Science.gov

Sample records for active growth phase

  1. [Activation of the expression of the microcin C51 operon upon glucose starvation of cells at the exponential growth phase].

    PubMed

    Veselovskiĭ, A M; Metlitskaia, A Z; Lipasova, V A; Bass, I A; Khmel', I A

    2005-01-01

    It was earlier shown that expression of the microcin C51 operon in Escherichia coli cells is activated upon decelerated growth of cells during their transition to the stationary growth phase and depends on the sigmaS subunit of RNA polymerase. Using a single-copy construct containing the cloned promoter region of the microcin C51 operon and a promoterless lac operon (P(mcc)-lac), it was shown that the promoter of the microcin operon was also induced by stress caused by the transition of cells at the exponential growth phase into the medium without glucose as a sole carbon source. Activation of P(mcc)-lac expression upon severe glucose starvation occurred in rpoS+ and rpoS- strains. In cells carrying the rpoD800 mutation that renders the sigma70 subunit of RNA polymerase temperature-sensitive, an activation of P(mcc)-lac expression was observed at nonpermissive temperature, in contrast to its complete inhibition in E. coli cells at the phase of delayed growth. Other stressors-nitrogen starvation, high temperatures, osmotic shock, tetracycline and chloramphenicol-did not activate P(mcc)-lac expression in cells at the exponential growth phase.

  2. Laser-activated gold catalysts for liquid-phase growth of cadmium selenide nanowires.

    PubMed

    Huang, C; Mao, J; Chen, X M; Yang, J; Du, X W

    2015-02-07

    A laser-activated-catalyst (LAC) technique was developed to grow CdSe nanowires in liquid medium at room temperature. The gold catalysts dispersed in the precursor solution were activated by a pulsed laser so as to decompose the precursor and catalyse the nanowire growth simultaneously. The LAC technique can achieve accurate positioning of nanowires, which is beneficial for device fabrication.

  3. Inorganic nitrogen assimilation in yeasts: alteration in enzyme activities associated with changes in cultural conditions and growth phase.

    PubMed

    Thomulka, K W; Moat, A G

    1972-01-01

    Ammonia assimilation has been investigated in four strains of Saccharomyces cerevisiae by measuring, at intervals throughout the growth cycle, the activities of several enzymes concerned with inorganic ammonia assimilation. Enzyme activities in extracts of cells were compared after growth in complete and defined media. The effect of shift from growth in a complete to growth in a defined medium (and the reverse) was also determined. The absence of aspartase (EC 4.3.1.1, l-aspartate-ammonia lyase) activity, the low specific activities of alanine dehydrogenase, glutamine synthetase [EC 6.3.1.2, l-glutamate-ammonia ligase (ADP)], and the marked increase in activity of the nicotinamide adenine dinucleotide phosphate-linked glutamate dehydrogenase (NADP-GDH) [EC 1.4.1.4, l-glutamate:NADP-oxidoreductase (deaminating)] during the early stages of growth support the conclusion that yeasts assimilate ammonia primarily via glutamate. The NADP-GDH showed a rapid increase in activity just before the initiation of exponential growth, reached a maximum at the mid-exponential stage, and then gradually declined in activity in the stationary phase. The NADP-GDH reached a higher level of activity when the yeasts were grown on the defined medium as compared with complete medium. The nicotinamide adenine dinucleotide-linked glutamate dehydrogenase (NAD-GDH) [EC 1.4.1.2, l-glutamate:NAD-oxidoreductase (deaminating)] showed only slight increases in activity during the exponential phase of growth. There was an inverse relationship in that the NADP-GDH increased in activity as the NAD-GDH decreased. The NAD-GDH activity was higher after growth on the complete medium. The glutamate-oxaloacetate transaminase (EC 2.6.1.1. l-aspartate:2-oxoglutarate aminotransferase) activity rose and fell in parallel with the NADP-GDH, although its specific activity was somewhat lower. Although other ammonia-assimilatory enzymes were demonstrable, it seems unlikely that their combined activities could account

  4. Late Holocene phases of dome growth and Plinian activity at Guagua Pichincha volcano (Ecuador)

    NASA Astrophysics Data System (ADS)

    Robin, Claude; Samaniego, Pablo; Le Pennec, Jean-Luc; Mothes, Patricia; van der Plicht, Johannes

    2008-09-01

    Since the eruption which affected Quito in AD 1660, Guagua Pichincha has been considered a hazardous volcano. Based on field studies and twenty 14C dates, this paper discusses the eruptive activity of this volcano, especially that of the last 2000 years. Three major Plinian eruptions with substantial pumice discharge occurred in the 1st century, the 10th century, and in AD 1660. The ages of organic paleosols and charcoal from block-and-ash flow and fallout deposits indicate that these eruptions occurred near the end of 100 to 200 year-long cycles of discontinuous activity which was comprised of dome growth episodes and minor pumice fallouts. The first cycle took place from ~ AD 1 to 140. The second one developed during the 9th and 10th centuries, lasted 150-180 yr, and included the largest Plinian event, with a VEI of 5. The third, historic cycle, about 200 yr in duration, includes pyroclastic episodes around AD 1450 and AD 1500, explosive activity between AD 1566 and AD 1582, possible precursors of the 1660 eruption in the early decades of the 17th century, and finally the 1660 eruption (VEI 4). A fourth event probably occurred around AD 500, but its authenticity requires confirmation. The Plinian events occurred at the end of these cycles which were separated by repose periods of at least 300 yr. Older volcanic activity of similar type occurred between ~ 4000 and ~ 3000 yr BP. Because ash fallout and related mudflows represent a serious hazard for Quito's metropolitan area, the significance of the increasing phreatic activity observed from 1981 to 1998, and the 1999-2001 magmatic episode of dome growth and collapse are discussed. These probably represent a short step in a longer evolution which may result in a major Plinian event in the future decades or in the next century, comparable to that which occurred during the 1st, 10th, and 17th centuries.

  5. Active aperture phased arrays

    NASA Astrophysics Data System (ADS)

    Shenoy, R. P.

    1989-04-01

    Developments towards the realization of active aperture phased arrays are reviewed. The technology and cost aspects of the power amplifier and phase shifter subsystems are discussed. Consideration is given to research concerning T/R modules, MESFETs, side lobe control, beam steering, optical control techniques, and printed circuit antennas. Methods for configuring the array are examined, focusing on the tile and brick configurations. It is found that there is no technological impediment for introducing active aperture phased arrays.

  6. Estimation of activation energy for electroporation and pore growth rate in liquid crystalline and gel phases of lipid bilayers using molecular dynamics simulations.

    PubMed

    Majhi, Amit Kumar; Kanchi, Subbarao; Venkataraman, V; Ayappa, K G; Maiti, Prabal K

    2015-11-28

    Molecular dynamics simulations of electroporation in POPC and DPPC lipid bilayers have been carried out at different temperatures ranging from 230 K to 350 K for varying electric fields. The dynamics of pore formation, including threshold field, pore initiation time, pore growth rate, and pore closure rate after the field is switched off, was studied in both the gel and liquid crystalline (Lα) phases of the bilayers. Using an Arrhenius model of pore initiation kinetics, the activation energy for pore opening was estimated to be 25.6 kJ mol(-1) and 32.6 kJ mol(-1) in the Lα phase of POPC and DPPC lipids respectively at a field strength of 0.32 V nm(-1). The activation energy decreases to 24.2 kJ mol(-1) and 23.7 kJ mol(-1) respectively at a higher field strength of 1.1 V nm(-1). At temperatures below the melting point, the activation energy in the gel phase of POPC and DPPC increases to 28.8 kJ mol(-1) and 34.4 kJ mol(-1) respectively at the same field of 1.1 V nm(-1). The pore closing time was found to be higher in the gel than in the Lα phase. The pore growth rate increases linearly with temperature and quadratically with field, consistent with viscosity limited growth models.

  7. Effect of Production Phase on Growth, Enzyme Activities and Feed Selection of Broilers Raised on Vegetable Protein Diet

    PubMed Central

    Hossain, M. A.; Islam, A. F.; Iji, P. A.

    2014-01-01

    This study consisted of two experiments, conducted to assess the impact of phase at which vegetable protein (VP) diets are introduced to broiler chicks, and preference of birds for diets based on soybean or canola meal (CM). Two hundred and ten day-old Cobb 500 chicks were randomly distributed into five dietary groups in the main experiment. One group was fed on animal protein (AP) diet all through to 21 days of age; two other groups were started on AP diet for 7 days and then switched to diets containing soybean meal (AP-SBM) or AP-CM, while two other diets (SBM-AP and CM-AP) were started on one of the VP diets for 7 days and then switched to AP diet. A sub-experiment on thirty birds raised on a commercial diet to 7 days was used in a feed selection test to quantify the preference of birds for the diets containing mainly CM or SBM. Chicks were reared under similar care and management conditions and the diets were iso-caloric and iso-nitrogenous. Results of the main experiment showed that chicks on CM-AP diet ate more (p<0.05) than those on the other diets up to day 7. Body weight gain was highest (p<0.001) on the AP-SBM diet while birds on the CM-AP diet weighed the least at 7 d. Feed intake, body weight gain, feed conversion ratio, mortality, bone growth, visceral organ development, and activities of digestive enzymes were similar between the groups from hatch to 21 days of age. Results of the second sub-experiment showed that chicks preferred the CM-based diets to the SBM-based diets at 8 to 14 d (p<0.001) and 15 to 21 d (p<0.01) when given a choice. Overall, the birds were not affected by the nature of the starter diet although they tended to prefer the canola to soybean diets. PMID:25358319

  8. Rapid control of phase growth by nanoparticles

    PubMed Central

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Konishi, Hiromi; Jin, Song; Li, Xiao-Chun

    2014-01-01

    Effective control of phase growth under harsh conditions (such as high temperature, highly conductive liquids or high growth rate), where surfactants are unstable or ineffective, is still a long-standing challenge. Here we show a general approach for rapid control of diffusional growth through nanoparticle self-assembly on the fast-growing phase during cooling. After phase nucleation, the nanoparticles spontaneously assemble, within a few milliseconds, as a thin coating on the growing phase to block/limit diffusion, resulting in a uniformly dispersed phase orders of magnitude smaller than samples without nanoparticles. The effectiveness of this approach is demonstrated in both inorganic (immiscible alloy and eutectic alloy) and organic materials. Our approach overcomes the microstructure refinement limit set by the fast phase growth during cooling and breaks the inherent limitations of surfactants for growth control. Considering the growing availability of numerous types and sizes of nanoparticles, the nanoparticle-enabled growth control will find broad applications. PMID:24809454

  9. Utilization of time-kill kinetic methodologies for assessing the bactericidal activities of ampicillin and bismuth, alone and in combination, against Helicobacter pylori in stationary and logarithmic growth phases.

    PubMed Central

    Coudron, P E; Stratton, C W

    1995-01-01

    Assessment of in vitro susceptibility testing of Helicobacter pylori is difficult because of the fastidious, slowly growing nature of this microorganism. The high rate of relapse observed clinically and a possible subpopulation of cells that are not actively replicating suggest the potential need for bactericidal therapy in order to eradicate H. pylori. We used modified time-kill kinetic methodology in order to evaluate the bactericidal activities of ampicillin and bismuth, alone and in combination, against three strains of H. pylori in both a stationary (slow) growth phase and a logarithmic (rapid) growth phase. We found that ampicillin produced a decrease in CFU per milliliter (2 to 4 log10 units) for three strains of H. pylori when tested in logarithmic growth phases but was less inhibitory (< 1-log10-unit decrease in CFU per milliliter) when tested in a stationary growth phase. In contrast, bismuth, when tested in a logarithmic growth phase, produced little inhibitory effect, as the CFU for all strains tested increased above the inoculum. However, when tested in a stationary growth phase, bismuth produced a decrease in CFU per milliliter of < 1 to > 3 log10 units). The activities of these two agents when combined mimicked the activity of the most active drug alone for that growth phase. We conclude that the clinical use of ampicillin combined with bismuth has been more effective than that of either agent used alone because ampicillin targets replicating cells, whereas bismuth targets cells that are not actively replicating. PMID:7695331

  10. Electrical activity, mode of incorporation and distribution coefficient of group V elements in Hg1-xCdxTe grown from tellurium rich liquid phase epitxial growth solutions

    NASA Astrophysics Data System (ADS)

    Vydyanath, H. R.; Ellsworth, J. A.; Devaney, C. M.

    1987-01-01

    Hg1-xCdxTe films were grown liquid phase epitaxially from tellurium rich solutions containing up to 10 at. % of the group V elements P, As, Sb, and Bi. Chemical analysis of the Te growth solutions and the films was carried out in conjunction with extensive Hall effect measurements on the films subsequent to various annealing treatments under Hg rich and Te rich conditions. Despite the presence of a large concentration of the group V elements in the Te source solution, the maximum concentration of these elements incorporated into the liquid phase epitaxially grown Hg1-xCdxTe appears to vary from <1015cm-3 for Bi up to 1017cm-3 for phosphorus and As implying a distribution coefficient varying from <10-5 for Bi up to 10-3 for P at growth temperature of ˜500° C. This low value of the distribution coefficient for group V elements for growths from Te rich solutions contrasts with the moderately high values reported in the literature to date for growth from Hg rich solutions as well as pseudobinary solutions (Bridgman growth). The widely differing distribution coefficients and hence the solubility of the group V elements for Hg rich and Te rich liquid phase epitaxial solutions is explained on the basis that the activity coefficient of the group V elements in Te rich solutions is probably orders of magnitude lower than it is in Hg rich solutions. Finally, the results of the anneals at 200° C under Hg saturated conditions with and without a 500° C Hg saturated preanneal have indicated n to p conversion in many of the films attesting to the amphoteric behavior of the group V elements in LPE grown Hg1-xCdxTe(s) similar to the previously reported behavior of P in bulk grown Hg0.8Cd0.2Te.

  11. Nitrogen controlled iron catalyst phase during carbon nanotube growth

    SciTech Connect

    Bayer, Bernhard C.; Baehtz, Carsten; Kidambi, Piran R.; Weatherup, Robert S.; Caneva, Sabina; Cabrero-Vilatela, Andrea; Hofmann, Stephan; Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C.; Goddard, Caroline J. L.

    2014-10-06

    Close control over the active catalyst phase and hence carbon nanotube structure remains challenging in catalytic chemical vapor deposition since multiple competing active catalyst phases typically co-exist under realistic synthesis conditions. Here, using in-situ X-ray diffractometry, we show that the phase of supported iron catalyst particles can be reliably controlled via the addition of NH{sub 3} during nanotube synthesis. Unlike polydisperse catalyst phase mixtures during H{sub 2} diluted nanotube growth, nitrogen addition controllably leads to phase-pure γ-Fe during pre-treatment and to phase-pure Fe{sub 3}C during growth. We rationalize these findings in the context of ternary Fe-C-N phase diagram calculations and, thus, highlight the use of pre-treatment- and add-gases as a key parameter towards controlled carbon nanotube growth.

  12. A Distributed Activation Energy Model of Thermodynamically Inhibited Nucleation and Growth Reactions and its Application to the Phase Transition of HMX

    SciTech Connect

    Burnham, A K; Weese, R K; Weeks, B L

    2004-07-20

    Detailed and global models are presented for thermodynamically inhibited nucleation-growth reactions and applied to the {beta}-{delta} Phase Transition of HMX (nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). The detailed model contains separate kinetic parameters for the nucleation process, including an activation energy distribution resulting from a distribution of defect energies, and for movement of the resulting reaction interface within a single particle. A thermodynamic inhibition term is added to both processes so that the rates go to zero at the transition temperature. The global model adds the thermodynamic inhibition term to the extended Prout-Tompkins nucleation-growth formalism for single particles or powders. Model parameters are calibrated from differential scanning calorimetry data. The activation energy for nucleation (333 kJ/mol) is substantially higher than that for growth (29.3 kJ/mol). Use of a small activation energy distribution ({approx}400 J/mol) for the defects improves the fit to a powered sample for both the early and late stages of the transition. The effective overall activation energy for the global model (208.8 kJ/mol) is in between that of nucleation and growth. Comparison of the two models with experiment indicates the thermodynamic inhibition term is more important than the energy distribution feature for this transition. Based on the applicability of the Prout-Tompkins kinetics approach to a wide range of organic and inorganic materials, both models should have equally broad applicability for thermodynamically constrained reactions.

  13. A Distributed Activation Energy Model of Thermodynamically Inhibited Nucleation and Growth Reactions and its Application to the beta-delta Phase Transition of HMX

    SciTech Connect

    Burnham, A K; Weese, R K; Weeks, B L

    2004-06-18

    Detailed and global models are presented for thermodynamically inhibited nucleation-growth reactions and applied to the {beta}-{delta} Phase Transition of HMX (nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). The detailed model contains separate kinetic parameters for the nucleation process, including an activation energy distribution resulting from a distribution of defect energies, and for movement of the resulting reaction interface within a single particle. A thermodynamic inhibition term is added to both processes so that the rates go to zero at the transition temperature. The global model adds the thermodynamic inhibition term to the extended Prout-Tompkins nucleation-growth formalism for single particles or powders. Model parameters are calibrated from differential scanning calorimetry data. The activation energy for nucleation (333 kJ/mol) is substantially higher than that for growth (29.3 kJ/mol). Use of a small activation energy distribution ({approx}400 J/mol) for the defects improves the fit to a powered sample for both the early and late stages of the transition. The effective overall activation energy for the global model (208.8 kJ/mol) is in between that of nucleation and growth. Comparison of the two models with experiment indicates the thermodynamic inhibition term is more important than the energy distribution feature for this transition. Based on the applicability of the Prout-Tompkins kinetics approach to a wide range of organic and inorganic materials, both models should have equally broad applicability for thermodynamically constrained reactions.

  14. In vitro activity of gallium maltolate against Staphylococci in logarithmic, stationary, and biofilm growth phases: comparison of conventional and calorimetric susceptibility testing methods.

    PubMed

    Baldoni, Daniela; Steinhuber, Andrea; Zimmerli, Werner; Trampuz, Andrej

    2010-01-01

    Ga(3+) is a semimetal element that competes for the iron-binding sites of transporters and enzymes. We investigated the activity of gallium maltolate (GaM), an organic gallium salt with high solubility, against laboratory and clinical strains of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), and methicillin-resistant S. epidermidis (MRSE) in logarithmic or stationary phase and in biofilms. The MICs of GaM were higher for S. aureus (375 to 2000 microg/ml) than S. epidermidis (94 to 200 microg/ml). Minimal biofilm inhibitory concentrations were 3,000 to >or=6,000 microg/ml (S. aureus) and 94 to 3,000 microg/ml (S. epidermidis). In time-kill studies, GaM exhibited a slow and dose-dependent killing, with maximal action at 24 h against S. aureus of 1.9 log(10) CFU/ml (MSSA) and 3.3 log(10) CFU/ml (MRSA) at 3x MIC and 2.9 log(10) CFU/ml (MSSE) and 4.0 log(10) CFU/ml (MRSE) against S. epidermidis at 10x MIC. In calorimetric studies, growth-related heat production was inhibited by GaM at subinhibitory concentrations; and the minimal heat inhibition concentrations were 188 to 4,500 microg/ml (MSSA), 94 to 1,500 microg/ml (MRSA), and 94 to 375 microg/ml (MSSE and MRSE), which correlated well with the MICs. Thus, calorimetry was a fast, accurate, and simple method useful for investigation of antimicrobial activity at subinhibitory concentrations. In conclusion, GaM exhibited activity against staphylococci in different growth phases, including in stationary phase and biofilms, but high concentrations were required. These data support the potential topical use of GaM, including its use for the treatment of wound infections, MRSA decolonization, and coating of implants.

  15. Athena: Assessment Phase Activities

    NASA Astrophysics Data System (ADS)

    Lumb, David; Ayre, Mark

    2015-09-01

    The Athena mission concept has been proposed by the community in response to science themes of the Hot and Energetic Universe. Unlike other, competitive, mission selection exercises this "Large" class observatory mission has essentially been pre-selected. Nevertheless it has to be demonstrated that Athena meets the programmatic constraints of 1Bn euro cost cap, and a readiness level appropriate for formal mission adoption by the end 2019. This should be confirmed through a Phase A study conducted with two parallel industry activities. We describe the technical and programmatic content of these and latest progress in space and ground segment definition.

  16. Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity.

    PubMed

    Wang, Yixian; Zhang, Xiao; Luo, Zhimin; Huang, Xiao; Tan, Chaoliang; Li, Hai; Zheng, Bing; Li, Bing; Huang, Ying; Yang, Jian; Zong, Yun; Ying, Yibin; Zhang, Hua

    2014-11-07

    A facile method for the synthesis of metal nanostructure-decorated two-dimensional (2D) semiconductor nanosheets was developed. The solution-processable molybdenum trioxide (MoO3) nanosheet was used as a template for direct liquid-phase growth of platinum nanoparticles (Pt NPs) under ambient conditions. Results show that the Pt NPs with sizes of 1-3 nm were uniformly grown on the MoO3 surface. Importantly, the Pt-MoO3 hybrid nanomaterial exhibits an enhanced peroxidase-like catalytic activity compared to the MoO3 nanosheet, Pt NPs, and their physical mixture under the same conditions. As a proof-of-concept application, the Pt-MoO3 hybrid nanomaterial was used as a high-efficiency peroxidase-mimic for ultrasensitive colorimetric detection of glucose in serum samples. This work provides a promising strategy for design and development of biomimetic catalysts by smart assembly of different dimensional nanomaterials.

  17. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation.

    PubMed

    Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon

    2010-04-01

    Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.

  18. In Vitro Activity of Gallium Maltolate against Staphylococci in Logarithmic, Stationary, and Biofilm Growth Phases: Comparison of Conventional and Calorimetric Susceptibility Testing Methods▿

    PubMed Central

    Baldoni, Daniela; Steinhuber, Andrea; Zimmerli, Werner; Trampuz, Andrej

    2010-01-01

    Ga3+ is a semimetal element that competes for the iron-binding sites of transporters and enzymes. We investigated the activity of gallium maltolate (GaM), an organic gallium salt with high solubility, against laboratory and clinical strains of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), and methicillin-resistant S. epidermidis (MRSE) in logarithmic or stationary phase and in biofilms. The MICs of GaM were higher for S. aureus (375 to 2000 μg/ml) than S. epidermidis (94 to 200 μg/ml). Minimal biofilm inhibitory concentrations were 3,000 to ≥6,000 μg/ml (S. aureus) and 94 to 3,000 μg/ml (S. epidermidis). In time-kill studies, GaM exhibited a slow and dose-dependent killing, with maximal action at 24 h against S. aureus of 1.9 log10 CFU/ml (MSSA) and 3.3 log10 CFU/ml (MRSA) at 3× MIC and 2.9 log10 CFU/ml (MSSE) and 4.0 log10 CFU/ml (MRSE) against S. epidermidis at 10× MIC. In calorimetric studies, growth-related heat production was inhibited by GaM at subinhibitory concentrations; and the minimal heat inhibition concentrations were 188 to 4,500 μg/ml (MSSA), 94 to 1,500 μg/ml (MRSA), and 94 to 375 μg/ml (MSSE and MRSE), which correlated well with the MICs. Thus, calorimetry was a fast, accurate, and simple method useful for investigation of antimicrobial activity at subinhibitory concentrations. In conclusion, GaM exhibited activity against staphylococci in different growth phases, including in stationary phase and biofilms, but high concentrations were required. These data support the potential topical use of GaM, including its use for the treatment of wound infections, MRSA decolonization, and coating of implants. PMID:19805560

  19. Growth inhibitory effects of gastric cancer cells with an increase in S phase and alkaline phosphatase activity repression by aloe-emodin.

    PubMed

    Guo, Junming; Xiao, Bingxiu; Zhang, Shun; Liu, Donghai; Liao, Yiping; Sun, Qian

    2007-01-01

    Aloe-emodin is a novel active compound found in the root and rhizome of Rheum palmatum. To investigate the effects and mechanisms of aloe-emodin on human gastric cancer, MGC-803 cells were treated with 2.5, 5, 10, 20 and 40 microM aloe-emodin for 1-5 d. The results showed that aloe-emodin inhibited the growth of cancer cells in a dose-dependent manner with an increase in S phase and in the proportion of cells cycling at a higher ploidy level (>G2/M). Moreover, the alkaline phosphatase (ALP) activity, an indicator of cell differentiation, was found decreased. This is one of the first to focus on the effect of ALP activity in human gastric carcinomas cells treated by aloe-emodin. These results indicate that aloe-emodin has a potential value for the treatment of gastric cancer and its mechanisms are by means of cell cycle interruption and induce differentiation.

  20. Vapor phase diamond growth technology

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1981-01-01

    Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.

  1. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  2. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  3. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  4. Phase field modeling of grain growth in porous polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Ahmed, Karim E.

    The concurrent evolution of grain size and porosity in porous polycrystalline solids is a technically important problem. All the physical properties of such materials depend strongly on pore fraction and pore and grain sizes and distributions. Theoretical models for the pore-grain boundary interactions during grain growth usually employ restrictive, unrealistic assumptions on the pore and grain shapes and motions to render the problem tractable. However, these assumptions limit the models to be only of qualitative nature and hence cannot be used for predictions. This has motivated us to develop a novel phase field model to investigate the process of grain growth in porous polycrystalline solids. Based on a dynamical system of coupled Cahn-Hilliard and All en-Cahn equations, the model couples the curvature-driven grain boundary motion and the migration of pores via surface diffusion. As such, the model accounts for all possible interactions between the pore and grain boundary, which highly influence the grain growth kinetics. Through a formal asymptotic analysis, the current work demonstrates that the phase field model recovers the corresponding sharp-interface dynamics of the co-evolution of grain boundaries and pores; this analysis also fixes the model kinetic parameters in terms of real materials properties. The model was used to investigate the effect of porosity on the kinetics of grain growth in UO2 and CeO2 in 2D and 3D. It is shown that the model captures the phenomenon of pore breakaway often observed in experiments. Pores on three- and four- grain junctions were found to transform to edge pores (pores on two-grain junction) before complete separation. The simulations demonstrated that inhomogeneous distribution of pores and pore breakaway lead to abnormal grain growth. The simulations also showed that grain growth kinetics in these materials changes from boundary-controlled to pore-controlled as the amount of porosity increases. The kinetic growth

  5. Condensed phase conversion and growth of nanorods and other materials instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2010-10-19

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed phase matrix material instead of from vapor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  6. Investigation of Growth Phase-Dependent Acid Tolerance in Bifidobacteria longum BBMN68.

    PubMed

    Jin, Junhua; Song, Jingyi; Ren, Fazheng; Zhang, Hongxing; Xie, Yuanhong; Ma, Jingsheng; Li, Xue

    2016-11-01

    The underlying mechanisms imparting the growth phase-dependent acid tolerance have not been extensively investigated. In this study, we compared the acid resistance of the Bifidobacterium longum strain BBMN68 from different growth phases at lethal pH values (pH 2.5, 3.0, and 3.5), and analyzed the activity of H(+)-ATPase, the composition of fatty acids, and the mRNA abundance of ffh, uvrA, recA, lexA, groES, and dnaK in cells from different growth phases. The results indicated that the survival rates of cells from early stationary (ES) and late stationary (LS) growth phases at lethal pH values were significantly higher than those of exponential growth phase cells. Our findings indicated that by inducing a continuously auto-acidizing environment during cell growth, the acid resistance of ES and LS cells was strengthened. The higher activity of H(+)-ATPase, the decrease in unsaturated fatty acids, and the increased expression of genes involved in DNA repair and protein protection in the cells in stationary growth phase were all implicated in the significantly increased acid resistance of ES and LS cells compared with exponential growth phase cells of the B. longum strain BBMN68.

  7. Growth and Morphology of Phase Separating Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Beysens, Daniel; Perrot, Francoise; Nikolayev, Vadim; Garrabos, Yves

    1996-01-01

    The scientific objective is to study the relation between the morphology and the growth kinetics of domains during phase separation. We know from previous experiments performed near the critical point of pure fluids and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties.

  8. Phase transformations during the growth of paracetamol crystals from the vapor phase

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2014-07-01

    Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.

  9. Condensed phase conversion and growth of nanorods instead of from vapor

    SciTech Connect

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2005-08-02

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed chase matrix material instead of from vacor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  10. In situ monitoring of liquid phase electroepitaxial growth

    NASA Technical Reports Server (NTRS)

    Okamoto, A.; Isozumi, S.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    In situ monitoring of the layer thickness during liquid phase electroepitaxy (LPEE) was achieved with a submicron resolution through precise resistance measurements. The new approach to the study and control of LPEE was applied to growth of undoped and Ge-doped GaAs layers. The in situ determined growth kinetics was found to be in excellent agreement with theory.

  11. Crystal growth within a phase change memory cell.

    PubMed

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  12. Continuum Theory of Phase Separation Kinetics for Active Brownian Particles

    NASA Astrophysics Data System (ADS)

    Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J.; Marenduzzo, Davide; Cates, Michael E.

    2013-10-01

    Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.

  13. Dynamic Particle Growth Testing - Phase I Studies

    SciTech Connect

    Hu, M.Z-C.

    2001-05-17

    There is clearly a great need to understand the processes of crystallization and solid scale formation that led to the shutdown of 2H evaporator operation at the Savannah River Site (SRS) and could possibly cause similar problems in the future in other evaporators. Waste streams from SRS operations that enter the evaporators generally contain alkaline, sodium nitrate/nitrite-based solutions with various changing concentrations of silicates and aluminates. It has been determined. that the silicates and aluminates served as precursor reactants for forming unwanted minerals during solution evaporation, upon transport, or upon storage. Mineral forms of the Zeolite Linde A group--sodalites and cancrinite--along with gibbsite, have often been identified as contributing to deposit (scale) formation on surfaces of the 2H evaporator as well as to the formation of solid plugs in the gravity drain line and lift line. Meanwhile, solids (amorphous or crystalline minerals) are believed, without direct evidence, to form in the bulk solutions in the evaporator. In addition, the position of deposits in the 2H evaporator suggests that scale formation depends on the interplay of heat and mass transfer, hydrodynamics, and reaction mechanisms and kinetics. The origin of solid scale formation on walls could be due to heterogeneous nucleation and/or to homogeneous nucleation followed by cluster/particle deposition. Preliminary laboratory tests at the Savannah River Technology Center (SRTC) with standing metal coupons seem to support the latter mechanism for initial deposition; that is, the solid particles form in the bulk solution first and then deposit on the metal surfaces. Further buildup of deposits may involve both mechanisms: deposition and crystal growth. Therefore, there may be a direct linkage between the solid particle growth in bulk solution and the scale buildup on the wall surfaces. On the other hand, even if scale formation is due solely to a heterogeneous mechanism

  14. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification

    PubMed Central

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B.; Nys, Yves; Gautron, Joël

    2015-01-01

    Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed. PMID:26306314

  15. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification.

    PubMed

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B; Nys, Yves; Gautron, Joël

    2015-09-01

    Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.

  16. The quiescent phase of galactic disc growth

    NASA Astrophysics Data System (ADS)

    Aumer, Michael; Binney, James; Schönrich, Ralph

    2016-07-01

    We perform a series of controlled N-body simulations of growing disc galaxies within non-growing, live dark matter haloes of varying mass and concentration. Our initial conditions include either a low-mass disc or a compact bulge. New stellar particles are continuously added on near-circular orbits to the existing disc, so spiral structure is continuously excited. To study the effect of combined spiral and giant molecular cloud (GMC) heating on the discs, we introduce massive, short-lived particles that sample a GMC mass function. An isothermal gas component is introduced for a subset of the models. We perform a resolution study and vary parameters governing the GMC population, the histories of star formation and radial scale growth. Models with GMCs and standard values for the disc mass and halo density provide the right level of self-gravity to explain the age-velocity dispersion relation of the solar neighbourhood (Snhd). GMC heating generates remarkably exponential vertical profiles with scaleheights that are radially constant and agree with observations of galactic thin discs. GMCs are also capable of significantly delaying bar formation. The amount of spiral-induced radial migration agrees with what is required for the metallicity distribution of the Snhd. However, in our standard models, the outward-migrating populations are not hot enough vertically to create thick discs. Thick discs can form in models with high baryon fractions, but the corresponding bars are too long, the young stellar populations too hot and the discs flare considerably.

  17. Growth phase-dependent composition of the Helicobacter pylori exoproteome.

    PubMed

    Snider, Christina A; Voss, Bradley J; McDonald, W Hayes; Cover, Timothy L

    2016-01-01

    Helicobacter pylori colonizes the human stomach and is associated with an increased risk of gastric cancer and peptic ulcer disease. Analysis of H. pylori protein secretion is complicated by the occurrence of bacterial autolysis. In this study, we analyzed the exoproteome of H. pylori at multiple phases of bacterial growth and identified 74 proteins that are selectively released into the extracellular space. These include proteins known to cause alterations in host cells, antigenic proteins, and additional proteins that have not yet been studied in any detail. The composition of the H. pylori exoproteome is dependent on the phase of bacterial growth. For example, the proportional abundance of the vacuolating toxin VacA in culture supernatant is higher during late growth phases than early growth phases, whereas the proportional abundance of many other proteins is higher during early growth phases. We detected marked variation in the subcellular localization of putative secreted proteins within soluble and membrane fractions derived from intact bacteria. By providing a comprehensive view of the H. pylori exoproteome, these results provide new insights into the array of secreted H. pylori proteins that may cause alterations in the gastric environment.

  18. Nucleation and growth of the Alpha-Prime Phase martensitic phase in Pu-Ga Alloys

    SciTech Connect

    Blobaum, K M; Krenn, C R; Wall, M A; Massalski, T B; Schwartz, A J

    2005-02-09

    In a Pu-2.0 at% Ga alloy, it is observed experimentally that the amount of the martensitic alpha-prime product formed upon cooling the metastable delta phase below the martensite burst temperature (M{sub b}) is a function of the holding temperature and holding time of a prior conditioning (''annealing'') treatment. Before subjecting a sample to a cooling and heating cycle to form and revert the alpha-prime phase, it was first homogenized for 8 hours at 375 C to remove any microstructural memory of prior transformations. Subsequently, conditioning was carried out in a differential scanning calorimeter apparatus at temperatures in the range between -50 C and 370 C for periods of up to 70 hours to determine the holding time and temperature that produced the largest volume fraction of alpha-prime upon subsequent cooling. Using transformation peak areas (i.e., the heats of transformation) as a measure of the amount of alpha-prime formed, the largest amount of alpha-prime was obtained following holding at 25 C for at prime least 6 hours. Additional time at 25 C, up to 70 hours, did not increase the amount of subsequent alpha-prime formation. At 25 C, the Pu-2.0 at% Ga alloy is below the eutectoid transformation temperature in the phase diagram and the expected equilibrium phases are {alpha} and Pu{sub 3}Ga, although a complete eutectoid decomposition of delta to these phases is expected to be extremely slow. It is proposed here that the influence of the conditioning treatment can be attributed to the activation of alpha-phase embryos in the matrix as a beginning step toward the eutectoid decomposition, and we discuss the effects of spontaneous self-irradiation accompanying the Pu radioactive decay on the activation process. Subsequently, upon cooling, certain embryos appear to be active as sites for the burst growth of martensitic alpha-prime particles, and their amount, distribution, and potency appear to contribute to the total amount of martensitic product formed. A

  19. The phase-field model in tumor growth

    NASA Astrophysics Data System (ADS)

    Travasso, Rui D. M.; Castro, Mario; Oliveira, Joana C. R. E.

    2011-01-01

    Tumor growth is becoming a central problem in biophysics both from its social and medical interest and, more fundamentally, because it is a remarkable example of an emergent complex system. Focusing on the description of the spatial and dynamical features of tumor growth, in this paper we review recent tumor modeling approaches using a technique borrowed from materials science: the phase-field models. These models allow us, with a large degree of generality, to identify the paramount mechanisms causing the uncontrolled growth of tumor cells as well as to propose new guidelines for experimentation both in simulation and in the laboratory. We finish by discussing open directions of research in phase-field modeling of tumor growth to catalyze the interest of physicists and mathematicians in this emergent field.

  20. Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes.

    PubMed

    Liu, Bilu; Liu, Jia; Tu, Xiaomin; Zhang, Jialu; Zheng, Ming; Zhou, Chongwu

    2013-09-11

    Structurally uniform and chirality-pure single-wall carbon nanotubes are highly desired for both fundamental study and many of their technological applications, such as electronics, optoelectronics, and biomedical imaging. Considerable efforts have been invested in the synthesis of nanotubes with defined chiralities by tuning the growth recipes but the approach has only limited success. Recently, we have shown that chirality-pure short nanotubes can be used as seeds for vapor-phase epitaxial cloning growth, opening up a new route toward chirality-controlled carbon nanotube synthesis. Nevertheless, the yield of vapor-phase epitaxial growth is rather limited at the present stage, due in large part to the lack of mechanistic understanding of the process. Here we report chirality-dependent growth kinetics and termination mechanism for the vapor-phase epitaxial growth of seven single-chirality nanotubes of (9, 1), (6, 5), (8, 3), (7, 6), (10, 2), (6, 6), and (7, 7), covering near zigzag, medium chiral angle, and near armchair semiconductors, as well as armchair metallic nanotubes. Our results reveal that the growth rates of nanotubes increase with their chiral angles while the active lifetimes of the growth hold opposite trend. Consequently, the chirality distribution of a nanotube ensemble is jointly determined by both growth rates and lifetimes. These results correlate nanotube structures and properties with their growth behaviors and deepen our understanding of chirality-controlled growth of nanotubes.

  1. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  2. Phase transition in tumor growth: I avascular development

    NASA Astrophysics Data System (ADS)

    Izquierdo-Kulich, E.; Rebelo, I.; Tejera, E.; Nieto-Villar, J. M.

    2013-12-01

    We propose a mechanism for avascular tumor growth based on a simple chemical network. This model presents a logistic behavior and shows a “second order” phase transition. We prove the fractal origin of the empirical logistics and Gompertz constant and its relation to mitosis and apoptosis rate. Finally, the thermodynamics framework developed demonstrates the entropy production rate as a Lyapunov function during avascular tumor growth.

  3. Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation

    PubMed Central

    Rolfe, Matthew D.; Rice, Christopher J.; Lucchini, Sacha; Pin, Carmen; Thompson, Arthur; Cameron, Andrew D. S.; Alston, Mark; Stringer, Michael F.; Betts, Roy P.; Baranyi, József; Peck, Michael W.

    2012-01-01

    Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not “poised” upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments. PMID:22139505

  4. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation.

    PubMed

    Rolfe, Matthew D; Rice, Christopher J; Lucchini, Sacha; Pin, Carmen; Thompson, Arthur; Cameron, Andrew D S; Alston, Mark; Stringer, Michael F; Betts, Roy P; Baranyi, József; Peck, Michael W; Hinton, Jay C D

    2012-02-01

    Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not "poised" upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments.

  5. Phase transitions in tumor growth: III vascular and metastasis behavior

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, J. A.; Cocho, G.; Mansilla, R.; Nieto-Villar, José Manuel

    2016-11-01

    We propose a mechanism for avascular, vascular and metastasis tumor growth based on a chemical network model. Vascular growth and metastasis, appear as a hard phase transition type, as "first order", through a supercritical Andronov-Hopf bifurcation, emergence of limit cycle and then through a cascade of bifurcations type saddle-foci Shilnikov's bifurcation. Finally, the thermodynamics framework developed shows that the entropy production rate, as a Lyapunov function, indicates the directional character and stability of the dynamical behavior of tumor growth according to this model.

  6. Growth of a two-phase finger in eutectics systems.

    PubMed

    Boussinot, G; Hüter, C; Brener, E A

    2011-02-01

    We present a theoretical study of the growth of a two-phase finger in eutectic systems. This pattern was observed experimentally by Akamatsu and Faivre [Phys. Rev. E 61, 3757 (2000)]. We study this two-phase finger using a boundary-integral formulation and we complement our investigation by a phase-field validation of the stability of the pattern. The deviations from the eutectic temperature and from the eutectic concentration provide two independent control parameters, leading to very different patterns depending on their relative importance. We propose scaling laws for the velocity and the different length scales of the pattern.

  7. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  8. Growth Phase dependent gene regulation in Bordetella bronchiseptica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bordetellae are Gram negative bacterial respiratory pathogens. Bordetella pertussis, the causative agent of whooping cough, is a human-restricted variant of Bordetella bronchiseptica, which infects a broad range of mammals causing chronic and often asymptomatic infections. Growth phase dependent gen...

  9. Crystal growth in a three-phase system: Diffusion and liquid-liquid phase separation in lysozyme crystal growth

    NASA Astrophysics Data System (ADS)

    Heijna, M. C. R.; van Enckevort, W. J. P.; Vlieg, E.

    2007-07-01

    In the phase diagram of the protein hen egg-white lysozyme, a region is present in which the lysozyme solution demixes and forms two liquid phases. In situ observations by optical microscopy show that the dense liquid droplets dissolve when crystals grow in this system. During this process the demixed liquid region retracts from the crystal surface. The spatial distribution of the dense phase droplets present special boundary conditions for Fick’s second law for diffusion. In combination with the cylindrical symmetry provided by the kinetically roughened crystals, this system allows for a full numerical analysis. Using experimental data for setting the boundary conditions, a quasi-steady-state solution for the time-dependent concentration profile was shown to be valid. Comparison of kinetically rough growth in a phase separated system and in a nonseparated system shows that the growth kinetics for a three-phase system differs from a two-phase system, in that crystals grow more slowly but the duration of growth is prolonged.

  10. Crystal growth in a three-phase system: diffusion and liquid-liquid phase separation in lysozyme crystal growth.

    PubMed

    Heijna, M C R; van Enckevort, W J P; Vlieg, E

    2007-07-01

    In the phase diagram of the protein hen egg-white lysozyme, a region is present in which the lysozyme solution demixes and forms two liquid phases. In situ observations by optical microscopy show that the dense liquid droplets dissolve when crystals grow in this system. During this process the demixed liquid region retracts from the crystal surface. The spatial distribution of the dense phase droplets present special boundary conditions for Fick's second law for diffusion. In combination with the cylindrical symmetry provided by the kinetically roughened crystals, this system allows for a full numerical analysis. Using experimental data for setting the boundary conditions, a quasi-steady-state solution for the time-dependent concentration profile was shown to be valid. Comparison of kinetically rough growth in a phase separated system and in a nonseparated system shows that the growth kinetics for a three-phase system differs from a two-phase system, in that crystals grow more slowly but the duration of growth is prolonged.

  11. A binary phase field crystal study for liquid phase heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Peng, Yingying; Chen, Zheng

    2016-09-01

    The liquid phase heteroepitaxial growth on predefined crystalline substrate is studied with binary phase field crystal (PFC) model. The purpose of this paper focuses on changes of the morphology of epitaxial films, influences of substrate vicinal angles on epitaxial growth, characteristics of islands growth on both sides of the substrate as well. It is found that the morphology of epitaxial films undergoes the following transitions: layer-by-layer growth, islands formation, mismatch dislocations nucleation and climb towards the film-substrate interface. Meanwhile, the density of steps and islands has obviously direct ratio relations with the vicinal angles. Also, preferential regions are found when islands grow on both sides of the substrate. For thinner substrate, the arrangement of islands is more orderly and the appearance of preferential growth is more obvious than that of thicker substrate. Also, the existing of preferential regions is much more valid for small substrate vicinal angles in contrast for big substrate vicinal angles.

  12. Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Tominaga, Yusuke; Maruyama, Mihoko; Yoshimura, Masashi; Koizumi, Haruhiko; Tachibana, Masaru; Sugiyama, Shigeru; Adachi, Hiroaki; Tsukamoto, Katsuo; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Yoshikawa, Hiroshi Y.; Mori, Yusuke

    2016-11-01

    Large single crystals with desirable shapes are essential for various scientific and industrial fields, such as X-ray/neutron crystallography and crystalline devices. However, in the case of proteins the production of such crystals is particularly challenging, despite the efforts devoted to optimization of the environmental, chemical and physical parameters. Here we report an innovative approach for promoting the growth of protein crystals by directly modifying the local crystal structure via femtosecond laser ablation. We demonstrate that protein crystals with surfaces that are locally etched (several micrometers in diameter) by femtosecond laser ablation show enhanced growth rates without losing crystal quality. Optical phase-sensitive microscopy and X-ray topography imaging techniques reveal that the local etching induces spiral growth, which is energetically advantageous compared with the spontaneous two-dimensional nucleation growth mode. These findings prove that femtosecond laser ablation can actively switch the crystal growth mode, offering flexible control over the size and shape of protein crystals.

  13. Liquid phase epitaxial growth of bismuth based superconductors

    NASA Astrophysics Data System (ADS)

    Takemoto, J.; Miyashita, S.; Inoue, T.; Komatsu, H.

    1996-05-01

    The liquid phase epitaxial growth of superconducting films of Bi 2Sr 2CaCu 2O y (2212 phase) and Bi 2Sr 2CuO z (2201 phase) were carried out on three types of substrates; SrTiO 3, LaAlO 3 and NdGaO 3. Twinning structures of the 2212 phase were observed in the films grown on the SrTiO 3 (100) and LaAlO 3 (100) substrates which belong to the cubic crystal system, while nearly twin-free structures were obtained when the film was grown on the NdGaO 3 (001) substrate (orthorhombic system). Atomic force microscopy revealed a 2201 phase film with a reasonably flat area (several μm 2) grown on the LaAlO 3 (100) substrate. It was observed that the 2212 phase nucleated on the substrate following the Volmer-Weber type mechanism (three-dimensional island growth mode). The enlarging processes of the island layers were discussed.

  14. Learning Activities for the Growth Season.

    ERIC Educational Resources Information Center

    Darby, Linda, Ed.

    This poster, illustrated with a graphic of a caterpillar changing to a cocoon and emerging as a butterfly, presents learning activities for 7 weeks based on the seven stages of growth in the President's "Call to Action." Each week includes 5 days of activities based on seven themes: (1) "Reading on Your Own"; (2) "Getting…

  15. Physics of Substorm Growth Phase, Onset, and Dipolarization

    SciTech Connect

    C.Z. Cheng

    2003-10-22

    A new scenario of substorm growth phase, onset, and depolarization during expansion phase and the corresponding physical processes are presented. During the growth phase, as a result of enhanced plasma convection, the plasma pressure and its gradient are continued to be enhanced over the quiet-time values in the plasma sheet. Toward the late growth phase, a strong cross-tail current sheet is formed in the near-Earth plasma sheet region, where a local magnetic well is formed, the plasma beta can reach a local maximum with value larger than 50 and the cross-tail current density can be enhanced to over 10nA/m{sup 2} as obtained from 3D quasi-static magnetospheric equilibrium solutions for the growth phase. The most unstable kinetic ballooning instabilities (KBI) are expected to be located in the tailward side of the strong cross-tail current sheet region. The field lines in the most unstable KBI region map to the transition region between the region-1 and region-2 currents in the ionosphere, which is consistent with the observed initial brightening location of the breakup arc in the intense proton precipitation region. The KBI explains the AMPTE/CCE observations that a low-frequency instability with a wave period of 50-75 seconds is excited about 2-3 minutes prior to substorm onset and grows exponentially to a large amplitude at the onset of current disruption (or current reduction). At the current disruption onset higher frequency instabilities are excited so that the plasma and electromagnetic field fluctuations form a strong turbulent state. Plasma transport takes place due to the strong turbulence to relax the ambient plasma pressure profile so that the plasma pressure and current density are reduced and the ambient magnetic field intensity increases by more than a factor of 2 in the high-beta(sub)eq region and the field line geometry recovers from tail-like to dipole-like dipolarization.

  16. Differentiating the growth phases of single bacteria using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  17. Endogenous GABAA receptor activity suppresses glioma growth.

    PubMed

    Blanchart, A; Fernando, R; Häring, M; Assaife-Lopes, N; Romanov, R A; Andäng, M; Harkany, T; Ernfors, P

    2017-02-09

    Although genome alterations driving glioma by fueling cell malignancy have largely been resolved, less is known of the impact of tumor environment on disease progression. Here, we demonstrate functional GABAA receptor-activated currents in human glioblastoma cells and show the existence of a continuous GABA signaling within the tumor cell mass that significantly affects tumor growth and survival expectancy in mouse models. Endogenous GABA released by tumor cells, attenuates proliferation of the glioma cells with enriched expression of stem/progenitor markers and with competence to seed growth of new tumors. Our results suggest that GABA levels rapidly increase in tumors impeding further growth. Thus, shunting chloride ions by a maintained local GABAA receptor activity within glioma cells has a significant impact on tumor development by attenuating proliferation, reducing tumor growth and prolonging survival, a mechanism that may have important impact on therapy resistance and recurrence following tumor resection.

  18. Nucleation and growth studies of crystalline carbon phases at nanoscale

    NASA Astrophysics Data System (ADS)

    Mani, Radhika C.

    Understanding the nucleation and early stage growth of crystals from the vapor phase is important for realizing large-area single-crystal quality films, controlled synthesis of nanocrystals, and the possible discovery of new phases of materials. Carbon provides the most interesting system because all its known crystalline phases (diamond, graphite and carbon nanotubes) are technologically important materials. Hence, this dissertation is focused on studying the nucleation and growth of carbon phases synthesized from the vapor phase. Nucleation experiments were performed in a microwave plasma chemical vapor deposition (CVD) reactor, and the resulting carbon nanocrystals were analyzed primarily using electron nanodiffraction and Raman spectroscopy. These studies led to the discovery of two new crystalline phases of sp 3 carbon other than diamond: face-centered and body-centered cubic carbon. Nanodiffraction results revealed possible hydrogen substitution into diamond-cubic lattices, indicating that these new phases probably act as intermediates in diamond nucleation. Nucleation experiments also led to the discovery of two new morphologies for sp2 carbon: nanocrystals of graphite and tapered, hollow 1-D structures termed here as "carbon nanopipettes". A Kinetic Monte Carlo (KMC) algorithm was developed to simulate the growth of individual diamond crystals from the vapor phase, starting with small clusters of carbon atoms (or seeds). Specifically, KMC simulations were used to distinguish the kinetic rules that give rise to a star-shaped decahedral morphology compared to decahedral crystals. KMC simulations revealed that slow adsorption on the {111} step-propagation sites compared to kink sites leads to star-decahedral crystals, and higher adsorption leads to decahedral crystals. Since the surfaces of the nanocrystals of graphite and nanopipettes were expected to be composed primarily of edge-plane sites, the electrochemical behavior of both these materials were

  19. Grain growth kinetics in liquid-phase-sintered zinc oxide-barium oxide ceramics

    NASA Technical Reports Server (NTRS)

    Yang, Sung-Chul; German, Randall M.

    1991-01-01

    Grain growth of ZnO in the presence of a liquid phase of the ZnO-BaO system has been studied for temperatures from 1300 to 1400 C. The specimens were treated in boiling water and the grains were separated by dissolving the matrix phase in an ultrasonic bath. As a consequence 3D grain size measurements were possible. Microstructural examination shows some grain coalescence with a wide range of neck size ratios and corresponding dihedral angles, however, most grains are isolated. Lognormal grain size distributions show similar shapes, indicating that the growth mechanism is invariant over this time and temperature. All regressions between G exp n and time for n = 2 and 3 proved statistically significant. The rate constants calculated with the growth exponent set to n = 3 are on the same order of magnitude as in metallic systems. The apparent activation energy for growth is estimated between 355 and 458 kJ/mol.

  20. Magnetotail and Ionospheric Evolution during the Substorm Growth Phase

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Otto, A.

    2013-12-01

    The growth phase of geomagnetic substorms is characterized by the equatorward motion of the growth phase arc close to or even into the region of diffuse aurora characteristic for a dipolar magnetic field. The presented results use a model of current sheet thinning based on midnight magnetic flux depletion (MMFD) in the near-Earth tail which is caused by sunward convection to replenish magnetic flux that is eroded on the dayside by magnetic reconnection during periods of southward IMF. The results use a three-dimensional mesocale MHD simulation of the near-Earth tail. This paper examines the changes of the near-Earth magnetotail region mapped into the ionopshere. Of specific interest are the changes in magnetic flux, flux tube entropy, field-aligned currents, convection, and the size and location of the respective ionospheric footprints of the magnetotail structure and properties. The mapping method is based on the Tsyganenko [1996] magnetic field model combined with magnetic flux conservation. It is found that the mapped magnetotail properties move equatorward by about 2 to 3 degrees during the growth phase. The removal of magnetic flux in the near-Earth tail causes a contraction of the ionospheric footprints of this tail region such that all of the mapped magnetotail structures move equatorward. The thin current is mapped into the region where magnetic flux is strongly depleted, and in close proximity with strong and narrow region 1 and 2 sense field-aligned currents. Our ionospheric maps also show a sharp transition between the dipole and stretched magnetic field and an evolution of thinning and convergent motion of field-aligned currents in the late growth phase.

  1. Quantitative assessment of growth plate activity

    SciTech Connect

    Harcke, H.T.; Macy, N.J.; Mandell, G.A.; MacEwen, G.D.

    1984-01-01

    In the immature skeleton the physis or growth plate is the area of bone least able to withstand external forces and is therefore prone to trauma. Such trauma often leads to premature closure of the plate and results in limb shortening and/or angular deformity (varus or valgus). Active localization of bone seeking tracers in the physis makes bone scintigraphy an excellent method for assessing growth plate physiology. To be most effective, however, physeal activity should be quantified so that serial evaluations are accurate and comparable. The authors have developed a quantitative method for assessing physeal activity and have applied it ot the hip and knee. Using computer acquired pinhole images of the abnormal and contralateral normal joints, ten regions of interest are placed at key locations around each joint and comparative ratios are generated to form a growth plate profile. The ratios compare segmental physeal activity to total growth plate activity on both ipsilateral and contralateral sides and to adjacent bone. In 25 patients, ages 2 to 15 years, with angular deformities of the legs secondary to trauma, Blount's disease, and Perthes disease, this technique is able to differentiate abnormal segmental physeal activity. This is important since plate closure does not usually occur uniformly across the physis. The technique may permit the use of scintigraphy in the prediction of early closure through the quantitative analysis of serial studies.

  2. Special phase transformation and crystal growth pathways observed in nanoparticles†

    PubMed Central

    Gilbert, Benjamin; Zhang, Hengzhong; Huang, Feng; Finnegan, Michael P; Waychunas, Glenn A; Banfield, Jillian F

    2003-01-01

    Phase transformation and crystal growth in nanoparticles may happen via mechanisms distinct from those in bulk materials. We combine experimental studies of as-synthesized and hydrothermally coarsened titania (TiO2) and zinc sulfide (ZnS) with thermodynamic analysis, kinetic modeling and molecular dynamics (MD) simulations. The samples were characterized by transmission electron microscopy, X-ray diffraction, synchrotron X-ray absorption and scattering, and UV-vis spectroscopy. At low temperatures, phase transformation in titania nanoparticles occurs predominantly via interface nucleation at particle–particle contacts. Coarsening and crystal growth of titania nanoparticles can be described using the Smoluchowski equation. Oriented attachment-based crystal growth was common in both hydrothermal solutions and under dry conditions. MD simulations predict large structural perturbations within very fine particles, and are consistent with experimental results showing that ligand binding and change in aggregation state can cause phase transformation without particle coarsening. Such phenomena affect surface reactivity, thus may have important roles in geochemical cycling.

  3. Analysis of a ``phase transition'' from tumor growth to latency

    NASA Astrophysics Data System (ADS)

    Delsanto, P. P.; Romano, A.; Scalerandi, M.; Pescarmona, G. P.

    2000-08-01

    A mathematical model, based on the local interaction simulation approach, is developed in order to allow simulations of the spatiotemporal evolution of neoplasies. The model consists of a set of rules, which govern the interaction of cancerous cells among themselves and in competition with other cell populations for the acquisition of essential nutrients. As a result of small variations in the basic parameters, it leads to four different outcomes: indefinite growth, metastasis, latency, and complete regression. In the present contribution a detailed analysis of the dormant phase is carried on and the critical parameters for the transition to other phases are computed. Interesting chaotic behaviors can also be observed, with different attractors in the parameters space. Interest in the latency phase has been aroused by therapeutical strategies aiming to reduce a growing tumor to dormancy. The effect of such strategies may be simulated with our approach.

  4. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  5. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGES

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  6. Yorkie and Scalloped: partners in growth activation.

    PubMed

    Bandura, Jennifer L; Edgar, Bruce A

    2008-03-01

    The Hippo (Hpo) signaling pathway limits organ growth in organisms from Drosophila to mammals by suppressing the activity of the transcriptional coactivator Yorkie (Yki)/YAP. The TEAD/TEF factor Scalloped (Sd) has been identified as the first known transcription factor to partner with Yki as a downstream target of Hpo signaling.

  7. Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation

    SciTech Connect

    Zhang, Yanwen; Jiang, Weilin; Wang, Chong M.; Namavar, Fereydoon; Edmondson, Philip D.; Zhu, Zihua; Gao, Fei; Lian, Jie; Weber, William J.

    2010-11-10

    Grain growth, oxygen stoichiometry and phase stability of nanostructurally-stabilized zirconia (NSZ) in pure cubic phase are investigated under 2 MeV Au ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with dose, and follows a power law (n=6) to a saturation value of ~30 nm that decreases with temperature. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that thermal grain growth is not activated and defect-stimulated grain growth is the dominating mechanism. While cubic phase is perfectly retained and no new phases are identified after the high-dose irradiations, reduction of oxygen in the irradiated NSZ films is detected. The ratio of O to Zr decreases from ~2.0 for the as-deposited films to ~1.65 after irradiation to ~35 dpa. Significant increase of oxygen vacancies in nanocrystalline zirconia suggests substantially enhanced oxygen diffusion under ion irradiation, a materials behavior far from equilibrium. The oxygen deficiency may be essential in stabilizing cubic phase to larger grain sizes.

  8. Plant growth-promoting hormones activate mammalian guanylate cyclase activity.

    PubMed

    Vesely, D L; Hudson, J L; Pipkin, J L; Pack, L D; Meiners, S E

    1985-05-01

    In vivo injections of plant growth-promoting hormones increase the growth of animals as well as plants. Plant growth-promoting hormones and positive plant growth regulators are known to increase RNA and protein synthesis. Since cyclic GMP also increases RNA and protein synthesis, the object of the present investigation was to determine whether physiological levels of plant growth-promoting hormones and positive plant growth regulators have part of their mechanism(s) of action through stimulation of the guanylate cyclase (EC 4.6.1.2)-cyclic GMP system. Representatives of the three classes of growth-promoting hormones were investigated. Thus, auxins (indole-3-acetic acid, indole-3-butyric acid, beta-naphthoxyacetic acid, and 2,4,5-trichlorophenoxy acetic acid), gibberellins (gibberellic acid), and cytokinins [N6-benzyl adenine, kinetin (6-furfuryl aminopurine), and beta-(2-furyl) acrylic acid] all increased rat lung, small intestine, liver, and renal cortex guanylate cyclase activity 2- to 4-fold at the 1 microM concentration. Dose response curves revealed that maximal stimulation of guanylate cyclase by these plant growth regulators was at 1 microM; there was no augmented cyclase activity at 1 nM. The guanylate cyclase cationic cofactor manganese was not essential for augmentation of guanylate cyclase by these plant growth-promoting regulators. The antioxidant butylated hydroxytoluene did not block the enhancement of guanylate cyclase by these plant growth-promoting factors. These data suggest that guanylate cyclase may play a role in the mechanism of action of plant growth-promoting hormones and even of positive plant regulators at the cellular level.

  9. Extraordinary growth phases of nanobacteria isolated from mammalian blood

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Pelttari, Alpo; Kajander, E. Olavi

    1997-07-01

    Nanobacteria, novel sterile-filterable coccoid bacteria inhabiting mammalian blood and blood products, have different growth phases depending on the culture conditions. These minute organisms produce biogenic apatite as a part of their envelope. This becomes thicker as the cultures age, rendering them visible in microscopy and resistant to harsh conditions. Mineral deposits were not formed without live nanobacteria. Apatite formation was faster and more voluminous in serum-free (SF) medium, and within a week, several micrometer thick `castles' formed around each nanobacteria. These formations were firmly attached to the culture plates. Nanobacteria multiplied inside these thick layers by turning into D-shaped forms 2 - 3 micrometers in size. After a longer culture period, tens of them could be observed inside a common stony shelter. The apatite shelters had a hollow interior compartment occupied by the organisms as evidenced by SEM and TEM. Supplementing the culture medium with a milk growth-factor product, caused the castles to grow bigger by budding. These formations finally lost their mineral layer, and released typical small coccoid nanobacteria. When SF cultures were supplemented with sterile serum, mobile D-shaped nanobacteria together with small `elementary particles' 50 - 100 nm in size were found. Negative results in standard sterility testing, positivity in immunofluorescence staining and ELISA tests with nanobacteria-specific monoclonal antibodies, and 98% identity of 16S rRNA gene sequences proved that all of these unique creates are nanobacterial growth phases.

