, Frans; DeVoe, Ricky

    2008-04-15

    Activities in data analysis and numerical simulation of gravitational waves have to date largely proceeded independently. In this work we study how waveforms obtained from numerical simulations could be effectively used within the data analysis effort to search for gravitational waves from black hole binaries. To this end we analyze the cross-correlation between different numerical waveforms weighted by the detector's noise. This allow us to propose measures to quantify the accuracy of numerical waveforms for the purpose of data analysis, study how sensitive the analysis is to errors in the waveforms, and propose a way to efficiently encode the waveform's information for its use as a member of the template bank. We estimate that {approx}100 templates (and {approx}10 simulations with different mass ratios) are needed to detect waves from nonspinning binary black holes with total masses in the range 100M{sub {center_dot}}{<=}M{<=}400M{sub {center_dot}} using initial LIGO. Of course, many more simulation runs will be needed to confirm that the correct physics is captured in the numerical evolutions. From this perspective, we also discuss sources of systematic errors in numerical waveform extraction and provide order of magnitude estimates for the computational cost of simulations that could be used to estimate the cost of parameter space surveys. Finally, we discuss what information from near-future numerical simulations of compact binary systems would be most useful for enhancing the detectability of such events with contemporary gravitational-wave detectors and emphasize the role of numerical simulations for the interpretation of eventual gravitational-wave observations.

  9. Bipolar outflows as a repulsive gravitational phenomenon — Azimuthally Symmetric Theory of Gravitation (II)

    NASA Astrophysics Data System (ADS)

    Nyambuya, Golden Gadzirayi

    2010-11-01

    This paper is part of a series on the Azimuthally Symmetric Theory of Gravitation (ASTG). This theory is built on Laplace-Poisson's well known equation and it has been shown that the ASTG is capable of explaining, from a purely classical physics standpoint, the precession of the perihelion of solar planets as a consequence of the azimuthal symmetry emerging from the spin of the Sun. This symmetry has and must have an influence on the emergent gravitational field. We show herein that the emergent equations from the ASTG, under some critical conditions determined by the spin, do possess repulsive gravitational fields in the polar regions of the gravitating body in question. This places the ASTG on an interesting pedestal to infer the origins of outflows as a repulsive gravitational phenomenon. Outflows are a ubiquitous phenomenon found in star forming systems and their true origin is a question yet to be settled. Given the current thinking on their origin, the direction that the present paper takes is nothing short of an asymptotic break from conventional wisdom; at the very least, it is a complete paradigm shift because gravitation is not at all associated with this process, but rather it is thought to be an all-attractive force that only tries to squash matter together onto a single point. Additionally, we show that the emergent Azimuthally Symmetric Gravitational Field from the ASTG strongly suggests a solution to the supposed Radiation Problem that is thought to be faced by massive stars in their process of formation. That is, at ~ 8-10 , radiation from the nascent star is expected to halt the accretion of matter. We show that in-falling material will fall onto the equatorial disk and from there, this material will be channeled onto the forming star via the equatorial plane, thus accretion of mass continues well past the value of ~ 8-10 , albeit via the disk. Along the equatorial plane, the net force (with the radiation force included) on any material there

  10. An active wound dressing for controlled convective mass transfer with the wound bed.

    PubMed

    Cabodi, Mario; Cross, Valerie L; Qu, Zheng; Havenstrite, Karen L; Schwartz, Suzanne; Stroock, Abraham D

    2007-07-01

    Conventional wound dressings-gauze, plastic films, foams, and gels-do not allow for spatial and temporal control of the soluble chemistry within the wound bed, and are thus limited to a passive role in wound healing. Here, we present an active wound dressing (AWD) designed to control convective mass transfer with the wound bed; this mass transfer provides a means to tailor and monitor the chemical state of a wound and, potentially, to aid the healing process. We form this AWD as a bilayer of porous poly(hydroxyethyl methacrylate) (pHEMA) and silicone; the pHEMA acts as the interface with the wound bed, and a layer of silicone provides a vapor barrier and a support for connecting to external reservoirs and pumps. We measure the convective permeability of the pHEMA sponge, and use this value to design a device with a spatially uniform flow profile. We quantify the global coefficient of mass transfer of the AWD on a dissolvable synthetic surface, and compare it to existing theories of mass transfer in porous media. We also operate the AWD on model wound beds made of calcium alginate gel to demonstrate extraction and delivery of low molecular weight solutes and a model protein. Using this system, we demonstrate both uniform mass transfer over the entire wound bed and patterned mass transfer in three spatially distinct regions. Finally, we discuss opportunities and challenges for the clinical application of this design of an AWD.

  11. The effect of active galactic nuclei feedback on the halo mass function

    NASA Astrophysics Data System (ADS)

    Cui, Weiguang; Borgani, Stefano; Murante, Giuseppe

    2014-06-01

    We investigate baryon effects on the halo mass function (HMF), with emphasis on the role played by active galactic nuclei (AGN) feedback. Haloes are identified with both friends-of-friends (FoF) and spherical overdensity (SO) algorithms. We embed the standard SO algorithm into a memory-controlled frame program and present the Python spherIcAl Overdensity code - PIAO (Chinese character: ). For both FoF and SO haloes, the effect of AGN feedback is that of suppressing the HMFs to a level even below that of dark matter (DM) simulations. The ratio between the HMFs in the AGN and in the DM simulations is ˜0.8 at overdensity Δc = 500, a difference that increases at higher overdensity Δc = 2500, with no significant redshift and mass dependence. A decrease of the halo masses ratio with respect to the DM case induces the decrease of the HMF in the AGN simulation. The shallower inner density profiles of haloes in the AGN simulation witnesses that mass reduction is induced by the sudden displacement of gas induced by thermal AGN feedback. We provide fitting functions to describe halo mass variations at different overdensities, which can recover the HMFs with a residual random scatter ≲5 per cent for halo masses larger than 1013 h-1 M⊙.

