Science.gov

Sample records for active hands-on learning

  1. Promoting Female Students' Learning Motivation towards Science by Exercising Hands-On Activities

    ERIC Educational Resources Information Center

    Wen-jin, Kuo; Chia-ju, Liu; Shi-an, Leou

    2012-01-01

    The purpose of this study is to design different hands-on science activities and investigate which activities could better promote female students' learning motivation towards science. This study conducted three types of science activities which contains nine hands-on activities, an experience scale and a learning motivation scale for data…

  2. Do Hands-On, Technology-Based Activities Enhance Learning by Reinforcing Cognitive Knowledge and Retention?

    ERIC Educational Resources Information Center

    Korwin, Anthony R.; Jones, Ronald E.

    1990-01-01

    The geodesic dome concept was presented to 25 eighth graders through reading and a hands-on group assignment and to 25 via reading and lecture. Pre/posttest results showed that organized hands-on activities increased learning and retention of technological concepts. (SK)

  3. Enhancing Team-Based Active Learning Through Hands-On Experience With Nicotine Replacement Therapy

    PubMed Central

    2013-01-01

    Objectives. To enhance tobacco cessation active-learning in an ambulatory care elective course by adding hands-on experience with nicotine replacement therapy to a team-based learning (TBL) session. Design. A hands-on experience that included students chewing a piece of nicotine gum was added to a TBL class session. Student pairs used a skills checklist to evaluate and give peer feedback on appropriate counseling and gum use. Assessment. Students’ scores on a tobacco cessation examination were higher than those of students enrolled in the previous course in which TBL alone had been used. Based on pre- and post-experience survey responses, students’ perceptions regarding their abilities to provide tobacco cessation counseling improved. Subjective student comments regarding the experience were positive. Conclusion. Participating in a TBL session that incorporated hands-on experience with nicotine gum in an ambulatory care elective course increased students’ confidence in their ability to provide tobacco cessation counseling and provided a unique perspective on the product’s characteristics. PMID:23966731

  4. Learning by Design: Hands-On Learning.

    ERIC Educational Resources Information Center

    Harvey, Barbara Z.; Sirna, Richard T.; Houlihan, Margaret B.

    1998-01-01

    Students at a St. Louis middle school experimenting with hands-on learning methods have scored consistently higher on the Stanford Achievement Tests than those in other district schools. A hands-on learning environment requires a thematic, integrated curriculum; creative, self-motivated teachers; and a supportive, facilitative principal. (MLH)

  5. Student Responses to a Hands-On Kinesthetic Lecture Activity for Learning about the Oxygen Carrying Capacity of Blood

    ERIC Educational Resources Information Center

    Breckler, Jennifer; Yu, Justin R.

    2011-01-01

    This article describes a new hands-on, or "kinesthetic," activity for use in a physiology lecture hall to help students comprehend an important concept in cardiopulmonary physiology known as oxygen carrying capacity. One impetus for designing this activity was to address the needs of students who have a preference for kinesthetic learning and to…

  6. Progress of Systematic Hands on Devices for Active Learning Methods by Visualizing ICT Tools in Physics with Milliseconds Resolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akizo; Okiharu, Fumiko

    We are developing various systematic hands on devices for progress of active learning (AL) to improve students' conceptual understanding in physics laws. We are promoting AL methods in physics education for getting deeper conceptual understanding by using various ICT-based hands on devices and using visualizing ICT tools with milliseconds resolution. Here we investigate AL modules on collisions of big balloon pendulum with another known mass pendulum to get directly the air mass in the big balloon. We also discuss on Newton's laws of blowgun darts systems by using tapioca straws where we get definite works and energy just proportional to the length of the pipes of connected tapioca straws. These AL plans by using modules of big balloon system and blowgun-darts system are shown to be very effective for deeper conceptual understanding of Newton's Laws in almost frictionless worlds.

  7. Lab Safety and Bioterrorism Readiness Curricula Using Active Learning and Hands-on Strategies as Continuing Education for Medical Technologists

    PubMed Central

    Fiester, Steven; Redfearn, James; Helfinstine, Shannon; Meilander, Tracey; Woolverton, Christopher J.

    2010-01-01

    Frequent reports of laboratory- (and hospital-) acquired infection suggest a deficiency in safety training or lack of compliance. To assess the need for continuing education (CE) addressing this problem, an original education needs assessment survey was designed and administered to medical technologists (med-techs) in Northeast Ohio. Survey results were used to design a learner-centered training curriculum (for example, Lab Safety and Bioterrorism Readiness trainings) that engaged med-techs in active learning, integrative peer-to-peer teaching, and hands-on exercises in order to improve microbiology safety knowledge and associated laboratory techniques. The Lab Safety training was delivered six times and the Bioterrorism Readiness training was delivered five times. Pre/posttesting revealed significant gains in knowledge and techniques specific to laboratory safety, security, risk assessment, and bioterrorism readiness amongst the majority of med-techs completing the CE trainings. The majority of participants felt that the hands-on exercises met their needs and that their personal laboratory practices would change as a result of the training course, as measured by attitudinal surveys. We conclude that active learning techniques and peer education significantly enhance microbiology learning amongst participating med-techs. PMID:23914281

  8. A Case Study for Comparing the Effectiveness of a Computer Simulation and a Hands-on Activity on Learning Electric Circuits

    ERIC Educational Resources Information Center

    Ekmekci, Adem; Gulacar, Ozcan

    2015-01-01

    Science education reform emphasizes innovative and constructivist views of science teaching and learning that promotes active learning environments, dynamic instructions, and authentic science experiments. Technology-based and hands-on instructional designs are among innovative science teaching and learning methods. Research shows that these two…

  9. Learning about Modes in Atomic Force Microscopy by Means of Hands-On Activities Based on a Simple Apparatus

    ERIC Educational Resources Information Center

    Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn

    2009-01-01

    This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…

  10. The Geography of Greenhouse Gas Emissions: Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Liverman, Diana; Solem, Michael

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module examines the geography of human activities that produce the major…

  11. Shifting Gears. Hands-on Activities for Learning Workplace Skills and English as a Second Language. A Teacher's Handbook.

    ERIC Educational Resources Information Center

    World Education, Inc., New York, NY.

    This curriculum handbook uses a hands-on approach to teaching basic skills and language for the U.S. workplace to students who are not familiar with many common tools and procedures. Although designed for Southeast Asian refugees, the curriculum can be adapted for use with other groups, including older adults or young people. The handbook consists…

  12. Human Health in the Balance. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Meade, Melinda S.; Washburn, Sarah; Holman, Jeremy T.

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module states that human health is a product of complex interactions among…

  13. Going Beyond the Expected: Hands-On Activities Lead Special Education Class to New Heights of Learning.

    ERIC Educational Resources Information Center

    Santiago, Theresa

    1999-01-01

    A teacher of a special education class of 7- to 10-year-olds took her students outdoors to stimulate their interest in learning. Schoolyard nature study and environmental field trips led to schoolwide presentations and television performances about recycling and conservation. Peer teaching was an important learning strategy. These students…

  14. Thinking with Hands-On Activities

    ERIC Educational Resources Information Center

    Conover, Patricia Ross

    2009-01-01

    The goal for library media specialists and teachers is to lead students to use technology to communicate, in a powerful and meaningful way, and to creatively display what they have learned. With these ideas in mind, this article details several projects using Microsoft PowerPoint XP. The activities, with simplified instructions, can be adapted to…

  15. A Hands-On Activity to Build Mastery of Intermolecular Forces and Its Impacts on Student Learning

    ERIC Educational Resources Information Center

    Bruck, Laura B.

    2016-01-01

    The intermolecular forces activity presented in this article is designed to foster concept-building through students' use of concrete, manipulative objects, and it was developed to be pedagogically sound. Data analysis via pre- and posttesting and subsequent exam questions indicated that students who had the opportunity to participate in the…

  16. Hands-On Activities and Their Influence on Students' Interest

    ERIC Educational Resources Information Center

    Holstermann, Nina; Grube, Dietmar; Bogeholz, Susanne

    2010-01-01

    This study investigates the influence of hands-on activities on students' interest. We researched whether students with experience in specific hands-on activities show higher interest in these activities than students without experience. Furthermore, the relationship between the quality of the hands-on experience and interest in the respective…

  17. PBL, Hands-On/ Digital resources in Geology, (Teaching/ Learning)

    NASA Astrophysics Data System (ADS)

    Soares, Rosa; Santos, Cátia; Carvalho, Sara

    2015-04-01

    The present study reports the elaboration, application and evaluation of a problem-based learning (PBL) program that aims to evaluate the effectiveness in students learning the Rock Cycle theme. Prior research on both PBL and Rock Cycle was conducted within the context of science education so as to elaborate and construct the intervention program. Findings from these studies indicated both the PBL methodology and Rock Cycle as helpful for teachers and students. PBL methodology has been adopted in this study since it is logically incorporated in a constructivism philosophy application and it was expected that this approach would assist students towards achieving a specific set of competencies. PBL is a student-centered method based on the principle of using problems as the starting point for the acquisition of new knowledge. Problems are based on complex real-world situations. All information needed to solve the problem is initially not given. Students will identify, find, and use appropriate resources to complete the exercise. They work permanently in small groups, developing self-directed activities and increasing participation in discussions. Teacher based guidance allows students to be fully engaged in knowledge building. That way, the learning process is active, integrated, cumulative, and connected. Theme "Rock Cycle" was introduced using a problematic situation, which outlined the geological processes highlighted in "Foz do Douro" the next coastline of the school where the study was developed. The questions proposed by the students were solved, using strategies that involved the use of hands-on activities and virtual labs in Geology. The systematization of the selected theme was performed in a field excursion, implemented according to the organizational model of Nir Orion, to The "Foz do Douro" metamorphic complex. In the evaluation of the learning process, data were obtained on students' development of knowledge and competencies through the application of

  18. Are all hands-on activities equally effective? Effect of using plastic models, organ dissections, and virtual dissections on student learning and perceptions.

    PubMed

    Lombardi, Sara A; Hicks, Reimi E; Thompson, Katerina V; Marbach-Ad, Gili

    2014-03-01

    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or plastic models). Each group received a 15-min lecture followed by a 45-min activity with one of the treatments. Immediately after the lesson and then 2 mo later, students were tested on anatomy and physiology knowledge and completed an attitude survey. Students who used plastic models achieved significantly higher overall scores on both the initial and followup exams than students who performed organ or virtual dissections. On the initial exam, students in the plastic model and organ dissection treatments scored higher on anatomy questions than students who performed virtual dissections. Students in the plastic model group scored higher than students who performed organ dissections on physiology questions. On the followup exam, when asked anatomy questions, students in the plastic model group scored higher than dissection students and virtual dissection students. On attitude surveys, organ dissections had higher perceived value and were requested for inclusion in curricula twice as often as any other activity. Students who performed organ dissections were more likely than the other treatment groups to agree with the statement that "science is fun," suggesting that organ dissections may promote positive attitudes toward science. The findings of this study provide evidence for the importance of multiple types of hands-on activities in anatomy laboratory courses. PMID:24585474

  19. Enhancing Lean Manufacturing Learning Experience through Hands-On Simulation

    ERIC Educational Resources Information Center

    Elbadawi, Isam; McWilliams, Douglas L.; Tetteh, Edem G.

    2010-01-01

    Finding appropriate interactive exercises to increase students' learning in technical topic courses is always challenging to educators. In this study, several paper plane hands-on simulation exercises were developed, used, and tested in a lean manufacturing course for beginning college students. A pretest and posttest was used to assess the…

  20. Hands-On Activities with Metrics

    ERIC Educational Resources Information Center

    McFee, Evan

    1978-01-01

    Suggestions for familiarizing elementary teachers with the use of the metric system are given. These include a "stair-steps" method of converting units within the metric system and estimation and measurement activities using familiar everyday objects. (MN)

  1. Inquiry-Based Learning Using Everyday Objects: Hands-On Instructional Strategies That Promote Active Learning in Grades 3-8.

    ERIC Educational Resources Information Center

    Alvarado, Amy Edmonds; Herr, Patricia R.

    This book explores the concept of using everyday objects as a process initiated both by students and teachers, encouraging growth in student observation, inquisitiveness, and reflection in learning. After "Introduction: Welcome to Inquiry-Based Learning using Everyday Objects (Object-Based Inquiry), there are nine chapters in two parts. Part 1,…

  2. Hands-On Environmental Education Activities for K-6 Teachers.

    ERIC Educational Resources Information Center

    Kaufman, Donald G.; Eshbaugh, Stephen H.

    This environmental education workbook is aimed at helping kindergarten through 6th-grade teachers and contains hands-on activities directly targeted toward a particular age group, with equal distribution to each grade. Subject area descriptions and several multicultural activities are also included. Each activity lists the title, subject taught,…

  3. Are All Hands-On Activities Equally Effective? Effect of Using Plastic Models, Organ Dissections, and Virtual Dissections on Student Learning and Perceptions

    ERIC Educational Resources Information Center

    Lombardi, Sara A.; Hicks, Reimi E.; Thompson, Katerina V.; Marbach-Ad, Gili

    2014-01-01

    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or…

  4. Population Growth, Energy Use, and Pollution: Understanding the Driving Forces of Global Change. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Kuby, Michael

    Since the beginning of the scientific revolution in the 1700s, the absolute scale of the human economy has increased many times over, and, with it, the impact on the natural environment. This learning module's activities introduce the student to linkages among population growth, energy use, level of economic and technological development and their…

  5. Illustrating Probability in Genetics with Hands-On Learning: Making the Math Real

    ERIC Educational Resources Information Center

    Pierce, Benjamin A.; Honeycutt, Brenda B.

    2007-01-01

    Probability is an essential tool for understanding heredity and modern genetics, yet many students have difficulty with this topic due to the abstract and quantitative nature of the subject. To facilitate student learning of probability in genetics, we have developed a set of hands-on, cooperative activities that allow students to determine…

  6. Process and Learning Outcomes from Remotely-Operated, Simulated, and Hands-on Student Laboratories

    ERIC Educational Resources Information Center

    Corter, James E.; Esche, Sven K.; Chassapis, Constantin; Ma, Jing; Nickerson, Jeffrey V.

    2011-01-01

    A large-scale, multi-year, randomized study compared learning activities and outcomes for hands-on, remotely-operated, and simulation-based educational laboratories in an undergraduate engineering course. Students (N = 458) worked in small-group lab teams to perform two experiments involving stress on a cantilever beam. Each team conducted the…

  7. Inquiring into Three Approaches to Hands-On Learning in Elementary and Secondary Science Methods Courses.

    ERIC Educational Resources Information Center

    Barnes, Marianne B.; Foley, Kathleen R.

    1999-01-01

    Investigates three approaches to hands-on science learning in two contexts, an elementary science methods class and a secondary science methods class. Focused on an activity on foam. Concludes that when developing models for teaching science methods courses, methods instructors need to share power with prospective teachers. (Author/MM)

  8. Of Heart & Kidneys: Hands-On Activities for Demonstrating Organ Function & Repair

    ERIC Educational Resources Information Center

    Kao, Robert M.

    2014-01-01

    A major challenge in teaching organ development and disease is deconstructing a complex choreography of molecular and cellular changes over time into a linear stepwise process for students. As an entry toward learning developmental concepts, I propose two inexpensive hands-on activities to help facilitate learning of (1) how to identify defects in…

  9. Hands-On Activities for Integrating Geography across the Curriculum.

    ERIC Educational Resources Information Center

    Handley, Leslie Mills, Ed.

    1990-01-01

    Describes ways to integrate geography into the curriculum of primary and intermediate grades. Suggests hands-on activities for teaching abstract concepts through concrete experiences. Includes two units: creating a global map of the earth and incorporating social studies into language arts and mathematics by using magnet cars on maps. (NL)

  10. Introduction to the Human Dimensions of Global Change. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Archer, Emma R. M.; Turner, Billie L., II

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module provides students with a broad overview of the human dimensions of…

  11. Human Driving Forces and Their Impacts on Land Use/Land Cover. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Moser, Susanne

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module explains that land use/cover change has occurred at all times in all…

  12. Development of Pupils' Transfer Skills by Means of Hands On Activities with Artisan Materials in Natural Sciences Classes

    ERIC Educational Resources Information Center

    Ciascai, Liliana; Chicinas, Luminita

    2008-01-01

    Hands on activities with artisan materials used in order to realize different practical devices helpful in learning process are one of the most frequently used activity in science classes. Usually, the main strength of these activities are: a deeper learning, an increased motivation of pupils for actively learning and development of practical…

  13. CIT Vet Students Learn with Their Hands on the Animals.

    ERIC Educational Resources Information Center

    Cournoyer, David

    2000-01-01

    Describes Crownpoint Institute of Technology's (CIT's) (New Mexico) veterinary technology program. CIT veterinary students earn veterinary associate's degrees and job skills while working with their hands on the animals. Discusses CIT's hopes of becoming a national leader in elk management and its focus on delivering technology and modern skills…

  14. Storytelling with Chemistry and Related Hands-on Activities: Informal Learning Experiences to Prevent "Chemophobia" and Promote Young Children's Scientific Literacy

    ERIC Educational Resources Information Center

    Morais, Carla

    2015-01-01

    The dissemination of chemistry has been experienced as a difficult task, largely because of the negative image that the public has of this science, but also because of its inherent complexity and its own semantics and symbolism. Science centers, as informal learning environments, can contribute to a more effective dissemination of chemistry to an…

  15. Hands-On! Living in the Biosphere: Production, Pattern, Population, and Diversity. Developing Active Learning Module on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Brown, Dwight

    Biogeography examines questions of organism inventory and pattern, organisms' interactions with the environment, and the processes that create and change inventory, pattern, and interactions. This learning module uses time series maps and simple simulation models to illustrate how human actions alter biological productivity patterns at local and…

  16. The Timber Wolf: Hands-On Activities for Elementary Teachers.

    ERIC Educational Resources Information Center

    Kaufman, Donald G.; Oh, Bobbie S.

    The focus of this manual is the timber wolf and its experience in the United States. The activities are designed to enable students to gain a factual understanding of the timber wolf, question any misinformation they have learned regarding wolves, and learn to appreciate the wolf as a creature of nature rather than fear it as a creature of fairy…

  17. Hands-on astronomy activities for the elementary school

    SciTech Connect

    Lutz, T.E.; Horne, J.C.

    1994-12-31

    We held a series of astronomy workshops for local school teachers using astronomy activities from a course we give for Elementary Education majors. The school teachers provide us with feedback about successes and failures. Then we try the revised activities in the classroom. Via this in-service and pre-service feedback, the astronomy laboratory activities in the course have been completely revised over the last three years. The activities we use are almost entirely hands-on. The activities include use of log book (or journal) for describing outside-of-class observations of sunsets, phases of the moon, portable sundial, and the somewhat unique method we use to teach the constellations. In addition, all laboratory activity records are kept in the log book. Laboratory activities cover the use of fists to measure degrees, constellations, phases of the moon, relative distances and size of planets, Invent an Alien, lenses, images and telescopes, and the making of a comet. In our poster, based roughly on the theme of the seasons, we will describe a portable, multi-user sundial, length of the day display using newspaper data, two temperature/season activities, and a model demonstration of why the sundial shadows behave as they do.

  18. Deserts: Information and Hands-On Activities. Interactive Geography Kit.

    ERIC Educational Resources Information Center

    Bernard, Robin

    This book is designed to introduce students to a variety of fascinating desert ecosystems through a series of learning activities including games, graphs, experiments, and crafts. Each section contains an information section along with student activities and worksheets. The section topics are sand, scorpions, and snow; scenic sculpture; desert…

  19. Hands-On Environmental Science Activities. Teacher's Edition. First Edition.

    ERIC Educational Resources Information Center

    Kutscher, Eugene

    The ability of students to go beyond facts and to think critically, while at the same time enjoying and valuing the learning process, is fundamental to science and environmentalism. This book provides enrichment activities for the science curriculum that provide concrete connections with important world events. Each activity is self-contained and…

  20. Active Learning with Hands-On Resources.

    ERIC Educational Resources Information Center

    Crow, Tracy, Ed.

    1996-01-01

    The Eisenhower National Clearinghouse for Mathematics and Science Education (ENC) helps teachers by offering a broad assortment of services that enable them to quickly locate educational resources. This document is one in a series of print catalogs designed to give educators information about curriculum resources available for teaching math and…

  1. Technology and Engineering Education Students' Perceptions of Hands-On and Hands-Off Activities

    ERIC Educational Resources Information Center

    Sianez, David M.; Fugere, Madeleine A.; Lennon, Carter A.

    2010-01-01

    Technology and engineering education students responded to a survey regarding hands-on and hands-off activities. First, the students listed hands-on and hands-off activities and what characterized the two types of activities. Activities such as building or assembling something as well as working manually with tools were viewed as hands-on. Passive…

  2. Hydroponic Garden Promotes Hands-on Learning, Healthy Eating

    ERIC Educational Resources Information Center

    Anderson, Melinda; Swafford, Melinda

    2011-01-01

    The Carl D. Perkins Career Technical Improvement Act of 2006 encourages integration of academic instruction to improve student learning, impact employment skills of students, and enhance problem-solving skills by using authentic real-world situations. Academic integration is accomplished by integrating concepts of English, math, science,…

  3. Student Learning through Hands-On Industry Projects

    ERIC Educational Resources Information Center

    Acheson, Lingma Lu

    2014-01-01

    Learning is most effective when accompanied by doing. If someone desires to become a baseball player, being told how to play the game, watching others play and even understanding the rules of the game are mostly ineffective if the individual never "swings the bat". This paper outlines the implementation of this method (swinging the bat)…

  4. Hands-on laboratory Experience in Teaching-Learning Physiology.

    ERIC Educational Resources Information Center

    Randall, Walter C.; Burkholder, Timothy

    1990-01-01

    The results of actual student participation, with organized group discussions, which show that laboratory teaching remains the premiere mechanism for teaching and learning organ-system physiology are discussed. Laboratories using a pithed frog, a turtle heart, an anesthetized rabbit, and noninvasive recordings from students during exercise are…

  5. Hands-on and Online: Scientific Explorations through Distance Learning

    ERIC Educational Resources Information Center

    Mawn, Mary V.; Carrico, Pauline; Charuk, Ken; Stote, Kim S.; Lawrence, Betty

    2011-01-01

    Laboratory experiments are often considered the defining characteristic of science courses. Such activities provide students with real-world contexts for applying scientific concepts, while also allowing them to develop scientific ways of thinking and promoting an interest in science. In recent years, an increasing number of campuses have moved…

  6. STAR Library Education Network: a hands-on learning program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.

    2010-12-01

    Science and technology are widely recognized as major drivers of innovation and industry (e.g. Rising above the Gathering Storm, 2006). While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement and public understanding of STEM disciplines. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. Designed spaces, like libraries, allow lifelong, life-wide, and life-deep learning to take place though the research basis for learning in libraries is not as developed as other informal settings like science centers. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national education project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. This project will deepen our knowledge of informal/lifelong learning that takes place in libraries and establish a learning model that can be compared to the more established free-choice learning model for science centers and museums. The project includes the development of two STEM hands-on exhibits on topics that are of interest to library staff and their patrons: Discover Earth and Discover Tech. In addition, the project will produce resources and inquiry-based activities that libraries can use to enrich the exhibit experience. Additional resources will be provided through partnerships with relevant

  7. A Study on Using Hands-On Science Inquiries to Promote the Geology Learning of Preservice Teachers

    ERIC Educational Resources Information Center

    Lai, Ching-San

    2015-01-01

    This study aims to investigate the geology learning performance of preservice teachers. A total of 31 sophomores (including 11 preservice teachers) from an educational university in Taiwan participated in this study. The course arrangements include class teaching and hands-on science inquiry activities. The study searches both quantitative and…

  8. Learning to Solve a Business Problem: "Hands-On" Can Get Results

    ERIC Educational Resources Information Center

    Neeson, Robyn; Billington, Leo; Barrett, Rowena

    2007-01-01

    Small business training can facilitate business growth. The authors show that a "hands-on" approach can have a direct impact on a business owner's current situation. They consider this in relation to the problem of being unable to find the right staff, demonstrating that a program such as the one they describe enables learning and addresses the…

  9. The impact of a hands-on approach to learning visible spectrometry upon students' performance, motivation, and attitudes.