  10. Temperature dependent action of growth hormone on somatic growth and testicular activities of the catfish, Clarias batrachus.

    PubMed

    Gopal, Raj Naresh; Kumar, Pankaj; Lal, Bechan

    2014-01-01

    Effects of growth hormone on somatic growth and testicular activities were studied during late quiescence and early recrudescence phases of the reproductive cycle of the catfish, Clarias batrachus. The administration of exogenous growth hormone (GH) during the late quiescence phase (December-January; ambient water temperature-15.2±1°C) did not influence the somatic growth as well as the testicular activity, as no change in body weight, testis weight, plasma level of insulin-like growth factor I (IGF-I) and testicular morphology was detected following GH treatment, though the plasma testosterone was marginally increased. While during the early recrudescence phase (March-April; ambient water temperature-28.1±2°C), GH treatment promoted the production of insulin like growth factor-I and testicular steroidogenic activity in a dose dependent manner, as was evident from the significant increase in the circulating levels of testosterone and estradiol-17β. GH treatment also increased body weight, testicular weight and gonadosomatic index, suggesting its involvement in testicular development. The GH treatment promoted spermatogonial proliferation and accelerated the spermatogenic process in the present catfish. These results, thus, suggest that GH influences the somatic growth and testicular activities depending on the temperature of the rearing water; warmer temperature and longer photoperiod promote testicular steroidogenic and spermatogenic activities in fish. This study has immense practical use in fisheries science.

  11. New active series of growth hormone secretagogues.

    PubMed

    Guerlavais, Vincent; Boeglin, Damien; Mousseaux, Delphine; Oiry, Catherine; Heitz, Annie; Deghenghi, Romano; Locatelli, Vittorio; Torsello, Antonio; Ghé, Corrado; Catapano, Filomena; Muccioli, Giampiero; Galleyrand, Jean-Claude; Fehrentz, Jean-Alain; Martinez, Jean

    2003-03-27

    New growth hormone secretagogue (GHS) analogues were synthesized and evaluated for growth hormone releasing activity. This series derived from EP-51389 is based on a gem-diamino structure. Compounds that exhibited higher in vivo GH-releasing potency than hexarelin in rat (subcutaneous administration) were then tested per os in beagle dogs and for their binding affinity to human pituitary GHS receptors and to hGHS-R 1a. Compound 7 (JMV 1843, H-Aib-(d)-Trp-(d)-gTrp-formyl) showed high potency in these tests and was selected for clinical studies.(1)

  12. Alloy Phase Diagrams for III-P Semiconductor Crystal Growth

    NASA Astrophysics Data System (ADS)

    Gennett, Adam

    Bulk crystals of III-V ternary and quaternary semiconductors with tunable band gaps and lattice constants are attractive for numerous electronic and optoelectronic applications. In particular, the ternary GaxIn 1-xP has a band gap range of 1.351 - 2.261 eV, which corresponds to wavelengths in the near infrared to green range of the electromagnetic spectrum, and lattice constant ranging of 5.4512 - 5.8688 A. This makes it attractive for applications such as a high energy junction in multi-junction photovoltaics, terahetrtz emission, and as a substrate for yellow, amber, orange, and red AlGaInP LEDs. However, bulk growth of GaxIn1-xP ternary III-V semiconductor crystals using elemental Ga-In-P melts or pseudo-binary GaP-InP melts is significantly challenging due to the high vapor pressure of phosphorus at the typical growth temperatures, the large variation in the lattice constant of the constituent binaries, and the slow growth rates necessary in order to avoid the formation of cracks, dislocations, and multiphase inhomogeneities. Lowering the growth temperature is desirable such that the vapor pressure of phosphorus can be more easily managed. Low growth temperatures can be achieved by using gallium or indium rich solutions, as is currently used for liquid phase epitaxy. However, this approach is less attractive for growing bulk crystals due to numerous experimental difficulties such as high segregation of gallium in indium as well as sticking of the growth solution to the crucible wall and to the grown crystal, making crystal extraction without causing damage challenging. The objective of this research is to establish the conditions required for the growth of uniform composition bulk crystals of GaxIn 1-xP at any desired composition from a stoichiometric GaxIn 1-xPySb1-y quaternary melt, as well as conditions for compositional grading from a binary III-V material seed. Due to large number of conditions of melt composition and temperature that are possible, trial

  13. Monitoring Growth of Closed Fatigue Crack Using Subharmonic Phased Array

    NASA Astrophysics Data System (ADS)

    Ohara, Y.; Endo, H.; Hashimoto, M.; Shintaku, Y.; Yamanaka, K.

    2010-02-01

    To ensure the safety and reliability of atomic power plants and airplanes, the technique of monitoring closed fatigue cracks is requisite. Here we monitored the distribution of the crack depths and closure behavior in the length direction after 48000 and 87000 fatigue cycles using subharmonic phased array for crack evaluation (SPACE). The crack depths in the subharmonic images were larger than those in the fundamental images. Specifically, the difference was larger at near the side surface than at the center. The percentage of the closed part varied with the crack growth in the specimen. In addition, we fabricated shoe for SPACE to facilitate mechanical scanning. Thus, it was demonstrated that SPACE is useful in monitoring closed fatigue crack growth.

  14. Characterization of secondary phases in modified vertical bridgman growth czt

    SciTech Connect

    Duff, Martine

    2009-07-10

    CdZnTe or 'CZT' crystals are highly suitable for use as a room temperature based spectrometer for the detection and characterization of gamma radiation. Over the last decade, the methods for growing high quality CZT have improved the quality of the produced crystals however there are material features that can influence the performance of these materials as radiation detectors. For example, various structural heterogeneities within the CZT crystals, such as twinning, pipes, grain boundaries (polycrystallinity), and secondary phases (SP) can have a negative impact on the detector performance. In this study, a CZT material was grown by the modified vertical Bridgman growth (MVB) method with zone leveled growth without excess Te in the melt. Visual observations of material from the growth of this material revealed significant voids and SP. Three samples from this material was analyzed using various analytical techniques to evaluate its electrical properties, purity and detector performance as radiation spectrometers and to determine the morphology, dimension and elemental/structural composition of one of the SP in this material. This material was found to have a high resistivity but poor radiation spectrometer performance. It had SP that were rich in polycrystalline aluminum oxide (Al{sub 2}O{sub 3}), metallic Te and polycrystalline CdZnTe and 15 to 50 {micro}m in diameter. Bulk elemental analyses of sister material from elsewhere in the boule did not contain high levels of Al so there is considerable elemental impurity heterogeneity within the boule from this growth.

  15. Growth of manganese filled carbon nanofibers in the vapor phase

    NASA Astrophysics Data System (ADS)

    Ajayan, P. M.; Colliex, C.; Lambert, J. M.; Bernier, P.; Barbedette, L.; Tence, M.; Stephan, O.

    1994-03-01

    We report the vapor phase growth of partially filled graphitic fibers, 20-30 nm in diameter and up to a micron in length, during a manganese catalyzed carbon electric arc discharge. The fiber morphology resembles that of catalytic chemical vapor deposited carbon filaments but the inside hollow contains intermittent precipitates and continuous filling of Mn that at times occupy >50% of fiber lengths. Transmission electron microscopy and electron energy loss line spectra show that the fillings form as solid cores and may correspond to pure metal.

  16. Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase.

    PubMed

    Kwieciński, Jakub; Eick, Sigrun; Wójcik, Kinga

    2009-04-01

    Tea tree oil (TTO) is known for its antimicrobial activity. In this study, we determined whether TTO is effective against Staphylococcus aureus in biofilms and how TTO activity is affected by the S. aureus growth phase. All clinical strains tested were killed by TTO both as planktonic cells and as biofilms. The minimum biofilm eradication concentration was usually two times higher than the minimum bactericidal concentration, yet it was never higher than 1% v/v. The fastest killing of biofilm occurred during the first 15min of contact with TTO and was not influenced by increasing TTO concentration above 1% v/v. Planktonic stationary phase cells exhibited decreased susceptibility to TTO compared with exponential phase cells. The killing rate for stationary phase cells was also less affected by increasing TTO concentration than that for exponential phase cells. These data show that TTO efficiently kills S. aureus in the stationary growth phase and within biofilms and is therefore a promising tool for S. aureus eradication.

  17. Profiling of Burkholderia cepacia Secretome at Mid-Logarithmic and Early-Stationary Phases of Growth

    PubMed Central

    Mariappan, Vanitha; Vellasamy, Kumutha Malar; Hashim, Onn Haji; Vadivelu, Jamuna

    2011-01-01

    Background Burkholderia cepacia is a Gram-negative pathogen that causes serious respiratory infections in immunocompromised patients and individuals with cystic fibrosis. This bacterium is known to release extracellular proteins that may be involved in virulence. Methodology/Principal Findings In the present study, B. cepacia grown to mid-logarithmic and early-stationary phases were investigated on their ability to invade and survive intracellularly in A549 lung epithelial cells in order to discern the fate of these bacteria in the pathogenesis of B. cepacia lung infections in in vitro condition. The early-stationary phase B. cepacia was demonstrated to be more invasive than mid-logarithmic phase. In addition, culture supernatants of B. cepacia obtained from these phases of growth were also demonstrated to cause different cytotoxic potency on the A549 human lung epithelial cells. Profiling of the supernatants using the gel-based proteomics approach identified 43 proteins that were commonly released in both the growth phases and 40 proteins newly-released at the early-stationary phase. The latter proteins may account for the higher cytotoxic activity of the early-stationary culture supernatant compared to that obtained at the mid-logarithmic phase. Among the newly-released proteins in the early-stationary phase supernatant were flagellar hook-associated domain protein (FliD), flagellar hook-associated protein (FlgK), TonB-dependent siderophore (Fiu), Elongation factor G (FusA), phosphoglycerate kinase (Pgk) and sulfatase (AslA) which are known for their virulence. Conclusion/Significance Differences in the ability of B. cepacia to invade and survive intracellularly inside the epithelial cells at different phases of growth may improve our understanding of the varied disease progressions associated with B. cepacia infections. In addition, the identified culture supernatant proteins may be used as targets for the development of new strategies to control B. cepacia

  18. Bulk water phase and biofilm growth in drinking water at low nutrient conditions.

    PubMed

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik; Jørgensen, Claus

    2002-11-01

    In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 13 degrees C, for at least 385 days to allow the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day(-1). The bulk water phase bacteria exhibited a higher activity than the biofilm bacteria in terms of culturability, cell-specific ATP content, and cell-specific leucine incorporation rate. Bacteria in the bulk water phase incubated without the presence of biofilm exhibited a bacterial growth rate of 0.30 day(-1). The biofilm was radioactively labelled by the addition of 14C-benzoic acid. Subsequently, a biofilm detachment rate of 0.013 day(-1) was determined by measuring the release of 14C-labelled bacteria of the biofilm. For the quasi-stationary phase biofilm, the detachment rate was equivalent to the net growth rate. The growth rates determined in this study by different independent experimental approaches were comparable and within the range of values reported in the literature.

  19. Effects of microgravity on osteoblast growth activation

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Lewis, M. L.

    1996-01-01

    Space flight is an environmental condition where astronauts can lose up to 19% of weight-bearing bone during long duration missions. We used the MC3T3-E1 osteoblast to investigate bone cell growth in microgravity (10(-6) to 10(-9)g). Osteoblasts were launched on the STS-56 shuttle flight in a quiescent state with 0.5% fetal calf serum (FCS) medium and growth activation was initiated by adding fresh medium with 10% FCS during microgravity exposure. Four days after serum activation, the cells were fixed before return to normal Earth gravity. Ground controls were treated in parallel with the flight samples in identical equipment. On landing, cell number, cell cytoskeleton, glucose utilization, and prostaglandin synthesis in flight (n = 4) and ground controls (n = 4) were examined. The flown osteoblasts grew slowly in microgravity with total cell number significantly reduced (55 +/- 6 vs 141 +/- 8 cells per microscopic field). The cytoskeleton of the flight osteoblasts had a reduced number of stress fibers and a unique abnormal morphology. Nuclei in the ground controls were large and round with punctate Hoechst staining of the DNA nucleosomes. The flight nuclei were 30% smaller than the controls (P < 0.0001) and oblong in shape, with fewer punctate areas. Due to their reduced numbers, the cells activated in microgravity used significantly less glucose than ground controls (80.2 +/- 0.7 vs 50.3 +/- 3.7 mg of glucose/dl remaining in the medium) and had reduced prostaglandin E2 (PGE2) synthesis when compared to controls (57.3 +/- 17 vs 138.3 +/- 41 pmol/ml). Cell viability was normal since, on a per-cell basis, glucose use and prostaglandin synthesis were comparable for flight and ground samples. Taken together, these data suggest that growth activation in microgravity results in reduced growth, causing reduced glucose utilization and reduced prostaglandin synthesis, with significantly altered actin cytoskeleton in osteoblasts.

  20. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate

    NASA Astrophysics Data System (ADS)

    Chu, Dominique; Barnes, David J.

    2016-04-01

    Bi-phasic or diauxic growth is often observed when microbes are grown in a chemically defined medium containing two sugars (for example glucose and lactose). Typically, the two growth stages are separated by an often lengthy phase of arrested growth, the so-called lag-phase. Diauxic growth is usually interpreted as an adaptation to maximise population growth in multi-nutrient environments. However, the lag-phase implies a substantial loss of growth during the switch-over. It therefore remains unexplained why the lag-phase is adaptive. Here we show by means of a stochastic simulation model based on the bacterial PTS system that it is not possible to shorten the lag-phase without incurring a permanent growth-penalty. Mechanistically, this is due to the inherent and well established limitations of biological sensors to operate efficiently at a given resource cost. Hence, there is a trade-off between lost growth during the diauxic switch and the long-term growth potential of the cell. Using simulated evolution we predict that the lag-phase will evolve depending on the distribution of conditions experienced during adaptation. In environments where switching is less frequently required, the lag-phase will evolve to be longer whereas, in frequently changing environments, the lag-phase will evolve to be shorter.

  1. Proteolytic Processing Regulates Placental Growth Factor Activities*

    PubMed Central

    Hoffmann, Daniel C.; Willenborg, Sebastian; Koch, Manuel; Zwolanek, Daniela; Müller, Stefan; Becker, Ann-Kathrin A.; Metzger, Stephanie; Ehrbar, Martin; Kurschat, Peter; Hellmich, Martin; Hubbell, Jeffrey A.; Eming, Sabine A.

    2013-01-01

    Placental growth factor (PlGF) is a critical mediator of blood vessel formation, yet mechanisms of its action and regulation are incompletely understood. Here we demonstrate that proteolytic processing regulates the biological activity of PlGF. Specifically, we show that plasmin processing of PlGF-2 yields a protease-resistant core fragment comprising the vascular endothelial growth factor receptor-1 binding site but lacking the carboxyl-terminal domain encoding the heparin-binding domain and an 8-amino acid peptide encoded by exon 7. We have identified plasmin cleavage sites, generated a truncated PlGF118 isoform mimicking plasmin-processed PlGF, and explored its biological function in comparison with that of PlGF-1 and -2. The angiogenic responses induced by the diverse PlGF forms were distinct. Whereas PlGF-2 increased endothelial cell chemotaxis, vascular sprouting, and granulation tissue formation upon skin injury, these activities were abrogated following plasmin digestion. Investigation of PlGF/Neuropilin-1 binding and function suggests a critical role for heparin-binding domain/Neuropilin-1 interaction and its regulation by plasmin processing. Collectively, here we provide new mechanistic insights into the regulation of PlGF-2/Neuropilin-1-mediated tissue vascularization and growth. PMID:23645683

  2. Zebra pattern in rocks as a function of grain growth affected by second-phase particles

    NASA Astrophysics Data System (ADS)

    Kelka, Ulrich; Koehn, Daniel; Beaudoin, Nicolas

    2015-09-01

    In this communication we present a simple microdynamic model which can explain the beginning of the zebra pattern formation in rocks. The two dimensional model consists of two main processes, mineral replacement along a reaction front, and grain boundary migration affected by impurities. In the numerical model we assume that an initial distribution of second-phase particles is present due to sedimentary layering. The reaction front percolates the model and redistributes second-phase particles by shifting them until the front is saturated and drops the particles again. This produces and enhances initial layering. Grain growth is hindered in layers with high second-phase particle concentrations whereas layers with low concentrations coarsen. Due to the grain growth activity in layers with low second-phase particle concentrations these impurities are collected at grain boundaries and the crystals become very clean. Therefore the white layers in the pattern contain large grains with low concentration of second-phase particles, whereas the dark layers contain small grains with a large second-phase particle concentration.

  3. Crystal growth from the vapor phase experiment MA-085

    NASA Technical Reports Server (NTRS)

    Wiedemeir, H.; Sadeek, H.; Klaessig, F. C.; Norek, M.

    1976-01-01

    Three vapor transport experiments on multicomponent systems were performed during the Apollo Soyuz mission to determine the effects of microgravity forces on crystal morphology and mass transport rates. The mixed systems used germanium selenide, tellurium, germanium tetraiodide (transport agent), germanium monosulfide, germanium tetrachloride (transport agent), and argon (inert atmosphere). The materials were enclosed in evacuated sealed ampoules of fused silica and were transported in a temperature gradient of the multipurpose electric furnace onboard the Apollo Soyuz spacecraft. Preliminary evaluation of 2 systems shows improved quality of space grown crystals in terms of growth morphology and bulk perfection. This conclusion is based on a direct comparison of space grown and ground based crystals by means of X-ray diffraction, microscopic, and chemical etching techniques. The observation of greater mass transport rates than predicted for a microgravity environment by existing vapor transport models indicates the existence of nongravity caused transport effects in a reactive solid/gas phase system.

  4. Quantitative phase imaging technologies to assess neuronal activity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thouvenin, Olivier; Fink, Mathias; Boccara, Claude

    2016-03-01

    Active neurons tends to have a different dynamical behavior compared to resting ones. Non-exhaustively, vesicular transport towards the synapses is increased, since axonal growth becomes slower. Previous studies also reported small phase variations occurring simultaneously with the action potential. Such changes exhibit times scales ranging from milliseconds to several seconds on spatial scales smaller than the optical diffraction limit. Therefore, QPI systems are of particular interest to measure neuronal activity without labels. Here, we report the development of two new QPI systems that should enable the detection of such activity. Both systems can acquire full field phase images with a sub nanometer sensitivity at a few hundreds of frames per second. The first setup is a synchronous combination of Full Field Optical Coherence Tomography (FF-OCT) and Fluorescence wide field imaging. The latter modality enables the measurement of neurons electrical activity using calcium indicators. In cultures, FF-OCT exhibits similar features to Digital Holographic Microscopy (DHM), except from complex computational reconstruction. However, FF-OCT is of particular interest in order to measure phase variations in tissues. The second setup is based on a Quantitative Differential Interference Contrast setup mounted in an epi-illumination configuration with a spectrally incoherent illumination. Such a common path interferometer exhibits a very good mechanical stability, and thus enables the measurement of phase images during hours. Additionally, such setup can not only measure a height change, but also an optical index change for both polarization. Hence, one can measure simultaneously a phase change and a birefringence change.

  5. Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth

    NASA Astrophysics Data System (ADS)

    Jaiganesh, T.; Daisy Vimala Rani, J.; Girigoswami, Agnishwar

    2012-06-01

    The present study reports the effect of cadmium sulfide (CdS) quantum dots on the life cycle of Escherichia coli. CdS quantum dots were synthesized by pH sensitive organochemical route using cadmium chloride and sodium sulfide as precursors and mercaptopropionic acid (MPA) as capping agent. It is observed that varying concentration of MPA leads to the production of different sized quantum dots with inverse proportionality and increment in the fluorescence quantum yield. The investigation also shows that CdS quantum dots have no antibacterial activity except it delays the log phase growth of bacteria in terms of size of the particles. The largest synthesized particles significantly elongate the lag phase growth.

  6. Thin-film growth dynamics with shadowing effects by a phase-field approach

    NASA Astrophysics Data System (ADS)

    Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel

    2016-12-01

    Shadowing effects during the growth of nano- and microstructures are crucial for the realization of several technological applications. They are given by the shielding of the incoming material flux provided by the growing structures themselves. Their features have been deeply investigated by theoretical approaches, revealing important information to support experimental activities. However, comprehensive investigations able to follow every stage of the growth processes as a whole, particularly useful to design and understand targeted experiments, are still challenging. In this work, we study the thin-film growth dynamics by means of a diffuse interface approach accounting for both deposition with shadowing effects and surface diffusion driven by the minimization of the surface energy. In particular, we introduce the coupling between a phase-field model and the detailed calculation of the incoming material flux at the surface deposited from vacuum or vapor phase in the ballistic regime. This allows us to finely reproduce the realistic morphological evolution during the growth on nonflat substrates, also accounting for different flux distributions. A general assessment of the method, focusing on two-dimensional profiles, is provided thanks to the comparison with a sharp-interface approach for the evolution of the early stages. Then, the long-time-scale dynamics is shown in two and three dimensions, providing a general overview of the features observed during deposition on corrugated surfaces involving flattening, increasing of surface roughness with the growth of columnar structures, and voids formation.

  7. ZnO nanorod growth by plasma-enhanced vapor phase transport with different growth durations

    SciTech Connect

    Kim, Chang-Yong; Oh, Hee-bong; Ryu, Hyukhyun; Yun, Jondo; Lee, Won-Jae

    2014-09-01

    In this study, the structural properties of ZnO nanostructures grown by plasma-enhanced vapor phase transport (PEVPT) were investigated. Plasma-treated oxygen gas was used as the oxygen source for the ZnO growth. The structural properties of ZnO nanostructures grown for different durations were measured by scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The authors comprehensively analyzed the growth of the ZnO nanostructures with different growth durations both with and without the use of plasma-treated oxygen gas. It was found that PEVPT has a significant influence on the growth of the ZnO nanorods. PEVPT with plasma-treated oxygen gas facilitated the generation of nucleation sites, and the resulting ZnO nanorod structures were more vertical than those prepared by conventional VPT without plasma-treated oxygen gas. As a result, the ZnO nanostructures grown using PEVPT showed improved structural properties compared to those prepared by the conventional VPT method.

  8. Abnormal grain growth in Eurofer-97 steel in the ferrite phase field

    NASA Astrophysics Data System (ADS)

    Oliveira, V. B.; Sandim, H. R. Z.; Raabe, D.

    2017-03-01

    Reduced-activation ferritic-martensitic (RAFM) Eurofer-97 steel is a candidate material for structural applications in future fusion reactors. Depending on the amount of prior cold rolling strain and annealing temperature, important solid-state softening reactions such as recovery, recrystallization, and grain growth occur. Eurofer-97 steel was cold rolled up to 70, 80 and 90% reductions in thickness and annealed in the ferrite phase field (below ≈ 800 °C). Changes in microstructure, micro-, and mesotexture were followed by orientation mappings provided by electron backscatter diffraction (EBSD). Eurofer-97 steel undergoes abnormal grain growth above 650 °C and this solid-state reaction seems to be closely related to the high mobility of a few special grain boundaries that overcome pinning effects caused by fine particles. This solid-state reaction promotes important changes in the microstructure and microtexture of this steel. Abnormal grain growth kinetics for each condition was determined by means of quantitative metallography.

  9. Indium Growth and Island Height Control on Si Submonolayer Phases

    SciTech Connect

    Chen, Jizhou

    2009-01-01

    ) have a wave length of 13.4 nm so it can curve on the surface of an sample to make structure as small as the order of 10 nm. however, lithograph usually causes permanent damages to the surface and in many cases the QDs are damaged during the lithograph and therefore result in high percentage of defects. Quantum size effect has attracted more and more interests in surface science due to many of its effects. One of its effects is the height preference in film growing and the resulting possibility of uniformly sized self-assemble nanostructure. The experiment of Pb islands on In 4x1 phase shows that both the height and the width can be controlled by proper growth conditions, which expands the growth dimensions from 1 to 2. This discover leads us to study the In/Pb interface. In Ch.3, we found that the Pb islands growing on In 4x1-Si(111) surface which have uniform height due to QSE and uniform width due to the constriction of In 4x1 lattice have unexpected stability. These islands are stable in even RT, unlike usual nanostructures on Pb/Si surface which are stable only at low temperature. Since similar structures are usually grown at low temperature, this discovery makes the grown structures closer to technological applications. It also shows the unusual of In/Pb interface. Then we studied the In islands grown on Pb-α-√3x√3-Si(111) phase in Ch.4. These islands have fcc structure in the first few layers, and then convert to bct structure. The In fcc islands have sharp height preference due to QSE like Pb islands. However, the preferred height is different (7 layer for Pb on Si 7x7 and 4 layer for Pb on In 4x1), due to the difference of interface. The In islands structure prefers to be bct than fcc with coverage increase. It is quantitatively supported by first-principle calculation. Unexpectedly, the In islands grown on various of In interfaces didn't show QSE effects and phase transition from fcc and bct structures as on the Pb-α interface (Ch.6). In g(s) curve there

  10. Microarray and functional analysis of growth phase-dependent gene regulation in Bordetella bronchiseptica.

    PubMed

    Nicholson, Tracy L; Buboltz, Anne M; Harvill, Eric T; Brockmeier, Susan L

    2009-10-01

    Growth phase-dependent gene regulation has recently been demonstrated to occur in Bordetella pertussis, with many transcripts, including known virulence factors, significantly decreasing during the transition from logarithmic to stationary-phase growth. Given that B. pertussis is thought to have derived from a Bordetella bronchiseptica-like ancestor, we hypothesized that growth phase-dependent gene regulation would also occur in B. bronchiseptica. Microarray analysis revealed and quantitative real-time PCR (qRT-PCR) confirmed that growth phase-dependent gene regulation occurs in B. bronchiseptica, resulting in prominent temporal shifts in global gene expression. Two virulence phenotypes associated with these gene expression changes were tested. We found that growth-dependent increases in expression of some type III secretion system (TTSS) genes led to a growth phase-dependent increase in a TTSS-dependent function, cytotoxicity. Although the transcription of genes encoding adhesins previously shown to mediate adherence was decreased in late-log and stationary phases, we found that the adherence of B. bronchiseptica did not decrease in these later phases of growth. Microarray analysis revealed and qRT-PCR confirmed that growth phase-dependent gene regulation occurred in both Bvg(+) and Bvg(-) phase-locked mutants, indicating that growth phase-dependent gene regulation in B. bronchiseptica can function independently from the BvgAS regulatory system.

  11. Phase conversion and interface growth in phase-separated 3He - 4He liquid mixtures

    NASA Astrophysics Data System (ADS)

    Abe, Haruka; Satoh, Takeo; Burmistrov, Serguei N.

    2005-10-01

    We have developed a method for measuring the transmission coefficient of a sound propagating through the interface in phase-separated He3-He4 liquid mixtures. The method and the results are described with discussions by examining the phase-conversion process of He3 quasiparticles driven to flow across the interface. From the data, we have determined the kinetic growth coefficient of the interface, ξ(T,P,ω) , as a function of temperature, pressure, and frequency. The temperature range of the present investigation is about 2-100mK at the pressure mainly around 1bar with sound frequency 9.64, 14.4, and 32.4MHz . The main specific features observed for the kinetic growth coefficient are, as follows: (i) there is a maximum at some temperature Tm(ω) depending on the frequency, (ii) above Tm(ω) , ξ decreases with the increase of temperature as ∝ω5/2T-3 , and (iii) below Tm(ω) , ξ becomes frequency independent and diminishes as a cube of temperature, T3 .

  12. Shewanella oneidensis Hfq promotes exponential phase growth, stationary phase culture density, and cell survival

    PubMed Central

    2013-01-01

    Background Hfq is an RNA chaperone protein that has been broadly implicated in sRNA function in bacteria. Here we describe the construction and characterization of a null allele of the gene that encodes the RNA chaperone Hfq in Shewanella oneidensis strain MR-1, a dissimilatory metal reducing bacterium. Results Loss of hfq in S. oneidensis results in a variety of mutant phenotypes, all of which are fully complemented by addition of a plasmid-borne copy of the wild type hfq gene. Aerobic cultures of the hfq∆ mutant grow more slowly through exponential phase than wild type cultures, and hfq∆ cultures reach a terminal cell density in stationary phase that is ~2/3 of that observed in wild type cultures. We have observed a similar growth phenotype when the hfq∆ mutant is cultured under anaerobic conditions with fumarate as the terminal electron acceptor, and we have found that the hfq∆ mutant is defective in Cr(VI) reduction. Finally, the hfq∆ mutant exhibits a striking loss of colony forming units in extended stationary phase and is highly sensitive to oxidative stress induced by H2O2 or methyl viologen (paraquat). Conclusions The hfq mutant in S. oneidensis exhibits pleiotropic phenotypes, including a defect in metal reduction. Our results also suggest that hfq mutant phenotypes in S. oneidensis may be at least partially due to increased sensitivity to oxidative stress. PMID:23394078

  13. Impact on growth and aflatoxin B1 accumulation by Kluyveromyces isolates at different water activity conditions.

    PubMed

    Penna, Mariángeles La; Etcheverry, Miriam

    2006-11-01

    This study showed the impact on germination, mycelial growth and aflatoxin B(1) accumulation when interacting Aspergillus aflatoxigenic strains with Kluyveromyces isolates and the effect of water activity on this relationship. Isolates Y(14) and Y(16) reduced the percentage of germination of all Aspergillus strains and decrease germ tube elongation rate at majority of water activity assayed. Similarly they produced an increase of germination lag phase and lag phase of growth beside decreased growth rate of all Aspergillus strains. At water activities 0.994, 0.982, 0.955 and 0.937, no aflatoxins were produced in paired cultures with isolates Y(25,) Y(22), Y(16), and Y(14), and Kluyveromyces isolates Y(14) and Y(16) impact both growth and aflatoxin accumulation at wide range of water activity.

  14. Robust growth of avirulent phase II Coxiella burnetii in bone marrow-derived murine macrophages

    PubMed Central

    Cockrell, Diane C.; Long, Carrie M.; Robertson, Shelly J.; Shannon, Jeffrey G.; Miller, Heather E.; Myers, Lara; Larson, Charles L.; Starr, Tregei; Beare, Paul A.

    2017-01-01

    Published data show that murine bone marrow-derived macrophages (BMDM) restrict growth of avirulent phase II, but not virulent phase I, Coxiella burnetii. Growth restriction of phase II bacteria is thought to result from potentiated recognition of pathogen-associated molecular patterns, which leads to production of inhibitory effector molecules. Past studies have used conditioned medium from L-929 murine fibroblasts as a source of macrophage-colony stimulating factor (M-CSF) to promote differentiation of bone marrow-derived myeloid precursors into macrophages. However, uncharacterized components of conditioned medium, such as variable amounts of type I interferons, can affect macrophage activation status and their permissiveness for infection. In the current study, we show that the C. burnetii Nine Mile phase II (NMII) strain grows robustly in primary macrophages from C57BL/6J mice when bone marrow cells are differentiated with recombinant murine M-CSF (rmM-CSF). Bacteria were readily internalized by BMDM, and replicated within degradative, LAMP1-positive vacuoles to achieve roughly 3 logs of growth over 6 days. Uninfected BMDM did not appreciably express CD38 or Egr2, markers of classically (M1) and alternatively (M2) activated macrophages, respectively, nor did infection change the lack of polarization. In accordance with an M0 phenotype, infected BMDM produced moderate amounts of TNF and nitric oxide. Similar NMII growth results were obtained using C57BL/6J myeloid progenitors immortalized with an estrogen-regulated Hoxb8 (ER-Hoxb8) oncogene. To demonstrate the utility of the ER-Hoxb8 system, myeloid progenitors from natural resistance-associated macrophage protein 1 (Nramp1) C57BL/6J knock-in mice were transduced with ER-Hoxb8, and macrophages were derived from immortalized progenitors using rmM-CSF and infected with NMII. No difference in growth was observed when compared to macrophages from wild type mice, indicating depletion of metal ions by the Nramp1

  15. Active limited-angle tomographic phase microscope.

    PubMed

    Kus, Arkadiusz; Krauze, Wojciech; Kujawinska, Malgorzata

    2015-01-01

    We demonstrate an active, holographic tomography system, working with limited angle of projections, realized by optical-only, diffraction-based beam steering. The system created for this purpose is a Mach–Zehnder interferometer modified to serve as a digital holographic microscope with a high numerical aperture illumination module and a spatial light modulator (SLM). Such a solution is fast and robust. Apart from providing an elegant solution to viewing angle shifting, it also adds new capabilities of the holographic microscope system. SLM, being an active optical element, allows wavefront correction in order to improve measurement accuracy. Integrated phase data captured with different illumination scenarios within a highly limited angular range are processed by a new tomographic reconstruction algorithm based on the compressed sensing technique: total variation minimization, which is applied here to reconstruct nonpiecewise constant samples. Finally, the accuracy of full measurement and the proposed processing path is tested for a calibrated three-dimensional micro-object as well as a biological object--C2C12 myoblast cell.

  16. Active limited-angle tomographic phase microscope

    NASA Astrophysics Data System (ADS)

    Kuś, Arkadiusz; Krauze, Wojciech; Kujawińska, Małgorzata

    2015-11-01

    We demonstrate an active, holographic tomography system, working with limited angle of projections, realized by optical-only, diffraction-based beam steering. The system created for this purpose is a Mach-Zehnder interferometer modified to serve as a digital holographic microscope with a high numerical aperture illumination module and a spatial light modulator (SLM). Such a solution is fast and robust. Apart from providing an elegant solution to viewing angle shifting, it also adds new capabilities of the holographic microscope system. SLM, being an active optical element, allows wavefront correction in order to improve measurement accuracy. Integrated phase data captured with different illumination scenarios within a highly limited angular range are processed by a new tomographic reconstruction algorithm based on the compressed sensing technique: total variation minimization, which is applied here to reconstruct nonpiecewise constant samples. Finally, the accuracy of full measurement and the proposed processing path is tested for a calibrated three-dimensional micro-object as well as a biological object-C2C12 myoblast cell.

  17. Water Activity Limits the Hygroscopic Growth Factor of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Cabrera, J. A.; Golden, D.; Tabazadeh, A.

    2007-12-01

    In this work we study the hygroscopic behavior of organic aerosols, which has important implications for Earth's climate. The hygroscopic growth factor (HGF) is defined as the ratio of the diameter of a spherical particle when it is exposed to dry conditions to that at humid conditions. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aw) in the aqueous phase. This new formulation matches reported HGFs for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidities (RH). Many studies use tandem differential mobility analyzers (TDMA) to determine the HGF of organic aerosols. For example, Brooks et al. used a TDMA to measure a HGF of 1.2 for 2 μm phthalic acid (PA) particles at 90% RH (aw= 0.9). However, water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aw of aqueous solutions at room temperature. Measured water activities for PA, used in our growth formulation, yield a HGF of ~ 1.0005 for 2 μm PA particles at 90% RH. Comparing our results against Brooks et al. suggests that TDMA experiments may grossly overestimate the HGF of PA particles since water activity limits this growth to below 1.0005. Alternatively, we suggest that the adsorption of a negligible mass of water by a highly porous PA particle can lead to an apparent growth in particle size by changing its morphology. Other studies also use TDMAs to measure HGFs of secondary organic aerosols (SOAs). HGFs reported for SOAs are very similar to PA, suggesting that the observed growth may be due to morphological changes in particle size rather than water uptake as commonly assumed. We built a smog chamber where an organic precursor, such as d-limonene, reacts with nitrogen oxides under UV radiation to produce SOAs. We compare the HGFs for SOAs obtained with our method to those obtained with

  18. Cholera toxin, a typical protein kinase A activator, induces G1 phase growth arrest in human bladder transitional cell carcinoma cells via inhibiting the c-Raf/MEK/ERK signaling pathway.

    PubMed

    Zheng, Xiaoke; Ou, Yanqiu; Shu, Minfeng; Wang, Youqiong; Zhou, Yuxi; Su, Xingwen; Zhu, Wenbo; Yin, Wei; Li, Shifeng; Qiu, Pengxin; Yan, Guangmei; Zhang, Jingxia; Hu, Jun; Xu, Dong

    2014-05-01

    The biotoxin cholera toxin has been demonstrated to have anti-tumor activity in numerous types of cancer, including glioma. However, the role of cholera toxin in the tumorigenesis of transitional cell carcinoma (TCC), the most common malignant tumor of the bladder, remains to be elucidated. To address this, in the present study, two TCC cell lines, T24 and UM-UC-3, were treated with cholera toxin [protein kinase A (PKA) activator] and KT5720 (PKA inhibitor). Cell survival and proliferation, cell cycle alterations and apoptosis were analyzed using Hoechst staining, the MTT assay, fluorescence microscopy and flow cytometry. Western blot analysis was used to detect the expression of proteins involved in cell cycle regulation. The results revealed that cholera toxin significantly induced G1 arrest and downregulated the expression of cyclin D1 and cyclin-dependent kinase 4/6 in the TCC cell lines, and this was rescued by KT5720. Furthermore, it was demonstrated that cholera toxin downregulated the activation of the c-Raf/Mek/Erk cascade, an important mediator of tumor cell proliferation, via the PKA-dependent c-Raf phosphorylation at Ser-43. Furthermore, inhibition of Mek activity with UO126 mimicked the effects of cholera toxin. In conclusion, these results confirmed that cholera toxin specifically inhibited proliferation and induced G1 phase arrest in human bladder TCC cells. This effect was due to PKA-dependent inactivation of the c-Raf/Mek/Erk pathway. This suggested that cholera toxin may be a viable therapeutic treatment against tumorigenesis and proliferation in bladder cancer.

  19. Phase field modelling on the growth dynamics of double voids of different sizes during czochralski silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Guan, X. J.; Wang, J.

    2017-02-01

    To investigate their dynamics and interaction mechanisms, the growth process of the two voids with different sizes during Czochralski silicon crystal growth were simulated by use of an established phase field model and its corresponding program code. On the basis of the several phase field numerical simulation cases, the evolution laws of the double voids were acquired as follows: the phase field model is capable to simulate the growth process of double voids with different sizes; there are two modes of their growth, that is, either mutual integration or competitive growth; the exact moment of their fusion can be also captured, and it is τ of 7.078 (simulation time step of 14156) for the initial vacancy concentration of 0.02 and the initial space between two void centers of 44Δx.

  20. Role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae.

    PubMed

    Lewis, J G; Learmonth, R P; Watson, K

    1993-04-01

    The freeze-thaw tolerance of Saccharomyces cerevisiae was examined throughout growth in aerobic batch culture. Minimum tolerance to rapid freezing (immersion in liquid nitrogen; cooling rate, approximately 200 degrees C min-1) was associated with respirofermentative (exponential) growth on glucose. However, maximum tolerance occurred not during the stationary phase but during active respiratory growth on ethanol accumulated during respirofermentative growth on glucose. The peak in tolerance occurred several hours after entry into the respiratory growth phase and did not correspond to a transient accumulation of trehalose which occurred at the point of glucose exhaustion. Substitution of ethanol with other carbon sources which permit high levels of respiration (acetate and galactose) also induced high freeze-thaw tolerance, and the peak did not occur in cells shifted directly from fermentative growth to starvation conditions or in two respiratorily incompetent mutants. These results imply a direct link with respiration, rather than exhaustion of glucose. The role of ethanol as a cryoprotectant per se was also investigated, and under conditions of rapid freezing (cooling rate, approximately 200 degrees C min-1), ethanol demonstrated a significant cryoprotective effect. Under the same freezing conditions, glycerol had little effect at high concentrations and acted as a cryosensitizer at low concentrations. Conversely, under slow-freezing conditions (step freezing at -20, -70, and then -196 degrees C; initial cooling rate, approximately 3 degrees C min-1), glycerol acted as a cryoprotectant while ethanol lost this ability. Ethanol may thus have two effects on the cryotolerance of baker's yeast, as a respirable carbon source and as a cryoprotectant under rapid-freezing conditions.

  1. Variable phase sine wave generator for active phased arrays

    NASA Astrophysics Data System (ADS)

    Waters, W. M.

    1992-09-01

    A waveform generator is provided for generating a high frequency waveform. A pulse generator provides a pulse train at a low frequency. A pulse converter converts the pulse train into an alternatingly positive and negative groups of pulses. A bandpass filter passes the alternatingly positive and negative groups of pulses in a frequency band centered at the high frequency to output the generated waveform at the high frequency. When the groups of pulses are a pair of pulses, a sine wave is output from the bandpass filter. A pulse delay circuit can be used to variably delay the pulse train and thereby cause a phase change in the generated waveform.

  2. Microarray and functional analysis of growth-phase dependent gene regulation in Bordetella bronchiseptica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth-phase dependent gene regulation has recently been demonstrated to occur in B. pertussis, with many transcripts, including known virulence factors, significantly decreasing during the transition from logarithmic to stationary-phase growth. Given that B. pertussis is thought to have derived fro...

  3. Biochemical properties of Bacillus intermedius subtilisin-like proteinase secreted by a Bacillus subtilis recombinant strain in its stationary phase of growth.

    PubMed

    Mikhailova, E O; Mardanova, A M; Balaban, N P; Rudenskaya, G N; Ilyinskaya, O N; Sharipova, M R

    2009-03-01

    Biochemical properties of Bacillus intermedius subtilisin-like proteinase (AprBi) secreted by a B. subtilis recombinant strain in the early and late stationary phases of growth have been determined. Protein structure was analyzed and its stability estimated. It was noted that the enzyme corresponding to different phases of bacterial growth retains activity in the presence of reducing and oxidizing agents (C2H5OH and H2O2). Different effects of bivalent metal ions on activity of two proteinase fractions were found. Calcium ions more efficiently activate proteinase secreted in the late stationary phase. Unlike the first enzyme fraction, the second forms catalytically active dimers.

  4. Growth Phase-Dependent Modulation of Rgg Binding Specificity in Streptococcus pyogenes

    PubMed Central

    Anbalagan, Srivishnupriya; Dmitriev, Alexander; McShan, W. Michael; Dunman, Paul M.

    2012-01-01

    Streptococcus pyogenes Rgg is a transcriptional regulator that interacts with the cofactor LacD.1 to control growth phase-dependent expression of genes, including speB, which encodes a secreted cysteine protease. LacD.1 is thought to interact with Rgg when glycolytic intermediates are abundant in a manner that prevents Rgg-mediated activation of speB expression via binding to the promoter region. When the intermediates diminish, LacD.1 dissociates from Rgg and binds to the speB promoter to activate expression. The purpose of this study was to determine if Rgg bound to chromatin during the exponential phase of growth and, if so, to identify the binding sites. Rgg bound to 62 chromosomal sites, as determined by chromatin immunoprecipitation coupled with DNA microarrays. Thirty-eight were within noncoding DNA, including sites upstream of the genes encoding the M protein (M49), serum opacity factor (SOF), fibronectin-binding protein (SfbX49), and a prophage-encoded superantigen, SpeH. Each of these sites contained a promoter that was regulated by Rgg, as determined with transcriptional fusion assays. Purified Rgg also bound to the promoter regions of emm49, sof, and sfbX49 in vitro. Results obtained with a lacD.1 mutant showed that both LacD.1 and Rgg were necessary for the repression of emm49, sof, sfbX49, and speH expression. Overall, the results indicated that the DNA binding specificity of Rgg is responsive to environmental changes in a LacD.1-dependent manner and that Rgg and LacD.1 directly control virulence gene expression in the exponential phase of growth. PMID:22636768

  5. Production of an Extracellular Matrix as an Isotropic Growth Phase of Penicillium rubens on Gypsum

    PubMed Central

    Bekker, M.; Adan, O. C. G.; Samson, R. A.; Wyatt, T.; Dijksterhuis, J.

    2012-01-01

    Indoor mold represents an important environmental concern, but a fundamental knowledge of fungal growth stages is needed to limit indoor fungal proliferation on finishing materials used in buildings. The present study focused on the succession of germination stages of the common indoor fungus Penicillium rubens on a gypsum substrate. This substrate is used as a model system representing porous materials that are widely used in indoor environments. Imaging with cryo-scanning electron microscopy showed that the formation of an extracellular matrix (ECM) is a phase of the isotropic growth of P. rubens that is uniquely related to germinating conidia. Furthermore, the ECM is observed only when a dry-state inoculation of the surface is applied, i.e., applying conidia directly from a 7-day-old colony, mimicking airborne contamination of the surface. When inoculation is done by spraying an aqueous conidial suspension, no ECM is observed. Moreover, it is concluded that the formation of an ECM requires active processes in the fungal cell. The porosity of the substrate proved that the ECM substance has high-viscosity characteristics. The present results stress that studies of indoor fungal growth should consider the method of inoculation, knowing that the common aqueous suspension may obscure specific stages in the initial phases of germination. PMID:22843536

  6. Nonaqueous seeded growth of flower-like mixed-phase titania nanostructures for photocatalytic applications

    SciTech Connect

    Hsu, Y.-C.; Lin, H.-C.; Chen, C.-H.; Liao, Y.-T.; Yang, C.-M.

    2010-09-15

    A nonaqueous seeded-grown synthesis of three-dimensional TiO{sub 2} nanostructures in the benzyl alcohol reaction system was reported. The synthesis was simple, high-yield, and requires no structural directing or capping agents. It could be largely accelerated by applying microwave heating. The TiO{sub 2} nanostructures had a unique flower-like morphology and high surface area. Furthermore, the structural analyses suggested that the nanostructures had a non-uniform distribution of crystalline phases, with the inner part rich in anatase and the outer part rich in rutile. After heat treatments, the mixed-phase TiO{sub 2} nanostructures exhibited high photocatalytic activities for the photodegradation of methylene blue as compared to Degussa P25. The high photoactivities may be associated with the high surface area and the synergistic effect resulting from the anisotropic mixed-phase nanostructures. The results demonstrate the uniqueness of the nonaqueous seeded growth and the potential of the TiO{sub 2} nanostructures for practical applications. - Graphical abstract: Flower-like TiO{sub 2} nanostructures synthesized by a nonaqueous seeded growth without using any structural directing or capping agents.

  7. Two cases of lichen striatus with prolonged active phase.

    PubMed

    Feely, Meghan A; Silverberg, Nanette B

    2014-01-01

    Lichen striatus is a localized, eczematous disorder distributed along the lines of Blaschko, primarily affecting children. In the literature, lesions have been described as having an active phase of inflamed lesions for 6 to 12 months followed by flattening and persistent pigmentary alteration. We describe two girls who had prolonged active-phase lesions for 2.5 and 3.5 years, respectively. Practitioners should be aware that lesions of lichen striatus may have a prolonged active phase.

  8. Active impedance metasurface with full 360° reflection phase tuning

    PubMed Central

    Zhu, Bo O.; Zhao, Junming; Feng, Yijun

    2013-01-01

    Impedance metasurface is composed of electrical small scatters in two dimensional plane, of which the surface impedance can be designed to produce desired reflection phase. Tunable reflection phase can be achieved by incorporating active element into the scatters, but the tuning range of the reflection phase is limited. In this paper, an active impedance metasurface with full 360° reflection phase control is presented to remove the phase tuning deficiency in conventional approach. The unit cell of the metasurface is a multiple resonance structure with two resonance poles and one resonance zero, capable of providing 360° reflection phase variation and active tuning within a finite frequency band. Linear reflection phase tuning can also be obtained. Theoretical analysis and simulation are presented and validated by experiment at microwave frequency. The proposed approach can be applied to many cases where fine and full phase tuning is needed, such as beam steering in reflectarray antennas. PMID:24162366

  9. Phase I active immunotherapy with combination of two chimeric, human epidermal growth factor receptor 2, B-cell epitopes fused to a promiscuous T-cell epitope in patients with metastatic and/or recurrent solid tumors.

    PubMed

    Kaumaya, Pravin T P; Foy, Kevin Chu; Garrett, Joan; Rawale, Sharad V; Vicari, Daniele; Thurmond, Jennifer M; Lamb, Tammy; Mani, Aruna; Kane, Yahaira; Balint, Catherine R; Chalupa, Donald; Otterson, Gregory A; Shapiro, Charles L; Fowler, Jeffrey M; Grever, Michael R; Bekaii-Saab, Tanios S; Carson, William E

    2009-11-01

    PURPOSE To evaluate the maximum-tolerated dose (MTD), safety profile, and immunogenicity of two chimeric, B-cell epitopes derived from the human epidermal growth factor receptor (HER2) extracellular domain in a combination vaccine with a promiscuous T-cell epitope (ie, MVF) and nor-muramyl-dipeptide as adjuvant emulsified in SEPPIC ISA 720. PATIENTS AND METHODS Eligible patients with metastatic and/or recurrent solid tumors received three inoculations on days 1, 22, and 43 at doses of total peptide that ranged from 0.5 to 3.0 mg. Immunogenicity was evaluated by enzyme-linked immunosorbent assay, flow cytometry, and HER2 signaling assays. Results Twenty-four patients received three inoculations at the intended dose levels, which elicited antibodies able to recognize native HER2 receptor and inhibited both the proliferation of HER2-expressing cell lines and phosphorylation of the HER2 protein. The MTD was determined to be the highest dose level of 3.0 mg of the combination vaccine. There was a significant increase from dose level 1 (0.5 mg) to dose level 4 (3.0 mg) in HER2-specific antibodies. Four patients (one each with adrenal, colon, ovarian, and squamous cell carcinoma of unknown primary) were judged to have stable disease; two patients (one each with endometrial and ovarian cancer) had partial responses; and 11 patients had progressive disease. Patients with stable disease received 6-month boosts, and one patient received a 20-month boost. CONCLUSION The combination vaccines were safe and effective in eliciting antibody responses in a subset of patients (62.5%) and were associated with no serious adverse events, autoimmune disease, or cardiotoxicity. There was preliminary evidence of clinical activity in several patients.

  10. On the kinetics of oriented growth of two-phase colonies of platelet grains in the presence of second-phase particles phase

    NASA Astrophysics Data System (ADS)

    Ol'shanetskii, V. E.; Kononenko, Yu. I.

    2014-07-01

    Specific features of the formation of lamellar (columnar) two-phase structures have been considered in the process of the decomposition of the matrix in the presence of (1) immobile disperse second-phase particles and (2) mobile disperse second-phase inclusions. It has been shown that the approaches to the derivation of initial differential equations of growth should be based on the change in the behavior of particles of the second phase upon the potential propagation of the growth front. To retain the invariance of the driving force along the entire composite growth front of the colony-wise structure, equations of balance of interphase surface tensions in ternary junctions of the normal sections of matrix grains with lamellar grains of the two-phase colony-wise mixture have been taken into account.

  11. Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival.

    PubMed

    Somerville, Greg A; Chaussee, Michael S; Morgan, Carrie I; Fitzgerald, J Ross; Dorward, David W; Reitzer, Lawrence J; Musser, James M

    2002-11-01

    Staphylococcus aureus preferentially catabolizes glucose, generating pyruvate, which is subsequently oxidized to acetate under aerobic growth conditions. Catabolite repression of the tricarboxylic acid (TCA) cycle results in the accumulation of acetate. TCA cycle derepression coincides with exit from the exponential growth phase, the onset of acetate catabolism, and the maximal expression of secreted virulence factors. These data suggest that carbon and energy for post-exponential-phase growth and virulence factor production are derived from the catabolism of acetate mediated by the TCA cycle. To test this hypothesis, the aconitase gene was genetically inactivated in a human isolate of S. aureus, and the effects on physiology, morphology, virulence factor production, virulence for mice, and stationary-phase survival were examined. TCA cycle inactivation prevented the post-exponential growth phase catabolism of acetate, resulting in premature entry into the stationary phase. This phenotype was accompanied by a significant reduction in the production of several virulence factors and alteration in host-pathogen interaction. Unexpectedly, aconitase inactivation enhanced stationary-phase survival relative to the wild-type strain. Aconitase is an iron-sulfur cluster-containing enzyme that is highly susceptible to oxidative inactivation. We speculate that reversible loss of the iron-sulfur cluster in wild-type organisms is a survival strategy used to circumvent oxidative stress induced during host-pathogen interactions. Taken together, these data demonstrate the importance of the TCA cycle in the life cycle of this medically important pathogen.

  12. Frequency translating phase conjugation circuit for active retrodirective antenna array

    NASA Astrophysics Data System (ADS)

    Chernoff, R.

    1980-11-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  13. Multiwavelength Resonance Raman Characterization of the Effect of Growth Phase and Culture Medium on Bacteria.

    PubMed

    Kunapareddy, Nagapratima; Grun, Jacob; Lunsford, Robert; Nikitin, Sergei; Wang, Zheng; Gillis, David

    2015-08-01

    We examine the use of multiwavelength ultraviolet (UV) resonance-Raman signatures to identify the effects of growth phase and growth medium on gram-positive and gram-negative bacteria. Escherichia coli (E. coli), Citrobacter koseri (C. koseri), Citrobacter braakii (C. braakii), and Bacillus cereus (B. cereus) were grown to logarithmic and stationary phases in nutrient broth and brain heart infusion broth. Resonance Raman spectra of bacteria were obtained at multiple wavelengths between 220 and 260 nm; a range that encompasses the resonance frequencies of cellular constituents. We find that spectra of the same bacterial species exhibit differences due to both growth condition and growth phase, but the larger differences reflect changes due to growth phase. The differences in the Raman spectra correlate with genetic differences among the species. Using a Pearson correlation based algorithm, we achieve successful identification of these bacteria in 83% of the cases.

  14. Growth phase and pH influence peptide signaling for competence development in Streptococcus mutans.

    PubMed

    Guo, Qiang; Ahn, Sang-Joon; Kaspar, Justin; Zhou, Xuedong; Burne, Robert A

    2014-01-01

    The development of competence by the dental caries pathogen Streptococcus mutans is mediated primarily through the alternative sigma factor ComX (SigX), which is under the control of multiple regulatory systems and activates the expression of genes involved in DNA uptake and recombination. Here we report that the induction of competence and competence gene expression by XIP (sigX-inducing peptide) and CSP (competence-stimulating peptide) is dependent on the growth phase and that environmental pH has a potent effect on the responses to XIP. A dramatic decline in comX and comS expression was observed in mid- and late-exponential-phase cells. XIP-mediated competence development and responses to XIP were optimal around a neutral pH, although mid-exponential-phase cells remained refractory to XIP treatment, and acidified late-exponential-phase cultures were resistant to killing by high concentrations of XIP. Changes in the expression of the genes for the oligopeptide permease (opp), which appears to be responsible for the internalization of XIP, could not entirely account for the behaviors observed. Interestingly, comS and comX expression was highly induced in response to endogenously overproduced XIP or ComS in mid-exponential-phase cells. In contrast to the effects of pH on XIP, competence induction and responses to CSP in complex medium were not affected by pH, although a decreased response to CSP in cells that had exited early-exponential phase was observed. Collectively, these results indicate that competence development may be highly sensitive to microenvironments within oral biofilms and that XIP and CSP signaling in biofilms could be spatially and temporally heterogeneous.

  15. A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-01

    Encouraging progress is being made in demonstrating control of ablation front hydrodynamic instability growth in inertial confinement fusion implosion experiments on the National Ignition Facility [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)]. Even once ablation front stabilities are controlled, however, instability during the stagnation phase of the implosion can still quench ignition. A scheme is proposed to reduce the growth of stagnation phase instabilities through the reverse of the "adiabat shaping" mechanism proposed to control ablation front growth. Two-dimensional radiation hydrodynamics simulations confirm that improved stagnation phase stability should be possible without compromising fuel compression.

  16. Growth phase-dependent transcription of the Streptomyces ramocissimus tuf1 gene occurs from two promoters.

    PubMed Central

    Tieleman, L N; van Wezel, G P; Bibb, M J; Kraal, B

    1997-01-01

    The str operon of Streptomyces ramocissimus contains the genes for ribosomal proteins S12 (rpsL) and S7 (rpsG) and for the polypeptide chain elongation factors G (EF-G) (fus) and Tu (EF-Tu) (tuf). This kirromycin producer contains three tuf or tuf-like genes; tuf1 encodes the regular EF-Tu and is located immediately downstream of fus. In vivo and in vitro transcription analysis revealed a transcription start site directly upstream of S. ramocissimus tuf1, in addition to the operon promoter rpsLp. Transcription from these promoters appeared to be growth phase dependent, diminishing drastically upon entry into stationary phase and at the onset of production of the EF-Tu-targeted antibiotic kirromycin. In surface-grown cultures, a second round of tuf1 transcription, coinciding with aerial mycelium formation and kirromycin production, was observed. The tuf1-specific promoter (tuf1p) was located in the intercistronic region between fus and tuf1 by high-resolution S1 mapping, in vitro transcription, and in vivo promoter probing. During logarithmic growth, the tuf1p and rpsLp transcripts are present at comparable levels. In contrast to Escherichia coli, which has two almost identical tuf genes, the gram-positive S. ramocissimus contains only tuf1 for its regular EF-Tu. High levels of EF-Tu may therefore be achieved by the compensatory activity of tuf1p. PMID:9171408

  17. Improvement of activated sludge bacteria growth by low intensity ultrasound

    NASA Astrophysics Data System (ADS)

    Yan, Y. X.; Ding, J. Y.; Gao, J. L.

    2016-08-01

    Influence of low intensity ultrasound (US) on growth rate of bacteria separated from aerobic activated sludge was studied. In order to reveal the optimal ultrasonic conditions,specific oxygen uptake rate (SOUR) of activated sludge was first detected and results showed that the maximum SOUR was obtained (increased by 40%) at US intensity of 3 Wcm-2 and irradiation time of 10min. Under the optimal conditions, 2 species of bacteria isolated from activated sludge were sonicated and then cultivated for 36h, and increment of 6% and 10% of growth rate were detected for the 2 species of bacteria, respectively, indicating US irradiation of suitable parameters effectively improved activated sludge bacteria growth.

  18. Morphology and growth speed of hcp domains during shock-induced phase transition in iron.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-01-10

    Emergence and time evolution of micro-structured new-phase domains play a crucial role in determining the macroscopic physical and mechanical behaviors of iron under shock compression. Here, we investigate, through molecular dynamics simulations and theoretical modelings, shock-induced phase transition process of iron from body-centered-cubic (bcc) to hexagonal-close-packed (hcp) structure. We present a central-moment method and a rolling-ball algorithm to calculate and analyze the morphology and growth speed of the hcp phase domains, and then propose a phase transition model to clarify our derived growth law of the phase domains. We also demonstrate that the new-phase evolution process undergoes three distinguished stages with different time scales of the hcp phase fraction in the system.

  19. Compact seaweed growth of peritectic phase on confined, flat properitectic dendrites

    NASA Astrophysics Data System (ADS)

    Ludwig, A.; Mogeritsch, J.

    2016-12-01

    Peritectic alloys form a variety of different solidification morphologies at low growth rates. An alloy with a concentration that corresponds to the hyper-peritectic limit should show a cellular/dendritic solidification of the peritectic phase for growth velocities above the corresponding constitutional undercooling limit. However, due to nucleation retardation of the peritectic phase we observed growth of properitectic dendrites before cellular growth of the peritectic could established. The transition happened via an overgrowth of dendrites with a thin layer of peritectic phase. The observations were made using a transparent, metal-like solidifying peritectic system that was solidified directionally in thin samples. In the gap between the flat dendrites and the tubing walls, the peritectic phase grew with a compact seaweed morphology, whereas in the interdendritic spacing it formed small-curved bumps. At same distance behind the tip region, more and more polycrystalline-like objects appeared at the elongated traces of the compact seaweed morphology.

  20. Global Observation of Substorm Growth Phase Processes in the Polar Caps

    NASA Technical Reports Server (NTRS)

    Brittnacher, M.; OFillingim, M. O.; Chua, D.; Wilber, M.; Parks, G. K.; Germany, G. A.; Spann, J. F.

    1998-01-01

    Global images of the polar cap region during the substorm growth phase by the Polar Ultraviolet Imager reveals evidence of the processes which are not completely explained by current models. In particular, it was found that size of the polar cap region increases during the growth phase even if the interplanetary magnetic field has no southward component. Three phenomena were observed to produce an increase in the size of the polar cap: (1) motion of the auroral oval to lower latitude, (2) thinning of the auroral oval, and (3) reduction of intense aurora[ precipitation in the polar region. Correlation of image intensities with in situ particle measurements from the FAST satellite are being conducted to study the three growth phase phenomena; and to help identify the source regions of the particles, the mechanisms involved in producing the auroral structures and what may be reducing the polar cap precipitation during the substorm growth phase.