  12. An active wound dressing for controlled convective mass transfer with the wound bed.

    PubMed

    Cabodi, Mario; Cross, Valerie L; Qu, Zheng; Havenstrite, Karen L; Schwartz, Suzanne; Stroock, Abraham D

    2007-07-01

    Conventional wound dressings-gauze, plastic films, foams, and gels-do not allow for spatial and temporal control of the soluble chemistry within the wound bed, and are thus limited to a passive role in wound healing. Here, we present an active wound dressing (AWD) designed to control convective mass transfer with the wound bed; this mass transfer provides a means to tailor and monitor the chemical state of a wound and, potentially, to aid the healing process. We form this AWD as a bilayer of porous poly(hydroxyethyl methacrylate) (pHEMA) and silicone; the pHEMA acts as the interface with the wound bed, and a layer of silicone provides a vapor barrier and a support for connecting to external reservoirs and pumps. We measure the convective permeability of the pHEMA sponge, and use this value to design a device with a spatially uniform flow profile. We quantify the global coefficient of mass transfer of the AWD on a dissolvable synthetic surface, and compare it to existing theories of mass transfer in porous media. We also operate the AWD on model wound beds made of calcium alginate gel to demonstrate extraction and delivery of low molecular weight solutes and a model protein. Using this system, we demonstrate both uniform mass transfer over the entire wound bed and patterned mass transfer in three spatially distinct regions. Finally, we discuss opportunities and challenges for the clinical application of this design of an AWD. PMID:17106898

  13. Metabolic adaptation of skeletal muscles to gravitational unloading

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, β-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes. Unloading-related atrophy is prominent in red muscle or slow-twitch fiber 1, 2. Such atrophy is accompanied by a shift of contractile properties toward fast-twitch type 2-9. Further, inhibition of mitochondrial metabolism in these muscles is also reported by some studies 10-14 suggesting a lowered mitochondrial biogenesis, although results from some studies do not necessarily agree 1, 7, 15. However, the precise mechanism responsible for such alterations of muscle properties in response to gravitational unloading is unclear. On the contrary, mitochondrial biogenesis, suggested by mitochondrial enzyme activities and/or mass, is stimulated in muscles with depleted high-energy phosphates by cold exposure 16 and/or by feeding

  14. Boyle's law and gravitational instability

    NASA Astrophysics Data System (ADS)

    Lombardi, M.; Bertin, G.

    2001-09-01

    We have re-examined the classical problem of the macroscopic equation of state for a hydrostatic isothermal self-gravitating gas cloud bounded by an external medium at constant pressure. We have obtained analytical conditions for its equilibrium and stability without imposing any specific shape and symmetry to the cloud density distribution. The equilibrium condition can be stated in the form of an upper limit to the cloud mass; this is found to be inversely proportional to the power 3/2 of a form factor mu characterizing the shape of the cloud. In this respect, the spherical solution, associated with the maximum value of the form factor, mu = 1, turns out to correspond to the shape that is most difficult to realize. Surprisingly, the condition that defines the onset of the Bonnor instability (or gravothermal catastrophe) can be cast in the form of an upper limit to the density contrast within the cloud that is independent of the cloud shape. We have then carried out a similar analysis in the two-dimensional case of infinite cylinders, without assuming axisymmetry. The results obtained in this paper generalize well-known results available for spherical or axisymmetric cylindrical isothermal clouds that have had wide astrophysical applications, especially in the study of the interstellar medium.

  15. Gravitational spectra from direct measurements

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.; Colombo, O. L.

    1978-01-01

    A simple rapid method is described for determining the spectrum of a surface field from harmonic analysis of direct measurements along great circle arcs. The method is shown to give excellent overall trends to very high degree from even a few short arcs of satellite data. Three examples are taken with perfect measurements of satellite tracking over a planet made up of hundreds of point-masses using (1) altimetric heights from a low orbiting spacecraft, (2) velocity residuals between a low and a high satellite in circular orbits, and (3) range-rate data between a station at infinity and a satellite in highly eccentric orbit. In particular, the smoothed spectrum of the Earth's gravitational field is determined to about degree 400(50 km half wavelength) from 1 D x 1 D gravimetry and the equivalent of 11 revolutions of Geos 3 and Skylab altimetry. This measurement shows there is about 46 cm of geoid height remaining in the field beyond degree 180.

  16. The gravitational acceleration of antimatter

    SciTech Connect

    Holzscheiter, M.H.

    1994-06-01

    We have proposed measuring the acceleration of antiprotons in the Earth`s gravitational field by launching antiprotons from a thermal distribution at 4 K upwards against the force of gravity and measuring their time-of-flight (TOF). The TOF distribution thus obtained will exhibit a cut-off representing the minimum kinetic energy necessary to reach the detector at the top of the experiment. The cut-off time is independent of the inertial mass of the particles and is a direct measure of g for the particles studied. We propose to compare the cut-off time, and thereby g, of negative hydrogen ions and antiprotons. The single most difficult problem to be solved for this method consists of shielding all stray-electric fields to a level where the force of gravity is dominating force acting on the particle. Alternative methods for reducing the effect of stray-electric fields are discussed and a brief analysis of experimental possibilities using neutral antihydrogen atoms is presented.

  17. Triplets of supermassive black holes: astrophysics, gravitational waves and detection

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Sesana, Alberto; Hoffman, Loren; Benacquista, Matthew; Eichhorn, Christoph; Makino, Junichiro; Spurzem, Rainer

    2010-03-01

    Supermassive black holes (SMBHs) found in the centres of many galaxies are understood to play a fundamental, active role in the cosmological structure formation process. In hierarchical formation scenarios, SMBHs are expected to form binaries following the merger of their host galaxies. If these binaries do not coalesce before the merger with a third galaxy, the formation of a black hole triple system is possible. Numerical simulations of the dynamics of triples within galaxy cores exhibit phases of very high eccentricity (as high as e ~ 0.99). During these phases, intense bursts of gravitational radiation can be emitted at orbital periapsis, which produces a gravitational wave signal at frequencies substantially higher than the orbital frequency. The likelihood of detection of these bursts with pulsar timing and the Laser Interferometer Space Antenna (LISA) is estimated using several population models of SMBHs with masses >rsim 107 Msolar. Assuming that 10 per cent or more of binaries are in triple systems, we find that up to a few dozen of these bursts will produce residuals >1 ns, within the sensitivity range of forthcoming pulsar timing arrays. However, most of such bursts will be washed out in the underlying confusion noise produced by all the other `standard' SMBH binaries emitting in the same frequency window. A detailed data analysis study would be required to assess resolvability of such sources. Implementing a basic resolvability criterion, we find that the chance of catching a resolvable burst at a 1 ns precision level is 2-50 per cent, depending on the adopted SMBH evolution model. On the other hand, the probability of detecting bursts produced by massive binaries (masses >~107Msolar) with LISA is negligible.