    PubMed

    Vrtacnik, Margareta; Gros, Natasa

    2013-01-01

    In this paper, the effect of introducing visible spectrometry concepts through hands-on laboratory work upon student learning within four vocational programs are discussed. All together, 118 students, average 18.6 years old, participated in the study. The results showed no correlation between students' motivational components (intrinsic, regulated, and controlled), chemistry self-concept and their achievement on an experiential knowledge test and knowledge gained from this hands-on approach. Statistically significant differences were found for academic achievement among students in a biotechnology technical program (School 1), food processing program (School 2), laboratory biomedicine program (School 3), and a biotechnology general program (School 4). Differences in academic achievement are further reflected in students' perception of particular knowledge gained through their hands-on experiences and in their expressed attitude toward different didactical characteristics. All students, regardless of their study program, highly evaluated the relaxed atmosphere that contributed to their self-confidence in completing their laboratory activities. PMID:23841355

  10. Bring the Poles to Your Classroom & Community Through Linked Hands-on Learning & IPY Data

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Bell, R. E.; Kastens, K. A.; Pfirman, S. L.

    2009-12-01

    Two major legacies of the 4th International Polar Year (IPY 2007-9) are a newly galvanized educational community and an immense volume of polar data collected by the global science community. The tremendous new polar datasets represent a unique opportunity to communicate the nature of the changing poles to student and public audiences through this polar savvy educational community if effective approaches to link data and understanding are employed. We have developed a strategy for polar education that leverages the IPY data resources, linked with the polar education hands-on ‘manipulatives’ (materials that students can manipulate in a dynamic manner). This linked approach leverages the fundamental inquiry based learning but recognizes that particularly in the polar sciences the size of the earth, the remoteness of the poles and the scale of its processes make it difficult for students to explore in a hands-on manner. The linking of polar hands-on ‘manipulatives’ with IPY data provides a bridge between the tangible and the global. Alone manipulative activities can be beneficial in their ability to help students visualize a process or behavior, but without a strong link back to the Earth through data or evidence the understanding of the process is not transferred from the classroom model to the full scale Earth. The use of activities or models is beneficial in connecting the learner to the polar process(es), while the IPY data provides a unique opportunity to ground the polar manipulative experiments in real data. This linked strategy emerged from a series of NSF sponsored IPY Polar Fairs at major science museums that reached in excess of 12,000 people. The design of the fairs was that polar scientists developed activities linking low cost hands-on manipulatives to scientific evidence/data that was displayed in posters, images, and video clips. The participating scientists walked the ‘audience’ through the hands-on manipulative, then discussed their

  11. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  12. Explorations in Algebra: Hands-On Lab Activities.

    ERIC Educational Resources Information Center

    Dougherty, Barbara J.; Matsumoto, Annette N.; Zenigami, Fay

    This book is a compatible instructional component to any algebra textbook and was developed by University of Hawaii under the Dwight D. Eisenhower Mathematics and Science Education Improvement Act. The tasks align with the content and instructional approach used in daily classes that emphasize standards-based teaching and learning. The tasks…

  13. Robotic Mission to Mars: Hands-on, minds-on, web-based learning

    NASA Astrophysics Data System (ADS)

    Mathers, Naomi; Goktogen, Ali; Rankin, John; Anderson, Marion

    2012-11-01

    Problem-based learning has been demonstrated as an effective methodology for developing analytical skills and critical thinking. The use of scenario-based learning incorporates problem-based learning whilst encouraging students to collaborate with their colleagues and dynamically adapt to their environment. This increased interaction stimulates a deeper understanding and the generation of new knowledge. The Victorian Space Science Education Centre (VSSEC) uses scenario-based learning in its Mission to Mars, Mission to the Orbiting Space Laboratory and Primary Expedition to the M.A.R.S. Base programs. These programs utilize methodologies such as hands-on applications, immersive-learning, integrated technologies, critical thinking and mentoring to engage students in Science, Technology, Engineering and Mathematics (STEM) and highlight potential career paths in science and engineering. The immersive nature of the programs demands specialist environments such as a simulated Mars environment, Mission Control and Space Laboratory, thus restricting these programs to a physical location and limiting student access to the programs. To move beyond these limitations, VSSEC worked with its university partners to develop a web-based mission that delivered the benefits of scenario-based learning within a school environment. The Robotic Mission to Mars allows students to remotely control a real rover, developed by the Australian Centre for Field Robotics (ACFR), on the VSSEC Mars surface. After completing a pre-mission training program and site selection activity, students take on the roles of scientists and engineers in Mission Control to complete a mission and collect data for further analysis. Mission Control is established using software developed by the ACRI Games Technology Lab at La Trobe University using the principles of serious gaming. The software allows students to control the rover, monitor its systems and collect scientific data for analysis. This program encourages

  14. Hands-on Herps.

    ERIC Educational Resources Information Center

    Science Activities, 1987

    1987-01-01

    Presents a hands-on activity to help primary, intermediate, and advanced students learn about and compare the general characteristics of reptiles and amphibians. Suggests "herp stations" to provide experiences. Details materials, background and procedures necessary for using this activity. (CW)

  15. One Key LOGO and Hands-On Activity Cards.

    ERIC Educational Resources Information Center

    Friesen, Chuck; And Others

    Developed to assist primary school teachers who wish to implement LOGO and One-Key LOGO (OKL) in their schools, this document consists of a LOGO resource manual and 92 color-coded activity cards designed to guide a pre-reader or primary child through a series of problem solving steps. After a brief introduction, which contains computer terminology…

  16. Small Wonders. Hands-On Science Activities for Young Children.

    ERIC Educational Resources Information Center

    Perdue, Peggy K.

    Children are natural scientists and are constantly questioning and challenging the world around them. This book is designed to help preschool and primary teachers see the science in common things. It is a book of manipulative activities that are designed to nurture a child's natural curiosity as well as integrate science with other areas.…

  17. How can the curation of hands-on STEM activities power successful mobile apps and websites?

    NASA Astrophysics Data System (ADS)

    Porcello, D.; Peticolas, L. M.; Schwerin, T. G.

    2015-12-01

    The Lawrence Hall of Science (LHS) is University of California, Berkeley's public science center. Over the last decade, the Center for Technology Innovation at LHS has partnered with many institutions to establish a strong track record of developing successful technology solutions to support STEM teaching and learning within informal environments. Curation by subject-matter experts has been at the heart of many educational technology products from LHS and its partners that are directed at educators and families. This work includes: (1) popular digital libraries for inquiry-based activities at Howtosmile.org (NSF DRL #0735007) and NASA Earth and Space science education resources at NASAwavelength.org; and novel mobile apps like DIY Sun Science (NASA NNX10AE05G) and DIY Human Body (NIH 5R25OD010543) designed to scaffold exploration of STEM phenomena at home. Both NASA Wavelength and DIY Sun Science arose out of long-term collaborations with the Space Sciences Laboratory at UC Berkeley, Institute for Global Environmental Strategies (IGES), and other NASA-funded organizations, in partnership with NASA through cooperative agreements. This session will review the development, formative evaluation, and usage metrics for these two Earth and Space science-themed educational technology products directly relevant to the AGU community. Questions reviewed by presenters will include: What makes a good hands-on activity, and what essential information do educators depend on when searching for programming additions? What content and connections do families need to explore hands-on activities? How can technology help incorporate educational standards into the discovery process for learning experiences online? How do all these components drive the design and user experience of websites and apps that showcase STEM content?

  18. Implementation of a Modular Hands-on Learning Pedagogy: Student Attitudes in a Fluid Mechanics and Heat Transfer Course

    ERIC Educational Resources Information Center

    Burgher, J. K.; Finkel, D.; Adesope, O. O.; Van Wie, B. J.

    2015-01-01

    This study used a within-subjects experimental design to compare the effects of learning with lecture and hands-on desktop learning modules (DLMs) in a fluid mechanics and heat transfer class. The hands-on DLM implementation included the use of worksheets and one of two heat exchangers: an evaporative cooling device and a shell and tube heat…

  19. Utilization of hands-on and simulation activities for teaching middle school lunar concepts

    NASA Astrophysics Data System (ADS)

    Roseman, Reni B.; Jones, Dyan L.

    2013-01-01

    A great deal of literature exists surrounding the misconceptions that students have regarding the moon, specifically how the moon phases and eclipses occur. These studies provide teachers with information regarding what misconceptions their students may come to the classroom with as well as some ideas as to how to approach and correct them. However, these methods are not always validated with classroom-based research, and much of the research that has been done is in the high school and college setting. As such, we have undertaken a study to investigate what a group of middle school students know about the moon pre-instruction, and how hands-on activities and computer simulations affect student learning and understanding of these topics. The results of this project show that neither supplementation was distinguishably more effective in improving student test scores, as measured by normalized gains; this may be an artifact of high pre-test scores, as described herein.

  20. Quantum Mechanics for Everyone: Hands-On Activities Integrated with Technology.

    ERIC Educational Resources Information Center

    Zollman, Dean A.; Rebello, N. Sanjay; Hogg, Kirsten

    2002-01-01

    Explains a hands-on approach to teaching quantum mechanics that challenges the belief shared by many physics instructors that quantum mechanics is a very abstract subject that cannot be understood until students have learned much of the classical physics. (Contains 23 references.) (Author/YDS)

  1. Hands-on distance learning is an effective way to boost physics understanding and skills of inservice teachers

    NASA Astrophysics Data System (ADS)

    Straley, Joseph

    2007-11-01

    Since 1993 the University of Kentucky has been developing methodologies and resources for boosting in-service teachers' process skills and conceptual understanding of physics through various forms of inquiry based learning. With funding from FIPSE we have developed a set of distance learning courses (``Light'', ``Temperature, Heat, & Energy'', ``Electricity & Magnetism'', ``Force, Motion, & Energy'') to teach physics concepts to rural teachers in grades 4-9. These courses consist of hands-on activities that the teachers can use in their own classrooms, and are based on a materials kit sent to each participant, allowing guided inquiry be the instructional approach. The courses are asynchronous and may be taken by individuals or small groups, for professional development or course credit, and are now being offered to teachers nationwide (see http://www.hovphysics.com). With NSF support we are now studying how much of what a teacher learns in a course transfers to the teacher's students.

  2. The APSU 0.5m Telescope - A Hands-On Learning Environment for Secondary Teachers

    NASA Astrophysics Data System (ADS)

    Allyn Smith, J.; Buckner, S. L.; Pirkle, S. F.

    2012-05-01

    Physical science teachers with hands-on experience are critical to secondary education learning. In "Before It’s Too Late," the U.S. Department of Education (2000) estimated "about 56% of high school students taking physical science are taught by out-of-field teachers." In Tennessee, the problem is even greater, while the demand is increasing. This project aims to address the shortage of well-prepared physics and astronomy teachers. Austin Peay State University has recently installed a 0.5m telescope with imaging and rudimentary spectroscopic capability. We are committed to working with the College of Education to bring secondary teachers in training and practicing secondary teachers to the telescope to experience basic operations and conduct small research projects. This is done via classes and summer workshops. We describe the program setup, expectations for the participants, learning outcomes, and the evaluation process.

  3. The Art and Science Connection. Hands-On Activities for Primary Students.

    ERIC Educational Resources Information Center

    Tolley, Kimberley

    Most people think that the artist and the scientist live in two totally different worlds. However, art and science are only two different ways of understanding and knowing the world. To help primary students make a connection between art and science, a collection of hands-on activities have been developed. By engaging in these activities that…

  4. The Art and Science Connection: Hands-on Activities for Intermediate Students.

    ERIC Educational Resources Information Center

    Tolley, Kimberley

    Most people think that the artist and the scientist live in two totally different worlds. However, art and science are only two different ways of understanding and knowing the world. To help intermediate students make a connection between art and science, a collection of hands-on activities have been developed. By engaging in these activities that…

  5. Pi in the Sky: Hands-on Mathematical Activities for Teaching Astronomy.

    ERIC Educational Resources Information Center

    Pethoud, Robert

    This book of activities was designed to provide students with the opportunity to create mental models of concepts in astronomy while using simple, homemade tools. In addition, these sequential, hands-on activities are to help students see how scientific knowledge is obtained. The introduction describes the rationale for the book and describes the…

  6. A Hands-On Activity Incorporating the Threefold Representation on Limiting Reactant

    ERIC Educational Resources Information Center

    Gonza´lez-Sa´nchez, Ange´lica M.; Ortiz-Nieves, Edgardo L.; Medina, Zuleikra

    2014-01-01

    Many students share the common belief that the limiting reactant in a chemical reaction is the reactant in the smallest quantity of material. To help students overcome this difficulty a hands-on activity for the limiting reactant concept was developed. The activity incorporates the three levels of representation (macroscopic, submicroscopic, and…

  7. Motivational Qualities of Hands-on Science Activities for Turkish Preservice Kindergarten Teachers

    ERIC Educational Resources Information Center

    Bulunuz, Mizrap

    2012-01-01

    The purpose of this research, conducted in a science methods course in Turkey, was to explore the qualities of hands-on science activities which might motivate preservice kindergarten teachers to use these activities in their own classrooms. Two similar classes totaling 47 students and taught by the same instructor were used in this study. On…

  8. Alignment of Hands-On STEM Engagement Activities with Positive STEM Dispositions in Secondary School Students

    ERIC Educational Resources Information Center

    Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra

    2015-01-01

    This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in…

  9. Occurrences and Quality of Teacher and Student Strategies for Self-Regulated Learning in Hands-On Simulations

    ERIC Educational Resources Information Center

    Khaled, Anne; Gulikers, Judith; Biemans, Harm; Mulder, Martin

    2016-01-01

    For many decades, teacher-structured hands-on simulations have been used in education mainly for developing procedural and technical skills. Stimulating contemporary learning outcomes suggests more constructivist approaches. The aim of this study is to examine how self-regulated learning (SRL), an important constructivist learning environment…

  10. More 'hands-on' particle physics: Learning with ATLAS at CERN

    NASA Astrophysics Data System (ADS)

    Long, Lynne

    2011-05-01

    This article introduces teachers and students to a new portal of resources called Learning with ATLAS at CERN (http://learningwithatlas-portal.eu/), which has been developed by a European consortium of academic researchers and schools' liaison and outreach providers from countries across Europe. It includes the use of some of the mind-boggling facts and figures from the Large Hadron Collider experiment to illustrate some basic school physics concepts. It also uses innovative software adapted and made available on the web by European particle physics researchers to introduce a more innovative investigative approach to teaching particle physics concepts. This gives students a more 'hands-on' experience in the classroom and a feel for what real scientific research might be like.

  11. Teaching the Common Core Math Standards with Hands-On Activities, Grades 6-8

    ERIC Educational Resources Information Center

    Muschla, Judith A.; Muschla, Gary Robert; Muschla, Erin

    2012-01-01

    The new Common Core State Standards for Mathematics have been formulated to provide students with instruction that will help them acquire a thorough knowledge of math at their grade level, which will in turn enable them to move on to higher mathematics with competence and confidence. "Hands-on Activities for Teaching the Common Core Math…

  12. Witness to History: Using Hands-On Activities, A Guidebook for High School History Teachers.

    ERIC Educational Resources Information Center

    Metzler, Suzanne

    This guidebook is intended to help high school students discover the connection between themselves and the people from the past by being engaged in hands-on activities. The guidebook allows students to create artifacts or recreate a process known well to people from times past. The guide is arranged to provide historical background, materials…

  13. Apple Treats. BASIC Classroom Computing Featuring Hands-On Activities and Pencil/Paper Fun.

    ERIC Educational Resources Information Center

    Embry, Lynn

    Developed as an introduction to computer programming using an Apple microcomputer, this document presents teachers and students with: (1) essential vocabulary used in the BASIC language; (2) syntax; and (3) programming techniques. Simple hands-on activities designed to guide the learner through beginning BASIC programming skills and fundamental…

  14. Twenty-first century skills for students: hands-on learning after school builds school and life success.

    PubMed

    Cabral, Leide

    2006-01-01

    At the core of the movement for twenty-first century skills are students. The growing efforts to increase programs leveraging out-of-school time are focused on giving American youth everything they need to compete in this increasingly complex world. The author is one of many students who have been well served by initiatives imparting twenty-first century skills during after-school hours. Now a senior at Boston Latin School, the author has been helped along the way by Citizen Schools, an after-school education program focused on hands-on learning apprenticeships and homework help. While enrolled in the program as a middle school student, the author took part in projects that exemplified hands-on, inquiry-based learning that helped her develop twenty-first century skills. For example, along with dozens of other students, she advanced her data analysis skills by analyzing statistics about Boston Public high schools, which also helped her select and enroll in one of the city's premier exam schools. Also, she and her peers worked with corporate attorneys who served as writing coaches and whose expertise the author drew from in producing a published essay and greatly improving her writing skills. The author now finds that the public speaking, leadership, organizational, social, and management abilities she built through her participation in Citizen Schools are a great asset to her in high school. The confidence with which she tackles her responsibilities can also be traced back to her experiences in the program. As she looks toward college, the author reflects and realizes that being actively involved in a quality after-school program put her on track for a successful future. PMID:17017266

  15. Does the Lack of Hands-On Experience in a Remotely Delivered Laboratory Course Affect Student Learning?

    ERIC Educational Resources Information Center

    Abdel-Salam, Tarek; Kauffman, Paul J.; Crossman, Gary

    2006-01-01

    Educators question whether performing a laboratory experiment as an observer (non-hands-on), such as conducted in a distance education context, can be as effective a learning tool as personally performing the experiment in a laboratory environment. The present paper investigates this issue by comparing the performance of distance education…

  16. Effectiveness of Hands-on and Minds-on Activities on Students' Achievement and Attitudes towards Physics

    ERIC Educational Resources Information Center

    Ates, Ozlem; Eryilmaz, Ali

    2011-01-01

    This research aimed to investigate the effectiveness of hands-on and minds-on activities on ninth grade students' achievement in and attitudes towards simple electric circuits. The study was conducted with 130 students, 70 of which were assigned as experimental group and instructed by hands-on/minds-on activities, while the 60 were assigned as…

  17. Alignment of Hands-on STEM Engagement Activities with Positive STEM Dispositions in Secondary School Students

    NASA Astrophysics Data System (ADS)

    Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra

    2015-12-01

    This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in activities such as an after-school robotics program. Both groups are compared and contrasted with a third group of high school students admitted at the eleventh grade to an academy of mathematics and science. All students were assessed using the same science, technology, engineering and mathematics (STEM) dispositions instrument. Findings indicate that the after-school group whose participants self-selected STEM engagement activities, and the self-selected academy of mathematics and science group, each had highly positive STEM dispositions comparable to those of STEM professionals, while a subset of the middle school whole-classroom energy monitoring group that reported high interest in STEM as a career, also possessed highly positive STEM dispositions comparable to the STEM Professionals group. The authors conclude that several different kinds of hands-on STEM engagement activities are likely to foster or maintain positive STEM dispositions at the middle school and high school levels, and that these highly positive levels of dispositions can be viewed as a target toward which projects seeking to interest mainstream secondary students in STEM majors in college and STEM careers, can hope to aspire. Gender findings regarding STEM dispositions are also reported for these groups.

  18. The Effect of Hands-on '"Energy-Saving House" Learning Activities on Elementary School Students' Knowledge, Attitudes, and Behavior Regarding Energy Saving and Carbon-Emissions Reduction

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng; Lin, Kuen-Yi; Guu, Yunn-Horng; Chang, Liang-Te; Lai, Chih-Chien

    2013-01-01

    Energy saving and carbon-emissions reduction (ESCER) are widely regarded as important issues for progress towards ensuring sustainable forms of economic development. This Taiwanese study focuses on the effects of a series of educational activities about ESCER on students' knowledge, attitudes and behavior. Sixty fifth-grade students from two…

  19. A comparison of the effectiveness of hands-on and computer-mediated instruction for learning solubility and solutions at the middle school level

    NASA Astrophysics Data System (ADS)

    Moin, Laura J.

    Previous research in science education has provided evidence that textbook-oriented instruction falls short of achieving desired educational outcomes. In the 1960s, educational reform movements advocated involving students in laboratory experiments with the belief that such hands-on tasks would necessarily lead to learning. In the mid-1980s, the introduction of computers in education provided an alternative to hands-on instruction, but comparisons between hands-on (HO) and computer-mediation (CM) have been scarce and contradictory. Recently, researchers have speculated about the potential benefits of HO versus CM instruction for individuals of different abilities; but few empirical studies have addressed this issue. This research compares immediate and delayed achievement (measured as concept understanding, problem solving, and total learning) and conversations of small groups of students (blocked as high, medium, and low achievers) under each condition. Statistical analysis (2 x 3 randomized block design, Two-Way ANOVA: Instruction method x Prior achievement level) revealed a disordinal interaction between treatment and achievement level: computer instruction resulted in more learning gains for low achievers and hands-on instruction was more effective for high achievers. Hands-on students struggled with procedural demands and obtained less accurate experimental results, making data more difficult to interpret. In contrast, for high achievers, unreliable experimental results seemed to have engendered more discussion among peers and elicited more explanations, which likely led to greater learning gains. In the computer condition, students were relieved of the manipulative demands of real objects, which helped low achievers concentrate on the conceptual aspects of the lesson. The computer facilitated completion of the "experiments" more quickly and hence allowed low achieving students more time to engage with practice tasks, an activity closely monitored and

  20. The use of a hands-on model in learning the regulation of an inducible operon and the development of a gene regulation concept inventory

    NASA Astrophysics Data System (ADS)

    Stefanski, Katherine M.

    A central concept in genetics is the regulation of gene expression. Inducible gene expression is often taught in undergraduate biology courses using the lac operon of Escherichia coli (E. coli ). With national calls for reform in undergraduate biology education and a body of literature that supports the use of active learning techniques including hands-on learning and analogies we were motivated to develop a hands-on analogous model of the lac operon. The model was developed over two iterations and was administered to genetics students. To determine the model's worth as a learning tool a concept inventory (CI) was developed using rigorous protocols. Concept inventories are valuable tools which can be used to assess students' understanding of a topic and pinpoint commonly held misconceptions as well as the value of educational tools. Through in-class testing (n =115) the lac operon concept inventory (LOCI) was demonstrated to be valid, predictive, and reliable (? coefficient = 0.994). LOCI scores for students who participated in the hands-on activity (n = 67) were 7.5% higher (t = -2.281, P < 0.05) than students who did not ( n = 62). Use of the model is also supported by student feedback from two surveys. This study provides an effective activity that aids students' understanding of the lac operon. We were able to determine the efficacy of the activity and identify misconceptions held by students about the lac operon because of the use of a valid and reliable CI.

  1. Hands-on Activities versus Worksheets in Reinforcing Physical Science Principles: Effects on Student Achievement and Attitude.

    ERIC Educational Resources Information Center

    Johnson, Donald M.; Wardlow, George W.; Franklin, Timothy D.

    1997-01-01

    A group of 132 agricultural science students were divided into an experimental group who completed hands-on activities on Ohm's Law and incline plane and a control group who completed worksheets. There were no significant differences in immediate or follow-up measures of achievement. Hands-on students had significantly more positive attitudes. (SK)

  2. Hands-On Activities: A New Instructional Method for a Fluid Mechanics Course---Never Underestimate the Teaching Power of Jell-O RTM

    NASA Astrophysics Data System (ADS)

    Albers, Lynn Alwine

    Background In order to eliminate the fear-factor associated with learning FluidMechanics, a new instructional method was created. The new method is neatly packaged into hands-on activities (as defined in this dissertation) in order to ease implementation and dissemination into an engineering class. Because of variations in learning and teaching styles of students and lecturers [34], the hands-on activities are designed to help the lecturer communicate key concepts to a wider spectrum of students. Typically engineering lectures are biased towards intuitive, verbal, reflective and sequential learners whereas few engineering students fall into these categories. [35] The hands-on activities are meant to bridge the communication gap resulting in a positive educational experience. Purpose In order to assess the impact of the new instructional method, a new engineering education experimental design was created. Engineering Education research is very interdisciplinary in nature and therefore requires cooperation from multiple Colleges including, but not limited to, Engineering, Education, and Science (Statistics). Design/Method Two groups of engineering students were allocated to test the hypothesis, "Does being exposed to hands-on activities (a new instructional method) in a section of MAE 308 - Fluid Mechanics result in higher student achievement?" Comparison of the quiz results between the control group and experimental group assessed the effectiveness of the hands-on activities. The problems within each quiz correlated to a level of Bloom's Taxonomy. A comparison of the results on the problems assessed which level of Bloom's were impacted. NHST was performed to determine statistical significance while the effect size was calculated to determine practical significance. Results The hands-on activities have a positive effect on learning. 3.30% more students per class perform better on each problem on each quiz. The hands-on activity, Rainbow Layer Cake, was a superstar

  3. Cognitive Achievement and Motivation in Hands-on and Teacher-Centred Science Classes: Does an additional hands-on consolidation phase (concept mapping) optimise cognitive learning at work stations?