  1. Universal features in the growth dynamics of religious activities

    NASA Astrophysics Data System (ADS)

    Picoli, S., Jr.; Mendes, R. S.

    2008-03-01

    We quantify and analyze the growth dynamics of a religious group in 140 countries for a 47-year period (1959-2005). We find that (i) the distribution of annual logarithmic growth rates exhibits the same functional form for distinct size scales and (ii) the standard deviation of growth rates scales with size as a power law. Both findings hold for distinct measures of religious activity. These results are in surprising agreement with those found in the study of economic activities and scientific research, suggesting that religious activities are governed by universal growth mechanisms. We also compare the empirical findings on religious activities with the predictions of general models recently proposed in the context of complex organizations. Our findings should provide useful information for a better understanding of the mechanisms governing the growth of religion.

  2. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  3. Consequences of abnormal CDK activity in S phase.

    PubMed

    Anda, Silje; Rothe, Christiane; Boye, Erik; Grallert, Beáta

    2016-01-01

    Cyclin Dependent Kinases (CDKs) are important regulators of DNA replication. In this work we have investigated the consequences of increasing or decreasing the CDK activity in S phase. To this end we identified S-phase regulators of the fission yeast CDK, Cdc2, and used appropriate mutants to modulate Cdc2 activity. In fission yeast Mik1 has been thought to be the main regulator of Cdc2 activity in S phase. However, we find that Wee1 has a major function in S phase and thus we used wee1 mutants to investigate the consequences of increased Cdc2 activity. These wee1 mutants display increased replication stress and, particularly in the absence of the S-phase checkpoint, accumulate DNA damage. Notably, more cells incorporate EdU in a wee1(-) strain as compared to wildtype, suggesting altered regulation of DNA replication. In addition, a higher number of cells contain chromatin-bound Cdc45, an indicator of active replication forks. In addition, we found that Cdc25 is required to activate Cdc2 in S phase and used a cdc25 mutant to explore a situation where Cdc2 activity is reduced. Interestingly, a cdc25 mutant has a higher tolerance for replication stress than wild-type cells, suggesting that reduced CDK activity in S phase confers resistance to at least some forms of replication stress.

  4. Temperature dependent grain growth of forsterite-nickel mixtures: Implications for grain growth in two-phase systems and applications to the H-chondrite parent body

    NASA Astrophysics Data System (ADS)

    Guignard, J.; Toplis, M. J.; Bystricky, M.; Monnereau, M.

    2016-06-01

    Grain growth experiments in the system forsterite (Fo) + nickel (Ni) have been performed on two analogue mixtures of ordinary chondrites, with volume % of Fo:Ni (95:5) and (80:20). These two mixtures have been studied at temperatures of 1390 °C and 1340 °C, at an oxygen fugacity (fO2) three orders of magnitude below the Ni-NiO buffer, for durations between 2 h and 10 days. Microstructures and grain size distributions show that grain growth is normal and that for durations >10 h the Zener relation is verified (i.e., the ratio of Fo and Ni grain size is independent of time). Comparison with results previously obtained at 1440 °C shows a similar grain growth exponent (n ∼ 5) for both phases, consistent with growth of forsterite by grain boundary migration, limited by the growth-rate of nickel. The details of size distribution frequencies and the value of grain-growth exponent indicate that the nickel grains, which pin forsterite grain boundaries, grow by diffusion along one-dimensional paths (i.e., along forsterite triple junctions). The derived activation energies for nickel and forsterite are 235 ± 33 kJ /mol and 400 ± 48 kJ /mol respectively. Within the framework of the Zener relation, this unexpected difference of activation energy is shown to be related to temperature-dependent variations in the ratio of Ni and Fo grain-size that are consistent with observed variations in Fo-Ni-Fo dihedral angle. These data thus indicate that the presence of all phases should be taken into account when considering the activation energy of growth rate of individual phases. As an application, the experimentally derived growth law for metal has been used in conjunction with temperature-time paths taken from models of the thermal history of the H-chondrite parent body to estimate the grain size evolution of metal in H-chondrites. A remarkably self-consistent picture emerges from experimentally derived grain-growth laws, textural data of metal grains in well characterised H

  5. Basic Chad Arabic: The Active Phase.

    ERIC Educational Resources Information Center

    Absi, Samir Abu; Sinaud, Andre

    This third volume in the course on Chad Arabic emphasizes the active development of speaking skills in the target language. The active participation of the student requires imitation and induction of linguistic structures to a large extent. Some 45 units present grammatical material on gender, parts of speech, and verbs. Each unit contains a…

  6. Hair Growth Promotion Activity and Its Mechanism of Polygonum multiflorum

    PubMed Central

    Li, Yunfei; Han, Mingnuan; Lin, Pei; He, Yanran; Yu, Jie; Zhao, Ronghua

    2015-01-01

    Polygonum multiflorum Radix (PMR) has long history in hair growth promotion and hair coloring in clinical applications. However, several crucial problems in its clinic usage and mechanisms are still unsolved or lack scientific evidences. In this research, C57BL/6J mice were used to investigate hair growth promotion activity and possible mechanism of PMR and Polygonum multiflorum Radix Preparata (PMRP). Hair growth promotion activities were investigated by hair length, hair covered skin ratio, the number of follicles, and hair color. Regulation effects of several cytokines involved in the hair growth procedure were tested, such as fibroblast growth factor (FGF-7), Sonic Hedgehog (SHH), β-catenin, insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor (HGF). Oral PMR groups had higher hair covered skin ratio (100 ± 0.00%) than oral PMRP groups (48%~88%). However, topical usage of PMRP had about 90% hair covered skin ratio. Both oral administration of PMR and topically given PMRP showed hair growth promotion activities. PMR was considered to be more suitable for oral administration, while PMRP showed greater effects in external use. The hair growth promotion effect of oral PMR was most probably mediated by the expression of FGF-7, while topical PMRP promoted hair growth by the stimulation of SHH expression. PMID:26294926

  7. Regulation of myostatin activity and muscle growth.

    PubMed

    Lee, S J; McPherron, A C

    2001-07-31

    Myostatin is a transforming growth factor-beta family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may have applications for promoting muscle growth, we investigated the regulation of myostatin signaling. Myostatin protein purified from mammalian cells consisted of a noncovalently held complex of the N-terminal propeptide and a disulfide-linked dimer of C-terminal fragments. The purified C-terminal myostatin dimer was capable of binding the activin type II receptors, Act RIIB and, to a lesser extent, Act RIIA. Binding of myostatin to Act RIIB could be inhibited by the activin-binding protein follistatin and, at higher concentrations, by the myostatin propeptide. To determine the functional significance of these interactions in vivo, we generated transgenic mice expressing high levels of the propeptide, follistatin, or a dominant-negative form of Act RIIB by using a skeletal muscle-specific promoter. Independent transgenic mouse lines for each construct exhibited dramatic increases in muscle mass comparable to those seen in myostatin knockout mice. Our findings suggest that the propeptide, follistatin, or other molecules that block signaling through this pathway may be useful agents for enhancing muscle growth for both human therapeutic and agricultural applications.

  8. Nonaqueous seeded growth of flower-like mixed-phase titania nanostructures for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Hsu, Yu-Chuan; Lin, Huang-Ching; Chen, Chia-Hsiu; Liao, Yi-Ting; Yang, Chia-Min

    2010-09-01

    A nonaqueous seeded-grown synthesis of three-dimensional TiO 2 nanostructures in the benzyl alcohol reaction system was reported. The synthesis was simple, high-yield, and requires no structural directing or capping agents. It could be largely accelerated by applying microwave heating. The TiO 2 nanostructures had a unique flower-like morphology and high surface area. Furthermore, the structural analyses suggested that the nanostructures had a non-uniform distribution of crystalline phases, with the inner part rich in anatase and the outer part rich in rutile. After heat treatments, the mixed-phase TiO 2 nanostructures exhibited high photocatalytic activities for the photodegradation of methylene blue as compared to Degussa P25. The high photoactivities may be associated with the high surface area and the synergistic effect resulting from the anisotropic mixed-phase nanostructures. The results demonstrate the uniqueness of the nonaqueous seeded growth and the potential of the TiO 2 nanostructures for practical applications.

  9. Division of labor among Mycobacterium smegmatis RNase H enzymes: RNase H1 activity of RnhA or RnhC is essential for growth whereas RnhB and RnhA guard against killing by hydrogen peroxide in stationary phase

    PubMed Central

    Gupta, Richa; Chatterjee, Debashree; Glickman, Michael S.; Shuman, Stewart

    2017-01-01

    RNase H enzymes sense the presence of ribonucleotides in the genome and initiate their removal by incising the ribonucleotide-containing strand of an RNA:DNA hybrid. Mycobacterium smegmatis encodes four RNase H enzymes: RnhA, RnhB, RnhC and RnhD. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of RnhA. We report that RnhA (like RnhC characterized previously) is an RNase H1-type magnesium-dependent endonuclease with stringent specificity for RNA:DNA hybrid duplexes. Whereas RnhA does not incise an embedded mono-ribonucleotide, it can efficiently cleave within tracts of four or more ribonucleotides in duplex DNA. We gained genetic insights to the division of labor among mycobacterial RNases H by deleting the rnhA, rnhB, rnhC and rnhD genes, individually and in various combinations. The salient conclusions are that: (i) RNase H1 activity is essential for mycobacterial growth and can be provided by either RnhC or RnhA; (ii) the RNase H2 enzymes RnhB and RnhD are dispensable for growth and (iii) RnhB and RnhA collaborate to protect M. smegmatis against oxidative damage in stationary phase. Our findings highlight RnhC, the sole RNase H1 in pathogenic mycobacteria, as a candidate drug discovery target for tuberculosis and leprosy. PMID:27899559

  10. Antioxidant defence system during exponential and stationary growth phases of Phycomyces blakesleeanus: response to oxidative stress by hydrogen peroxide.

    PubMed

    de Castro, Cristina; del Valle, Pilar; Rúa, Javier; García-Armesto, María Rosario; Gutiérrez-Larraínzar, Marta; Busto, Félix; de Arriaga, Dolores

    2013-04-01

    An analysis of the components of the antioxidant defence system in exponential and stationary growth phases of filamentous fungus Phycomyces blakesleeanus and the response to the oxidative stress hydrogen peroxide were performed. There is a strong positive correlation between mycelial antioxidant capacity and the contents of gallic acid, d-erythroascorbate (d-EAA) or d-erythroascorbate monoglucoside (d-EAAG). These secondary metabolites are specifically synthesized by this fungus and reach maximal values in the stationary growth phase, suggesting that they can play some role in the antioxidant defence system of this fungus. There is a differential expression of the two more notable antioxidant activities, catalase (CAT) and superoxide dismutase (SOD), depending of the growth stage of P. blakesleeanus, CAT being expressed in the exponential and SOD in the stationary phase. Phycomyces blakesleeanus showed a high resistance to the oxidative stress caused by H2O2 (50 and 200 mM) which was higher in exponential phase. This higher resistance can be explained by the presence of CAT, glutathione peroxidase (GPx), and the probable contribution of glutathione-S-transferase (GST) and high levels of reduced form of glutathione (GSH). The transition to stationary phase was accompanied with a higher physiological oxidative damage illustrated by the higher protein carbonylation. In this growth stage the resistance of the fungus to the oxidative stress caused by H2O2 could be explained by the presence of SOD, GPx, and the probable contribution of GST as well as of secondary metabolites, mainly d-EAA and d-EAAG. These results highlight a specific response to oxidative stress by H2O2 depending on the growth phase of P. blakesleeanus.

  11. Active Nematics Are Intrinsically Phase Separated

    NASA Astrophysics Data System (ADS)

    Mishra, Shradha; Ramaswamy, Sriram

    2006-09-01

    Two-dimensional nonequilibrium nematic steady states, as found in agitated granular-rod monolayers or films of orientable amoeboid cells, were predicted [Europhys. Lett. 62, 196 (2003)EULEEJ0295-507510.1209/epl/i2003-00346-7] to have giant number fluctuations, with the standard deviation proportional to the mean. We show numerically that the steady state of such systems is macroscopically phase separated, yet dominated by fluctuations, as in the Das-Barma model [Phys. Rev. Lett. 85, 1602 (2000)PRLTAO0031-900710.1103/PhysRevLett.85.1602]. We suggest experimental tests of our findings in granular and living-cell systems.

  12. Modeling particle growth and morphology of impact polypropylene produced in the gas phase

    NASA Astrophysics Data System (ADS)

    Debling, Jon A.

    A gas phase reactor system using on-line FTIR for controlled composition olefin polymerization experiments with gaseous or liquid monomers has been designed and constructed in this work. Using this equipment, a comprehensive study of the kinetics, particle growth and morphological development of impact polypropylene produced in-situ with a TiClsb4/MgClsb2 catalyst has been conducted. The catalyst was found exhibiting a decay type behavior for ethylene and propylene homopolymerization but an activation effect was observed when both monomers were present together. Hydrogen was also seen to boost the rate of propylene polymerization but not ethylene, and increased the rate of catalyst deactivation during propylene polymerization. Microscopy analysis of the particles over a range of copolymer content (up to 70 wt. %), copolymer composition, reaction temperature and hydrogen levels reveal how the copolymer phase segregates from the homopolymer and grows within the homopolymer matrix. A model for particle growth is proposed. A computer model for the study of the effects of changing morphology for polyolefins produced in multistage processes has been developed and used to investigate the role of monomer diffusion limitations during polymerization using the experimental data found in this work. To study the effects of residence time distribution in multistage continuous processes for impact polypropylene, population balance models have been developed for multistage processes consisting of gas and liquid phase reactors. The effects of catalyst size distribution and monomer diffusion limitations can be incorporated into the models. It is shown that commercial impact polypropylene consists of a broad distribution of polymer properties as a consequence of reactor residence time distribution issues. Implications for product homogeneity, particle sticking and process productivity are discussed.

  13. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  14. [The two-phase growth medium for sub-culturing of Helicobacter pylori].

    PubMed

    Isaeva, G Sh; Aleshkin, V A; Sel'kova, E P; Gerasimova, M S; Moroz, P I

    2013-06-01

    A. Pylori is a very undemanding microorganism needing the in support of complex of conditions including particular atmosphere, temperature of culturing and composition of growth medium. The two-phase growth medium is recommended to sub-culturing in Petri dishes with diameter of 90 mm. The growth medium consists of chocolate agar with addition of Schedler broth and enriched with 10% serum of cattle.

  15. Nucleation kinetics and crystal growth with fluctuating rates at the intermediate stage of phase transitions

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Malygin, A. P.

    2014-01-01

    Crystal growth kinetics accompanied by particle growth with fluctuating rates at the intermediate stage of phase transitions is analyzed theoretically. The integro-differential model of governing equations is solved analytically for size-independent growth rates and arbitrary dependences of the nucleation frequency on supercooling/supersaturation. Two important cases of Weber-Volmer-Frenkel-Zel'dovich and Mier nucleation kinetics are detailed. A Fokker-Plank type equation for the crystal-size density distribution function is solved explicitly.

  16. Improved lithium iodide neutron scintillator with Eu2+ activation: The elimination of Suzuki-Phase precipitates

    DOE PAGES

    Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.; ...

    2017-02-21

    Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalent Eumore » dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less

  17. Tyrosine requirement during the rapid catch-up growth phase of recovery from severe childhood undernutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The requirement for aromatic amino acids, during the rapid catch-up in weight phase of recovery from severe childhood under nutrition (SCU) is not clearly established. As a first step, the present study aimed to estimate the tyrosine requirement of children with SCU during the catch-up growth phase ...

  18. Ultrastructure of Pseudomonas saccharophila at early and late log phase of growth.

    NASA Technical Reports Server (NTRS)

    Young, H. L.; Chao, F.-C.; Turnbill, C.; Philpott, D. E.

    1972-01-01

    Description of the fine structure of Pseudomonas saccarophila at the early log phase and the late log phase of growth, such as shown by electron microscopy with the aid of various techniques of preparation. The observations reported suggested that, under the experimental conditions applied, P. saccharophila multiplies by the method of constrictive division.

  19. Genetic Screening for Bacterial Mutants in Liquid Growth Media By Fluorescence-Activated Cell Sorting

    PubMed Central

    Abuaita, Basel H.; Withey, Jeffrey H.

    2010-01-01

    Many bacterial pathogens have defined in vitro virulence inducing conditions in liquid media which lead to production of virulence factors important during an infection. Identifying mutants that no longer respond to virulence inducing conditions will increase our understanding of bacterial pathogenesis. However, traditional genetic screens require growth on solid media. Bacteria in a single colony are in every phase of the growth curve, which complicates the analysis and make screens for growth phase-specific mutants problematic. Here, we utilize fluorescence-activated cell sorting in conjunction with random transposon mutagenesis to isolate bacteria grown in liquid media that are defective in virulence activation. This method permits analysis of an entire bacterial population in real time and selection of individual bacterial mutants with the desired gene expression profile at any time point after induction. We have used this method to identify Vibrio cholerae mutants defective in virulence induction. PMID:21094189

  20. A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy

    SciTech Connect

    Schulte, Kevin L.; Simon, John; Jain, Nikhil; Young, David L.; Ptak, Aaron J.

    2016-11-21

    Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of the reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.

  1. Growth and characterization of α and β-phase tungsten films on various substrates

    SciTech Connect

    Lee, Jeong-Seop; Cho, Jaehun; You, Chun-Yeol

    2016-03-15

    The growth conditions of tungsten thin films were investigated using various substrates including Si, Si/SiO{sub 2}, GaAs, MgO, and Al{sub 2}O{sub 3}, and recipes were discovered for the optimal growth conditions of thick metastable β-phase tungsten films on Si, GaAs, and Al{sub 2}O{sub 3} substrates, which is an important material in spin orbit torque studies. For the Si/SiO{sub 2} substrate, the crystal phase of the tungsten films was different depending upon the tungsten film thickness, and the transport properties were found to dramatically change with the thickness owing to a change in phase from the α + β phase to the α-phase. It is shown that the crystal phase changes are associated with residual stress in the tungsten films and that the resistivity is closely related to the grain sizes.

  2. Selective growth of single phase VO{sub 2}(A, B, and M) polymorph thin films

    SciTech Connect

    Srivastava, Amar; Saha, Surajit; Rotella, Helene; Pal, Banabir; Kalon, Gopinadhan; Mathew, Sinu; Motapothula, Mallikarjuna; Dykas, Michal; Yang, Ping; Okunishi, Eiji; Sarma, D. D.; Venkatesan, T.

    2015-02-01

    We demonstrate the growth of high quality single phase films of VO{sub 2}(A, B, and M) on SrTiO{sub 3} substrate by controlling the vanadium arrival rate (laser frequency) and oxidation of the V atoms. A phase diagram has been developed (oxygen pressure versus laser frequency) for various phases of VO{sub 2} and their electronic properties are investigated. VO{sub 2}(A) phase is insulating VO{sub 2}(B) phase is semi-metallic, and VO{sub 2}(M) phase exhibits a metal-insulator transition, corroborated by photo-electron spectroscopic studies. The ability to control the growth of various polymorphs opens up the possibility for novel (hetero)structures promising new device functionalities.

  3. Role of mga in growth phase regulation of virulence genes of the group A streptococcus.

    PubMed Central

    McIver, K S; Scott, J R

    1997-01-01

    To determine whether growth phase affects the expression of mga and other virulence-associated genes in the group A streptococcus (GAS), total RNA was isolated from the serotype M6 GAS strain JRS4 at different phases of growth and transcript levels were quantitated by hybridization with radiolabeled DNA probes. Expression of mga (which encodes a multiple gene regulator) and the Mga-regulated genes emm (which encodes M protein) and scpA (which encodes a complement C5a peptidase) was found to be maximal in exponential phase and shut off as the bacteria entered stationary phase, while the housekeeping genes recA and rpsL showed constant transcript levels over the same period of growth. Expression of mga from a foreign phage promoter in a mga-deleted GAS strain (JRS519) altered the wild-type growth phase-dependent transcription profile seen for emm and scpA, as well as for mga. Therefore, the temporal control of mga expression requires its upstream promoter region, and the subsequent growth phase regulation of emm and scpA is Mga dependent. A number of putative virulence genes in JRS4 were shown not to require Mga for their expression, although several exhibited growth phase-dependent regulation that was similar to mga, i.e., slo (which encodes streptolysin O) and plr (encoding the plasmin receptor/glyceraldehyde-3-phosphate dehydrogenase). Still others showed a markedly different pattern of expression (the genes for the superantigen toxins MF and SpeC). These results suggest the existence of complex levels of global regulation sensitive to growth phase that directly control the expression of virulence genes and mga in GAS. PMID:9260962

  4. Physiological adaptation of growth kinetics in activated sludge.

    PubMed

    Friedrich, M; Takács, I; Tränckner, J

    2015-11-15

    Physiological adaptation as it occurs in bacterial cells at variable environmental conditions influences characteristic properties of growth kinetics significantly. However, physiological adaptation to growth related parameters in activated sludge modelling is not yet recognised. Consequently these parameters are regarded to be constant. To investigate physiological adaptation in activated sludge the endogenous respiration in an aerobic degradation batch experiment and simultaneous to that the maximum possible respiration in an aerobic growth batch experiment was measured. The activated sludge samples were taken from full scale wastewater treatment plants with different sludge retention times (SRTs). It could be shown that the low SRT sludge adapts by growth optimisation (high maximum growth rate and high decay rate) to its particular environment where a high SRT sludge adapts by survival optimization (low maximum growth rate and low decay rate). Thereby, both the maximum specific growth rate and the decay rate vary in the same pattern and are strongly correlated to each other. To describe the physiological state of mixed cultures like activated sludge quantitatively a physiological state factor (PSF) is proposed as the ratio of the maximum specific growth rate and the decay rate. The PSF can be expressed as an exponential function with respect to the SRT.

  5. Improved thermodynamic analysis of gas reactions for compound semiconductor growth by vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Inatomi, Yuya; Kangawa, Yoshihiro; Kakimoto, Koichi; Koukitu, Akinori

    2017-03-01

    An improved thermodynamic analysis method for vapor-phase epitaxy is proposed. In the conventional method, the mass-balance constraint equations are expressed in terms of variations in partial pressure. Although the conventional method is appropriate for gas–solid reactions occurring near the growth surface, it is not suitable for gas reactions that involve changes in the number of gas molecules. We reconsider the constraint equations in order to predict the effect of gas reactions on semiconductor growth processes. To demonstrate the feasibility of the improved method, the growth process of group-III nitrides by metalorganic vapor-phase epitaxy has been investigated.

  6. Solution phase parallel synthesis and evaluation of MAPK inhibitory activities of close structural analogues of a Ras pathway modulator.

    PubMed

    Lu, Yingchun; Sakamuri, Sukumar; Chen, Quin-Zene; Keng, Yen-Fang; Khazak, Vladimir; Illgen, Katrin; Schabbert, Silke; Weber, Lutz; Menon, Sanjay R

    2004-08-02

    A solution phase parallel synthesis approach was undertaken to rapidly explore the structure-activity relationship of an inhibitor of the Ras/Raf protein interaction identified from a small molecule compound library. Evaluation of the MAPK pathway signaling inhibitory activity of the synthesized analogues as well as their antiproliferative activity and ability to inhibit soft agar growth were performed.

  7. Role of Nucleation and Growth in Two-Phase Microstructure Formation

    SciTech Connect

    Shin, Jong Ho

    2007-01-01

    During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different

  8. Immunogenic protein variations of Clostridium chauvoei cellular antigens associated with the culture growth phase.

    PubMed

    Mattar, María Aída; Cortiñas, Teresa Inés; de Guzmán, Ana María Stefanini

    2002-03-25

    The immunoprotective capacity of four Clostridium chauvoei strains at different growth stages is reported. In all the strains tested, the cells coming from the stationary phase were those with the highest immunoprotective capacity and, depending on the strain, this protective capacity diminished or even disappeared in other phases. Protein profiles were similar in all the strains and few proteins were differentially expressed during growth as shown by SDS-PAGE. For strain 17, a local strain, a clear relationship was observed between the diminution of immunogenicity and the total loss of protective capacity of sonicated cells at late stationary phase.

  9. Adolescents' Accounts of Growth Experiences in Youth Activities.

    ERIC Educational Resources Information Center

    Dworkin, Jodi B.; Larson, Reed; Hansen, David

    2003-01-01

    Conducted 10 focus groups in which adolescents discussed their "growth experiences" in extracurricular and community-based activities. The 55 participants reported personal and interpersonal processes and generally described themselves as agents of their own development and change. (SLD)

  10. Protein Crystal Growth Activities on STS-42

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Protein Crystal Growth (PCG) middeck payload is currently manifested to fly on STS-42 in January 1992. This payload is a joint effort between NASA s Office of Commercial Programs (OCP) and Office of Space Science and Applications (OSSA). The PCG experiments are managed by the Center for Macromolecular Crystallography (CMC), a NASA Center for the Commercial Development of Space (CCDS) based at the University of Alabama at Birmingham (UAB). This is the eighth flight of a payload in the PCG program that is jointly sponsored by the OCP and the OSSA. The flight hardware for STS-42 includes six Vapor Diffusion Apparatus (VDA) trays stored in two Refrigerator/Incubator Modules (R/TM s). The VDA trays will simultaneously conduct 120 experiments involving 15 different protein compounds, four of which are sponsored by the OCP, the UAB CCDS, and four co-investigators.

  11. Breadboard activities for advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael

    1993-01-01

    The proposed work entails the design, assembly, testing, and delivery of a turn-key system for the semi-automated determination of protein solubilities as a function of temperature. The system will utilize optical scintillation as a means of detecting and monitoring nucleation and crystallite growth during temperature lowering (or raising, with retrograde solubility systems). The deliverables of this contract are: (1) turn-key scintillation system for the semi-automatic determination of protein solubilities as a function of temperature, (2) instructions and software package for the operation of the scintillation system, and (3) one semi-annual and one final report including the test results obtained for ovostatin with the above scintillation system.

  12. Increases in plasma sheet temperature with solar wind driving during substorm growth phases.

    PubMed

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-12-28

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼10(15) J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

  13. Defect-phase-dynamics approach to statistical domain-growth problem of clock models

    NASA Technical Reports Server (NTRS)

    Kawasaki, K.

    1985-01-01

    The growth of statistical domains in quenched Ising-like p-state clock models with p = 3 or more is investigated theoretically, reformulating the analysis of Ohta et al. (1982) in terms of a phase variable and studying the dynamics of defects introduced into the phase field when the phase variable becomes multivalued. The resulting defect/phase domain-growth equation is applied to the interpretation of Monte Carlo simulations in two dimensions (Kaski and Gunton, 1983; Grest and Srolovitz, 1984), and problems encountered in the analysis of related Potts models are discussed. In the two-dimensional case, the problem is essentially that of a purely dissipative Coulomb gas, with a sq rt t growth law complicated by vertex-pinning effects at small t.

  14. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    PubMed Central

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  15. Defect-Stabilized Phases in Extensile Active Nematics

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel; Decamp, Stephen; Dogic, Zvonimir; Hagan, Michael

    2015-03-01

    Active nematics are liquid crystals which are driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these materials, leading to beautiful and surprising behaviors including the spontaneous generation of topological defect pairs which stream through the system and later annihilate, yielding a complex, seemingly chaotic dynamical steady-state. In this talk, I will describe the emergence of order from this chaos in the form of previously unknown broken-symmetry phases in which the topological defects themselves undergo orientational ordering. We have identified these defect-ordered phases in two realizations of an active nematic: first, a suspension of extensile bundles of microtubules and molecular motor proteins, and second, a computational model of extending hard rods. I will describe the defect-stabilized phases that manifest in these systems, our current understanding of their origins, and discuss whether such phases may be a general feature of extensile active nematics.

  16. MMIC devices for active phased array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    The study of printed circuit discontinuities is necessary in order to design, for example, transitions between rectangular waveguides and printed circuits. New developments with respect to the analytical approaches to this problem are discussed. A summary of the progress in the experimental approach is presented. The accurate solution for the modes in various millimeter-wave waveguides is essential in the analysis of many integrated circuit components, such as filters and impedance transformers. Problems associated with the numerical computation of these modes in two frequently used waveguide forms, namely, the finline and microstrip, are presented. The spectral domain method of formulation, with a moment method solution, is considered. This approach can be readily extended to analyze an arbitrary configuration of dielectric and metallized regions in a shielded enclosure. Galerkin's method is used, where the testing and basic functions are the same. It is shown that the mode functions, or eigenfunctions, are more sensitive to errors than the phase constants, or eigenvalues. The approximate mode functions do not satisfy the orthogonality relationship well, resulting in difficulties when these modal solutions are used to form an approximate Green's function or are used in a mode matching analysis.

  17. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    DOEpatents

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  18. Numerical simulation of liquid phase electro-epitaxial selective area growth

    NASA Astrophysics Data System (ADS)

    Khenner, M.; Braun, R. J.

    2005-05-01

    A computational model for semiconductor crystal growth on a partially masked substrate under simplified liquid phase electroepitaxy conditions is developed. The model assumes isothermal diffusional growth, which is enhanced by applied DC current through crystal-solution interface. A finite-difference, front-tracking method is used to numerically evolve the interface. Computed examples show strong influence of the electromigration on growth rates in vertical and lateral directions and the dependence of growth on electrical resistance of mask material, and on the wetting contact angle.

  19. Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale

    SciTech Connect

    Jamshidian, M.; Rabczuk, T.

    2014-03-15

    We establish the correlation between the diffuse interface and sharp interface descriptions for stressed grain boundary migration by presenting analytical solutions for stressed migration of a circular grain boundary in a bicrystalline phase field domain. The validity and accuracy of the phase field model is investigated by comparing the phase field simulation results against analytical solutions. The phase field model can reproduce precise boundary kinetics and stress evolution provided that a thermodynamically consistent theory and proper expressions for model parameters in terms of physical material properties are employed. Quantitative phase field simulations are then employed to investigate the effect of microstructural length scale on microstructure and texture evolution by stressed grain growth in an elastically deformed polycrystalline aggregate. The simulation results reveal a transitional behaviour from normal to abnormal grain growth by increasing the microstructural length scale.

  20. Radiosensitivity of different tissues from carrot root at different phases of growth in culture

    SciTech Connect

    Degani, N.; Pickholtz, D.

    1980-09-01

    The present work compares the effect of ..gamma..-radiation dose and time in culture on the growth of cambium and phloem carrot (Daucus carota) root explants. It was found that the phloem is more radiosensitive than the cambium and that both tissues were more radiosensitive when irradiated on excision at the G/sub 1/ phase rather than at the end of the lag phase on the ninth day of growth in culture when cells were predominantly at the G/sub 2/ phase. The nuclear volumes of cells from both tissues were similar but were larger at the end of the more radioresistant lag phase than those of the G/sub 1/ phase on excision. However, nuclear volume could not account for the differences in radiosensitivity between either the tissues or irradiation times in culture.

  1. Nucleotide and nucleic acid status in shoot tips from juvenile and mature clones of Sequoiadendron giganteum during rest and growth phases.

    PubMed

    Monteuuis, O; Gendraud, M

    1987-09-01

    Nucleoside triphosphate and nucleic acid contents of shoot tips of juvenile and mature clones of Sequoiadendron giganteum Buchholz were analyzed during rest and growth phases. In both juvenile and mature clones, shoot growth activity was characterized by significant increases in ATP, non-adenylic nucleoside triphosphate (NTP) and RNA levels. During the rest period, both ATP/NTP and RNA/DNA ratios were significantly higher in the juvenile clone than in the mature clone. However, during the growth phase, only the ATP/NTP ratio was higher in the juvenile than in the mature clone. The results suggest that the physiological differences between shoot tips of juvenile and mature tissues during the rest phase tend to decline as active shoot growth commences. This conclusion is consistent with morphological observations and with the varying organogenetic capacities of in vitro cultures of explants removed from stock plants at different times.

  2. Growth method for chalcongenide phase-change nanostructures

    NASA Technical Reports Server (NTRS)

    Yu, Bin (Inventor); Sun, Xuhui (Inventor); Meyyappan, Meyya (Inventor)

    2010-01-01

    A method for growth of an alloy for use in a nanostructure, to provide a resulting nanostructure compound including at least one of Ge.sub.xTe.sub.y, In.sub.xSb.sub.y, In.sub.xSe.sub.y, Sb.sub.xTe.sub.y, Ga.sub.xSb.sub.y, Ge.sub.xSb.sub.y,Te.sub.z, In.sub.xSb.sub.yTe.sub.z, Ga.sub.xSe.sub.yTe.sub.z, Sn.sub.xSb.sub.yTe.sub.z, In.sub.xSb.sub.yGe.sub.z, Ge.sub.wSn.sub.xSb.sub.yTe.sub.z, Ge.sub.wSb.sub.xSe.sub.yTe.sub.z, and Te.sub.wGe.sub.xSb.sub.yS.sub.z, where w, x, y and z are numbers consistent with oxidization states (2, 3, 4, 5, 6) of the corresponding elements. The melt temperatures for some of the resulting compounds are in a range 330-420.degree. C., or even lower with some compounds.

  3. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  4. Bacterial Spring Constant in Log-Phase Growth

    NASA Astrophysics Data System (ADS)

    Jain, Deepti; Nanda, H.; Nath, R.; Chitnis, D. S.; Ganesan, V.

    2011-07-01

    Atomic Force Microscopy is a powerful tool in studying bacterial systems too. The turgor pressure studies on well known systems like E-coli and Staphylococcus revealed a fascinating fact that the numbers are in tens of atmosphere depending upon the microbial activity. Hence there is no way that one can destroy them by physical means. This is due to the robust nature of the cell wall. Understanding the cell wall structure requires an estimate of spring constant of the cell wall membrane and its variation upon activity. Here we present an experimental estimate of the spring constant of the cell wall (˜10-2 N/m) using force curve measurements on bacteria using an AFM tip. This has a bearing on measuring turgor pressure of bacterium.

  5. ACTIVATION OF HAGEMAN FACTOR IN SOLID AND FLUID PHASES

    PubMed Central

    Cochrane, C. G.; Revak, S. D.; Wuepper, K. D.

    1973-01-01

    The activation of Hageman factor in solid and fluid phase has been analyzed. Activation of highly purified Hageman factor occurred after it interacted with and became bound to a negatively charged surface. Activation was observed in the absence of enzymes that are inhibitable with diisopropylfluorophosphate, phenyl methyl sulfonyl fluoride and ε-amino-n-caproic acid. The binding of [125I]Hageman factor to the negatively charged surface was markedly inhibited by plasma or purified plasma proteins. Activation of Hageman factor in solution (fluid phase) was obtained with kallikrein, plasmin, and Factor XI (plasma thromboplastin antecedent). Kallikrein was greater than 10 times more active in its ability to activate Hageman factor than plasmin and Factor XI. The data offer a plausible explanation for the finding that highly purified kallikrein promotes clotting of normal plasma. In addition, the combined results of this and previously reported data from this laboratory indicate that the reciprocal activation of Hageman factor by kallikrein in fluid phase is essential for normal rate of activation of the intrinsic-clotting, kinin-forming, and fibrinolytic systems. Activation of Hageman factor was associated with three different structural changes in the molecule: (a) Purified Hageman factor, activated on negatively charged surfaces retained its native mol wt of 80–90,000. Presumably a conformational change accompanied activation. (b) In fluid phase, activation with kallikrein and plasmin did not result in cleavage of large fragments of rabbit Hageman factor, although the activation required hydrolytic capacity of the enzymes. (c) Activation of human Hageman factor with kallikrein or plasmin was associated with cleavage of the molecule to 52,000, 40,000, and 28,000 mol wt fragments. Activation of rabbit Hageman factor with trypsin resulted in cleavage of the molecule into three fragments, each of 30,000 mol wt as noted previously. This major cleavage occurred

  6. Oxidative phosphorylation in Debaryomyces hansenii: physiological uncoupling at different growth phases.

    PubMed

    Cabrera-Orefice, Alfredo; Guerrero-Castillo, Sergio; Díaz-Ruíz, Rodrigo; Uribe-Carvajal, Salvador

    2014-07-01

    Physiological uncoupling of mitochondrial oxidative phosphorylation (OxPhos) was studied in Debaryomyces hansenii. In other species, such as Yarrowia lipolytica and Saccharomyces cerevisiae, OxPhos can be uncoupled through differential expression of branched respiratory chain enzymes or by opening of a mitochondrial unspecific channel (ScMUC), respectively. However D. hansenii mitochondria, which contain both a branched respiratory chain and a mitochondrial unspecific channel (DhMUC), selectively uncouple complex I-dependent rate of oxygen consumption in the stationary growth phase. The uncoupled complex I-dependent respiration was only 20% of the original activity. Inhibition was not due to inactivation of complex I, lack of protein expression or to differential expression of alternative oxidoreductases. Furthermore, all other respiratory chain activities were normal. Decrease of complex I-dependent respiration was due to NAD(+) loss from the matrix, probably through an open of DhMUC. When NAD(+) was added back, coupled complex I-activity was recovered. NAD(+) re-uptake was independent of DhMUC opening and seemed to be catalyzed by a NAD(+)-specific transporter, which was sensitive to bathophenanthroline, bromocresol purple or pyridoxal-5'-phosphate as described for S. cerevisiae mitochondrial NAD(+) transporters. Loss of NAD(+) from the matrix through an open MUC is proposed as an additional mechanism to uncouple OxPhos.

  7. Growth behavior of GaSb by metal organic vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Rathi, Manish K.; Hawkins, Brian E.; Kuech, Thomas F.

    2006-11-01

    The growth mechanisms of GaSb in a metal-organic vapor-phase epitaxy (MOVPE) system were studied for both trimethyl gallium (TMG)/trimethyl antimony (TMSb) and triethyl gallium (TEG)/TMSb growth chemistries. The effect of growth temperature and precursor mole fractions on GaSb growth rate was determined experimentally. Numerical analysis of the reactor and growth process was described in a combined chemical-thermal-fluid flow model. A Langmuir-Hinshelwood-type mechanism involving a surface reaction between adsorbed monomethyl gallium (MMG) and adsorbed monomethyl antimony (MMSb) or adsorbed Ga and adsorbed MMSb was proposed for the growth of GaSb by MOVPE using TMG or TEG and TMSb chemistries, respectively. The chemical model for TMG/TMSb chemistry included bounds on the surface chemistry derived for the range of V/III precursor ratio which were observed to lead to a second phase, i.e., elemental Ga or Sb, formation. Two growth regimes were observed for TMG/TMSb chemistry: above 575 °C the growth rate was mass transfer controlled whereas for lower temperatures it is kinetically limited. No such temperature dependence has been found for the TEG/TMSb chemistry over all experimental employed ranges of growth parameters.

  8. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein

    PubMed Central

    Dulmage, Keely A.; Todor, Horia

    2015-01-01

    ABSTRACT In all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organism Halobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes, H. salinarum histone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone in H. salinarum plays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone. PMID:26350964

  9. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide

    DOE PAGES

    Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; ...

    2016-03-02

    Here we report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Lastly, above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

  10. Some New Observations on Activation Energy of Crystal Growth for Thermally Activated Crystallization.

    PubMed

    Mehta, N; Kumar, A

    2016-02-18

    Calorimetric study of glass/crystal phase transformation in disordered semiconductors is a significant tool for understanding their crystallization kinetics. Such studies provide the basis for practical application of glasses. Differential scanning calorimetry (DSC) is one of the advanced techniques for the analysis of thermally induced crystallization in glassy or amorphous systems. We are reporting the nonisothermal DSC measurements on four amorphous systems of Se70Te30 alloy with Ag, Cd, Sb, and Zn as chemical modifiers. In general, the rate constant (K) shows Arrhenian dependence on temperature (T), i.e., K = K0 exp (-Eg/RT) where Eg is the activation energy of crystal growth and K0 is called the pre-exponential factor of rate constant. In the present work, an experiment is designed to see the effect of composition on the activation energy of crystal growth. We have found Meyer-Neldel relation (MNR) between Eg and K0 for present systems. Another interesting feature of present work is the observation of further relation between Meyer-Neldel prefactor and Meyer-Neldel energy.

  11. Altered Signaling in the G1 Phase Deregulates Chondrocyte Growth in a Mouse Model With Proteoglycan Undersulfation

    PubMed Central

    Leonardis, Fabio De; Monti, Luca; Gualeni, Benedetta; Tenni, Ruggero; Forlino, Antonella; Rossi, Antonio

    2014-01-01

    In several skeletal dysplasias defects in extracellular matrix molecules affect not only the structural and mechanical properties of cartilage, but also the complex network of signaling pathways involved in cell proliferation and differentiation. Sulfated proteoglycans, besides playing an important structural role in cartilage, are crucial in modulating the transport, diffusion, and interactions of growth factors with their specific targets, taking part in the regulation of signaling pathways involved in skeletal development and growth. In this work, we investigated by real time PCR and Western blots of the microdissected growth plate and by immunohistochemistry the molecular basis of reduced chondrocyte proliferation in the growth plate of the dtd mouse, a chondrodysplastic model with defective chondroitin sulfate proteoglycan sulfation of articular and growth plate cartilage. We detected activation of the Wnt pathway, leading to an increase in the non-phosphorylated form of nuclear β-catenin and subsequent up-regulation of cyclin D1 expression in the G1 phase of the cell cycle. β-Catenin was further stabilized by up-regulation of Smad3 expression through TGF-β pathway synergistic activation. We demonstrate that notwithstanding cyclin D1 expression increase, cell cycle progression is compromised in the G1 phase due to reduced phosphorylation of the pocket protein p130 leading to inhibition of transcription factors of the E2F family which are crucial for cell cycle progression and DNA replication. These data, together with altered Indian hedgehox signaling detected previously, explain at the molecular level the reduced chondrocyte proliferation rate of the dtd growth plate leading to reduced skeletal growth. J. Cell. Biochem. 115: 1779–1786, 2014. PMID:24820054

  12. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  13. Growth factor control of epidermal growth factor receptor kinase activity via an intramolecular mechanism.

    PubMed

    Koland, J G; Cerione, R A

    1988-02-15

    The mechanism by which the protein kinase activity of the epidermal growth factor (EGF) receptor is activated by binding of growth factor was investigated. Detergent-solubilized receptor in monomeric form was isolated by sucrose density gradient centrifugation and both its kinase and autophosphorylation activities monitored. In a low ionic strength medium and with MnCl2 as an activator, the activity of the monomeric receptor was EGF-independent. However, with 0.25 M ammonium sulfate present, the MnCl2-stimulated kinase activity was strikingly EGF-dependent. In contrast, the kinase activity expressed in the presence of MgCl2 showed growth factor control in the absence of added salt. Under the conditions of these experiments there was apparently little tendency for growth factor to induce aggregation of the receptor, indicating that the allosteric activation of the receptor kinase by EGF occurred via an intramolecular mechanism. Whereas detergent-solubilized receptor was the subject of these studies, the kinase activity of cell surface receptors might also be controlled by an intramolecular mechanism. These results indicate that an individual receptor molecule has the potential to function as a transmembrane signal transducer.

  14. Growth of Byssochlamys Nivea in Pineapple Juice Under the Effect of Water Activity and Ascospore Age

    PubMed Central

    Zimmermann, M.; Miorelli, S.; Massaguer, P.R.; Aragão, G.M.F.

    2011-01-01

    The study of thermal resistant mould, including Byssochlamys nivea, is of extreme importance since it has been associated with fruit and fruit products. The aim of this work is to analyze the influence of water activity (aw) and ascospore age (I) on the growth of Byssochlamys nivea in pineapple juice. Mold growth was carried out under different conditions of water activity (aw) (0.99, 0.96, 0.95, 0.93, 0.90) and ascospore age (I) (30, 51, 60, 69, 90 days). Growth parameters as length of adaptation phase (λ), maximum specific growth rate (µmax) and maximum diameter reached by the colony (A) were obtained through the fit of the Modified Gompertz model to experimental data (measuring radial colony diameter). Statistica 6.0 was used for statistical analyses (significance level α = 0.05). The results obtained clearly showed that water activity is statistically significant and that it influences all growth parameters, while ascospore age does not have any statistically significant influence on growth parameters. Also, these data showed that by increasing aw from 0.90 to 0.99, the λ value substantially decreased, while µmax and A values rose. The data contributed for the understanding of the behavior of B. nivea in pineapple juice. Therefore, it provided mathematical models that can well predict growth parameters, also helping on microbiological control and products’ shelf life determination. PMID:24031622

  15. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  16. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    NASA Astrophysics Data System (ADS)

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D. G.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M. G.; Kletzing, C.; Reeves, G. D.

    2015-12-01

    Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe-B spacecraft crossing L values of ~5.0-5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. The observations strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via a local upward FAC.

  17. Expression of protooncogenes during lymphocyte activation by growth factors.

    PubMed

    Bulanova, E G; Budagyan, V M; Yarilin, A A; Mazurenko, N N

    1997-09-01

    Effects of growth factors of non-immune origin including somatotropin (ST) and platelet-derived growth factor (PDGF) on the expression of the proteins encoded by c-fos, c-myc, c-fun, and c-ets family protooncogenes were studied for the first time. The dynamics of the oncoprotein expression in activated CD(3+)-lymphocytes was investigated by immunoblotting. The accumulation of the Fos and Myc proteins was enhanced in T-lymphocytes treated with ST, PDGF, or phytohemagglutinin; the accumulation was maximum at 30-60 min and decreased in 2 h; the data indicate that the oncoproteins participate in the early lymphocyte activation by various growth factors. The Jun protein appears only in 3 h after the onset of lymphocyte activation; this suggests independent participation of Fos in the early stages of lymphocyte activation prior to the appearance of Jun, preceding the joint action of Fos and Jun within the AP-1 transcription complex. The products of the c-ets family are differentially activated by the studied growth factors. Resting lymphocytes actively accumulate the Ets-1 protein; ST and PDGF activation decreases Ets-1 expression in 2 h. The Ets-2 protein is not detected in resting cells and PDGF-activated lymphocytes, whereas lymphocyte activation by ST is associated with accumulation of Ets-2. The data suggest that the product of the c-ets-1 gene is more important in the regulation of resting cells and the product of the c-ets-2 gene is important during activation of lymphocytes by ST. The results indicate that activation of lymphocytes with growth factors of non-immune origin is mediated by several signal transduction pathways.

  18. Limited by sensing - A minimal stochastic model of the lag-phase during diauxic growth.

    PubMed

    Chu, Dominique

    2017-02-07

    Many microbes when grown on a mixture of two carbon sources utilise first and exclusively the preferred sugar, before switching to the less preferred carbon source. This results in two distinct exponential growth phases, often interrupted by a lag-phase of reduced growth termed the lag-phase. While the lag-phase appears to be an evolved feature, it is not clear what drives its evolution, as it comes with a substantial up-front fitness penalty due to lost growth. In this article a minimal mathematical model based on a master-equation approach is proposed. This model can explain many empirically observed phenomena. It suggests that the lag-phase can be understood as a manifestation of the trade-off between switching speed and switching efficiency. Moreover, the model predicts heterogeneity of the population during the lag-phase. Finally, it is shown that the switch from one carbon source to another one is a sensing problem and the lag-phase is a manifestation of known fundamental limitations of biological sensors.

  19. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry.

    PubMed

    Ahn, Woo Suk; Antoniewicz, Maciek R

    2011-09-01

    Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-(13)C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC-MS) at 6, 12 and 24h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and (13)C-labeling dynamics of intracellular metabolites using non-stationary (13)C-metabolic flux analysis ((13)C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.

  20. Liquid phase epitaxial growth of GaAs

    SciTech Connect

    Wynne, Danielle Ivy

    1997-10-01

    Research into new semiconductor materials for measurement of electromagnetic radiation over a wide range of energies has been an active field for several decades. There is a strong desire to identify and develop new materials which can lead to improved detectors. Such devices are expected to solve problems that cannot be solved using the semiconductor materials and device structures which have been traditionally used for radiation detection. In order for a detector which is subjected to some type of irradiation to respond, the radiation must undergo an interaction with the detector. The net result of the radiation interaction in a broad category of detectors is the generation of mobile electric charge carriers (electrons and/or holes) within the detector active volume. This charge is collected at the detector contacts and it forms the basic electrical signal. Typically, the collection of the charge is accomplished through the imposition of an electric field within the detector which causes the positive and/or negative charges created by the radiation to flow in opposite directions to the contacts. For the material to serve as a good radiation detector, a large fraction (preferably 100%) of all carriers created by the interacting incident radiation must be collected. Charge trapping by deep level impurities and structural defects can seriously degrade detector performance. The focus of this thesis is on far infrared and X-ray detection. In X-ray detector applications of p-I-n diodes, the object is to measure accurately the energy distribution of the incident radiation quanta. One important property of such detectors is their ability to measure the energy of individual incident photons with high energy resolution.

  1. A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions

    SciTech Connect

    Clark, D. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    Encouraging progress is being made in demonstrating control of ablation front hydrodynamic instability growth in inertial confinement fusion implosion experiments on the National Ignition Facility [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)]. Even once ablation front stabilities are controlled, however, instability during the stagnation phase of the implosion can still quench ignition. A scheme is proposed to reduce the growth of stagnation phase instabilities through the reverse of the “adiabat shaping” mechanism proposed to control ablation front growth. Two-dimensional radiation hydrodynamics simulations confirm that improved stagnation phase stability should be possible without compromising fuel compression.

  2. Phase response curves in the characterization of epileptiform activity

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, J. L.; Galán, R. F.; Dominguez, L. Garcia; Leshchenko, Y.; Lo, S.; Belkas, J.; Erra, R. Guevara

    2007-12-01

    Coordinated cellular activity is a major characteristic of nervous system function. Coupled oscillator theory offers unique avenues to address cellular coordination phenomena. In this study, we focus on the characterization of the dynamics of epileptiform activity, based on some seizures that manifest themselves with very periodic rhythmic activity, termed absence seizures. Our approach consists in obtaining experimentally the phase response curves (PRCs) in the neocortex and thalamus, and incorporating these PRCs into a model of coupled oscillators. Phase preferences of the stationary states and their stability are determined, and these results from the model are compared with the experimental recordings, and interpreted in physiological terms.

  3. Liquid phase epitaxial growth and characterization of germanium far infrared blocked impurity band detectors

    SciTech Connect

    Bandaru, Jordana

    2001-01-01

    Germanium Blocked Impurity Band (BIB) detectors require a high purity blocking layer (< 1013 cm-3) approximately 1 mm thick grown on a heavily doped active layer (~ 1016cm-3) approximately 20 mm thick. Epilayers were grown using liquid phase epitaxy (LPE) of germanium out of lead solution. The effects of the crystallographic orientation of the germanium substrate on LPE growth modes were explored. Growth was studied on substrates oriented by Laue x-ray diffraction between 0.02° and 10° from the {111} toward the {100}. Terrace growth was observed, with increasing terrace height for larger misorientation angles. It was found that the purity of the blocking layer was limited by the presence of phosphorus in the lead solvent. Unintentionally doped Ge layers contained ~1015 cm-3 phosphorus as determined by Hall effect measurements and Photothermal Ionization Spectroscopy (PTIS). Lead purification by vacuum distillation and dilution reduced the phosphorus concentration in the layers to ~ 1014 cm-3 but further reduction was not observed with successive distillation runs. The graphite distillation and growth components as an additional phosphorus source cannot be ruled out. Antimony (~1016 cm-3) was used as a dopant for the active BIB layer. A reduction in the donor binding energy due to impurity banding was observed by variable temperature Hall effect measurements. A BIB detector fabricated from an Sb-doped Ge layer grown on a pure substrate showed a low energy photoconductive onset (~6 meV). Spreading resistance measurements on doped layers revealed a nonuniform dopant distribution with Sb pile-up at the layer surface, which must be removed by chemomechanical polishing. Sb diffusion into the pure substrate was observed by Secondary Ion Mass Spectroscopy (SIMS) for epilayers grown at 650 C. The Sb concentration at the interface dropped by an order of magnitude

  4. Ice Formation and Growth in Orographically-Enhanced Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    David, Robert; Lowenthal, Douglas; Gannet Hallar, A.; McCubbin, Ian; Avallone, Linnea; Mace, Gerald; Wang, Zhien

    2015-04-01

    The formation and evolution of ice in mixed-phase clouds continues to be an active area of research due to the complex interactions between vapor, liquid and ice. Orographically-enhanced clouds are commonly mixed-phase during winter. An airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured temperature, and cloud droplet and ice crystal size distributions at SPL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes. Small ice crystal concentrations were routinely higher at the surface and a relationship between small ice crystal concentrations, large cloud droplet concentrations and temperature was observed, suggesting liquid-dependent ice nucleation near cloud base. Terrain flow effects on cloud microphysics and structure are considered.

  5. Signaling pathways regulating cartilage growth plate formation and activity.

    PubMed

    Samsa, William E; Zhou, Xin; Zhou, Guang

    2017-02-01

    The growth plate is a highly specialized and dynamic cartilage structure that serves many essential functions in skeleton patterning, growth and endochondral ossification in developing vertebrates. Major signaling pathways initiated by classical morphogens and by other systemic and tissue-specific factors are intimately involved in key aspects of growth plate development. As a corollary of these essential functions, disturbances in these pathways due to mutations or environmental factors lead to severe skeleton disorders. Here, we review these pathways and the most recent progress made in understanding their roles in chondrocyte differentiation in growth plate development and activity. Furthermore, we discuss newly uncovered pathways involved in growth plate formation, including mTOR, the circadian clock, and the COP9 signalosome.

  6. Semi-active tuned mass dampers with phase control

    NASA Astrophysics Data System (ADS)

    Chung, Lap-Loi; Lai, Yong-An; Walter Yang, Chuang-Sheng; Lien, Kuan-Hua; Wu, Lai-Yun

    2013-07-01

    The present study aims at proposing an innovative phase control methodology for semi-active tuned mass dampers (SA-TMDs) that intend to minimize the off-tuned problems associated with passive tuned mass dampers (P-TMDs). The phase control algorithm is first developed, the essential of which is to apply the variable friction force to slow down the mass block at specific moments when the phase lag of the SA-TMD with respect to the structure is different from 90°, resulting in the SA-TMD back to the desired phase lag, i.e., -90° phase deviation, so that the SA-TMD has the maximum power flow to reduce the structural vibration. The feasibility of the application of the phase control in SA-TMDs is verified by performing numerical analyses of a simplified Taipei 101 structure model with a SA-TMD subjected to sinusoidal loads and design level wind loads. The numerical simulation results show that the SA-TMD implemented with phase control can enable the mass block to vibrate in a manner with a phase lag close to the -90° when the structure model is under sinusoidal excitations with frequencies different from the structural fundamental mode. The SA-TMD with phase control not only exhibits better performance than the optimal P-TMD in terms of suppressing the structural vibration, but also enhances its robustness, particularly when the SA-TMD is off-tuned to the structure.

  7. Characterizing ice crystal growth behavior under electric field using phase field method.

    PubMed

    He, Zhi Zhu; Liu, Jing

    2009-07-01

    In this article, the microscale ice crystal growth behavior under electrostatic field is investigated via a phase field method, which also incorporates the effects of anisotropy and thermal noise. The multiple ice nuclei's competitive growth as disclosed in existing experiments is thus successfully predicted. The present approach suggests a highly efficient theoretical tool for probing into the freeze injury mechanisms of biological material due to ice formation during cryosurgery or cryopreservation process when external electric field was involved.

  8. The growth of vapor bubble and relaxation between two-phase bubble flow

    NASA Astrophysics Data System (ADS)

    Mohammadein, S. A.; Subba Reddy Gorla, Rama

    2002-10-01

    This paper presents the behavior of the bubble growth and relaxation between vapor and superheated liquid. The growth and thermal relaxation time between the two-phases are obtained for different levels of superheating. The heat transfer problem is solved numerically by using the extended Scriven model. Results are compared with those of Scriven theory and MOBY DICK experiment with reasonably good agreement for lower values of superheating.

  9. Determining the Number of Latent Classes in Single- and Multi-Phase Growth Mixture Models

    PubMed Central

    Kim, Su-Young

    2014-01-01

    Stage-sequential (or multiphase) growth mixture models are useful for delineating potentially different growth processes across multiple phases over time and for determining whether latent subgroups exist within a population. These models are increasingly important as social behavioral scientists are interested in better understanding change processes across distinctively different phases, such as before and after an intervention. One of the less understood issues related to the use of growth mixture models is how to decide on the optimal number of latent classes. The performance of several traditionally used information criteria for determining the number of classes is examined through a Monte Carlo simulation study in single- and multi-phase growth mixture models. For thorough examination, the simulation was carried out in two perspectives: the models and the factors. The simulation in terms of the models was carried out to see the overall performance of the information criteria within and across the models, while the simulation in terms of the factors was carried out to see the effect of each simulation factor on the performance of the information criteria holding the other factors constant. The findings not only support that sample size adjusted BIC (ADBIC) would be a good choice under more realistic conditions, such as low class separation, smaller sample size, and/or missing data, but also increase understanding of the performance of information criteria in single- and multi-phase growth mixture models. PMID:24729675

  10. Arginine methylation in yeast proteins during stationary-phase growth and heat shock.

    PubMed

    Lakowski, Ted M; Pak, Magnolia L; Szeitz, András; Thomas, Dylan; Vhuiyan, Mynol I; Clement, Bernd; Frankel, Adam

    2015-12-01

    Arginine methyltransferases (RMTs) catalyze the methylation of arginine residues on proteins. We examined the effects of log-phase growth, stationary-phase growth, and heat shock on the formation of methylarginines on yeast proteins to determine if the conditions favor a particular type of methylation. Utilizing linear ion trap mass spectrometry, we identify methylarginines in wild-type and RMT deletion yeast strains using secondary product ion scans (MS(3)), and quantify the methylarginines using multiple reaction monitoring (MRM). Employing MS(3) and isotopic incorporation, we demonstrate for the first time that Nη1, Nη2-dimethylarginine (sDMA) is present on yeast proteins, and make a detailed structural determination of the fragment ions from the spectra. Nη-monomethylarginine (ηMMA), Nδ-monomethylarginine (δMMA), Nη1, Nη1-dimethylarginine (aDMA), and sDMA were detected in RMT deletion yeast using MS(3) and MRM with and without isotopic incorporation, suggesting that additional RMT enzymes remain to be discovered in yeast. The concentrations of ηMMA and δMMA decreased by half during heat shock and stationary phase compared to log-phase growth of wild-type yeast, whereas sDMA increased by as much as sevenfold and aDMA decreased by 11-fold. Therefore, upon entering stressful conditions like heat shock or stationary-phase growth, there is a net increase in sDMA and decreases in aDMA, ηMMA, and δMMA on yeast proteins.

  11. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect

    Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.; Saradji, B.; Salamy, S.P.

    1988-04-01

    This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

  12. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity

    PubMed Central

    Gefen, Orit; Fridman, Ofer; Ronin, Irine; Balaban, Nathalie Q.

    2014-01-01

    Exponentially growing bacteria are rarely found in the wild, as microorganisms tend to spend most of their lifetime at stationary phase. Despite this general prevalence of stationary-phase bacteria, they are as yet poorly characterized. Our goal was to quantitatively study this phase by direct observation of single bacteria as they enter into stationary phase and by monitoring their activity over several days during growth arrest. For this purpose, we devised an experimental procedure for starving single Escherichia coli bacteria in microfluidic devices and measured their activity by monitoring the production rate of fluorescent proteins. When amino acids were the sole carbon source, the production rate decreased by an order of magnitude upon entry into stationary phase. We found that, even while growth-arrested, bacteria continued to produce proteins at a surprisingly constant rate over several days. Our identification of this newly observed period of constant activity in nongrowing cells, designated as constant activity stationary phase, makes possible the conduction of assays that require constant protein expression over time, and are therefore difficult to perform under exponential growth conditions. Moreover, we show that exogenous protein expression bears no fitness cost on the regrowth of the population when starvation ends. Further characterization of constant activity stationary phase—a phase where nongrowing bacteria can be quantitatively studied over several days in a reproducible manner—should contribute to a better understanding of this ubiquitous but overlooked physiological state of bacteria in nature. PMID:24344288

  13. Effect of growth phase on the fatty acid compositions of four species of marine diatoms

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Mai, Kangsen

    2005-04-01

    The fatty acid compositions of four species of marine diatoms ( Chaetoceros gracilis MACC/B13, Cylindrotheca fusiformis MACC/B211, Phaeodactylum tricornutum MACC/B221 and Nitzschia closterium MACC/B222), cultivated at 22°C±1°C with the salinity of 28 in f/2 medium and harvested in the exponential growth phase, the early stationary phase and the late stationary phase, were determined. The results showed that growth phase has significant effect on most fatty acid contents in the four species of marine diatoms. The proportions of 16:0 and 16:1n-7 fatty acids increased while those of 16:3n-4 and eicosapentaenoic acid (EPA) decreased with increasing culture age in all species studied. The subtotal of saturated fatty acids (SFA) increased with the increasing culture age in all species with the exception of B13. The subtotal of monounsaturated fatty acids (MUFA) increased while that of polyunsaturated fatty acids (PUFA) decreased with culture age in the four species of marine diatoms. MUFA reached their lowest value in the exponential growth phase, whereas PUFA reached their highest value in the same phase.