  18. A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Minezaki, Takeo; Matsushita, Kyoko

    2015-04-01

    We propose a new method for estimating the mass of a supermassive black hole, applicable to obscured active galactic nuclei (AGNs). This method estimates the black hole mass using the width of the narrow core of the neutral FeKα emission line in X-rays and the distance of its emitting region from the black hole based on the isotropic luminosity indicator via the luminosity scaling relation. Assuming the virial relation between the locations and the velocity widths of the neutral FeKα line core and the broad Hβ emission line, the luminosity scaling relation of the neutral FeKα line core emitting region is estimated. We find that the velocity width of the neutral FeKα line core falls between that of the broad Balmer emission lines and the corresponding value at the dust reverberation radius for most of the target AGNs. The black hole mass {{M}BH,FeKα } estimated with this method is then compared with other black hole mass estimates, such as the broad emission-line reverberation mass {{M}BH,rev} for type 1 AGNs, the mass {{M}BH,{{H2}O}} based on the H2O maser, and the single-epoch mass estimate {{M}BH,pol} based on the polarized broad Balmer lines for type 2 AGNs. We find that {{M}BH,FeKα } is consistent with {{M}BH,rev} and {{M}BH,pol}, and find that {{M}BH,FeKα } correlates well with {{M}BH,{{H2}O}}. These results suggest that {{M}BH,FeKα } is a potential indicator of the black hole mass for obscured AGNs. In contrast, {{M}BH,FeKα } is systematically larger than {{M}BH,{{H2}O}} by about a factor of 5, and the possible origins are discussed.

  19. Gravitational waves from the big bounce

    SciTech Connect

    Mielczarek, Jakub

    2008-11-15

    In this paper we investigate gravitational wave production during the big bounce phase, inspired by loop quantum cosmology. We consider the influence of the holonomy corrections to the equation for tensor modes. We show that they act like additional effective graviton mass, suppressing gravitational wave creation. However, such effects can be treated perturbatively. We investigate a simplified model without holonomy corrections to the equation for modes and find its exact analytical solution. Assuming the form for matter {rho}{proportional_to}a{sup -2} we calculate the full spectrum of the gravitational waves from the big bounce phase. The spectrum obtained decreases to zero for the low energy modes. On the basis of this observation we infer that this effect can lead to low cosmic microwave background (CMB) multipole suppression and gives a potential way for testing loop quantum cosmology models. We also consider a scenario with a post-bounce inflationary phase. The power spectrum obtained gives a qualitative explanation of the CMB spectra, including low multipole suppression.

  20. Gravitational radiation from massless particle collisions

    NASA Astrophysics Data System (ADS)

    Gruzinov, Andrei; Veneziano, Gabriele

    2016-06-01

    We compute classical gravitational bremsstrahlung from the gravitational scattering of two massless particles at leading order in the (centre of mass) deflection angle θ ∼ 4G\\sqrt{s}/b=8{GE}/b\\ll 1. The calculation, although non-perturbative in the gravitational constant, is surprisingly simple and yields explicit formulae—in terms of multidimensional integrals—for the frequency and angular distribution of the radiation. In the range {b}-1\\lt ω \\lt {({GE})}-1, the GW spectrum behaves like {log}(1/{GE}ω ){{d}}ω , is confined to cones of angular sizes (around the deflected particle trajectories) ranging from O(θ ) to O(1/ω b), and exactly reproduces, at its lower end, a well-known zero-frequency limit. At ω \\gt {({GE})}-1 the radiation is confined to cones of angular size of order θ {({GE}ω )}-1/2 resulting in a scale-invariant ({{d}}ω /ω ) spectrum. The total efficiency in GW production is dominated by this ‘high frequency’ region and is formally logarithmically divergent in the UV. If the spectrum is cutoff at the limit of validity of our approximations (where a conjectured bound on GW power is also saturated), the fraction of incoming energy radiated away turns out to be \\tfrac{1}{2π }{θ }2{log}{θ }-2 at leading logarithmic accuracy.

  1. Gravitational potential wells and the cosmic bulk flow

    NASA Astrophysics Data System (ADS)

    Wang, Yuyu; Kumar, Abhinav; Feldman, Hume; Watkins, Richard

    2016-03-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales > 10h-1 Mpc.

  2. Massive gravitons as dark matter and gravitational waves

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Mukohyama, Shinji

    2016-07-01

    We consider the possibility that the massive graviton is a viable candidate for dark matter in the context of bimetric gravity. We first derive the energy-momentum tensor of the massive graviton and show that it indeed behaves as that of dark matter fluid. We then discuss a production mechanism and the present abundance of massive gravitons as dark matter. Since the metric to which ordinary matter fields couple is a linear combination of the two mass eigenstates of bigravity, production of massive gravitons, i.e., the dark matter particles, is inevitably accompanied by generation of massless gravitons, i.e., the gravitational waves. Therefore, in this scenario some information about dark matter in our Universe is encoded in gravitational waves. For instance, if LIGO detects gravitational waves generated by the preheating after inflation, then the massive graviton with the mass of ˜0.01 GeV is a candidate for dark matter.

  3. TorPeDO: A Low Frequency Gravitational Force Sensor

    NASA Astrophysics Data System (ADS)

    McManus, D. J.; Yap, M. J.; Ward, R. L.; Shaddock, D. A.; McClelland, D. E.; Slagmolen, B. J. J.

    2016-05-01

    Second generation gravitational wave detectors are likely to be limited by Newtonian Noise at low frequencies. A dual torsion pendulum sensor aimed at exploring low- frequency gravitational-force noise is being studied at the ANU. This sensor is designed to measure local gravitational forces to high precision and will be limited by Newtonian noise. We report on a controls prototype which has been constructed and suspended, along with initial characterisation and testing of the two torsion pendulums. Large weights at the end of each bar reposition the centres of mass to the same point in space external to both bars. Since both bars have a common suspension point, resonant frequency (≈33.4 mHz), and centre of mass, mechanical disturbances and other noise will affect both bars in the same manner, providing a large mechanical common mode rejection.

  4. New Neighbors from 2MASS: Activity and Kinematics at the Bottom of the Main Sequence

    NASA Astrophysics Data System (ADS)

    Gizis, John E.; Monet, David G.; Reid, I. Neill; Kirkpatrick, J. Davy; Liebert, James; Williams, Rik J.

    2000-08-01

    We have combined 2MASS and POSS II data in a search for nearby ultracool (later than M6.5) dwarfs with Ks<12. Spectroscopic follow-up observations identify 53 M7-M9.5 dwarfs and seven L dwarfs. The observed space density is 0.0045+/-0.0008 M8-M9.5 dwarfs per cubic parsec, without accounting for biases, consistent with a mass function that is smooth across the stellar/substellar limit. We show the observed frequency of Hα emission peaks at ~100% for M7 dwarfs and then decreases for cooler dwarfs. In absolute terms, however, as measured by the ratio of Hα to bolometric luminosity, none of the ultracool M dwarfs can be considered very active compared to earlier M dwarfs, and we show that the decrease that begins at spectral type M6 continues to the latest L dwarfs. We find that flaring is common among the coolest M dwarfs and estimate the frequency of flares at 7% or higher. We show that the kinematics of relatively active (EW>6 Å) ultracool M dwarfs are consistent with an ordinary old disk stellar population, while the kinematics of inactive ultracool M dwarfs are more typical of a 0.5 Gyr old population. The early L dwarfs in the sample have kinematics consistent with old ages, suggesting that the hydrogen-burning limit is near spectral types L2-L4. We use the available data on M and L dwarfs to show that chromospheric activity drops with decreasing mass and temperature and that at a given (M8 or later) spectral type, the younger field (brown) dwarfs are less active than many of the older, more massive field stellar dwarfs. Thus, contrary to the well-known stellar age-activity relationship, low activity in field ultracool dwarfs can be an indication of comparative youth and substellar mass.