    NASA Astrophysics Data System (ADS)

    Gerstner, Sabine; Bogner, Franz X.

    2010-05-01

    Our study monitored the cognitive and motivational effects within different educational instruction schemes: On the one hand, teacher-centred versus hands-on instruction; on the other hand, hands-on instruction with and without a knowledge consolidation phase (concept mapping). All the instructions dealt with the same content. For all participants, the hands-on approach as well as the concept mapping adaptation were totally new. Our hands-on approach followed instruction based on "learning at work stations". A total of 397 high-achieving fifth graders participated in our study. We used a pre-test, post-test, retention test design both to detect students' short-term learning success and long-term learning success, and to document their decrease rates of newly acquired knowledge. Additionally, we monitored intrinsic motivation. Although the teacher-centred approach provided higher short-term learning success, hands-on instruction resulted in relatively lower decrease rates. However, after six weeks, all students reached similar levels of newly acquired knowledge. Nevertheless, concept mapping as a knowledge consolidation phase positively affected short-term increase in knowledge. Regularly placed in instruction, it might increase long-term retention rates. Scores of interest, perceived competence and perceived choice were very high in all the instructional schemes.

  4. Hands-on Activities Tie Science Ed Standards to Space Weather on Windows to the Universe

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Johnson, R. M.

    2008-12-01

    The Windows to the Universe project includes a large web site with extensive user traffic as well as program of professional development workshops for teachers. In the past 5 years we have conducted 18 workshops dedicated exclusively to space weather and magnetism serving 573 total attendees. This talk describes our pedagogical approach of blending hands-on activities, covering basic concepts of magnetism, with visually- rich presentations of space weather topics in order to encourage teachers to incorporate space weather themes into their classroom teaching. Basic understanding of physical science themes of magnetism, electricity, forces, and motion are well represented in science education standards. Hands-on activities touching upon these themes simultaneously fulfill a teacher's need to cover topics in the standards and prepare students to comprehend more abstract representations of more complex systems relevant to space weather. Simply put, a student who has traced field lines around a bar magnet using a simple magnetometer is much better equipped to comprehend portrayals (images and animations) of complex magnetic fields associated with space weather phenomena. Thus, one of our main approaches to space weather education has been to encourage students to explore basic physical science concepts (as outlined in education standards) via hands-on activities and then to link those simple principles to more complex and visually captivating representations of space weather phenomena. We employ two other approaches to making the connections between standards-based themes that teachers must cover and concepts that are key to the study of space weather. The first is to tap heavily into "societal impacts" elements of education standards. Space weather presents numerous instances in which phenomena of scientific interest - such as radiation hazards to spacecraft and astronauts, communications disruptions, and surges in electrical power systems - have implications for

  5. Blended Learning Model on Hands-On Approach for In-Service Secondary School Teachers: Combination of E-Learning and Face-to-Face Discussion

    ERIC Educational Resources Information Center

    Ho, Vinh-Thang; Nakamori, Yoshiteru; Ho, Tu-Bao; Lim, Cher Ping

    2016-01-01

    The purpose of this study was to examine the effectiveness of a blended learning model on hands-on approach for in-service secondary school teachers using a quasi-experimental design. A 24-h teacher-training course using the blended learning model was administered to 117 teachers, while face-to-face instruction was given to 60 teachers. The…

  6. The Universe at Your Fingertips 2.0 DVD-ROM: A Collection of Hands-on Activities, Resource Guides, Informational Articles, and Videos for Teaching Astronomy

    NASA Astrophysics Data System (ADS)

    Fraknoi, A.; Kruse, B.; Gurton, S.; Schmitt, A. H.; Proudfit, L.; Schatz, D.

    2012-08-01

    A new edition of the ASP's key educational publication The Universe at Your Fingertips has been issued in DVD-ROM format, containing 133 classroom-tested, hands-on activities (organized by subject), 43 articles with background information about topics in astronomy, 9 articles on teaching and learning space science in the 21st century, 17 guides to the best published and web resources on key topics, 12 short instructional videos, and a host of images.

  7. Could hands-on activities and smartphone in science CLIL teaching foster motivation and positive attitudes in students?

    NASA Astrophysics Data System (ADS)

    Ercolino, Immacolata; Maraffi, Sabina; Sacerdoti, Francesco M.

    2016-04-01

    Motivating students is one of the most challenging things we do as educators. We know that students need to be engaged to fully appreciate and learn what has been taught; the secret consists in nurturing student engagement. One of the newer ways to involve students and foster motivation in their Science learning consists in focusing on their usage and on applying knowledge and skills in their real-life. Students usually are engaged in authentic teaching pathway. Learning focusing on the experience helps teachers to improve classroom management by gathering students around a common organized activity. Hands-on activities support problem-based approaches to learning by focusing on the experience and process of investigating, proposing and creating solutions developing critical thinking skills and enlarge student's scientific glossary. We utilized in our classroom some lab activities that we learned at an ESA/GTTP Teacher training Workshop 2014 program at the Lorentz Center Leiden, Netherlands. "Cooking a comet - Ingredients for life" "Demonstration of the second Kepler's law using marbles" New media equipment, as student's own smartphones, can increase the teaching impact speaking the same language used by the students every day. They can measure magnetic fields, their GPS coordinates (longitude and latitude), and so on. In this way we can measure distances as parallax using mobile devices and simulating distance measurements in the classroom, on the school campus. The smartphone is the device with which the students answer questions, take decisions, and solve quests. Students infact can observe the Universe from their classroom and scientifically they can watch the Sun with "Google sky map" or "Star walk" are excellent tools to learn your way around the night sky .As teachers we used these apps in the classroom when Sun goes through the constellations so our students don't believe in horoscopes. This paper is focused on hands on activities and the effects of the

  8. Hands-on Learning with a Hands-off Approach for Professional Development

    ERIC Educational Resources Information Center

    Ahlfeld, Kelly

    2010-01-01

    Creativity and innovation, critical thinking and problem solving, initiative and self-direction--these are just some of the 21st-century skills teachers strive to develop in students. Meaningful projects, student-centered learning, differentiation--these are some of the strategies used to help students learn in the 21st century. But, how do these…

  9. Finite Element Learning Modules as Active Learning Tools

    ERIC Educational Resources Information Center

    Brown, Ashland O.; Jensen, Daniel; Rencis, Joseph; Wood, Kristin; Wood, John; White, Christina; Raaberg, Kristen Kaufman; Coffman, Josh

    2012-01-01

    The purpose of active learning is to solicit participation by students beyond the passive mode of traditional classroom lectures. Reading, writing, participating in discussions, hands-on activities, engaging in active problem solving, and collaborative learning can all be involved. The skills acquired during active learning tend to go above and…

  10. Effects of Combined Hands-on Laboratory and Computer Modeling on Student Learning of Gas Laws: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Liu, Xiufeng

    2006-01-01

    Based on current theories of chemistry learning, this study intends to test a hypothesis that computer modeling enhanced hands-on chemistry laboratories are more effective than hands-on laboratories or computer modeling laboratories alone in facilitating high school students' understanding of chemistry concepts. Thirty-three high school chemistry…

  11. Law and Justice CTE Program Offers a Hands-On Approach to Learning

    ERIC Educational Resources Information Center

    Klein, Jennifer

    2013-01-01

    Tom Washburn, founder of the Law and Justice Program in Fulton County Schools in Atlanta, Georgia, sees career and technical education (CTE) as a framework for gains in reading comprehension, public speaking, math and science. "It's a holistic approach to learning, framed by law and justice. Behind the scenes we're reading novels, improving…

  12. How to Make a Field Trip a Hands-On Investigative Laboratory: Learning about Marine Invertebrates

    ERIC Educational Resources Information Center

    Burrowes, Patricia A.

    2007-01-01

    Research has shown that when students are given the opportunity to ask their own questions and design their own experiments, they become more interested in learning the answers. In this article, the author describes an effective method to do a field trip to the beach and gets her students to make observations about marine animals, come up with a…

  13. Wireless Sensor Networks--A Hands-On Modular Experiments Platform for Enhanced Pedagogical Learning

    ERIC Educational Resources Information Center

    Taslidere, E.; Cohen, F. S.; Reisman, F. K.

    2011-01-01

    This paper presents the use of wireless sensor networks (WSNs) in educational research as a platform for enhanced pedagogical learning. The aim here with the use of a WSN platform was to go beyond the implementation stage to the real-life application stage, i.e., linking the implementation to real-life applications, where abstract theory and…

  14. Research Practicum in Rehabilitation Counselor Education: Learning Research through Hands-on Experience

    ERIC Educational Resources Information Center

    Miller, Susan M.; Rintelmann, Kristen

    2007-01-01

    The purpose of this paper is to discuss the research thesis as an educational tool and to propose the research practicum as an alternative to the thesis in rehabilitation counselor education programs. The research practicum has the potential to become an important learning opportunity which will provide rehabilitation counseling students with…

  15. Does ERP Hands-On Experience Help Students Learning Business Process Concepts?

    ERIC Educational Resources Information Center

    Rienzo, Thomas; Han, Bernard

    2011-01-01

    Over the past decade, more and more business schools are attempting to teach business processes (BPs) by using enterprise resource planning (ERP) software in their curricula. Currently, most studies involving ERP software in the academy have concentrated on learning and teaching via self-assessment surveys or curriculum integration. This research…

  16. "Who Dunnit?": Learning Chemistry and Critical Thinking through Hands-On Forensic Science.

    ERIC Educational Resources Information Center

    Demetry, Chrysanthe; Nicoletti, Denise; Mix, Kimberlee; O'Connor, Kerri; Martin, Andrea

    2002-01-01

    Demonstrates how forensic science can be used as a framework for generating student interest and learning in chemistry and promoting critical thinking. The "Who Dunnit?" forensic science workshop was developed by undergraduate students and is one element of a two-week residential summer outreach program that seeks to develop interest in…

  17. More "Hands-On" Particle Physics: Learning with ATLAS at CERN

    ERIC Educational Resources Information Center

    Long, Lynne

    2011-01-01

    This article introduces teachers and students to a new portal of resources called Learning with ATLAS at CERN (http://learningwithatlas-portal.eu/), which has been developed by a European consortium of academic researchers and schools' liaison and outreach providers from countries across Europe. It includes the use of some of the mind-boggling…

  18. Do Predators Always Win? Starfish versus Limpets: A Hands-On Activity Examining Predator-Prey Interactions

    ERIC Educational Resources Information Center

    Faria, Claudia; Boaventura, Diana; Galvao, Cecilia; Chagas, Isabel

    2011-01-01

    In this article we propose a hands-on experimental activity about predator-prey interactions that can be performed both in a research laboratory and in the classroom. The activity, which engages students in a real scientific experiment, can be explored not only to improve students' understanding about the diversity of anti-predator behaviors but…

  19. The Healthy Heart Race: A Short-Duration, Hands-on Activity in Cardiovascular Physiology for Museums and Science Festivals

    ERIC Educational Resources Information Center

    Pressley, Thomas A.; Limson, Melvin; Byse, Miranda; Matyas, Marsha Lakes

    2011-01-01

    The "Healthy Heart Race" activity provides a hands-on demonstration of cardiovascular function suitable for lay audiences. It was field tested during the United States of America Science and Engineering Festival held in Washington, DC, in October 2010. The basic equipment for the activity consisted of lengths of plastic tubing, a hand pump,…

  20. Rain Forest: The Latest Information and Hands-on Activities To Explore Animals, Plants, and Geography. Grades 2-5.

    ERIC Educational Resources Information Center

    Bernard, Robin

    This book contains information and activities to help make the study of rainforests an exciting exploration for teachers and students. Students explore the animals, plants, and geography of the rainforest by completing hands-on activities from various disciplines. This book contains five units: (1) "Living Layers"; (2) "Animals, Animals, Animals";…

  1. Science Action Labs Part 3: Puzzlers. An Innovative Collection of Hands-On Science Activities and Labs.

    ERIC Educational Resources Information Center

    Shevick, Ed

    This book contains hands-on science laboratory activities for grades 4 through 9 that use discrepant events to challenge students. All of the "puzzlers" are based upon science principles and include directions for building gadgets that explain the "puzzlers." Topics covered include: volume conservation, magnetic phenomena, optical illusions,…

  2. An Educational Device for a Hands-on Activity to Visualize the Effect of Atherosclerosis on Blood Flow

    ERIC Educational Resources Information Center

    de Almeida, J. P. P. G. L.; de Lima, J. L. M. P.

    2013-01-01

    An educational device was created to develop a hands-on activity to illustrate how atherosclerosis can dramatically reduce blood flow in human vessels. The device was conceived, designed, and built at the University of Coimbra, in response to a request from the Exploratorio Infante D. Henrique Science Centre Museum, where it is presently…

  3. Preschoolers' Acquisition of Scientific Vocabulary through Repeated Read-Aloud Events, Retellings, and Hands-on Science Activities

    ERIC Educational Resources Information Center

    Leung, Cynthia B.

    2008-01-01

    This study explored 3- and 4-year-old children's development of scientific vocabulary from participation in repeated interactive read-aloud events and retellings of three informational picture books about light and color, followed by hands-on science activities. Thirty-two children attending a YWCA preschool were matched by age and general…

  4. The Use of Molecular Modeling as "Pseudoexperimental" Data for Teaching VSEPR as a Hands-On General Chemistry Activity

    ERIC Educational Resources Information Center

    Martin, Christopher B.; Vandehoef, Crissie; Cook, Allison

    2015-01-01

    A hands-on activity appropriate for first-semester general chemistry students is presented that combines traditional VSEPR methods of predicting molecular geometries with introductory use of molecular modeling. Students analyze a series of previously calculated output files consisting of several molecules each in various geometries. Each structure…

  5. Square Wheels and Other Easy-To-Build Hands-On Science Activities. An Exploratorium Science Snackbook.

    ERIC Educational Resources Information Center

    Rathjen, Don; Doherty, Paul

    This book, part of The Exploratorium science "snackbook" series, explains science with a hands-on approach. Activities include: (1) "3-D Shadow"; (2) "Bits and Bytes"; (3) "Circuit Workbench"; (4) "Diamagnetic Repulsion"; (5) "Film Can Racer"; (6) "Fractal Patterns"; (7) "Hoop Nightmares"; (8) "Hydraulic Arm"; (9) "Hyperbolic Slot"; (10) "Light…

  6. What's Up in the Atmosphere? Exploring How Aerosols Impact Sky Color Through Hands-on Activities with Elementary GLOBE

    NASA Astrophysics Data System (ADS)

    Damadeo, K.; Taylor, J.

    2015-12-01

    What color is the sky today? The GLOBE Kids - Anita, Simon, and Dennis want to know why the sky isn't always the same shade of blue and sometimes isn't even blue. Through the new Elementary GLOBE Aerosols Storybook and Learning Activities, the GLOBE Kids learn that there's a lot more than air in the atmosphere, which can affect the colors we see in the sky. There are four hands-on activities in this unit: 1) Sky Observers - Students make observations of the sky, record their findings and share their observation reports with their peers. The activity promotes active observation and recording skills to help students observe sky color, and recognize that sky color changes; 2) Why (Not) So Blue? - Students make predictions about how drops of milk will affect color and visibility in cups of water representing the atmosphere to help them understand that aerosols in the atmosphere have an effect on sky conditions, including sky color and visibility. The activity also introduces the classification categories for daytime sky color and visibility; 3) See the Light - Students use prisms and glue sticks to explore the properties of light. The activity demonstrates that white light is made up of seven colors that represent different wavelengths, and illustrates why the sky is blue during the day and red at sunset; 4) Up in the Air - Students work in groups to make an aerosol sampler, a simple adhesive tool that allows students to collect data and estimate the extent of aerosols present at their school, understanding that, in fact, there are particles in the air we breathe. NGSS Alignment includes: Disciplinary Core Ideas- ESS2.D: Weather and Climate, ESS3.C: Human Impacts on Earth Systems, PS4.B: Electromagnetic Radiation, ESS3.A: Natural Resources; Science and Engineering Practices- Asking Questions and Defining Problems, Planning and Carrying Out an Investigation, Analyzing and Interpreting Data, Engaging in Argument from Evidence, Obtaining, Evaluating, and Communicating

  7. The mobile GeoBus outreach project: hands-on Earth and Mars activities for secondary schools in the UK

    NASA Astrophysics Data System (ADS)

    Robinson, Ruth; Pike, Charlotte; Roper, Kathryn

    2015-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary schools by providing teaching resources that are not readily available to educators, to inspire young learners by incorporating new science research outcomes in teaching activities, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Just under 35,000 pupils have been involved in practical hands-on Earth science learning activities since the project began in 2012, including many in remote and disadvantaged regions. The resources that GeoBus brings to schools include all the materials and equipment needed to run 50 - 80 minute workshops, and half- or whole-day Enterprise Challenges and field excursions. Workshops are aimed at a class of up to 30 pupils and topics include minerals, rocks, fossils, geological time, natural resources, climate change, volcanoes, earthquakes, and geological mapping. As with all GeoBus activities, the inclusion of equipment and technology otherwise unavailable to schools substantially increases the engagement of pupils in workshops. Field excursions are increasingly popular, as many teachers have little or no field trainng and feel unable to lead this type of activity. The excursions comprise half or full day sessions for up to 30 pupils and are tailored to cover the local geology or geomorphology. Enterprise Challenge are half or full day sessions for up to 100 pupils. Topics include "Journey to Mars", "Scotland's Rocks", "Drilling for Oil", and "Renewable Energy". Both of the energy Enterprise Challenges were designed to incorporates ideas and

  8. Introducing Hands-on, Experiential Learning Experiences in an Urban Environmental Science Program at a Minority Serving Institution

    NASA Astrophysics Data System (ADS)

    Duzgoren-Aydin, N. S.; Freile, D.

    2013-12-01

    STEM education at New Jersey City University increasingly focuses on experiential, student-centered learning. The Department of Geoscience/Geography plays a significant role in developing and implementing a new Urban Environmental Science Program. The program aims at graduating highly skilled, demographically diverse students (14 % African-American and 18% Hispanic) to be employed in high-growth Earth and Environmental Science career paths, both at a technical (e.g. B.S.) as well as an educational (K-12 grade) (e.g. B.A) level. The core program, including the Earth and Environmental Science curricula is guided by partners (e.g. USDA-NRCS). The program is highly interdisciplinary and 'hands-on', focusing upon the high-tech practical skills and knowledge demanded of science professionals in the 21st century. The focus of the curriculum is on improving environmental quality in northern NJ, centering upon our urban community in Jersey City and Hudson County. Our Department is moving towards a more earth system science approach to learning. Most of our courses (e.g., Earth Surface Processes, Sedimentology/Stratigraphy, Earth Materials, Essential Methods, Historical Geology) have hands-on laboratory and/or field components. Although some of our other courses do not have formal laboratory components, research modules of many such courses (Geochemistry, Urban Environmental Issues and Policy and Environmental Geology) involve strong field or laboratory studies. The department has a wide range of analytical and laboratory capacities including a portable XRF, bench-top XRD and ICP-MS. In spring 2013, Dr. Duzgoren-Aydin was awarded $277K in Higher Education Equipment Leasing Fund monies from the University in order to establish an Environmental Teaching and Research Laboratory. The addition of these funds will make it possible for the department to increase its instrumentation capacity by adding a mercury analyzer, Ion Chromatography and C-N-S analyzer, as well as updating

  9. Hands-On Learning Modules for Interdisciplinary Environments: An Example with a Focus on Weather Radar Applications

    ERIC Educational Resources Information Center

    Chilson, P. B.; Yeary, M. B.

    2012-01-01

    Learning modules provide an effective means of encouraging cognition and active learning. This paper discusses several such modules that have been developed within a course on weather radar applications intended for students from Electrical Engineering and Meteorology. The modules were designed both to promote interdisciplinary exchange between…

  10. Learning "Hands On."

    ERIC Educational Resources Information Center

    Ritter, Janice T.

    2001-01-01

    Discusses a computer teacher's incorporation of hand-held computer technology into her third- and fifth-grade students' study of acid rain. The project successfully brought two grade levels together for cross-grade research, provided an opportunity for classroom teachers and technology specialists to work collaboratively, and enhanced students'…

  11. Hands-On Activities and Challenge Tests in Agricultural and Environmental Education

    ERIC Educational Resources Information Center

    Poudel, D. D.; Vincent, L. M.; Anzalone, C.; Huner, J.; Wollard, D.; Clement, T.; DeRamus, A.; Blakewood, G.

    2005-01-01

    Many agricultural and environmental problems are interrelated and overlapping. Several agencies, including nonprofit organizations, have developed programs to educate schoolchildren about agricultural and environmental issues; however, programs that integrate both agricultural and environmental learning, especially among middle and high school…

  12. Hands-on Humidity.

    ERIC Educational Resources Information Center

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  13. Hands-On Hydrology

    ERIC Educational Resources Information Center

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  14. How Do Learning Outcomes, Assessments and Student Engagement in a Fully Online Geoscience Laboratory Compare to Those Of The Original Hands-on Exercise?

    NASA Astrophysics Data System (ADS)

    Jones, F. M.

    2015-12-01

    In a third year geoscience elective for BSc majors, we adapted several active f2f learning strategies for an equivalent fully online version of the course. In particular, we converted a hands-on laboratory including analysis and interpretation of hand-specimens, sketching results and peer-to-peer discussion of scientific implications. This study compares learning outcomes in both formats and describes resources that make engaging, effective and efficient learning experiences for large classes in an asynchronous online environment. Our two hypotheses are: 1) a hands-on geology lab exercise can be converted for efficient fully online use without sacrificing feedback and assessment opportunities; 2) students find either the f2f or DE versions equally effective and enjoyable as learning experiences. Key components are an authentic context, interactive resources including sketching, strategies that enable efficient assessment and feedback on solo and group work, and asynchronous yet productive interaction with peers. Students in the f2f class handle real rock and fossil specimens, work with peers in the lab and classroom, and deliver most results including annotated figures on paper. DE students complete identical tasks using interactive high resolution figures and videos of specimens. Solo work is first delivered for automated assessment and feedback, then students engage asynchronously in small groups to improve results and discuss implications. Chronostratigraphy and other interpretations are sketched on prepared template images using a simple open-source sketching app that ensures equal access and consistent results that are efficient to assess by peers and instructors. Learning outcomes based on subsequent quizzes, sketches, and lab results (paper for f2f students and automated data entry for DE students), show that f2f and online students demonstrate knowledge and scientific interpretations of comparable quality. Effective engagement and group work are

  15. Hands-On Life Science Activities for Middle Schools. Teacher's Edition. First Edition.

    ERIC Educational Resources Information Center

    Newman, Barbara; Kramer, Stephanie

    This book provides 50 enrichment activities for the science curriculum that provide concrete connections with important world events. Each activity is self-contained and provides everything the student needs to gain a basic understanding of a concept or to work through a project. The activities include innovative and traditional projects for both…

  16. The Interplay of Students' Motivational Orientations, Their Chemistry Achievements and Their Perception of Learning within the Hands-On Approach to Visible Spectrometry

    ERIC Educational Resources Information Center

    Jurisevic, Mojca; Vrtacnik, Margareta; Kwiatkowski, Marek; Gros, Natasa

    2012-01-01

    The purpose of the study was to determine the relationship between students' motivational orientations and their chemistry achievements and perception of learning within the original case of the hands-on approach to visible spectrometry. A total of 295 students from Polish and Slovenian vocational and technical high schools participated in the…

  17. The Effect of an Instructional Model Utilizing Hands-on Learning and Manipulatives on Math Achievement of Middle School Students in Georgia

    ERIC Educational Resources Information Center

    White, Kara Morgan

    2012-01-01

    The concepts and ideas of mathematics is a major element of educational curriculum. Many different instructional strategies are implemented in mathematics classrooms. The purpose of this study was to evaluate the effect of an instructional model utilizing hands-on learning and use of manipulatives on mathematics achievement of middle school…

  18. Learning Chemistry in Laboratory Settings: A Hands-On Introductory Chemistry Curriculum for Non-Science Majors.

    ERIC Educational Resources Information Center

    Wang, M. Rachel

    This report describes a curriculum reform project conducted at Spokane Community College (Washington), which has extensive vocational programs and a high percentage of non-traditional students. The purpose of the project was to develop and test a series of student Learning Activity Packets (LAPs), which introduce fundamental chemistry concepts by…

  19. A Hands-On Activity to Introduce the Effects of Transmission by an Invasive Species

    ERIC Educational Resources Information Center

    May, Barbara Jean

    2013-01-01

    This activity engages students to better understand the impact of transmission by invasive species. Using dice, poker chips, and paper plates, an entire class mimics the spread of an invasive species within a geographic region. The activity can be modified and conducted at the K-16 levels.