  14. Growth of different phases of yttrium manganese oxide thin films by pulsed laser deposition

    SciTech Connect

    Kumar, Manish; Choudhary, R. J.; Phase, D. M.

    2012-06-05

    Various phases of yttrium manganese oxide (YMO) thin films have been synthesized on different substrates from a single target of h-YMnO{sub 3}. It is observed that the phase stability and crystallinity of YMO thin films depend on the substrate used and oxygen partial pressure (OPP). (110) oriented and polycrystalline growth of h-YMnO{sub 3} are observed on the Al{sub 2}O{sub 3} (0001) and NGO (110) substrates respectively, when grown in OPP {approx_equal} 10{sup -6} Torr. While for similar OPP value, growth of mixed phases (h-YMnO{sub 3} and o-YMn{sub 2}O{sub 5}) is observed on Si (001) substrate. Oriented growth of O-YMn{sub 2}O{sub 5} phase film on Si (001) substrate is observed first time, when deposited at OPP value of 225 and 350 mTorr. +3 and mixed oxidation states (+3 and +4) of Mn were confirmed by x-ray photoelectron spectroscopy in pure YMnO{sub 3} phase and YMn{sub 2}O{sub 5} phase respectively.

  15. Selective growth of GaAs by organometallic vapor phase epitaxy at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Azoulay, R.; Dugrand, L.

    1991-01-01

    Complete selective epitaxy of GaAs by organometallic vapor phase epitaxy at atmospheric pressure was achieved by using TMG, AsH3, and AsCl3 as starting gases. Selectivity was observed at growth temperatures ranging from 650 to 750 °C. The blocking of polycrystal deposition on the mask, Si3N4, or W, is attributed to the adsorption of HCl on the mask, thus preventing the nucleation of GaAs. On the openings, the growth rate may be adjusted by controlling the TMG/AsCl3 ratio. When TMG/AsCl3<1, no growth occurs, but etching is observed.

  16. Miniaturized Growth Inhibition Assay to Assess the Anti-blood Stage Activity of Antibodies.

    PubMed

    Duncan, Elizabeth H; Bergmann-Leitner, Elke S

    2015-01-01

    While no immune correlate for blood-stage specific immunity against Plasmodium falciparum malaria has been identified, there is strong evidence that antibodies directed to various malarial antigens play a crucial role. In an effort to evaluate the role of antibodies in inhibiting growth and/or invasion of erythrocytic stages of the malaria parasite it will be necessary to test large sample sets from Phase 2a/b trials as well as epidemiological studies. The major constraints for such analyses are (1) availability of sufficient sample quantities (especially from infants and small children) and (2) the throughput of standard growth inhibition assays. The method described here assesses growth- and invasion inhibition by measuring the metabolic activity and viability of the parasite (by using a parasite lactate dehydrogenase-specific substrate) in a 384-microtiter plate format. This culture method can be extended beyond the described detection system to accommodate other techniques commonly used for growth/invasion-inhibition.

  17. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Richter, Wolfgang

    2007-06-01

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  18. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    SciTech Connect

    Richter, Wolfgang

    2007-06-14

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ('alchemy') because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  19. On the shape of the in-phase TEAS oscillations during epitaxial growth of Pt(111)

    NASA Astrophysics Data System (ADS)

    Poelsema, Bene; Becker, Andreas F.; Rosenfeld, Georg; Kunkel, Ralf; Nagel, Nicolas; Verheij, Laurens K.; Comsa, George

    The growth of Pt(111) from its vapour phase is investigated by means of TEAS (thermal energy atom scattering) in a wide range of substrate temperatures: 100-800 K. The evolution of the in-phase He specular peak height during Pt deposition is studied in particular. At higher substrate temperatures ( T s > 500K), the in-phase peak height exhibits longlived temporal oscillations with a clearly asymmetric shape. This asymmetry, which increases with temperature, reveals substantial coarsening of the adatom islands during monolayer deposition, most likely due to Ostwald ripening processes.

  20. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    DTIC Science & Technology

    2016-09-15

    period, that is, growth plus termination, we assume the average growth rate (R̅t) of a (n, m) SWCNT at time t follows exponential kinetics ?̅?...AFRL-AFOSR-VA-TR-2016-0319 Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and...controlled growth of single-wall carbon nanotubes using vapor phase epitaxy: mechanistic understanding and scalable production FA9550-14-1-0115 Zhou

  1. Immunolabeling for p16, WT1, and Fli-1 in the assignment of growth phase for cutaneous melanomas.

    PubMed

    Strickler, Allen G; Schaefer, Jochen T; Slingluff, Craig L; Wick, Mark R

    2014-09-01

    Distinction between radial growth phase (RGP) and vertical growth phase (VGP) in cutaneous melanomas is prognostically significant. Despite established morphological criteria, molecular markers to separate RGP and VGP have not been well established. The goal of this study was to investigate associations of p16, WT1, and Fli-1 with RGP-to-VGP progression, by immunohistochemistry. The p16 is a tumor suppressor, whereas WT1 and Fli-1 are transcriptional activators. The authors hypothesized that entry into VGP would be associated with decreased p16 and increased WT1 and Fli-1. Paraffin sections from 18 RGP and 15 VGP melanomas were immunostained with well-characterized antibodies to p16, WT1, and Fli-1. Melanoma growth phases were determined using precodified morphological attributes. In RGP melanomas, p16 was expressed in 15 of 18 (83%), WT1 in 17 of 17 (100%), and Fli-1 at least focally in 6 of 18 (33%). The deep dermal component of VGP melanomas stained positively for Fli-1 in 9 of 14 (64%), strongly for WT1 in 10 of 14 (71%), and strongly for p16 in only 2 of 15 (13%). Observed patterns of WT1 immunopositivity did not support the authors' hypothesis; it is not likely to be a good indicator of VGP. On the other hand, Fli-1 staining trended toward more positive deep tumor compartment staining and p16 to weaker staining in the deep compartment. At present, application of histological criteria remains the best method for assignment of growth phase in melanomas; however, p16 and possibly Fli-1 immunostains may serve as useful adjuncts in morphologically indeterminate cases.

  2. In vitro antifungal susceptibilities of Sporothrix schenckii in two growth phases.

    PubMed

    Trilles, Luciana; Fernández-Torres, Belkys; Dos Santos Lazéra, Márcia; Wanke, Bodo; de Oliveira Schubach, Armando; de Almeida Paes, Rodrigo; Inza, Isabel; Guarro, Josep

    2005-09-01

    We have determined the antifungal susceptibilities of 34 clinical isolates of the dimorphic fungus Sporothrix schenckii to 11 drugs using a microdilution method. In general, the type of growth phase (mycelial or yeast) and the temperature of incubation (30 or 35 degrees C) exerted a significant influence on the MICs.

  3. In Vitro Antifungal Susceptibilities of Sporothrix schenckii in Two Growth Phases

    PubMed Central

    Trilles, Luciana; Fernández-Torres, Belkys; dos Santos Lazéra, Márcia; Wanke, Bodo; de Oliveira Schubach, Armando; de Almeida Paes, Rodrigo; Inza, Isabel; Guarro, Josep

    2005-01-01

    We have determined the antifungal susceptibilities of 34 clinical isolates of the dimorphic fungus Sporothrix schenckii to 11 drugs using a microdilution method. In general, the type of growth phase (mycelial or yeast) and the temperature of incubation (30 or 35°C) exerted a significant influence on the MICs. PMID:16127080

  4. Vapor phase growth of group 3, 4, and 5 compounds by HCl transport of elements

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Debnam, W. J., Jr.; Mcnear, M. F.; Crouch, R. K.; Breckenridge, R. A.

    1973-01-01

    Technique has been devised for vapor-phase epitaxial growth of group 3, 4, and 5 binary, ternary, or quaternary compounds by HCl transport of the constituent elements or dopants. Technique uses all the constituents of the alloy system in their elemental form. Transport of these elements by an HCl + H2 carrier gas facilitates their transport as subchlorides.

  5. Studies of proteinograms in dermatophytes by disc electrophoresis. 1. Protein bands in relation to growth phase

    NASA Technical Reports Server (NTRS)

    Danev, P.; Friedrich, E.; Balabanov, V.

    1983-01-01

    Homogenates were prepared from various growth phases of Microsporum gypseum grown on different amino acids as the nitrogen source. When analyzed on 7.5% polyacrylamide disc gels, the water-soluble proteins in these homogenates gave essentially identical banding patterns.

  6. Metalorganic Vapor Phase Epitaxial Growth of (211)B CdTe on Nanopatterned (211)Si

    DTIC Science & Technology

    2012-05-15

    SUBJECT TERMS CdTe Epitaxy, Molecular Transfer Lithography, Dislocation Reduction Shashidhar Shintri*,1, , Sunil Rao2, , Charles Schaper3, , Witold...2012) / DOI 10.1002/pssc.201100653 Metalorganic vapor phase epitaxial growth of (211)B CdTe on nanopatterned (211)Si Shashidhar Shintri*,1, Sunil

  7. Control of transforming growth factor-beta activity: latency vs. activation.

    PubMed

    Harpel, J G; Metz, C N; Kojima, S; Rifkin, D B

    1992-01-01

    Transforming growth factor-beta is a pluripotent regulator of cell growth and differentiation. The growth factor is expressed as a latent complex that must be converted to an active form before interacting with its ubiquitous high affinity receptors. This conversion involves the release of the mature growth factor through disruption of the non-covalent interactions with its pro-peptide or latency associated peptide. The mechanisms for this release in vivo have not been fully characterized but appear to be cell specific and might involve processes such as acidification or proteolysis. Although several factors including transcriptional regulation, receptor modulation and scavenging of the active growth factor have been implicated, the critical step controlling the biological effects of transforming growth factor-beta may be the activation of the latent molecule.

  8. Characterization of the Acinetobacter baumannii growth phase-dependent and serum responsive transcriptomes.

    PubMed

    Jacobs, Anna C; Sayood, Khalid; Olmsted, Stephen B; Blanchard, Catlyn E; Hinrichs, Steven; Russell, David; Dunman, Paul M

    2012-04-01

    Acinetobacter baumannii has emerged as a bacterial pathogen of considerable healthcare concern. Yet, little is known about the organism's basic biological processes and the regulatory networks that modulate expression of its virulence factors and antibiotic resistance. Using Affymetrix GeneChips , we comprehensively defined and compared the transcriptomes of two A. baumannii strains, ATCC 17978 and 98-37-09, during exponential and stationary phase growth in Luria-Bertani (LB) medium. Results revealed that in addition to expected growth phase-associated metabolic changes, several putative virulence factors were dramatically regulated in a growth phase-dependent manner. Because a common feature between the two most severe types of A. baumannii infection, pneumonia and septicemia, includes the organism's dissemination to visceral organs via the circulatory system, microarray studies were expanded to define the expression properties of A. baumannii during growth in human serum. Growth in serum significantly upregulated iron acquisition systems, genes associated with epithelial cell adherence and DNA uptake, as well as numerous putative drug efflux pumps. Antibiotic susceptibility testing verified that the organism exhibits increased antibiotic tolerance when cultured in human serum, as compared to LB medium. Collectively, these studies provide researchers with a comprehensive database of A. baumannii's expression properties in LB medium and serum and identify biological processes that may contribute to the organism's virulence and antibiotic resistance.

  9. Analysis of grain growth in a two-phase gamma titanium aluminide alloy

    SciTech Connect

    Seetharaman, V.; Semiatin, S.L.

    1997-04-01

    Microstructure evolution during annealing of a wrought near-gamma titanium aluminide alloy, Ti-45.5Al-2Nb-2Cr (at. pct), in the temperature range 1,200 C to 1,320 C was investigated. The mean grain size of the alpha phase as well as the volume fraction and size of the gamma particles were evaluated as a function of annealing temperature and time. Isothermal annealing at temperatures above the alpha transus, T{sub {alpha}} = 1,300 C, led to rapid grain growth of the alpha phase, the kinetics of which could be described by a simple power-law type expression with a grain growth exponent p = 2.3. Alpha grain growth was significantly retarded during annealing at subtransus temperatures (1,200 C {le} T {le} 1,300 C) by the pinning influence of gamma-phase particles. Limiting grain size values predicted by computer simulation models applicable for high-volume fractions of precipitates/particles were in good agreement with experimental findings. The kinetics of alpha grain growth in the presence of gamma particles were analyzed, and the results showed that a grain growth exponent of p {approx} 2.6 could satisfactorily account for the experimental results.

  10. A latchable thermally activated phase change actuator for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.

    2016-03-01

    Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.

  11. Dynamic phases of active matter systems with quenched disorder

    NASA Astrophysics Data System (ADS)

    Sándor, Cs.; Libál, A.; Reichhardt, C.; Olson Reichhardt, C. J.

    2017-03-01

    Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions with the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.

  12. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Belehdradek-type model for evaluating the effect of temperature on growth rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponen...

  13. Dehydroascorbate uptake activity correlates with cell growth and cell division of tobacco bright yellow-2 cell cultures.

    PubMed

    Horemans, Nele; Potters, Geert; De Wilde, Leen; Caubergs, Roland J

    2003-09-01

    Recently, ascorbate (ASC) concentration and the activity of a number of enzymes from the ASC metabolism have been proven to correlate with differences in growth or cell cycle progression. Here, a possible correlation between growth and the activity of a plasma membrane dehydroascorbate (DHA) transporter was investigated. Protoplasts were isolated from a tobacco (Nicotiana tabacum) Bright Yellow-2 cell culture at different intervals after inoculation and the activity of DHA transport was tested with (14)C-labeled ASC. Ferricyanide (1 mM) or dithiothreitol (1 mM) was included in the test to keep the external (14)C-ASC in its oxidized respectively reduced form. Differential uptake activity was observed, correlating with growth phases of the cell culture. Uptake of DHA in cells showed a peak in exponential growth phase, whereas uptake in the presence of dithiothreitol did not. The enhanced DHA uptake was not due to higher endogenous ASC levels that are normally present in exponential phase because preloading of protoplasts of different ages did not affect DHA uptake. Preloading was achieved by incubating cells before protoplastation for 4 h in a medium supplemented with 1 mM DHA. In addition to testing cells at different growth phases, uptake of DHA into the cells was also followed during the cell cycle. An increase in uptake activity was observed during M phase and the M/G1 transition. These experiments are the first to show that DHA transport activity into plant cells differs with cell growth. The relevance of the data to the action of DHA and ASC in cell growth will be discussed.

  14. Growth phase and elemental stoichiometry of bacterial prey influences ciliate grazing selectivity.

    PubMed

    Gruber, David F; Tuorto, Steven; Taghon, Gary L

    2009-01-01

    Protozoa are known to selectively graze bacteria and can differentiate prey based on size and viability, but less is known about the effects of prey cellular composition on predator selectivity. We measured the effect of growth phase and elemental stoichiometry of Escherichia coli on grazing by two ciliates, Euplotes vannus and Cyclidium glaucoma. Bacterial cells of a single strain were transformed with green and red fluorescent protein and harvested from culture at differing growth stages. Cells in exponential growth phase had low carbon:phosphorus (39) and nitrogen:phosphorus (9) ratios, while cells from stationary phase had high carbon:phosphorus of 104 and nitrogen:phosphorus of 26. When offered an equal mixture of both types of bacteria, Cyclidium grazed stationary phase, high carbon:phosphorus, high nitrogen:phosphorus cells to 22% of initial abundance within 135 min, while Euplotes reduced these cells to 33%. Neither ciliate species decreased the abundance of the exponential phase cells, lower carbon:phosphorus and nitrogen:phosphorus, relative to control treatments. Because protozoa have higher nitrogen:phosphorus and carbon:phosphorus ratios than their prokaryotic prey, this study raises the possibility that it may be advantageous for protozoa to preferentially consume more slowly growing bacteria.

  15. Grain growth in U-7Mo alloy: A combined first-principles and phase field study

    NASA Astrophysics Data System (ADS)

    Mei, Zhi-Gang; Liang, Linyun; Kim, Yeon Soo; Wiencek, Tom; O'Hare, Edward; Yacout, Abdellatif M.; Hofman, Gerard; Anitescu, Mihai

    2016-05-01

    Grain size is an important factor in controlling the swelling behavior in irradiated U-Mo dispersion fuels. Increasing the grain size in U-Mo fuel particles by heat treatment is believed to delay the fuel swelling at high fission density. In this work, a multiscale simulation approach combining first-principles calculation and phase field modeling is used to investigate the grain growth behavior in U-7Mo alloy. The density functional theory based first-principles calculations were used to predict the material properties of U-7Mo alloy. The obtained grain boundary energies were then adopted as an input parameter for mesoscale phase field simulations. The effects of annealing temperature, annealing time and initial grain structures of fuel particles on the grain growth in U-7Mo alloy were examined. The predicted grain growth rate compares well with the empirical correlation derived from experiments.

  16. Phase diagram for assembly of biologically-active peptide amphiphiles.

    PubMed

    Tsonchev, Stefan; Niece, Krista L; Schatz, George C; Ratner, Mark A; Stupp, Samuel I

    2008-01-17

    We construct a phase diagram for self-assembling biologically active peptide amphiphiles. The structure and stability of the assemblies are studied as a function of pH and salinity of the solution. The general features of the phase diagram are predicted based on theoretical modeling of the self-assembly process, as well as experimental data, and further experiments are performed to verify and ascertain the boundary locations of the diagram. Depending on solution conditions, the amphiphiles can form cylindrical or spherical micelles, intermediate structures between these, or may not assemble at all. We also demonstrate that changing conditions may result in phase transitions among these structures. This type of phase diagram could be useful in the design of certain supramolecular nanostructures by providing information on the necessary conditions to form them.

  17. Characterization of single phase copper selenide nanoparticles and their growth mechanism

    NASA Astrophysics Data System (ADS)

    Patidar, D.; Saxena, N. S.

    2012-03-01

    The high quality Cu3Se2 phase of copper selenide nanoparticles was synthesized through the solution-phase chemical reaction between copper and selenium. In this synthesis process, hydrazine hydrate acts as reducing agent whereas ethylene glycol controls the nucleation and growth of particles. An effort has been made to explain the growth mechanism to form copper selenide nanoparticles through the coordination of selenium to the Cu2+ complexes with OH groups of ethylene glycol. Result indicates the formation of Cu3Se2 single phase nanoparticles. The particles with the average particle size 25 nm are spherical in shape having tetragonal structure. The particles are well crystallized having 94% degree of crystallinity. An effort has also been made to determine the energy band gap of copper selenide nanoparticles through the absorption spectra.

  18. Influence of Water Activity on the Growth of Clostridium perfringens

    PubMed Central

    Strong, Dorothy H.; Foster, Edith F.; Duncan, Charles L.

    1970-01-01

    Each of four strains of Clostridium perfringens was grown in modified fluid thioglycolate medium which was adjusted to yield selected water activity (aw) levels. The adjustments to secure the desired aw levels were made with NaCl, KCl, or glucose. At each aw level, further modification was effected to produce four pH values. Cultures were incubated at either 37 or 46 C. The solute used to achieve the reduced aw levels appeared to have a definite effect on the magnitude of growth achieved, the rate of growth, and the limiting aw at which growth would occur. Use of glucose as the controlling solute permitted growth at the lowest aw level tested, 0.960, and yielded the greatest magnitude of growth as measured by turbidity values, at all of the aw levels investigated. Cultures grown in the medium with added KCl generally demonstrated the longest lag times and the least amount of growth. Regardless of specific solute used, as the aw level was lowered and the pH value decreased within each aw level, the rate and amount of growth were lessened. It appeared, however, that low pH values had less effect on inhibiting growth at low aw levels than at higher aw levels. Those cultures incubated at 46 C generally exhibited shorter lag periods than those at 37 C, although the maximal growth attained was somewhat less than that achieved at 37 C. The response to all of the investigated conditions was similar for each of the four strains tested. PMID:4318452

  19. Effects of Teacher Professional Learning Activities on Student Achievement Growth

    ERIC Educational Resources Information Center

    Akiba, Motoko; Liang, Guodong

    2016-01-01

    The authors examined the effects of six types of teacher professional learning activities on student achievement growth over 4 years using statewide longitudinal survey data collected from 467 middle school mathematics teachers in 91 schools merged with 11,192 middle school students' mathematics scores in a standardized assessment in Missouri. The…

  20. Evaluation of hair growth promoting activity of Phyllanthus niruri

    PubMed Central

    Patel, Satish; Sharma, Vikas; S. Chauhan, Nagendra; Thakur, Mayank; Dixit, Vinod Kumar

    2015-01-01

    Objective: This study was designed to investigate the potential Phyllanthus niruri (P. niruri ) extracts in promotion of hair growth. Materials and Methods: Here, we studied the hair growth promoting activity of petroleum ether extract of P. niruri following its topical administration. Alopecia was induced in albino rats by subcutaneous administration of testosterone for 21 days. Evaluation of hair loss inhibition was done by concurrent administration of extract and monitoring parameters like follicular density, anagen/telogen (A/T) ratio and histological observation of animal skin sections. Finasteride solution was applied topically as standard. In vitro experiments were also performed to study the effect of extract on the activity of 5α-reductase enzyme Results: Groups treated with petroleum ether extract of plant showed hair re-growth as reflected by follicular density, A/T ratio and skin sections. Histopathology and morphologic observations of hair re-growth at shaved sites showed active follicular proliferation. In vitro experiments results showed inhibitory activity of petroleum ether extract on type-2 5α-reductase enzyme and an increase in the amount of testosterone with increasing concentrations. Conclusion: It could be concluded that petroleum ether extracts of P. niruri might be useful in the treatment of testosterone-induced alopecia in the experimental animal by inhibiting 5α-reductase enzyme. PMID:26693408

  1. Epitaxial graphene growth and shape dynamics on copper: phase-field modeling and experiments.

    PubMed

    Meca, Esteban; Lowengrub, John; Kim, Hokwon; Mattevi, Cecilia; Shenoy, Vivek B

    2013-01-01

    The epitaxial growth of graphene on copper foils is a complex process, influenced by thermodynamic, kinetic, and growth parameters, often leading to diverse island shapes including dendrites, squares, stars, hexagons, butterflies, and lobes. Here, we introduce a phase-field model that provides a unified description of these diverse growth morphologies and compare the model results with new experiments. Our model explicitly accounts for the anisotropies in the energies of growing graphene edges, kinetics of attachment of carbon at the edges, and the crystallinity of the underlying copper substrate (through anisotropy in surface diffusion). We show that anisotropic diffusion has a very important, counterintuitive role in the determination of the shape of islands, and we present a "phase diagram" of growth shapes as a function of growth rate for different copper facets. Our results are shown to be in excellent agreement with growth shapes observed for high symmetry facets such as (111) and (001) as well as for high-index surfaces such as (221) and (310).

  2. Pressure and phase equilibria in interacting active brownian spheres.

    PubMed

    Solon, Alexandre P; Stenhammar, Joakim; Wittkowski, Raphael; Kardar, Mehran; Kafri, Yariv; Cates, Michael E; Tailleur, Julien

    2015-05-15

    We derive a microscopic expression for the mechanical pressure P in a system of spherical active Brownian particles at density ρ. Our exact result relates P, defined as the force per unit area on a bounding wall, to bulk correlation functions evaluated far away from the wall. It shows that (i) P(ρ) is a state function, independent of the particle-wall interaction; (ii) interactions contribute two terms to P, one encoding the slow-down that drives motility-induced phase separation, and the other a direct contribution well known for passive systems; and (iii) P is equal in coexisting phases. We discuss the consequences of these results for the motility-induced phase separation of active Brownian particles and show that the densities at coexistence do not satisfy a Maxwell construction on P.

  3. Comparison of bifidogenic growth stimulation activities of fermented whey prototypes.

    PubMed

    Moon, Gi-Seong

    2013-12-01

    Fermented whey solution presenting bifidogenic growth stimulation (BGS) activity was processed as prototypes such as sterilized fermented whey (SFW), spray-dried fermented whey (SDFW), and freeze-dried fermented whey (FDFW) and their BGS activities were compared. In optical density (OD600) test, the BGS activity of three prototypes, which showed similar activities, were significantly different with non-fermented whey solution adjusted to pH 4.5 as a control (P<0.05). In viable cell count test, SDFW had the most positive influence than other prototypes on the BGS activity even though the difference was not significant. However, the activities of all prototypes were significantly different than the negative control (no addition). These results indicate that the processed prototypes of fermented whey solution show BGS activities and might be commercialized, with further evidences, in animal or human studies.

  4. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  5. Supercritical supersaturations and ultrafast cooling of the growth solution in liquid-phase epitaxy of semiconductors

    NASA Astrophysics Data System (ADS)

    Abramov, A. V.; Deryagin, N. G.; Tret'yakov, D. N.

    1996-04-01

    A method for accomplishing ultrafast cooling is proposed which makes possible supercritical supersaturations of the growth solution in liquid-phase epitaxy. Growth boat designs providing cooling rates as high as 0268-1242/11/4/025/img1 are considered. The temperatures of contact, 0268-1242/11/4/025/img2, of a GaAs substrate with a Ga-based solution and of a Si substrate with a Sn-based growth solution, calculated for various substrate 0268-1242/11/4/025/img3 and solution temperatures 0268-1242/11/4/025/img4, are in good agreement with experimental values. The maximum attainable supercooling is markedly increased to as high as 0268-1242/11/4/025/img5 for the Ga - As system, when the growth solution is subjected to ultrafast cooling. The prospects of using the method for fabricating heterostructures with a large lattice mismatch are discussed.

  6. What the Polar Cap Tells Us about the Substorm Growth Phase

    NASA Technical Reports Server (NTRS)

    Brittnacher, M. J.; Fillingim, M. O.; Chua, D.; Wilber, M.; Parks, G. K.; Germany, G. A.; Spann, James F., Jr.

    1998-01-01

    The polar cap region in the 30 to 60 minute period prior to the onset of the auroral substorm has been examined using global images from the Polar Ultraviolet Imager (UVI) to look for observational evidence of processes related to the substorm growth phase. In particular, the area of the polar cap has been measured to determine changes in its size in relation to the orientation of the interplanetary magnetic field (IMF). It was found that the size of the polar cap region increases during the growth phase even if the IMF has no southward component. Three phenomena have been observed to produce the increase in the size of the polar cap: (1) motion of the auroral oval to lower latitude, (2) thinning of the auroral oval, and (3) reduction of intense auroral precipitation in the polar cap region. The first phenomenon has been considered to be a result of the growth of the tail lobe magnetic field and the second is related to the thinning of the plasma sheet. Both of these have been supported by in situ observational evidence and are consistent with current models of substorm development. However, the third phenomenon appears to be unrelated to the first two and does not appear to be the result of opening of the polar cap flux tubes to the solar wind IMF. This reduction of auroral precipitation provides evidence of a growth phase process, or change in auroral precipitation processes, that is not explained by current substorm models.

  7. Pontine respiratory activity involved in inspiratory/expiratory phase transition

    PubMed Central

    Mörschel, Michael; Dutschmann, Mathias

    2009-01-01

    Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can habituate in vivo. Thus, habituation reduces sensory feedback, so the role of the pons, and specifically the KF, for IE phase transition may increase dramatically. Pontine-mediated control of the IE phase transition is not completely understood. In the present review, we discuss existing models for ponto-medullary interaction that may be involved in the control of inspiratory duration and IE transition. We also present intracellular recordings of pontine respiratory units derived from an in situ intra-arterially perfused brainstem preparation of rats. With the absence of lung inflation, this preparation generates a normal respiratory pattern and many of the recorded pontine units demonstrated phasic respiratory-related activity. The analysis of changes in membrane potentials of pontine respiratory neurons has allowed us to propose a number of pontine-medullary interactions not considered before. The involvement of these putative interactions in pontine-mediated control of IE phase transitions is discussed. PMID:19651653

  8. Dynamic proteome changes of Shigella flexneri 2a during transition from exponential growth to stationary phase.

    PubMed

    Zhu, Li; Liu, Xian-Kai; Zhao, Ge; Zhi, Yi-Dan; Bu, Xin; Ying, Tian-Yi; Feng, Er-Ling; Wang, Jie; Zhang, Xue-Min; Huang, Pei-Tang; Wang, Heng-Liang

    2007-05-01

    Shigella flexneri is an infectious pathogen that causes dysentery to human, which remains a serious threat to public health, particularly in developing countries. In this study, the global protein expression patterns of S. flexneri during transition from exponential growth to stationary phase in vitro were analyzed by using 2-D PAGE combined with MALDI-TOF MS. In a time-course experiment with five time points, the relative abundance of 49 protein spots varied significantly. Interestingly, a putative outer membrane protein YciD (OmpW) was almost not detected in the exponential growth phase but became one of the most abundant proteins in the whole stationary-phase proteome. Some proteins regulated by the global regulator FNR were also significantly induced (such as AnsB, AspA, FrdAB, and KatG) or repressed (such as AceEF, OmpX, SodA, and SucAB) during the growth phase transition. These proteins may be the key effectors of the bacterial cell cycle or play important roles in the cellular maintenance and stress responses. Our expression profile data provide valuable information for the study of bacterial physiology and form the basis for future proteomic analyses of this pathogen.

  9. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  10. Fitness Impact of Obligate Intranuclear Bacterial Symbionts Depends on Host Growth Phase

    PubMed Central

    Bella, Chiara; Koehler, Lars; Grosser, Katrin; Berendonk, Thomas U.; Petroni, Giulio; Schrallhammer, Martina

    2016-01-01

    According to text book definition, parasites reduce the fitness of their hosts whereas mutualists provide benefits. But biotic and abiotic factors influence symbiotic interactions, thus under certain circumstances parasites can provide benefits and mutualists can harm their host. Here we addressed the question which intrinsic biotic factors shape a symbiosis and are crucial for the outcome of the interaction between the obligate intranuclear bacterium Holospora caryophila (Alphaproteobacteria; Rickettsiales) and its unicellular eukaryotic host Paramecium biaurelia (Alveolata; Ciliophora). The virulence of H. caryophila, i.e., the negative fitness effect on host division and cell number, was determined by growth assays of several P. biaurelia strains. The performances of genetically identical lines either infected with H. caryophila or symbiont-free were compared. Following factors were considered as potentially influencing the outcome of the interaction: (1) host strain, (2) parasite strain, and (3) growth phases of the host. All three factors revealed a strong effect on the symbiosis. In presence of H. caryophila, the Paramecium density in the stationary growth phase decreased. Conversely, a positive effect of the bacteria during the exponential phase was observed for several host × parasite combinations resulting in an increased growth rate of infected P. biaurelia. Furthermore, the fitness impact of the tested endosymbionts on different P. biaurelia lines was not only dependent on one of the two involved strains but distinct for the specific combination. Depending on the current host growth phase, the presence of H. caryophila can be harmful or advantageous for P. biaurelia. Thus, under the tested experimental conditions, the symbionts can switch from the provision of benefits to the exploitation of host resources within the same host population and a time-span of less than 6 days. PMID:28066397

  11. Direct Observations of Sigma Phase Growth and Dissolution in 2205 Duplex Stainless Steel

    SciTech Connect

    Palmer, T; Elmer, J; Babu, S; Specht, E

    2005-06-14

    The formation and growth of sigma ({sigma}) phase in a 2205 duplex stainless steel is monitored during an 850 C isothermal heat treatment using an in situ synchrotron x-ray diffraction technique. At this temperature, {sigma} phase is first observed within approximately 40 seconds of the start of the isothermal heat treatment and grows rapidly over the course of the 3600 second heat treatment to a volume fraction of approximately 13%. A simultaneous increase in the austenite ({gamma}) volume fraction and a decrease in the ferrite ({delta}) volume fraction are observed. The {sigma} phase formed at this temperature is rapidly dissolved within approximately 200 seconds when the temperature is increased to 1000 C. Accompanying this rapid dissolution of the {sigma} phase, the {delta} and {gamma} volume fractions both approach the balanced (50/50) level observed in the as-received material.

  12. Thermal Soret Diffusion in the Liquid Phase Epitaxial Growth of Binary Iii-V Compounds

    NASA Astrophysics Data System (ADS)

    Chien, Chung-Ping

    The conditions necessary for stable nucleation and growth in the liquid phase epitaxial growth of GaAs and InP are analytically established and, in the former, experimentally confirmed in this research. A transient thermodynamic transport treatment of supersaturated to undersaturated melts, which includes the coupling between solute and heat transport(thermal Soret diffusion), has been solved in closed form. The thermal Soret diffusion effect has been found to be a very important factor for the stabilization of solute transport. For steady-state LPE growth, the thermal Soret diffusion will give rise to a separation effect that forces the steady -state solute concentration to exceed the equilibrium liquidus concentration at a noninteracting interface. This increased concentration, near the growth interface, can cause localized nonuniformities in the melt which leads to terrace, miniscus -line and/or hillock growth morphologies. When nucleation and growth are initiated at near equilibrium liquidus conditions, at the substrate interface with a temperature gradient, meltback and spontaneous nucleation are minimized. To enhance stable uniform growth, the substrate should be brought into contact with the melt at a very critical time, during melt saturation, when the equilibrium liquidus concentration is reached at the noninteracting interface of the slider. The critical melt saturation time for the transient concentration to reach the liquidus concentration at this interface has been analytically determined and experimentally confirmed. In this analysis, the Soret thermal diffusion coefficient has also been evaluated in terms of the solute and solvent masses and the temperature dependence of the solute diffusion coefficient. The critical time determined in this analysis appears to be in close agreement with the experimental results for LPE GaAs. When near steady-state solute transport is achieved at the initiation of growth on the substrate, i.e., the liquidus solute

  13. The relation between growth phases, cell volume changes and metabolism of adherent cells during cultivation.

    PubMed

    Rehberg, M; Ritter, J B; Genzel, Y; Flockerzi, D; Reichl, U

    2013-04-15

    In biotechnology, mathematical models often consider changes in cell numbers as well as in metabolite conversion to describe different cell growth phases. It has been frequently observed that the cell number is only a delayed indicator of cell growth compared to the biomass, which challenges the principle structure of corresponding models. Here, we evaluate adherent cell growth phases in terms of cell number and biomass increase on the basis of detailed experimental data of three independent cultivations for Madin Darby canine kidney cells. We develop a model linking cell numbers and mean cell diameters to estimate cell volume changes during growth without the need for diameter distribution measurements. It simultaneously describes the delay between cell number and cell volume increase, cell-specific volume changes and the transition from growth to maintenance metabolism while taking different pre-culture conditions, which affect the cell diameter, into account. In addition, inspection of metabolite uptake and release rates reveals that glucose is mainly used for generation of cellular energy and glutamine is not required for cellular maintenance. Finally, we conclude that changes in cell number, cell diameter and metabolite uptake during cultivation contribute to the understanding of the time course of intracellular metabolites during the cultivation process.

  14. Carbon nanotube growth activated by quantum-confined silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Mariotti, D.; Švrček, V.; Mathur, A.; Dickinson, C.; Matsubara, K.; Kondo, M.

    2013-03-01

    We report on the use of silicon nanocrystals (Si-ncs) to activate nucleation and growth of carbon nanotubes (CNTs) without using any metal catalyst. Si-ncs with different surface characteristics have been exposed to the same CH4 low-pressure plasma treatment producing quite different results. Specifically, Si-ncs prepared by laser ablation in water have contributed to the formation of micrometre-sized silicon spherical particles. On the other hand, Si-ncs prepared by electrochemical etching did not induce any specific growth while the third type of Si-ncs, prepared by electrochemical etching and treated by a laser fragmentation process, induced the growth of multi-walled CNTs. The different outcomes of the same plasma process are attributed to the diverse surface features presented by the Si-ncs.

  15. Programmed functionalization of SURMOFs via liquid phase heteroepitaxial growth and post-synthetic modification.

    PubMed

    Tu, Min; Wannapaiboon, Suttipong; Fischer, Roland A

    2013-12-07

    Heterostructured surface mounted metal-organic frameworks (SURMOFs) [Cu2(NH2-bdc)2(dabco)] (B) on top of [Cu2(bdc)2(dabco)] (A) were deposited on pyridyl-terminated Au covered QCM substrate using a step-by-step liquid phase epitaxial growth method. Sequentially, the pore size of the top layer [Cu2(NH2-bdc)2(dabco)] (B) was modified by targeting the installed amino moiety with tert-butyl isothiocyanate (tBITC). The adsorption properties of the programmed functionalized SURMOFs studied using an environment controlled quartz crystal microbalance (QCM) instrument exhibited the possibility to achieve high selectivity and capacity by heteroepitaxial growth and post-synthetic modification.

  16. Liquid phase epitaxy growth of GaAs/GaAlAs multi-quantum well structures

    NASA Technical Reports Server (NTRS)

    Cser, J.; Katz, J.; Hwang, D. M.

    1987-01-01

    Experiments in liquid phase epitaxial fabrication of thin GaAs/GaAlAs layers over a planar substrates have been carried out. Layer thicknesses smaller than 300 A were routinely obtained, with the best result being 120 A. Interface sharpness between the layers is approximately 10 A, which is comparable to OMCVD results, but the layers' thicknesses are usually not uniform. Of the experimental parameters, the growth time and the cooling rate seem to have the largest effect on the obtained layer thickness, while the growth temperature and the substrate crystallographic orientation produce less noticeable effects. Quantum effects in the grown layers were observed by photoluminescence measurements.

  17. GPU phase-field lattice Boltzmann simulations of growth and motion of a binary alloy dendrite

    NASA Astrophysics Data System (ADS)

    Takaki, T.; Rojas, R.; Ohno, M.; Shimokawabe, T.; Aoki, T.

    2015-06-01

    A GPU code has been developed for a phase-field lattice Boltzmann (PFLB) method, which can simulate the dendritic growth with motion of solids in a dilute binary alloy melt. The GPU accelerated PFLB method has been implemented using CUDA C. The equiaxed dendritic growth in a shear flow and settling condition have been simulated by the developed GPU code. It has been confirmed that the PFLB simulations were efficiently accelerated by introducing the GPU computation. The characteristic dendrite morphologies which depend on the melt flow and the motion of the dendrite could also be confirmed by the simulations.

  18. Modeling void growth and movement with phase change in thermal energy storage canisters

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Namkoong, David; Skarda, J. Raymond Lee

    1993-01-01

    A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.

  19. Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Theodoropoulos, C.; Mountziaris, T. J.; Moffat, H. K.; Han, J.

    2000-07-01

    The problem of gas inlet design for metalorganic vapor phase epitaxy (MOVPE) of group III nitrides from metal alkyls and ammonia is addressed. The focus is on GaN growth from trimethyl-gallium and ammonia. In traditional reactors with well-mixed inlet streams, parasitic gas-phase reactions between the two precursors may lead to the formation of stable adducts that can condense on cool inlet walls, thus reducing the film growth efficiency. Such reactions may also lead to the formation of particulates through gas-phase condensation reactions (e.g. during AlN growth). A fundamentally-based model was developed to describe the MOVPE of GaN and was used to study the effect of inlet design and reactor operating conditions on film thickness uniformity in vertical stagnation-flow and rotating-disk reactors. The model includes a description of gas-phase kinetics and a simple gas-surface reaction mechanism. The kinetic model was coupled to a two-dimensional transport model describing flow, heat and mass transfer in a vertical MOVPE reactor. Predictions of growth rate compare well to experimental observations from a vertical rotating-disk reactor, without any adjustable parameters. The model was also used to study the distribution of gaseous species in the reactor and their role in film growth. Finite element simulations using a massively parallel computer code (MPSalsa) indicate that the species responsible for film growth are Ga-alkyls and not their adducts with ammonia. Sensitivity analysis was also performed to assess the relative importance of each reaction in determining the growth rate. The model was subsequently employed in the design of axisymmetric, multi-aperture gas inlets feeding precursors into the reactor in an alternating (not well-mixed) fashion. Simulations were performed to study the effect of key design parameters, such as inlet velocities, susceptor rotating speed, inlet to susceptor distance as well as the number and distribution of inlets, on GaN film

  20. Phosphoinositides Are Involved in Control of the Glucose-Dependent Growth Resumption That Follows the Transition Phase in Streptomyces lividans▿

    PubMed Central

    Chouayekh, H.; Nothaft, H.; Delaunay, S.; Linder, M.; Payrastre, B.; Seghezzi, N.; Titgemeyer, F.; Virolle, M. J.

    2007-01-01

    The interruption of the sblA gene of Streptomyces lividans was previously shown to lead to relief of glucose repression of the normally strongly glucose-repressed α-amylase gene. In addition to this relief, an early entry into stationary phase was observed when cells were grown in a minimal medium containing glucose as the main carbon source. In this study, we established that this mutant does not resume growth after the transition phase when cultured in the complex glucose-rich liquid medium R2YE and sporulates much earlier than the wild-type strain when plated on solid R2YE. These phenotypic differences, which were abolished when glucose was omitted from the R2YE medium, correlated with a reduced glucose uptake ability of the sblA mutant strain. sblA was shown to encode a bifunctional enzyme possessing phospholipase C-like and phosphoinositide phosphatase activities. The cleavage of phosphoinositides by SblA seems necessary to trigger the glucose-dependent renewed growth that follows the transition phase. The transient expression of sblA that takes place just before the transition phase is consistent with a regulatory role for this gene during the late stages of growth. The tight temporal control of sblA expression was shown to depend on two operator sites. One, located just upstream of the −35 promoter region, likely constitutes a repressor binding site. The other, located 170 bp downstream of the GTG sblA translational start codon, may be involved in the regulation of the degradation of the sblA transcript. This study suggests that phosphoinositides constitute important regulatory molecules in Streptomyces, as they do in eukaryotes. PMID:17122350

  1. Phase equilibria diagrams, crystal growth peculiarities and Raman investigations of lead and sodium-bismuth tungstate-molybdate solid solutions

    NASA Astrophysics Data System (ADS)

    Lebedev, Andrei V.; Avanesov, Samvel A.; Yunalan, Tyliay M.; Klimenko, Valeriy A.; Ignatyev, Boris V.; Isaev, Vladislav A.

    2016-02-01

    In this paper a comprehensive study of lead and sodium-bismuth tungstate-molybdate solid solutions was carried out, including the clarification of their structural peculiarities and phase diagrams of PbMoO4-PbWO4 and NaBi(MoO4)2-NaBi(WO4)2 systems, the study of spontaneous Raman spectra of these compounds, as well as preliminary experiments on single crystals growth of lead tungstate-molybdate. The linewidths, peak and integral intensities of the totally symmetric Raman vibrations of solid solutions were estimated in comparison with known SRS-active crystals. The conditions of the Czochralski growth of optically transparent lead tungstate-molybdate mixed crystals were found and SRS effect was observed in these crystals when pumping by 12 ns 1064 nm laser pulses.

  2. Analytical studies of Gibbs-Thomson effect on the diffusion controlled spherical phase growth in a subcooled medium

    NASA Astrophysics Data System (ADS)

    Wu, T.; Chen, Y.-Z.

    2003-09-01

    By using a small-time series expansion technique, the thermal effect of surface tension (Gibbs-Thomson effect) on the early-stage phase growth of a spherical nucleus immersed in an infinite subcooled liquid is studied in this paper. The result shows that surface tension greatly reduces the incipient growth rate of the solid nucleus. Critical value of surface tension is found beyond which the decreasing of the phase growth rate with time becomes non-monotonic. Analytical expression for the phase growth rate in terms of relevant physical parameters is also derived under the condition of small degree of undercooling.

  3. Various checkpoints prevent the synthesis of Staphylococcus aureus peptidoglycan hydrolase LytM in the stationary growth phase

    PubMed Central

    Lioliou, Efthimia; Fechter, Pierre; Caldelari, Isabelle; Jester, Brian C.; Dubrac, Sarah; Helfer, Anne-Catherine; Boisset, Sandrine; Vandenesch, François; Romby, Pascale; Geissmann, Thomas

    2016-01-01

    ABSTRACT In Staphylococcus aureus, peptidoglycan metabolism plays a role in the host inflammatory response and pathogenesis. Transcription of the peptidoglycan hydrolases is activated by the essential 2-component system WalKR at low cell density. During stationary growth phase, WalKR is not active and transcription of the peptidoglycan hydrolase genes is repressed. In this work, we studied regulation of expression of the glycylglycine endopeptidase LytM. We show that, in addition to the transcriptional regulation mediated by WalKR, the synthesis of LytM is negatively controlled by a unique mechanism at the stationary growth phase. We have identified 2 different mRNAs encoding lytM, which vary in the length of their 5′ untranslated (5′UTR) regions. LytM is predominantly produced from the WalKR-regulated mRNA transcript carrying a short 5′UTR. The lytM mRNA is also transcribed as part of a polycistronic operon with the upstream SA0264 gene and is constitutively expressed. Although SA0264 protein can be synthesized from the longer operon transcript, lytM cannot be translated because its ribosome-binding site is sequestered into a translationally inactive secondary structure. In addition, the effector of the agr system, RNAIII, can inhibit translation of lytM present on the operon without altering the transcript level but does not have an effect on the translation of the upstream gene. We propose that this dual regulation of lytM expression, at the transcriptional and post-transcriptional levels, contributes to prevent cell wall damage during the stationary phase of growth. PMID:26901414

  4. [Effect of microwaves on Chlamydomonas actinochloris culture in the stationary phase of growth].

    PubMed

    Grigor'eva, O O; Berezovskaia, M A; Datsenko, A I

    2013-01-01

    Effects of the microwave radiation on the culture of Chlamydomonas actinochloris green flagellar alga in the stationary phase of growth are studied. After exposure to radiation at the maximum dose of 125 J/g, the cell functional state worsened but all the studied parameters were restored in 20 days and in the long run found to be even better than the control indices. The data are compared with the similar ones obtained earlier for the lag phase culture. The studied sample is found to be more resistant to the irradiation than the previous one.

  5. Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration - Explosive growth phase

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Mcentire, R. W.; Iijima, T.

    1992-01-01

    The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.

  6. FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions.

    PubMed

    Nilsson, L; Verbeek, H; Vijgenboom, E; van Drunen, C; Vanet, A; Bosch, L

    1992-02-01

    In Escherichia coli transcription of the tRNA operon thrU (tufB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tufB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tufB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed. Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tufB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is

  7. Comparison of developmental gradients for growth, ATPase, and fusicoccin-binding activity in mung bean hypocotyls

    NASA Technical Reports Server (NTRS)

    Basel, L. E.; Cleland, R. E.

    1992-01-01

    A comparison has been made of the developmental gradients along a mung bean (Vigna radiata L.) hypocotyl of the growth rate, plasma membrane ATPase, and fusicoccin-binding protein (FCBP) activity to determine whether they are interrelated. The hook and four sequential 7.5 millimeter segments of the hypocotyl below the hook were cut. A plasma membrane-enriched fraction was isolated from each section by aqueous two-phase partitioning and assayed for vanadate-sensitive ATPase and FCBP activity. Each gradient had a distinctive and different pattern. Endogenous growth rate was maximal in the second section and much lower in the others. Vanadate-sensitive ATPase activity was maximal in the third section, but remained high in the older sections. Amounts of ATPase protein, shown by specific antibody binding, did not correlate with the amount of vanadate-sensitive ATPase activity in the three youngest sections. FCBP activity was almost absent in the first section, then increased to a maximum in the oldest sections. These data show that the growth rate is not determined by the ATPase activity, and that there are no fixed ratios between the ATPase and FCBP.

  8. Heteroepitaxial Growth of a Manganese Carbonate secondary Nano-Phase on the (101{sub 4}) Surface of Calcite in Solution

    SciTech Connect

    Lea, Alan S.; Hurt, Thomas T.; El-Azab, Anter; Amonette, James E.; Baer, Donald R.

    2003-01-23

    Heteroepitaxy of a manganese carbonate phase with nanometer dimensions on the (101{sub 4}) surface of calcite (CaCO3) using an AFM has been observed in solution during dissolution of calcite when the ion activity product of Mn2? and CO32- nears the solubility limit of MnCO3. Growth-rate observations at different Mn concentrations, coupled with XPS and EPR measurements, suggest that the resulting phase is Mn05Ca05CO3. These islands, while growing many microns in length along the[22{sub 1}] direction, have a uniform width in the range of 120-240 nm and a uniform height of approximately 2.7 nm, corresponding to nine atomic layers. The islands cease growing when they encounter step edges and have been observed to dissolve when undercut by a growing etch pit.

  9. Particle scattering and current sheet stability in the geomagnetic tail during the substorm growth phase

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Pellinen, R. J.; Buechner, J.; Koskinen, H. E. J.; Lopez, R. E.; Dyson, R. L.; Frank, L. A.

    1992-01-01

    The particle scattering and current sheet stability features in the geomagnetic tail during the phase of substorm growth were investigated using Tsyganenko's (1989) magnetic field model. In a study of four substorm events which were observed both in the high-altitude nightside tail and in the auroral ionosphere, the model magnetic field was adjusted to each case so as to represent the global field development during the growth phase of the substorms. The model results suggest that the auroral brightenings are connected with processes taking place in the near-earth region inside about 15 earth radii. The results also suggest that there is a connection between the chaotization of the electrons and the auroral brightenings at substorm onset.

  10. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075-T6 Under Biaxial and Uniaxial Fatigue with Different Phases

    DTIC Science & Technology

    2015-09-17

    CORROSION FATIGUE CRACK GROWTH BEHAVIOR AT NOTCHED HOLE IN 7075-T6 UNDER BIAXIAL AND UNIAXIAL FATIGUE WITH DIFFERENT PHASES...CORROSION FATIGUE CRACK GROWTH BEHAVIOR AT NOTCHED HOLE IN 7075-T6 UNDER BIAXIAL AND UNIAXIAL FATIGUE WITH DIFFERENT PHASES THESIS...UNLIMITED AFIT-ENY-MS-15-S-065 CORROSION FATIGUE CRACK GROWTH BEHAVIOR AT NOTCHED HOLE IN 7075-T6 UNDER BIAXIAL AND UNIAXIAL FATIGUE WITH

  11. Rotating single cycle two-phase thermally activated heat pump

    SciTech Connect

    Fabris, G.

    1993-06-08

    A thermally activated heat pump is described which utilizes single working fluid which as a whole passes consecutively through all parts of the apparatus in a closed loop series; the working fluid in low temperature saturated liquid state at condensation is pumped to higher pressure with a pump; subsequently heat is added to the liquid of increased pressure, the liquid via the heating is brought to a high temperature saturated liquid state; the high temperature liquid passes and flashes subsequently in form of two-phase flow through a rotating two-phase flow turbine; in such a way the working fluid performs work on the two-phase turbine which in turn powers the liquid pump and a lower compressor; two-phase flow exiting the two-phase turbine separated by impinging tangentially on housing of the turbine; low temperature heat is added to the housing in such a way evaporating the separated liquid on the housing; in such a way the liquid is fully vaporized the vapor then enters a compressor, the compressor compresses the vapor to a higher condensation pressure and corresponding increased temperature, the vapor at the condensation pressure enters a condenser whereby heat is rejected and the vapor is fully condensed into state of saturated liquid, mid saturated liquid enters the pump and repeats the cycle.

  12. An integrated model for predictive microbiology and simultaneous determination of lag phase duration and exponential growth rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The development of the mathematical model was based on the fundamental phenomenon of microbial growth, which is normally a three-stage process that includes lag, exponential, and stationary phases...

  13. Phase Segregation of Passive Advective Particles in an Active Medium

    NASA Astrophysics Data System (ADS)

    Das, Amit; Polley, Anirban; Rao, Madan

    2016-02-01

    Localized contractile configurations or asters spontaneously appear and disappear as emergent structures in the collective stochastic dynamics of active polar actomyosin filaments. Passive particles which (un)bind to the active filaments get advected into the asters, forming transient clusters. We study the phase segregation of such passive advective scalars in a medium of dynamic asters, as a function of the aster density and the ratio of the rates of aster remodeling to particle diffusion. The dynamics of coarsening shows a violation of Porod behavior; the growing domains have diffuse interfaces and low interfacial tension. The phase-segregated steady state shows strong macroscopic fluctuations characterized by multiscaling and intermittency, signifying rapid reorganization of macroscopic structures. We expect these unique nonequilibrium features to manifest in the actin-dependent molecular clustering at the cell surface.

  14. Growth-phase thinning of the near-Earth current sheet during the CDAW 6 substorm

    NASA Technical Reports Server (NTRS)

    Sanny, Jeff; Mcpherron, R. L.; Russell, C. T.; Baker, D. N.; Pulkkinen, T. I.; Nishida, A.

    1994-01-01

    The thinning of the near-Earth current sheet during the growth phase of the Coordinated Data Analysis Workshop (CDAW) 6 magnetospheric substorm is studied. The expansion onset of the substorm occurred at 1054 UT, March 22, 1979. During the growth phase, two spacecraft, International Sun Earth Explorer (ISEE) 1 and ISEE 2, were within the current sheet approximately 13 R(sub E) from the Earth and obtained simultaneous high-resolution magnetic data at two points in the current sheet. Plasma data were also provided by the ISEE spacecraft and solar wind data by IMP 8. To facilitate the analysis, the GSM magnetic field data are transformed to a 'neutral sheet coordinate system' in which the new x axis is parallel to the average magnetic field above and below the neutral sheet and the new y axis lies in the GSM equatorial plane. A model based on the assumption that the current sheet is a time-invariant structure fails to predict neutral sheet crossing times. Consequently, the Harris sheet model, which allows one to remove the restriction of time invariancy, is used instead. It is found that during the growth phase, a model parameter corresponding to the thickness of the current sheet decreased exponentially from about 5 R(sub E) to 1 R(sub E) with a time constant of about 14 min. In addition, the ISEE 1 and ISEE 2 neutral sheet crossings after expansion onset indicate that the neutral sheet was moving upward at 7 km/s relative to the spacecraft. Since both crossings occurred in approximately 80 s, the current sheet thickness is estimated to be about 500 km. These results demonstrate that the near-Earth current sheet undergoes dramatic thinning during the substorm growth phase and expansion onset.

  15. Growth phase-dependent effect of clindamycin on production of exoproteins by Streptococcus pyogenes.

    PubMed

    Sawai, Jun; Hasegawa, Tadao; Kamimura, Takuya; Okamoto, Akira; Ohmori, Daisuke; Nosaka, Nobuyuki; Yamada, Keiko; Torii, Keizo; Ohta, Michio

    2007-02-01

    The administration of high-dose clindamycin plus benzylpenicillin has been recommended for the treatment of streptococcal toxic shock-like syndrome caused by Streptococcus pyogenes, and clindamycin has been found to be more effective than beta-lactams in retrospective analyses of human cases. Although therapeutic doses of clindamycin have also been shown to be effective against experimental infections and clindamycin has great efficacy against the production of bacterial exoproteins, we recently reported that the level of production of some exoproteins was unchanged or even increased by a subinhibitory dose of clindamycin when it is added upon the initiation of bacterial culture and the treated cultures were analyzed by two-dimensional gel electrophoresis. In this study we further examined the effect of clindamycin on the production of exoproteins by adding it to Streptococcus pyogenes cultures during various growth phases. We found that the levels of production of some proteins, NAD+ glycohydrolase, streptolysin O, and streptococcal inhibitor of complement, were increased when clindamycin was added at early-log-phase growth, which was the result that was seen when clindamycin was added at the beginning of culture. However, clindamycin inhibited the production of most types of proteins when it was administered to Streptococcus pyogenes cultures at mid-log-phase growth. In csrS- or mga-knockout bacterial strains, the increase in exoproteins seen in parental strains was considerably inhibited. Our study indicates that the in vitro effect of clindamycin on the production of exoproteins greatly depends on the growth phase of bacteria and some regulatory factors of Streptococcus pyogenes that are involved in this phenomenon.

  16. [Turbidostat culture of yeast during transition from a resting state to active growth].

    PubMed

    Kaliuzhin, V A

    1991-01-01

    The age components of a Saccharomyces cerevisiae 14 culture and the kinetics of its growth were studied afer the quiescent state at the onset active growth. The following factors induced the quiescent state: the cessation of a chemostat flow for 24 h, growth inhibition with 2,4-dinitrophenol (DNP) for 24 h, the storage of a culture growing on agar in a refrigerator during 24 h. The process of transition from the point of growth activation to the maximum rate of growth was then studied in turbidostat. This process took the shortest time in a refrigerated culture as well as in a culture that had been limited with a phosphorus source and in a culture limited with a nitrogen source and grown in chemostat at D = 0.26 h-1. The process was longer in cultures that had been either limited with glucose or inhibited with DNP and longest in a chemostat culture limited with a nitrogen source at D = 0.15 and 0.05 h-1. The rate of initial mitosis phases in the yeast is presumed to exert the greatest effect on the duration of this transition process.

  17. Explosive activity associated with the growth of volcanic domes

    USGS Publications Warehouse

    Newhall, C.G.; Melson, W.G.

    1983-01-01

    Domes offer unique opportunities to measure or infer the characteristics of magmas that, at domes and elsewhere, control explosive activity. A review of explosive activity associated with historical dome growth shows that: 1. (1) explosive activity has occurred in close association with nearly all historical dome growth; 2. (2) whole-rock SiO2 content, a crude but widely reported indicator of magma viscosity, shows no systematic relationship to the timing and character of explosions; 3. (3) the average rate of dome growth, a crude indicator of the rate of supply of magma and volatiles to the near-surface enviornment, shows no systematic relationship to the timing or character of explosions; and 4. (4) new studies at Arenal and Mount St. Helens suggest that water content is the dominant control on explosions from water-rich magmas, whereas the crystal content and composition of the interstitial melt (and hence magma viscosity) are equally or more important controls on explosions from water-poor magmas. New efforts should be made to improve current, rather limited techniques for monitoring pre-eruption volatile content and magma viscosity, and thus the explosive potential of magmas. ?? 1983.

  18. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  19. Oxytocin discontinuation after the active phase of labor is established.

    PubMed

    Vlachos, Dimitrios-Efthymios G; Pergialiotis, Vasilios; Papantoniou, Nikolaos; Trompoukis, Stamoulis; Vlachos, Georgios D

    2015-08-01

    Despite the widespread usage of oxytocin, there is still no consensus on its mode of administration. The scope of the present meta-analysis was to assess the effect of oxytocin discontinuation after the active phase of labor is established on maternal fetal and neonatal outcomes. We searched Medline, Scopus, Popline, ClinicalTrials.gov and Google Scholar databases. Eight studies were finally retrieved, which involved 1232 parturient. We observed significantly decreased rates of cesarean sections among parturient that discontinued oxytocin (OR 0.51, 95% CI 0.35, 0.74) as well as decreased rates of uterine hyperstimulation (OR 0.33, 95% CI 0.19, 0.58). Similarly, cases of non-reassuring fetal heart rates were fewer among women that did not receive oxytocin after the establishment of the active phase of labor (OR 0.63, 95% CI 0.41, 0.97). Keeping in mind the aforementioned maternal and neonatal adverse effects that seem to result from infusion of oxytocin until delivery, future practice should aim towards its discontinuation after the establishment of the active phase of labor, as it does not seem to influence the total duration of labor. Future studies should aim towards specific populations of parturient in order to clarify whether different approaches are needed.

  20. Studying the relationship between redox and cell growth using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Leslie, Matthew T.; Bapst, Natalya; Smith, John; Gaskins, H. Rex; Popescu, Gabriel

    2016-03-01

    Quantitative phase imaging has been used in the past to study the dry mass of cells and study cell growth under various treatment conditions. However, the relationship between cellular redox and growth rates has not yet been studied in this context. This study employed the recombinant Glrx-roGFP2 redox biosensor targeted to the mitochondrial matrix or cytosolic compartments of A549 lung epithelial carcinoma cells. The Glrx-roGFP2s biosensor consists of a modified GFP protein containing internal cysteine residues sensitive to the local redox environment. The formation/dissolution of sulfide bridges contorts the internal chromophore, dictating corresponding changes in florescence emission that provide direct measures of the local redox potential. Combining 2-channel florescent imaging of the redox sensor with quantitative phase imaging allowed observation of redox homeostasis alongside measurements of cellular mass during full cycles of cellular division. The results indicate that mitochondrial redox showed a stronger inverse correlation with cell growth than cytoplasmic redox states; although redox changes are restricted to a 5% range. We are now studying the relationship between mitochondrial redox and cell growth in an isogenic series of breast cell lines built upon the MCF-10A genetic background that vary both in malignancy and metastatic potential.