  5. Blood clotting activation analysis for preoperative differentiation of benign versus malignant ovarian masses.

    PubMed

    Amirkhosravi, Ali; Bigsby, Glenn; Desai, Hina; Rivera-Amaya, Mildred; Coll, Enriqueta; Robles-Carrillo, Liza; Faust, Patricia; Waters, Alane; Meyer, Todd; Reyes, Enriquo; Langer, Florian; Francis, John L

    2013-07-01

    Preoperative evaluation of patients presenting with ovarian masses is challenging, partly due to shortcomings with the commonly used marker, CA-125. Ovarian cancer is associated with systemic coagulation activation. Measurement of D-dimer, serum tissue factor (TF), and the coagulation process as a whole are considered candidates for improving discrimination between benign and malignant ovarian masses. We therefore sought to identify possible benefits by analyzing preoperative coagulation status in conjunction with CA-125 in patients with ovarian masses. Preoperative blood from 95 patients with ovarian masses (75 benign, 20 malignant) and 30 controls was analyzed, prospectively. Thromboelastography served for global hemostatic assessment. Plasma TF antigen and D-dimer were measured by ELISA and microparticle-associated TF activity by thrombin generation assay. TF microparticles were enumerated by flow cytometry. Time to clot formation by thromboelastography was similar between patients having either benign or malignant ovarian tumors. Clot formation rate, clot strength, and coagulation index were significantly increased in patients having malignant versus benign tumors, indicating that thromboelastography differentiated malignant from benign tumors. D-dimer alone differentiated malignant from benign ovarian tumors and also improved differentiation when combined with CA-125. Circulating TF antigen, activity, and TF microparticle numbers, however, failed to differentiate benign from malignant tumors. Significant coagulation activation occurs in women with ovarian malignancies. Plasma D-dimer may help discriminate between patients with benign and malignant tumors. Thromboelastography may also contribute meaningfully when combined with CA-125 in the preoperative evaluation of ovarian masses. Larger studies are needed to assess these possibilities.

  6. GRAVITATIONAL COLLAPSE AND FILAMENT FORMATION: COMPARISON WITH THE PIPE NEBULA

    SciTech Connect

    Heitsch, Fabian; Ballesteros-Paredes, Javier; Hartmann, Lee

    2009-10-20

    Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simulations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We compare our results with observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignificant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the {sup 13}CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe Nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.

  7. Time delay in Swiss cheese gravitational lensing

    SciTech Connect

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-15

    We compute time delays for gravitational lensing in a flat {Lambda} dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with {Lambda}) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach {approx}4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  8. Time delay in Swiss cheese gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-01

    We compute time delays for gravitational lensing in a flat Λ dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Λ) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ˜4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  9. NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS

    SciTech Connect

    Favata, Marc

    2009-05-10

    Some astrophysical sources of gravitational waves can produce a 'memory effect', which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensor's contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an 'effective-one-body' (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to redshifts z {approx}< 2. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to 'gravitate'.

  10. Gravitational wave astrophysics, data analysis and multimessenger astronomy

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Mok; Le Bigot, Eric-Olivier; Du, ZhiHui; Lin, ZhangXi; Guo, XiangYu; Wen, LinQing; Phukon, Khun Sang; Pandey, Vihan; Bose, Sukanta; Fan, Xi-Long; Hendry, Martin

    2015-12-01

    This paper reviews gravitational wave sources and their detection. One of the most exciting potential sources of gravitational waves are coalescing binary black hole systems. They can occur on all mass scales and be formed in numerous ways, many of which are not understood. They are generally invisible in electromagnetic waves, and they provide opportunities for deep investigation of Einstein's general theory of relativity. Sect. 1 of this paper considers ways that binary black holes can be created in the universe, and includes the prediction that binary black hole coalescence events are likely to be the first gravitational wave sources to be detected. The next parts of this paper address the detection of chirp waveforms from coalescence events in noisy data. Such analysis is computationally intensive. Sect. 2 reviews a new and powerful method of signal detection based on the GPUimplemented summed parallel infinite impulse response filters. Such filters are intrinsically real time alorithms, that can be used to rapidly detect and localise signals. Sect. 3 of the paper reviews the use of GPU processors for rapid searching for gravitational wave bursts that can arise from black hole births and coalescences. In sect. 4 the use of GPU processors to enable fast efficient statistical significance testing of gravitational wave event candidates is reviewed. Sect. 5 of this paper addresses the method of multimessenger astronomy where the discovery of electromagnetic counterparts of gravitational wave events can be used to identify sources, understand their nature and obtain much greater science outcomes from each identified event.

  11. Propagation effect of gravitational wave on detector response

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Huang, Chao-Guang; Zhao, Zhi-Chao

    2016-10-01

    The response of a detector to gravitational wave is a function of frequency. When the time a photon moving around in the Fabry-Perot cavities is the same order of the period of a gravitational wave, the phase-difference due to the gravitational wave should be an integral along the path. We present a formula description for detector response to gravitational wave with varied frequencies. The LIGO data for GW150914 and GW 151226 are reexamined in this framework. For GW150924, the traveling time of a photon in the LIGO detector is just a bit larger than a half period of the highest frequency of gravitational wave and the similar result is obtained with LIGO and Virgo collaborations. However, we are not always so luck. In the case of GW151226, the time of a photon traveling in the detector is larger than the period of the highest frequency of gravitational wave and the announced signal cannot match well the template with the initial black hole masses 14.2M$_\\odot$ and 7.5M$_\\odot$.