  20. Planet Chemistry. Hands-on Activities for Kids from All Planets.

    ERIC Educational Resources Information Center

    Kenney, Michael, Ed.

    This publication issues a challenge to students to collect data in a nationwide analysis of water hardness. Background information on the chemistry of hard water is presented using a cartoon format, and each of the four activities contains an explanation about the chemistry illustrated in the activity. The effect of hard water on soap, the effect…

  1. Hands On or Hands Off? Disgust Sensitivity and Preference for Environmental Education Activities.

    ERIC Educational Resources Information Center

    Bixler, Robert D.; Floyd, Myron F.

    1999-01-01

    Discusses barriers to environmental education. Middle school students completed a science-activity-preference scale and a disgust-sensitivity scale. Respondents who expressed the lowest interest in activities that required manipulation of organic substances also had the highest disgust-sensitivity scores. (Author/CCM)

  2. Providing Hands on Experiences to Museum Visitors to Explore and Learn about Earthquakes and their Impacts in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Olds, S. E.; Schiffman, C. R.; Butler, R. F.; Farley, M.; Frankel, S.; Hunter, N.; Lillie, R. J.

    2013-12-01

    Over the past ten years, UNAVCO has developed a suite of learning materials for formal undergraduate and grades 6-12 classroom environments, integrating GPS data from the EarthScope Plate Boundary Observatory (PBO) to explore Earth science processes. To make complex Earth processes accessible to general audiences, UNAVCO has designed a multi-component visiting museum exhibit that explores the tectonic setting of the United States Pacific Northwest, hazards of living on a plate boundary, and the technologies being used to study the plate motion and in the future, help communities become more resilient to the impacts of earthquakes. This exhibit was installed in Fall 2013 at the Oregon State University (OSU) Hatfield Marine Science Center (HMSC) in Newport, Oregon. Through multiple hands-on elements, visitors to the HMSC exhibit explore and experience the build up and release of strain in the region, along with some of the technologies used to measure these changes. In one component, visitors compress a model of the Pacific Northwest to feel the build up of strain in the landscape and observe the movement of land over time. Supporting panels connect this movement to the measurements currently being observed by the network of PBO and other GPS stations in the Pacific Northwest. In another component, visitors learn about the recurrence interval for earthquakes at the Juan De Fuca - North America plate boundary by turning a handle to slowly move and compress plates until a simulated earthquake occurs. A related component explores how an earthquake early warning system (EEWS) of the future might combine seismic data collected by both seismometers and real time GPS to allow people and communities time to prepare for oncoming ground shaking and tsunami after an earthquake. Several technologies are also highlighted throughout the exhibit, including information panels that compare the accuracy of high precision GPS with smartphone technologies. Additionally, models of a full

  3. How-to-Do-It: Hands-on Activities that Relate Mendelian Genetics to Cell Division.

    ERIC Educational Resources Information Center

    McKean, Heather R.; Gibson, Linda S.

    1989-01-01

    Presented is an activity designed to connect Mendelian laws with the physical processes of cell division. Included are materials production, procedures and worksheets for the meiosis-mitosis game and a genetics game. (CW)

  4. Pupils' Reasoning and Practice during Hands-on Activities in the Measurement Phase.

    ERIC Educational Resources Information Center

    Coelho, Suzana Maria; Sere, Marie-Genevieve

    1998-01-01

    Explains tendencies and difficulties experienced by students aged 14 through 17 years during an activity involving measurement in physics. Surveys these tendencies and difficulties through clinical interviews involving data collection, data processing, and data interpretation. Contains 17 references. (DDR)

  5. Glimpses of Science: Multimedia-Enhanced Hands-On Activities for Primary School Students

    ERIC Educational Resources Information Center

    Hatsidimitris, George; Connor, Rick; Ginges, Jacinda; Wolfe, Joe

    2010-01-01

    "Glimpses of Science" is the outcome of collaboration between the University of New South Wales and four primary schools in the Sydney metropolitan region. A prototype kit on the topic of sound was developed and demonstrated by the team. This kit formed the basis for further science activities to be designed and produced in conjunction with the…

  6. How Science Texts and Hands-on Explorations Facilitate Meaning Making: Learning from Latina/o Third Graders

    ERIC Educational Resources Information Center

    Varelas, Maria; Pieper, Lynne; Arsenault, Amy; Pappas, Christine C.; Keblawe-Shamah, Neveen

    2014-01-01

    In this study, we examined opportunities for reasoning and meaning making that read-alouds of children's literature science information books and related hands-on explorations offered to young Latina/o students in an urban public school. Using a qualitative, interpretative framework, we analyzed classroom discourse and children's writing…

  7. Designing Blended Inquiry Learning in a Laboratory Context: A Study of Incorporating Hands-On and Virtual Laboratories

    ERIC Educational Resources Information Center

    Toth, Eva Erdosne; Morrow, Becky L.; Ludvico, Lisa R.

    2009-01-01

    This article reports on the development of a methodology that integrates virtual and hands-on inquiry in a freshman introductory biology course. Using a two time x two order-condition design, an effective combination (blend) of the two environments was evaluated with 39 freshman biology participants. The quantitative results documented no…

  8. Increasing Higher Level Thinking Skills in Science of Gifted Students in Grades 1-4 through "Hands-On" Activities.

    ERIC Educational Resources Information Center

    Dindial, Myrna J.

    This practicum was designed to increase higher level thinking skills of gifted students in primary school. The project sought to retrain students from recalling science information from the textbook to a more challenging and active form of learning through individual projects and small group and large group activities. Students were given…

  9. Cognitive Achievement and Motivation in Hands-On and Teacher-Centred Science Classes: Does an Additional Hands-On Consolidation Phase (Concept Mapping) Optimise Cognitive Learning at Work Stations?

    ERIC Educational Resources Information Center

    Gerstner, Sabine; Bogner, Franz X.

    2010-01-01

    Our study monitored the cognitive and motivational effects within different educational instruction schemes: On the one hand, teacher-centred versus hands-on instruction; on the other hand, hands-on instruction with and without a knowledge consolidation phase (concept mapping). All the instructions dealt with the same content. For all…

  10. The Alaska Lake Ice and Snow Observatory Network (ALISON): Hands-on Experiential K- 12 Learning in the North

    NASA Astrophysics Data System (ADS)

    Morris, K.; Jeffries, M.

    2008-12-01

    their own. Each summer, a workshop in Fairbanks offers the teachers the opportunity to work and learn together, sharing their ALISON field experiences and transfer to the classroom, testing activities and materials, and adding to their content knowledge. This experiential learning project demonstrates that teachers and students can make scientifically valuable measurements when provided with easy-to-use equipment, clear directions and training. The project also shows that when provided with a stimulating learning opportunity, teachers and students find imaginative ways to extend the experience. For example, a number of students have made videos about their ALISON. Lesson plans using ALISON-related science concepts have been generated by ALISON teachers and others. Several ALISON teachers have published articles about the ALISON experience. ALISON teachers have been awarded prestigious Toyota Tapestry grants in support of their activities.

  11. The healthy heart race: a short-duration, hands-on activity in cardiovascular physiology for museums and science festivals.

    PubMed

    Pressley, Thomas A; Limson, Melvin; Byse, Miranda; Matyas, Marsha Lakes

    2011-09-01

    The "Healthy Heart Race" activity provides a hands-on demonstration of cardiovascular function suitable for lay audiences. It was field tested during the United States of America Science and Engineering Festival held in Washington, DC, in October 2010. The basic equipment for the activity consisted of lengths of plastic tubing, a hand pump, collection containers, clamps, and simulated blood prepared by tinting water with red food coloring. Student participants were first asked to experience the effort required to pump through an unaltered tube. A presenter then applied a strong clamp that pinched each tube downstream from the pump, and students were asked to pump against the increased resistance. The students' observations were then used as the basis for discussions of atherosclerosis and coronary heart disease with the presenters. Distribution of informative postcards during the 2 days of the festival indicated that at least 2,500 students completed the Healthy Heart Race activity. Our experiences to date suggest that the Healthy Heart Race activity can be accomplished effectively in the high-volume, high-distraction environment of a science fair or museum. PMID:21908837

  12. Using the Learning Cycle To Teach Physical Science: A Hands-on Approach for the Middle Grades.

    ERIC Educational Resources Information Center

    Beisenherz, Paul; Dantonio, Marylou

    The Learning Cycle Strategy enables students themselves to construct discrete science concepts and includes an exploration phase, introduction phase, and application phase. This book focuses on the use of the Learning Cycle to teach physical sciences and is divided into three sections. Section I develops a rationale for the Learning Cycle as an…

  13. The OpenPicoAmp: An Open-Source Planar Lipid Bilayer Amplifier for Hands-On Learning of Neuroscience

    PubMed Central

    Shlyonsky, Vadim; Dupuis, Freddy; Gall, David

    2014-01-01

    Understanding the electrical biophysical properties of the cell membrane can be difficult for neuroscience students as it relies solely on lectures of theoretical models without practical hands on experiments. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences at the undergraduate level, dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. We provide a complete documentation allowing to build the amplifier and the experimental chamber. The students hand-out giving step-by step instructions to perform a recording is also included. Our experimental setup can be used in basic experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A dimers. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics. PMID:25251830

  14. The OpenPicoAmp: an open-source planar lipid bilayer amplifier for hands-on learning of neuroscience.

    PubMed

    Shlyonsky, Vadim; Dupuis, Freddy; Gall, David

    2014-01-01

    Understanding the electrical biophysical properties of the cell membrane can be difficult for neuroscience students as it relies solely on lectures of theoretical models without practical hands on experiments. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences at the undergraduate level, dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. We provide a complete documentation allowing to build the amplifier and the experimental chamber. The students hand-out giving step-by step instructions to perform a recording is also included. Our experimental setup can be used in basic experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A dimers. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics. PMID:25251830

  15. All Hands on Deck!

    ERIC Educational Resources Information Center

    Lent, Barbara C.

    1982-01-01

    An approach to helping children learn mathematics facts that uses standard decks of cards is promoted. Teachers are warned that the methods outlined involve activities that can be noisy, but that pupils are learning while they are relaxing, laughing, and sharing in a good time with their friends. (MP)

  16. Hands-On Nuclear Physics

    ERIC Educational Resources Information Center

    Whittaker, Jeff

    2013-01-01

    Nuclear science is an important topic in terms of its application to power generation, medical diagnostics and treatment, and national defense. Unfortunately, the subatomic domain is far removed from daily experience, and few learning aids are available to teachers. What follows describes a low-tech, hands-on method to teach important concepts in…

  17. An educational device for a hands-on activity to visualize the effect of atherosclerosis on blood flow.

    PubMed

    de Almeida, J P P G L; de Lima, J L M P

    2013-12-01

    An educational device was created to develop a hands-on activity to illustrate how atherosclerosis can dramatically reduce blood flow in human vessels. The device was conceived, designed, and built at the University of Coimbra, in response to a request from the Exploratório Infante D. Henrique Science Centre Museum, where it is presently installed. The device was designed to allow lay audience to operate it, including school-age youngsters. The two blood flow reduction mechanisms that can be visualized are 1) thickening of the artery wall and 2) hardening of the artery wall. The main objective is to promote the understanding of atherosclerotic cardiovascular physiology by simple and direct experiments. This original educational interactive device was constructed using, in the conceptual and design stages of the project, a Newtonian theoretical flow model based on Poiseuille's equation. This device is driven by human force and provides a visualization of the effect of atherosclerosis on flow. The main aspects relating to its design and construction are described here to explain and disseminate this approach. Throughout more than 4 yr of real operation, this educational device proved to be a simple and attractive way of understanding atherosclerosis, especially among young people. PMID:24292922

  18. An Integrated Hands-On Inquiry Based Cooperative Learning Approach: The Impact of the PALMS Approach on Student Growth.

    ERIC Educational Resources Information Center

    Fuller, June L.

    This study examined teachers' perceptions of changes in student learning and changes in their teaching strategies after implementing the Partners Advancing the Learning of Math and Science (PALMS) approach in an urban Massachusetts school district. PALMS was a cooperative statewide systemic initiative funded by the Massachusetts Department of…

  19. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    NASA Technical Reports Server (NTRS)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  20. Enhancing Learning Outcomes through Application Driven Activities in Marketing

    ERIC Educational Resources Information Center

    Stegemann, Nicole; Sutton-Brady, Catherine

    2013-01-01

    This paper introduces an activity used in class to allow students to apply previously acquired information to a hands-on task. As the authors have previously shown active learning is a way to effectively facilitate and improve students' learning outcomes. As a result to improve learning outcomes we have overtime developed a series of learning…

  1. Science Curriculum in Practice: Student Teachers' Use of Hands-On Activities in High-Stakes Testing Schools

    ERIC Educational Resources Information Center

    Eick, Charles J.

    2002-01-01

    This article describes the influence of recently adopted high-stakes testing on the curriculum and instruction of 12 secondary science student teachers (or interns). The study, which used a postpositivist, qualitative method with researcher as participant as the university supervisor, focused on interns' abilities to implement hands-on,…

  2. Twenty-First Century Skills for Students: Hands-On Learning after School Builds School and Life Success

    ERIC Educational Resources Information Center

    Cabral, Leide

    2006-01-01

    Many families in Boston, especially the immigrant ones, are unable to navigate the Boston Public Schools system and offer their children the education they could have. In this article, the author shares how the learning and support she obtained from Citizen Schools has helped her navigate through high school and in life. Citizen Schools is an…

  3. Impact of Hands-On Research Experience on Students' Learning in an Introductory Management Information System Course

    ERIC Educational Resources Information Center

    Wu, Yun; Sankar, Chetan S.

    2013-01-01

    Although students in Introductory Information Systems courses are taught new technology concepts, the complexity and constantly changing nature of these technologies makes it challenging to deliver the concepts effectively. Aiming to improve students' learning experiences, this research utilized the five phases of design science methodology to…

  4. Hands-on Activities for Exploring the Solar System in K-14 Formal and Informal Education Settings

    NASA Astrophysics Data System (ADS)

    Allen, J. S.; Tobola, K. W.

    2004-12-01

    Introduction: Activities developed by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. Educators may choose activities that fit a particular concept or theme within their curriculum from activities that highlight missions and research pertaining to exploring the solar system. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. The web sites for the activities contain current information so students experience recent mission information such as data from Mars rovers or the status of Stardust sample return. The Johnson Space Center Astromaterials Research and Exploration Science education team has compiled a variety of NASA solar system activities to produce an annotated thematic syllabus useful to classroom educators and informal educators as they teach space science. An important aspect of the syllabus is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting, educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. In both the informal and the primary education levels the activities are appropriately designed to excite interest, arouse curiosity and easily take the participants from pre-awareness to the awareness stage. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered may easily be adapted for the upper

  5. Hands-On Whole Science. Pass the Beetles, Please.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1992-01-01

    Several hands-on whole science activities help elementary students learn about animals' diets and how they affect other animals. One activity involves identifying animals as carnivores, herbivores, or omnivores. Another has students construct food chains. Two across-the-curriculum ideas involve naming carnivores and preparing imaginary menus for…

  6. A Year of Hands-on Science: Exciting Theme Units with More Than 100 Activities, Projects, and Experiments To Make Science Come Alive.

    ERIC Educational Resources Information Center

    Kepler, Lynne; Novelli, Joan, Ed.

    This book contains 18 themed teaching units with 2 themes per chapter, organized seasonally around the traditional school year. Each theme includes natural connections and hands-on science activities that correspond to what children are already observing in their world. Each chapter begins with highlights of the month and a reproducible "Science…

  7. Simple Protocol for Secondary School Hands-On Activity: Electrophoresis of Pre-Stained Nucleic Acids on Agar-Agar Borate Gels

    ERIC Educational Resources Information Center

    Britos, Leticia; Goyenola, Guillermo; Orono, Silvia Umpierrez

    2004-01-01

    An extremely simple, inexpensive, and safe method is presented, which emulates nucleic acids isolation and electrophoretic analysis as performed in a research environment, in the context of a secondary school hands-on activity. The protocol is amenable to an interdisciplinary approach, taking into consideration the electrical and chemical…

  8. Learning as Activity.

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2002-01-01

    Integrates contemporary theories of learning into a theory of learning as activity. Explains ecological psychology, changes in understanding of learning, activity systems and activity theory (including the integration of consciousness and activity), and activity structure; and discusses learning as a cognitive and social process. (LRW)

  9. Learning Specific Content in Technology Education: Learning Study as a Collaborative Method in Swedish Preschool Class Using Hands-On Material

    ERIC Educational Resources Information Center

    Kilbrink, Nina; Bjurulf, Veronica; Blomberg, Ingela; Heidkamp, Anja; Hollsten, Ann-Christin

    2014-01-01

    This article describes the process of a learning study conducted in technology education in a Swedish preschool class. The learning study method used in this study is a collaborative method, where researchers and teachers work together as a team concerning teaching and learning about a specific learning object. The object of learning in this study…

  10. High-Altitude Balloon Launches and Hands-On Sensors for Effective Student Learning in Astronomy and STEM

    NASA Astrophysics Data System (ADS)

    Voss, H. D.; Dailey, J.; Snyder, S. J.

    2011-09-01

    Students creating and flying experiments into near-space using a low-cost balloon High-Altitude Research Platform (HARP) greatly advance understanding in introductory astronomy and advanced classes across several disciplines. Remote sensing above 98% of the atmosphere using cameras, image intensifiers, IR, and UV sensors provides access to the heavens and large regions of the earth below. In situ and limb atmospheric gas measurements, near-space stratosphere measurements, and cosmic rays engage students in areas from planetary atmospheres to supernova acceleration. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build less than 4 kg payloads. The HARP program provides an engaging laboratory, gives challenging science, technology, engineering, and mathematics (STEM) field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Over a seven-year period, Taylor University, an undergraduate liberal arts school, has successfully launched over 230 HARP systems to altitudes over 30 km (100% retrieval success with rapid recovery) with flight times between two and six hours. The HARP payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergraduate). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded, leading to representatives from more than 52

  11. Hands-On Current Electricity: A Professional Development Course

    ERIC Educational Resources Information Center

    Gibbons, Patrick C.; McMahon, Ann P.; Wiegers, John F.

    2003-01-01

    "Hands-on Current Electricity" gives K-8 teachers the opportunity to experience inquiry learning about current electricity by (1) experimenting with current electricity through a variety of activities, (2) discovering preconceived mental models of electricity used to understand their observations, (3) creating new mental models that have greater…

  12. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

    ERIC Educational Resources Information Center

    Wang, Youjun

    2009-01-01

    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  13. Simple protocol for secondary school hands-on activity: Electrophoresis of pre-stained nucleic acids on agar-agar borate gels.

    PubMed

    Britos, Leticia; Goyenola, Guillermo; Oroño, Silvia Umpiérrez

    2004-09-01

    An extremely simple, inexpensive, and safe method is presented, which emulates nucleic acids isolation and electrophoretic analysis as performed in a research environment, in the context of a secondary school hands-on activity. The protocol is amenable to an interdisciplinary approach, taking into consideration the electrical and chemical parameters of the electrophoretic system. Furthermore, the laboratory is framed in a more comprehensive pedagogical setting, which addresses the methodological aspects of a pivotal scientific enterprise such as the Human Genome Project. In this setting, the hands-on activity is complemented with animations, paper models, and discussions. Additionally, our results indicate that the use of borate buffer and agar-agar gels suits many of the experiments included in college-level laboratory activities, which currently make use of more expensive agarose gels and TBE or TAE buffers. PMID:21706751

  14. Learning Activities.

    ERIC Educational Resources Information Center

    Tipton, Tom, Ed.

    1983-01-01

    Presents a flow chart for naming inorganic compounds. Although it is not necessary for students to memorize rules, preliminary skills needed before using the chart are outlined. Also presents an activity in which the mass of an imaginary atom is determined using lead shot, Petri dishes, and a platform balance. (JN)

  15. Hands on the sun: Teaching SEC science through hands on inquiery and direct observation

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Cline, T.; Lewis, E.

    2003-04-01

    Hands on the Sun is a model partnership between the NASA Sun Earth Connection Education Forum (SECEF), Coronado Instruments, Space Science Institute, NOAO/Kitt Peak, Flandrau Planetarium, Astronomical League, and professional astronomers. This joint venture uses experiential learning, provocative talks, and direct observation in both formal and informal education venues to teach participants (K-12 educators, amateur astronomers, and the general public) about the sun, its impact on the Earth, and the importance of understanding the sun-Earth system. The program consists of three days of workshops and activities including tours and observing sessions on Kitt Peak including the National Solar Observatory, planetarium shows, exhibits on space weather, and professional development workshops targeted primarily at Hispanic public school science teachers which are intended to provide hands on activities demonstrating solar and SEC science that can be integrated into the classroom science curriculum. This talk will describe the many facets of this program and discuss our plans for future events.

  16. Photography. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of…

  17. Structural Engineering. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of…

  18. Hands-On Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Whittaker, Jeff

    2013-03-01

    Nuclear science is an important topic in terms of its application to power generation, medical diagnostics and treatment, and national defense. Unfortunately, the subatomic domain is far removed from daily experience, and few learning aids are available to teachers. What follows describes a low-tech, hands-on method to teach important concepts in nuclear physics, including the quark model, anti-matter, nuclear binding energy, stability, the nuclear shell model, and the importance of symmetry, by making use of neodymium disc magnets.

  19. Engaging Students in Early Exploration of Nanoscience Topics Using Hands-On Activities and Scanning Tunneling Microscopy

    ERIC Educational Resources Information Center

    Furlan, Ping Y.

    2009-01-01

    This manuscript reports on efforts to introduce beginning college students to the modern nanoscience field. These include: implementing selected experiments into sequencing core first-year and second-year chemistry laboratory courses; providing students with a first research experience; and engaging them in service learning and outreach programs…

  20. A Bookbag of the Bag Ladies' Best: Resources, Ideas, and Hands-On Activities for the K-5 Classroom.

    ERIC Educational Resources Information Center

    Simmons, Karen; Guinn, Cindy

    Encouraging interactive learning and motivating K-5 students, this book presents step-by-step directions, drawings, black line masters, and photographs for 48 thematic classroom projects that use everyday items. The first chapter discusses the history of the "bag ladies." The second chapter describes how to gather, make, and store classroom…

  1. The Amazing Animal Activity Book: Dozens of Hands-on Projects That Teach across the Curriculum. Grades 1-3.

    ERIC Educational Resources Information Center

    Bernard, Robin

    The activities in this book are designed to encourage children's scientific curiosity as well as their creativity. Activities include puppet making, word scrambles, matching exercises, crossword and jigsaw puzzles, mobiles, games, mini books, coloring activities, Venn diagrams, and plays. These activities are intended as a foundation for children…

  2. Active Learning Methods

    ERIC Educational Resources Information Center

    Zayapragassarazan, Z.; Kumar, Santosh

    2012-01-01

    Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…

  3. Comparing Student Learning in Mechanics Using Simulations and Hands-on Activities

    NASA Astrophysics Data System (ADS)

    Carmichael, Adrian; Chini, Jacquelyn J.; Rebello, N. Sanjay; Puntambekar, Sadhana

    2010-10-01

    Often computer simulation environments present students with an idealized version of the real world which can affect students' conceptual understanding. In this study we investigate the effects of completing an experiment in mechanics using this ideal world as compared to an identical experiment in the real world. Students in three of five conceptual physics laboratory sections completed the physical experiment while the other two sections performed the virtual experiment. The experiments were part of a unit on simple machines from the CoMPASS curriculum [1] which integrates hypertext-based concept maps in a design-based context. There was no statistically significant difference between the pre and post data of the students in the two groups. Students who performed the virtual experiment were able to answer questions dealing with work and potential energy more correctly, though neither group was able to offer sound reasoning to support their answers.