  1. Small Activity Differences Drive Phase Separation in Active-Passive Polymer Mixtures

    NASA Astrophysics Data System (ADS)

    Smrek, Jan; Kremer, Kurt

    2017-03-01

    Recent theoretical studies found that mixtures of active and passive colloidal particles phase separate but only at very high activity ratio. The high value poses serious obstacles for experimental exploration of this phenomenon. Here we show using simulations that when the active and passive particles are polymers, the critical activity ratio decreases with the polymer length. This not only facilitates the experiments but also has implications on the DNA organization in living cell nuclei. Entropy production can be used as an accurate indicator of this nonequilibrium phase transition.

  2. Transcriptional Characterization of Salmonella TAl00 in Growth and Stationary Phase: Mutagenesis of MX in Both Types of Cells

    EPA Science Inventory

    The Salmonella (Ames) mutagenicity assay can be performed using cells that are in different growth phases. Thus, the plate-incorporation assay involves plating stationary-phase cells with the mutagen, after which the cells undergo a brief lag phase and, consequently, are exposed ...

  3. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  4. Measurement of crystal growth velocity in a melt-quenched phase-change material

    PubMed Central

    Salinga, Martin; Carria, Egidio; Kaldenbach, Andreas; Bornhöfft, Manuel; Benke, Julia; Mayer, Joachim; Wuttig, Matthias

    2013-01-01

    Phase-change materials are the basis for next-generation memory devices and reconfigurable electronics, but fundamental understanding of the unconventional kinetics of their phase transitions has been hindered by challenges in the experimental quantification. Here we obtain deeper understanding based on the temperature dependence of the crystal growth velocity of the phase-change material AgInSbTe, as derived from laser-based time-resolved reflectivity measurements. We observe a strict Arrhenius behaviour for the growth velocity over eight orders of magnitude (from ~10 nm s−1 to ~1 m s−1). This can be attributed to the formation of a glass at elevated temperatures because of rapid quenching of the melt. Further, the temperature dependence of the viscosity is derived, which reveals that the supercooled liquid phase must have an extremely high fragility (>100). Finally, the new experimental evidence leads to an interpretation, which comprehensively explains existing data from various different experiments reported in literature. PMID:23986035

  5. Minimization of diauxic growth lag-phase for high-efficiency biogas production.

    PubMed

    Kim, Min Jee; Kim, Sang Hun

    2017-02-01

    The objective of this study was to develop a minimization method of a diauxic growth lag-phase for the biogas production from agricultural by-products (ABPs). Specifically, the effects of proximate composition on the biogas production and degradation rates of the ABPs were investigated, and a new method based on proximate composition combinations was developed to minimize the diauxic growth lag-phase. Experiments were performed using biogas potential tests at a substrate loading of 2.5 g VS/L and feed to microorganism ratio (F/M) of 0.5 under the mesophilic condition. The ABPs were classified based on proximate composition (carbohydrate, protein, and fat etc.). The biogas production patterns, lag phase, and times taken for 90% biogas production (T90) were used for the evaluation of the biogas production with biochemical methane potential (BMP) test. The high- or medium-carbohydrate and low-fat ABPs (cheese whey, cabbage, and skim milk) showed a single step digestion process and low-carbohydrate and high-fat ABPs (bean curd and perilla seed) showed a two-step digestion process. The mixture of high-fat ABPs and high-carbohydrate ABPs reduced the lag-phase and increased the biogas yield more than that from single ABP by 35-46%.

  6. A three-dimensional phase diagram of growth-induced surface instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Zhao, Xuanhe

    2015-03-01

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities.

  7. A three-dimensional phase diagram of growth-induced surface instabilities.

    PubMed

    Wang, Qiming; Zhao, Xuanhe

    2015-03-09

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities.

  8. A three-dimensional phase diagram of growth-induced surface instabilities

    PubMed Central

    Wang, Qiming; Zhao, Xuanhe

    2015-01-01

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities. PMID:25748825

  9. Effect of ion irradiation on the interdiffusion growth of aluminide phases in Ti Al diffusion couple

    NASA Astrophysics Data System (ADS)

    Romankov, S. E.; Mamaeva, A.; Vdovichenko, E.; Ermakov, E.

    2005-08-01

    During annealing on the Ti surface coated by the Al film, different aluminide phases were formed as the result of reactions between Ti and Al. Preliminary irradiation of the Al film with the thickness of 7 μm by Ti + ions had a strong effect on the interdiffusion growth of aluminide phases on the Ti substrate. Preliminary ion irradiation resulted in the development of more homogeneous and fine-grain microstructure during subsequent annealing. During ion irradiation of the two-phase (TiAl + Ti 3Al) overlayer the decomposition of the TiAl compound and the formation of Ti 3Al happened. In the processing of subsequent annealing, diffusion cementation of the overlayer occurred faster on the surface of the irradiated samples. After irradiation by different ions (Ti + and Al +), and during subsequent annealing the kinetics of structural formation developed in a different way.

  10. Separation of nuclei representing different phases of the growth cycle from unsynchronized mammalian cell cultures.

    PubMed

    McBride, O W; Peterson, E A

    1970-10-01

    Nuclei have been isolated from unsynchronized cultures of Chinese hamster fibroblasts after varying intervals of growth following the incorporation of thymidine (-3)H for 20 min. These nuclei were fractionated by unit gravity sedimentation in a stabilizing density gradient of sucrose, and fractions were analyzed for the concentration of nuclei, DNA, and radioactivity. A more rapidly sedimenting population of nuclei in the G(2) phase of the cell cycle was separated from a group of nuclei in the G(1) phase, and nuclei in progressive stages of DNA synthesis (S phase) were distributed between these two regions. The fractionation of intact cells by sedimentation according to their position in the cell cycle was found to be less satisfactory than the corresponding separation of nuclei. This probably results from the continuous accumulation of mass within individual cells throughout the entire cell cycle, whereas most of the mass of a nucleus is replicated during a relatively narrow interval of the total cell cycle.

  11. OMVPE growth and gas-phase reactions of AlGaN for UV emitters

    SciTech Connect

    Han, J.; Figiel, J.J.; Crawford, M.H.; Banas, M.A.; Bartram, M.E.; Biefeld, R.M.; Song, Y.K.; Nurmikko, A.V.

    1998-06-01

    Gas-phase parasitic reactions among TMG, TMA, and NH3, are investigated by monitoring of the growth rate/incorporation efficiency of GaN and AlN using an in-situ optical reflectometer. It is suggested that gas phase adduct (TMA: NH{sub 3}) reactions not only reduce the incorporation efficiency of TMA but also affect the incorporation behavior of TMGa. The observed phenomena can be explained by either a synergistic gas-phase scavenging effect or a surface site-blocking effect. Relatively low reactor pressures (30--50 Torr) are employed to grow an AlGaN/GaN QW p-n diode structure. The UV emission at 354 nm (FWHM {approximately} 6 nm) represents the first report of LED operation from an indium-free GaN QW diode.

  12. Primary structure of rat insulin-like growth factor-I and its biological activities.

    PubMed

    Tamura, K; Kobayashi, M; Ishii, Y; Tamura, T; Hashimoto, K; Nakamura, S; Niwa, M; Zapf, J

    1989-04-05

    Rat insulin-like growth factor-I (IGF-I), a serum polypeptide with growth promoting activity, was isolated from rat serum by a combination of acid/ethanol extraction, affinity chromatography, and a series of reversed phase high performance liquid chromatography, cation exchange, and reversed phase. All peptide fragments produced by chymotrypsin digestion of reduced and carboxymethylated rat IGF-I were amino acid sequenced and compared with the sequence of human IGF-I. Three out of 70 of the rat amino acid residues differed from those of human IGF-I as follows: Asp20----Pro, Ser35----Ile and Ala67----Thr. Purified rat IGF-I cross-reacted with polyclonal anti-human IGF-I antibody 75% as compared to human IGF-I, but it cross-reacted only 3% with monoclonal anti-human IGF-I antibody. Thus, it is possible to monitor the metabolic fate of human IGF-I, when injected into rats, without interference by endogenous rat IGF-I. Rat IGF-I showed 65% activity in the radioreceptor, 28.6% activity in the lipogenesis and 22.5% activity in the free fatty acid release inhibition assays as compared to human IGF-I on a protein quantity basis.

  13. Pattern, growth, and aging in aggregation kinetics of a Vicsek-like active matter model

    NASA Astrophysics Data System (ADS)

    Das, Subir K.

    2017-01-01

    Via molecular dynamics simulations, we study kinetics in a Vicsek-like phase-separating active matter model. Quantitative results, for isotropic bicontinuous pattern, are presented on the structure, growth, and aging. These are obtained via the two-point equal-time density-density correlation function, the average domain length, and the two-time density autocorrelation function. Both the correlation functions exhibit basic scaling properties, implying self-similarity in the pattern dynamics, for which the average domain size exhibits a power-law growth in time. The equal-time correlation has a short distance behavior that provides reasonable agreement between the corresponding structure factor tail and the Porod law. The autocorrelation decay is a power-law in the average domain size. Apart from these basic similarities, the overall quantitative behavior of the above-mentioned observables is found to be vastly different from those of the corresponding passive limit of the model which also undergoes phase separation. The functional forms of these have been quantified. An exceptionally rapid growth in the active system occurs due to fast coherent motion of the particles, mean-squared-displacements of which exhibit multiple scaling regimes, including a long time ballistic one.

  14. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    DOE PAGES

    Motoba, T.; Ohtani, S.; Anderson, B. J.; ...

    2015-10-27

    In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arcmore » location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.« less

  15. On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

    SciTech Connect

    Motoba, T.; Ohtani, S.; Anderson, B. J.; Korth, H.; Mitchell, D.; Lanzerotti, L. J.; Shiokawa, K.; Connors, M.; Kletzing, C. A.; Reeves, G. D.

    2015-10-27

    In this study, magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1) at the early stage of the growth phase the quiet auroral arc emerged ~4.3° equatorward of the boundary between the downward Region 2 (R2) and upward Region 1 (R1) currents; (2) shortly before the auroral breakup (poleward auroral expansion) the latitudinal separation between the arc and the R1/R2 demarcation narrowed to ~1.0°; (3) RBSP-B observed a magnetic field signature of a local upward field-aligned current (FAC) connecting the arc with the near-Earth tail when the spacecraft footprint was very close to the arc; and (4) the upward FAC signature was located on the tailward side of a local plasma pressure increase confined near L ~5.2–5.4. These findings strongly suggest that the premidnight arc is connected to highly localized pressure gradients embedded in the near-tail R2 source region via the local upward FAC.

  16. Effects of Kinetic Roughening and Liquid-Liquid Phase Transition on Lysozyme Crystal Growth Velocities

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Konnert, John; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We measured the growth velocities of the (110) face of tetragonal lysozyme, V (centimeters per second), at four different concentrations, c (milligrams per milliliter), as the solution temperature, T (Centigrade), was reduced. For a broad range of T dependent on c, we find that the growth velocities increased as the solution temperature was reduced. The initial increase in V is well characterized by the 2D nucleation model for crystal growth, yielding the magnitude of an effective barrier for growth, gamma(sub s) = 1.2 plus or minus 0.1 x 10(exp -13) erg/molecule. Below certain temperatures, T(sub cr), dependent on c, however, a kinetic roughening hypothesis that considers the continuous addition of molecules anywhere on the crystal surface better describes the observed growth velocities. The application of the continuous growth model, up to the solution cloud-point temperatures, T(sub cl), enabled the determinations of the crossover concentration, c(sub r), from estimated values of T(sub cr). For all conditions presented, we find that the crossover from growth by 2D nucleation to continuous addition occurs at a supersaturation, sigma (sub c), = 2.0 plus or minus 0.1. Moreover, we find the energy barrier for the continuous addition, E(sub c), within the temperature range T(sub cl) less than T less than T less than T (sub cr), to be 6 plus or minus 1 x 10(exp -13) erg/molecule. Further reduction of T below approximately 2-3 C of T(sub cl), also revealed a rapid slowing of crystal growth velocities. From quasi-elastic light scattering investigations, we find that the rapid diminishment of crystal growth velocities can be accounted for by the phase behavior of lysozyme solutions. Namely, we find the reversible formation of dense fluid proto-droplets comprised of lysozyme molecules to occur below approximately 0.3 C of T(sub cl). Hence, the rapid slowing of growth velocities may occur as a result of the sudden depletion of "mobile" molecules within crystal growth

  17. Solid-phase diffusion mechanism for GaAs nanowire growth

    NASA Astrophysics Data System (ADS)

    Persson, Ann I.; Larsson, Magnus W.; Stenström, Stig; Ohlsson, B. Jonas; Samuelson, Lars; Wallenberg, L. Reine

    2004-10-01

    Controllable production of nanometre-sized structures is an important field of research, and synthesis of one-dimensional objects, such as nanowires, is a rapidly expanding area with numerous applications, for example, in electronics, photonics, biology and medicine. Nanoscale electronic devices created inside nanowires, such as p-n junctions, were reported ten years ago. More recently, hetero-structure devices with clear quantum-mechanical behaviour have been reported, for example the double-barrier resonant tunnelling diode and the single-electron transistor. The generally accepted theory of semiconductor nanowire growth is the vapour-liquid-solid (VLS) growth mechanism, based on growth from a liquid metal seed particle. In this letter we suggest the existence of a growth regime quite different from VLS. We show that this new growth regime is based on a solid-phase diffusion mechanism of a single component through a gold seed particle, as shown by in situ heating experiments of GaAs nanowires in a transmission electron microscope, and supported by highly resolved chemical analysis and finite element calculations of the mass transport and composition profiles.

  18. Growth factor and protease expression during different phases of healing after rabbit deep flexor tendon repair.

    PubMed

    Berglund, M E; Hart, D A; Reno, C; Wiig, M

    2011-06-01

    The purpose of the study was to contribute to the mapping of molecular events during flexor tendon healing, in particular the growth factors insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF) and nerve growth factor (NGF), matrix metalloproteinases (MMP-3 and MMP-13) and their inhibitors (tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-3, and the protease cathepsin K. In a rabbit model of flexor tendon injury, the mRNA expression for the growth factors, MMPs and TIMPs were measured in tendon and tendon sheath tissue at several time points (3, 6, 21, and 42 days) representing different phases of the healing process. We found that MMP-13 remained increased during the study period, whereas MMP-3 returned to normal levels within the first week after injury. TIMP-3 was down-regulated in the tendon sheaths. Cathepsin K was up-regulated in tendons and sheaths after injury. NGF was present in both tendons and sheaths, but unaltered. IGF-1 exhibited a late increase in the tendons, while VEGF was down-regulated at the later time points. In conclusion, we have demonstrated the presence of NGF in flexor tendons. MMP-13 expression appears to play a more protracted role in flexor tendon healing than MMP-3. The relatively low levels of endogenous IGF-1 and VEGF mRNA following injury support their potential beneficial role as exogenous modulators to optimize tendon healing and strength without increasing adhesion formation.

  19. Heterogeneous growth of cadmium and cobalt carbonate phases at the (101¯4) calcite surface

    SciTech Connect

    Xu, Man; Ilton, Eugene S.; Engelhard, Mark H.; Qafoku, Odeta; Felmy, Andrew R.; Rosso, Kevin M.; Kerisit, Sebastien N.

    2015-03-01

    The ability of surface precipitates to form heteroepitaxially is an important factor that controls the extent of heterogeneous growth. In this work, the growth of cadmium and cobalt carbonate phases on (10-14) calcite surfaces is compared for a range of initial saturation states with respect to otavite (CdCO3) and sphaerocobaltite (CoCO3), two isostructural metal carbonates that exhibit different lattice misfits with respect to calcite. Calcite single crystals were reacted in static conditions for 16 hours with CdCl2 and CoCl2 aqueous solutions with initial concentrations 0.3 ≤ [Cd2+]0 ≤ 100 μM and 25 ≤ [Co2+]0 ≤ 200 μM. The reacted crystals were imaged in situ with atomic force microscopy (AFM) and analyzed ex situ with X-ray photoelectron spectroscopy (XPS). AFM images of Cd-reacted crystals showed the formation of large islands elongated along the direction, clear evidence of heteroepitaxial growth, whereas surface precipitates on Co-reacted crystals were small round islands. Deformation of calcite etch pits in both cases indicated the incorporation of Cd and Co at step edges. XPS analysis pointed to the formation of a Cd-rich (Ca,Cd)CO3 solid solution coating atop the calcite substrate. In contrast, XPS measurements of the Co-reacted crystals provided evidence for the formation of a mixed hydroxy-carbonate cobalt phase. The combined AFM and XPS results suggest that the lattice misfit between CoCO3 and CaCO3 ( 15% based on surface areas) is too large to allow for heteroepitaxial growth of a pure cobalt carbonate phase on calcite surfaces in aqueous solutions and at ambient conditions. The use of the satellite structure of the Co 2p3/2 photoelectron line as a tool for determining the nature of cobalt surface precipitates is also discussed.

  20. Intensification of β-poly(L: -malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase.

    PubMed

    Cao, Weifeng; Luo, Jianquan; Zhao, Juan; Qiao, Changsheng; Ding, Luhui; Qi, Benkun; Su, Yi; Wan, Yinhua

    2012-07-01

    β-Poly(malic acid) (PMLA) has attracted industrial interest because this polyester can be used as a prodrug or for drug delivery systems. In PMLA production by Aureobasidium pullulans ipe-1, it was found that PLMA production was associated with cell growth in the early exponential growth phase and dissociated from cell growth in the late exponential growth phase. To enhance PMLA production in the late phase, different fermentation modes and strategies for controlling culture redox potential (CRP) were studied. The results showed that high concentrations of produced PMLA (above 40 g/l) not only inhibited PMLA production, but also was detrimental to cell growth. Moreover, when CRP increased from 57 to 100 mV in the late exponential growth phase, the lack of reducing power in the broth also decreased PMLA productivity. PMLA productivity could be enhanced by repeated-batch culture to maintain cell growth in the exponential growth phase, or by cell-recycle culture with membrane to remove the produced PMLA, or by maintaining CRP below 70 mV no matter which kind of fermentation mode was adopted. Repeated-batch culture afforded a high PMLA concentration (up to 63.2 g/l) with a productivity of 1.15 g l(-1) h(-1). Cell-recycle culture also confirmed that PMLA production by the strain ipe-1 was associated with cell growth.

  1. Effect of Nb on the Growth Behavior of Co3Sn2 Phase in Undercooled Co-Sn Melts

    NASA Astrophysics Data System (ADS)

    Kang, Jilong; Xu, Wanqiang; Wei, Xiuxun; Ferry, Michael; Li, Jinfu

    2016-12-01

    The growth behavior of the primary β-Co3Sn2 phase in (Co67Sn33)100- x Nb x ( x = 0, 0.5, 0.8, 1.0) hypereutectic alloys at different melt undercoolings was investigated systematically. The growth pattern of the β-Co3Sn2 phase at low undercooling changes with the Nb content from fractal seaweed ( x = 0, 0.5) into dendrite ( x = 0.8) and then returns to fractal seaweed ( x = 1.0) as a response to the changes in interface energy anisotropy and interface kinetic anisotropy. As undercooling increases, the dendritic growth of the β-Co3Sn2 phase in (Co67Sn33)99.2Nb0.8 alloy gives way to fractal seaweed growth at an undercooling of 32 K (-241 °C). At larger undercooling, the fractal seaweed growth is further replaced by compact seaweed growth, which occurred in the other three alloys investigated. The growth velocity of the β-Co3Sn2 phase slightly increases at low and intermediate undercooling but clearly decreases at larger undercooling due to the Nb addition. The growth velocity sharply increases as the growth pattern of the Co3Sn2 phase transits from fractal seaweed into compact seaweed.

  2. Advances in modeling semiconductor epitaxy: Contributions of growth orientation and surface reconstruction to InN metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kusaba, Akira; Kangawa, Yoshihiro; Kempisty, Pawel; Shiraishi, Kenji; Kakimoto, Koichi; Koukitu, Akinori

    2016-12-01

    We propose a newly improved thermodynamic analysis method that incorporates surface energies. The new theoretical approach enables us to investigate the effects of the growth orientation and surface reconstruction. The obtained knowledge would be indispensable for examining the preferred growth conditions in terms of the contribution of the surface state. We applied the theoretical approach to study the growth processes of InN(0001) and (000\\bar{1}) by metalorganic vapor phase epitaxy. Calculation results reproduced the difference in optimum growth temperature. That is, we successfully developed a new theoretical approach that can predict growth processes on various growth surfaces.

  3. Inhibition of B-NHEJ in Plateau-Phase Cells Is Not a Direct Consequence of Suppressed Growth Factor Signaling

    SciTech Connect

    Singh, Satyendra K.; Bednar, Theresa; Zhang Lihua; Wu, Wenqi; Mladenov, Emil; Iliakis, George

    2012-10-01

    Purpose: It has long been known that the proliferation status of a cell is a determinant of radiation response, and the available evidence implicates repair of DNA double-strand breaks (DSBs) in the underlying mechanism. Recent results have shown that a novel, highly error-prone pathway of nonhomologous end joining (NHEJ) operating as backup (B-NHEJ) processes DSBs in irradiated cells when the canonical, DNA-PK (DNA-dependent protein kinase)-dependent pathway of NHEJ (D-NHEJ) is compromised. Notably, B-NHEJ shows marked reduction in efficiency when D-NHEJ-deficient cells cease to grow and enter a plateau phase. This phenomenon is widespread and observed in cells of different species with defects in core components of D-NHEJ, with the notable exception of DNA-PKcs (DNA-dependent protein kinase, catalytic subunit). Using new, standardized serum-deprivation protocols, we re-examine the growth requirements of B-NHEJ and test the role of epidermal growth factor receptor (EGFR) signaling in its regulation. Methods and Materials: DSB repair was measured by pulsed-field gel electrophoresis in cells maintained under different conditions of growth. Results: Serum deprivation in D-NHEJ-deficient cells causes a rapid reduction in B-NHEJ similar to that measured in normally growing cells that enter the plateau phase of growth. Upon serum deprivation, reduction in B-NHEJ activity is evident at 4 h and reaches a plateau reflecting maximum inhibition at 12-16 h. The inhibition is reversible, and B-NHEJ quickly recovers to the levels of actively growing cells upon supply of serum to serum-deprived cells. Chemical inhibition of EGFR in proliferating cells inhibits only marginally B-NHEJ and addition of EGFR in serum-deprived cells increases only a marginally B-NHEJ. Conclusions: The results document a rapid and fully reversible adaptation of B-NHEJ to growth activity and point to factors beyond EGFR in its regulation. They show notable differences in the regulation of error

  4. Who's on first? Tracking in real time the growth of multiple crystalline phases of an organic semiconductor: Tetracene on SiO2

    NASA Astrophysics Data System (ADS)

    Nahm, R. K.; Engstrom, J. R.

    2017-02-01

    We have examined the effect of growth rate on the evolution of two polymorphs of thin films of tetracene on SiO2 using synchrotron X-ray radiation and molecular beam techniques. Ex situ X-ray reflectivity shows that tetracene forms two phases on SiO2: a thin-film phase and a bulk phase. We have used in situ, real-time grazing incidence diffraction during growth to reveal the nature of growth concerning these two phases. We observe that there is initially growth of only the thin-film phase, up to a thickness of several monolayers. This is followed by the nucleation of the bulk phase, growth of both phases, and finally growth of only the bulk phase. We find that the deposited thickness when the bulk phase nucleates increases with increasing growth rate. Similarly, we find that the deposited thickness at which the thin-film phase saturates also increases with increasing growth rate. These apparent dependencies on growth rate are actually a consequence of the local coverage, which depends on growth rate, particularly for the former effect. At low growth rates, there is 3D growth resulting from the upward transport of tetracene at island edges, resulting in tall features where molecules escape the influence of the substrate and form into the bulk phase. Increasing the growth rate leads to growth that is more 2D and uniform in coverage, delaying the formation of the bulk phase.

  5. Who's on first? Tracking in real time the growth of multiple crystalline phases of an organic semiconductor: Tetracene on SiO2.

    PubMed

    Nahm, R K; Engstrom, J R

    2017-02-07

    We have examined the effect of growth rate on the evolution of two polymorphs of thin films of tetracene on SiO2 using synchrotron X-ray radiation and molecular beam techniques. Ex situ X-ray reflectivity shows that tetracene forms two phases on SiO2: a thin-film phase and a bulk phase. We have used in situ, real-time grazing incidence diffraction during growth to reveal the nature of growth concerning these two phases. We observe that there is initially growth of only the thin-film phase, up to a thickness of several monolayers. This is followed by the nucleation of the bulk phase, growth of both phases, and finally growth of only the bulk phase. We find that the deposited thickness when the bulk phase nucleates increases with increasing growth rate. Similarly, we find that the deposited thickness at which the thin-film phase saturates also increases with increasing growth rate. These apparent dependencies on growth rate are actually a consequence of the local coverage, which depends on growth rate, particularly for the former effect. At low growth rates, there is 3D growth resulting from the upward transport of tetracene at island edges, resulting in tall features where molecules escape the influence of the substrate and form into the bulk phase. Increasing the growth rate leads to growth that is more 2D and uniform in coverage, delaying the formation of the bulk phase.

  6. Nanostructures produced by phase-separation during growth of (III-V).sub.1-x(IV.sub.2).sub.x alloys

    DOEpatents

    Norman, Andrew G.; Olson, Jerry M.

    2007-06-12

    Nanostructures (18) and methods for production thereof by phase separation during metal organic vapor-phase epitaxy (MOVPE). An embodiment of one of the methods may comprise providing a growth surface in a reaction chamber and introducing a first mixture of precursor materials into the reaction chamber to form a buffer layer (12) thereon. A second mixture of precursor materials may be provided into the reaction chamber to form an active region (14) on the buffer layer (12), wherein the nanostructure (18) is embedded in a matrix (16) in the active region (14). Additional steps are also disclosed for preparing the nanostructure (18) product for various applications.

  7. Phase transformation process and step growth mechanism of hydroxyapatite whiskers under constant impulsion system

    NASA Astrophysics Data System (ADS)

    Chen, Changlian; Li, Jianqiu; Huang, Zhiliang; Cheng, Xiaokun; Yu, Jun; Wang, Han; Chi, Ru-an; Hu, Yuehua

    2011-07-01

    Hydroxyapatite (HAP) whiskers were synthesized using urea as the precipitator by a phase transformation method, and their phase transformation process and growth mechanism were investigated. The results showed that with the decomposition of urea and the corresponding increase of pH value of the reaction system, dicalcium phosphate anhydrous (DCPA) and octacalcium phosphate (OCP) were precipitated at pH of 3.3-4.3; then Ca 2+ and HPO42- ions began to be released from DCPA at pH values greater than 4.5. Finally HAP whiskers heterogeneously nucleated and grew up into short column crystals along the surface of the OCP flakes. In the absence of the ionic resources, DCPA gradually dissolved and the OCP flakes transformed into HAP continuously and the short columnar HAP whiskers grew up. The aspect ratio of the HAP whiskers with length of 20-100 μm and diameter of 1-2 μm was about 25. The HRTEM and AFM images showed that HAP whiskers grew along the c-axis direction, the (1 0 0) steps were clearly observed at their heads and the straight step lines instead of helical Frank ones were present on the side face of the (1 0 0) steps. The calculation on the basis of the surface energy of the HAP crystal showed that the growth rate of the (0 0 1) plane was the fastest, the growth rate at the homogeneous twist sites was the second and that at heterogeneous twist sites could be the slowest, which were the main factors finally leading to the preferential growth of HAP whiskers along the c-axis direction as well as the formation of the growth steps.

  8. 2-DE based proteomic analysis of Saccharomyces cerevisiae wild and K+ transport-affected mutant (trk1,2) strains at the growth exponential and stationary phases.

    PubMed

    Curto, Miguel; Valledor, Luis; Navarrete, Clara; Gutiérrez, Dolores; Sychrova, Hana; Ramos, José; Jorrin, Jesús

    2010-11-10

    By using a 2-DE based workflow, the proteome of wild and potassium transport mutant trk1,2 under optimal growth potassium concentration (50mM) has been analyzed. At the exponential and stationary phases, both strains showed similar growth, morphology potassium content, and Vmax of rubidium transport, the only difference found being the Km values for this potassium analogue transport, higher for the mutant (20mM) than for the wild (3-6mM) cells. Proteins were buffer-extracted, precipitated, solubilized, quantified, and subjected to 2-DE analysis in the 5-8 pH range. More differences in protein content (37-64mgg(-1) cell dry weight) and number of resolved spots (178-307) were found between growth phases than between strains. In all, 164 spots showed no differences between samples and a total of 105 were considered to be differential after ANOVA test. 171 proteins, corresponding to 71 unique gene products have been identified, this set being dominated by cytosolic species and glycolitic enzymes. The ranking of the more abundant spots revealed no differences between samples and indicated fermentative metabolism, and active cell wall biosynthesis, redox homeostasis, biosynthesis of amino acids, coenzymes, nucleotides, and RNA, and protein turnover, apart from cell division and growth. PCA analysis allowed the separation of growth phases (PC1 and 2) and strains at the stationary phase (PC3 and 4), but not at the exponential one. These results are also supported by clustering analysis. As a general tendency, a number of spots newly appeared at the stationary phase in wild type, and to a lesser extent, in the mutant. These up-accumulated spots corresponded to glycolitic enzymes, indicating a more active glucose catabolism, accompanied by an accumulation of methylglyoxal detoxification, and redox-homeostasis enzymes. Also, more extensive proteolysis was observed at the stationary phase with this resulting in an accumulation of low Mr protein species.

  9. Morphological analysis and muscle-associated gene expression during different muscle growth phases of Megalobrama amblycephala.

    PubMed

    Zhu, K C; Yu, D H; Zhao, J K; Wang, W M; Wang, H L

    2015-09-28

    Skeletal muscle growth is regulated by both positive and negative factors, such as myogenic regulatory factors (MRFs) and myostatin (MSTN), and involves both hyperplasia and hypertrophy. In the present study, morphological changes during muscle development in Megalobrama amblycephala were characterized and gene expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) analysis in juvenile [60, 90, 120, and 180 days post-hatching (dph)] and adult fish. Our results show that during muscle development, the frequency of muscle fibers with a diameter <20 μm dramatically decreased in both red and white muscles, with a concomitant increase in the frequency of >30 μm fibers in red muscle and >50 μm fibers in white muscle. At 90-120 dph, the ratio of hyperplastic to hypertrophic areas in red and white muscles increased, but later decreased at 120-180 dph. The effect of hypertrophy was significantly larger than hyperplasia during these phases. qRT-PCR indicated MRF and MSTN (MSTNa and MSTNb) genes had similar expression patterns that peaked at 120 dph, with the exception of MSTNa. This new information on the molecular regulation of muscle growth and rapid growth phases will be of value to the cultivation of M. amblycephala.

  10. Global and local current sheet thickness estimates during the late growth phase

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Mitchell, D. G.; Mcpherron, Robert L.; Huang, C. Y.; Frank, L. A.

    1992-01-01

    The thinning and intensification of the cross tail current sheet during the substorm growth phase are analyzed during the CDAW 6 substorm (22 Mar. 1979) using two complementary methods. The magnetic field and current sheet development are determined using data from two spacecraft and a global magnetic field model with several free parameters. These results are compared with the local calculation of the current sheet location and structure previously done by McPherron et al. Both methods lead to the conclusion that an extremely thin current sheet existed prior to the substorm onset, and the thicknesses estimated by the two methods at substorm onset agree relatively well. The plasma data from the ISEE 1 spacecraft at 13 R(sub E) show an anisotropy in the low energy electrons during the growth phase which disappears just before the substorm onset. The global magnetic model results suggest that the field is sufficiently stretched to scatter such low energy electrons. The strong stretching may improve the conditions for the growth of the ion tearing instability in the near Earth tail at substorm onset.

  11. Combination of flucloxacillin and gentamicin inhibits toxic shock syndrome toxin 1 production by Staphylococcus aureus in both logarithmic and stationary phases of growth.

    PubMed Central

    van Langevelde, P; van Dissel, J T; Meurs, C J; Renz, J; Groeneveld, P H

    1997-01-01

    Production of exotoxins by staphylococci and streptococci may lead to the development of toxic shock syndrome (TSS). Because clindamycin inhibits exotoxin production, its use has been advocated for the treatment of TSS. However, the bacteriostatic action of clindamycin might be a disadvantage for the treatment of overwhelming infections. We investigated the effects of flucloxacillin and gentamicin on exotoxin production, because incubation with these antibiotics combines bactericidal action with protein synthesis inhibition. Staphylococcus aureus during the logarithmic and stationary phases of growth was incubated with either clindamycin, flucloxacillin, or a combination of flucloxacillin and gentamicin at concentrations of 2 or 10 times the MIC. In logarithmic-phase cultures clindamycin had a static effect on bacterial growth. After incubation with flucloxacillin, either alone or in combination with gentamicin, a rapid and large reduction in the number of viable bacteria was demonstrated. In stationary-phase cultures none of the antibiotics significantly changed the number of viable bacteria. TSS toxin 1 (TSST-1) production during logarithmic-phase growth was inhibited by > or =95% by all antibiotics. In stationary-phase cultures, clindamycin, flucloxacillin, and the combination of flucloxacillin and gentamicin inhibited TSST-1 production by 95, 30, and 75%, respectively, compared with the level of exotoxin production in the controls. The present results indicate that clindamycin inhibits TSST-1 production and exerts bacteriostatic activity in both bacterial growth phases. Because the combination of flucloxacillin and gentamicin combines the inhibition of exotoxin production with high bactericidal activity at least in logarithmic-phase cultures, it should be considered an alternative to clindamycin for the treatment of exotoxin-mediated diseases, especially in patients with overwhelming infections. PMID:9257741

  12. Impact of nanoscale zero valent iron on bacteria is growth phase dependent.

    PubMed

    Chaithawiwat, Krittanut; Vangnai, Alisa; McEvoy, John M; Pruess, Birgit; Krajangpan, Sita; Khan, Eakalak

    2016-02-01

    The toxic effect of nanoscale zero valent iron (nZVI) particles on bacteria from different growth phases was studied. Four bacterial strains namely Escherichia coli strains JM109 and BW25113, and Pseudomonas putida strains KT2440 and F1 were experimented. The growth curves of these strains were determined. Bacterial cells were harvested based on the predetermined time points, and exposed to nZVI. Cell viability was determined by the plate count method. Bacterial cells in lag and stationary phases showed higher resistance to nZVI for all four bacterial strains, whereas cells in exponential and decline phases were less resistant to nZVI and were rapidly inactivated when exposed to nZVI. Bacterial inactivation increased with the concentration of nZVI. Furthermore, less than 14% bacterial inactivation was observed when bacterial cells were exposed to the filtrate of nZVI suspension suggesting that the physical interaction between nZVI and cell is necessary for bacterial inactivation.

  13. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    NASA Astrophysics Data System (ADS)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  14. Influence of Crystal Growth Cooling Conditions on Thermoelectric Properties of Aurivillius Phase Bi-V-O

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Segawa, Mizuki; Yagasaki, Takayoshi

    2016-11-01

    Aurivillius phase Bi2VO5.5 is known as an oxygen ion conductor. In previous studies on Bi2VO5.5, the Seebeck coefficient of the sintered body was about 10 mVK-1 at 800 K. However, the resistivity was 103 Ω m at 800 K. It seemed that this high resistivity was caused by high grain boundary resistance because of cracks at boundaries. In this study, specimens have been prepared by a melting method, aimed at reducing the boundaries. The influence of crystal growth cooling conditions on the thermoelectric properties of Aurivillius phase Bi-V-O is discussed. The crystal growth cooling conditions investigated were slow cooling with cooling rate of 9 K h-1, furnace cooling, and quenching. The surface and cross-section of the sample were observed by scanning electron microscopy (SEM). The crystalline phase was identified by x-ray diffraction (XRD) analysis. The resistivity was measured by the direct current (DC) two or four terminals method. The Seebeck coefficient was measured by the small temperature difference method. The transgranular resistance and grain boundary resistance were evaluated by the complex impedance method. All samples consisted of layered grains. The grain thickness at cross section decreased with increasing cooling rate. The resistivity of the quenched and slowly cooled specimens was approximately 1000 times lower compared with the furnace cooled specimen and sintered body over the measured temperature range.

  15. Population growth in random media. I. Variational formula and phase diagram

    NASA Astrophysics Data System (ADS)

    Greven, A.; den Hollander, F.

    1991-12-01

    We consider an infinite system of particles on the integer lattice Z that: (1) migrate to the right with a random delay, (2) branch along the way according to a random law depending on their position (random medium). In Part I, the first part of a two-part presentation, the initial configuration has one particle at each site. The long-time limit exponential growth rate of the expected number of particles at site 0 (local particle density) does not depend on the realization of the random medium, but only on the law. It is computed in the form of a variational formula that can be solved explicitly. The result reveals two phase transitions associated with localization vs. delocalization and survival vs. extinction. In earlier work the exponential growth rate of the Cesaro limit of the number of particles per site (global particle density) was studied and a different variational formula was found, but with similar structure, solution, and phases. Combination of the two results reveals an intermediate phase where the population globally survives but locally becomes extinct (i.e., dies out on any fixed finite set of sites).

  16. Hygroscopic growth and CCN activity of HULIS from different environments

    NASA Astrophysics Data System (ADS)

    Kristensen, Thomas B.; Wex, Heike; Nekat, Bettina; Nøjgaard, Jacob K.; van Pinxteren, Dominik; Lowenthal, Douglas H.; Mazzoleni, Lynn R.; Dieckmann, Katrin; Bender Koch, Christian; Mentel, Thomas F.; Herrmann, Hartmut; Gannet Hallar, A.; Stratmann, Frank; Bilde, Merete

    2012-11-01

    Humic-like substances (HULIS) constitute a significant fraction of aerosol particles in different environments. Studies of the role of HULIS in hygroscopic growth and cloud condensation nuclei (CCN) activity of aerosol particles are scarce, and results differ significantly. In this work the hygroscopic growth and CCN activity of water extracts (WE) and HULIS extracted from particulate matter (PM) collected at a polluted urban site (Copenhagen, Denmark), a rural site (Melpitz, Germany) and the remote site Storm Peak Laboratory (Colorado, USA) were investigated. Measurements of inorganic ions, elemental carbon, organic carbon and water soluble organic carbon (WSOC) within the PM confirmed that the sources of aerosol particles most likely differed for the three samples. The hygroscopic properties of the filtered WE were characterized by hygroscopicity parameters for subsaturated conditions (κGF) of 0.25, 0.41 and 0.22, and for supersaturated conditions κCCN were 0.23, 0.29 and 0.22 respectively for the urban, rural and remote WE samples. The measured hygroscopic growth and CCN activity were almost identical for the three HULIS samples and could be well represented by κGF = 0.07 and κCCN = 0.08-0.10 respectively. Small amounts of inorganic ions were present in the HULIS samples so the actual values for pure HULIS are expected to be slightly lower (κGF* = 0.04-0.06 and κCCN* = 0.07-0.08). The HULIS samples are thus less hygroscopic compared to most previous studies. To aid direct comparison of hygroscopic properties of HULIS from different studies, we recommend that the fraction of inorganic species in the HULIS samples always is measured and reported.

  17. [Activity and growth efficiency of heterotrophic bacteria in Rybinsk Reservoir].

    PubMed

    Kosolapov, D B; Kosolapova, N G; Rumiantseva, E V

    2014-01-01

    The active fraction, production, and respiration of heterotrophic bacteria are determined to assess their growth efficiency and their role in the carbon cycle in the pelagic zone of Rybinsk Reservoir in summer. The greater part of organic substances assimilated by bacteria is mineralized to CO2. It has been established that the essential part of the constructive and energy metabolism of bacteria is supported by the input of allochthonous substances. Bacterioplankton, producing the biomass at their expense, performs functions similar to the functions of phytoplankton, and substantially supports the structural and functional organization of the planktonic food web in the reservoir.

  18. Inhibition of fatty acid oxidation activates transforming growth factor-beta in cerebrospinal fluid and decreases spontaneous motor activity.

    PubMed

    Fujikawa, Teppei; Fujita, Ryo; Iwaki, Yoko; Matsumura, Shigenobu; Fushiki, Tohru; Inoue, Kazuo

    2010-10-05

    We have previously reported that transforming growth factor (TGF)-beta in the cerebrospinal fluid (CSF) is involved in the mechanism underlying the regulation of spontaneous motor activity (SMA) by the central nervous system after exercise. However, it remained unclear what physiological condition triggers the activation of TGF-beta. We hypothesized that the shortage of energy derived from fatty acid (FA) oxidation observed in the early phase of exercise activated TGF-beta in the CSF. To test this hypothesis, we investigated whether mercaptoacetate (MA), an inhibitor of FA oxidation, could induce an activation of TGF-beta in the CSF and a decrease in SMA. Intraperitoneal (i.p.) administration of MA activated TGF-beta in CSF in rats and depressed SMA; 2-deoxyglucose, an inhibitor of carbohydrate oxidation, on the other hand, depressed SMA but failed to activate CSF TGF-beta. Intracisternal administration of anti-TGF-beta antibody abolished the depressive effect of MA on SMA. We also found that the depression of SMA and the activation of TGF-beta in the CSF by i.p. MA administration were eliminated by vagotomy. Our data suggest that TGF-beta in the CSF is activated by the inhibition of FA oxidation via the vagus nerve and that this subsequently induces depression of SMA.

  19. The growth and properties of In-doped metalorganic vapor phase epitaxy interdiffused multilayer process (HGCd)Te

    NASA Astrophysics Data System (ADS)

    Gough, J. S.; Houlton, M. R.; Irvine, S. J. C.; Shaw, N.; Young, M. L.; Astles, M. G.

    1991-10-01

    Indium doping of Hg1-xCdxTe layers grown by metalorganic vapor phase epitaxy using the interdiffused multilayer process has been investigated using trimethyl indium as the dopant source. The epitaxial growth was performed onto 2° off <100> CdTeSe substrates at ˜350 °C using dimethyl cadmium (DMCd) and di-isopropyl telluride as the alkyl sources. Doping in the range 1017-2×1018 cm-3 was achieved. By comparing Hall effect measurements of carrier concentration with secondary ion mass spectrometry analyses of the In concentrations in the layers, it was found that the In was only 30% active in the as-grown layers but ˜100% active after Hg-rich isothermal annealing at 250 °C for 48 h. At In concentrations greater than 2×1018 cm-3, the carrier concentration levels off, probably due to the solubility limit of In being reached. The annealed doped layers show slightly higher carrier mobilities than as-grown layers for the same carrier concentration. An apparent shift of the absorption edge to shorter wavelength with increasing donor concentration is thought to be due to the Moss-Burstein effect rather than a change in alloy composition x. A singificant ``memory'' effect has been found with trimethyl In which persists for several runs and is probably due to strong adsorption onto the stainless steel surfaces in the growth system. This can be overcome by vacuum baking of the pipework. The growth of a heterostructure using In doping has shown that there is no serious diffusion problem with In under the growth conditions used.

  20. Single-crystal CdSe nanowires prepared via vapor-phase growth assisted with silicon.

    PubMed

    Wang, Z Y; Zhang, L D; Ye, C H; Fang, X S; Xiao, Z D; Kong, M G

    2005-12-01

    Hexagonal cadmium selenide (CdSe) nanowires, with diameter around 20 nm, were synthesized using a simple vapor-phase growth. Silicon (Si) powder acts as a source material assisting the synthesis, which is very important to the formation of the CdSe nanowires. We also suggest that self-catalysis at the Cd-terminated (0001) surface, together with the assistance action of Si, leads to the formation of wire-like structures to be formed. Meanwhile, the assistance of Si is responsible for the fineness and uniformity of the CdSe nanowires. The possible growth mechanism of the CdSe nanowires is proposed, and the optical property of the as-grown CdSe nanowires is characterized.

  1. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease.

    PubMed

    Tuszynski, Mark H; Thal, Leon; Pay, Mary; Salmon, David P; U, Hoi Sang; Bakay, Roy; Patel, Piyush; Blesch, Armin; Vahlsing, H Lee; Ho, Gilbert; Tong, Gang; Potkin, Steven G; Fallon, James; Hansen, Lawrence; Mufson, Elliott J; Kordower, Jeffrey H; Gall, Christine; Conner, James

    2005-05-01

    Cholinergic neuron loss is a cardinal feature of Alzheimer disease. Nerve growth factor (NGF) stimulates cholinergic function, improves memory and prevents cholinergic degeneration in animal models of injury, amyloid overexpression and aging. We performed a phase 1 trial of ex vivo NGF gene delivery in eight individuals with mild Alzheimer disease, implanting autologous fibroblasts genetically modified to express human NGF into the forebrain. After mean follow-up of 22 months in six subjects, no long-term adverse effects of NGF occurred. Evaluation of the Mini-Mental Status Examination and Alzheimer Disease Assessment Scale-Cognitive subcomponent suggested improvement in the rate of cognitive decline. Serial PET scans showed significant (P < 0.05) increases in cortical 18-fluorodeoxyglucose after treatment. Brain autopsy from one subject suggested robust growth responses to NGF. Additional clinical trials of NGF for Alzheimer disease are warranted.

  2. Siderophore production by Bacillus megaterium: effect of growth phase and cultural conditions.

    PubMed

    Santos, Sofia; Neto, Isabel F F; Machado, Manuela D; Soares, Helena M V M; Soares, Eduardo V

    2014-01-01

    Siderophore production by Bacillus megaterium was detected, in an iron-deficient culture medium, during the exponential growth phase, prior to the sporulation, in the presence of glucose; these results suggested that the onset of siderophore production did not require glucose depletion and was not related with the sporulation. The siderophore production by B. megaterium was affected by the carbon source used. The growth on glycerol promoted the very high siderophore production (1,182 μmol g(-1) dry weight biomass); the opposite effect was observed in the presence of mannose (251 μmol g(-1) dry weight biomass). The growth in the presence of fructose, galactose, glucose, lactose, maltose or sucrose, originated similar concentrations of siderophore (546-842 μmol g(-1) dry weight biomass). Aeration had a positive effect on the production of siderophore. Incubation of B. megaterium under static conditions delayed and reduced the growth and the production of siderophore, compared with the incubation in stirred conditions.

  3. Active Phase and Amplitude Fluctuations of Flagellar Beating

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Klindt, Gary S.; Riedel-Kruse, Ingmar H.; Jülicher, Frank; Friedrich, Benjamin M.

    2014-07-01

    The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to propel cells and pump fluids. Small but perceivable fluctuations in the beat of individual flagella have physiological implications for synchronization in collections of flagella as well as for hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude fluctuations of flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We report a quality factor of flagellar oscillations Q =38.0±16.7 (mean±s.e.). Our analysis shows that flagellar fluctuations are dominantly of active origin. Using a minimal model of collective motor oscillations, we demonstrate how the stochastic dynamics of individual motors can give rise to active small-number fluctuations in motor-cytoskeleton systems.

  4. Methyl Sartortuoate Inhibits Colon Cancer Cell Growth by Inducing Apoptosis and G2/M-Phase Arrest.

    PubMed

    Lan, Qiusheng; Li, Shoufeng; Lai, Wei; Xu, Heyang; Zhang, Yang; Zeng, Yujie; Lan, Wenjian; Chu, Zhonghua

    2015-08-17

    The potential anti-neoplastic activity of terpenoids is of continued interest. In this study, we investigate whether methyl sartortuoate, a terpenoid isolated from soft coral, induced cell cycle arrest and apoptosis in a human colon cancer cell line. Culture studies found that methyl sartortuoate inhibited colon cancer cell (LoVo and RKO) growth and caused apoptotic death in a concentration- and time-dependent manner, by activation of caspase-8, caspase-9, caspase-3, p53 and Bax, and inactivation of B-cell lymphoma 2 (Bcl-2) apoptosis regulating proteins. Methyl sartortuoate treatment led to reduced expression of cdc2 and up-regulated p21 and p53, suggesting that Methyl sartortuoate induced G2-M arrest through modulation of p53/p21/cdc2 pathways. Methyl sartortuoate also up-regulated phospho-JNK and phospho-p38 expression levels. This resulted in cell cycle arrest at the G2-M phase and apoptosis in LoVo and RKO cells. Treatment with the JNK inhibitor SP600125 and the p38 MAPK inhibitor SB203580 prevented methyl sartortuoate-induced apoptosis in LoVo cells. Moreover, methyl sartortuoate also prevented neoplasm growth in NOD-SCID nude mice inoculated with LoVo cells. Taken together, these findings suggest that methyl sartortuoate is capable of leading to activation of caspase-8, -9, -3, increasing p53 and Bax/Bcl-2 ratio apoptosis through MAPK-dependent apoptosis and results in G2-M phase arrest in LoVo and RKO cells. Thus, methyl sartortuoate may be a promising anticancer candidate.

  5. Solid-liquid phase epitaxial growth of Li4Ti5O12 thin film

    NASA Astrophysics Data System (ADS)

    Li, Ning; Katase, Takayoshi; Zhu, Yanbei; Matsumoto, Takao; Umemura, Tomonari; Ikuhara, Yuichi; Ohta, Hiromichi

    2016-12-01

    A thin film of Li4Ti5O12, a candidate anode material for solid-state Li-ion batteries, was heteroepitaxially grown on a (001) SrTiO3 substrate using solid-liquid phase epitaxy. An amorphous Li4Ti5O12 film deposited at room temperature was first heated with LiNO3 powder in air and then washed with distilled water. The Li4Ti5O12 epitaxial film was obtained by heating with molten LiNO3 at 600 °C the liquid LiNO3 completely covered the film, suppressing the formation of Li deficiencies and enhancing the low-temperature crystal growth. Solid-liquid phase epitaxy is a powerful approach to grow Li-containing-oxide films, which are difficult to fabricate because of the loss of Li species at high temperature.

  6. Current carriers in the near-earth cross-tail current sheet during substorm growth phase

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Williams, D. J.; Huang, C. Y.; Frank, L. A.; Russell, C. T.

    1990-01-01

    Throughout most of the growth phase of a substorm, the cross-tail current at x about -10 Re can be supplied by the curvature drift of a bi-directional field aligned distribution of 1 keV electrons. Just prior to its local disruption after substorm onset, the cross-tail current in the now thin (about 400 km) current sheet is carried by the cross-tail serpentine motion of non-adiabatic ions (Speiser, 1965). The instability of this latter current leads to the local disruption of the near-earth current sheet.

  7. Growth of new ternary intermetallic phases from Ca/Zn eutectic flux

    SciTech Connect

    Stojanovic, Milorad Latturner, Susan E.

    2007-03-15

    The eutectic 7.3:2.7 molar ratio mixture of calcium and zinc metal melts at 394 deg. C and was explored as a solvent for the growth of new intermetallic phases for potential use as hydrogen storage materials. The reaction of nickel in this molten mixture produces two new phases-the CaCu{sub 5}-related structure CaNi{sub 2}Zn{sub 3} (P6/mmm, a=8.9814(5) A, c=4.0665(5) A) and a new cubic structure Ca{sub 21}Ni{sub 2}Zn{sub 36} (Fd-3m, a=21.5051(4) A). Palladium-containing reactions produced CaPd{sub 0.85}Zn{sub 1.15} with the orthorhombic TiNiSi structure type (Pnma, a=7.1728(9) A, b=4.3949(5) A, c=7.7430(9) A). Reactions of platinum in the Ca/Zn mixture produce Ca{sub 6}Pt{sub 3}Zn{sub 5}, with an orthorhombic structure related to that of W{sub 3}CoB{sub 3} (Pmmn, a=13.7339(9) A, b=4.3907(3) A, c=10.7894(7) A). - Graphical abstract: The calcium/zinc eutectic is a useful synthesis medium for the growth of new intermetallic phases. Addition of group 10 transition metals to this flux produces ternary phases CaNi{sub 2}Zn{sub 3}, Ca{sub 21}Ni{sub 2}Zn{sub 36}, CaPd{sub 0.85}Zn{sub 1.15}, and Ca{sub 6}Pt{sub 3}Zn{sub 5}. The nickel-centered zinc icosahedron surrounded by a pentagonal dodecahedron of calcium atoms is found in Ca{sub 21}Ni{sub 2}Zn{sub 36}.

  8. Transcriptome Analysis of Spermatogenically Regressed, Recrudescent and Active Phase Testis of Seasonally Breeding Wall Lizards Hemidactylus flaviviridis

    PubMed Central

    Gautam, Mukesh; Mathur, Amitabh; Khan, Meraj Alam; Majumdar, Subeer S.; Rai, Umesh

    2013-01-01

    Background Reptiles are phylogenically important group of organisms as mammals have evolved from them. Wall lizard testis exhibits clearly distinct morphology during various phases of a reproductive cycle making them an interesting model to study regulation of spermatogenesis. Studies on reptile spermatogenesis are negligible hence this study will prove to be an important resource. Methodology/Principal Findings Histological analyses show complete regression of seminiferous tubules during regressed phase with retracted Sertoli cells and spermatognia. In the recrudescent phase, regressed testis regain cellular activity showing presence of normal Sertoli cells and developing germ cells. In the active phase, testis reaches up to its maximum size with enlarged seminiferous tubules and presence of sperm in seminiferous lumen. Total RNA extracted from whole testis of regressed, recrudescent and active phase of wall lizard was hybridized on Mouse Whole Genome 8×60 K format gene chip. Microarray data from regressed phase was deemed as control group. Microarray data were validated by assessing the expression of some selected genes using Quantitative Real-Time PCR. The genes prominently expressed in recrudescent and active phase testis are cytoskeleton organization GO 0005856, cell growth GO 0045927, GTpase regulator activity GO: 0030695, transcription GO: 0006352, apoptosis GO: 0006915 and many other biological processes. The genes showing higher expression in regressed phase belonged to functional categories such as negative regulation of macromolecule metabolic process GO: 0010605, negative regulation of gene expression GO: 0010629 and maintenance of stem cell niche GO: 0045165. Conclusion/Significance This is the first exploratory study profiling transcriptome of three drastically different conditions of any reptilian testis. The genes expressed in the testis during regressed, recrudescent and active phase of reproductive cycle are in concordance with the testis

  9. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia.

    PubMed

    Lian, Jie; Zhang, Jiaming; Namavar, Fereydoon; Zhang, Yanwen; Lu, Fengyuan; Haider, Hani; Garvin, Kevin; Weber, W J; Ewing, Rodney C

    2009-06-17

    Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared with bulk zirconia counterparts, and it is of particular importance for controlling the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) in different size regimes. In this work, we performed ion beam bombardments on bilayers (amorphous and cubic) of nano-zirconia using 1 MeV Kr2+ irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. A slower kinetics in the grain growth from cubic nanocrystalline zirconia was found as compared with that for the tetragonal grains recrystallized from the amorphous layer. The radiation-induced nanograins of tetragonal ZrO2 are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion beam methods provide the means to control the phase stability and structure of zirconia polymorphs.

  10. Growth and Printability of Multilayer Phase Defects on EUV MaskBlanks

    SciTech Connect

    Liang, Ted; Ultanir, Erdem; Zhnag, Guojing; Park, Seh-Jin; Anderson, Erik; Gullikson, Eric; Naulleau, Patrick; Salmassi, Farhad; Mirkarimi, Paul; Spiller, Eberhard; Baker, Sherry

    2007-06-10

    The ability to fabricate defect-free mask blanks is a well-recognized challenge in enabling extreme ultraviolet lithography (EUVL) for semiconductor manufacturing. Both the specification and reduction of defects necessitate the understanding of their printability and how they are generated and grow during Mo-Si multilayer (ML) deposition. A ML phase defect can be depicted by its topographical profile on the surface as either a bump or pit, which is then characterized by height or depth and width. The complexity of such seemingly simple phase defects lies in the many ways they can be generated and the difficulties of measuring their physical shape/size and optical effects on printability. An effective way to study phase defects is to use a programmed defect mask (PDM) as 'model' test sample where the defects are produced with controlled growth on a ML blank and accurate placement in varying proximity to absorber patterns on the mask. This paper describes our recent study of ML phase defect printability with resist data from exposures of a ML PDM on the EUV micro-exposure tool (MET, 5X reduction with 0.3NA).

  11. Glucose triggers ATP secretion from bacteria in a growth-phase-dependent manner.

    PubMed

    Hironaka, Ippei; Iwase, Tadayuki; Sugimoto, Shinya; Okuda, Ken-ichi; Tajima, Akiko; Yanaga, Katsuhiko; Mizunoe, Yoshimitsu

    2013-04-01

    ATP modulates immune cell functions, and ATP derived from gut commensal bacteria promotes the differentiation of T helper 17 (Th17) cells in the intestinal lamina propria. We recently reported that Enterococcus gallinarum, isolated from mice and humans, secretes ATP. We have since found and characterized several ATP-secreting bacteria. Of the tested enterococci, Enterococcus mundtii secreted the greatest amount of ATP (>2 μM/10(8) cells) after overnight culture. Glucose, not amino acids and vitamins, was essential for ATP secretion from E. mundtii. Analyses of energy-deprived cells demonstrated that glycolysis is the most important pathway for bacterial ATP secretion. Furthermore, exponential-phase E. mundtii and Enterococcus faecalis cells secrete ATP more efficiently than stationary-phase cells. Other bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, also secrete ATP in exponential but not stationary phase. These results suggest that various gut bacteria, including commensals and pathogens, might secrete ATP at any growth phase and modulate immune cell function.

  12. Initial stages of multilayer growth and structural phase transitions of physisorbed benzene on Ru(001)

    NASA Astrophysics Data System (ADS)

    Jakob, P.; Menzel, D.

    1996-09-01

    The initial stages of the multilayer growth of a model system for molecular solids, namely physisorbed benzene on Ru(001), have been studied in detail by infrared reflection absorption spectroscopy and thermal desorption spectroscopy. A variety of different phases have been discriminated spectroscopically and characterized in situ: the parallel oriented first physisorbed layer which is found to rearrange into a more crowded layer with a high tilt angle at slightly higher coverages; an amorphous layer which grows at low temperatures (T ≤55 K), and a crystalline layer to which the former converts at elevated temperatures. Clear evidence for structural disorder of the uppermost layer of the crystalline phase is found. The amorphous-crystalline phase transformation is irreversible and the required temperatures vary considerably with the layer thickness. This is attributed to two different processes: at high coverages (Θ ≥10 ML) crystallization is possible at low T without mass transport and requires only a reorientation and minor rearrangement of the benzene molecules. Low initial coverages (Θ=2.5-5 ML) require nucleation and diffusion of benzene molecules to form stable 3D crystallites with the former process acting as the kinetically limiting factor. Particular attention has been devoted to the unravelling of the nature of the metastable state observed in thermal desorption spectroscopy and its transformation into the more stable crystalline phase.

  13. Feedback-induced phase transitions in active heterogeneous conductors.

    PubMed

    Ocko, Samuel A; Mahadevan, L

    2015-04-03

    An active conducting medium is one where the resistance (conductance) of the medium is modified by the current (flow) and in turn modifies the flow, so that the classical linear laws relating current and resistance, e.g., Ohm's law or Darcy's law, are modified over time as the system itself evolves. We consider a minimal model for this feedback coupling in terms of two parameters that characterize the way in which addition or removal of matter follows a simple local (or nonlocal) feedback rule corresponding to either flow-seeking or flow-avoiding behavior. Using numerical simulations and a continuum mean field theory, we show that flow-avoiding feedback causes an initially uniform system to become strongly heterogeneous via a tunneling (channel-building) phase separation; flow-seeking feedback leads to an immuring (wall-building) phase separation. Our results provide a qualitative explanation for the patterning of active conducting media in natural systems, while suggesting ways to realize complex architectures using simple rules in engineered systems.

  14. Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus.