  12. Galaxies as gravitational lenses.

    PubMed

    Sadeh, D

    1967-12-01

    The probability that a galaxy gathers light from another remote galaxy, and deflects and focuses it toward an observer on Earth, is calculated according to various cosmologic models. I pose the question of whether an object called a quasar is a single, intrinsically luminous entity or the result of accidental alignment, along the line of sight, of two normal galaxies, the more distant of which has its light amplified by the gravitational-lens effect of the nearer galaxy. If galaxies are distributed at random in the universe, the former alternative is true. But, if we assume that most galaxies exist in pairs, we can find about 30 galaxies occurring exactly one behind the other in such a way as to enable amplification of the order of 50. This model explains also the variations in intensity in quasars, but fails to explain others of their observed properties. PMID:17734305

  13. Bubble collision with gravitation

    SciTech Connect

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han E-mail: bhl@sogang.ac.kr E-mail: innocent.yeom@gmail.com

    2012-07-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  14. Frontiers in gravitational physics

    NASA Astrophysics Data System (ADS)

    Dutta, Koushik

    In this thesis we present three research projects in classical General Relativity and Cosmology. In the first part of the thesis we investigate the definition of gravitational charge corresponding to the asymptotic boost symmetry of a spacetime and derive its role in the first law of black hole thermodynamics. In the cosmology part, we investigate the role of a scalar field in the early and late time evolution of the Universe. We find out observational constraints on the pseudo Nambu Goldstone Boson quintessence model using the latest supernova and Cosmic Microwave Background (CMB) data. In an attempt to explain a particular anomaly in the latest CMB data, we propose a modification to the standard single field inflation based on the initial kinetic energy domination with anisotropic initial conditions. Predictions of this mechanism can be tested in future data analysis.

  15. Atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity, respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous - whose rates are related by a non-constant function beta sub a - is demonstrated. The cosmological character of beta sub a is also discussed.

  16. Gravitational adaptation of animals

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Burton, R. R.

    1982-01-01

    The effect of gravitational adaptation is studied in a group of five Leghorn cocks which had become physiologically adapted to 2 G after 162 days of centrifugation. After this period of adaptation, they are periodically exposed to a 2 G field, accompanied by five previously unexposed hatch-mates, and the degree of retained acceleration adaptation is estimated from the decrease in lymphocyte frequency after 24 hr at 2 G. Results show that the previously adapted birds exhibit an 84% greater lymphopenia than the unexposed birds, and that the lymphocyte frequency does not decrease to a level below that found at the end of 162 days at 2 G. In addition, the capacity for adaptation to chronic acceleration is found to be highly heritable. An acceleration tolerant strain of birds shows lesser mortality during chronic acceleration, particularly in intermediate fields, although the result of acceleration selection is largely quantitative (a greater number of survivors) rather than qualitative (behavioral or physiological changes).

  17. Heat and gravitation. II. Stability

    NASA Astrophysics Data System (ADS)

    Frønsdal, Christian

    2011-01-01

    Some features of hydro- and thermodynamics, as applied to atmospheres and to stellar structures, are puzzling. 1. The suggestion, first made by Laplace, that our atmosphere has an adiabatic temperature distribution, is confirmed for the lower layers, but the reason why it should be so is difficult to understand. 2. The standard treatment of relativistic thermodynamics does not allow for a systematic treatment of mixtures, such as the mixture of a perfect gas with radiation. 3. The concept of mass in applications of general relativity to stellar structures is less than completely satisfactory. 4. Arguments in which a concept of energy plays a role, in the context of hydro-thermodynamical systems and gravitation, are not always convincing. It was proposed that a formulation of thermodynamics as an action principle may be a suitable approach to adopt for a new investigation of these matters. In this second article of a series we propose to base criteria of stability on the hamiltonian functional that is provided by the variational principle, to replace the reliance that has often been placed on ad hoc definitions of the "energy". We introduce a new virial principle that is formulated entirely within the Eulerian description of hydrodynamics, which allows a simpler derivation of a well known stability criterion for polytropic stellar configurations. Boundary conditions are based entirely on mass conservation. The new approach is tested on isothermal and polytropic atmospheres and then used to initiate a new study of stars. Traditional results for polytropic, spherical configurations are confirmed, but our study gives new insight and new results for the case that radiation is taken into account.

  18. Fast computation of general forward gravitation problems

    NASA Astrophysics Data System (ADS)

    Casenave, Fabien; Métivier, Laurent; Pajot-Métivier, Gwendoline; Panet, Isabelle

    2016-07-01

    We consider the well-known problem of the forward computation of the gradient of the gravitational potential generated by a mass density distribution of general 3D geometry. Many methods have been developed for given geometries, and the computation time often appears as a limiting practical issue for considering large or complex problems. In this work, we develop a fast method to carry out this computation, where a tetrahedral mesh is used to model the mass density distribution. Depending on the close- or long-range nature of the involved interactions, the algorithm automatically switches between analytic integration formulae and numerical quadratic formulae, and relies on the Fast Multipole Method to drastically increase the computation speed of the long-range interactions. The parameters of the algorithm are empirically chosen for the computations to be the fastest possible while guarantying a given relative accuracy of the result. Computations that would load many-core clusters for days can now be carried out on a desk computer in minutes. The computation of the contribution of topographical masses to the Earth's gravitational field at the altitude of the GOCE satellite and over France are proposed as numerical illustrations of the method.

  19. Earth Gravitational Model 2020

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Factor, J. K.; Holmes, S. A.; Ingalls, S.; Presicci, M. R.; Beale, J.; Fecher, T.

    2015-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners.

  20. Scaling of curvature in subcritical gravitational collapse

    NASA Astrophysics Data System (ADS)

    Garfinkle, David; Duncan, G. Comer

    1998-09-01

    We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For those data that just barely do not form black holes we find the maximum curvature at the position of the central observer. We find a scaling relation between this maximum curvature and distance from the critical solution. The scaling relation is analogous to that found by Choptuik for the black hole mass for those data that do collapse to form black holes. We also find a periodic wiggle in the scaling exponent.

  1. A polarimetric method for measuring black hole masses in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Gnedin, Yu. N.; Silant'ev, N. A.; Natsvlishvili, T. M.; Buliga, S. D.

    2015-11-01

    The structure of the broad emission line region (BLR) in active galactic nuclei (AGN) remains unclear. We test in this paper a flattened configuration model for BLR. The virial theorem, by taking into account the disc shape of BLR, allows us to get a direct connection between the mass of a supermassive black hole (SMBH) and the inclination angle of the accretion flow. The inclination angle itself is derived from the spectropolarimetric data on broad emission lines using the theory for the generation of polarized radiation developed by Sobolev and Chandrasekhar. As the result, the new estimates of SMBH masses in AGN with measured polarization of BLR are presented. It is crucial that the polarimetric data allow also to determine the value of the virial coefficient that is essential for determining SMBH masses.