  4. Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories

    NASA Astrophysics Data System (ADS)

    Supalo, Cary Alan

    2010-11-01

    Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all

  5. It's More Fun than It Sounds--Enhancing Science Concepts through Hands-on Activities for Young Children

    ERIC Educational Resources Information Center

    Guha, Smita

    2012-01-01

    To teach young children, teachers choose topics in science that children are curious about. Children's inquisitive nature is reflected through the activities as they make repetitive sounds to find the cause and effect relationship. Teachers can make best use of those invaluable moments by incorporating those activities into science lessons on…

  6. The life cycle of a mineral deposit: a teacher's guide for hands-on mineral education activities

    USGS Publications Warehouse

    Frank, Dave; Galloway, John; Assmus, Ken

    2005-01-01

    This teacher's guide defines what a mineral deposit is and how a mineral deposit is identified and measured, how the mineral resources are extracted, and how the mining site is reclaimed; how minerals and mineral resources are processed; and how we use mineral resources in our every day lives. Included are 10 activitybased learning exercises that educate students on basic geologic concepts; the processes of finding, identifying, and extracting the resources from a mineral deposit; and the uses of minerals. The guide is intended for K through 12 Earth science teachers and students and is designed to meet the National Science Content Standards as defined by the National Research Council (1996). To assist in the understanding of some of the geology and mineral terms, see the Glossary (appendix 1) and Minerals and Their Uses (appendix 2). The process of finding or exploring for a mineral deposit, extracting or mining the resource, recovering the resource, also known as beneficiation, and reclaiming the land mined can be described as the “life cycle” of a mineral deposit. The complete process is time consuming and expensive, requiring the use of modern technology and equipment, and may take many years to complete. Sometimes one entity or company completes the entire process from discovery to reclamation, but often it requires multiple groups with specialized experience working together. Mineral deposits are the source of many important commodities, such as copper and gold, used by our society, but it is important to realize that mineral deposits are a nonrenewable resource. Once mined, they are exhausted, and another source must be found. New mineral deposits are being continuously created by the Earth but may take millions of years to form. Mineral deposits differ from renewable resources, such as agricultural and timber products, which may be replenished within a few months to several years.

  7. Assessing High School Student Learning on Science Outreach Lab Activities

    ERIC Educational Resources Information Center

    Thomas, Courtney L.

    2012-01-01

    The effect of hands-on laboratory activities on secondary student learning was examined. Assessment was conducted over a two-year period, with 262 students participating the first year and 264 students the second year. Students took a prequiz, performed a laboratory activity (gas chromatography of alcohols, or photosynthesis and respiration), and…

  8. "Hands on" Japan.

    ERIC Educational Resources Information Center

    Borries, Richard

    Cultural learning kits designed by Evansville, Indiana teachers, supervisors, and community advisory groups were compiled to provide information about Japan to community organizations and students. This document provides a key to the contents of the kits. The kits contain teaching materials and information about food, school materials, language…

  9. A Low-Tech, Hands-On Approach To Teaching Sorting Algorithms to Working Students.

    ERIC Educational Resources Information Center

    Dios, R.; Geller, J.

    1998-01-01

    Focuses on identifying the educational effects of "activity oriented" instructional techniques. Examines which instructional methods produce enhanced learning and comprehension. Discusses the problem of learning "sorting algorithms," a major topic in every Computer Science curriculum. Presents a low-tech, hands-on teaching method for sorting…

  10. An Evaluation of Two Hands-On Lab Styles for Plant Biodiversity in Undergraduate Biology

    ERIC Educational Resources Information Center

    Basey, John M.; Maines, Anastasia P.; Francis, Clinton D.; Melbourne, Brett

    2014-01-01

    We compared learning cycle and expository formats for teaching about plant biodiversity in an inquiry-oriented university biology lab class (n = 465). Both formats had preparatory lab activities, a hands-on lab, and a postlab with reflection and argumentation. Learning was assessed with a lab report, a practical quiz in lab, and a multiple-choice…

  11. Hands-on Science.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1996-01-01

    Presents activities that teach elementary students how light works by having them make rainbows. A primary-/intermediate- level activity involves conducting a rainbow color survey, and a student page provides a copy of the rainbow color survey. A primary-level activity has students create rainbows using water and a mirror. (SM)

  12. "Didn't Get Expected Answer, Rectify It." Teaching Science Content in an Elementary Science Classroom Using Hands-On Activities

    ERIC Educational Resources Information Center

    Tan, Aik-Ling; Wong, Hwei-Ming

    2012-01-01

    The call for inquiry science to be a part of the school science curriculum is popular in many parts of the world. While some research in this area revealed success stories of students' learning when they are engaged in student-directed, open-ended scientific inquiry activities, others are more sceptical about how these activities impact students'…

  13. Hands-On Thunderstorms.

    ERIC Educational Resources Information Center

    Palmer, Mark H.

    2000-01-01

    Introduces activities published by the National Oceanic and Atmospheric Administration (NOAA) that can be used to explain the physical properties of a thunderstorm. Activities include cloud formation and the first step of thunderstorm development, cycle of a thunderstorm, the nature of lightning, ice in a thunderstorm, and tornado warning. Lists…

  14. Development of Active Learning with Simulations and Games

    ERIC Educational Resources Information Center

    Zapalska, Alina; Brozik, Dallas; Rudd, Denis

    2012-01-01

    Educational games and simulations are excellent active learning tools that offer students hands-on experience. Little research is available on developing games and simulations and how teachers can be assisted in making their own games and simulations. In this context, the paper presents a multi-step process of how to develop games and simulations…

  15. Technology Learning Activities I.

    ERIC Educational Resources Information Center

    International Technology Education Association, Reston, VA.

    This guide contains 30 technology learning activities. Activities may contain all or some of the following: an introduction, objectives, materials and equipment, challenges, limitations, notes and investigations, resources and references used, and evaluation ideas. Activity titles are: (1) Occupations in Construction Technology; (2) Designing a…

  16. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    ERIC Educational Resources Information Center

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  17. A Hands-On Introduction to Microcomputers.

    ERIC Educational Resources Information Center

    Watson, James; Watson, Nancy

    1987-01-01

    Provides specific directions and guidelines for the computer program "YOU Program ME." Explains how this introductory hands-on activity can teach the concept of programming and can introduce the BASIC language. Background information and student activity sheets are included. (ML)

  18. Optimism in Active Learning

    PubMed Central

    Collet, Timothé; Pietquin, Olivier

    2015-01-01

    Active learning is the problem of interactively constructing the training set used in classification in order to reduce its size. It would ideally successively add the instance-label pair that decreases the classification error most. However, the effect of the addition of a pair is not known in advance. It can still be estimated with the pairs already in the training set. The online minimization of the classification error involves a tradeoff between exploration and exploitation. This is a common problem in machine learning for which multiarmed bandit, using the approach of Optimism int the Face of Uncertainty, has proven very efficient these last years. This paper introduces three algorithms for the active learning problem in classification using Optimism in the Face of Uncertainty. Experiments lead on built-in problems and real world datasets demonstrate that they compare positively to state-of-the-art methods. PMID:26681934

  19. Research and Design. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of…

  20. Creative Activity and Learning.

    ERIC Educational Resources Information Center

    Cunningham, Flora E.

    1979-01-01

    This article compares three theories of the creative process taken from aesthetic philosophy: aesthetic enjoyment (D. W. Gotshalk), aesthetic experience (John Dewey), and aesthetic knowledge (Susanne Langer). Each shows different versions of the learning that accrues from creative activity. From this, curriculum planning and teaching suggestions…

  1. The effects of computer simulation versus hands-on dissection and the placement of computer simulation within the learning cycle on student achievement and attitude

    NASA Astrophysics Data System (ADS)

    Hopkins, Kathryn Susan

    The value of dissection as an instructional strategy has been debated, but not evidenced in research literature. The purpose of this study was to examine the efficacy of using computer simulated frog dissection as a substitute for traditional hands-on frog dissection and to examine the possible enhancement of achievement by combining the two strategies in a specific sequence. In this study, 134 biology students at two Central Texas schools were divided into the five following treatment groups: computer simulation of frog dissection, computer simulation before dissection, traditional hands-on frog dissection, dissection before computer simulation, and textual worksheet materials. The effects on achievement were evaluated by labeling 10 structures on three diagrams, identifying 11 pinned structures on a prosected frog, and answering 9 multiple-choice questions over the dissection process. Attitude was evaluated using a thirty item survey with a five-point Likert scale. The quasi-experimental design was pretest/post-test/post-test nonequivalent group for both control and experimental groups, a 2 x 2 x 5 completely randomized factorial design (gender, school, five treatments). The pretest/post-test design was incorporated to control for prior knowledge using analysis of covariance. The dissection only group evidenced a significantly higher performance than all other treatments except dissection-then-computer on the post-test segment requiring students to label pinned anatomical parts on a prosected frog. Interactions between treatment and school in addition to interaction between treatment and gender were found to be significant. The diagram and attitude post-tests evidenced no significant difference. Results on the nine multiple-choice questions about dissection procedures indicated a significant difference between schools. The interaction between treatment and school was also found to be significant. On a delayed post-test, a significant difference in gender was

  2. Hands-on Science. Exploring Magnification.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1993-01-01

    Presents hands-on science activities using inexpensive, hand-held microscopes and slides made from simple, readily available materials. The article describes how to introduce students to microscopes and presents directions for using the microscopes and making slides. A student page investigates fingerprints with microscopes. (SM)

  3. The Hands-On and Far-Out Physics Team: It Starts Out Walking.

    ERIC Educational Resources Information Center

    Albrecht, Bob; Firedrake, George

    1998-01-01

    The Hands-On and Far-Out Physics project is part of the Center for Technology, Environment, and Communication (C-TEC), a project-based learning community at Piner High School in Santa Rosa (California). This article introduces the project team, discusses member activities, presents a walking-speed experiment, and describes a Mars Colony course…

  4. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    NASA Astrophysics Data System (ADS)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  5. Transforming a Traditional Hands-On Activity into an Enquiry Activity to Foster More In-Depth Understanding of the Concept of Density

    ERIC Educational Resources Information Center

    Lee, Yeung Chung; Kwok, Ping Wai

    2010-01-01

    Traditional methods used to teach the concept of density that employ solid objects of different masses and volumes can be supplemented by enquiry activities in which students vary the mass-to-volume ratio of the same object to test ideas about density and flotation. A simple substance, Blu-Tack, is an ideal material to use in this case. The…

  6. Workshop on active learning: two examples

    NASA Astrophysics Data System (ADS)

    Ben Lakhdar, Zohra; Lahmar, Souad; Lakshminarayanan, Vasudevan

    2014-07-01

    Optics is an enabling science that has far ranging importance in many diverse fields. However, many students do not find it to be of great interest. A solution to this problem is to train teachers in active learning methodologies so that the subject matter can be presented to generate student interest. We describe a workshop to present an example of an active learning process in Optics developed for training of teachers in developing countries (a UNESCO project) and will focus on 2 two different activities: 1. Interference and diffraction is considered by students as being very hard to understand and is taught in most developing countries as purely theoretical with almost no experiments. Simple experiments to enhance the conceptual understanding of these wave phenomena will be presented and 2. Image formation by the eye. Here we will discuss myopia, hyperopia and astigmatism as well as accommodation. In this module we will discuss image. The objective of the workshop will be to provide an experience of the use of the active learning method in optics including the use of experiments, mind's on and hands-on exercises, group and class discussions

  7. Communicate science: an example of food related hands-on laboratory approach

    NASA Astrophysics Data System (ADS)

    D'Addezio, Giuliana; Marsili, Antonella; Vallocchia, Massimiliano

    2014-05-01

    The Laboratorio Didattica e Divulgazione Scientifica of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Educational and Outreach Laboratory) organized activity with kids to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. The combination of games and learning in educational activity can be a valuable tool for study of complex phenomena. Hands-on activity may help in engage kids in a learning process through direct participation that significantly improves the learning performance of children. Making learning fun motivate audience to pay attention on and stay focused on the subject. We present the experience of the hand-on laboratory "Laboratorio goloso per bambini curiosi di scienza (a delicious hands-on laboratory for kids curious about science)", performed in Frascati during the 2013 European Researchers' Night, promoted by the European Commission, as part of the program organized by the Laboratorio Didattica e Divulgazione Scientifica in the framework of Associazione Frascati Scienza (http://www.frascatiscienza.it/). The hand-on activity were designed for primary schools to create enjoyable and unusual tools for learning Earth Science. During this activity kids are involved with something related to everyday life, such as food, through manipulation, construction and implementation of simple experiments related to Earth dynamics. Children become familiar with scientific concepts such as composition of the Earth, plates tectonic, earthquakes and seismic waves propagation and experience the effect of earthquakes on buildings, exploring their important implications for seismic hazard. During the activity, composed of several steps, participants were able to learn about Earth inner structure, fragile lithosphere, waves propagations, impact of waves on building ecc.., dealing with eggs, cookies, honey, sugar, polenta, flour, chocolate, candies, liquorice sticks, bread, pudding and sweets. The

  8. Active inference and learning.

    PubMed

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O'Doherty, John; Pezzulo, Giovanni

    2016-09-01

    This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. PMID:27375276

  9. Active-learning strategies: the use of a game to reinforce learning in nursing education. A case study.

    PubMed

    Boctor, Lisa

    2013-03-01

    The majority of nursing students are kinesthetic learners, preferring a hands-on, active approach to education. Research shows that active-learning strategies can increase student learning and satisfaction. This study looks at the use of one active-learning strategy, a Jeopardy-style game, 'Nursopardy', to reinforce Fundamentals of Nursing material, aiding in students' preparation for a standardized final exam. The game was created keeping students varied learning styles and the NCLEX blueprint in mind. The blueprint was used to create 5 categories, with 26 total questions. Student survey results, using a five-point Likert scale showed that they did find this learning method enjoyable and beneficial to learning. More research is recommended regarding learning outcomes, when using active-learning strategies, such as games. PMID:22910398

  10. Optics education in the frame of the Comenius "Hands-on Science" project

    NASA Astrophysics Data System (ADS)

    M. Costa, Manuel F.; Sporea, Dan; Clementina, T.

    2005-10-01

    In the Society of our days there is a major increasing need of an in depth quality education in Science and Technology. Science teaching at school should be generalized aiming not only the sound establishment of a "Science" culture in our societies but also to guarantee a steady basis for the improvement of Science and its technological applications. The European Commission, under the program Socrates, Comenus 3 action (project n°. 110157-CP-1-2003-1-PT-COMENIUS-C3) supports the network "Hands-on Science". The activities of our network focus on the development and or diffusion at European scale of positive hands-on experimental practices on teaching science at basic secondary and vocational training schools, by leading the students to an active volunteer and committed participation in the teaching/learning process through hands-on practice and experimentation, making intensive use of the new instruments and resources of the Information Society.

  11. Carroll County hands-on elementary science

    SciTech Connect

    Herlocker, H.G.; Dunkleberger, G.L.

    1994-12-31

    Carroll County Hands-on Elementary Science is a nationally recognized Elementary Science Curriculum which has been disseminated in forty states, Puerto Rico, The Virgin Islands, Saipan, and Samoa. The curriculum is a non-textbook, process-based, constructivist approach to teaching science. Unique features of this curriculum include its teacher-written daily lesson plan format, its complete kit of science supplies, and its complete set of Spanish materials. In order to be included by the National Diffusion Network, Hands-on Elementary Science collected data to support the following claims: the program enhances teacher and student attitudes toward science; the program changes both the amount and the type of science instruction; the program is adaptable and transportable; the teacher training component is effective. The poster display will feature sample activities, data which demonstrates the effectiveness of the staff development plan, and samples which show the degree to which the program supports selected state curriculum frameworks.

  12. European Hands-on Universe

    NASA Astrophysics Data System (ADS)

    Doran, Rosa; Ferlet, Roger; Gómez de Castro, Ana I.; Hill, Robert; Horellou, Cathy; Mankiewicz, Lech; Melchior, Anne-Laure; Metaxa, Margarita; Zanazzi, Alessandra

    2007-08-01

    Hands-on Universe is a project born at UC@Berkeley. A project devoted to enrich the teaching of Astronomy within the classroom environment with a different approach, more connected to the new technologies. Its main goals are not only to promote the use of such technologies but also to reawaken on students the taste for STEM (Science, technologies, engineering and math) related issues and also to increase their scientific culture. Eight countries in Europe decided to adopt the method and, funded by MINERVA, formed the European Hands-on Universe. Several resources were produced and a data reduction software developed http://www.euhou.net/.Other European countries are interested and should join this coordinated effort in the near future. At an international level there are 20 countries using this approach. There are plans to develop scientific cooperation among these countries. Pilot scientific research projects in schools are being tested in EU-HOU schools, Russia and USA. There is also a game being developed to be used as a new tool for teaching scientific content in the classroom environment. An effort to develop an international network of scientific / educational collaboration is the next step.

  13. Activating the Desire to Learn

    ERIC Educational Resources Information Center

    Sullo, Bob

    2007-01-01

    Wouldn't your job be easier if students were just more interested in learning? Now, here's a book that will open your eyes to where the desire to learn actually comes from and what teachers can really do to activate it. Using stories from classroom teachers, counselors, administrators, and students, Bob Sullo explains why the desire to learn is…

  14. Hands-on Optics training courses for school teachers

    NASA Astrophysics Data System (ADS)

    M. Costa, Manuel F.; Vazquez-Dorrio, José B.

    2009-06-01

    For long time optics' scientists all around the world realised the importance to the development of optics of providing our school students a good effective education in optics. A large range of quality educational support materials was developed and is readily available. Fortunately this is also true in what concerns materials to be used in hands-on experiments based learning covering virtually all fields of optics and also intended or adapted for use at all school levels. Recent trends in educational policies are given science education an increasing importance within school' curricula. Furthers efforts must be developed in order to increase the importance of optics in school syllabus and generalize it throughout all school levels, while guaranteeing a quality effective education. This demands a strong focus on an active investigative hands-on experiments based study of the different subjects of light and optics by the students at the classroom in formal context but also in different informal activities. In this process the role of the teacher is of crucial importance. Quite often, however, teachers are not adequately trained in this type of pedagogic approach and frequently feel the need of further training in these issues but also on the recent advances of optics and photonics. In other to tackle this need a number of different training courses for school teachers, from pre-school to highschool and vocational training schools, were designed and will be presented and discussed in this communication.

  15. Robotics-Control Technology. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the materials required for presenting an 8-day competency-based technology learning activity (TLA) designed to introduce students in grades 6-10 to advances and career opportunities in the field of robotics-control technology. The guide uses hands-on exploratory experiences into which activities to help students develop…

  16. An Active Learning Exercise for Product Design from an Operations Perspective

    ERIC Educational Resources Information Center

    Hill, Stephen; Baker, Elizabeth

    2016-01-01

    Product design is a topic that is regularly covered in introductory operations management courses. However, a pedagogical challenge exists related to the presentation of introductory-level product design in a way that promotes active learning. The hands-on exercise presented in this article provides instructors with an activity that gives students…

  17. Hands-on Science Communication

    NASA Astrophysics Data System (ADS)

    Christensen, L. L.

    2006-08-01

    Many of the most important questions studied in science touch on fundamental issues with a great popular appeal, such as: How was the world created? How did life arise? Are we alone? How does it all end? Communication of science to the public is important and will play an even greater role in the coming years. The communication of achieved results is more and more often seen as a natural and mandatory activity to inform the public, attract funding, and attract science students. In some countries university statutes are even being rewritten in these years to include communication with the public as the third mandatory function besides research and education. A number of interesting "lessons learned" from the daily work at the Education and Outreach (EPO) office of the European Space Agency's Hubble Space Telescope will be presented. The topics include conventional as well as unconventional issues such as: • How does the flow of communication from scientist to public work, which actors are involved, and which pitfalls are present in their interaction? How can possible problems be avoided? • What are the criteria that determine whether press releases "make it" or not? • How can a commercial approach benefit an EPO office? • What is the right skills base in a modern EPO office? • How can modern technology be used to communicate science more efficiently?

  18. Active Learning with Irrelevant Examples

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; Wagstaff, Kiri L.; Burl, Michael

    2006-01-01

    Active learning algorithms attempt to accelerate the learning process by requesting labels for the most informative items first. In real-world problems, however, there may exist unlabeled items that are irrelevant to the user's classification goals. Queries about these points slow down learning because they provide no information about the problem of interest. We have observed that when irrelevant items are present, active learning can perform worse than random selection, requiring more time (queries) to achieve the same level of accuracy. Therefore, we propose a novel approach, Relevance Bias, in which the active learner combines its default selection heuristic with the output of a simultaneously trained relevance classifier to favor items that are likely to be both informative and relevant. In our experiments on a real-world problem and two benchmark datasets, the Relevance Bias approach significantly improved the learning rate of three different active learning approaches.

  19. Getting Our Hands on History

    ERIC Educational Resources Information Center

    Hindle, Rob

    2012-01-01

    Adult learning enhances, sometimes changes lives. It is therefore vital that educators do whatever it takes to enable more people from under-represented groups to get involved in learning. This is central to the Workers' Educational Association's (WEA) vision and values. Yet among its range of programmes, some subject areas remain the preserve of…

  20. Floriculture. Selected Learning Activity Packages.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This series of learning activity packages is based on a catalog of performance objectives, criterion-referenced measures, and performance guides for gardening/groundskeeping developed by the Vocational Education Consortium of States (V-TECS). Learning activity packages are presented in four areas: (1) preparation of soils and planting media, (2)…

  1. Student Perceptions of Active Learning

    ERIC Educational Resources Information Center

    Lumpkin, Angela; Achen, Rebecca M.; Dodd, Regan K.

    2015-01-01

    A paradigm shift from lecture-based courses to interactive classes punctuated with engaging, student-centered learning activities has begun to characterize the work of some teachers in higher education. Convinced through the literature of the values of using active learning strategies, we assessed through an action research project in five college…

  2. In Defense of Active Learning

    ERIC Educational Resources Information Center

    Pica, Rae

    2008-01-01

    Effective early childhood teachers use what they know about and have observed in young children to design programs to meet children's developmental needs. Play and active learning are key tools to address those needs and facilitate children's early education. In this article, the author discusses the benefits of active learning in the education of…

  3. Hands-on, Minds-on or Both? A Discussion of the Development of a Mathematics Activity by Using Virtual and Physical Manipulatives

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Asli; Edwards, Thomas

    2011-01-01

    Manipulatives have been used in many mathematics classrooms across many age groups with the aim of helping students to understand abstract concepts through concrete, kinesthetic, and visual experiences. In this paper, after we provide a background for the use of physical and virtual manipulatives in teaching and learning of mathematics, we will…

  4. The European Hands-On Universe project

    NASA Astrophysics Data System (ADS)

    Ferlet, Roger

    The EU-HOU project aims at participating in solving the major challenge of inspiring and exciting students toward science and technology. By adopting inquiry-based science education (IBSE) techniques and new technologies, EU-HOU is promoting more attractive and innovative hands-on activities on-line and in the classroom, with astronomy and space science as the over-arching theme. The expertise of EU-HOU in producing IBSE resources and in training secondary science school teachers has been awarded a silver medal of the European Commission.