    PubMed

    Loghavi, Laleh; Sastry, Sudhir K; Yousef, Ahmed E

    2008-01-01

    Moderate electric fields (MEF) have been previously shown to alter the metabolic activity of microbial cells; thus, the effect of frequency and electric field would be of considerable interest. We investigated herein the effects of MEF frequency on microbial growth kinetics and bacteriocin (Lacidin A) production of Lactobacillus acidophilus OSU 133 during fermentation. The following fermentation treatments were compared: conventional (for 40 h), MEF (1 V cm(-1), for 40 h), combination of MEF (1 V cm(-1), for the first 5 h) and conventional (for 35 h) at various frequency levels (45, 60, and 90 Hz) all at 30 degrees C, and control (conventional) fermentation at 37 degrees C. MEF treatments with purely sinusoidal waveforms at all frequencies at 30 degrees C produced a shorter lag phase than conventional fermentation. However, no lag phase reduction was found for a 60 Hz waveform that contained high-frequency harmonics. There was, however, a significant increase in the bacteriocin production under early MEF treatment at 60 Hz with high-frequency harmonics. On the basis of these observations, the fermentation process is accelerated by applying pure sinusoidal MEF at the early stage of growth while a significant increase in the bacteriocin production occurs when sinusoidal field at 60 Hz with harmonics is applied at the early stage of the growth.

  15. Production of biogenic amines "in vitro" in relation to the growth phase by Enterobacteriaceae species isolated from traditional sausages.

    PubMed

    Lorenzo, José M; Cachaldora, Aida; Fonseca, Sonia; Gómez, María; Franco, Inmaculada; Carballo, Javier

    2010-11-01

    Histidine, lysine, ornithine and tyrosine decarboxylase activities were tested in 79 strains of Enterobacteriaceae (41 of Hafnia alvei, 17 of Serratia liquefaciens, 5 of Enterobacter cloacae, 4 of Citrobacter braakii, 2 of Proteus vulgaris, 2 of Proteus mirabilis, 2 of Providencia stuartii, 2 of Klebsiella terrigena, 1 of Rahnella aquatilis, 1 of Salmonella arizonae, 1 of Citrobacter youngae and 1 of Escherichia coli) isolated from Botillo, a Spanish traditional sausage. In general, the strains were positive for all four activities, with the exception of two strains of H. alvei and the E. coli strain, which did not display histidine decarboxylase activity. The strains of P. mirabilis and P. stuartii did not exhibit any of the four activities tested. Accumulation of putrescine and cadaverine was studied throughout growth of the 75 strains that displayed ornithine and lysine decarboxylase activities. Biogenic amines were produced particularly in the exponential phase, with maximum accumulation occurring after between 12 to 72 h, depending on the biogenic amine and microbial species considered. Maximum accumulation of putrescine varied greatly between species and within the same species, and ranged from 18 mg/l in the R. aquatilis strain to 7325 mg/l in a H. alvei strain. Maximum accumulation of cadaverine varied less than that of putrescine, and ranged from 30 mg/l in the R. aquatilis strain to 1935 mg/l in a S. liquefaciens strain.

  16. The Oenococcus oeni clpX Homologue Is a Heat Shock Gene Preferentially Expressed in Exponential Growth Phase

    PubMed Central

    Jobin, Michel-Philippe; Garmyn, Dominique; Diviès, Charles; Guzzo, Jean

    1999-01-01

    Using degenerated primers from conserved regions of previously studied clpX gene products, we cloned the clpX gene of the malolactic bacterium Oenococcus oeni. The clpX gene was sequenced, and the deduced protein of 413 amino acids (predicted molecular mass of 45,650 Da) was highly similar to previously analyzed clpX gene products from other organisms. An open reading frame located upstream of the clpX gene was identified as the tig gene by similarity of its predicted product to other bacterial trigger factors. ClpX was purified by using a maltose binding protein fusion system and was shown to possess an ATPase activity. Northern analyses indicated the presence of two independent 1.6-kb monocistronic clpX and tig mRNAs and also showed an increase in clpX mRNA amount after a temperature shift from 30 to 42°C. The clpX transcript is abundant in the early exponential growth phase and progressively declines to undetectable levels in the stationary phase. Thus, unlike hsp18, the gene encoding one of the major small heat shock proteins of Oenococcus oeni, clpX expression is related to the exponential growth phase and requires de novo protein synthesis. Primer extension analysis identified the 5′ end of clpX mRNA which is located 408 nucleotides upstream of a putative AUA start codon. The putative transcription start site allowed identification of a predicted promoter sequence with a high similarity to the consensus sequence found in the housekeeping gene promoter of gram-positive bacteria as well as Escherichia coli. PMID:10542163

  17. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    SciTech Connect

    Metaferia, Wondwosen; Sun, Yan-Ting Lourdudoss, Sebastian; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  18. Towards an organic palaeosalinity proxy: the effect of salinity, growth rate and growth phase on the hydrogen isotopic composition of alkenones produced by haptophyte algae

    NASA Astrophysics Data System (ADS)

    Chivall, David; M'Boule, Daniela; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.

    2013-04-01

    Palaeosalinity is one of the most important oceanographic parameters which currently cannot be quantified with reasonable accuracy from sedimentary records. Schouten et al.1 established that the fractionation of hydrogen isotopes between growth water and alkenones produced by the haptophyte algae Emiliania huxleyi and Gephyrocapsa oceanica is salinity dependent. As such, the δD values of alkenones recovered from sediment cores can be used to reconstruct variations in palaeo- sea surface salinity.2 However, to accurately determine absolute palaeosalinity requires a better constraining of the relationship between this hydrogen fractionation, salinity and other parameters such as growth rate and growth phase. Here, we present results from our ongoing work to constrain the relationship between the fractionation factor αalkenone-water, salinity, growth rate and growth phase for the major alkenone-producing haptophytes. In batch cultures of different strains of the open-ocean haptophyte E. huxleyi sampled during the exponential growth phase, αC37alkenone-growthwater increases by between 0.0022 and 0.0033 per unit increase in salinity. A similar relationship is observed in batch cultures of the coastal haptophyte Isochrysis galbana, where α increases with each unit of salinity by 0.0019 - slightly less than for E. huxleyi. However, absolute αC37alkenone-growthwater values vary strongly between species suggesting that species composition has a strong impact on the δD value of alkenones. The fractionation factor for alkenones produced by batch cultures of I. galbana is affected by growth phase: the rate of change of αC37alkenone-growthwater with each unit of salinity decreases from 0.0019 in the exponential phase to 0.0010 during the stationary phase. We also show the effect of varying growth rate over the range 0.2-0.8 day-1 on the fractionation factor for alkenones produced by E. huxleyi grown in continuous culture. These data show that alkenone δD can be used to

  19. [Chemo- and endocrino-therapy of breast carcinoma xenografts in the dormant or exponential growth phase].

    PubMed

    Takeuchi, T

    1995-06-01

    In case of concerning about recurrence case after operative treatment of breast cancer, we must suppose existence of dormant breast cancer cell. To elucidate a rational treatment of the breast cancer in the dormant stage, we have developed a new treatment model using human breast carcinoma xenografts (MCF-7, R-27 and Br-10) in nude mice. After the sc inoculation of the tumors, the treatment was initiated with or without the previous estradiol (E2) stimulation. While MCF-7 was sensitive to mitomycin C (6 mg/kg i.p.) and and tamoxifen pellet (2.5 mg/mouse s.c.) in the dormant and exponential growth phase, R-27 and Br-10 were sensitive to the drugs only in the exponential growth phase but not in the dormant stage. These results suggested that the sensitivity of human breast carcinoma cells in the dormant stage is rather low, however some strain would be also sensitive to the treatment. This model seems to be useful in evaluating the adjuvant therapy of breast carcinoma after surgery.

  20. Vibrio fischeri exhibit the growth advantage in stationary-phase phenotype.

    PubMed

    Petrun, Branden; Lostroh, C Phoebe

    2013-02-01

    Vibrio fischeri are bioluminescent marine bacteria that can be isolated from their symbiotic animal partners or from ocean water. A V. fischeri population increases exponentially inside the light organ of the Hawaiian bobtail squid (Euprymna scolopes) while the host is quiescent during the day. This bacterial light organ population reaches stationary phase and then remains high during the night, when the squid use bacterial bioluminescence as a counter-predation strategy. At dawn, host squid release 90%-95% of the light organ contents into the ocean water prior to burying in the sand for the day. As the squid sleeps, the cycle of bacterial population growth in the light organ begins again. These V. fischeri cells that are vented into the ocean must persist under typical marine low nutrient conditions until they encounter another opportunity to colonize a host. We hypothesized that because V. fischeri regularly encounter cycles of feast and famine in nature, they would exhibit the growth advantage in stationary phase (GASP) phenotype. We found that older V. fischeri cells exhibit a Class 2 GASP response in which old cells increase dramatically in frequency while the population of young V. fischeri cells remains almost constant during co-incubation.

  1. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    SciTech Connect

    Sorin Zaharia; C.Z. Cheng

    2003-04-30

    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| {approx} 9 R{sub E}) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J{sub {phi}} {approx} 10 nA/m{sup 2}) and very high plasma {beta} ({beta} {approx} 40) between 7 and 10 R{sub E}. The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J{sub {parallel}max} {approx} 3 {micro}A/m{sup 2}) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents.

  2. Battle of the Bacteria: Characterizing the Evolutionary Advantage of Stationary Phase Growth

    PubMed Central

    Kram, Karin E.; Yim, Kristina M.; Coleman, Aaron B.; Sato, Brian K.

    2016-01-01

    Providing students with authentic research opportunities has been shown to enhance learning and increase retention in STEM majors. Accordingly, we have developed a novel microbiology lab module, which focuses on the molecular mechanisms of evolution in E. coli, by examining the growth advantage in stationary phase (GASP) phenotype. The GASP phenotype is demonstrated by growing cells into long-term stationary phase (LTSP) and then competing them against un-aged cells in a fresh culture. This module includes learning goals related to strengthening practical laboratory skills and improving student understanding of evolution. In addition, the students generate novel data regarding the effects of different environmental stresses on GASP and the relationship between evolution, genotypic change, mutation frequency, and cell stress. Pairs of students are provided with the experimental background, select a specific aspect of the growth medium to modify, and generate a hypothesis regarding how this alteration will impact the GASP phenotype. From this module, we have demonstrated that students are able to achieve the established learning goals and have produced data that has furthered our understanding of the GASP phenotype. Journal of Microbiology & Biology Education PMID:27158307

  3. An experimental study of growth and phase change of polar stratospheric cloud particles

    NASA Technical Reports Server (NTRS)

    Hallett, John; Teets, Edward

    1992-01-01

    This report describes the progress made on understanding phase changes related to solutions which may comprise Polar Stratospheric Clouds. In particular, it is concerned with techniques for investigating specific classes of metastability and phase change which may be important not only in Polar Stratospheric Clouds but in all atmospheric aerosols in general. While the lower level atmospheric aerosol consists of mixtures of (NH4)(SO4)2, NH4HSO4, NaCl among others, there is evidence that aerosol at PSC levels is composed of acid aerosol, either injected from volcanic events (such as Pinatubo) or having diffused upward from the lower atmosphere. In particular, sulfuric acid and nitric acid are known to occur at PSC levels, and are suspected of catalyzing ozone destruction reactions by adsorption on surfaces of crystallized particles. The present study has centered on two approaches: (1) the extent of supercooling (with respect to ice) and supersaturation (with respect to hydrate) and the nature of crystal growth in acid solutions of specific molality; and (2) the nature of growth from the vapor of HNO3 - H2O crystals both on a substrate and on a pre-existing aerosol.

  4. Study of seismic activity during the ascending and descending phases of solar activity

    NASA Astrophysics Data System (ADS)

    Sukma, Indriani; Abidin, Zamri Zainal

    2016-12-01

    The study of the solar cycle and geomagnetic index associated with the seismic activity from the year 1901 to the end of 2015 has been done for an area that covers the majority of China and its bordering countries. Data of sunspot number, solar wind speed, daily storm time index and earthquake number are collected from NOAA, NASA, WDC, OMNI and USGS databases and websites. The earthquakes are classified into small (M < 5) and large (M ≥ 5) magnitudes (in Richter scale). We investigated the variation of earthquake activities with the geomagnetic storm index due to the solar wind. We focused on their variation in the ascending and descending phases of solar cycle. From our study, we conclude that there is a correlation between the phases' geomagnetic index and solar wind speed. We have also suggested that there is a certain degree of correlation between solar activity and seismicity in these phases. For every solar cycle, we find that there is a trend for earthquakes to occur in greater numbers during the descending phase. This can be explained by the increment in the solar wind speed and geomagnetic storm index during this phase.

  5. LOCAL LUMINOUS INFRARED GALAXIES. III. CO-EVOLUTION OF BLACK HOLE GROWTH AND STAR FORMATION ACTIVITY?

    SciTech Connect

    Alonso-Herrero, Almudena; Hernan-Caballero, Antonio; Pereira-Santaella, Miguel; Rieke, George H.; Diamond-Stanic, Aleksandar M.; Wang Yiping; Rigopoulou, Dimitra

    2013-03-10

    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 Multiplication-Sign 10{sup 7} M{sub Sun} using [Ne III] 15.56 {mu}m and optical [O III] {lambda}5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear {approx}1.5 kpc region, as estimated from the nuclear 11.3 {mu}m PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.

  6. Inactivation of human pathogens during phase II composting of manure-based mushroom growth substrate.

    PubMed

    Weil, Jennifer D; Cutter, Catherine N; Beelman, Robert B; LaBorde, Luke F

    2013-08-01

    Commercial production of white button mushrooms (Agaricus bisporus) requires a specialized growth substrate prepared from composted agricultural by-products. Because horse and poultry manures are widely used in substrate formulations, there is a need to determine the extent to which the composting process is capable of eliminating human pathogens. In this study, partially composted substrate was inoculated with a pathogen cocktail (log 10⁶ to 10⁸ CFU/g) containing Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. Pathogen and indicator-organism reductions were followed at temperatures that typically occurred during a standard 6-day phase II pasteurization and conditioning procedure. Controlled-temperature water bath studies at 48.8, 54.4, and 60°C demonstrated complete destruction of the three pathogens after 36.0, 8.0, and 0.5 h, respectively. Destruction of L. monocytogenes and E. coli O157:H7 at 54.4°C occurred more slowly than E. coli, total coliforms, Enterobacteriaceae, and Salmonella. Microbial reductions that occurred during a standard 6-day phase II pasteurization and conditioning treatment were studied in a small-scale mushroom production research facility. After phase II composting, E. coli, coliforms, and Enterobacteriaceae were below detectable levels, and inoculated pathogens were not detected by direct plating or by enrichment. The results of this study show that a phase II composting process can be an effective control measure for eliminating risks associated with the use of composted animal manures during mushroom production. Growers are encouraged to validate and verify their own composting processes through periodic microbial testing for pathogens and to conduct studies to assure uniform distribution of substrate temperatures during phase II.

  7. Water activity and temperature effects on growth of Alternaria arborescens on tomato medium.

    PubMed

    Vaquera, Sandra; Patriarca, Andrea; Fernández Pinto, Virginia

    2014-08-18

    Alternaria arborescens is the causal agent of tomato stem canker, a disease frequently responsible of substantial economic losses. A. arborescens can produce several mycotoxins, such as alternariol, alternariol monomethyl ether and tenuazonic acid and phytotoxins such as the AAL toxins. The objective of this study was to determine the effect of water activity (aw, 0.950, 0.975, 0.995) and temperature (6, 15, 20, 25 and 30°C) on the germination and radial growth rate of A. arborescens on a synthetic tomato medium. Germination followed by growth was observed at all temperatures and aw levels analyzed. The shortest germination time (0.5 days) was observed at 0.995 aw, both at 25°C and at 30°C. The germination time increased with a reduction of aw and temperature. The highest growth rate was registered at 0.995 aw and 30°C (7.21 mm/day) while the lowest occurred at 0.950 aw and 6°C (0.52 mm/day), conditions at which the longest lag phase was observed (8 days). Growth rates increased with aw and temperature. Knowledge of the ecophysiology of the fungus in this substrate is necessary to formulate future strategies to prevent its development and evaluate the consumer health risk posed by potential exposure to the toxins.

  8. Early stage reversed crystal growth of zeolite A and its phase transformation to sodalite.

    PubMed

    Greer, Heather; Wheatley, Paul S; Ashbrook, Sharon E; Morris, Russell E; Zhou, Wuzong

    2009-12-16

    Microstructural analysis of the early stage crystal growth of zeolite A in hydrothermal synthetic conditions revealed a revised crystal growth route from surface to core in the presence of the biopolymer chitosan. The mechanism of this extraordinary crystal growth route is discussed. In the first stage, the precursor and biopolymer aggregated into amorphous spherical particles. Crystallization occurred on the surface of these spheres, forming the typical cubic morphology associated with zeolite A with a very thin crystalline cubic shell and an amorphous core. With a surface-to-core extension of crystallization, sodalite nanoplates were crystallized within the amorphous cores of these zeolite A cubes, most likely due to an increase of pressure. These sodalite nanoplates increased in size, breaking the cubic shells of zeolite A in the process, leading to the phase transformation from zeolite A to sodalite via an Ostwald ripening process. Characterization of specimens was performed using scanning electron microscopy and transmission electron microscopy, supported by other techniques including X-ray diffraction, solid-state NMR, and N(2) adsorption/desorption.

  9. Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae.

    PubMed

    Cheraiti, Naoufel; Sauvage, François-Xavier; Salmon, Jean-Michel

    2008-01-01

    During experiments to determine the effects of exogenously added acetaldehyde on pure cultures of various yeast strains, we discovered that an early acetaldehyde perfusion during the growth phase allowed several yeasts to partially overcome the phenotypic effects of zinc depletion during alcoholic fermentation. We, therefore, performed genome-wide expression and proteomic analysis on an industrial Saccharomyces cerevisiae yeast strain (VL1) growing in zinc-replete or zinc-depleted conditions in the presence of perfused acetaldehyde to identify molecular markers of this effect. Zinc depletion severely affects ethanol production and therefore nicotinamide adenine dinucleotide (NAD) regeneration, although we observed partial compensation by the upregulation of the poorly efficient Fe-dependent Adh4p in our conditions. A coordinate metabolic response was indeed observed in response to the early acetaldehyde perfusion, and particularly of the lower part of glycolysis, leading to the cellular replenishment of NAD cofactor. These various findings suggest that acetaldehyde exchange between strains may inhibit the growth of some yeast strains while encouraging the growth of others. This phenomenon could be particularly important for understanding the ecology of colonization of complex fermentation media by S. cerevisiae after elimination of non-Saccharomyces yeasts.

  10. Vapor phase epitaxy growth of CdTe epilayers for RT x-ray detectors

    NASA Astrophysics Data System (ADS)

    Lovergine, Nico; Mancini, A. M.; Prete, P.; Cola, Adriano; Tapfer, Leander

    2000-11-01

    We report on the growth of thick CdTe layers on ZnTe/(100) GaAs hybrid substrates by the novel H2 transport vapor phase epitaxy (H2T-VPE) method. High crystalline quality (100)-oriented CdTe single crystal epilayers can be fabricated under atmospheric pressure and at growth temperatures (TD) in the 600 - 800 degree Celsius interval. Double crystal X-ray diffraction measurements performed on epilayers thicker than 30 micrometer show CdTe (400) peaks with FWHM < 59 arcsec. Samples grown under optimized conditions exhibit mirror-like surfaces. Nominally undoped epilayers grown < 650 degrees Celsius are p-type and low resistive, but they turn n-type above 650 degrees Celsius, as a result of donor (likely Ga) diffusion from the substrate. RT resistivities ((rho) ) approximately 106 (Omega) (DOT)cm are obtained for 675 degrees Celsius < TD < 700 degrees Celsius, but (rho) decreases for higher temperatures and thinner samples. Layers grown under these conditions show RT electron concentrations in the 1014 - 1011 cm-3 range. The detection capability of H2T-VPE grown CdTe is demonstrated by time- of-flight measurements performed at RT on Au/n-CdTe/n+- GaAs diode structures under reverse bias conditions. The present results show the potentials of H2T-VPE for the growth of detector-grade CdTe.

  11. Comparison of methods for measuring viable E. coli cells during cultivation: great differences in the early and late exponential growth phases.

    PubMed

    Wang, Hengwei; Cheng, Hairong; Wei, Dongzhi; Wang, Fengqing

    2011-01-01

    Four methods, namely enumeration of colony-forming units (CFU), aerobic respiration, MTT reduction capacity and succinate dehydrogenase activity were compared to determine the viability of E. coli cells at the early and late exponential growth phases. Our results revealed that great differences in cell viability existed between these methods and that the choice of method to determine cell viability must be made with caution.

  12. The effects of growth temperature and growth phase on the inactivation of Listeria monocytogenes in whole milk subject to high pressure processing.

    PubMed

    Hayman, Melinda M; Anantheswaran, Ramaswamy C; Knabel, Stephen J

    2007-04-10

    The aim of this study was to explore the effect of a wide range of growth temperatures, growth phases and plating media on the inactivation of Listeria monocytogenes by high pressure processing (HPP). In part one, L. monocytogenes was grown to mid-stationary phase at 4, 15, 25, 35 or 43 degrees C, inoculated into whole UHT milk at approximately 10(7) CFU/ml and high pressure processed at 400 MPa at room temperature (20-25 degrees C). Afterward, the HPP milk was plated on Tryptic Soy Yeast Extract Agar (TSYEA) and Modified Oxford Agar (MOX) to determine the degree of injury. For part two, cells were grown to mid-exponential, late-exponential or mid-stationary phase at 15 or 43 degrees C and processed in the same way. Time to reach a 5-log reduction was determined and data were analysed by ANOVA. The results from part one showed that both growth temperature and plating medium had a significant effect (P < 0.001) on the inactivation of stationary phase L. monocytogenes by HPP. Tukey's pairwise comparisons revealed that the effects of all temperatures, except 35 and 43 degrees C, were significantly different (P < 0.05). Cells grown at 15 degrees C were most sensitive to HPP, followed by cells grown at 4, 25 or 35 degrees C, with cells grown at 43 degrees C appearing to be the most resistant. Inactivation of cells grown at 4, 15 or 25 degrees C followed first order kinetics, whereas cells grown at 35 or 43 degrees C displayed non-linear inactivation kinetics due to tailing. In part two, both growth phase and plating medium had significant effects on the inactivation (P < or = 0.001) of L. monocytogenes by HPP. Cells grown at 15 degrees C to mid-stationary phase were the most pressure-resistant when tested on both media, and were significantly more resistant (P < 0.05) than cells grown at the same temperature to the other two phases of growth. There was no significant difference between mid- and late-exponential phase cells grown at 15 degrees C. When cells were grown at

  13. Lessons learned with the Active Phasing Experiment: comparison of four optical phasing sensors on a segmented Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Gonte, F.; Surdej, I.

    The adaptive optics capabilities are strongly limited by the quality of the phasing of the primary mirror of the extremely large telescope. Up to date, the Keck telescopes are the only segmented telescope phased with a quality enabling the application of adaptive optics. The Active Phasing Experiment has been installed at the Namyth focus of the Very Large Telescope Melipal during the last 6 months. Its purpose is to understand and compare different technological concepts for an optical phasing sensor dedicated to the European Extremely Large Telescope. The pupil of the telescope is segmented in 61 hexagonal segments by projecting it on an Active Segmented Mirror. The ASM is controlled by a dual wavenlength interferometer made by Fogale Nanotech with a nanometric precision. The segmented pupil is distributed in parallel to four optical phasing sensors. They are a pyramid sensor, a curvature sensor, a phase filtering sensor and a ShackHartmann sensor. They have been developed respectively by Istituto Nazionale di Astrofisica in Florenze, Instituto Astrofisica Canarias in Tenerife, Laboratoire d'Astrophysique de Marseille and ESO. The global behaviour of the optical phasing sensors will be described and preliminary results of the Active Phasing Experiments obtained on sky will be explained. The extrapolation of the results to the EELT and the potential consequences for the adaptive optics will be given. The Active Phasing Experiment has been financed by the European Union and the European Southern Observatory via the Sixth European Union Framework Program for Research and Technological Development under the contract number 011863.

  14. Growth hormone biases amygdala network activation after fear learning

    PubMed Central

    Gisabella, B; Farah, S; Peng, X; Burgos-Robles, A; Lim, S H; Goosens, K A

    2016-01-01

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the ‘over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the process by which neurons compete to encode memories, to favor neurons that have stronger inputs. Viral overexpression of GH in the amygdala increased the number of amygdala cells activated by fear memory formation. GH-overexpressing cells were especially biased to express the immediate early gene c-Fos after fear conditioning, revealing strong autocrine actions of GH in the amygdala. In addition, we observed dramatically enhanced dendritic spine density in GH-overexpressing neurons. These data elucidate a previously unrecognized autocrine role for GH in the regulation of amygdala neuron function and identify specific mechanisms by which chronic stress, by enhancing GH in the amygdala, may predispose an individual to excessive fear memory formation. PMID:27898076

  15. Analysis of the lag phase to exponential growth transition by incorporating inoculum characteristics.

    PubMed

    Verhulst, A J; Cappuyns, A M; Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2011-06-01

    During the last decade, individual-based modelling (IbM) has proven to be a valuable tool for modelling and studying microbial dynamics. As each individual is considered as an independent entity with its own characteristics, IbM enables the study of microbial dynamics and the inherent variability and heterogeneity. IbM simulations and (single-cell) experimental research form the basis to unravel individual cell characteristics underlying population dynamics. In this study, the IbM framework MICRODIMS, i.e., MICRObial Dynamics Individual-based Model/Simulator, is used to investigate the system dynamics (with respect to the model and the system modelled). First, the impact of the time resolution on the simulation accuracy is discussed. Second, the effect of the inoculum state and size on emerging individual dynamics, such as individual mass, individual age and individual generation time distribution dynamics, is studied. The distributions of individual characteristics are more informative during the lag phase and the transition to the exponential growth phase than during the exponential phase. The first generation time distributions are strongly influenced by the inoculum state. All inocula with a pronounced heterogeneity, except the inocula starting from a uniform distribution, exhibit commonly observed microbial behaviour, like a more spread first generation time distribution compared to following generations and a fast stabilisation of biomass and age distributions.

  16. Dynamic light scattering: A fast and reliable method to analyze bacterial growth during the lag phase.

    PubMed

    Vargas, Susana; Millán-Chiu, Blanca E; Arvizu-Medrano, Sofía M; Loske, Achim M; Rodríguez, Rogelio

    2017-04-09

    A comparison between plate counting (PC) and dynamic light scattering (DLS) is reported. PC is the standard technique to determine bacterial population as a function of time; however, this method has drawbacks, such as the cumbersome preparation and handling of samples, as well as the long time required to obtain results. Alternative methods based on optical density are faster, but do not distinguish viable from non-viable cells. These inconveniences are overcome by using DLS. Two different bacteria strains were considered: Escherichia coli and Staphylococcus aureus. DLS was performed at two different illuminating conditions: continuous and intermittent. By the increment of particle size as a function of time, it was possible to observe cell division and the formation of aggregates containing very few bacteria. The scattered intensity profiles showed the lag phase and the transition to the exponential phase of growth, providing a quantity proportional to viable bacteria concentration. The results revealed a clear and linear correlation in both lag and exponential phase, between the Log10(colony-forming units/mL) from PC and the Log10 of the scattered intensity Is from DLS. These correlations provide a good support to use DLS as an alternative technique to determine bacterial population.

  17. [Anaerobic growth ability and alcohol fermentation activity of microscopic fungi].

    PubMed

    Kurakov, A V; Khidirov, K S; Sadykova, V S; Zviagintsev, D G

    2011-01-01

    The method proposed in this study was used to isolate fungi grown under anaerobic conditions and to reveal distinctions in their abundance and species composition in different habitats. The ability of micromycetes of different taxa to grow under anaerobic conditions and ensure alcohol fermentation was determined for a representative sample (344 strains belonging to more than 60 species). The group of fungi growing under anaerobic conditions included species with high, moderate, and low fermentation activity. The ability for anaerobic growth and fermentation depended on the taxonomic affiliation of fungi. In some cases, the expression of these characteristics depended on the habitat from which the strain was isolated. The maximum level of ethanol accumulation in culture liquid (1.2-4.7%) was detected for Absidia spinosa, Aspergillus sp. of group flavus, Aspergillus terreus, Acremonium sp., Mucor circinelloides, Mucor sp., Fusarium oxysporum, F. solani, F. sambucinum, Rhizopus arrhizus var. Arrhizus, Trichoderma atroviride, and Trichoderma sp.

  18. Reevaluation of lipolytic activity of growth hormone in rabbit adipocytes.

    PubMed

    Barenton, B; Batifol, V; Combarnous, Y; Dulor, J P; Durand, P; Vezinhet, A

    1984-07-18

    The lipolytic activities of porcine pituitary fractions and purified growth hormone (GH) from human (h), porcine (p), ovine (o) and rabbit (Rb) origin as well as ovine placental lactogen (oPL), were compared to that of ACTH on rabbit adipocytes. All the GH preparations and oPL were equivalent in inhibiting the binding of labelled oGH to liver plasma membranes from pregnant rabbits. ACTH, and to a lesser extent porcine pituitary fractions and hGH, stimulated free fatty acid production by isolated adipocytes. The sensitivity of the adipocytes to these factors was increased when adenosine deaminase was added to the incubation medium. But, RbGH, pGH, oGH and oPL had no effect. We conclude that GH is not directly involved in the control of lipolysis in rabbit adipocytes and that the effect of hGH is rather due to a contamination of this preparation by other pituitary factors.

  19. Temporal transcriptomic analysis of Desulfovibrio vulgaris Hildenborough transition into stationary phase growth during electrondonor depletion

    SciTech Connect

    Clark, M.E.; He, Q.; He, Z.; Huang, K.H.; Alm, E.J.; Wan, X.-F.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.-Z.; Fields, M.W.

    2006-08-01

    Desulfovibrio vulgaris was cultivated in a defined medium, and biomass was sampled for approximately 70 h to characterize the shifts in gene expression as cells transitioned from the exponential to the stationary phase during electron donor depletion. In addition to temporal transcriptomics, total protein, carbohydrate, lactate, acetate, and sulfate levels were measured. The microarray data were examined for statistically significant expression changes, hierarchical cluster analysis, and promoter element prediction and were validated by quantitative PCR. As the cells transitioned from the exponential phase to the stationary phase, a majority of the down-expressed genes were involved in translation and transcription, and this trend continued at the remaining times. There were general increases in relative expression for intracellular trafficking and secretion, ion transport, and coenzyme metabolism as the cells entered the stationary phase. As expected, the DNA replication machinery was down-expressed, and the expression of genes involved in DNA repair increased during the stationary phase. Genes involved in amino acid acquisition, carbohydrate metabolism, energy production, and cell envelope biogenesis did not exhibit uniform transcriptional responses. Interestingly, most phage-related genes were up-expressed at the onset of the stationary phase. This result suggested that nutrient depletion may affect community dynamics and DNA transfer mechanisms of sulfate-reducing bacteria via the phage cycle. The putative feoAB system (in addition to other presumptive iron metabolism genes) was significantly up-expressed, and this suggested the possible importance of Fe{sup 2+} acquisition under metal-reducing conditions. The expression of a large subset of carbohydrate-related genes was altered, and the total cellular carbohydrate levels declined during the growth phase transition. Interestingly, the D. vulgaris genome does not contain a putative rpoS gene, a common attribute

  20. Solid-phase synthesis of 2'-hydroxychalcones. Effects on cell growth inhibition, cell cycle and apoptosis of human tumor cell lines.

    PubMed

    Neves, Marta Perro; Cravo, Sara; Lima, Raquel T; Vasconcelos, M Helena; Nascimento, M São José; Silva, Artur M S; Pinto, Madalena; Cidade, Honorina; Corrêa, Arlene G

    2012-01-01

    Thirty-one 2'-hydroxychalcones were prepared via solid-phase synthesis by base-catalyzed aldol condensation of substituted 2'-hydroxyacetophenones and benzaldehydes. Chalcones were tested for their growth inhibitory activity in three human tumor cell lines (MCF-7, NCI-H460 and A375-C5) using the SRB assay. Results revealed that several of the tested compounds caused a pronounced dose-dependent growth inhibitory effect on the tumor cell lines studied in the low micromolar range. To gain further insight on the cellular mechanism of action of this class of compounds, studies of their effect on cell cycle profile as well as on induction of cellular apoptosis were also carried out. Generally, the tested chalcones interfered with the cell cycle profile and increased the percentage of apoptotic MCF-7 cells. The results here presented may help to identify new chalcone-like structures with optimized cell growth inhibitory activity which may be further tested as potential antitumor agents.

  1. APE: the Active Phasing Experiment to test new control system and phasing technology for a European Extremely Large Optical Telescope

    NASA Astrophysics Data System (ADS)

    Gonte, F.; Yaitskova, N.; Derie, F.; Constanza, A.; Brast, R.; Buzzoni, B.; Delabre, B.; Dierickx, P.; Dupuy, C.; Esteves, R.; Frank, C.; Guisard, S.; Karban, R.; Koenig, E.; Kolb, J.; Nylund, M.; Noethe, L.; Surdej, I.; Courteville, A.; Wilhelm, R.; Montoya, L.; Reyes, M.; Esposito, S.; Pinna, E.; Dohlen, K.; Ferrari, M.; Langlois, M.

    2005-08-01

    The future European Extremely Large Telescope will be composed of one or two giant segmented mirrors (up to 100 m of diameter) and of several large monolithic mirrors (up to 8 m in diameter). To limit the aberrations due to misalignments and defective surface quality it is necessary to have a proper active optics system. This active optics system must include a phasing system to limit the degradation of the PSF due to misphasing of the segmented mirrors. We will present the lastest design and development of the Active Phasing Experiment that will be tested in laboratory and on-sky connected to a VLT at Paranal in Chile. It includes an active segmented mirror, a static piston plate to simulate a secondary segmented mirror and of four phasing wavefront sensors to measure the piston, tip and tilt of the segments and the aberrations of the VLT. The four phasing sensors are the Diffraction Image Phase Sensing Instrument developed by Instituto de Astrofisica de Canarias, the Pyramid Phasing Sensor developed by Arcetri Astrophysical Observatory, the Shack-Hartmann Phasing Sensor developed by the European Southern Observatory and the Zernike Unit for Segment phasing developed by Laboratoire d'Astrophysique de Marseille. A reference measurement of the segmented mirror is made by an internal metrology developed by Fogale Nanotech. The control system of Active Phasing Experiment will perform the phasing of the segments, the guiding of the VLT and the active optics of the VLT. These activities are included in the Framework Programme 6 of the European Union.

  2. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  3. Effects of Fertilization on Tomato Growth and Soil Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Mu, Zhen; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-qing

    2015-04-01

    To study the effects of different fertilizer applications on soil enzyme activity, tomato plant growth and tomato yield and quality, a field experiment on tomato cultivation was carried out in the suburb of Shanghai. Three fertilizer treatments, chemical fertilizer (CF) (N, 260 g/kg; P, 25.71g/kg; K, 83.00g/kg), rapeseed cake manure (CM) (N, 37.4 g/kg; P, 9.0 g/kg; K, 8.46 g/kg), crop-leaf fermenting manure (FM) (N, 23.67 g/kg; P, 6.39 g/kg; K 44.32 g/kg), and a control without using any fertilizers (CK), were designed. The total amounts of fertilizer application to each plot for the CF, CM, FM and CK were 0.6 kg, 1.35 kg, 3.75 kg and 0 kg, respectively, 50% of which were applied as base fertilizer, and another 50% were applied after the first fruit picking as top dressing. Each experimental plot was 9 m2 (1 m × 9 m) in area. Each treatment was replicated for three times. No any pesticides and herbicides were applied during the entire period of tomato growth to prevent their disturbance to soil microbial activities. Soil enzyme activities at each plot were constantly tested during the growing period; the tomato fruit quality was also constantly analyzed and the tomato yield was calculated after the final harvesting. The results were as follows: (1) Urease activity in the soils treated with the CF, CM and FM increased quickly after applying base fertilizer. That with the CF reached the highest level. Sucrase activity was inhibited by the CF and CM to some extent, which was 32.4% and 11.2% lower than that with the CK, respectively; while that with the FM was 15.7% higher than that with the CK. Likewise, catalase activity with the CF increased by 12.3% - 28.6%; that with the CM increased by 87.8% - 95.1%; that with the FM increased by 86.4% - 93.0%. Phosphatase activity with the CF increased rapidly and reached a maximum 44 days after base fertilizer application, and then declined quickly. In comparison, that with the CM and FM increased slowly and reached a maximum

  4. Citric-acid cycle key enzyme activities during in vitro growth and metacyclogenesis of Leishmania infantum promastigotes.

    PubMed

    Louassini, M; Foulquié, M; Benítez, R; Adroher, J

    1999-08-01

    The activities of 5 key regulatory enzymes in most energetic systems, namely citrate synthase (EC 4.1.3.7, CS), NADP-specific isocitrate dehydrogenase (EC 1.1.1.42, ICDH), succinate dehydrogenase (EC 1.3.99.1, SDH), L-malate dehydrogenase (EC 1.1.1.37, MDH), and decarboxylating malic enzyme (EC 1.1.1.40, ME), were measured during the growth and metacyclogenesis of a cutaneous (CL) and a visceral (VL) strain of Leishmania infantum. As occurs with other Leishmania species, infective promastigotes were present along all phases of growth, but their percentages were higher at the early stationary phase for VL and the end of the same phase for CL. High CS and SDH activities were detected in both strains, as compared with other trypanosomatids, bringing more evidence for an actively functional citric-acid cycle in L. infantum. Both strains showed higher levels of CS, ICDH, and MDH and lower SDH and ME activities when more metacyclic promastigotes were present, but in VL these changes paralleled an increase in glucose consumption, whereas in CL these changes coincided with an NH3 hyperproduction. This suggests that the energy metabolism during L. infantum growth and metacyclogenesis is affected by regulated enzymes that probably respond to changes in the culture medium in the levels of glucose and amino acids.

  5. Reflectometry-Ellipsometry Reveals Thickness, Growth Rate, and Phase Composition in Oxidation of Copper.

    PubMed

    Diaz Leon, Juan J; Fryauf, David M; Cormia, Robert D; Zhang, Min-Xian Max; Samuels, Kathryn; Williams, R Stanley; Kobayashi, Nobuhiko P

    2016-08-31

    The oxidation of copper is a complicated process. Copper oxide develops two stable phases at room temperature and standard pressure (RTSP): cuprous oxide (Cu2O) and cupric oxide (CuO). Both phases have different optical and electrical characteristics that make them interesting for applications such as solar cells or resistive switching devices. For a given application, it is necessary to selectively control oxide thickness and cupric/cuprous oxide phase volume fraction. The thickness and composition of a copper oxide film growing on the surface of copper widely depend on the characteristics of as-deposited copper. In this Research Article, two samples, copper films prepared by two different deposition techniques, electron-beam evaporation and sputtering, were studied. As the core part of the study, the formation of the oxidized copper was analyzed routinely over a period of 253 days using spectroscopic polarized reflectometry-spectroscopic ellipsometry (RE). An effective medium approximation (EMA) model was used to fit the RE data. The RE measurements were complemented and validated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). Our results show that the two samples oxidized under identical laboratory ambient conditions (RTSP, 87% average relative humidity) developed unique oxide films following an inverse-logarithmic growth rate with thickness and composition different from each other over time. Discussion is focused on the ability of RE to simultaneously extract thickness (i.e., growth rate) and composition of copper oxide films and on plausible physical mechanisms responsible for unique oxidation habits observed in the two copper samples. It appears that extended surface characteristics (i.e., surface roughness and grain boundaries) and preferential crystalline orientation of as-deposited polycrystalline copper films control the growth kinetics of the copper oxide film. Analysis based on a noncontact

  6. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro.

    PubMed Central

    Grandis, J R; Drenning, S D; Chakraborty, A; Zhou, M Y; Zeng, Q; Pitt, A S; Tweardy, D J

    1998-01-01

    Stimulation of epidermal growth factor receptor (EGFR) by ligand(s) leads to activation of signaling molecules including Stat1 and Stat3, two members of the signal transducers and activators of transcription (STAT) protein family. Activation of Stat1 and Stat3 was constitutive in transformed squamous epithelial cells, which produce elevated levels of TGF-alpha, and was enhanced by the addition of exogenous TGF-alpha. Targeting of Stat3 using antisense oligonucleotides directed against the translation initiation site, resulted in significant growth inhibition. In addition, cells stably transfected with dominant negative mutant Stat3 constructs failed to proliferate in vitro. In contrast, targeting of Stat1 using either antisense or dominant-negative strategies had no effect on cell growth. Thus, TGF-alpha/EGFR-mediated autocrine growth of transformed epithelial cells is dependent on activation of Stat3 but not Stat1. PMID:9769331

  7. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    PubMed

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  8. Modeling the Lag Period and Exponential Growth of Listeria monocytogenes under Conditions of Fluctuating Temperature and Water Activity Values▿

    PubMed Central

    Muñoz-Cuevas, Marina; Fernández, Pablo S.; George, Susan; Pin, Carmen

    2010-01-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (aw) values. To model the duration of the lag phase, the dependence of the parameter h0, which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or aw were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase. PMID:20208022

  9. Vapor phase growth and photoluminescence of oriented-attachment Zn2GeO4 nanorods array

    NASA Astrophysics Data System (ADS)

    Tang, Haiping; Zhu, Xingda; He, Haiping

    2016-10-01

    We carry out one-step vapor phase growth of high quality Zn2GeO4 nanorods array to provide insights into the growth mechanism of such ternary oxide nanostructures. The morphology and microstructure of these nanorods are investigated carefully. Under certain conditions, the nanorods follow the oriented-attachment growth which is unusual in vapor-based growth. Each nanorod consists of many nanocrystals aligned along the [110] direction. The nanorods show strong deep ultraviolet absorption around 260 nm and broad longlife green luminescence around 490 nm.

  10. [Tomato root exudates and their effect on the growth and antifungal activity of Pseudomonas strains].

    PubMed

    Kravchenko, L V; Azarova, T S; Leonova-Erko, E I; Shaposhnikov, A I; Makarova, N M; Tikhonovich, I A

    2003-01-01

    The study of the effect of the root exometabolites of tomato plants on the growth and antifungal activity of the plant growth-promoting Pseudomonas strains showed that the antifungal activity of plant growth-promoting rhizobacteria in the plant rhizosphere may depend on the sugar and organic acid composition of root exudates.

  11. Effect of Na+ Concentration and Nutritional Factors on the Lag Phase and Exponential Growth Rates of the Marine Bacterium Deleya aesta and of Other Marine Species

    PubMed Central

    Berthelet, Marc; MacLeod, Robert A.

    1989-01-01

    Growth of the marine bacterium Deleya aesta in a succinate minimal medium showed increasingly long lag phases as Na+ was decreased below the optimum (200 to 500 mM). The minimum Na+ concentration permitting growth consistently was 15 mM. Supplementation of the medium with KHCO3 (as a source of CO2) or yeast extract, especially in combination, reduced the lag phase, increased the rate of exponential growth, and allowed growth at 8 mM Na+. KHCO3 did not reduce the lag period but did increase the rate of exponential growth of Deleya venusta, Deleya pacifica, and Alteromonas haloplanktis 214. Yeast extract was active for all three. The effect of yeast extract on D. aesta could be reproduced by a mixture of amino acids approximating its amino acid composition. l-Alanine, l-aspartate, and l-methionine, in combination, were the most effective in reducing the lag phase, although not as effective as the complete mixture. Succinate, l-aspartate, and l-alanine were transported into the cells by largely independent pathways and oxidized at rates which were much lower at 10 than at 200 mM Na+. l-Methionine was transported at a low rate in the absence of Na+ and at a higher rate at 10 mM but was not oxidized. Above 25 mM Na+, the rate of transport of the carbon source was not the rate-limiting step for growth. It is concluded that a combination of transportable carbon sources reduced the lag period and increased the rate of exponential growth because they can be taken up independently and at low Na+ utilized simultaneously. PMID:16347969

  12. Growth of Bi2Te3 films and other phases of Bi-Te system by MOVPE

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. I.; Yapaskurt, V. O.; Shchamkhalova, B. S.; Shcherbakov, V. D.; Yakushcheva, G. G.; Luzanov, V. A.; Jitov, V. A.

    2016-12-01

    We have deposited films of Bi-Te system by atmospheric pressure MOVPE on (0001) Al2O3 substrates with thin ZnTe or thick GaN buffer layers at different temperatures and Te/Bi ratio in the vapor phase. As-grown films were studied by X-ray diffractometry, SEM microscopy and Raman spectroscopy. To determine the elemental composition of the films, an energy dispersive spectrometer was used. Single-phase films of Bi2Te3, Bi4Te5, BiTe, Bi10Te9, Bi4Te3, Bi3Te2 have been grown and growth parameter ranges for obtaining different phases were defined. It was found that under the same growth condition different phases of the Bi-Te system realize depending on the film's thickness. Thus, when growing of Bi2Te3 films by MOCVD method the careful control of the phase composition is required.

  13. The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae

    NASA Astrophysics Data System (ADS)

    Chivall, David; M'Boule, Daniela; Sinke-Schoen, Daniëlle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2014-09-01

    The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity has previously only been determined during exponential growth, whilst it is not yet known in which growth phases natural haptophyte populations predominantly exist. We have therefore determined the relationship between the fractionation factor, αalkenones-water, and salinity for C37 alkenones produced in different growth phases of batch cultures of the major alkenone-producing coastal haptophytes Isochrysis galbana (strain CCMP 1323) and Chrysotila lamellosa (strain CCMP 1307) over a range in salinity from ca. 10 to 35. αalkenones-water was similar in both species, ranging over 0.841-0.900 for I. galbana and 0.838-0.865 for C. lamellosa. A strong (0.85 ⩽ R2 ⩽ 0.97; p < 0.0001) relationship between salinity and fractionation factor was observed in both species at all growth phases investigated. This suggests that alkenone δD has the potential to be used as a salinity proxy in neritic areas where haptophyte communities are dominated by these coastal species. However, there was a marked difference in the sensitivity of αalkenones-water to salinity between different growth phases: in the exponential growth phase of I. galbana, αalkenones-water increased by 0.0019 per salinity unit (S-1), but was less sensitive at 0.0010 and 0.0008 S-1 during the stationary and decline phases, respectively. Similarly, in C. lamellosa αalkenones-water increased by 0.0010 S-1 in the early stationary phase and by 0.0008 S-1 during the late stationary phase. Assuming the shift in sensitivity of αalkenones-water to salinity observed at the end of exponential growth in I. galbana is similar in other alkenone-producing species, the predominant growth phase of natural populations of

  14. Domain growth, budding, and fission in phase-separating self-assembled fluid bilayers.

    PubMed

    Laradji, Mohamed; Sunil Kumar, P B

    2005-12-08

    A systematic investigation of the phase-separation dynamics in self-assembled binary fluid vesicles and open membranes is presented. We use large-scale dissipative particle dynamics to explicitly account for solvent, thereby allowing for numerical investigation of the effects of hydrodynamics and area-to-volume constraints. In the case of asymmetric lipid composition, we observed regimes corresponding to coalescence of flat patches, budding, vesiculation, and coalescence of caps. The area-to-volume constraint and hydrodynamics have a strong influence on these regimes and the crossovers between them. In the case of symmetric mixtures, irrespective of the area-to-volume ratio, we observed a growth regime with an exponent of 1/2. The same exponent is also found in the case of open membranes with symmetric composition.

  15. Solubility, phase transition, kinetic ripening and growth rates of porcine pancreatic α-amylase isoenzymes

    NASA Astrophysics Data System (ADS)

    Boistelle, Roland; Astier, Jean Pierre; Marchis-Mouren, Guy; Desseaux, Véronique; Haser, Richard

    1992-09-01

    Two polymorphic modifications, A and B, of porcine pancreatic α-amylase were grown between 4 and 30°C. A and B crystals are made up by two isoenzymes so that four crystal varieties (AI, AII, BI, BII) exist. A and B are easily distinguished due to their typical crystal habits but there is no difference between AI and AII or BI and BII respectively at least as concerns their unit cells, crystal habits and solubilities for instance. On the other hand, the growth rates are somewhat different, even if the overall rate determining step is volume diffusion. The transition temperature between A and B polymorphs is 18°C, A being stable above this temperature. A and B can undergo a phase transition by slightly changing the temperature around the transition point. Kinetic ripening experiments show that ripening can be used for growing larger crystals at the expenses of smaller ones.

  16. Phase-field dithering for active catheter tracking.

    PubMed

    Dumoulin, Charles L; Mallozzi, Richard P; Darrow, Robert D; Schmidt, Ehud J

    2010-05-01

    A strategy to increase the robustness of active MR tracking of microcoils in low signal-to-noise ratio conditions was developed and tested. The method employs dephasing magnetic field gradient pulses that are applied orthogonal to the frequency-encoding gradient pulse used in conventional point-source MR tracking. In subsequent acquisitions, the orthogonal dephasing gradient pulse is rotated while maintaining a perpendicular orientation with respect to the frequency-encoding gradient. The effect of the dephasing gradient is to apply a spatially dependent phase shift in directions perpendicular to the frequency-encoding gradient. Since the desired MR signal for robust MR tracking comes from the small volume of nuclear spins near the small detection coil, the desired signal is not dramatically altered by the dephasing gradient. Undesired MR signals arising from larger volumes (e.g., due to coupling with the body coil or surface coils), on the other hand, are dephased and reduced in signal intensity. Since the approach requires no a priori knowledge of the microcoil orientation with respect to the main magnetic field, data from several orthogonal dephasing gradients are acquired and analyzed in real time. One of several selection algorithms is employed to identify the "best" data for use in the coil localization algorithm. This approach was tested in flow phantoms and animal models, with several multiplexing schemes, including the Hadamard and zero-phase reference approaches. It was found to provide improved MR tracking of untuned microcoils. It also dramatically improved MR tracking robustness in low signal-to-noise-ratio conditions and permitted tracking of microcoils that were inductively coupled to the body coil.

  17. Regulation by intracellular Ca sup 2+ and cyclic AMP of the growth factor-induced ruffling membrane formation and stimulation of fluid-phase endocytosis and exocytosis

    SciTech Connect

    Miyata, Yoshihiko Tokyo Metropolitan Inst. of Medical Science ); Nishida, Eisuke; Sakai, Hikoichi ); Koyasu, Shigeo; Yahara, Ichiro )

    1989-04-01

    Insulin, insulin-like growth factor-I (IGF-I), and epidermal growth factor (EGF) induce formation of ruffling membranes and stimulate the fluid-phase endocytosis and exocytosis in human epidermoid carcinoma KB cells. An increase in intracellular Ca{sup 2+} concentration by treatment with A23187, a calcium ionophore, or an increase in intracellular cAMP level by treatment with dibutyryl cAMP or forskolin almost completely inhibited the insulin-, IGF-I-, or EGF-induced formation of ruffling membranes. Increases in Ca{sup 2+} or cAMP concentration also inhibited almost completely the stimulation of fluid-phase endocytosis and exocytosis elicited by these growth factors. These results suggest that the growth factor-induced ruffling membrane formation and the stimulation of fluid-phase endocytosis and exocytosis have a common regulatory mechanism involving intracellular concentrations of Ca{sup 2+} and cAMP. {sup 125}I-EGF binding assays and immunoprecipitation experiments with anti-phosphotyrosine antibody revealed that treatment of KB cells with A23187, dibutyryl cAMP, or forskolin did not inhibit the EGF binding to the cells nor subsequent tyrosine autophosphorylation of its receptors. These results indicate that Ca{sup 2+}- and/or cAMP-sensitive intracellular reactions exist downstream from the receptor kinase activation in the process of these early cellular responses.

  18. Protein kinase C activators suppress stimulation of capillary endothelial cell growth by angiogenic endothelial mitogens

    PubMed Central

    1987-01-01

    The intracellular events regulating endothelial cell proliferation and organization into formalized capillaries are not known. We report that the protein kinase C activator beta-phorbol 12,13-dibutyrate (PDBu) suppresses bovine capillary endothelial (BCE) cell proliferation (K50 = 6 +/- 4 nM) and DNA synthesis in response to human hepatoma-derived growth factor, an angiogenic endothelial mitogen. In contrast, PDBu has no effect on the proliferation of bovine aortic endothelial cells and is mitogenic for bovine aortic smooth muscle and BALB/c 3T3 cells. Several observations indicate that the inhibition of human hepatoma- derived growth factor-stimulated BCE cell growth by PDBu is mediated through protein kinase C. Different phorbol compounds inhibit BCE cell growth according to their potencies as protein kinase C activators (12- O-tetradecanoylphorbol 13-acetate greater than PDBu much greater than beta-phorbol 12,13-diacetate much much greater than beta-phorbol; alpha- phorbol 12,13-dibutyrate; alpha-phorbol 12,13-didecanoate). PDBu binds to a single class of specific, saturable sites on the BCE cell with an apparent Kd of 8 nM, in agreement with reported affinities of PDBu for protein kinase C in other systems. Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol, a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2- dibutyrylglycerol, does not affect PDBu binding. A cytosolic extract from BCE cells contains a calcium/phosphatidylserine-dependent protein kinase that is activated by sn-1,2-dioctanoylglycerol and PDBu, but not by beta-phorbol. These findings indicate that protein kinase C activation can cause capillary endothelial cells to become desensitized to angiogenic endothelial mitogens. This intracellular regulatory mechanism might be invoked during certain phases of angiogenesis, for example when proliferating endothelial cells become

  19. Heat and pulsed electric field resistance of pigmented and non-pigmented enterotoxigenic strains of Staphylococcus aureus in exponential and stationary phase of growth.

    PubMed

    Cebrián, G; Sagarzazu, N; Pagán, R; Condón, S; Mañas, P

    2007-09-30

    The survival of four enterotoxigenic strains of Staphylococcus aureus (with different pigment content) to heat and to pulsed electric fields (PEF) treatments, and the increase in resistance to both processing stresses associated with entrance into stationary phase was examined. Survival curves to heat (58 degrees C) and to PEF (26 kV/cm) of cells in the stationary and in the exponential phase of growth were obtained. Whereas a wide variation in resistance to heat treatments was detected amongst the four strains, with decimal reduction time values at 58 degrees C (D(58 degrees C)) ranging from 0.93 to 0.20 min, the resistance to PEF was very similar. The occurrence of a higher tolerance to heat in stationary phase was coincident with a higher content in carotenoid pigmentation in S. aureus colonies. However, cells of the most heat resistant (pigmented) and the most heat sensitive (non-pigmented) strains in the mid-exponential phase of growth showed similar resistance to heat and to PEF. Therefore the increase in thermotolerance upon entrance into stationary phase of growth was more marked for the pigmented strains. Recovery in anaerobic conditions particularly enhanced survival to heat treatments in a non-pigmented strain. Strain CECT 4630, which possess a deficient sigma B activity, showed low heat resistance, low pigmentation, and reduced increase in thermotolerance in stationary phase. These results indicate that the magnitude of the development of a higher heat resistance in S. aureus in stationary phase is positively related to the carotenoid content of the strain. The development of tolerance to pulsed electric field was less relevant and not linked to the carotenoid content.

  20. Regulation of mouse thymidylate synthase gene expression in growth-stimulated cells: upstream S phase control elements are indistinguishable from the essential promoter elements.

    PubMed Central

    Ash, J; Liao, W C; Ke, Y; Johnson, L F

    1995-01-01

    Expression of the mammalian thymidylate synthase (TS) gene in growth-stimulated cells is closely coordinated with entry into S phase. Previous studies with transfected TS minigenes have shown that sequences upstream of the coding region as well as an intron in the transcribed region are both necessary for proper regulation of TS mRNA content in growth-stimulated cells. The goal of the present study was to identify the upstream regulatory elements. Minigenes consisting of TS 5' flanking sequences linked to the TS coding region (interrupted by introns 1 and 2) were stably transfected into mouse 3T6 cells. Deletion and site-directed mutagenesis of the 5' flanking region revealed that there is a close correspondence between the upstream sequences that are necessary for S phase regulation and the 30 nucleotide region that is essential for promoter activity. These observations raised the possibility that regulation of the TS gene occurs at the transcriptional level. However, nuclear run-on assays showed that the rate of transcription of the TS gene changed very little during the G1-S phase transition. Furthermore, when the TS promoter was linked to an intron-less luciferase indicator gene, there was no change in expression following growth-stimulation. Therefore it appears that the TS gene is controlled primarily at the posttranscriptional level, and that the TS essential promoter region is necessary (although not sufficient) for proper S phase regulation. Images PMID:8524656

  1. Solution-Phase Epitaxial Growth of Quasi-Monocrystalline Cuprous Oxide on Metal Nanowires

    PubMed Central

    2014-01-01

    The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here we report the synthesis and characterization of metal–semiconductor core–shell nanowires. We demonstrate a solution-phase route to obtain stable core–shell metal–Cu2O nanowires with outstanding control over the resulting structure, in which the noble metal nanowire is used as the nucleation site for epitaxial growth of quasi-monocrystalline Cu2O shells at room temperature in aqueous solution. We use X-ray and electron diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, and absorption spectroscopy, as well as density functional theory calculations, to characterize the core–shell nanowires and verify their structure. Metal–semiconductor core–shell nanowires offer several potential advantages over thin film and traditional nanowire architectures as building blocks for photovoltaics, including efficient carrier collection in radial nanowire junctions and strong optical resonances that can be tuned to maximize absorption. PMID:25233392

  2. Solution-phase epitaxial growth of quasi-monocrystalline cuprous oxide on metal nanowires.

    PubMed

    Sciacca, Beniamino; Mann, Sander A; Tichelaar, Frans D; Zandbergen, Henny W; van Huis, Marijn A; Garnett, Erik C

    2014-10-08

    The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here we report the synthesis and characterization of metal-semiconductor core-shell nanowires. We demonstrate a solution-phase route to obtain stable core-shell metal-Cu2O nanowires with outstanding control over the resulting structure, in which the noble metal nanowire is used as the nucleation site for epitaxial growth of quasi-monocrystalline Cu2O shells at room temperature in aqueous solution. We use X-ray and electron diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, and absorption spectroscopy, as well as density functional theory calculations, to characterize the core-shell nanowires and verify their structure. Metal-semiconductor core-shell nanowires offer several potential advantages over thin film and traditional nanowire architectures as building blocks for photovoltaics, including efficient carrier collection in radial nanowire junctions and strong optical resonances that can be tuned to maximize absorption.

  3. 29 CFR 510.23 - Agricultural activities eligible for minimum wage phase-in.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Agricultural activities eligible for minimum wage phase-in..., DEPARTMENT OF LABOR REGULATIONS IMPLEMENTATION OF THE MINIMUM WAGE PROVISIONS OF THE 1989 AMENDMENTS TO THE... eligible for minimum wage phase-in. Agriculture activities eligible for an extended phase-in of the...

  4. 29 CFR 510.23 - Agricultural activities eligible for minimum wage phase-in.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Agricultural activities eligible for minimum wage phase-in..., DEPARTMENT OF LABOR REGULATIONS IMPLEMENTATION OF THE MINIMUM WAGE PROVISIONS OF THE 1989 AMENDMENTS TO THE... eligible for minimum wage phase-in. Agriculture activities eligible for an extended phase-in of the...

  5. 29 CFR 510.23 - Agricultural activities eligible for minimum wage phase-in.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Agricultural activities eligible for minimum wage phase-in..., DEPARTMENT OF LABOR REGULATIONS IMPLEMENTATION OF THE MINIMUM WAGE PROVISIONS OF THE 1989 AMENDMENTS TO THE... eligible for minimum wage phase-in. Agriculture activities eligible for an extended phase-in of the...

  6. 29 CFR 510.23 - Agricultural activities eligible for minimum wage phase-in.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Agricultural activities eligible for minimum wage phase-in..., DEPARTMENT OF LABOR REGULATIONS IMPLEMENTATION OF THE MINIMUM WAGE PROVISIONS OF THE 1989 AMENDMENTS TO THE... eligible for minimum wage phase-in. Agriculture activities eligible for an extended phase-in of the...

  7. 29 CFR 510.23 - Agricultural activities eligible for minimum wage phase-in.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Agricultural activities eligible for minimum wage phase-in..., DEPARTMENT OF LABOR REGULATIONS IMPLEMENTATION OF THE MINIMUM WAGE PROVISIONS OF THE 1989 AMENDMENTS TO THE... eligible for minimum wage phase-in. Agriculture activities eligible for an extended phase-in of the...