  2. Baryons, neutrinos, feedback and weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Harnois-Déraps, Joachim; van Waerbeke, Ludovic; Viola, Massimo; Heymans, Catherine

    2015-06-01

    The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OverWhelmingly Large hydrodynamical simulations. It is specifically calibrated for z < 1.5, where it models the simulations to an accuracy that is better than 2 per cent for scales k < 10 h Mpc-1 and better than 5 per cent for 10 < k < 100 h Mpc-1. Equipped with this precise tool, this paper presents the first constraint on baryonic feedback models using gravitational lensing data, from the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). In this analysis, we show that the effect of neutrino mass on the mass power spectrum is degenerate with the baryonic feedback at small angular scales and cannot be ignored. Assuming a cosmology precision fixed by WMAP9, we find that a universe with massless neutrinos is rejected by the CFHTLenS lensing data with 85-98 per cent confidence, depending on the baryon feedback model. Some combinations of feedback and non-zero neutrino masses are also disfavoured by the data, although it is not yet possible to isolate a unique neutrino mass and feedback model. Our study shows that ongoing weak gravitational lensing surveys (KiDS, HSC and DES) will offer a unique opportunity to probe the physics of baryons at galactic scales, in

  3. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting

    PubMed Central

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter “D” obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  4. Analysis of Relationship between the Body Mass Composition and Physical Activity with Body Posture in Children

    PubMed Central

    Baran, Joanna; Czenczek-Lewandowska, Ewelina; Leszczak, Justyna; Mazur, Artur

    2016-01-01

    Introduction. Excessive body mass in turn may contribute to the development of many health disorders including disorders of musculoskeletal system, which still develops intensively at that time. Aim. The aim of this study was to assess the relationship between children's body mass composition and body posture. The relationship between physical activity level of children and the parameters characterizing their posture was also evaluated. Material and Methods. 120 school age children between 11 and 13 years were enrolled in the study, including 61 girls and 59 boys. Each study participant had the posture evaluated with the photogrammetric method using the projection moiré phenomenon. Moreover, body mass composition and the level of physical activity were evaluated. Results. Children with the lowest content of muscle tissue showed the highest difference in the height of the inferior angles of the scapulas in the coronal plane. Children with excessive body fat had less slope of the thoracic-lumbar spine, greater difference in the depth of the inferior angles of the scapula, and greater angle of the shoulder line. The individuals with higher level of physical activity have a smaller angle of body inclination. Conclusion. The content of muscle tissue, adipose tissue, and physical activity level determines the variability of the parameter characterizing the body posture. PMID:27761467

  5. Classical T Tauri-like Outflow Activity in the Brown Dwarf Mass Regime

    NASA Astrophysics Data System (ADS)

    Whelan, E. T.; Ray, T. P.; Bacciotti, F.; Podio, L.; Randich, S.

    2010-11-01

    Since 2005 we have been analysing the spectra of brown dwarfs (BDs) using the technique of spectro-astrometry and to date have found 5 outflows driven by BDs. Our aim is to obtain an understanding of outflow activity in the BD mass regime and make a comprehensive comparison with low mass protostars, in particular the classical T Tauri stars (CTTSs). Table 1 summarises some results for the sources in our sample. Also see Whelan et al. (2009b) for a complete discussion and comparison with CTTSs. Some noteworthy results include the asymmetry in the ISO-217 bipolar outflow which is revealed in the relative brightness of the two lobes (red-shifted lobe is brighter) and the factor of two difference in radial velocity (the red-shifted lobe is faster). Asymmetries are common in jets from low mass protostars (0.1 Msun to 2 Msun) and the observation of a strong asymmetry at such a low mass supports the idea that BD outflow activity is scaled down from CTTSs. In addition, Whelan et al. (2009a) find a strong contribution to the Hα line emitted by LS-RCrA 1 and evidence of a dust hole in its disk. Using methods previously applied to CTTS Whelan et al. (2009b) estimate the mass outflow rate (Ṁout) for LS-RCrA 1, ISO and ISO-Oph 102 Ṁout to be in the range 10-10 to 10-9 Msun yr-1 which is comparable to measured mass accretion rates.

  6. Temporal variation of mass-wasting activity in Mount St. Helens crater, Washington, U. S. A. indicated by seismic activity

    SciTech Connect

    Mills, H.H. )

    1991-11-01

    In the crater of Mount St. Helens, formed during the eruption of 18 May 1980, thousands of rockfalls may occur in a single day, and some rock and dirty-snow avalanches have traveled more than 1 km from their source. Because most seismic activity in the crater is produced by mass wasting, the former can be used to monitor the latter. The number and amplitude of seismic events per unit time provide a generalized measure of mass-wasting activity. In this study 1-min averages of seismic amplitudes were used as an index of rockfall activity during summer and early fall. Plots of this index show the diurnal cycle of rockfall activity and establish that the peak in activity occurs in mid to late afternoon. A correlation coefficient of 0.61 was found between daily maximum temperature and average seismic amplitude, although this value increases to 0.72 if a composite temperature variable that includes the maximum temperature of 1 to 3 preceding days as well as the present day is used. Correlation with precipitation is much weaker.

  7. Application of MassSQUIRM for quantitative measurements of lysine demethylase activity.

    PubMed

    Blair, Lauren P; Avaritt, Nathan L; Tackett, Alan J

    2012-03-11

    Recently, epigenetic regulators have been discovered as key players in many different diseases (1-3). As a result, these enzymes are prime targets for small molecule studies and drug development( 4). Many epigenetic regulators have only recently been discovered and are still in the process of being classified. Among these enzymes are lysine demethylases which remove methyl groups from lysines on histones and other proteins. Due to the novel nature of this class of enzymes, few assays have been developed to study their activity. This has been a road block to both the classification and high throughput study of histone demethylases. Currently, very few demethylase assays exist. Those that do exist tend to be qualitative in nature and cannot simultaneously discern between the different lysine methylation states (un-, mono-, di- and tri-). Mass spectrometry is commonly used to determine demethylase activity but current mass spectrometric assays do not address whether differentially methylated peptides ionize differently. Differential ionization of methylated peptides makes comparing methylation states difficult and certainly not quantitative (Figure 1A). Thus available assays are not optimized for the comprehensive analysis of demethylase activity. Here we describe a method called MassSQUIRM (mass spectrometric quantitation using isotopic reductive methylation) that is based on reductive methylation of amine groups with deuterated formaldehyde to force all lysines to be di-methylated, thus making them essentially the same chemical species and therefore ionize the same (Figure 1B). The only chemical difference following the reductive methylation is hydrogen and deuterium, which does not affect MALDI ionization efficiencies. The MassSQUIRM assay is specific for demethylase reaction products with un-, mono- or di-methylated lysines. The assay is also applicable to lysine methyltransferases giving the same reaction products. Here, we use a combination of reductive

  8. Weight, gravitation, inertia, and tides

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  9. Cadmium-induced changes of gypsy moth larval mass and protease activity.