  5. Characteristics of Hands-On Simulations with Added Value for Innovative Secondary and Higher Vocational Education

    ERIC Educational Resources Information Center

    Khaled, Anne; Gulikers, Judith; Biemans, Harm; van der Wel, Marjan; Mulder, Martin

    2014-01-01

    The intentions with which hands-on simulations are used in vocational education are not always clear. Also, pedagogical-didactic approaches in hands-on simulations are not well conceptualised from a learning theory perspective. This makes it difficult to pinpoint the added value that hands-on simulations can have in an innovative vocational…

  6. Learning and Active Aging

    ERIC Educational Resources Information Center

    Boulton-Lewis, Gillian M.; Buys, Laurie; Lovie-Kitchin, Jan

    2006-01-01

    Learning is an important aspect of aging productively. This paper describes results from 2645 respondents (aged from 50 to 74+ years) to a 165-variable postal survey in Australia. The focus is on learning and its relation to work; social, spiritual, and emotional status; health; vision; home; life events; and demographic details. Clustering…

  7. Active learning of introductory optics: real-time physics labs, interactive lecture demonstrations and magic

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2005-10-01

    Widespread physics education research has shown that most introductory physics students have difficulty learning essential optics concepts - even in the best of traditional courses, and that well-designed active learning approaches can remedy this problem. This mini-workshop and the associated poster session will provide direct experience with methods for promoting students' active involvement in the learning process in lecture and laboratory. Participants will have hands-on experience with activities from RealTime Physics labs and Interactive Lecture Demonstrations - a learning strategy for large (and small) lectures, including specially designed Optics Magic Tricks. The poster will provide more details on these highly effective curricula.

  8. Knowledge Retention for Computer Simulations: A study comparing virtual and hands-on laboratories

    NASA Astrophysics Data System (ADS)

    Croom, John R., III

    The use of virtual laboratories has the potential to change physics education. These low-cost, interactive computer activities interest students, allow for easy setup, and give educators a way to teach laboratory based online classes. This study investigated whether virtual laboratories could replace traditional hands-on laboratories and whether students could retain the same long-term knowledge in virtual laboratories as compared to hands-on laboratories. This study is a quantitative quasi-experiment that used a multiple posttest design to determine if students using virtual laboratories would retain the same knowledge as students who performed hands-on laboratories after 9 weeks. The study was composed of 336 students from 14 school districts. Students had their performances on the laboratories and their retention of the laboratories compared to a series of factors that might have affected their retention using a pretest and two posttests, which were compared using a t test. The results showed no significant difference in short-term learning between the hands-on laboratory groups and virtual laboratory groups. There was, however, a significant difference (p = .005) between the groups in long-term retention; students in the hands-on laboratory groups retained more information than those in the virtual laboratory groups. These results suggest that long-term learning is enhanced when a laboratory contains a hands-on component. Finally, the results showed that both groups of students felt their particular laboratory style was superior to the alternative method. The findings of this study can be used to improve the integration of virtual laboratories into science curriculum.

  9. A Hands-On, Interdisciplinary Laboratory Program and Educational Model to Strengthen a Radar Curriculum for Broad Distribution

    ERIC Educational Resources Information Center

    Yeary, Mark; Yu, Tian-You; Palmer, Robert; Biggerstaff, Michael; Fink, L. Dee; Ahem, Carolyn; Tarp, Keli Pirtle

    2007-01-01

    This paper describes the details of a National Science Foundation multi-year educational project at the University of Oklahoma (OU). The goal of this comprehensive active-learning and hands-on laboratory program is to develop an interdisciplinary program, in which engineering, geoscience, and meteorology students participate, which forms a…

  10. Physics Education Technology (PhET) Virtual Lab Activities for Distance Learning Courses

    NASA Astrophysics Data System (ADS)

    Callaway, Thomas

    2012-03-01

    The Physics Education Technology (PhET) simulations offer a great set of tools to present simulations of physics phenomena in the classroom. This presentation describes the use of PhET to develop virtual lab assignments that supplement hands-on lab activities for a distance learning class in conceptual physics.

  11. Active Learning Institute: Energizing Science and Math Education. A Compilation of Lesson Plans.

    ERIC Educational Resources Information Center

    Cuyahoga Community Coll. - East, Cleveland, OH.

    The middle school and high school lessons featured in this collection were crafted by science and math teachers who participated in a week-long seminar sponsored by the Eisenhower Professional Development Program administered by the Ohio Board of Regents. The lessons showcase a variety of active learning strategies from using hands-on, low-tech…

  12. Hands-on physics displays for undergraduates

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl W.

    2014-07-01

    Initiated by Frank Oppenheimer in 1969, the Exploratorium in San Francisco has been the model for hands-on science museums throughout the world. The key idea has been to bring people with all levels of scientific background in contact with interesting and attractive exhibits that require the active participation of the visitor. Unfortunately, many science museums are now forced to cater primarily to very young audiences, often 8 years old or less, with predictable constraints on the intellectual depth of their exhibits. To counter this trend, the author has constructed several hands-on displays for the University of Michigan Physics Department that demonstrate: (1) magnetic levitation of pyrolytic graphite, (2) the varied magnetic induction effects in aluminum, copper and air, (3) chaotic motion of a double pendulum, (4) conservation of energy and momentum in a steel ball magnetic accelerator, (5) the diffraction pattern of red and green laser pointer beams created by CDs and DVDs, (6) a magnetic analog of the refraction of light at a dielectric boundary and (7) optical rotation of light in an aqueous fructose solution. Each of these exhibits can be constructed for something like $1000 or less and are robust enough to withstand unsupervised public use. The dynamic behavior of these exhibits will be shown in accompanying video sequences. The following story has a history that goes back quite a few years. In the late 70's, I was spending time at the Stanford Linear Accelerator Center accompanied by my family that included our two grade school children. Needless to say, we much enjoyed weekend excursions to all sorts of interesting sites in the Bay Area, especially the Exploratorium, an unusual science museum created by Frank Oppenheimer that opened in 1969. The notion that exhibits would be designed specifically for "hands-on" interactions was at that time quite revolutionary. This idea captivated a number of people everywhere including a friend in Ann Arbor, Cynthia

  13. Hands-on Astronomy in the Classroom: Good Teaching Ideas for Middle School, High School and Introductory College Teachers

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Fraknoi, A.; Bennett, M.

    1998-05-01

    This workshop is designed to assist middle and high school teachers and astronomers who work with them or who teach introductory college courses in doing hands-on activities on astronomical topics. We will show the pioneering video, "A Private Universe ," on how students learn (and don't learn) science, and then discuss ways of aligning work in the classroomwith the way students learn best. Applying these ideas, we will work through several hands-on or inquiry-based activities that can be used directly in the classroom at the 7th - 13th (introductory college) grade level. Sample activities will make use of filters and Hubble Space Telescope slides, Doppler balls, Refraction/Reflection, spectra, etc. Participants will receive a thick package of materials, including instructions for several excellent classroom activities and resources to enhance their teaching of astronomy. Registration is required; see the AAS Education WWW page or email aased@aas.org.

  14. A Category-Based Video Analysis of Students' Activities in an Out-of-School Hands-on Gene Technology Lesson

    ERIC Educational Resources Information Center

    Scharfenberg, Franz-Josef; Bogner, Franz X.; Klautke, Siegfried

    2008-01-01

    Our research objectives focused on monitoring (i) students' activities during experimental teaching phases in an out-of-school gene technology laboratory, and (ii) potential relationships with variables such as work group size and cognitive achievement. Altogether, we videotaped 20 work groups of A-level 12th graders (n = 67) by continuous…

  15. Hands-On Sports Medicine Training for Residents.

    ERIC Educational Resources Information Center

    Tanji, Jeffrey L.

    1989-01-01

    Describes the development of a hands-on sports medicine training program for residents at the University of California, Davis, Medical Center. Education strategies include clinical teaching, on-the-field education, experiential learning, and didactic instruction. Programs focusing exclusively on sports medicine are needed because the number of…

  16. A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities During Experimentation in an Outreach Gene Technology Lab

    NASA Astrophysics Data System (ADS)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2011-08-01

    Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused discussions combined with students writing down their ideas (step one) prior to starting any experimental procedure (step two). We monitored students' activities during the experimental phases by continuously videotaping 20 work groups within each approach ( N = 131). Subsequent classification of students' activities yielded 10 categories (with well-fitting intra- and inter-observer scores with respect to reliability). Based on the students' individual time budgets, we evaluated students' roles during experimentation from their prevalent activities (by independently using two cluster analysis methods). Independently of the approach, two common clusters emerged, which we labeled as `all-rounders' and as `passive students', and two clusters specific to each approach: `observers' as well as `high-experimenters' were identified only within the one-step approach whereas under the two-step conditions `managers' and `scribes' were identified. Potential changes in group-leadership style during experimentation are discussed, and conclusions for optimizing science teaching are drawn.

  17. Hands-on optics: an informal science education initiative

    NASA Astrophysics Data System (ADS)

    Johnson, Anthony M.; Pompea, Stephen M.; Arthurs, Eugene G.; Walker, Constance E.; Sparks, Robert T.

    2007-09-01

    The project is collaboration between two scientific societies, the Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering and the National Optical Astronomy Observatory (NOAO). The program is designed to bring science education enrichment to thousands of underrepresented middle school students in more than ten states, including female and minority students, who typically have not been the beneficiaries of science and engineering resources and investments. HOO provides each teacher with up to six activity modules, each containing enough materials for up to 30 students to participate in 6-8 hours of hands-on optics-related activities. Sample activities, developed by education specialists at NOAO, include building kaleidoscopes and telescopes, communicating with a beam of light, and a hit-the-target laser beam challenge. Teachers engage in two days of training and, where possible, are partnered with a local optics professional (drawn from the local rosters of SPIE and OSA members) who volunteers to spend time with the teacher and students as they explore the module activities. Through these activities, students gain experience and understanding of optics principles, as well as learning the basics of inquiry, critical thinking, and problem solving skills involving optics, and how optics interfaces with other disciplines. While the modules were designed for use in informal after- school or weekend sessions, the number of venues has expanded to large and small science centers, Boys and Girls Clubs, Girl Scouts, summer camps, family workshops, and use in the classroom.

  18. Developing and evaluating effective bioscience learning activities for nursing students.

    PubMed

    Salvage-Jones, Judith; Hamill, Jessie; Todorovic, Michael; Barton, Matthew J; Johnston, Amy N B

    2016-07-01

    Effective engagement of nursing students in the study of biosciences remains a challenge for many tertiary institutes. In this study we attempted to implement and then evaluate a simple hands-on intervention, consisting of a series of hands-on games and puzzles, to increase nursing student engagement with core concepts and anatomical learning involved in clinical anatomy and physiology. The study used a quazi-experimental longitudinal before and after design, to explore the effect of a learning intervention on student performance. Set across three different campuses of the same University, it included 1320 first year undergraduate nursing students from 2013 to 2014 who were studying Anatomy and Physiology. Students were exposed to the interventions or not, and concomitant academic performance, weekly quiz scores, performance in fortnightly worksheets and, across the semester, exam performance were compared. The results show that while the intervention appeared to increase academic performance in students on one campus (2013) compared to the other two, this difference was not sustained into 2014 when a bigger cohort was examined. Despite significant subjective student satisfaction and enthusiasm about these learning and teaching interventions, the data does not support the capacity of these activities to enhance student academic performance. Tertiary entrance scores, being a non-native English speakers and socio-economic status all had a bigger impact on student performance than engagement with fun anatomy and physiology activities. PMID:27428695

  19. Hands-on Science: Wildcatters.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1988-01-01

    A science unit illustrates the concept of scientific predictions by using how geologists predict where to drill for oil as an example. In a related exercise, everyday items such as bricks, sand, and marbles introduce permeability. Other activities demonstrate how to base predictions on established patterns. A reproducible page is provided. (JL)

  20. [Field Learning Activities].

    ERIC Educational Resources Information Center

    Nolde Forest Environmental Education Center, Reading, PA.

    Seventy field activities, pertinent to outdoor, environmental studies, are described in this compilation. Designed for elementary and junior high school students, the activities cover many discipline areas--science, social studies, language arts, health, history, mathematics, and art--and many are multidisciplinary in use. Topics range from soil…

  1. Hands-On Whole Science. What Rots?

    ERIC Educational Resources Information Center

    Markle, Sandra

    1991-01-01

    Presents activities on the science of garbage to help elementary students learn to save the earth. A rotting experiment teaches students what happens to apple slices sealed in plastic or buried in damp soil. Other activities include reading stories on the subject and conducting classroom composting or toxic materials projects. (SM)

  2. The Seeds of Learning: Young Children Develop Important Skills through Their Gardening Activities at a Midwestern Early Education Program

    ERIC Educational Resources Information Center

    Miller, Dana L.

    2007-01-01

    Using teachers as co-researchers to collect and analyze data, this case study explored preschool and kindergarteners' learning when they were engaged in hands-on activities in the garden and greenhouse areas of a model outdoor classroom. Key findings suggest that when young children are participating in garden and greenhouse activities they are:…

  3. Open Space Learning Activities

    ERIC Educational Resources Information Center

    Knapp, Clifford E.

    1976-01-01

    Describes a science activity in which students are given an opportunity to consider the values of open space. The program includes direct involvement as communicators of feelings and facts, leading students to a position of making wise decisions for land use in the future. (EB)

  4. Activities Joining Learning Objectives to Assessments in Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Palen, Stacy E.; Larson, Ana M.

    2015-01-01

    In recent years, accreditation boards and other governing bodies have been pushing hard for explicit learning goals and quantitative measures of assessment for general education courses such as Astronomy 101. This added assessment burden can be problematic, especially for harried adjuncts teaching multiple courses at multiple institutions. It would be helpful to have a field-tested set of combined hands-on activities and assessment tools that help instructors meet these assessment requirements. The authors have produced just such a set. We have been using hands-on activities in our classrooms for more than 15 years. These activities require no special equipment or preparation and can be completed within an hour by most students working in groups of two or three. The sections of each activity are arranged in steps, guiding the students from initial knowledge-level questions or practice to a final evaluation or synthesis of what they have just accomplished. Students thus get practice thinking at higher cognitive levels. A recent addition to these activities is the inclusion of formalized learning objectives and accompanying pre- and post-activity questions. The pre-activity questions address common misconceptions, relate familiar analogous terrestrial examples to the activity, and act as a brief refresher meta-concepts like scale factors, measurements, and basic mathematics review. The post-activity questions review the most important concepts introduced in the activity. We present a number of examples as well as a summary as to how we have initiated their use in a large lecture setting of 300 students, in smaller classrooms of 15 students, and in a community college online course.

  5. Adapting Active Learning in Ethiopia

    ERIC Educational Resources Information Center

    Casale, Carolyn Frances

    2010-01-01

    Ethiopia is a developing country that has invested extensively in expanding its educational opportunities. In this expansion, there has been a drastic restructuring of its system of preparing teachers and teacher educators. Often, improving teacher quality is dependent on professional development that diversifies pedagogy (active learning). This…

  6. Oral Hygiene. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This learning activity package on oral hygiene is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  7. Active Learning in Introductory Climatology.

    ERIC Educational Resources Information Center

    Dewey, Kenneth F.; Meyer, Steven J.

    2000-01-01

    Introduces a software package available for the climatology curriculum that determines possible climatic events according to a long-term climate history. Describes the integration of the software into the curriculum and presents examples of active learning. (Contains 19 references.) (YDS)

  8. Science Fun: Hands-On Science with Dr. Zed.

    ERIC Educational Resources Information Center

    Penrose, Gordon

    This book presents 65 simple, safe, and intriguing hands-on science activities. In doing these simple experiments, children can make a variety of discoveries that will surprise them. It includes many activities from discovering how people see color and what makes people's hair stand on end, to creating a tornado in a jar or a propeller-driven boat…

  9. Hands-on Science. Why Do Mittens Work?

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1996-01-01

    This article presents hands-on, experiential science activities that use mittens to teach elementary students about classification and insulation. The first involves children sorting mittens. The second has them find out for themselves why mittens keep their hands warm. Across-the-curriculum activities are also described. (SM)

  10. Burglar Alarm: A Simple Circuit Hands-On Experiment

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2011-01-01

    Hands-on activities are one of the most popular instructional tools that enhance student understandings of the science concepts and enable them to get involved in science practices as well. However, most of science educators underestimate its effectiveness in the classrooms. In order to illustrate how these activities could be utilized for science…

  11. Hands-On Science. Bright Ideas for Teaching About Shadows.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1997-01-01

    Presents an elementary level hands-on science activity designed to teach students about shadows. The activity helps students draw conclusions about shadows by experimenting with different materials and determining which will make a shadow. A sidebar explains what a shadow is and offers further resources. (SM)

  12. Hands-On Science: Science Start-ups.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1992-01-01

    Article discusses the four elements of good elementary science programs and offers ideas for creative hands-on science and across-the-curriculum activities (e.g., a please touch science center, curriculum planning chart, and getting to know you water activity). It notes science-related events and describes four science reference books. (SM)

  13. Stimulating Deep Learning Using Active Learning Techniques

    ERIC Educational Resources Information Center

    Yew, Tee Meng; Dawood, Fauziah K. P.; a/p S. Narayansany, Kannaki; a/p Palaniappa Manickam, M. Kamala; Jen, Leong Siok; Hoay, Kuan Chin

    2016-01-01

    When students and teachers behave in ways that reinforce learning as a spectator sport, the result can often be a classroom and overall learning environment that is mostly limited to transmission of information and rote learning rather than deep approaches towards meaningful construction and application of knowledge. A group of college instructors…

  14. Make Science Matter. Hands on Science.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1992-01-01

    Presents class activities to help elementary students learn about changes in the state of matter by making ice cream. In addition to making observations on the changes of state, students can practice measuring and identifying the properties (e.g., color, size, and shape). (SM)

  15. Connecting Family Learning and Active Citizenship

    ERIC Educational Resources Information Center

    Flanagan, Mary

    2009-01-01

    In Ireland family learning and active citizenship has not been linked together until 2006. It was while the Clare Family Learning Project was involved in a family learning EU learning network project, that a suggestion to create a new partnership project linking both areas was made and FACE IT! was born (Families and Active Citizenship…

  16. Positive Developments in Hands-On Universe

    NASA Astrophysics Data System (ADS)

    Pennypacker, C. R.; Hands-On Universe; Yerkes Observatory; START Collaboration Team

    2004-12-01

    Over the past decade, with generous support from Elementary, Secondary and Informal Science Education program of the NSF, Hands-On Universe (HOU), has developed and continues to develop small telescopes, user friendly image-processing software, XML-tools for image request within a telescope network, curricula for secondary schools,, teacher training materials and workshops,. HOU curricula should be published within a year, and we are developing HOU Centers across America and the World, to be on-going and self-sustained sites for teachers to learn how to teach and undertake astronomy in their classrooms. HOU is currently developing museum kiosks for image acquisition and processing in science centers, using an on site robotic telescope, and 0.35 meter telescopes around the world in real time. Over 700 teachers around the United States and another 700 teachers from around the world have taken HOU workshops, and about 2/3 use it in their classrooms. A particularly important development is the HOU collaboration with Johns Hopkins University as part of the usage of National Virtual Observatory and SDSS images and data for education. Such data systems are beginning to result in a flood of data, which will soon overwhelm students and teachers, unless we prepare for this onslaught carefully. HOU has met resonance with other astronomers and educators around the world. Global HOU is thriving, and next years Global HOU meeting will be held at NAOC in Beijing, China. We seek astronomers at this meeting who would be happy to help coach a few students on a paper, using our Collaboratory system!

  17. Active Learning with Irrelevant Examples

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri; Mazzoni, Dominic

    2009-01-01

    An improved active learning method has been devised for training data classifiers. One example of a data classifier is the algorithm used by the United States Postal Service since the 1960s to recognize scans of handwritten digits for processing zip codes. Active learning algorithms enable rapid training with minimal investment of time on the part of human experts to provide training examples consisting of correctly classified (labeled) input data. They function by identifying which examples would be most profitable for a human expert to label. The goal is to maximize classifier accuracy while minimizing the number of examples the expert must label. Although there are several well-established methods for active learning, they may not operate well when irrelevant examples are present in the data set. That is, they may select an item for labeling that the expert simply cannot assign to any of the valid classes. In the context of classifying handwritten digits, the irrelevant items may include stray marks, smudges, and mis-scans. Querying the expert about these items results in wasted time or erroneous labels, if the expert is forced to assign the item to one of the valid classes. In contrast, the new algorithm provides a specific mechanism for avoiding querying the irrelevant items. This algorithm has two components: an active learner (which could be a conventional active learning algorithm) and a relevance classifier. The combination of these components yields a method, denoted Relevance Bias, that enables the active learner to avoid querying irrelevant data so as to increase its learning rate and efficiency when irrelevant items are present. The algorithm collects irrelevant data in a set of rejected examples, then trains the relevance classifier to distinguish between labeled (relevant) training examples and the rejected ones. The active learner combines its ranking of the items with the probability that they are relevant to yield a final decision about which item

  18. Attitudinal Effects of a Student-Centered Active Learning Environment

    NASA Astrophysics Data System (ADS)

    Oliver-Hoyo, Maria T.; Allen, Deedee

    2005-06-01

    The importance of attitudes toward science has risen from widely accepted assumptions that achievement and attitude are positively interdependent and that affective variables are as important as cognitive variables in molding student learning. This report examines the effect on student attitudes toward learning chemistry in an active learning environment that has incorporated elements believed to positively influence student attitudes toward science including cooperative learning, hands-on activities, real-world applications, and engaging technology. These elements were considered for synergetic effects and not as individual contributors to the overall results. Two different sections of the same general chemistry course participated. The lecture setting was used as the control. Residualized gain scores were used to compare net changes in student attitudes. Data were analyzed for possible differences in gain for different academic majors. Anxiety in chemistry was monitored for the two class settings in three areas, learning in chemistry, chemistry evaluation, and chemical handling. Qualitative student feedback was also collected and is summarized in this report on the attitudinal aspects of instruction.

  19. The effect of inquiry-based, hands-on labs on achievement in middle school science

    NASA Astrophysics Data System (ADS)

    Miller, Donna Kaye Green

    The purpose of this quasi-experimental study was to measure the difference in science achievement between students who had been taught with an inquiry-based, hands-on pedagogical approach and those who had not. Improving student academic achievement and standardized test scores is the major objective of teachers, parents, school administrators, government entities, and students themselves. One major barrier to this academic success in Georgia, and the entire United States, has been the paucity of success in middle level science classes. Many studies have been conducted to determine the learning approaches that will best enable students to not only acquire a deeper understanding of science concepts, but to equip them to apply that new knowledge in their daily activities. Inquiry-based, hands-on learning involves students participating in activities that reflect methods of scientific investigation. The effective utilization of the inquiry-based learning approach demands inclusion of learners in a self-directed learning environment, the ability to think critically, and an understanding of how to reflect and reason scientifically. The treatment group using an inquiry-based, hands-on program did score slightly higher on the CRCT. However, the results revealed that there was not a significant difference in student achievement. This study showed that the traditionally instructed control group had slightly higher interest in science than the inquiry-based treatment group. The findings of this research study indicated that the NCLB mandates might need to be altered if there are no significant academic gains that result from the use of inquiry-based strategies.

  20. History and Evolution of Active Learning Spaces

    ERIC Educational Resources Information Center

    Beichner, Robert J.

    2014-01-01

    This chapter examines active learning spaces as they have developed over the years. Consistently well-designed classrooms can facilitate active learning even though the details of implementing pedagogies may differ.

  1. Active Learning: Historical and Contemporary Perspectives.

    ERIC Educational Resources Information Center

    Page, Marilyn

    The purposes of the first two parts of this literature review are to clarify the concept of active learning and discuss the use and value of active learning models. In Part I, the perspectives of five historical proponents of active learning, Rousseau, Pestalozzi, Dewey, Kilpatrick, and Piaget, are discussed. The views of four contemporary…

  2. Student Active Learning Methods in Physical Chemistry

    NASA Astrophysics Data System (ADS)

    Hinde, Robert J.; Kovac, Jeffrey

    2001-01-01

    We describe two strategies for implementing active learning in physical chemistry. One involves supplementing a traditional lecture course with heavily computer-based active-learning exercises carried out by cooperative groups in a department computer lab. The other uses cooperative learning almost exclusively, supplemented by occasional mini-lectures. Both approaches seemed to result in better student learning and a more positive attitude toward the subject. On the basis of our respective experiences using active learning techniques, we discuss some of the strengths of these techniques and some of the challenges we encountered using the active-learning approach in teaching physical chemistry.

  3. Active Learning through Service-Learning

    ERIC Educational Resources Information Center

    Goldberg, Lynette R.; Richburg, Cynthia McCormick; Wood, Lisa A.