  8. Investigation of the growth of garnet films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sandfort, R. M.

    1974-01-01

    Liquid phase expitaxy was investigated to determine its applicability to fabricating magnetic rare earth garnet films for spacecraft data recording systems. Two mixed garnet systems were investigated in detail: (1) Gd-Y and (2) Eu-Yb-Y. All films were deposited on Gd3Ga5012 substrates. The uniaxial anisotropy of the Gd-Y garnets is primarily stress-induced. These garnets are characterized by high-domain wall mobility, low coercivity and modest anisotropy. Characteristic length was found to be relatively sensitive to temperature. The Eu-Yb-Y garnets exhibit acceptable mobilities, good temperature stability and reasonable quality factors. The uniaxial anisotropy of these garnets is primarily growth-induced. The system is well suited for compositional "tailoring" to optimize specific desirable properties. Liquid phase epitaxy can be used to deposit Gd3Ga5012 spacing layers on magnetic garnet films and this arrangement possesses certain advantages over more conventional magnetic filmspacing layer combinations. However, it cannot be used if the magnetic film is to be ion implanted.

  9. Geometrical model for martensitic phase transitions: Understanding criticality and weak universality during microstructure growth

    NASA Astrophysics Data System (ADS)

    Torrents, Genís; Illa, Xavier; Vives, Eduard; Planes, Antoni

    2017-01-01

    A simple model for the growth of elongated domains (needle-like) during a martensitic phase transition is presented. The model is purely geometric and the only interactions are due to the sequentiality of the kinetic problem and to the excluded volume, since domains cannot retransform back to the original phase. Despite this very simple interaction, numerical simulations show that the final observed microstructure can be described as being a consequence of dipolar-like interactions. The model is analytically solved in 2D for the case in which two symmetry related domains can grow in the horizontal and vertical directions. It is remarkable that the solution is analytic both for a finite system of size L ×L and in the thermodynamic limit L →∞ , where the elongated domains become lines. Results prove the existence of criticality, i.e., that the domain sizes observed in the final microstructure show a power-law distribution characterized by a critical exponent. The exponent, nevertheless, depends on the relative probabilities of the different equivalent variants. The results provide a plausible explanation of the weak universality of the critical exponents measured during martensitic transformations in metallic alloys. Experimental exponents show a monotonous dependence with the number of equivalent variants that grow during the transition.

  10. Growth and interface phase stability of barium hexaferrite films on SiC(0001)

    SciTech Connect

    Lazarov, V. K.; Hasnip, P. J.; Cai, Z.; Ziemer, K. S.; Yoshida, K.

    2011-04-01

    We have studied interface phase stability of the BaFe{sub 12}O{sub 19} (BaM) thin films grown by molecular beam epitaxy on SiC(0001). The films were epitaxially grown with the following crystallographic relation: BaM(0001) parallel SiC(0001) and BaM(11-20) parallel SiC(11-20). High resolution TEM reveals the existence of two interfacial bands with different structure than BaM. The first band close to SiC is SiO{sub x} while the second has spinel structure and chemically corresponds to Fe{sub 3}O{sub 4}. These findings suggest that at initial growth stages Fe{sub 3}O{sub 4} is more favorable than BaM. Density functional theory modeling of the phase stability of BaM compared to Fe{sub 3}O{sub 4} shows that BaM is only stable at high oxygen partial pressures.

  11. The use of real-time PCR to study Penicillium chrysogenum growth kinetics on solid food at different water activities.

    PubMed

    Arquiza, J M R Apollo; Hunter, Jean

    2014-09-18

    Fungal growth on solid foods can make them unfit for human consumption, but certain specialty foods require fungi to produce their characteristic properties. In either case, a reliable way of measuring biomass is needed to study how various factors (e.g. water activity) affect fungal growth rates on these substrates. Biochemical markers such as chitin, glucosamine or ergosterol have been used to estimate fungal growth, but they cannot distinguish between individual species in mixed culture. In this study, a real-time polymerase chain reaction (rt-PCR) protocol specific for a target fungal species was used to quantify its DNA while growing on solid food. The measured amount of DNA was then related to the biomass present using an experimentally determined DNA-to-biomass ratio. The highly sensitive rt-PCR biomass assay was found to have a wide range, able to quantify the target DNA within a six orders-of-magnitude difference. The method was used to monitor germination and growth of Penicillium chrysogenum spores on a model porous food (cooked wheat flour) at 25°C and different water activities of 0.973, 0.936, and 0.843. No growth was observed at 0.843, but lag, exponential and stationary phases were identified in the growth curves for the higher water activities. The calculated specific growth rates (μ) during the exponential phase were almost identical, at 0.075/h and 0.076/h for aw=0.973 and 0.936, respectively. The specificity of the method was demonstrated by measuring the biomass of P. chrysogenum while growing together with Aspergillus niger on solid media at aw=0.973.

  12. Gibberellin Signaling Requires Chromatin Remodeler PICKLE to Promote Vegetative Growth and Phase Transitions1[OPEN

    PubMed Central

    Nguyen, Khoa Thi; Ogas, Joe; Choi, Giltsu

    2017-01-01

    PICKLE (PKL) is an ATP-dependent chromodomain-helicase-DNA-binding domain (CHD3) chromatin remodeling enzyme in Arabidopsis (Arabidopsis thaliana). Previous studies showed that PKL promotes embryonic-to-vegetative transition by inhibiting expression of seed-specific genes during seed germination. The pkl mutants display a low penetrance of the “pickle root” phenotype, with a thick and green primary root that retains embryonic characteristics. The penetrance of this pickle root phenotype in pkl is dramatically increased in gibberellin (GA)-deficient conditions. At adult stages, the pkl mutants are semidwarfs with delayed flowering time, which resemble reduced GA-signaling mutants. These findings suggest that PKL may play a positive role in regulating GA signaling. A recent biochemical analysis further showed that PKL and GA signaling repressors DELLAs antagonistically regulate hypocotyl cell elongation genes by direct protein-protein interaction. To elucidate further the role of PKL in GA signaling and plant development, we studied the genetic interaction between PKL and DELLAs using the hextuple mutant containing pkl and della pentuple (dP) mutations. Here, we show that PKL is required for most of GA-promoted developmental processes, including vegetative growth such as hypocotyl, leaf, and inflorescence stem elongation, and phase transitions such as juvenile-to-adult leaf and vegetative-to-reproductive phase. The removal of all DELLA functions (in the dP background) cannot rescue these phenotypes in pkl. RNA-sequencing analysis using the ga1 (a GA-deficient mutant), pkl, and the ga1 pkl double mutant further shows that expression of 80% of GA-responsive genes in seedlings is PKL dependent, including genes that function in cell elongation, cell division, and phase transitions. These results indicate that the CHD3 chromatin remodeler PKL is required for regulating gene expression during most of GA-regulated developmental processes. PMID:28057895

  13. Gibberellin Signaling Requires Chromatin Remodeler PICKLE to Promote Vegetative Growth and Phase Transitions.

    PubMed

    Park, Jeongmoo; Oh, Dong-Ha; Dassanayake, Maheshi; Nguyen, Khoa Thi; Ogas, Joe; Choi, Giltsu; Sun, Tai-Ping

    2017-02-01

    PICKLE (PKL) is an ATP-dependent chromodomain-helicase-DNA-binding domain (CHD3) chromatin remodeling enzyme in Arabidopsis (Arabidopsis thaliana). Previous studies showed that PKL promotes embryonic-to-vegetative transition by inhibiting expression of seed-specific genes during seed germination. The pkl mutants display a low penetrance of the "pickle root" phenotype, with a thick and green primary root that retains embryonic characteristics. The penetrance of this pickle root phenotype in pkl is dramatically increased in gibberellin (GA)-deficient conditions. At adult stages, the pkl mutants are semidwarfs with delayed flowering time, which resemble reduced GA-signaling mutants. These findings suggest that PKL may play a positive role in regulating GA signaling. A recent biochemical analysis further showed that PKL and GA signaling repressors DELLAs antagonistically regulate hypocotyl cell elongation genes by direct protein-protein interaction. To elucidate further the role of PKL in GA signaling and plant development, we studied the genetic interaction between PKL and DELLAs using the hextuple mutant containing pkl and della pentuple (dP) mutations. Here, we show that PKL is required for most of GA-promoted developmental processes, including vegetative growth such as hypocotyl, leaf, and inflorescence stem elongation, and phase transitions such as juvenile-to-adult leaf and vegetative-to-reproductive phase. The removal of all DELLA functions (in the dP background) cannot rescue these phenotypes in pkl RNA-sequencing analysis using the ga1 (a GA-deficient mutant), pkl, and the ga1 pkl double mutant further shows that expression of 80% of GA-responsive genes in seedlings is PKL dependent, including genes that function in cell elongation, cell division, and phase transitions. These results indicate that the CHD3 chromatin remodeler PKL is required for regulating gene expression during most of GA-regulated developmental processes.

  14. Mesoporous TiO2 single crystals: facile shape-, size-, and phase-controlled growth and efficient photocatalytic performance.

    PubMed

    Zheng, Xiaoli; Kuang, Qin; Yan, Keyou; Qiu, Yongcai; Qiu, Jianhang; Yang, Shihe

    2013-11-13

    In this work, we have succeeded in preparing rutile and anatase TiO2 mesoporous single crystals with diverse morphologies in a controllable fashion by a simple silica-templated hydrothermal method. A simple in-template crystal growth process was put forward, which involved heterogeneous crystal nucleation and oriented growth within the template, a sheer spectator, and an excluded volume, i.e., crystal growth by faithful negative replication of the silica template. A series of mesoporous single-crystal structures, including rutile mesoporous TiO2 nanorods with tunable sizes and anatase mesoporous TiO2 nanosheets with dominant {001} facets, have been synthesized to demonstrate the versatility of the strategy. The morphology, size, and phase of the TiO2 mesoporous single crystals can be tuned easily by varying the external conditions such as the hydrohalic acid condition, seed density, and temperature rather than by the silica template, which merely serves for faithful negative replication but without interfering in the crystallization process. To demonstrate the application value of such TiO2 mesoporous single crystals, photocatalytic activity was tested. The resultant TiO2 mesoporous single crystals exhibited remarkable photocatalytic performance on hydrogen evolution and degradation of methyl orange due to their increased surface area, single-crystal nature, and the exposure of reactive crystal facets coupled with the three-dimensionally connected mesoporous architecture. It was found that {110} facets of rutile mesoporous single crystals can be considered essentially as reductive sites with a key role in the photoreduction, while {001} facets of anatase mesoporous single crystals provided oxidation sites in the oxidative process. Such shape- and size-controlled rutile and anatase mesoporous TiO2 single crystals hold great promise for building energy conversion devices, and the simple solution-based hydrothermal method is extendable to the synthesis of other

  15. A flux induced crystal phase transition in the vapor-liquid-solid growth of indium-tin oxide nanowires.

    PubMed

    Meng, Gang; Yanagida, Takeshi; Yoshida, Hideto; Nagashima, Kazuki; Kanai, Masaki; Zhuge, Fuwei; He, Yong; Klamchuen, Annop; Rahong, Sakon; Fang, Xiaodong; Takeda, Seiji; Kawai, Tomoji

    2014-06-21

    Single crystalline metal oxide nanowires formed via a vapor-liquid-solid (VLS) route provide a platform not only for studying fundamental nanoscale properties but also for exploring novel device applications. Although the crystal phase variation of metal oxides, which exhibits a variety of physical properties, is an interesting feature compared with conventional semiconductors, it has been difficult to control the crystal phase of metal oxides during the VLS nanowire growth. Here we show that a material flux critically determines the crystal phase of indium-tin oxide nanowires grown via the VLS route, although thermodynamical parameters, such as temperature and pressure, were previously believed to determine the crystal phase. The crystal phases of indium-tin oxide nanowires varied from the rutile structures (SnO2), the metastable fluorite structures (InxSnyO3.5) and the bixbyite structures (Sn-doped In2O3) when only the material flux was varied within an order of magnitude. This trend can be interpreted in terms of the material flux dependence of crystal phases (rutile SnO2 and bixbyite In2O3) on the critical nucleation at the liquid-solid (LS) interface. Thus, precisely controlling the material flux, which has been underestimated for VLS nanowire growths, allows us to design the crystal phase and properties in the VLS nanowire growth of multicomponent metal oxides.

  16. ACTIVE MEDIA: Dynamics of growth of inhomogeneities in the active medium of a liquid laser

    NASA Astrophysics Data System (ADS)

    Barikhin, B. A.; Ivanov, A. Yu; Kudryavkin, E. V.; Nedolugov, V. I.

    1991-07-01

    Fast cinematography of holograms and of shadow and interference patterns was combined with an acoustic method in a study of the dynamics of growth of inhomogeneities in the active medium of a coaxially pumped dye laser. The main mechanism of the formation of these inhomogeneities was related to acoustic waves created by the deformation of the walls of a dye cell created by electrical pulses applied to the pump flashlamp. Multipulse operation of this laser could be achieved and the off-duty factor could be reduced if the active medium was excited by the strongest possible pump pulses.

  17. Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment.

    PubMed

    Lee, Youn-Sun; Choi, Kyeong-Mi; Kim, Wonkyun; Jeon, Young-Soo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2013-12-27

    Hinokitiol (1), a tropolone-related natural compound, induces apoptosis and has anti-inflammatory, antioxidant, and antitumor activities. In this study, the inhibitory effects of 1 were investigated on human colon cancer cell growth and tumor formation of xenograft mice. HCT-116 and SW-620 cells derived from human colon cancers were found to be similarly susceptible to 1, with IC50 values of 4.5 and 4.4 μM, respectively. Compound 1 induced S-phase arrest in the cell cycle progression and decreased the expression levels of cyclin A, cyclin E, and Cdk2. Conversely, 1 increased the expression of p21, a Cdk inhibitor. Compound 1 decreased Bcl-2 expression and increased the expression of Bax, and cleaved caspase-9 and -3. The effect of 1 on tumor formation when administered orally was evaluated in male BALB/c-nude mice implanted intradermally separately with HCT-116 and SW-620 cells. Tumor volumes and tumor weights in the mice treated with 1 (100 mg/kg) were decreased in both cases. These results suggest that the suppression of tumor formation by compound 1 in human colon cancer may occur through cell cycle arrest and apoptosis.

  18. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Bĕlehdrádek-type model for evaluating the effect of temperature on growth rate.

    PubMed

    Huang, Lihan

    2011-06-01

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponential growth rate of a growth curve were simultaneously determined by nonlinear regression. The new model was validated using Listeria monocytogenes and Escherichia coli O157:H7 in broth or meat. Statistical results suggested that both bias factor (B(f)) and accuracy factor (A(f)) of the new model were very close to 1.0. A new Bĕlehdrádek-type rate model and the Ratkowsky square-root model were used to describe the temperature dependence of bacterial growth rate. It was observed that the maximum and minimum temperatures were more accurately estimated by a new Bĕlehdrádek-type rate model. Further, the inverse of square-roots of lag phases was found proportional to temperature, making it possible to estimate the lag phase duration from the growth temperature.

  19. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    PubMed

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  20. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    PubMed Central

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  1. Gas phase adduct reactions in MOCVD growth of GaN

    SciTech Connect

    Thon, A.; Kuech, T.F.

    1996-11-01

    Gas phase reactions between trimethylgallium (TMG) and ammonia were studied at high temperatures, characteristic to MOCVD of GaN reactors, by means of in situ mass spectroscopy in a flow tube reactor. It is shown, that a very fast adduct formation followed by elimination of methane occurs. The decomposition of TMG and the adduct-derived compounds are both first order and have similar apparent activation energy. The pre-exponential factor of the adduct decomposition is smaller, and hence is responsible for the higher full decomposition temperature of the adduct relative to that of TMG.

  2. Active suppression of a leaf meristem orchestrates determinate leaf growth

    PubMed Central

    Alvarez, John Paul; Furumizu, Chihiro; Efroni, Idan; Eshed, Yuval; Bowman, John L

    2016-01-01

    Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved. DOI: http://dx.doi.org/10.7554/eLife.15023.001 PMID:27710768

  3. Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast.

    PubMed

    Kang, Woo Kyu; Kim, Yeong Hyeock; Kim, Byoung-Soo; Kim, Jeong-Yoon

    2014-08-01

    Silent Information Regulator 2 (Sir2), a conserved NAD(+)-dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2Δ cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2Δ cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phase-dependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.

  4. Plans for the next phase of CORDEX activities

    NASA Astrophysics Data System (ADS)

    Giorgi, Filippo; Gutowski, William

    2016-04-01

    Ensembles of Regional Climate Model (RCM) projections have been completed under the protocol of the first phase of the COordinated Regional Downscaling EXperiment (CORDEX, Giorgi et al. 2009) over most CORDEX domains. As a result of these activities a number of scientific issues have emerged, which provide the basis for discussion of the next phase of the CORDEX program. Among such issues are a clearer identification and quantification of the added value of the use of RCMs, the development and use of a new generation of very high resolution (<10 km), convection permitting RCMs, the coordination across development efforts of coupled Regional Earth System Models (RESMs), a more detailed and process-based analysis of RCM simulations, the effects of regional forcings (e.g. land use change and aerosols) and a better integration of empirical/statistical downscaling within the CORDEX framework. A large inhomogeneity was also noted across different CORDEX regional efforts, with some domains (e.g. EURO-CORDEX, AFRICA-CORDEX and MED-CORDEX) being covered by large ensembles and others by much more sparse experiment matrices. This has limited the use of CORDEX results in international programs such as the Intergovernmental Panel on Climate Change (IPCC). Two avenues are being discussed in order to address these issues. The first is to produce a homogeneous set of higher resolution projections (10-20 km) across all or most CORDEX domains using a core set of RCMs downscaling a core set of GCMs. The second is to develop and implement a set of "Flagship Pilot Studies (FPSs)" over sub-regions of interest aimed at addressing specific scientific questions (e.g. added value and convection-permitting simulations, intercomparison of different downscaling approaches, land-use and aerosol effects). In this presentation we will describe the status of the discussion and plans for these new CORDEX initiatives, which will be likely finalized at the upcoming third Pan-CORDEX conference (ICRC

  5. Feeding Behaviour, Swimming Activity and Boldness Explain Variation in Feed Intake and Growth of Sole (Solea solea) Reared in Captivity

    PubMed Central

    Mas-Muñoz, Julia; Komen, Hans; Schneider, Oliver; Visch, Sander W.; Schrama, Johan W.

    2011-01-01

    The major economic constraint for culturing sole (Solea solea) is its slow and variable growth. The objective was to study the relationship between feed intake/efficiency, growth, and (non-) feeding behaviour of sole. Sixteen juveniles with an average (SD) growth of 2.7 (1.9) g/kg0.8/d were selected on their growth during a 4-week period in which they were housed communally with 84 other fish. Selected fish were housed individually during a second 4-week period to measure individual feed intake, growth, and behaviour. Fish were hand-fed three times a day during the dark phase of the day until apparent satiation. During six different days, behaviour was recorded twice daily during 3 minutes by direct observations. Total swimming activity, frequency of burying and of escapes were recorded. At the beginning and end of the growth period, two sequential behavioural tests were performed: “Novel Environment” and “Light Avoidance”. Fish housed individually still exhibited pronounced variation in feed intake (CV = 23%), growth (CV = 25%) and behavior (CV = 100%). Differences in feed intake account for 79% of the observed individual differences in growth of sole. Fish with higher variation in feed intake between days and between meals within days had significantly a lower total feed intake (r = −0.65 and r = −0.77) and growth. Active fish showed significantly higher feed intake (r = 0.66) and growth (r = 0.58). Boldness during both challenge tests was related to fast growth: (1) fish which reacted with a lower latency time to swim in a novel environment had significantly higher feed intake (r = −0.55) and growth (r = −0.66); (2) fish escaping during the light avoidance test tended to show higher feed intake (P<0.1) and had higher growth (P<0.05). In conclusion, feeding consistency, swimming activity in the tank, and boldness during behavioral tests are related to feed intake and growth of sole in captivity. PMID:21738651

  6. Rapid method for the preparation of 125I-labelled human growth hormone for receptor studies, using reverse-phase high performance liquid chromatography

    SciTech Connect

    Ilondo, M.M.; Dehart, I.; De Meyts, P.

    1986-01-29

    Human growth hormone was labelled with 125 Iodine by the stoichiometric modification of the chloramine-T method to a specific activity of 50-80 microCi/microgram, and the iodinated mixture was purified by reverse-phase high performance liquid chromatography using a C18 column (SynChropak RP-P) and a linear gradient. Compared with the usual Sephadex G-100 chromatography, HPLC gave a much better separation, with a higher yield and a considerably reduced analysis time (30 min vs 5 h). The (125I)-labelled preparation had normal binding to IM-9 lymphocyte receptors. The maximum bindability of the HPLC-purified preparation approximated 90%, which is the best value so far reported for human growth hormone. It is concluded that HPLC is a fast, convenient and reproducible method for obtaining an improved (125I)-labelled human growth hormone for receptor studies.

  7. Microstructural and phase evolution in metakaolin geopolymers with different activators and added aluminosilicate fillers

    NASA Astrophysics Data System (ADS)

    Sarkar, Madhuchhanda; Dana, Kausik; Das, Sukhen

    2015-10-01

    This work aims to investigate the microstructural and phase evolution of alkali activated metakaolin products with different activators and added aluminosilicate filler phases. The added filler phases have different reactivity to the alkali activated metakaolin system. Microstructural evolution in the alkali activated products has been investigated by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM). Variation in strength development in alkali activated metakaolin products was followed by compressive strength measurement test. Microstructural study shows that in case of metakaolin with NaOH activator crystalline sodalite formed in all the product samples irrespective of the added filler phases. The microstructure of these NaOH activated products investigated by FESEM showed crystalline and inhomogeneous morphology. Mixed activator containing both NaOH and sodium silicate in a fixed mass ratio formed predominantly amorphous phase. Microstructure of these samples showed more homogeneity than that of NaOH activated metakaolin products. The study further shows that addition of α-Al2O3 powder, non reactive phase to the alkali activated metakaolin system when used in larger amount increased crystalline phase in the matrix. α-Al2O3 powder addition increased the compressive strength of the product samples for both the activator compositions. Added phase of colloidal silica, reactive to the alkali activated metakaolin system when used in larger amount was found to increase amorphous nature of the matrix. Addition of colloidal silica influenced the compressive strength property differently with different activator compositions.

  8. Structure-activity relationships for chloro- and nitrophenol toxicity in the pollen tube growth test

    SciTech Connect

    Schueuermann, G.; Somashekar, R.K.; Kristen, U.

    1996-10-01

    Acute toxicity of 10 chlorophenols and 10 nitrophenols with identical substitution patterns is analyzed with the pollen tube growth (PTG) test. Concentration values of 50% growth inhibition (IC50) between 0.1 and 300 mg/L indicate that the absolute sensitivity of this alternative biotest is comparable to conventional aquatic test systems. Analysis of quantitative structure-activity relationships using lipophilicity (log K{sub ow}), acidity (pK{sub a}), and quantum chemical parameters to model intrinsic acidity, solvation interactions, and nucleophilicity reveals substantial differences between the intraseries trends of log IC50. With chlorophenols, a narcotic-type relationship is derived, which, however, shows marked differences in slope and intercept when compared to reference regression equations for polar narcosis. Regression analysis of nitrophenol toxicity suggests interpretation in terms of two modes of action: oxidative uncoupling activity is associated with a pK{sub a} window from 3.8 to 8.5, and more acidic congeners with diortho-substitution show a transition from uncoupling to a narcotic mode of action with decreasing pK{sub a} and log K{sub ow}. Model calculations for phenol nucleophilicity suggest that differences in the phenol readiness for glucuronic acid conjugation as a major phase-II detoxication pathway have no direct influence on acute PTG toxicity of the compounds.

  9. Purified human platelet-derived growth factor receptor has ligand-stimulated tyrosine kinase activity.

    PubMed Central

    Bishayee, S; Ross, A H; Womer, R; Scher, C D

    1986-01-01

    The platelet-derived growth factor receptor (PDGF-R), a 180-kDa single-chain polypeptide, was purified from membranes of the human osteogenic sarcoma cell line MG-63. Purification was achieved by treatment of membranes with PDGF and ATP, followed by solubilization with nonionic detergent and successive chromatography on solid-phase anti-phosphotyrosine monoclonal antibody and DEAE-cellulose. The PDGF-R, which was estimated to be 50-80% pure by NaDodSO4/polyacrylamide gel electrophoresis of 32P-labeled preparations, was free of contaminating epidermal growth factor receptor and had no detectable phosphatase activity. It specifically bound 125I-labeled PDGF, a reaction quantified by binding of the ligand-PDGF-R complex to the anti-phosphotyrosine antibody. The purified receptor displayed PDGF-stimulatable tyrosine kinase activity, assayed by autophosphorylation of PDGF-R at tyrosine residues and by phosphorylation of angiotensin II. The Km for ATP in the autophosphorylation reaction was 7.5 microM. Addition of PDGF did not change the Km but increased the Vmax 1.7-fold. Images PMID:3018745

  10. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Bradford, C Samuel; Cooley, Ben; Yoshinaga, Allen S; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H; Bakalinsky, Alan T

    2015-10-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity.

  11. Influence of second-phase particles on grain growth in AZ31 magnesium alloy during equal channel angular pressing by phase field simulation

    NASA Astrophysics Data System (ADS)

    He, Ri; Wang, Mingtao; Zhang, Xiangang; Yaping Zong, Bernie

    2016-06-01

    A phase-field model was established to simulate the refinement effect of different morphological factors of second-phase particles such as Al2O3 on the grain growth of AZ31 magnesium alloy during equal channel angular pressing (ECAP) in realistic spatiotemporal evolution. The simulation results agreed well with limited existing experimental data for the ECAP-processed AZ31 magnesium alloy and were consistent with the law of Zener. Simulations were performed to evaluate the influences of the fraction, size, distribution, and shape of incoherent second-phase particles. The simulation results showed that during high-temperature ECAP processes, the addition of 2 wt.% Al2O3 particles resulted in a strong refinement effect, reducing the grain size by 28.7% compared to that of the alloy without the particles. Nevertheless, when the fraction of particles was greater than 4 wt.%, adding more particles had little effect. In AZ31 Mg alloy, it was found that second-phase particles should have a critical size of 0.5-0.8 μm for the grain refinement effect to occur. If the size is smaller than the critical size, large particles will strongly hinder grain growth; in contrast, if the size is larger than the critical size, large particles will exhibit a weaker hindering effect than small particles. Moreover, the results showed that the refinement effect increased with increasing particle fraction located at grain boundaries with respect to the total particle content. However, the refinement effect was less pronounced when the fraction of particles located at boundaries was greater than 70%. Further simulations indicated that spherical second-phase particles hindered grain growth more than ellipsoid particles and much more than rod-shaped particles when the volume fraction of reinforcing particles was 2%. However, when the volume fraction was greater than 8%, rod-shaped particles best hindered grain growth, and spherical particles exhibited the weakest effect.

  12. Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions.

    PubMed

    Huang, L

    2008-06-01

    The objective of this study was to develop a new kinetic model to describe the isothermal growth of microorganisms. The new model was tested with Listeria monocytogenes in tryptic soy broth and frankfurters, and compared with 2 commonly used models-Baranyi and modified Gompertz models. Bias factor (BF), accuracy factor (AF), and root mean square errors (RMSE) were used to evaluate the 3 models. Either in broth or in frankfurter samples, there were no significant differences in BF (approximately 1.0) and AF (1.02 to 1.04) among the 3 models. In broth, the mean RMSE of the new model was very close to that of the Baranyi model, but significantly lower than that of the modified Gompertz model. However, in frankfurters, there were no significant differences in the mean RMSE values among the 3 models. These results suggest that these models are equally capable of describing isothermal bacterial growth curves. Almost identical to the Baranyi model in the exponential and stationary phases, the new model has a more identifiable lag phase and also suggests that the bacteria population would increase exponentially until the population approaches to within 1 to 2 logs from the stationary phase. In general, there is no significant difference in the means of the lag phase duration and specific growth rate between the new and Baranyi models, but both are significantly lower than those determined from the modified Gompertz models. The model developed in this study is directly derived from the isothermal growth characteristics and is more accurate in describing the kinetics of bacterial growth in foods.

  13. Phase diagrams for understanding gold-seeded growth of GaAs and InAs nanowires

    NASA Astrophysics Data System (ADS)

    Ghasemi, Masoomeh; Johansson, Jonas

    2017-04-01

    Phase diagrams are useful tools to study the phase equilibria of nanowire materials systems because the growth of nanowires is accompanied by phase formation and phase transition. We have modeled the phase equilibria of the As–Au–Ga ternary system by means of the CALPHAD method. This method is a well-established semi-empirical technique for thermodynamic modeling in which Gibbs energy functions with free parameters are defined for all phases in a system followed by adjusting these parameters to the experimental data. Using the resulting As–Au–Ga thermodynamic database, four vertical cuts of this ternary system are calculated and all show good agreement with experiments. This ternary system is particularly useful for predicting the state of the Au seed alloys when growing GaAs nanowires and we discuss such predictions. Similar calculations are performed for Au-seeded InAs nanowires. We show that the vapor–liquid–solid (VLS) growth fails for InAs nanowires, while GaAs nanowires can grow from a liquid particle. Our calculations are in agreement with experimental data on the growth of Au-seeded GaAs and InAs nanowires.

  14. Tracking urban activity growth globally with big location data

    PubMed Central

    Daggitt, Matthew L.; Noulas, Anastasios; Shaw, Blake; Mascolo, Cecilia

    2016-01-01

    In recent decades, the world has experienced rates of urban growth unparalleled in any other period of history and this growth is shaping the environment in which an increasing proportion of us live. In this paper, we use a longitudinal dataset from Foursquare, a location-based social network, to analyse urban growth across 100 major cities worldwide. Initially, we explore how urban growth differs in cities across the world. We show that there exists a strong spatial correlation, with nearby pairs of cities more likely to share similar growth profiles than remote pairs of cities. Subsequently, we investigate how growth varies inside cities and demonstrate that, given the existing local density of places, higher-than-expected growth is highly localized while lower-than-expected growth is more diffuse. Finally, we attempt to use the dataset to characterize competition between new and existing venues. By defining a measure based on the change in throughput of a venue before and after the opening of a new nearby venue, we demonstrate which venue types have a positive effect on venues of the same type and which have a negative effect. For example, our analysis confirms the hypothesis that there is large degree of competition between bookstores, in the sense that existing bookstores normally experience a notable drop in footfall after a new bookstore opens nearby. Other place types, such as museums, are shown to have a cooperative effect and their presence fosters higher traffic volumes to nearby places of the same type. PMID:27152210

  15. Tracking urban activity growth globally with big location data.

    PubMed

    Daggitt, Matthew L; Noulas, Anastasios; Shaw, Blake; Mascolo, Cecilia

    2016-04-01

    In recent decades, the world has experienced rates of urban growth unparalleled in any other period of history and this growth is shaping the environment in which an increasing proportion of us live. In this paper, we use a longitudinal dataset from Foursquare, a location-based social network, to analyse urban growth across 100 major cities worldwide. Initially, we explore how urban growth differs in cities across the world. We show that there exists a strong spatial correlation, with nearby pairs of cities more likely to share similar growth profiles than remote pairs of cities. Subsequently, we investigate how growth varies inside cities and demonstrate that, given the existing local density of places, higher-than-expected growth is highly localized while lower-than-expected growth is more diffuse. Finally, we attempt to use the dataset to characterize competition between new and existing venues. By defining a measure based on the change in throughput of a venue before and after the opening of a new nearby venue, we demonstrate which venue types have a positive effect on venues of the same type and which have a negative effect. For example, our analysis confirms the hypothesis that there is large degree of competition between bookstores, in the sense that existing bookstores normally experience a notable drop in footfall after a new bookstore opens nearby. Other place types, such as museums, are shown to have a cooperative effect and their presence fosters higher traffic volumes to nearby places of the same type.

  16. Dendritic Growth Morphologies in Al-Zn Alloys—Part II: Phase-Field Computations

    NASA Astrophysics Data System (ADS)

    Dantzig, J. A.; Di Napoli, Paolo; Friedli, J.; Rappaz, M.

    2013-12-01

    In Part I of this article, the role of the Zn content in the development of solidification microstructures in Al-Zn alloys was investigated experimentally using X-ray tomographic microscopy. The transition region between dendrites found at low Zn content and dendrites found at high Zn content was characterized by textured seaweed-type structures. This Dendrite Orientation Transition (DOT) was explained by the effect of the Zn content on the weak anisotropy of the solid-liquid interfacial energy of Al. In order to further support this interpretation and to elucidate the growth mechanisms of the complex structures that form in the DOT region, a detailed phase-field study exploring anisotropy parameters' space is presented in this paper. For equiaxed growth, our results essentially recapitulate those of Haxhimali et al.[1] in simulations for pure materials. We find distinct regions of the parameter space associated with and dendrites, separated by a region where hyperbranched dendrites are observed. In simulations of directional solidification, we find similar behavior at the extrema, but in this case, the anisotropy parameters corresponding to the hyperbranched region produce textured seaweeds. As noted in the experimental work reported in Part I, these structures are actually dendrites that prefer to grow misaligned with respect to the thermal gradient direction. We also show that in this region, the dendrites grow with a blunted tip that oscillates and splits, resulting in an oriented trunk that continuously emits side branches in other directions. We conclude by making a correlation between the alloy composition and surface energy anisotropy parameters.

  17. Transforming growth factor-beta induces endothelin-1 expression through activation of the Smad signaling pathway.

    PubMed

    Rodríguez-Pascual, Fernando; Reimunde, Francisco Manuel; Redondo-Horcajo, Mariano; Lamas, Santiago

    2004-11-01

    Expression of the endothelin-1 gene is subject to complex regulation by different factors, among which transforming growth factor-beta is one of the most important. We have analyzed the mechanism by which transforming growth factor-beta increases endothelin-1 expression in vascular endothelial cells. Transcriptional activation of the endothelin-1 promoter accounted for the transforming growth factor-beta-induced increase in endothelin-1 mRNA levels. Two DNA elements within the promoter are responsible for this effect: a Smad binding element and a proximal activator protein-1 site. Mutation of both elements abolished transforming growth factor-beta responsiveness. Overexpression of the Smad3 isoform strongly potentiates transforming growth factor-beta- induced endothelin-1 promoter activity in a phosphorylation-dependent manner. These results demonstrate that transforming growth factor-beta induces endothelin-1 expression by a functional cooperation between Smads and activator protein-1 through activation of the Smad signaling pathway.

  18. Growth-dependent catalase localization in Exiguobacterium oxidotolerans T-2-2T reflected by catalase activity of cells.

    PubMed

    Hanaoka, Yoshiko; Takebe, Fumihiko; Nodasaka, Yoshinobu; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2(T), exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state.

  19. Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition

    SciTech Connect

    Hägglund, Carl; Grehl, Thomas; Brongersma, Hidde H.; Tanskanen, Jukka T.; Mullings, Marja N.; Mackus, Adriaan J. M.; MacIsaac, Callisto; Bent, Stacey Francine; Yee, Ye Sheng; Clemens, Bruce M.

    2016-03-15

    A broad and expanding range of materials can be produced by atomic layer deposition at relatively low temperatures, including both oxides and metals. For many applications of interest, however, it is desirable to grow more tailored and complex materials such as semiconductors with a certain doping, mixed oxides, and metallic alloys. How well such mixed materials can be accomplished with atomic layer deposition requires knowledge of the conditions under which the resulting films will be mixed, solid solutions, or laminated. The growth and lamination of zinc oxide and tin oxide is studied here by means of the extremely surface sensitive technique of low energy ion scattering, combined with bulk composition and thickness determination, and x-ray diffraction. At the low temperatures used for deposition (150 °C), there is little evidence for atomic scale mixing even with the smallest possible bilayer period, and instead a morphology with small ZnO inclusions in a SnO{sub x} matrix is deduced. Postannealing of such laminates above 400 °C however produces a stable surface phase with a 30% increased density. From the surface stoichiometry, this is likely the inverted spinel of zinc stannate, Zn{sub 2}SnO{sub 4}. Annealing to 800 °C results in films containing crystalline Zn{sub 2}SnO{sub 4}, or multilayered films of crystalline ZnO, Zn{sub 2}SnO{sub 4}, and SnO{sub 2} phases, depending on the bilayer period.

  20. Organometallic Vapor-Phase Epitaxial Growth and Characterization of GaAs/Zn(S, Se) Multilayered Structures

    NASA Astrophysics Data System (ADS)

    Fujita, Shigeo; Murawala, Prakash A.; Maruo, Seiji; Tsuji, Osamu; Fujita, Shizuo

    1991-01-01

    We report growth conditions of lattice-matched dissimilar semiconductor multilayered structures of GaAs/Zn(S, Se) systems by organometallic vapor-phase epitaxy (OMVPE). Since the optimum growth temperature for GaAs is much higher than that of Zn(S, Se), we performed low-temperature growth (470°C) of GaAs by photo-assisted OMVPE. A smooth growth surface of GaAs on Zn(S, Se) was achieved by lattice-matching, sufficient preflow of triethylarsenic (TEAs) and a Zn-stabilized surface before starting the growth of GaAs; hence we succeeded in the fabrication of a ZnSSe/GaAs/ZnSSe double hetero (DH) structure and a superlattice. Thermal annealing of the DH structure showed no appreciable Zn diffusion into GaAs up to 650°C but showed thermal stability at the interface up to 550°C.

  1. 78 FR 26650 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: African Growth and... comment on an information collection requirement concerning the African Growth and Opportunity Act...: Title: African Growth and Opportunity Act Certificate of Origin. OMB Number: 1651-0082. Form...

  2. 78 FR 42103 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: African Growth and... accordance with the Paperwork Reduction Act: African Growth and Opportunity Act Certificate of Origin (AGOA...: African Growth and Opportunity Act Certificate of Origin. OMB Number: 1651-0082. Form Number:...

  3. 75 FR 9423 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: African Growth and... requirement concerning the African Growth and Opportunity Act Certificate of Origin (AGOA). This request for...: Title: African Growth and Opportunity Act Certificate of Origin. OMB Number: 1651-0082. Form...

  4. 75 FR 26974 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... SECURITY Customs and Border Protection Agency Information Collection Activities: African Growth and... review and approval in accordance with the Paperwork Reduction Act: African Growth and Opportunity Act... forms of information. Title: African Growth and Opportunity Act Certificate of Origin. OMB Number:...

  5. 76 FR 30391 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; High Growth...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Activities; Submission for OMB Review; Comment Request; High Growth and Community-Based Job Training Grants... Administration (ETA) sponsored information collection request (ICR) titled, ``High Growth and Community-Based Job... INFORMATION: This information collection request implements reporting requirements for High Growth...

  6. Studies on the bioassayable growth hormone-like activity of plasma

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Vodian, M. A.; Grindeland, R. E.

    1978-01-01

    Evidence supporting the existence of bioassayable growth hormone-like activity in blood plasma distinct from the growth hormone measurable by radioimmunoassay and from somatomedin is presented. Tibial assays of the growth-hormone-like activity of injected, concentrated normal human and rat plasma in hypophysectomized rats reveal 200- and 50-fold activity excesses, respectively, with respect to the amount of growth hormone detected by radioimmunoassay. The origin of this bioassayable plasma hormone has been localized to the region of the pituitary, the origin of growth hormone, a distribution not followed by somatomedin C. Purification of the bioassayable agent indicates that is has a molecular weight of between 60,000 and 80,000, in contrast to that of growth hormone (20,000), and that the bioassayable activity is distinct from that of somatomedin C. Growth hormone-like activity detected in Cohn fraction IV as well as plasma activity, are found to be collectable on Dowex 50 resin, in contrast to somatomedin C and nonsuppressible insulin-like activity. The formation of bioassayable growth hormone-activity agents from radioimmunoassayable growth hormone and directly in the pituitary is suggested.

  7. Seasonal and life-phase related differences in growth in Scarus ferrugineus on a southern Red Sea fringing reef.

    PubMed

    Afeworki, Y; Videler, J J; Berhane, Y H; Bruggemann, J H

    2014-05-01

    Temporal trends in growth of the rusty parrotfish Scarus ferrugineus were studied on a southern Red Sea fringing reef that experiences seasonal changes in environmental conditions and benthic algal resources. Length increment data from tagging and recapture were compared among periods and sexes and modelled using GROTAG, a von Bertalanffy growth model. The growth pattern of S. ferrugineus was highly seasonal with a maximum occurring between April and June and a minimum between December and March. Body condition followed the seasonal variation in growth, increasing from April to June and decreasing from December to March. The season of maximum growth coincided with high irradiation, temperature increases and peak abundance of the primary food source, the epilithic algal community. There was a decline in growth rate during summer (July to October) associated with a combination of extreme temperatures and lowered food availability. There were strong sexual size dimorphism (SSD) and life-history traits. Terminal-phase (TP) males achieved larger asymptotic lengths than initial-phase individuals (IP) (L(∞) 34·55 v. 25·12 cm) with growth coefficients (K) of 0·26 and 0·38. The TPs were growing four times as fast as IPs of similar size. Three individuals changed from IP to TP while at liberty and grew eight times faster than IPs of similar size, suggesting that sex change in S. ferrugineus is accompanied by a surge in growth rate. The SSD in S. ferrugineus thus coincided with fast growth that started during sex change and continued into the TP. Faster growth during sex change suggests that the cost associated with sex change is limited.

  8. Vapour and Liquid-Phase Artemisia annua Essential Oil Activities against Several Clinical Strains of Candida.

    PubMed

    Santomauro, Francesca; Donato, Rosa; Sacco, Cristiana; Pini, Gabriella; Flamini, Guido; Bilia, Anna Rita

    2016-07-01

    Candida spp. are often the cause of infection in immune-compromised individuals. They are characterized by a strong resistance to antimicrobial drugs and disinfectants. The activity of Artemisia annua essential oil against Candida spp. was determined by vapour contact and microdilution assay. The oil was characterized by the presence of oxygenated monoterpenes (more than 75 % of the constituents), mainly represented by the irregular monoterpene artemisia ketone (ca. 22 %), and the widespread monoterpenes 1,8 cineole (ca. 19 %) and camphor (ca. 17 %). Other representative constituents were artemisia alcohol (5.9 %), α-pinene (5.7 %), and pinocarvone (3.0 %). Thujone, a typical toxic constituent of the Artemisia species, was not detected. The results are reported as minimum inhibitory concentration, minimum fungicidal concentration, and diameter of inhibition zone obtained by the vapour diffusion assay. We tested 10 clinical Candida strains, coming from both clinical samples and international collections. The results show that the antifungal activity of A. annua is influenced by the type of method adopted. The inhibitory action of the essential oil was, in fact, higher in the vapour than in the liquid phase. Our results show an average minimum inhibitory concentration in the liquid phase of 11.88 µL/mL, while in the vapour phase, the growth of all Candida strains tested at a concentration of 2.13 µL/cm(3) was inhibited. A strain of Candida glabrata was found to be less susceptible to the liquid medium than the vapour assay (50 µL/mL vs. 0.64 µL/cm(3), respectively). Candida albicans and Candida dubliniensis were the most susceptible to the vapour test, while Candida parapsilosis was the most resistant.

  9. Isothermal nucleation and growth kinetics of Pd/Ag alloy phase via in-situ time-resolved high-temperature x-ray diffraction (HTXRD) analysis

    SciTech Connect

    Ayturk, Mahmut Engin; Payzant, E Andrew; Speakman, Scott A; Ma, Yi Hua

    2008-01-01

    Among several different approaches to form Pd/Ag alloys for hydrogen separation applications, ex-situ studies carried by conventional X-ray point scanning detectors might fail to reveal the key aspects of the phase transformation between Pd and Ag metals. In this respect, in-situ time-resolved high temperature X-ray diffraction (HTXRD) was employed to study the Pd/Ag alloy phase nucleation and growth kinetics. By the use of linear position sensitive detectors, advanced optics and profile fitting with the use of JADE-6.5 software, isothermal phase evolution of the Pd/Ag alloy at 500 C, 550 C and 600 C under hydrogen atmosphere were quantified to elucidate the mechanistic details of the Pd/Ag alloy phase nucleation and growth pattern. Analysis of the HTXRD data by the Avrami model indicated that the nucleation of the Pd/Ag alloy phase was instantaneous where the growth mechanism was through diffusion-controlled one-dimensional thickening of the Pd/Ag alloy layer. The value of the Avrami exponent, n, was found to increase with temperature with the values of 0.34, 0.39 and 0.67 at 500oC, 550oC and 600oC, respectively. In addition, parabolic rate law analysis suggested that the nucleation of the Pd/Ag alloy phase was through a heterogeneous nucleation mode, in which the nucleation sites were defined as the non-equilibrium defects. The cross-sectional SEI micrographs indicated that the Pd/Ag alloy phase growth was strongly dependent upon the deposition morphology of the as-synthesized Pd and Ag layers formed by the electroless plating. Based on the Avrami model and the parabolic rate law, the estimated activation energies for the phase transformation were 236.5 and 185.6 kJ/mol and in excellent agreement with the literature values (183-239.5 kJ/mol).

  10. Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans

    PubMed Central

    Németh, Zoltán; Molnár, Ákos P.; Fejes, Balázs; Novák, Levente; Karaffa, Levente; Keller, Nancy P.; Fekete, Erzsébet

    2016-01-01

    Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST) produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L−1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis. PMID:27916804

  11. Restoring physiological levels of ascorbate slows tumor growth and moderates HIF-1 pathway activity in Gulo(-/-) mice.

    PubMed

    Campbell, Elizabeth J; Vissers, Margreet C M; Bozonet, Stephanie; Dyer, Arron; Robinson, Bridget A; Dachs, Gabi U

    2015-02-01

    Hypoxia-inducible factor-1 (HIF-1) governs cellular adaption to the hypoxic microenvironment and is associated with a proliferative, metastatic, and treatment-resistant tumor phenotype. HIF-1 levels and transcriptional activity are regulated by proline and asparagine hydroxylases, which require ascorbate as cofactor. Ascorbate supplementation reduced HIF-1 activation in vitro, but only limited data are available in relevant animal models. There is no information of the effect of physiological levels of ascorbate on HIF activity and tumor growth, which was measured in this study. C57BL/6 Gulo(-/-) mice (a model of the human ascorbate dependency condition) were supplemented with 3300 mg/L, 330 mg/L, or 33 mg/L of ascorbate in their drinking water before and during subcutaneous tumor growth of B16-F10 melanoma or Lewis lung carcinoma (LL/2). Ascorbate levels in tumors increased significantly with elevated ascorbate intake and restoration of wild-type ascorbate levels led to a reduction in growth of B16-F10 (log phase P < 0.001) and LL/2 tumors (lag growth P < 0.001, log phase P < 0.05). Levels of HIF-1α protein in tumors decreased as dietary ascorbate supplementation increased for both tumor models (P < 0.001). Similarly, tumor ascorbate was inversely correlated with levels of the HIF-1 target proteins CA-IX, GLUT-1, and VEGF in both B16-F10 and LL/2 tumors (P < 0.05). The extent of necrosis was similar between ascorbate groups but varied between models (30% for B16-F10 and 21% for LL/2), indicating that ascorbate did not affect tumor hypoxia. Our data support the hypothesis that restoration of optimal intracellular ascorbate levels reduces tumor growth via moderation of HIF-1 pathway activity.

  12. Understanding Plant Community Responses to Combinations of Biotic and Abiotic Factors in Different Phases of the Plant Growth Cycle

    PubMed Central

    Wood, Kevin A.; Stillman, Richard A.; Clarke, Ralph T.; Daunt, Francis; O’Hare, Matthew T.

    2012-01-01

    Understanding plant community responses to combinations of biotic and abiotic factors is critical for predicting ecosystem response to environmental change. However, studies of plant community regulation have seldom considered how responses to such factors vary with the different phases of the plant growth cycle. To address this deficit we studied an aquatic plant community in an ecosystem subject to gradients in mute swan (Cygnus olor) herbivory, riparian shading, water temperature and distance downstream of the river source. We quantified abundance, species richness, evenness, flowering and dominance in relation to biotic and abiotic factors during the growth-, peak-, and recession-phases of the plant growth cycle. We show that the relative importance of biotic and abiotic factors varied between plant community properties and between different phases of the plant growth cycle. Herbivory became more important during the later phases of peak abundance and recession due to an influx of swans from adjacent pasture fields. Shading by riparian vegetation also had a greater depressing effect on biomass in later seasons, probably due to increased leaf abundance reducing light intensity reaching the aquatic plants. The effect of temperature on community diversity varied between upstream and downstream sites by altering the relative competitiveness of species at these sites. These results highlight the importance of seasonal patterns in the regulation of plant community structure and function by multiple factors. PMID:23166777

  13. Understanding plant community responses to combinations of biotic and abiotic factors in different phases of the plant growth cycle.

    PubMed

    Wood, Kevin A; Stillman, Richard A; Clarke, Ralph T; Daunt, Francis; O'Hare, Matthew T

    2012-01-01

    Understanding plant community responses to combinations of biotic and abiotic factors is critical for predicting ecosystem response to environmental change. However, studies of plant community regulation have seldom considered how responses to such factors vary with the different phases of the plant growth cycle. To address this deficit we studied an aquatic plant community in an ecosystem subject to gradients in mute swan (Cygnus olor) herbivory, riparian shading, water temperature and distance downstream of the river source. We quantified abundance, species richness, evenness, flowering and dominance in relation to biotic and abiotic factors during the growth-, peak-, and recession-phases of the plant growth cycle. We show that the relative importance of biotic and abiotic factors varied between plant community properties and between different phases of the plant growth cycle. Herbivory became more important during the later phases of peak abundance and recession due to an influx of swans from adjacent pasture fields. Shading by riparian vegetation also had a greater depressing effect on biomass in later seasons, probably due to increased leaf abundance reducing light intensity reaching the aquatic plants. The effect of temperature on community diversity varied between upstream and downstream sites by altering the relative competitiveness of species at these sites. These results highlight the importance of seasonal patterns in the regulation of plant community structure and function by multiple factors.

  14. Blanket and Patterned Growth of CdTe on (211)Si Substrates by Metal-Organic Vapor Phase Epitaxy

    DTIC Science & Technology

    2012-05-15

    Vapor Deposition, Epitaxial Lateral Overgrowth, Selective Epitaxy, CdTe Ishwara B. Bhat*,1, , Sunil R. Rao1, , Shashidhar Shintri2, , Randolph N...growth of CdTe on (211)Si substrates by metal- organic vapor phase epitaxy Ishwara B. Bhat*,1, Sunil R. Rao1, Shashidhar Shintri2, and Randolph N

  15. Antimicrobial effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth phase.

    PubMed

    Chavant, Patrick; Gaillard-Martinie, Brigitte; Hébraud, Michel

    2004-07-15

    This study was designed to investigate the individual or combined effects of sanitizers on survival of planktonic or sessile Listeria monocytogenes cells at different phase of growth. The sanitizers tested included: (i) acetic acid (pH 5.0), (ii) NaOH (pH 12.0), (iii) 10% Na2SO4, (iv) 10% Na2SO4 and acetic acid (pH 5.0), (v) 10% Na2SO4 and NaOH (pH 12.0), (vi) a quaternary ammonium (20 ppm) and (vii) glyceryl monolaurate (75 ppm). Results revealed a great efficacy of alkaline treatments on both sessile and planktonic cells with a slightly higher resistance of 6 h biofilms. Quaternary ammonium appeared very effective in killing more than 98% of cells, but a resistance of 7 days biofilm was observed. Other sanitizers did not succeed in inhibiting totally the pathogen but acted in a similar way on both sessile and planktonic cells. Renewing the medium or not do not seem to be the major cause of a resistance emergence.

  16. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures.

    PubMed

    Tan, Chaoliang; Zeng, Zhiyuan; Huang, Xiao; Rui, Xianhong; Wu, Xue-Jun; Li, Bing; Luo, Zhimin; Chen, Junze; Chen, Bo; Yan, Qingyu; Zhang, Hua

    2015-02-02

    Although many two-dimensional (2D) hybrid nanostructures are being prepared, the engineering of epitaxial 2D semiconductor hetero-nanostructures in the liquid phase still remains a challenge. The preparation of 2D semiconductor hetero-nanostructures by epitaxial growth of metal sulfide nanocrystals, including CuS, ZnS and Ni3S2, is achieved on ultrathin TiS2 nanosheets by a simple electrochemical approach by using the TiS2 crystal and metal foils. Ultrathin CuS nanoplates that are 50-120 nm in size and have a triangular/hexagonal shape are epitaxially grown on TiS2 nanosheets with perfect epitaxial alignment. ZnS and Ni3S2 nanoplates can be also epitaxially grown on TiS2 nanosheets. As a proof-of-concept application, the obtained 2D CuS-TiS2 composite is used as the anode in a lithium ion battery, which exhibits a high capacity and excellent cycling stability.

  17. Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations.

    PubMed

    Quirós, Manuel; Martínez-Moreno, Rubén; Albiol, Joan; Morales, Pilar; Vázquez-Lima, Felícitas; Barreiro-Vázquez, Antonio; Ferrer, Pau; Gonzalez, Ramon

    2013-01-01

    As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations.

  18. A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus.

    PubMed

    Mechler, Lukas; Herbig, Alexander; Paprotka, Kerstin; Fraunholz, Martin; Nieselt, Kay; Bertram, Ralph

    2015-09-01

    Recalcitrance of genetically susceptible bacteria to antibiotic killing is a hallmark of bacterial drug tolerance. This phenomenon is prevalent in biofilms, persisters, and also planktonic cells and is associated with chronic or relapsing infections with pathogens such as Staphylococcus aureus. Here we report the in vitro evolution of an S. aureus strain that exhibits a high degree of nonsusceptibility to daptomycin as a result of cyclic challenges with bactericidal concentrations of the drug. This phenotype was attributed to stationary growth phase-dependent drug tolerance and was clearly distinguished from resistance. The underlying genetic basis was revealed to be an adaptive point mutation in the putative inorganic phosphate (Pi) transporter gene pitA. Drug tolerance caused by this allele, termed pitA6, was abrogated when the upstream gene pitR was inactivated. Enhanced tolerance toward daptomycin, as well as the acyldepsipeptide antibiotic ADEP4 and various combinations of other drugs, was accompanied by elevated intracellular concentrations of Pi and polyphosphate, which may reversibly interfere with critical cellular functions. The evolved strain displayed increased rates of survival within human endothelial cells, demonstrating the correlation of intracellular persistence and drug tolerance. These findings will be useful for further investigations of S. aureus drug tolerance, toward the development of additional antipersister compounds and strategies.

  19. Transition metal doping of GaSe implemented with low temperature liquid phase growth

    NASA Astrophysics Data System (ADS)

    Lei, Nuo; Sato, Youhei; Tanabe, Tadao; Maeda, Kensaku; Oyama, Yutaka

    2017-02-01

    Our group works on improving the conversion efficiencies of terahertz (THz) wave generation using GaSe crystals. The operating principle is based on difference frequency generation (DFG) which has the advantages such as high output power, a single tunable frequency, and room temperature operation. In this study, GaSe crystals were grown by the temperature difference method under controlled vapor pressure (TDM-CVP). It is a liquid phase growth method with temperature 300 °C lower than that of the Bridgman method. Using this method, the point defects concentration is decreased and the polytype can be controlled. The transition metal Ti was used to dope the GaSe in order to suppress free carrier absorption in the low frequency THz region. As a result, a deep acceptor level of 38 meV was confirmed as being formed in GaSe with 1.4 at% Ti doping. Compared with undoped GaSe, a decrease in carrier concentration ( 1014 cm-3) at room temperature was also confirmed. THz wave transmittance measurements reveal the tendency for the absorption coefficient to increase as the amount of dopant is increased. It is expected that there is an optimum amount of dopant.

  20. Growth of SiO 2 on InP substrate by liquid phase deposition

    NASA Astrophysics Data System (ADS)

    Lei, Po Hsun; Yang, Chyi Da

    2010-04-01

    We have grown silicon dioxide (SiO 2) on indium phosphorous (InP) substrate by liquid phase deposition (LPD) method. With inserting InP wafer in the treatment solution composed of SiO 2 saturated hydrofluorosilicic acid (H 2SiF 6), 0.1 M boric acid (H 3BO 3) and 1.74 M diluted hydrochloric acid (HCl), the maximum deposition rate and refractive index for the as-grown LPD-SiO 2 film were about 187.5 Å/h and 1.495 under the constant growth temperature of 40 °C. The secondary ion mass spectroscope (SIMS) and energy dispersive X-ray (EDX) confirmed that the elements of silicon, oxygen, and chloride were found in the as-grown LPD-SiO 2 film. On the other hand, the effects of treatment solution incorporated with the hydrogen peroxide (H 2O 2) that can regulate the concentration of OH - ion were also shown in this article. The experimental results represented that the deposition rate decreases with increasing the concentration of hydrogen peroxide due to the reduced concentration of SiO 2 saturated H 2SiF 6 in treatment solution.

  1. Metabolic Flux Analysis during the Exponential Growth Phase of Saccharomyces cerevisiae in Wine Fermentations

    PubMed Central

    Quirós, Manuel; Martínez-Moreno, Rubén; Albiol, Joan; Morales, Pilar; Vázquez-Lima, Felícitas; Barreiro-Vázquez, Antonio; Ferrer, Pau; Gonzalez, Ramon

    2013-01-01

    As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations. PMID:23967264

  2. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    SciTech Connect

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Zuo, Jianmin; Braun, Paul V.; Sardela, Mauro; Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  3. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers.

    PubMed

    Najmaei, Sina; Liu, Zheng; Zhou, Wu; Zou, Xiaolong; Shi, Gang; Lei, Sidong; Yakobson, Boris I; Idrobo, Juan-Carlos; Ajayan, Pulickel M; Lou, Jun

    2013-08-01

    Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single- and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers.

  4. A phase 2 trial of long-acting TransCon growth hormone in adult GH deficiency.

    PubMed

    Höybye, Charlotte; Pfeiffer, Andreas F H; Ferone, Diego; Christiansen, Jens Sandahl; Gilfoyle, David; Christoffersen, Eva Dam; Mortensen, Eva; Leff, Jonathan A; Beckert, Michael

    2017-04-01

    TransCon growth hormone is a sustained-release human growth hormone prodrug under development in which unmodified growth hormone is transiently linked to a carrier molecule. It is intended as an alternative to daily growth hormone in the treatment of growth hormone deficiency. This was a multi-center, randomized, open-label, active-controlled trial designed to compare the safety (including tolerability and immunogenicity), pharmacokinetics and pharmacodynamics of three doses of weekly TransCon GH to daily growth hormone (Omnitrope). Thirty-seven adult males and females diagnosed with adult growth hormone deficiency and stable on growth hormone replacement therapy for at least 3 months were, following a wash-out period, randomized (regardless of their pre-study dose) to one of three TransCon GH doses (0.02, 0.04 and 0.08 mg GH/kg/week) or Omnitrope 0.04 mg GH/kg/week (divided into 7 equal daily doses) for 4 weeks. Main outcomes evaluated were adverse events, immunogenicity and growth hormone and insulin-like growth factor 1 levels. TransCon GH was well tolerated; fatigue and headache were the most frequent drug-related adverse events and reported in all groups. No lipoatrophy or nodule formation was reported. No anti-growth hormone-binding antibodies were detected. TransCon GH demonstrated a linear, dose-dependent increase in growth hormone exposure without accumulation. Growth hormone maximum serum concentration and insulin-like growth factor 1 exposure were similar after TransCon GH or Omnitrope administered at comparable doses. The results suggest that long-acting TransCon GH has a profile similar to daily growth hormone but with a more convenient dosing regimen. These findings support further TransCon GH development.

  5. Identification and expression of small non-coding RNA, L10-Leader, in different growth phases of Streptococcus mutans.

    PubMed

    Xia, Li; Xia, Wei; Li, Shaohua; Li, Wuju; Liu, Jiaojiao; Ding, Hongmei; Li, Jie; Li, Hui; Chen, Ying; Su, Xueting; Wang, Wei; Sun, Li; Wang, Chenglong; Shao, Ningsheng; Chu, Bingfeng

    2012-06-01

    Streptococcus mutans is one of the major cariogenic bacteria in the oral environment. Small non-coding RNAs (sRNAs) play important roles in the regulation of bacterial growth, stress tolerance, and virulence. In this study, we experimentally verified the existence of sRNA, L10-Leader, in S. mutans for the first time. Our results show that the expression level of L10-Leader was growth-phase dependent in S. mutans and varied among different clinical strains of S. mutans. The level of L10-Leader in S. mutans UA159 was closely related to the pH value, but not to the concentrations of glucose and sucrose in culture medium. We predicted target mRNAs of L10-Leader bioinformatically and found that some of these mRNAs were related to growth and stress response. Five predicted mRNA targets were selected and detected by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and we found that the expression levels of these mRNAs were closely related to the level of L10-Leader at different growth phases of the bacteria. Our results indicate that L10-Leader may play an important role in the regulation of responses in S. mutans, especially during its growth phase and acid adaption response.