    PubMed

    Vlahović, Milena; Ilijin, Larisa; Lazarević, Jelica; Mrdaković, Marija; Gavrilović, Anja; Matić, Dragana; Mataruga, Vesna Perić

    2014-03-01

    Cadmium uptake takes place mainly through food. Lymantria dispar larvae were exposed to dietary cadmium in concentrations of 10 and 30μg Cd/g dry food (NOEC, no-observed-effect and LOEC, lowest-observed-effect concentration, respectively) for acute and chronic treatment and recovery. We established that metal contamination decreased mass only during the chronic treatment at 30μg Cd/dry food with no recovery on removal of cadmium for 3days. Significant reduction of protease activity was detected at LOEC after the acute and chronic treatments. Protease showed enhanced plasticity with regard to the fitness trait (mass) during environmental stress and the higher cadmium load, when it changed. The statistically significant higher index of phenotypic plasticity for protease correlated with lower variability. Protease isoforms at the same cadmium treatments differed between genotypes, while some protease isoforms from one egg-mass differed between cadmium treatments. Owing to the low sensitivity and plasticity of mass change during exposure to cadmium, as well as its small influence, we concluded that larval mass is not a good indicator of cadmium presence in food. We suggest that proteases, with further research, might be a suitable indicator of dietary cadmium contamination, as well as nutriment utilization during heavy metal stress. PMID:24230976

  10. Cadmium-induced changes of gypsy moth larval mass and protease activity.

    PubMed

    Vlahović, Milena; Ilijin, Larisa; Lazarević, Jelica; Mrdaković, Marija; Gavrilović, Anja; Matić, Dragana; Mataruga, Vesna Perić

    2014-03-01

    Cadmium uptake takes place mainly through food. Lymantria dispar larvae were exposed to dietary cadmium in concentrations of 10 and 30μg Cd/g dry food (NOEC, no-observed-effect and LOEC, lowest-observed-effect concentration, respectively) for acute and chronic treatment and recovery. We established that metal contamination decreased mass only during the chronic treatment at 30μg Cd/dry food with no recovery on removal of cadmium for 3days. Significant reduction of protease activity was detected at LOEC after the acute and chronic treatments. Protease showed enhanced plasticity with regard to the fitness trait (mass) during environmental stress and the higher cadmium load, when it changed. The statistically significant higher index of phenotypic plasticity for protease correlated with lower variability. Protease isoforms at the same cadmium treatments differed between genotypes, while some protease isoforms from one egg-mass differed between cadmium treatments. Owing to the low sensitivity and plasticity of mass change during exposure to cadmium, as well as its small influence, we concluded that larval mass is not a good indicator of cadmium presence in food. We suggest that proteases, with further research, might be a suitable indicator of dietary cadmium contamination, as well as nutriment utilization during heavy metal stress.

  11. Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate

    ERIC Educational Resources Information Center

    Acedo, Luis; Tung, Michael M.

    2012-01-01

    The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The…

  12. Coevolution of telomerase activity and body mass in mammals: From mice to beavers

    PubMed Central

    Gorbunova, Vera; Seluanov, Andrei

    2013-01-01

    Telomerase is repressed in the majority of human somatic tissues. As a result human somatic cells undergo replicative senescence, which plays an important role in suppressing tumorigenesis, and at the same time contributes to the process of aging. Repression of somatic telomerase activity is not a universal phenomenon among mammals. Mice, for example, express telomerase in somatic tissues, and mouse cells are immortal when cultured at physiological oxygen concentration. What is the status of telomerase in other animals, beyond human and laboratory mouse, and why do some species evolve repression of telomerase activity while others do not? Here we discuss the data on telomere biology in various mammalian species, and a recent study of telomerase activity in a large collection of wild rodent species, which showed that telomerase activity coevolves with body mass, but not lifespan. Large rodents repress telomerase activity, while small rodents maintain high levels of telomerase activity in somatic cells. We discuss a model that large body mass presents an increased cancer risk, which drives the evolution of telomerase suppression and replicative senescence. PMID:18387652

  13. Gravitational wave signatures of ab initio two-dimensional core collapse supernova explosion models for 12 -25 M⊙ stars

    NASA Astrophysics Data System (ADS)

    Yakunin, Konstantin N.; Mezzacappa, Anthony; Marronetti, Pedro; Yoshida, Shin'ichirou; Bruenn, Stephen W.; Hix, W. Raphael; Lentz, Eric J.; Bronson Messer, O. E.; Harris, J. Austin; Endeve, Eirik; Blondin, John M.; Lingerfelt, Eric J.

    2015-10-01

    We present the gravitational waveforms computed in ab initio two-dimensional core collapse supernova models evolved with the chimera code for progenitor masses between 12 and 25 M⊙ . All models employ multifrequency neutrino transport in the ray-by-ray approximation, state-of-the-art weak interaction physics, relativistic transport corrections such as the gravitational redshift of neutrinos, two-dimensional hydrodynamics with the commensurate relativistic corrections, Newtonian self-gravity with a general-relativistic monopole correction, and the Lattimer-Swesty equation of state with 220 MeV compressibility, and begin with the most recent Woosley-Heger nonrotating progenitors in this mass range. All of our models exhibit robust explosions. Therefore, our waveforms capture all stages of supernova development: 1) a relatively short and weak prompt signal, 2) a quiescent stage, 3) a strong signal due to convection and standing accretion shock instability activity, 4) termination of active accretion onto the proto-neutron star, and 5) a slowly increasing tail that reaches a saturation value. Fourier decomposition shows that the gravitational wave signals we predict should be observable by AdvLIGO for Galactic events across the range of progenitors considered here. The fundamental limitation of these models is in their imposition of axisymmetry. Further progress will require counterpart three-dimensional models, which are underway.

  14. Mass Spectrometric Detection of Botulinum Neurotoxin by Measuring its Activity in Serum and Milk

    NASA Astrophysics Data System (ADS)

    Kalb, Suzanne R.; Pirkle, James L.; Barr, John R.

    Botulinum neurotoxins (BoNTs) are bacterial protein toxins which are considered likely agents for bioterrorism due to their extreme toxicity and high availability. A new mass spectrometry based assay called Endopep MS detects and defines the toxin serotype in clinical and food matrices via toxin activity upon a peptide substrate which mimics the toxin's natural target. Furthermore, the subtype of the toxin is differentiated by employing mass spectrometry based proteomic techniques on the same sample. The Endopep-MS assay selectively detects active BoNT and defines the serotype faster and with sensitivity greater than the mouse bioassay. One 96-well plate can be analyzed in under 7 h. On higher level or "hot" samples, the subtype can then be differentiated in less than 2 h with no need for DNA.

  15. An overview of gravitational physiology

    NASA Technical Reports Server (NTRS)

    Miquel, Jaime; Souza, Kenneth A.