    2006-01-01

    Service-learning (SL) is a relatively new pedagogical approach to facilitate student learning at the university level. In SL, students enrolled in an academic course provide a needed service to a community partner. Through guided reflection, students link classroom-based, theoretical knowledge with clinical applications. Students' active…

  4. A Hands-On Approach to Maglev for Gifted Students.

    ERIC Educational Resources Information Center

    Budd, Raymond T.

    2003-01-01

    This article discusses how Magnetic Levitation (Maglev) can be taught to gifted students in grades 4-9 using hands-on activities that align to the National Science Standards. Principles of magnetic levitation, advantages of magnetic levitation, construction of a Maglev project, testing and evaluation of vehicles, and presentation of the unit are…

  5. Not-So-Messy Hands-On Science.

    ERIC Educational Resources Information Center

    Bryan, Denise; Denty, Amy

    2002-01-01

    Presents four elementary hands-on science activities that highlight animal adaptation (how birds' beaks are adapted to suit their habitats), the water cycle (how nature cleans rainwater that seeps into the ground), aquatic ecosystems (changes over time in an aquatic habitat), and animal habitats (all living beings' need for food, water, shelter,…

  6. Hands-On Experiences with Buoyant-Less Water

    ERIC Educational Resources Information Center

    Slisko, Josip; Planinsic, Gorazd

    2010-01-01

    The phenomenon of weightlessness is known to students thanks to videos of amazing things astronauts do in spaceships orbiting the Earth. In this article we propose two hands-on activities which give students opportunities to infer by themselves the absence of buoyant force in a gravity accelerated system. The system is a free-falling or vertically…

  7. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    PubMed

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms. PMID:26269460

  8. Developing Metacognition: A Basis for Active Learning

    ERIC Educational Resources Information Center

    Vos, Henk; de Graaff, E.

    2004-01-01

    The reasons to introduce formats of active learning in engineering (ALE) such as project work, problem-based learning, use of cases, etc. are mostly based on practical experience, and sometimes from applied research on teaching and learning. Such research shows that students learn more and different abilities than in traditional formats of…

  9. Celebrating Service and Learning

    ERIC Educational Resources Information Center

    Emeagwali, Susan; Berkey, Lisa; Guempel, Martha

    2010-01-01

    This month's "Techniques" magazine celebrates service-learning and the contributions that it makes to students' learning by fostering civic engagement while students learn in hands-on, real-world contexts. For close to half a century, service-learning has spread throughout schools in the United States as students engage in activities as diverse as…

  10. Learning activism, acting with phronesis

    NASA Astrophysics Data System (ADS)

    Lee, Yew-Jin

    2015-12-01

    The article "Socio-political development of private school children mobilising for disadvantaged others" by Darren Hoeg, Natalie Lemelin, and Lawrence Bencze described a language-learning curriculum that drew on elements of Socioscientific issues and Science, Technology, Society and Environment. Results showed that with a number of enabling factors acting in concert, learning about and engagement in practical action for social justice and equity are possible. An alternative but highly compatible framework is now introduced—phronetic social research—as an action-oriented, wisdom-seeking research stance for the social sciences. By so doing, it is hoped that forms of phronetic social research can gain wider currency among those that promote activism as one of many valued outcomes of an education in science.

  11. Linking Mission to Learning Activities for Assurance of Learning

    ERIC Educational Resources Information Center

    Yeung, Shirley Mo-ching

    2011-01-01

    Can accreditation-related requirements and mission statements measure learning outcomes? This study focuses on triangulating accreditation-related requirements with mission statements and learning activities to learning outcomes. This topic has not been comprehensively explored in the past. After looking into the requirements of AACSB, ISO, and…

  12. Active Learning in the Middle Grades

    ERIC Educational Resources Information Center

    Edwards, Susan

    2015-01-01

    What is active learning and what does it look like in the classroom? If students are participating in active learning, they are playing a more engaged role in the learning process and are not overly reliant on the teacher (Bransford, Brown, & Cocking, 2003; Petress, 2008). The purpose of this article is to propose a framework to describe and…

  13. Learning Activities for the Young Handicapped Child.

    ERIC Educational Resources Information Center

    Bailey, Don; And Others

    Presented is a collection of learning activities for the young handicapped child covering 295 individual learning objectives in six areas of development: gross motor skills, fine motor skills, social skills, self help skills, cognitive skills, and language skills. Provided for each learning activity are the teaching objective, teaching procedures,…

  14. Research on Mobile Learning Activities Applying Tablets

    ERIC Educational Resources Information Center

    Kurilovas, Eugenijus; Juskeviciene, Anita; Bireniene, Virginija

    2015-01-01

    The paper aims to present current research on mobile learning activities in Lithuania while implementing flagship EU-funded CCL project on application of tablet computers in education. In the paper, the quality of modern mobile learning activities based on learning personalisation, problem solving, collaboration, and flipped class methods is…

  15. Active Learning: The Way Children Construct Knowledge.

    ERIC Educational Resources Information Center

    Hohmann, Mary; Weikart, David P.

    2002-01-01

    The High/Scope approach to early childhood education promotes the belief that active learning is fundamental to the development of human potential and occurs most effectively in settings that provide developmentally appropriate learning opportunities. Describes five ingredients of active learning (materials, manipulation, choice, language from…

  16. Reinforcement learning or active inference?

    PubMed

    Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J

    2009-01-01

    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain. PMID:19641614

  17. Reinforcement Learning or Active Inference?

    PubMed Central

    Friston, Karl J.; Daunizeau, Jean; Kiebel, Stefan J.

    2009-01-01

    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain. PMID:19641614

  18. Hands-On Training for Deckhands.

    ERIC Educational Resources Information Center

    Hoffman, Carl

    1992-01-01

    Describes riverboat deckhand training program operated by East Mississippi Community College and local river towing companies. Residential program trains deckhands using actual towing equipment, including boat and "quarters barge" with classroom. Describes trainees' rigorous workday, including classes, hands-on drills, and physical training.…

  19. Hands-on optics and photonics outreach in Riga

    NASA Astrophysics Data System (ADS)

    Lesina, Natalija; Spigulis, Janis

    2014-07-01

    A long-term exposition focused on optics and photonics was created in Institute of Atomic Physics and Spectroscopy at University of Latvia in 2010. Considering unpopularity of science in Latvia and lack of broadly accessible hands-on outreach activities for school children, as well as rapid development of advanced photonic technologies, this exposition was meant to involve more students to the natural sciences and modern technologies. Exposition covers 10 topics of optics - colors, diffraction, interference, polarization, reflection, liquid crystals, gas discharge, lasers, fluorescence, infrared and ultraviolet radiation. Students' visits are organized as an exciting adventure, which differs from ordinary school lessons. The visit mainly includes own actions with hands-on exhibits, lecturer's explanations about the most difficult topics and some demonstrations shown by the lecturer. The main accent is made on hands-on experiments due to the fact that students, who had performed hands-on experiments, will be emboldened to choose their career in the field of science and technologies. The exposition now is running and is part of Riga Photonics Center. Nearly 300 students from the 8th till 12th grades visited it during academic years 2011/2012 and 2012/2013 and their generally positive feedback has been analyzed.

  20. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  1. What's the Matter with Food?: A Hands-On Action Research Study on the Effect of Using Food Preparation To Teach Students with Autism about the Three States of Matter

    NASA Astrophysics Data System (ADS)

    Diller, Nicole

    This investigation studied the effectiveness of using food preparation to teach students with Autism about the three states of matter. A hands-on learning approach was used within the home and careers classroom. One class of five students, three boys and two girls, all diagnosed with Autism, participated in a five day academic unit about the three phases of matter: solid, liquid, and gas. The class received hands-on learning science instruction using food through various differentiated activities. Results indicate that students express focus when using food to learn. In addition, this study acknowledges that hands-on learning in science enhances the learning process of students with Autism. One of the main reasons is that students enjoy learning when this teaching style is used in the classroom, and students that enjoy what they are learning are more likely to be engaged and motivated to learn. After using this approach, all the students in the study increased their scores from the pre-assessments to the post-assessments. Students expressed through actions and words that they enjoyed using hands-on experiences to learn in the classroom. Implications for practice indicate that a variety of manipulatives are needed to teach students with Autism. Future research would help uncover additional information about student motivation and learning in the home and careers classroom.

  2. Modelling Typical Online Language Learning Activity

    ERIC Educational Resources Information Center

    Montoro, Carlos; Hampel, Regine; Stickler, Ursula

    2014-01-01

    This article presents the methods and results of a four-year-long research project focusing on the language learning activity of individual learners using online tasks conducted at the University of Guanajuato (Mexico) in 2009-2013. An activity-theoretical model (Blin, 2010; Engeström, 1987) of the typical language learning activity was used to…

  3. Activities for Science: Cooperative Learning Lessons (Challenging).

    ERIC Educational Resources Information Center

    Jasmine, Grace; Jasmine, Julia

    This book is designed to help advanced elementary students learn science skills while actively engaged in cooperative activities based on the earth sciences and natural disasters. The first section explains how to make cooperative learning a part of the curriculum and includes an overview, instructions and activities to bring cooperative learning…

  4. Manipulatives: A Hands-On Approach to Math

    ERIC Educational Resources Information Center

    DeGeorge, Barbara; Santoro, Anne Marie

    2004-01-01

    Many of us can remember back to a time in America when all that teachers expected us to do with our hands in the classroom was to fold them. But now that the power and effectiveness of hands-on instruction has been proven in a wide range of subject areas--particularly math--those days are over. Whether using traditional activities, such as…

  5. Introductory Astronomy Student-Centered Active Learning at The George Washington University

    NASA Astrophysics Data System (ADS)

    Cobb, Bethany

    2014-01-01

    The Physics Department at the George Washington University has been successfully using student-centered active learning (SCALE-UP) in physics classes since 2008. In Fall 2011, we began implementing introductory (non-majors) astronomy classes taught in the student-centered active learning mode. Class time is devoted to engaging in hands-on activities and laboratories, and tackling thought-provoking questions and problems. Students work together in small groups to gain a deeper understanding of the material. Multiple instructors circulate to answer questions and engage students in additional contemplation of the material. Research has shown that students who are engaged in this manner have an increased conceptual understanding and are better able to solve problems. This talk will describe our methods, our successes and the associated challenges of integrating active learning into courses entitled “Stars, Planets and Life” and “Introduction to the Cosmos.”

  6. Kinaesthetic Learning Activities and Learning about Solar Cells

    ERIC Educational Resources Information Center

    Richards, A. J.; Etkina, Eugenia

    2013-01-01

    Kinaesthetic learning activities (KLAs) can be a valuable pedagogical tool for physics instructors. They have been shown to increase engagement, encourage participation and improve learning outcomes. This paper details several KLAs developed at Rutgers University for inclusion in an instructional unit about semiconductors, p-n junctions and solar…

  7. Adult Learning Principles in Designing Learning Activities for Teacher Development

    ERIC Educational Resources Information Center

    Gravani, Maria N.

    2012-01-01

    The research reported in this paper is an investigation of the application of adult learning principles in designing learning activities for teachers' life-long development. The exploration is illustrated by qualitative data from a case study of adult educators' and adult learners' insights and experiences of a teacher development course organised…

  8. Student Activity and Learning Outcomes in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Romanov, Kalle; Nevgi, Anne

    2008-01-01

    The aim of the study was to explore the relationship between degree of participation and learning outcomes in an e-learning course on medical informatics. Overall activity in using course materials and degree of participation in the discussion forums of an online course were studied among 39 medical students. Students were able to utilise the…

  9. An investigation of the impact of selected prereading activities on student content learning through laboratory activities

    NASA Astrophysics Data System (ADS)

    Kass, Jesse (Shaya)

    This study investigated whether two prereading activities impacted student learning from hands-on science activities. The study was based on constructivist learning theory. Based on the work of Piaget, it was hypothesized that students who activated prior knowledge would learn more from the activities. Based on the work of Vygotsky it was hypothesized that students who talk more and write more would learn more from the activity. The K-W-L chart and anticipation guide strategies were used with eighth grade students at Graves Middle School in Whittier, California before learning about levers and convection currents. D. M. Ogle (1986) created the three-column K-W-L chart to have students activate prior knowledge. In the first column, the students write what they already know about a subject, in the second column, the students write what they want to know about the subject, and the students complete the third column after learning about a subject by writing answers to the questions that they asked in the second column. Duffelmeyer (1994) created the anticipation guide based on Herber's (1978) reasoning guide. In the anticipation guide, the teacher creates three or four sentences that convey the major ideas of the topic and the students either agree or disagree with the statements. After learning about the topic, students revisit their answers and decide if they were correct or incorrect and they must defend their choices. This research used the Solomon (1947) four-square design and compared both the experimental groups to a control group that simply discussed the concepts before completing the activity. The research showed no significant difference between the control group and either of the treatment groups. The reasons for the lack of significant differences are considered. It was hypothesized that since the students were unfamiliar with the prereading activities and did not have much experience with using either writing-to-learn or talking-to-learn strategies, the

  10. Faculty Adoption of Active Learning Classrooms

    ERIC Educational Resources Information Center

    Van Horne, Sam; Murniati, Cecilia Titiek

    2016-01-01

    Although post-secondary educational institutions are incorporating more active learning classrooms (ALCs) that support collaborative learning, researchers have less often examined the cultural obstacles to adoption of those environments. In this qualitative research study, we adopted the conceptual framework of activity theory to examine the…

  11. Active Learning in American History Class.

    ERIC Educational Resources Information Center

    Brill, Janice

    1996-01-01

    Describes the activities of a high school class that discovered the joy of history through experiential learning. Students learned traditional military tactics for their unit on the French and Indian Wars, and tried to apply them to a nearby woods. Includes similar activities for other historic periods. (MJP)

  12. Active Ageing, Active Learning: Policy and Provision in Hong Kong

    ERIC Educational Resources Information Center

    Tam, M.

    2011-01-01

    This paper discusses the relationship between ageing and learning, previous literature having confirmed that participation in continued learning in old age contributes to good health, satisfaction with life, independence and self-esteem. Realizing that learning is vital to active ageing, the Hong Kong government has implemented policies and…

  13. Involving postgraduate's students in undergraduate small group teaching promotes active learning in both

    PubMed Central

    Kalra, Ruchi; Modi, Jyoti Nath; Vyas, Rashmi

    2015-01-01

    Background: Lecture is a common traditional method for teaching, but it may not stimulate higher order thinking and students may also be hesitant to express and interact. The postgraduate (PG) students are less involved with undergraduate (UG) teaching. Team based small group active learning method can contribute to better learning experience. Aim: To-promote active learning skills among the UG students using small group teaching methods involving PG students as facilitators to impart hands-on supervised training in teaching and managerial skills. Methodology: After Institutional approval under faculty supervision 92 UGs and 8 PGs participated in 6 small group sessions utilizing the jigsaw technique. Feedback was collected from both. Observations: Undergraduate Feedback (Percentage of Students Agreed): Learning in small groups was a good experience as it helped in better understanding of the subject (72%), students explored multiple reading resources (79%), they were actively involved in self-learning (88%), students reported initial apprehension of performance (71%), identified their learning gaps (86%), team enhanced their learning process (71%), informal learning in place of lecture was a welcome change (86%), it improved their communication skills (82%), small group learning can be useful for future self-learning (75%). Postgraduate Feedback: Majority performed facilitation for first time, perceived their performance as good (75%), it was helpful in self-learning (100%), felt confident of managing students in small groups (100%), as facilitator they improved their teaching skills, found it more useful and better identified own learning gaps (87.5%). Conclusions: Learning in small groups adopting team based approach involving both UGs and PGs promoted active learning in both and enhanced the teaching skills of the PGs. PMID:26380201

  14. Developing an Experiential Learning Program: Milestones and Challenges

    ERIC Educational Resources Information Center

    Austin, M. Jill; Rust, Dianna Zeh

    2015-01-01

    College and University faculty members have increasingly adopted experiential learning teaching methods that are designed to engage students in the learning process. Experiential learning is simply defined as "hands-on" learning and may involve any of the following activities: service learning, applied learning in the discipline,…

  15. Hands-on Verification of Mechanics Training: A Cost-Effectiveness Study of Videodisc Simulation.

    ERIC Educational Resources Information Center

    Maher, Thomas G.

    This document reports the results of a study on the feasibility of training smog check mechanics in California via hands-on verification of mechanics' ability to inspect and repair vehicles. The reviews of the research literature that compare the learning effectiveness of different delivery media tend to support the position that in learning, the…

  16. The Topography Tub Learning Activity

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.

    2014-12-01

    Understanding the basic elements of a topographic map (i.e. contour lines and intervals) is just a small part of learning how to use this abstract representational system as a resource in geologic mapping. Interpretation of a topographic map and matching its features with real-world structures requires that the system is utilized for visualizing the shapes of these structures and their spatial orientation. To enrich students' skills in visualizing topography from topographic maps a spatial training activity has been developed that uses 3D objects of various shapes and sizes, a sighting tool, a plastic basin, water, and transparencies. In the first part of the activity, the student is asked to draw a topographic map of one of the 3D objects. Next, the student places the object into a plastic tub in which water is added to specified intervals of height. The shoreline at each interval is used to reference the location of the contour line the student draws on a plastic inkjet transparency directly above the object. A key part of this activity is the use of a sighting tool by the student to assist in keeping the pencil mark directly above the shoreline. It (1) ensures the accurate positioning of the contour line and (2) gives the learner experience with using a sight before going out into the field. Finally, after the student finishes drawing the contour lines onto the transparency, the student can compare and contrast the two maps in order to discover where improvements in their visualization of the contours can be made. The teacher and/or peers can also make suggestions on ways to improve. A number of objects with various shapes and sizes are used in this exercise to produce contour lines representing the different types of topography the student may encounter while field mapping. The intended outcome from using this visualization training activity is improvement in performance of visualizing topography as the student moves between the topographic representation and

  17. Special Science Section: How to Make Hands-on Science Work for You.

    ERIC Educational Resources Information Center

    Kepler, Lynne; Pollina, Ann

    1996-01-01

    Presents ideas from elementary school teachers who have made hands-on science an integral part of their classrooms. Includes suggestions for overcoming obstacles to hands-on science, innovative teaching techniques that encourage girls to excel in science and math, model activities to win parent/teacher support, and a list of eight "sensational"…

  18. Active Learning through Toy Design and Development

    ERIC Educational Resources Information Center

    Sirinterlikci, Arif; Zane, Linda; Sirinterlikci, Aleea L.

    2009-01-01

    This article presents an initiative that is based on active learning pedagogy by engaging elementary and middle school students in the toy design and development field. The case study presented in this article is about student learning experiences during their participation in the TOYchallenge National Toy Design Competition. Students followed the…

  19. Child Development: An Active Learning Approach

    ERIC Educational Resources Information Center

    Levine, Laura E.; Munsch, Joyce

    2010-01-01

    Within each chapter of this innovative topical text, the authors engage students by demonstrating the wide range of real-world applications of psychological research connected to child development. In particular, the distinctive Active Learning features incorporated throughout the book foster a dynamic and personal learning process for students.…

  20. Conditions for Apprentices' Learning Activities at Work

    ERIC Educational Resources Information Center

    Messmann, Gerhard; Mulder, Regina H.

    2015-01-01

    The aim of this study was to investigate how apprentices' learning activities at work can be fostered. This is a crucial issue as learning at work enhances apprentices' competence development and prepares them for professional development on the job. Therefore, we conducted a study with 70 apprentices in the German dual system and examined the…

  1. Incorporating Active Learning into a Traditional Curriculum.

    ERIC Educational Resources Information Center

    Carroll, Robert G.; Huang, Alice H.

    1997-01-01

    Discusses self-learning exercises (SLEs) incorporated into the Medical Physiology course for first-year students at the Morehouse School of Medicine in Atlanta, GA. Twenty to thirty percent of course material is presented in these exercises instead of in lectures. The exercises develop active learning and problem-solving skills. Formal analysis…

  2. 61 Cooperative Learning Activities in ESL.

    ERIC Educational Resources Information Center

    Hirsch, Charles; Supple, Deborah Beres

    Cooperative learning activities, instructional strategies, and reproducible classroom materials are provided to assist teachers with English-as-a-Second-Language learners in their classes. They are designed to help students develop English language skills using conversation-based cooperative learning principles, with native speakers and ESL…

  3. Where's the Evidence that Active Learning Works?

    ERIC Educational Resources Information Center

    Michael, Joel

    2006-01-01

    Calls for reforms in the ways we teach science at all levels, and in all disciplines, are wide spread. The effectiveness of the changes being called for, employment of student-centered, active learning pedagogy, is now well supported by evidence. The relevant data have come from a number of different disciplines that include the learning sciences,…

  4. "Active Learning for Active Citizenship": Democratic Citizenship and Lifelong Learning

    ERIC Educational Resources Information Center

    Annette, John

    2009-01-01

    This article explores to what extent citizenship education for lifelong learning should be based on a more "political" or civic republican conception of citizenship as compared to a liberal individualist conception, which emphasizes individual rights, or a communitarian conception, which emphasizes moral and social responsibilities. It also…

  5. Exploring the Extreme: High Performance Learning Activities in Mathematics, Science and Technology. An Educator's Guide. EG-2002-10-001-DFRC

    ERIC Educational Resources Information Center

    Dana, Judi; Kock, Meri; Lewis, Mike; Peterson, Bruce; Stowe, Steve

    2010-01-01

    The many activities contained in this teaching guide emphasize hands-on involvement, prediction, data collection and interpretation, teamwork, and problem solving. The guide also contains background information about aeronautical research that can help students learn how airplanes fly. Following the background sections are a series of activities…

  6. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  7. An Evaluation of Two Hands-On Lab Styles for Plant Biodiversity in Undergraduate Biology

    PubMed Central

    Maines, Anastasia P.; Francis, Clinton D.; Melbourne, Brett

    2014-01-01

    We compared learning cycle and expository formats for teaching about plant biodiversity in an inquiry-oriented university biology lab class (n = 465). Both formats had preparatory lab activities, a hands-on lab, and a postlab with reflection and argumentation. Learning was assessed with a lab report, a practical quiz in lab, and a multiple-choice exam in the concurrent lecture. Attitudes toward biology and treatments were also assessed. We used linear mixed-effect models to determine impacts of lab style on lower-order cognition (LO) and higher-order cognition (HO) based on Bloom's taxonomy. Relative to the expository treatment, the learning cycle treatment had a positive effect on HO and a negative effect on LO included in lab reports; a positive effect on transfer of LO from the lab report to the quiz; negative impacts on LO quiz performance and on attitudes toward the lab; and a higher degree of perceived difficulty. The learning cycle treatment had no influence on transfer of HO from lab report to quiz or exam; quiz performance on HO questions; exam performance on LO and HO questions; and attitudes toward biology as a science. The importance of LO as a foundation for HO relative to these lab styles is addressed. PMID:25185232

  8. Point-of-Purchase Advertising. Learning Activity.

    ERIC Educational Resources Information Center

    Shackelford, Ray

    1998-01-01

    In this technology education activity, students learn the importance of advertising, conduct a day-long survey of advertising strategies, and design and produce a tabletop point-of-purchase advertisement. (JOW)

  9. An Active Learning Project for Forage Courses.

    ERIC Educational Resources Information Center

    Hall, M. H.

    1989-01-01

    Presented is a successfully implemented active learning project and results of a survey to assess the success of the project. Materials and methods are discussed, and an example of one project is provided. (Author/CW)

  10. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  11. People with Learning Disabilities and "Active Ageing"

    ERIC Educational Resources Information Center

    Foster, Liam; Boxall, Kathy

    2015-01-01

    Background: People (with and without learning disabilities) are living longer. Demographic ageing creates challenges and the leading policy response to these challenges is "active ageing". "Active" does not just refer to the ability to be physically and economically active, but also includes ongoing social and civic engagement…

  12. How Authenticity and Self-Directedness and Student Perceptions Thereof Predict Competence Development in Hands-On Simulations

    ERIC Educational Resources Information Center

    Khaled, Anne; Gulikers, Judith; Biemans, Harm; Mulder, Martin

    2015-01-01

    Hands-on simulations are increasingly used in vocational oriented curricula to create meaningful, occupation-related learning experiences. However, more insight is required about precisely what characteristics in hands-on simulations enhance outcomes that students need for their future occupation, such as competencies. This study aims to examine…

  13. A hands-on paradigm for EAP education: undergraduates, pre-college students, and beyond

    NASA Astrophysics Data System (ADS)

    Tan, Xiaobo; Kim, Drew; Goodman, Erik; Shahinpoor, Mohsen

    2007-04-01

    Electroactive polymers (EAPs) are receiving increasing interest from researchers due to their unique capabilities and numerous potential applications in biomimetic robots, smart structures, biomedical devices, and micro/nanomanipulation. Since these materials are relatively new, it is imperative to educate students and the general public to raise their awareness of EAP potentials and produce the talent pool needed for continuing, rapid advances in the field of EAPs. In this paper we describe our concerted effort in teaching EAP to undergraduates, grade school students, and the general public, through hands-on research and learning on EAP-based biomimetic robots. Two integrated activities are highlighted: A senior Capstone design program on EAP robots, and the subsequent programs that use these developed robots to reach out to pre-college students. A robotic fish and a sociable robot enabled by ionic polymer-metal composite materials are used as examples throughout the paper.