  6. Frequency translating phase conjugation circuit for active retrodirective antenna array. [microwave transmission

    NASA Technical Reports Server (NTRS)

    Chernoff, R. (Inventor)

    1980-01-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  7. Platelet Activating Factor: A Growth Factor for Breast Cancer

    DTIC Science & Technology

    2006-09-01

    Factor for Breast Cancer PRINCIPAL INVESTIGATOR: Larry W. Daniel, Ph.D. CONTRACTING ORGANIZATION: Wake Forest University...A Growth Factor for Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-04-1-0682 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Larry W...Relevance: If PAF is found to be a growth and angiogenic factor for breast cancer cells, these studies can be followed up by in vivo studies in nude

  8. Sarsaparilla (Smilax Glabra Rhizome) Extract Inhibits Cancer Cell Growth by S Phase Arrest, Apoptosis, and Autophagy via Redox-Dependent ERK1/2 Pathway.

    PubMed

    She, Tiantian; Qu, Like; Wang, Lixin; Yang, Xingxin; Xu, Shuo; Feng, Junnan; Gao, Yujing; Zhao, Chuanke; Han, Yong; Cai, Shaoqing; Shou, Chengchao

    2015-05-01

    Cancer is still the major cause of death across the world. Regular approaches cannot effectively solve the emerging problems, including drug/radiation resistance, side effects, and therapeutic ineffectiveness. Natural dietary supplements have shown effectiveness in the prevention and treatment of cancer. Sarsaparilla (Smilax Glabra Rhizome) has growth-inhibitory effects on several cancer cell lines in vitro and in vivo, with little toxicity on normal cells. However, the mechanism underlying its function remains elusive. In the present study, we examined the anticancer activity of the supernatant of the water-soluble extract (SW) from sarsaparilla. Liquid chromatography/mass spectrometry-ion trap-time-of-flight (LC/MS-IT-TOF) analysis identified flavonoids, alkaloids, and phenylpropanoids as the major bioactive components of SW. SW was shown to markedly inhibit the growth of a broad spectrum of cancer cell lines in the in vitro and in vivo assays. S phase arrest, autophagy, or/and apoptosis were partly responsible for SW-induced growth inhibition. Results of microarray analysis and validation by quantitative RT-PCR indicated the involvement of oxidative stress and the MAPK1 pathway in SW-treated cells. We further found that SW destroyed intracellular-reduced glutathione/oxidized glutathione (GSH/GSSG) balance, and supplement with N-acetylcysteine (NAC) or glutathione (GSH) significantly antagonized SW-induced S phase arrest, apoptosis, and autophagy. In addition, SW-induced GSH/GSSG imbalance activated the ERK1/2 pathway, which contributed to SW-induced S phase arrest, apoptosis, autophagy, and resultant growth-inhibitory effect. Together, our results provide a molecular basis for sarsaparilla as an anticancer agent.

  9. Comparison between polymerized ionic liquids synthesized using chain-growth and step-growth mechanisms used as stationary phase in gas chromatography.

    PubMed

    Roeleveld, Kevin; David, Frank; Lynen, Frédéric

    2016-06-17

    In this study the merits of polymerized imidazolium based ionic liquid (PIL) stationary phases obtained via condensation and free radical polymerizations are compared as stationary phases in gas chromatography (GC). Poly(1-vinyl-3-butyl-imidazolium - bis(trifluoromethane)sulfonamide) (poly(ViC4Im(+) NTf2(-))) was obtained via a chain-growth mechanism while poly(propylimidazolium-NTf2) (poly(C3Im(+) NTf2(-))) was synthesized via a step-growth polymerization. The thermal stability of both polymers was assessed using thermal gravimetric analysis and compared with bleeding profiles obtained from the statically coated GC columns (30m×0.25mm×0.25μm). The performance was compared to what could be obtained on commercially available 1,5-di(2,3-dimethylimidazolium)pentane(2+) 2NTf2(-) (SLB-IL111) ionic liquid based columns. It was observed that the step-growth polymer was more thermally stable, up to 325°C, while the chain-growth polymer showed initial degradation at 250°C. Both polymers allowed reaching minimal plate heights of 0.400-0.500mm for retained solutes such as benzaldehyde, acetophenone, 1-methylnaphthalene and aniline. Assessment of the McReynolds constants illustrated that the polarity of the step-growth polymer was similar to the SLB-IL111 column, while displaying improved column stability. The PIL phases and particularly the so far little studied condensation based polymer shows particular retention and satisfactory column performance for polar moieties such as esters, amine and carbonyl functionalities.

  10. Growth advantage in stationary-phase (GASP) phenotype in long-term survival strains of Geobacter sulfurreducens.

    PubMed

    Helmus, Ruth A; Liermann, Laura J; Brantley, Susan L; Tien, Ming

    2012-01-01

    Geobacter sulfurreducens exists in the subsurface and has been identified in sites contaminated with radioactive metals, consistent with its ability to reduce metals under anaerobic conditions. The natural state of organisms in the environment is one that lacks access to high concentrations of nutrients, namely electron donors and terminal electron acceptors (TEAs). Most studies have investigated G. sulfurreducens under high-nutrient conditions or have enriched for it in environmental systems via acetate amendments. We replicated the starvation state through long-term batch culture of G. sulfurreducens, where both electron donor and TEA were scarce. The growth curve revealed lag, log, stationary, death, and survival phases using acetate as electron donor and either fumarate or iron(III) citrate as TEA. In survival phase, G. sulfurreducens persisted at a constant cell count for as long as 23 months without replenishment of growth medium. Geobacter sulfurreducens demonstrated an ability to acquire a growth advantage in stationary-phase phenotype (GASP), with strains derived from subpopulations from death- or survival phase being able to out-compete mid-log-phase populations when co-cultured. The molecular basis for GASP was not because of any detectable mutation in the rpoS gene (GSU1525) nor because of a mutation in a putative homolog to Escherichia coli lrp, GSU3370.

  11. Monte Carlo study on abnormal growth of Goss grains in Fe-3%Si steel induced by second-phase particles

    NASA Astrophysics Data System (ADS)

    Xin, Dong-qun; He, Cheng-xu; Gong, Xue-hai; Wang, Hao; Meng, Li; Ma, Guang; Hou, Peng-fei; Zhang, Wen-kang

    2016-12-01

    The selective abnormal growth of Goss grains in magnetic sheets of Fe-3%Si (grade Hi-B) induced by second-phase particles (AlN and MnS) was studied using a modified Monte Carlo Potts model. The starting microstructures for the simulations were generated from electron backscatter diffraction (EBSD) orientation imaging maps of recrystallized samples. In the simulation, second-phase particles were assumed to be randomly distributed in the initial microstructures and the Zener drag effect of particles on Goss grain boundaries was assumed to be selectively invalid because of the unique properties of Goss grain boundaries. The simulation results suggest that normal growth of the matrix grains stagnates because of the pinning effect of particles on their boundaries. During the onset of abnormal grain growth, some Goss grains with concave boundaries in the initial microstructure grow fast abnormally and other Goss grains with convex boundaries shrink and eventually disappear.

  12. Mono- and polynucleation, atomistic growth, and crystal phase of III-V nanowires under varying group V flow

    SciTech Connect

    Dubrovskii, V. G.

    2015-05-28

    We present a refined model for the vapor-liquid-solid growth and crystal structure of Au-catalyzed III-V nanowires, which revisits several assumptions used so far and is capable of describing the transition from mononuclear to polynuclear regime and ultimately to regular atomistic growth. We construct the crystal phase diagrams and calculate the wurtzite percentages, elongation rates, critical sizes, and polynucleation thresholds of Au-catalyzed GaAs nanowires depending on the As flow. We find a non-monotonic dependence of the crystal phase on the group V flow, with the zincblende structure being preferred at low and high group V flows and the wurtzite structure forming at intermediate group V flows. This correlates with most of the available experimental data. Finally, we discuss the atomistic growth picture which yields zincblende crystal structure and should be very advantageous for fabrication of ternary III-V nanowires with well-controlled composition and heterointerfaces.

  13. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation.

    PubMed

    Chandra, Rashmi; Rohit, M V; Swamy, Y V; Venkata Mohan, S

    2014-08-01

    Critical role of organic carbon supplementation on the lipid synthesis during growth and nutrient deprived stress phase was investigated in present study. Mixotrophic cultivation showed relatively higher biomass productivity at lower carbon loading condition (500mgCOD/l). Nutrient deprivation induced physiological stress and glucose supplementation with 2000mgCOD/l supported higher lipid accumulation (26%). Glucose supplementation in mixotrophic growth phase showed distinct influence on biomass growth whereas glucose supplementation in nutrient starvation resulted in higher lipid storage. Compositional variation in FAME profile was observed with respect to saturated fatty acids when operated with increasing glucose concentrations. Mixotrophic mode of cultivation showed remarkable benefits of nutrient removal and organic carbon supplementation influenced greatly on biodiesel production which can be easily scaled up to pilot plant and large scale production facilities.

  14. Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase.

    PubMed

    Minato, Yusuke; Fassio, Sara R; Reddekopp, Rylan L; Häse, Claudia C

    2014-01-01

    Two virulence factors produced by Vibrio cholerae, cholera toxin (CT) and toxin-corregulated pilus (TCP), are indispensable for cholera infection. ToxT is the central regulatory protein involved in activation of CT and TCP expression. We previously reported that lack of a respiration-linked sodium-translocating NADH-ubiquinone oxidoreductase (Na(+)-NQR) significantly increases toxT transcription. In this study, we further characterized this link and found that Na(+)-NQR affects toxT expression only at the early-log growth phase, whereas lack of Na(+)-NQR decreases CT production after the mid-log growth phase. Such decreased CT production was independent of toxT and ctxB transcription. Supplementing a respiratory substrate, l-lactate, into the growth media restored CT production in the nqrA-F mutant, suggesting that decreased CT production in the Na(+)-NQR mutant is dependent on electron transport chain (ETC) activity. This notion was supported by the observations that two chemical inhibitors, a Na(+)-NQR specific inhibitor 2-n-Heptyl-4-hydroxyquinoline N-oxide (HQNO) and a succinate dehydrogenase (SDH) inhibitor, thenoyltrifluoroacetone (TTFA), strongly inhibited CT production in both classical and El Tor biotype strains of V. cholerae. Accordingly, we propose the main respiratory enzyme of V. cholerae, as a potential drug target to treat cholera because human mitochondria do not contain Na(+)-NQR orthologs.

  15. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    PubMed

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity.

  16. Dependence of polarity inversion on V/III ratio in -c-GaN growth by oxide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Taniyama, Yuki; Yamaguchi, Yohei; Takatsu, Hiroaki; Sumi, Tomoaki; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Isemura, Masashi; Mori, Yusuke

    2016-05-01

    One of the issues in bulk c-GaN growth is the decrease in the diameter of crystals with an increase in thickness owing to the appearance of inclined \\{ 10\\bar{1}1\\} and \\{ 10\\bar{1}2\\} facets. In this study, we performed -c-GaN growth by oxide vapor phase epitaxy (OVPE). As a result, truncated-inverted-pyramidal crystals were successfully grown on dot-patterned -c-GaN substrates. The diameter of the top surface of crystals was larger than that of windows. We further investigated the dependence of the ratio of inversion-domain area to growth area (R ID) on growth temperature, V/III ratio, and growth rate. The remained results revealed that R ID decreased with increasing growth temperature and V/III ratio, and kept constant for growth rate. Additionally, an epitaxial layer on -c-GaN substrates with a growth rate of 12.4 µm/h and an R ID as low as 3.8% was obtained under an NH3 partial pressure (P NH3) of 83 kPa at 1200 °C.

  17. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-01

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.

  18. Transcriptional Co-activator LEDGF Interacts with Cdc7-Activator of S-phase Kinase (ASK) and Stimulates Its Enzymatic Activity*

    PubMed Central

    Hughes, Siobhan; Jenkins, Victoria; Dar, Mohd Jamal; Engelman, Alan; Cherepanov, Peter

    2010-01-01

    Lens epithelium-derived growth factor (LEDGF) is an important co-factor of human immunodeficiency virus DNA integration; however, its cellular functions are poorly characterized. We now report identification of the Cdc7-activator of S-phase kinase (ASK) heterodimer as a novel interactor of LEDGF. Both kinase subunits co-immunoprecipitated with endogenous LEDGF from human cell extracts. Truncation analyses identified the integrase-binding domain of LEDGF as essential and minimally sufficient for the interaction with Cdc7-ASK. Reciprocally, the interaction required autophosphorylation of the kinase and the presence of 50 C-terminal residues of ASK. The kinase phosphorylated LEDGF in vitro, with Ser-206 being the major target, and LEDGF phosphorylated at this residue could be detected during S phase of the cell cycle. LEDGF potently stimulated the enzymatic activity of Cdc7-ASK, increasing phosphorylation of MCM2 in vitro by more than 10-fold. This enzymatic stimulation as well as phosphorylation of LEDGF depended on the protein-protein interaction. Intriguingly, removing the C-terminal region of ASK, involved in the interaction with LEDGF, resulted in a hyperactive kinase. Our results indicate that the interaction with LEDGF relieves autoinhibition of Cdc7-ASK kinase, imposed by the C terminus of ASK. PMID:19864417

  19. Diferulic acids in the cell wall may contribute to the suppression of shoot growth in the first phase of salt stress in maize.

    PubMed

    Uddin, Md Nesar; Hanstein, Stefan; Faust, Franziska; Eitenmüller, Philipp T; Pitann, Britta; Schubert, Sven

    2014-06-01

    In the first phase of salt stress the elongation growth of maize shoots is severely affected. The fixation of shape at the end of the elongation phase in Poaceae leaves has frequently been attributed to the formation of phenolic cross-links in the cell wall. In the present work it was investigated whether this process is accelerated under salt stress in different maize hybrids. Plants were grown in nutrient solution in a growth chamber. Reduction of shoot fresh mass was 50% for two hybrids which have recently been developed for improved salt resistance (SR 03, SR 12) and 60% for their parental genotype (Pioneer 3906). For SR 12 and Pioneer 3906, the upper three leaves were divided into elongated and elongating tissue and cell walls were isolated from which phenolic substances and neutral sugars were determined. Furthermore, for the newly developed hybrids the activity of phenolic peroxidase in the cell wall was analysed in apoplastic washing fluids and after sequential extraction of cell-wall material with CaCl2 and LiCl. The concentration of ferulic acid, the predominant phenolic cross-linker in the grass cell wall, was about 5mgg(-1) dry cell wall in elongating and in elongated tissue. The concentration of diferulic acids (DFA) was 2-3mgg(-1) dry cell wall in both tissues. Salt stress increased the concentration of ferulic acid (FA) and DFA in the parental genotype Pioneer 3906, but not in SR 12. Both genotypes showed an increase in arabinose, which is the molecule at which FA and DFA are coupled to interlocking arabinoxylan polymers. In SR 12, the activity of phenolic peroxidase was not influenced by salt stress. However, in SR 03 salt stress clearly increased the phenolic peroxidase activity. Results are consistent with the hypothesis that accelerated oxidative fixation of shape contributes to growth suppression in the first phase of salt stress in a genotype-specific manner.

  20. Alteration of growth and metabolic activity of cells in the presence of propranolol and metoprolol.

    PubMed

    Lodowska, Jolanta; Wilczok, Adam; Tam, Irena; Cwalina, Beata; Swiatkowska, Longina; Wilczok, Tadeusz

    2003-01-01

    Mechanisms of action at the cellular level of a variety of drugs and xenobiotics may be assessed using Chlorella vulgaris cells. Synchronous culture, which consists of cells at the same phase of development, provides the most convenient model for studying processes at the cellular level. Stability of metabolic activity of synchronously growing cells is achieved by conducting cell culturing under strictly controlled conditions. The aim of the present study was to determine to what extent propranolol and metoprolol alter the Chlorella vulgaris metabolic activity, expressed by the number of progeny cells, the culture absorbance at lambda = 680 nm and the amount of selected photosynthetic pigments (chlorophyll a, chlorophyll b, antheraxanthin, lutein, violaxanthin and beta-carotene). Three different concentrations (10(-4), 10(-5) and 10(-6) M) of propranolol and metoprolol were administered to the Chlorella vulgaris cultures. It has been demonstrated that the higher the propranolol and metoprolol concentrations (from 10(-6) M to 10(-4) M) the lower the number of progeny cells in the cultures, expressed by the lower values of division coefficient. Both the propranolol and metoprolol caused a decrease in the photosynthetic pigments production in the mother cells. This effect was more important in the propranolol-treated cultures. The higher values of photosynthetic pigments concentrations in the progeny cells grown under the presence of a drug indicate that both the drugs tested influence mainly the cell growth and in a lower manner--their metabolic activity, expressed by the production of photosynthetic pigments.

  1. Copper removal ability by Streptomyces strains with dissimilar growth patterns and endowed with cupric reductase activity.

    PubMed

    Albarracín, Virginia Helena; Avila, Ana Lucía; Amoroso, María Julia; Abate, Carlos Mauricio

    2008-11-01

    Morphological, physiological and molecular characterization of three copper-resistant actinobacterial strains (AB2A, AB3 and AB5A) isolated from copper-polluted sediments of a drainage channel showed that they belonged to the genus Streptomyces. These characteristics plus their distinctive copper resistance phenotypes revealed considerable divergence among the isolates. Highly dissimilar growth patterns and copper removal efficiency were observed for the selected Streptomyces strains grown on minimal medium (MM) added with 0.5 mM of copper sulfate (MM(Cu)). Strain AB2A showed an early mechanism of copper uptake/retention (80% until day 3), followed by a drastic metal efflux process (days 5-7). In contrast, Streptomyces sp. AB3 and AB5A showed only copper retention phenotypes under the same culture conditions. Particularly, Streptomyces sp. AB5A showed a better efficiency in copper removal (94%), although a longer lag phase was observed for this microorganism grown for 7 days in MM(Cu). Cupric reductase activity was detected in both copper-adapted cells and nonadapted cells of all three strains but this activity was up to 100-fold higher in preadapted cells of Streptomyces sp. AB2A. To our knowledge, this is the first time that cupric reductase activity was demonstrated in Streptomyces strains.

  2. Rapidly Activated Dynamic Phase Transitions in Nonlinear Solids

    DTIC Science & Technology

    1993-02-15

    I Form Approv# edAD -A263 601 AiENTA11ON PAGE- f____________18 1. AGENCY USE ONLY (Lea"e blaWk 12. REPORT DATE 13. REPORT TYPE AND OATES COVEREO Feb...phase transforming media during high energy impact. Conversion of mechanical energy to thermal ener- gy has been studied by means of an extended theory...and Phase Structures in General Media , R. Fosdick, E. Dunn & M. Slemrod eds., IMA volume series, Springer- Verlag. Song, J. and T. L. Pence (1992

  3. General Electric ATS Program technical review Phase 2 activities

    SciTech Connect

    Chance, T.; Smith, D.

    1995-12-31

    The Advanced Turbine Systems (ATS) Program Phase 2 objectives are to select a cycle, and to identify and resolve technical issues required to realize the ATS Program goals of 60% net combined cycle efficiency, single digit NOx, and a 10% electric power cost reduction, compared to current technology. The Phase 2 efforts have showns that the ATS Program goals are achievable. The GE Power Generation advanced gas turbine will use closed-loop steam cooling in the first two turbine stages and advanced coatings, seals and cooling designs to meet ATS performance and cost of electricity goals.

  4. DCC functions as an accelerator of thalamocortical axonal growth downstream of spontaneous thalamic activity

    PubMed Central

    Castillo-Paterna, Mar; Moreno-Juan, Verónica; Filipchuk, Anton; Rodríguez-Malmierca, Luis; Susín, Rafael; López-Bendito, Guillermina

    2015-01-01

    Controlling the axon growth rate is fundamental when establishing brain connections. Using the thalamocortical system as a model, we previously showed that spontaneous calcium activity influences the growth rate of thalamocortical axons by regulating the transcription of Robo1 through an NF-κB-binding site in its promoter. Robo1 acts as a brake on the growth of thalamocortical axons in vivo. Here, we have identified the Netrin-1 receptor DCC as an accelerator for thalamic axon growth. Dcc transcription is regulated by spontaneous calcium activity in thalamocortical neurons and activating DCC signaling restores normal axon growth in electrically silenced neurons. Moreover, we identified an AP-1-binding site in the Dcc promoter that is crucial for the activity-dependent regulation of this gene. In summary, we have identified the Dcc gene as a novel downstream target of spontaneous calcium activity involved in axon growth. Together with our previous data, we demonstrate a mechanism to control axon growth that relies on the activity-dependent regulation of two functionally opposed receptors, Robo1 and DCC. These two proteins establish a tight and efficient means to regulate activity-guided axon growth in order to correctly establish neuronal connections during development. PMID:25947198

  5. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  6. Phase equilibria and liquid phase epitaxy growth of PbSnSeTe lattice matched to PbSe

    NASA Technical Reports Server (NTRS)

    Mccann, Patrick J.; Fonstad, Clifton G.; Fuchs, Jacob; Feit, Ze'ev

    1987-01-01

    The necessary phase diagram data for growing lattice-matched layers of PbSnSeTe on PbSe are presented. Solid compounds of Pb(1-x)Sn(x)Se(1-y)Te(y) lattice-matched to PbSe were grown from liquid melts consisting of (Pb/1-x/Sn/x/)(1-z)(Se/1-y/Te/y/)(z); phase equilibria data were determined together with liquidus data for values of x(liquid) from 0 to 40 percent and y(liquid) from 0 to 40 percent for temperatures between 450 and 540 C. It was found that relatively large amounts of Te must be added to the melt to achieve lattice matching because of its low segregation coefficient relative to Se. A significant lattice-pulling effect was discovered for the 5-percent Sn case, and a similar effect is expected for the 10- and 20-percent Sn cases.

  7. Antifungal activity evaluation of Mexican oregano (Lippia berlandieri Schauer) essential oil on the growth of Aspergillus flavus by gaseous contact.

    PubMed

    Gómez-Sánchez, Aída; Palou, Enrique; López-Malo, Aurelio

    2011-12-01

    The antifungal activity of Mexican oregano (Lippia berlandieri Schauer) essential oil by gaseous contact on the growth of Aspergillus flavus at selected essential oil concentrations (14.7, 29.4, 58.8, or 117.6 μl of essential oil per liter of air) and temperatures (25, 30, or 35°C) was evaluated in potato dextrose agar formulated at water activity of 0.98 and pH 4.0. Mold growth curves were adequately fitted (0.984 < R(2) < 0.999) by the modified Gompertz model. The effect of the independent variables (concentration of essential oil and temperature) on the estimated model parameters (reciprocal of growth rate [1/ν(m)] and lag time [λ]) were evaluated through polynomial equations. Both ν(m) and λ were significantly (P < 0.05) affected by the independent variables; ν(m) decreased and λ increased as essential oil concentration increased and temperature decreased, which suggests that Mexican oregano essential oil retards or inhibits mold germination stage. Further, minimum fungistatic and fungicide essential oil concentrations at 30 and 35°C were determined. Mexican oregano essential oil applied in gas phase exerts important antifungal activity on the growth of A. flavus, suggesting its potential to inhibit other food spoilage molds.

  8. Determination of growth hormone-releasing hexapeptide by reversed-phase high-performance liquid chromatography with electrochemical detection.

    PubMed

    Choi, S J; Lee, H Y; Kim, S B; Kim, J H; Lee, S S; Yoo, S D; Lee, K C; Lee, H S

    2001-04-25

    A novel HPLC method with electrochemical detection is described for the determination of a growth-hormone-releasing hexapeptide (GHRP-6). HPLC conditions, such as the column, mobile phase, and oxidation potential, were optimized for sensitivity and selectivity of analysis. GHRP-6 was separated on a reversed-phase CN column with 37% acetonitrile in 100 mM phosphate buffer (pH 7.0) as the mobile phase. The optimum electrochemical oxidation signal was obtained at 0.85 V vs. Ag/AgCl in a glassy carbon working electrode due to two electroactive tryptophans and a histidine residue. Solid-phase extraction using octadecyl cartridges was optimized for sample cleanup of GHRP-6 from serum samples and the method was successfully applied over the concentration range of 5 to 100 ng/ml of analyte. reserved.

  9. Nanoscale spatial phase modulation of GaAs growth in V-grooved trenches on Si (001) substrate

    NASA Astrophysics Data System (ADS)

    Li, Shi-Yan; Zhou, Xu-Liang; Kong, Xiang-Ting; Li, Meng-Ke; Mi, Jun-Ping; Wang, Meng-Qi; Pan, Jiao-Qing

    2016-12-01

    This letter reports the nanoscale spatial phase modulation of GaAs growth in V-grooved trenches fabricated on a Si (001) substrate by metal-organic vapor-phase epitaxy. Two hexagonal GaAs regions with high density of stacking faults parallel to Si {111} surfaces are observed. A strain-relieved and defect-free cubic phase GaAs was achieved above these highly defective regions. High-resolution transmission electron microscopy and fast Fourier transforms analysis were performed to characterize these regions of GaAs/Si interface. We also discussed the strain relaxation mechanism and phase structure modulation of GaAs selectively grown on this artificially manipulated surface. Project supported by the National Science and Technology Major Project of Science and Technology of China (Grant No. 2011ZX02708) and the National Natural Science Foundation of China (Grant No. 61504137).

  10. Cefpodoxime: comparative antibacterial activity, influence of growth conditions, and bactericidal activity.

    PubMed

    Knothe, H; Shah, P M; Eckardt, O

    1991-01-01

    The antimicrobial activity of cefpodoxime, the active metabolite of the new cephalosporin ester cefpodoxime proxetil, in comparison to cefixime, cefotiam, cefuroxime, and cefotaxime was determined against a broad spectrum of freshly isolated gram-positive and gram-negative bacterial strains. Cefpodoxime was demonstrated to be inhibitory at concentrations of less than or equal to 1 mg/l against 90% of strains of Moraxella catarrhalis, Haemophilus influenzae, Escherichia coli (beta-lactamase- negative strains), Klebsiella spp., Serratia spp., Proteus mirabilis, Proteus vulgaris, Providencia spp., and Salmonella spp. This antimicrobial activity of cefpodoxime was generally superior to that of cefuroxime and similar to that of cefixime. Cefpodoxime was active at less than or equal to 1 mg/l against 50% of the members of beta-lactamase-producing Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Citrobacter spp., and Morganella morganii. Cefpodoxime proved to be highly inhibitory against group A, B, and G streptococci and Streptococcus pneumoniae (MIC90 less than 0.015 mg/l). The MICs of cefpodoxime and those of the other cephalosporins were less than 2 mg/l for greater than or equal to 90% of the strains of Staphylococcus aureus and Staphylococcus epidermidis, with the exception of cefixime which had no activity with MICs below 8 mg/l against these bacteria. Pseudomonas spp., Acinetobacter spp., and Enterococcus spp. were resistant to cefpodoxime. The antibacterial activity of cefpodoxime was only to a minor degree influenced by different growth conditions with the exception of high inoculum sizes against some beta-lactamase producing strains of gram-negative bacilli.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Protein Kinase C Activation Promotes Microtubule Advance in Neuronal Growth Cones by Increasing Average Microtubule Growth Lifetimes

    PubMed Central

    Kabir, Nurul; Schaefer, Andrew W.; Nakhost, Arash; Sossin, Wayne S.; Forscher, Paul

    2001-01-01

    We describe a novel mechanism for protein kinase C regulation of axonal microtubule invasion of growth cones. Activation of PKC by phorbol esters resulted in a rapid, robust advance of distal microtubules (MTs) into the F-actin rich peripheral domain of growth cones, where they are normally excluded. In contrast, inhibition of PKC activity by bisindolylmaleimide and related compounds had no perceptible effect on growth cone motility, but completely blocked phorbol ester effects. Significantly, MT advance occurred despite continued retrograde F-actin flow—a process that normally inhibits MT advance. Polymer assembly was necessary for PKC-mediated MT advance since it was highly sensitive to a range of antagonists at concentrations that specifically interfere with microtubule dynamics. Biochemical evidence is presented that PKC activation promotes formation of a highly dynamic MT pool. Direct assessment of microtubule dynamics and translocation using the fluorescent speckle microscopy microtubule marking technique indicates PKC activation results in a nearly twofold increase in the typical lifetime of a MT growth episode, accompanied by a 1.7-fold increase and twofold decrease in rescue and catastrophe frequencies, respectively. No significant effects on instantaneous microtubule growth, shortening, or sliding rates (in either anterograde or retrograde directions) were observed. MTs also spent a greater percentage of time undergoing retrograde transport after PKC activation, despite overall MT advance. These results suggest that regulation of MT assembly by PKC may be an important factor in determining neurite outgrowth and regrowth rates and may play a role in other cellular processes dependent on directed MT advance. PMID:11238458

  12. GROWTH AND DEVELOPMENT SYMPOSIUM: Adenosine monophosphate-activated protein kinase and mitochondria in Rendement Napole pig growth.

    PubMed

    Scheffler, T L; Gerrard, D E

    2016-09-01

    The Rendement Napole mutation (RN-), which is well known to influence pork quality, also has a profound impact on metabolic characteristics of muscle. Pigs with RN- possess a SNP in the γ3 subunit of adenosine monophosphate (AMP)-activated protein kinase (AMPK); AMPK, a key energy sensor in skeletal muscle, modulates energy producing and energy consuming pathways to maintain cellular homeostasis. Importantly, AMPK regulates not only acute response to energy stress but also facilitates long-term adaptation via changes in gene and protein expression. The RN- allele increases AMPK activity, which alters the metabolic phenotype of skeletal muscle by increasing mitochondrial content and oxidative capacity. Fibers with greater oxidative capacity typically exhibit increased protein turnover and smaller fiber size, which indicates that RN- pigs may exhibit decreased efficiency and growth potential. However, whole body and muscle growth of RN- pigs appear similar to that of wild-type pigs and despite increased oxidative capacity, fibers maintain the capacity for hypertrophic growth. This indicates that compensatory mechanisms may allow RN- pigs to achieve rates of muscle growth similar to those of wild-type pigs. Intriguingly, lipid oxidation and mitochondria function are enhanced in RN- pig muscle. Thus far, characteristics of RN- muscle are largely based on animals near market weight. To better understand interaction between energy signaling and protein accretion in muscle, further work is needed to define age-dependent relationships between AMPK signaling, metabolism, and muscle growth.

  13. Phase state is a limiting factor in hygroscopic growth of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Pajunoja, Aki; Virtanen, Annele

    2014-05-01

    Secondary organic aerosol (SOA) particles formed from oxidation products of volatile organic compounds (VOC) form a significant fraction of the total atmospheric particulate matter affecting climate both directly and indirectly. The dependence of hygroscopicity on particle composition is often represented with the single parameter κ, commonly used in global models to describe the hygroscopic properties of atmospheric aerosol particles. The physical phase state of SOA particles affects the partitioning of organic vapors and also may affect the uptake of water vapor and particle activation into cloud droplets. Thus, hygroscopic behaviour of SOA particles is affected by composition (i.e. oxidation state and molecular size) but also by phase of particles. In this study the following three distinct studies were performed: (1) particle bounced fraction (BF) measurements, which are qualitatively related to particle phase, as a function of relative humidity using an Aerosol Bounce Instrument (ABI). We assume that the particles with BF > 0 are solid or semisolid, and that particles with BF = 0 behave mechanically as liquids (2) water uptake measured in the sub-saturated region using hygroscopicity tandem differential mobility analyzer (HTDMA) by measuring the ratio of wet to dry particle diameter following exposure to water vapor at a controlled RH (3) cloud droplet formation in the supersaturated region using a cloud condensation nuclei counter (CCNc). Particle composition and oxidation state was measured with a compact time of flight aerosol mass spectrometer (c-ToF-AMS). In this study we show that at sub-saturation conditions water uptake by SOA particles is restricted due to the kinetic limitations. Diffusion and solubility limitations inhibit water uptake until the humidity is high enough for dissolution to occur. Our studies show that this 'threshold' humidity is dependent on particle composition, oxidation state, and average molecular size. Our laboratory results

  14. Modeling the physiological state of the inoculum and CO2 atmosphere on the lag phase and growth rate of Listeria monocytogenes.

    PubMed

    De Jesús, Antonio J; Whiting, Richard C

    2008-09-01

    In previous studies, the growth of L. monocytogenes has been modeled under different CO2 headspace concentrations; however, the inoculum cells were always in the stationary phase. In this study, the growth of L. monocytogenes under different CO2 concentrations as affected by the physiological state of the cells was investigated. Exponential-growth-phase, stationary-phase, dried, and starved cells were prepared and inoculated at 5 degrees C into brain heart infusion broths that had been preequilibrated under atmospheres of 0, 20, 40, 60, or 80% CO2 (the balance was N2). Lag-phase duration times (LDTs) and exponential growth rates were determined by enumerating cells at appropriate time intervals and by fitting the data to a three-phase linear function that has a lag period before the initiation of exponential growth. Longer LDTs were observed as the CO2 concentration increased, with no growth observed at 80% CO2. For example, the LDTs for exponential-phase, stationary-phase, starved, and dried cells were 2.21, 8.27, 9.17, and 9.67 days, respectively, under the 40% CO2 atmosphere. In general, exponential-growth-phase cells had the shortest LDT followed by starved cells and stationary-phase cells. Dried cells had the longest LDT. Exponential growth rates decreased as the CO2 concentrations increased. Once exponential growth was attained, no retained differences among the various initial physiological states of the cells for any of the atmospheres were observed in the exponential growth rates. The exponential growth rates under 0, 20, 40, 60, and 80% CO2 averaged 0.39, 0.37, 0.23, 0.23, and 0.0 log CFU/day, respectively. Dimensionless factors were calculated that describe the inhibitory action of CO2 on the LDTs and exponential growth rates for the various physiological states.

  15. Enhanced Translocation and Growth of Rhodococcus erythropolis PR4 in the Alkane Phase of Aqueous-Alkane Two Phase Cultures Were Mediated by GroEL2 Overexpression

    PubMed Central

    Takihara, Hayato; Ogihara, Jun; Yoshida, Takao; Okuda, Shujiro; Nakajima, Mutsuyasu; Iwabuchi, Noriyuki; Sunairi, Michio

    2014-01-01

    We previously reported that R. erythropolis PR4 translocated from the aqueous to the alkane phase, and then grew in two phase cultures to which long-chain alkanes had been added. This was considered to be beneficial for bioremediation. In the present study, we investigated the proteins involved in the translocation of R. erythropolis PR4. The results of our proteogenomic analysis suggested that GroEL2 was upregulated more in cells that translocated inside of the pristane (C19) phase than in those located at the aqueous-alkane interface attached to the n-dodecane (C12) surface. PR4 (pK4-EL2-1) and PR4 (pK4-ΔEL2-1) strains were constructed to confirm the effects of the upregulation of GroEL2 in translocated cells. The expression of GroEL2 in PR4 (pK4-EL2-1) was 15.5-fold higher than that in PR4 (pK4-ΔEL2-1) in two phase cultures containing C12. The growth and cell surface lipophilicity of PR4 were enhanced by the introduction of pK4-EL2-1. These results suggested that the plasmid overexpression of groEL2 in PR4 (pK4-EL2-1) led to changes in cell localization, enhanced growth, and increased cell surface lipophilicity. Thus, we concluded that the overexpression of GroEL2 may play an important role in increasing the organic solvent tolerance of R. erythropolis PR4 in aqueous-alkane two phase cultures. PMID:25311591

  16. Enhanced translocation and growth of Rhodococcus erythropolis PR4 in the alkane phase of aqueous-alkane two phase cultures were mediated by GroEL2 overexpression.

    PubMed

    Takihara, Hayato; Ogihara, Jun; Yoshida, Takao; Okuda, Shujiro; Nakajima, Mutsuyasu; Iwabuchi, Noriyuki; Sunairi, Michio

    2014-01-01

    We previously reported that R. erythropolis PR4 translocated from the aqueous to the alkane phase, and then grew in two phase cultures to which long-chain alkanes had been added. This was considered to be beneficial for bioremediation. In the present study, we investigated the proteins involved in the translocation of R. erythropolis PR4. The results of our proteogenomic analysis suggested that GroEL2 was upregulated more in cells that translocated inside of the pristane (C19) phase than in those located at the aqueous-alkane interface attached to the n-dodecane (C12) surface. PR4 (pK4-EL2-1) and PR4 (pK4-ΔEL2-1) strains were constructed to confirm the effects of the upregulation of GroEL2 in translocated cells. The expression of GroEL2 in PR4 (pK4-EL2-1) was 15.5-fold higher than that in PR4 (pK4-ΔEL2-1) in two phase cultures containing C12. The growth and cell surface lipophilicity of PR4 were enhanced by the introduction of pK4-EL2-1. These results suggested that the plasmid overexpression of groEL2 in PR4 (pK4-EL2-1) led to changes in cell localization, enhanced growth, and increased cell surface lipophilicity. Thus, we concluded that the overexpression of GroEL2 may play an important role in increasing the organic solvent tolerance of R. erythropolis PR4 in aqueous-alkane two phase cultures.

  17. Growth-supporting activity for Legionella pneumophila in tap water cultures and implication of hartmannellid amoebae as growth factors.

    PubMed Central

    Wadowsky, R M; Butler, L J; Cook, M K; Verma, S M; Paul, M A; Fields, B S; Keleti, G; Sykora, J L; Yee, R B

    1988-01-01

    Photosynthetic cyanobacteria, heterotrophic bacteria, free-living amoebae, and ciliated protozoa may support growth of Legionella pneumophila. Studies were done with two tap water cultures (WS1 and WS2) containing L. pneumophila and associated microbiota to characterize growth-supporting activity and assess the relative importance of the microbiota in supporting multiplication of L. pneumophila. The water cultures were incubated in the dark at 35 degrees C. The growth-supporting factor(s) was separated from each culture by filtration through 1-micron-pore-size membrane filters. The retentate was then suspended in sterile tap water. Multiplication of L. pneumophila occurred when both the retentate suspension and the filtrate from either culture were inoculated into sterile tap water. L. pneumophila did not multiply in tap water inoculated with only the filtrate, even though filtration did not reduce the concentration of L. pneumophila or heterotrophic bacteria in either culture. Growth-supporting activity of the retentate suspension from WS1 was inactivated at 60 degrees C but unaffected at 0, 25, and 45 degrees C after 30-min incubations. Filtration experiments indicated that the growth-supporting factor(s) in WS1 was 2 to 5 micron in diameter. Ciliated protozoa were not detected in either culture. Hartmannellid amoebae were conclusively demonstrated in WS2 but not in WS1. L. pneumophila multiplied in tap water inoculated with the amoebae (10(3)/ml) and the 1-micron filtrate of WS2. No multiplication occurred in tap water inoculated with the filtrate only. Growth-supporting activity for L. pneumophila may be present in plumbing systems; hartmannellid amoebae appear to be important determinants of multiplication of L. pneumophila in some tap water cultures. PMID:3214153

  18. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method.

    PubMed

    Kang, Jian; Wu, Fei; Cai, Yunpeng; Xu, Mingxin; He, Mu; Yuan, Weien

    2014-10-01

    A novel method has been developed to protect Recombinant Human Growth Hormone (rhGH) in poly (lactic-co-glycolic acid) (PLGA) microspheres using an aqueous phase/aqueous phase emulsion and S/O/W multi-emulsion method. This method develops a novel rhGH sustained-release system, which is based on the combination of rhGH-loaded dextran microparticles and PLGA microspheres. The process to fabricate rhGH-loaded dextran microparticles involves an aqueous phase/aqueous phase emulsion system formed at the reduced temperature. RhGH was first dissolved in water together with dextran and polyethylene glycol, followed by stirring at the speed of 2000 rpm for 20-30s at 0°C, and then a freezing process could enable the dextran phase to separate from the continuous PEG phase and rhGH could preferentially be loaded with dextran. The sample after freezing and phase separation was then lyophilized to powder and washed with dichloromethane to remove the PEG. Once loaded in the dextran microparticles (1-4 μm in diameter), rhGH gained resistance to interface tensions and was encapsulated into PLGA microspheres without aggregation thereafter. RhGH released from PLGA microspheres was in a sustained manner with minimal burst and maximally reduced incomplete release in vitro. Single subcutaneous injection of rhGH-loaded PLGA microspheres to rats resulted in a stable plasma concentration for 30 days avoiding the drug concentration fluctuations after multiple injections of protein solutions. In a hypophysectomized rat model, the IGF-1 and bodyweight results showed that there were higher than the levels obtained for the sustained release formulation by W/O/W for 40 days. These results suggest that the microsphere delivery system had the potential to be an injectable depot for sustained-release of the biocompatible protein of rhGH.

  19. Approach to In- Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Liao, Xianjin; Chen, Bo; Zhang, Linjie; Zhang, Jianxun

    2015-06-01

    To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

  20. A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth.

    PubMed

    Hicks, Linda D; Raghavan, Rahul; Battisti, James M; Minnick, Michael F

    2010-04-01

    Coxiella burnetii is a Gram-negative, obligate intracellular bacterial pathogen that resides within the harsh, acidic confines of a lysosome-like compartment of the host cell that is termed a parasitophorous vacuole. In this study, we characterized a thiol-specific peroxidase of C. burnetii that belongs to the atypical 2-cysteine subfamily of peroxiredoxins, commonly referred to as bacterioferritin comigratory proteins (BCPs). Coxiella BCP was initially identified as a potential DNA-binding protein by two-dimensional Southwestern (SW) blots of the pathogen's proteome, probed with biotinylated C. burnetii genomic DNA. Confirmation of the identity of the DNA-binding protein as BCP (CBU_0963) was established by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF/TOF MS). Recombinant Coxiella BCP (rBCP) was generated, and its DNA binding was demonstrated by two independent methods, including SW blotting and electrophoretic mobility shift assays (EMSAs). rBCP also demonstrated peroxidase activity in vitro that required thioredoxin-thioredoxin reductase (Trx-TrxR). Both the DNA-binding and peroxidase activities of rBCP were lost upon heat denaturation (100 degrees C, 10 min). Functional expression of Coxiella bcp was demonstrated by trans-complementation of an Escherichia coli bcp mutant, as evidenced by the strain's ability to grow in an oxidative-stress growth medium containing tert-butyl hydroperoxide to levels that were indistinguishable from, or significantly greater than, those observed with its wild-type parental strain and significantly greater than bcp mutant levels (P < 0.05). rBCP was also found to protect supercoiled plasmid DNA from oxidative damage (i.e., nicking) in vitro. Maximal expression of the bcp gene coincided with the pathogen's early (day 2 to 3) exponential-growth phase in an experiment involving synchronized infection of an epithelial (Vero) host cell line. Taken as a whole, the results show that

  1. Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus.

    PubMed

    Saum, Stephan H; Müller, Volker

    2008-03-01

    The moderately halophilic, chloride-dependent bacterium Halobacillus halophilus switches its osmolyte strategy with the salinity in its environment by the production of different compatible solutes. Ectoine is produced predominantly at very high salinities, along with proline. Interestingly, ectoine production is growth phase dependent which led to a more than 1000-fold change in the ectoine : proline ratio from 0.04 in exponential to 27.4 in late stationary phase cultures. The genes encoding the ectoine biosynthesis pathway were identified on the chromosome in the order ectABC. They form an operon that is expressed in a salinity-dependent manner with low-level expression below 1.5 M NaCl but 10-fold and 23-fold increased expression at 2.5 and 3.0 M NaCl respectively. The temporal expression of genes involved in osmoresponse is different with gdh/gln and pro genes being first, followed by ect genes. Chloride had no effect on expression of ect genes, but stimulated cellular EctC synthesis as well as ectoine production. These data demonstrate, for the first time, a growth-phase dependent switch in osmolyte strategy in a moderate halophile and, additionally, represent another piece of the chloride regulon of H. halophilus.

  2. Changes of Polyphenolic Substances in the Anatomical Parts of Buckwheat (Fagopyrum esculentum Moench.) during Its Growth Phases.

    PubMed

    Bystricka, Judita; Musilova, Janette; Tomas, Jan; Vollmannova, Alena; Lachman, Jaromir; Kavalcova, Petra

    2014-10-17

    In this study the changes of total polyphenolics in different anatomical parts (stems, leaves, flowers and seeds) of common buckwheat (Fagopyrum esculentum Moench.) during vegetation period were analysed. The content of total polyphenolics was evaluated in growth phase I (formation of buds), phase II (at the beginning of flowering), phase III (full blossoming) and phase IV (full ripeness). In all growth phases (GP) the stems and leaves were evaluated and statistically significant differences in polyphenolics content between the two parts were confirmed. Statistically significant differences (p < 0.01) in polyphenolics content (in GP II and III) between stems and leaves; and between stems and flowers were found. In flowers an average of 13.8 times higher and in leaves 6 times higher concentration of polyphenolics in comparison with stems was measured. In GP III the content of polyphenolics in common buckwheat was following: flowers > leaves > achene > stems. In flowers an average of 11.9 times higher, in leaves 8.3 times higher and in achenes 5.9 times higher contents of polyphenolics compared with stems were found. In GP III and IV (leaves, achenes, stems) the leaves contained in average 20 times higher and achenes 5.6 times higher polyphenolics than stems.

  3. Changes of Polyphenolic Substances in the Anatomical Parts of Buckwheat (Fagopyrum esculentum Moench.) during Its Growth Phases

    PubMed Central

    Bystricka, Judita; Musilova, Janette; Tomas, Jan; Vollmannova, Alena; Lachman, Jaromir; Kavalcova, Petra

    2014-01-01

    In this study the changes of total polyphenolics in different anatomical parts (stems, leaves, flowers and seeds) of common buckwheat (Fagopyrum esculentum Moench.) during vegetation period were analysed. The content of total polyphenolics was evaluated in growth phase I (formation of buds), phase II (at the beginning of flowering), phase III (full blossoming) and phase IV (full ripeness). In all growth phases (GP) the stems and leaves were evaluated and statistically significant differences in polyphenolics content between the two parts were confirmed. Statistically significant differences (p < 0.01) in polyphenolics content (in GP II and III) between stems and leaves; and between stems and flowers were found. In flowers an average of 13.8 times higher and in leaves 6 times higher concentration of polyphenolics in comparison with stems was measured. In GP III the content of polyphenolics in common buckwheat was following: flowers > leaves > achene > stems. In flowers an average of 11.9 times higher, in leaves 8.3 times higher and in achenes 5.9 times higher contents of polyphenolics compared with stems were found. In GP III and IV (leaves, achenes, stems) the leaves contained in average 20 times higher and achenes 5.6 times higher polyphenolics than stems. PMID:28234337

  4. Activation of activator protein 2 alpha by aspirin alleviates atherosclerotic plaque growth and instability in vivo

    PubMed Central

    Yang, Jing-Jing; Li, Peng; Wang, Fu; Liang, Wen-Jing; Ma, Hui; Chen, Yuan; Ma, Zhi-Min; Li, Quan-Zhong; Peng, Qi-Sheng; Zhang, Yun; Wang, Shuang-Xi

    2016-01-01

    Aims Aspirin has been used for the secondary prevention and treatment of cardiovascular disease for several decades. We investigated the roles of transcriptional factor activator protein 2α (AP-2α) in the beneficial effects of aspirin in the growth and vulnerability of atherosclerotic plaque. Methods and Results In mice deficient of apolipoprotein E (Apoe-/-), aspirin (20, 50 mg/kg/day) suppressed the progression of atherosclerosis in aortic roots and increased the plaque stability in carotid atherosclerotic plaques induced by collar-placement. In vivo lentivirus-mediated RNA interference of AP-2α reversed the inhibitory effects of aspirin on atherosclerosis in Apoe-/- mice. Mechanically, aspirin increased AP-2α phosphorylation and its activity, upregulated IkBα mRNA and protein levels, and reduced oxidative stress in cultured vascular smooth muscle cells. Furthermore, deficiency of AP-2α completely abolished aspirin-induced upregulation of IkBα levels and inhibition of oxidative stress in Apoe-/- mice. Clinically, conventional doses of aspirin increased AP-2α phosphorylation and IkBα protein expression in humans subjects. Conclusion Aspirin activates AP-2α to upregulate IkBα gene expression, resulting in attenuations of plaque development and instability in atherosclerosis. PMID:27391154

  5. Influence of mass diffusion on the stability of thermophoretic growth of a solid from the vapor phase

    NASA Technical Reports Server (NTRS)

    Castillo, J. L.; Garcia-Ybarra, P. L.; Rosner, D. E.

    1991-01-01

    The stability of solid planar growth from a binary vapor phase with a condensing species dilute in a carrier gas is examined when the ratio of depositing to carrier species molecular mass is large and the main diffusive transport mechanism is thermal diffusion. It is shown that a deformation of the solid-gas interface induces a deformation of the gas phase isotherms that increases the thermal gradients and thereby the local mass deposition rate at the crests and reduces them at the valleys. The initial surface deformation is enhanced by the modified deposition rates in the absence of appreciable Fick/Brownian diffusion and interfacial energy effects.

  6. Comparison between phase field simulations and experimental data from intragranular bubble growth in UO{sub 2}

    SciTech Connect

    Tonks, M. R.; Biner, S. B.; Mille, P. C.; Andersson, D. A.

    2013-07-01

    In this work, we used the phase field method to simulate the post-irradiation annealing of UO{sub 2} described in the experimental work by Kashibe et al., 1993 [1]. The simulations were carried out in 2D and 3D using the MARMOT FEM-based phase-field modeling framework. The 2-D results compared fairly well with the experiments, in spite of the assumptions made in the model. The 3-D results compare even more favorably to experiments, indicating that diffusion in all three directions must be considered to accurate represent the bubble growth. (authors)

  7. Variation of antioxidative activity and growth enhancement of Brassicaceae induced by low-pressure oxygen plasma

    NASA Astrophysics Data System (ADS)

    Ono, Reoto; Hayashi, Nobuya

    2015-06-01

    The mechanism of growth enhancement induced by active oxygen species generated in an oxygen plasma is investigated. The plant growth enhancement induced by the active oxygen species would relate to an antioxidative activity, which is one of the biological responses. The amount of generated active oxygen species is varied by the oxygen gas pressure in a low-pressure RF glow discharge plasma. The antioxidative activity of sprouts of Brassicaceae induced by the oxygen plasma is maximized at pressures between 30 and 40 Pa, whereas the antioxidative activity becomes small at around 60 and 80 Pa. The pressure dependence of the antioxidative activity of sprout stems is opposite to that of the stem length of the sprouts. The growth enhancement would be induced by the increase in the concentration of active oxygen species in plants owing to the decrease in the amount of antioxidative substances.

  8. Oscillatory activity, phase differences, and phase resetting in the inferior olivary nucleus.

    PubMed

    Lefler, Yaara; Torben-Nielsen, Benjamin; Yarom, Yosef

    2013-01-01

    The generation of temporal patterns is one of the most fascinating functions of the brain. Unlike the response to external stimuli temporal patterns are generated within the system and recalled for a specific use. To generate temporal patterns one needs a timing machine, a "master clock" that determines the temporal framework within which temporal patterns can be generated and implemented. Here we present the concept that in this putative "master clock" phase and frequency interact to generate temporal patterns. We define the requirements for a neuronal "master clock" to be both reliable and versatile. We introduce this concept within the inferior olive nucleus which at least by some scientists is regarded as the source of timing for cerebellar function. We review the basic properties of the subthreshold oscillation recorded from olivary neurons, analyze the phase relationships between neurons and demonstrate that the phase and onset of oscillation is tightly controlled by synaptic input. These properties endowed the olivary nucleus with the ability to act as a "master clock."

  9. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    NASA Astrophysics Data System (ADS)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  10. Vaginal cone use in passive and active phases in patients with stress urinary incontinence

    PubMed Central

    Haddad, Jorge Milhem; Ribeiro, Ricardo Muniz; Bernardo, Wanderley Marques; Abrão, Maurício Simões; Baracat, Edmund Chada

    2011-01-01

    OBJECTIVE: To evaluate vaginal cone therapy in two phases, passive and active, in women with stress urinary incontinence. METHODS: A prospective study was conducted at the Department of Obstetrics and Gynecology, São Paulo University, Brazil. Twenty-four women with a clinical and urodynamic diagnosis of stress urinary incontinence were treated with vaginal cones in a passive phase (without voluntary contractions of the pelvic floor) and an active phase (with voluntary contractions), each of which lasted three months. Clinical complaints, a functional evaluation of the pelvic floor, a pad test, and bladder neck mobility were analyzed before and after each phase. RESULTS: Twenty-one patients completed the treatment. The reduction in absolute risk with the pad test was 0.38 (p<0.034) at the end of the passive phase and 0.67 (p<0.0001) at the end of the active phase. The reduction in absolute risk with the pelvic floor evaluation was 0.62 (p<0.0001) at the end of the passive phase and 0.77 (p<0.0001) at the end of the active phase. The reduction in absolute risk of bladder neck mobility was 0.38 (p<0.0089) at the end of the passive phase and 0.52 (p<0.0005) at the end of the active phase. Complete reversal of symptomatology was observed in 12 (57.1%) patients, and satisfaction was expressed by 19 (90.4%). CONCLUSION: Using vaginal cones in the passive phase, as other researchers did, was effective. Inclusion of the active phase led to additional improvement in all of the study parameters evaluated in women with stress urinary incontinence. Randomized studies are needed, however, to confirm these results. PMID:21789381

  11. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    PubMed

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  12. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Liquid phase epitaxial growth of GaInAsP/InP laser structures

    NASA Astrophysics Data System (ADS)

    Nohavica, D.; Têminová, J.; Berková, D.; Zagrádková, M.; Kortan, I.; Zelinka, I.; Walachová, I.; Malina, V.

    1988-11-01

    A modified single-phase liquid phase epitaxy method was developed on the basis of a novel variant of the growth boat. The method was used to grow GaInAsP/InP double heterostructures for lasers emitting at 1.3 and 1.55 μm. The main properties of wide-contact diodes (radiation power and threshold current density) were adopted as the characteristics of the quality of heterostructures characterized by different configurations of active and guiding layers. The quality of the structure was confirmed by the fabrication of laser diodes of the following types: stripe with oxide insulation, clad-ridge waveguide, and double-channel planar buried.

  13. Direct Growth of a-Plane GaN on r-Plane Sapphire Substrate by Metalorganic Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Araki, Masahiro; Mochimizo, Noriaki; Hoshino, Katsuyuki; Tadatomo, Kazuyuki

    2007-02-01

    We have investigated the direct growth of nonpolar a-plane GaN layers on an r-plane sapphire substrate by metalorganic vapor-phase epitaxy (MOVPE). A high-density nucleation of GaN islands was obtained on the r-plane sapphire substrate at the initial stage of the high-temperature growth without a buffer layer, which resulted in a two-dimensional (2D) growth mode. We studied the effects of V/III ratio growth conditions on the surface morphology and growth features of an a-plane GaN layer. The results showed that a high density of pits with an inverse-pyramidal shape were formed at a high V/III ratio, whereas a relatively low density of pits were formed at a low V/III ratio due to the increase in the rate of lateral growth along the c-axis direction. We successfully grew a-plane GaN layers with a flat and pit-free surface using the “two-step growth method”. The method consisted of growing a first layer at a high V/III ratio and growing a second layer at a low V/III ratio. We found that the first layer plays an important role in GaN layer growth. The formation of a void-free GaN layer with sidewall facets in the first step leads to a flat and pit-free layer grown at a high rate of lateral growth along the c-axis direction in the second step.

  14. Antibacterial activity of alimentary plants against Staphylococcus aureus growth.

    PubMed

    Pérez, C; Anesini, C

    1994-01-01

    Alimentary plants were screened for antibacterial activity against a penicillin G resistant strain of Staphylococcus aureus. Twenty-five samples of plant material corresponding to 21 species from 13 families were used. Both aqueous and ethanol extracts were obtained from them. Antibacterial activity was determined by the agar-well diffusion method, using cephazolin as a standard antibiotic. Seventeen ethanol extracts were found active. Eugenia caryophyllata (clavo de olor*) flowers, Myristica fragans (nuez moscada*) seeds, Theobroma cacao (cacao*) seed bark, Triticum sp (trigo*) fruit, Zea mays (maíz*) fruit and Piper nigrum (pimienta*) ripe fruit produced some of the more active extracts (* = Argentine vulgar names).

  15. Formation of a very thin current sheet in the near-earth magnetotail and the explosive growth phase of substorms

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Zhang, L.; Choe, G. S.; Cai, H. J.

    1995-01-01

    A magnetofricional method is used to construct two-dimensional MHD equilibria of the Earth's magnetosphere for a given distribution of entropy functions(S = pV(exp gamma), where p is the plasma pressure and V is the tube volume per unit magnetic flux. It is found that a very thin current sheet with B (sub zeta) is less than 0.5 nu T and thickness less than 1000 km can be formed in the near-earth magnetotail (x is approximately -8 to -20R(sub e) during the growth phase of substorm. The tail current sheets are found to become thinner as the entropy or the entropy gradient increases. It is suggested that the new entropy anti-diffusion instability associated with plasma transport across field lines leads to magnetic field dipolarization and accelerates the formation of thin current sheet, which may explain the observed explosive growth phase of substorms.

  16. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  17. Effect of polyphenolic compounds on the growth and cellulolytic activity of a strain of Trichoderma viride

    SciTech Connect

    Arrieta-Escobar, A.; Belin, J.M.

    1982-04-01

    Polyphenolic compounds are often regarded as inhibitors of microorganism growth. However, polyphenolic compounds can also induce stimulating effects on the growth, respiration, fermentation and excretion of amino acids. Depending on the concentration of polyphenolic compounds in the medium, opposed effects (inhibition, stimulation) can be observed. The purpose of this article is to study the effects of condensed tannins and some monomers on the growth and cellulolytic activity of Trichoderma viride. (Refs. 30).

  18. Recovery Efficiency Test Project Phase 2 activity report, Volume 1

    SciTech Connect

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

  19. Phase Evolution and Ni-Fe Granular Growth of Saprolitic Laterite Ore-CaO Mixtures during Reductive Roasting

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Li, Guanghui; Peng, Zhiwei; Rao, Mingjun; Zhang, Yuanbo; Jiang, Tao

    2016-12-01

    The correlations between phase evolution, fusion behavior, and Ni-Fe granules growth of laterite ore-CaO mixtures during reductive roasting have been investigated. The minimum melting point of 1220°C of the CaO-MgO-Al2O3-SiO2 system with 17-36 wt.% CaO is demonstrated via phase diagram analysis, and this point is decreased in the presence of FeO. This reveals that the fusion behavior in close association with the Fe-Ni granular growth can be regulated by altering the contents of CaO and FeO. Promoting the generation of diopside (CaMgSi2O6) may reduce the operating temperature from 1300-1350°C to 1150-1200°C, which ensures sufficient melting phase content. Moreover, reducing the CO partial fraction lowers the fusion temperature but hinders the growth of Ni-Fe grains. The average size of Ni-Fe granules in the reduced mixture with 17 wt.% CaO reaches nearly 20 μm at 1200°C for 1 h in a 100 vol.% CO atmosphere.

  20. Long-lifetime ice particles in mixed-phase stratiform clouds: Quasi-steady and recycled growth

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2015-11-01

    Ice particles play an important role in precipitation and radiation transfer in stratiform mixed-phase clouds. Lagrangian ice particle tracking in mixed-phase clouds is applied in both a 3-D time-dependent velocity field produced by a large eddy simulation cloud model and a 2-D idealized field. It is found that more than 10% of ice particles have lifetimes longer than 1.5 h, much longer than the large eddy turnover time or the time for a crystal to fall through the depth of a nonturbulent cloud. An analysis of trajectories in a 2-D idealized field shows that there are two types of long-lifetime ice particles: quasi-steady and recycled growth. For quasi-steady growth, ice particles are suspended in the updraft velocity region for a long time. For recycled growth, ice particles are trapped in the large eddy structures, and whether ice particles grow or sublimate depends on the ice relative humidity profile within the boundary layer. Some ice particles can grow after each cycle in the trapping region, until they are too large to be trapped, and thus have long lifetimes. The relative contribution of the recycled ice particles to the cloud mean ice water content depends on both the dynamic and thermodynamic properties of the mixing layer. In particular, the total ice water content of a mixed-phase cloud in a decoupled boundary layer can be much larger than that in a fully coupled boundary layer.