    1991-01-01

    The focus of this review is on the response of humans and animals to the effects of the near weightless condition occurring aboard orbiting spacecraft. Gravity is an omnipresent force that has been a constant part of our lives and of the evolution of all living species. Emphasis is placed on the general mechanisms of adaptation to altered gravitational fields and vectors, i.e., both hypo- and hypergravity. A broad literature review of gravitational biology was conducted and the general state of our knowledge in this area is discussed. The review is specifically targeted at newcomers to the exciting and relatively new area of space and gravitational biology.

  16. Gravitation. [Book on general relativity

    NASA Technical Reports Server (NTRS)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  17. MIGRATION OF GAS GIANT PLANETS IN GRAVITATIONALLY UNSTABLE DISKS

    SciTech Connect

    Michael, Scott; Durisen, Richard H.; Boley, Aaron C. E-mail: durisen@astro.indiana.edu

    2011-08-20

    Characterization of migration in gravitationally unstable disks is necessary to understand the fate of protoplanets formed by disk instability. As part of a larger study, we are using a three-dimensional radiative hydrodynamics code to investigate how an embedded gas giant planet interacts with a gas disk that undergoes gravitational instabilities (GIs). This Letter presents results from simulations with a Jupiter-mass planet placed in orbit at 25 AU within a 0.14 M{sub sun} disk. The disk spans 5-40 AU around a 1 M{sub sun} star and is initially marginally unstable. In one simulation, the planet is inserted prior to the eruption of GIs; in another, it is inserted only after the disk has settled into a quasi-steady GI-active state, where heating by GIs roughly balances radiative cooling. When the planet is present from the beginning, its own wake stimulates growth of a particular global mode with which it strongly interacts, and the planet plunges inward 6 AU in about 10{sup 3} years. In both cases with embedded planets, there are times when the planet's radial motion is slow and varies in direction. At other times, when the planet appears to be interacting with strong spiral modes, migration both inward and outward can be relatively rapid, covering several AUs over hundreds of years. Migration in both cases appears to stall near the inner Lindblad resonance of a dominant low-order mode. Planet orbit eccentricities fluctuate rapidly between about 0.02 and 0.1 throughout the GI-active phases of the simulations.

  18. CLASSICAL T TAURI-LIKE OUTFLOW ACTIVITY IN THE BROWN DWARF MASS REGIME

    SciTech Connect

    Whelan, E. T.; Ray, T. P.; Podio, L.; Bacciotti, F.; Randich, S.

    2009-12-01

    Over the last number of years, spectroscopic studies have strongly supported the assertion that protostellar accretion and outflow activity persist to the lowest masses. Indeed, previous to this work, the existence of three brown dwarf (BD) outflows had been confirmed by us. In this paper, we present the results of our latest investigation of BD outflow activity and report on the discovery of two new outflows. Observations to date have concentrated on studying the forbidden emission line (FEL) regions of young BDs and in all cases data have been collected using the UV-Visual Echelle Spectrometer (UVES) on the ESO Very Large Telescope. Offsets in the FEL regions are recovered using spectro-astrometry. Here, ISO-Oph 32 is shown to drive a blueshifted outflow with a radial velocity of 10-20 km s{sup -1} and spectro-astrometric analysis constrains the position angle of this outflow to 240{sup 0} +- 7{sup 0}. The BD candidate, ISO-ChaI 217 is found to have a bipolar outflow bright in several key forbidden lines (V{sub RAD} = -20 km s{sup -1}, +40 km s{sup -1}) and with a P.A. of 193{sup 0}-209{sup 0}. A striking feature of the ISO-ChaI 217 outflow is the strong asymmetry between the red- and blueshifted lobes. This asymmetry is revealed in the relative brightness of the two lobes (redshifted lobe is brighter), the factor of 2 difference in radial velocity (the redshifted lobe is faster) and the difference in the electron density (again higher in the red lobe). Such asymmetries are common in jets from low-mass protostars and the observation of a marked asymmetry at such a low mass (<0.1 M{sub sun}) supports the idea that BD outflow activity is scaled down from low-mass protostellar activity. Also note that although asymmetries are unexceptional, it is uncommon for the redshifted lobe to be the brightest as some obscuration by the accretion disk is assumed. This phenomenon has only been observed in one other source, the classical T Tauri (CTTS) star RW Aur. The physical

  19. Classical T Tauri-like Outflow Activity in the Brown Dwarf Mass Regime

    NASA Astrophysics Data System (ADS)

    Whelan, E. T.; Ray, T. P.; Podio, L.; Bacciotti, F.; Randich, S.

    2009-12-01

    Over the last number of years, spectroscopic studies have strongly supported the assertion that protostellar accretion and outflow activity persist to the lowest masses. Indeed, previous to this work, the existence of three brown dwarf (BD) outflows had been confirmed by us. In this paper, we present the results of our latest investigation of BD outflow activity and report on the discovery of two new outflows. Observations to date have concentrated on studying the forbidden emission line (FEL) regions of young BDs and in all cases data have been collected using the UV-Visual Echelle Spectrometer (UVES) on the ESO Very Large Telescope. Offsets in the FEL regions are recovered using spectro-astrometry. Here, ISO-Oph 32 is shown to drive a blueshifted outflow with a radial velocity of 10-20 km s-1 and spectro-astrometric analysis constrains the position angle of this outflow to 240° ± 7°. The BD candidate, ISO-ChaI 217 is found to have a bipolar outflow bright in several key forbidden lines (VRAD = -20 km s-1, +40 km s-1) and with a P.A. of 193°-209°. A striking feature of the ISO-ChaI 217 outflow is the strong asymmetry between the red- and blueshifted lobes. This asymmetry is revealed in the relative brightness of the two lobes (redshifted lobe is brighter), the factor of 2 difference in radial velocity (the redshifted lobe is faster) and the difference in the electron density (again higher in the red lobe). Such asymmetries are common in jets from low-mass protostars and the observation of a marked asymmetry at such a low mass (<0.1 M ⊙) supports the idea that BD outflow activity is scaled down from low-mass protostellar activity. Also note that although asymmetries are unexceptional, it is uncommon for the redshifted lobe to be the brightest as some obscuration by the accretion disk is assumed. This phenomenon has only been observed in one other source, the classical T Tauri (CTTS) star RW Aur. The physical mechanism responsible for the brightening of the

  20. Determination of thorium in seawater by neutron activation analysis and mass spectrometry

    SciTech Connect

    Huh, Chih-An

    1987-01-01

    The recent development of neutron activation analysis and mass spectrometric methods for the determination of /sup 232/Th in seawater has made possible rapid sampling and analysis of this long-lived, non-radiogenic thorium isotope on small-volume samples. The marine geochemical utility of /sup 232/Th, whose concentration in seawater is extremely low, warrants the development of these sensitive techniques. The analytical methods and some results are presented and discussed in this article. 24 refs., 3 figs.