  14. Active Learning: Learning a Motor Skill Without a Coach

    PubMed Central

    Huang, Vincent S.; Shadmehr, Reza; Diedrichsen, Jörn

    2008-01-01

    When we learn a new skill (e.g., golf) without a coach, we are “active learners”: we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence. PMID:18509079

  15. Active learning: learning a motor skill without a coach.

    PubMed

    Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn

    2008-08-01

    When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence. PMID:18509079

  16. Reviews Equipment: LabQuest 2 Equipment: Rubens' Tube Equipment: Ripple Strobe Tank Book: God and the Atom Book: Magnificent Principia, Exploring Isaac Newton's Masterpiece Book: Talking Science: Language, Learning, and Values Classroom Video: Maxwell's Equations Book: Exploring Quantum Physics Through Hands-on Projects Web Watch

    NASA Astrophysics Data System (ADS)

    2013-11-01

    WE RECOMMEND LabQuest 2 New logger now includes mobile data sharing Rubens' Tube Sturdy Rubens' tube ramps up the beat Ripple Strobe Tank Portable ripple tank makes waves in and out of the lab God and the Atom Expertly told story of the influence of atomism Maxwell's Equations Video stands the test of time Exploring Quantum Physics Through Hands-on Projects Mixture of theory and experiment hits the spot WORTH A LOOK Magnificent Principia, Exploring Isaac Newton's Masterpiece The tricky task of summarizing Newton's iconic work Talking Science: Language, Learning, and Values Interesting book tackles communication in the classroom WEB WATCH Interactive website plans a trip to Mars ... documentary peers into telescopes ... films consider the density of water

  17. Going the Distance: Active Learning.

    ERIC Educational Resources Information Center

    Notar, Charles E.; Restauri, Sherri; Wilson, Janell D.; Friery, Kathleen A.

    The growth and development of distance learning (DL) programs is on the rise. This review examines the literature looking for instructional techniques and methods for the teacher desiring to use DL technology to maximize student achievement and cognitive development and to increase student interaction. The three major relationships within the…

  18. Learning Activism, Acting with Phronesis

    ERIC Educational Resources Information Center

    Lee, Yew-Jin

    2015-01-01

    The article "Socio-political development of private school children mobilising for disadvantaged others" by Darren Hoeg, Natalie Lemelin, and Lawrence Bencze described a language-learning curriculum that drew on elements of Socioscientific issues and Science, Technology, Society and Environment. Results showed that with a number of…

  19. Actively learning object names across ambiguous situations.

    PubMed

    Kachergis, George; Yu, Chen; Shiffrin, Richard M

    2013-01-01

    Previous research shows that people can use the co-occurrence of words and objects in ambiguous situations (i.e., containing multiple words and objects) to learn word meanings during a brief passive training period (Yu & Smith, 2007). However, learners in the world are not completely passive but can affect how their environment is structured by moving their heads, eyes, and even objects. These actions can indicate attention to a language teacher, who may then be more likely to name the attended objects. Using a novel active learning paradigm in which learners choose which four objects they would like to see named on each successive trial, this study asks whether active learning is superior to passive learning in a cross-situational word learning context. Finding that learners perform better in active learning, we investigate the strategies and discover that most learners use immediate repetition to disambiguate pairings. Unexpectedly, we find that learners who repeat only one pair per trial--an easy way to infer this pair-perform worse than those who repeat multiple pairs per trial. Using a working memory extension to an associative model of word learning with uncertainty and familiarity biases, we investigate individual differences that correlate with these assorted strategies. PMID:23335580

  20. Experienced Teachers' Informal Learning: Learning Activities and Changes in Behavior and Cognition

    ERIC Educational Resources Information Center

    Hoekstra, Annemarieke; Brekelmans, Mieke; Beijaard, Douwe; Korthagen, Fred

    2009-01-01

    In this study on 32 teachers' learning in an informal learning environment, we analyzed changes in conceptions and behavior regarding students' active and self-regulated learning (ASL), and relations with the teachers' learning activities. Few relations were found between observed changes in "behavior" and learning activities. Changes in…

  1. Introductory Astronomy Student-Centered Active Learning at the George Washington University

    NASA Astrophysics Data System (ADS)

    Cobb, B. E.

    2014-07-01

    The Physics Department at the George Washington University has been successfully using student-centered active learning (SCALE-UP) in physics classes since 2008. Recently (since fall 2011), we have been developing and implementing introductory (non-majors) astronomy classes taught in the student-centered active learning mode. Class time is devoted to engaging in hands-on activities and laboratories and tackling questions and problems in a workbook. Students work in small groups, and multiple instructors circulate to answer questions and engage students in the material. Research has shown that students who are engaged in this manner have an increased conceptual understanding of the material. In developing our “Stars, Planets and Life” course into an interactive class, we encountered many challenges, but there have also been positive outcomes. Improvements to this class are ongoing, and in fall of 2013 we will begin full implementation of SCALE-UP in our “Introduction to the Cosmos” course.

  2. Excellence in Physics Education Award Talk: Sharing Active Learning Strategies in the Developed and Developing Worlds

    NASA Astrophysics Data System (ADS)

    Sokoloff, David

    2010-02-01

    Since the first series of National Microcomputer Based Laboratory (MBL) Institutes for Teachers of Physics in Summer, 1987, the Activity Based Physics Group (ABP) has presented numerous professional development institutes and workshops to thousands of high school, college and university faculty, sponsored by National Science Foundation, U.S. Department of Education, Howard Hughes Medical Institute and others. An overview of these programs and details of our instructional strategies will be presented. Some common features of these include: (1) motivating participants through introduction to active learning research literature, including exposure to conceptual evaluations and student learning gains in traditional and active learning courses, (2) exposing participants to active learning strategies through intensive hands-on work using classroom tested curricular materials, (3) relying on these materials to enhance teacher knowledge and correct misconceptions---when necessary, (4) providing opportunities to practice active learning instruction with other participants and (5) distributing or facilitating procurement of equipment and supplies needed to get started. Recently, ABP group members have been working with physics educators from other countries to introduce active learning strategies in the developing world. New programs such as Active Learning in Optics and Photonics (ALOP, UNESCO) and Physware (ICTP/UNESCO/IUPAP), that support active learning using low-cost equipment, have been developed for this purpose. To date, ALOP workshops have been presented to over 500 secondary and college faculty in Ghana, Tunisia, Morocco, India, Tanzania, Brazil, Mexico, Zambia, Cameroon, Colombia, Nepal and Chile, and the ALOP Training Manual has been translated into French and Spanish. The first Physware workshop, held at ICTP in Trieste in 2009, had 32 participants most of whom were from developing countries in Africa, Asia and South America. These programs will be described. )

  3. Quantum Speedup for Active Learning Agents

    NASA Astrophysics Data System (ADS)

    Paparo, Giuseppe Davide; Dunjko, Vedran; Makmal, Adi; Martin-Delgado, Miguel Angel; Briegel, Hans J.

    2014-07-01

    Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in real-life situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.

  4. Is Peer Interaction Necessary for Optimal Active Learning?

    ERIC Educational Resources Information Center

    Linton, Debra L.; Farmer, Jan Keith; Peterson, Ernie

    2014-01-01

    Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of…

  5. Karyotype Analysis Activity: A Constructivist Learning Design

    ERIC Educational Resources Information Center

    Ahmed, Noveera T.

    2015-01-01

    This classroom activity is based on a constructivist learning design and engages students in physically constructing a karyotype of three mock patients. Students then diagnose the chromosomal aneuploidy based on the karyotype, list the symptoms associated with the disorder, and discuss the implications of the diagnosis. This activity is targeted…

  6. RoboResource Technology Learning Activities.

    ERIC Educational Resources Information Center

    Keck, Tom, Comp.; Frye, Ellen, Ed.

    Preparing students to be successful in a rapidly changing world means showing them how to use the tools of technology and how to integrate those tools into all areas of learning. This booklet is divided into three sections: Design Activities, Experiments, and Resources. The design activities ask students to collaborate on design projects. In these…

  7. Learning Activities for the Growth Season.

    ERIC Educational Resources Information Center

    Darby, Linda, Ed.

    This poster, illustrated with a graphic of a caterpillar changing to a cocoon and emerging as a butterfly, presents learning activities for 7 weeks based on the seven stages of growth in the President's "Call to Action." Each week includes 5 days of activities based on seven themes: (1) "Reading on Your Own"; (2) "Getting Ready for Algebra"; (3)…

  8. Oral Hygiene. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This instructor's packet accompanies the learning activity package (LAP) on oral hygiene. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, additional resources (student handouts), student performance checklists for both…

  9. ``IT'S ALL IN MOTION" -- A Hands-On Astronomy Workshop For Teachers of Grades 4-8

    NASA Astrophysics Data System (ADS)

    West, M. L.; Liu, C.; Conod, K.

    1999-12-01

    We describe the implementation and results of a four day hands-on astronomy workshop for in-service teachers of grades 4-8. This project, funded by a 1998-1999 IDEAS grant through the Space Telescope Science Institute, included 20 teacher participants from northern New Jersey. We used the workshop's unifying theme -- ``It's All in Motion!" -- to present to the teachers fundamental astrophysical concepts, relevant math and computer skills, and astronomy activities for their classrooms. We learned that there is a great need for this type of training, especially in New Jersey where there are new core curriculum standards and a newly mandated test in science for students in 4th and 8th grades. While the teachers learned content at different rates, the hands-on format gave them confidence to try some of these activities in their classes, especially among under-represented minorities. The most effective activities included human sundials, Sunspotters to measure the rotation of the Earth in 2 minutes, craters in the sand, group mini-reports from posters, speed calculations, physics and astronomy songs, the Ophiuchus Sculpture, a planetarium visit (especially needed in our urban area where the light pollution is severe), and Internet guided sites (See http://www.csam.montclair.edu/ west/ideasresources.html).

  10. Design and Implementation of an Object Oriented Learning Activity System

    ERIC Educational Resources Information Center

    Lin, Huan-Yu; Tseng, Shian-Shyong; Weng, Jui-Feng; Su, Jun-Ming

    2009-01-01

    With the development of e-learning technology, many specifications of instructional design have been proposed to make learning activity sharable and reusable. With the specifications and sufficient learning resources, the researches further focus on how to provide learners more appropriate learning activities to improve their learning performance.…

  11. Becoming Familiar with other Disciplines Through Hands-on Experience

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.

    2014-12-01

    Transitioning to a new discipline can be challenging because of the need to quickly assimilate new skills and knowledge that others brought up in the field took years to develop. While reading and taking classes help to add knowledge, hands-on experience is key to developing your new skill set. Fieldwork is one obvious way to gain experience. Fieldwork provides intimate knowledge of your new found discipline, which is one component of your skill set. However, fieldwork is normally for a short period of time and very focused, which does not quickly provide the second component of your skill set, that is, insight into how your discipline fits in the big picture of solving problems. Academic workshops and internships can help provide the additional experience to bring any young researcher into this higher level of understanding. As a specific example, I'll talk about a summer workshop I recently attended called CIDER (Cooperative Institute for Dynamic Earth Research), which is open for students to apply for every year. This workshop provided the opportunity to learn a working knowledge of other disciplines in geology, and helped to expand my view of geophysics' place in solving real problems. The workshop is a month long, the first two weeks of which were lectures and tutorials of every discipline represented. The second two weeks consisted of new research on projects that were proposed by the attendees. The attendees select which of those projects to participate in, and join a team to work vigorously for two weeks. Teams may continue work after the CIDER workshop for presentations at AGU (as in my case) and has potential for publication later. Why this workshop succeeds in advancing young researchers' understanding is that different disciplines work side by side on their research project. Students need to be made aware of this workshop, and other workshops and internships like it, to provide this added hands-on experience.

  12. An Educational Model for Hands-On Hydrology Education

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  13. H2Oh!: Classroom demonstrations and activities for improving student learning of water concepts

    NASA Astrophysics Data System (ADS)

    Chan-Hilton, A.; Neupauer, R. M.; Burian, S. J.; Lauer, J. W.; Mathisen, P. P.; Mays, D. C.; Olson, M. S.; Pomeroy, C. A.; Ruddell, B. L.; Sciortino, A.

    2012-12-01

    Research has shown that the use of demonstrations and hands-on activities in the classroom enhances student learning. Students learn more and enjoy classes more when visual and active learning are incorporated into the lecture. Most college-aged students prefer visual modes of learning, while most instruction is conducted in a lecture, or auditory, format. The use of classroom demonstrations provides opportunities for incorporating visual and active learning into the classroom environment. However, while most instructors acknowledge the benefits of these teaching methods, they typically do not have the time and resources to develop and test such activities and to develop plans to incorporate them into their lectures. Members of the Excellence in Water Resources Education Task Committee of the Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers (ASCE) have produced a publication that contains a collection of activities aimed to foster excellence in water resources and hydrology education and improve student learning of principles. The book contains forty-five demonstrations and activities that can be used in water-related classes with topics in fluid mechanics, hydraulics, surface water hydrology, groundwater hydrology, and water quality. We present examples of these activities, including topics such as conservation of momentum, buoyancy, Bernoulli's principle, drag force, pipe flow, watershed delineation, reservoir networks, head distribution in aquifers, and molecular diffusion in a porous medium. Unlike full laboratory exercises, these brief demonstrations and activities (most of which take less than fifteen minutes) can be easily incorporated into classroom lectures. For each demonstration, guidance for preparing and conducting the activity, along with a brief overview of the principles that are demonstrated, is provided. The target audience of the activities is undergraduate students, although the activities also may be

  14. Active Learning Strategies to Promote Critical Thinking

    PubMed Central

    2003-01-01

    Objective: To provide a brief introduction to the definition and disposition to think critically along with active learning strategies to promote critical thinking. Data Sources: I searched MEDLINE and Educational Resources Information Center (ERIC) from 1933 to 2002 for literature related to critical thinking, the disposition to think critically, questioning, and various critical-thinking pedagogic techniques. Data Synthesis: The development of critical thinking has been the topic of many educational articles recently. Numerous instructional methods exist to promote thought and active learning in the classroom, including case studies, discussion methods, written exercises, questioning techniques, and debates. Three methods—questioning, written exercises, and discussion and debates—are highlighted. Conclusions/Recommendations: The definition of critical thinking, the disposition to think critically, and different teaching strategies are featured. Although not appropriate for all subject matter and classes, these learning strategies can be used and adapted to facilitate critical thinking and active participation. PMID:16558680

  15. Learning plan applicability through active mental entities

    SciTech Connect

    Baroni, Pietro; Fogli, Daniela; Guida, Giovanni

    1999-03-22

    This paper aims at laying down the foundations of a new approach to learning in autonomous mobile robots. It is based on the assumption that robots can be provided with built-in action plans and with mechanisms to modify and improve such plans. This requires that robots are equipped with some form of high-level reasoning capabilities. Therefore, the proposed learning technique is embedded in a novel distributed control architecture featuring an explicit model of robot's cognitive activity. In particular, cognitive activity is obtained by the interaction of active mental entities, such as intentions, persuasions and expectations. Learning capabilities are implemented starting from the interaction of such mental entities. The proposal is illustrated through an example concerning a robot in charge of reaching a target in an unknown environment cluttered with obstacles.

  16. Hands-on Science: Does It Matter What Students' Hands Are On?

    ERIC Educational Resources Information Center

    Triona, Lara M.; Klahr, David

    2007-01-01

    Hands-on science typically uses physical materials to give students first-hand experience in scientific methodologies, but the recent availability of virtual laboratories raises an important question about whether what students' hands are on matters to their learning. The overall findings of two articles that employed simple comparisons of…

  17. Hands-On Parent Support in Positive Guidance: Early Childhood Professionals as Mentors

    ERIC Educational Resources Information Center

    McFarland-Piazza, Laura; Saunders, Rachel

    2012-01-01

    This study reports findings from a follow-up study involving mothers and early childhood professionals who completed participation in a 12-week, hands-on parent education program in the United States. In this program, mothers learned about positive guidance in a weekly seminar, and additionally practised implementing positive guidance in an early…

  18. Doing Children's Museums: A Guide to 265 Hands-On Museums. Revised and Expanded.

    ERIC Educational Resources Information Center

    Cleaver, Joanne

    Noting the increase in interactive museums and science centers and children's exuberant reaction to hands-on exhibits, this guide provides tips for parents on how to prepare for a museum visit and how to encourage the learning process during the visit. The first part of the guide discusses the shift in museum policy from "hands off" to "please…

  19. Hands-On Teaching through a Student Field Project in Applied Geophysics.

    ERIC Educational Resources Information Center

    Klasner, John Samuel; Crockett, Jeffrey Jon; Horton, Kimberly Beth; Poe, Michele Daun; Wollert, Matthew Todd

    1992-01-01

    Describes the Proffit Mountain project, part of a senior-level class in applied geophysics that provides students with hands-on experience in applying principles and techniques learned in class. Students conduct magnetic, gravity, and radiometric studies over a diabase body which intrudes rhyolite at Proffitt Mountain in southeast Missouri.…

  20. A Mechanical Apparatus for Hands-On Experience with the Morse Potential

    ERIC Educational Resources Information Center

    Everest, Michael A.

    2010-01-01

    A simple pulley apparatus is described that gives the student hands-on experience with the Morse potential. Students develop an internalized sense of what a covalent bond would feel like if atoms in a molecule could be manipulated by hand. This kinesthetic learning enhances the student's understanding and intuition of several chemical phenomena.…

  1. Hands-on Learning in the Virtual World

    ERIC Educational Resources Information Center

    Branson, John; Thomson, Diane

    2013-01-01

    The U.S. military has long understood the value of immersive simulations in education. Before the Navy entrusts a ship to a crew, crew members must first practice and demonstrate their competency in a fully immersive, simulated environment. Why not teach students in the same way? K-12 educators in Pennsylvania, USA, recently did just that when…

  2. "Celebrate Science" Has Formula for Hands-On Learning

    ERIC Educational Resources Information Center

    Brydolf, Carol

    2012-01-01

    Cost-effective, easily replicated program is a win-win situation for high schoolers who teach science and for their elementary students. The thank-you letter from Leslie, a grade-schooler in San Diego County's Ramona Unified School District, speaks volumes about the excitement generated by "Celebrate Science"--an innovative, standards-based…

  3. Techniques for Promoting Active Learning. The Cross Papers.

    ERIC Educational Resources Information Center

    Cross, K. Patricia

    This guide offers suggestions for implementing active learning techniques in the community college classroom. The author argues that, although much of the literature on active learning emphasizes collaboration and small-group learning, active learning does not always involve interaction. It must also involve reflection and self-monitoring of both…

  4. Hands-On Whole Science: A Leaf Sampler.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1991-01-01

    Presents two elementary school activities to help students learn about autumn. The activities use autumn leaves to teach that each type of tree has its own distinctive type of leaf. One activity involves tracing, drawing, and writing about leaves; the other involves making a quilt using leaf designs. (SM)

  5. A simple wavelength division multiplexing system for active learning teaching

    NASA Astrophysics Data System (ADS)

    Zghal, Mourad; Ghalila, Hassen; Ben Lakhdar, Zohra

    2009-06-01

    The active learning project consists in a series of workshops for educators, researchers and students and promotes an innovative method of teaching physics using simple, inexpensive materials that can be fabricated locally. The objective of the project is to train trainers and inspire students to learn physics. The workshops are based on the use of laboratory work and hands-on activities in the classroom. The interpretation of these experiments is challenging for some students, and the experiments can lead to a significant amount of discussion. The workshops are organized within the framework of the project ``Active Learning in Optics and Photonics" (ALOP) mainly funded by UNESCO, with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE. ALOP workshops offer high school, college or university physics teachers the opportunity to improve their conceptual understanding of optics. These workshops usually run for five days and cover several of the topics usually found in any introductory university physics program. Optics and photonics are used as subject matter because it is relevant as well as adaptable to research and educational conditions in many developing countries [1]. In this paper, we will mainly focus on a specific topic of the ALOP workshops, namely optical communications and Wavelength Division Multiplexing technology (WDM). This activity was originally developed by Mazzolini et al [2]. WDM is a technology used in fibre-optic communications for transmitting two or more separate signals over a single fibre optic cable by using a separate wavelength for each signal. Multiple signals are carried together as separate wavelengths of light in a multiplexed signal. Simple and inexpensive WDM system was implemented in our laboratory using light emitting diodes or diode lasers, plastic optical fibres, a set of optical filters and lenses, prism or grating, and photodiodes. Transmission of audio signals using home-made, simple

  6. HANDS ON. Newsletter for Cultural Journalism.

    ERIC Educational Resources Information Center

    Bennett, Margie, Ed.

    1986-01-01

    A potpourri of activities from teachers working with elementary and middle school-aged children is featured in this journal issue. Regular features include an introductory letter, an article on elementary school activities, project updates, reviews, and announcements. The articles are as follows: (1) "Yesterday is local history to fourth graders"…

  7. Astronomy Learning Activities for Tablets

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Morris, Frank

    2015-08-01

    Four web-based tools allow students to manipulate astronomical data to learn concepts in astronomy. The tools are HTML5, CSS3, Javascript-based applications that provide access to the content on iPad and Android tablets. The first tool “Three Color” allows students to combine monochrome astronomical images taken through different color filters or in different wavelength regions into a single color image. The second tool “Star Clusters” allows students to compare images of stars in clusters with a pre-defined template of colors and sizes in order to produce color-magnitude diagrams to determine cluster ages. The third tool adapts Travis Rector’s “NovaSearch” to allow students to examine images of the central regions of the Andromeda Galaxy to find novae. After students find a nova, they are able to measure the time over which the nova fades away. A fourth tool, Proper Pair, allows students to interact with Hipparcos data to evaluate close double stars are physical binaries or chance superpositions. Further information and access to these web-based tools are available at www.astro.indiana.edu/ala/.

  8. Using Oceanography to Support Active Learning

    NASA Astrophysics Data System (ADS)

    Byfield, V.

    2012-04-01

    Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from

  9. A Career Guidance Curriculum for Ninth Grade Students. Occupational Cluster Learning Activities. Health-Technical. Part 2 of 2. Ninth Grade Career Guidance Project. Project Duration: July 16, 1979, to June 30, 1980.

    ERIC Educational Resources Information Center

    Cape May County Vocational Schools, NJ.

    This second of two parts presents learning activities for four occupational clusters of a ninth-grade cluster program. It contains theory and hands-on activities that explore the occupational requirements and working environment of these areas to help students make intelligent decisions of possible career choices based on levels of interest and…

  10. A Career Guidance Curriculum for Ninth Grade Students. Occupational Cluster Learning Activities. Business-Environmental. Part 1 of 2. Ninth Grade Guidance Project. Project Duration: July 16, 1979, to June 30, 1980.

    ERIC Educational Resources Information Center

    Cape May County Vocational Schools, NJ.

    This first of two parts presents learning activities for four occupational clusters of a ninth-grade cluster program. It contains theory and hands-on activities that explore the occupational requirements and working environment of these areas to help students make intelligent decisions of possible career choices based on levels of interest and…

  11. Concept Learning for Achieving Personalized Ontologies: An Active Learning Approach

    NASA Astrophysics Data System (ADS)

    Şensoy, Murat; Yolum, Pinar

    In many multiagent approaches, it is usual to assume the existence of a common ontology among agents. However, in dynamic systems, the existence of such an ontology is unrealistic and its maintenance is cumbersome. Burden of maintaining a common ontology can be alleviated by enabling agents to evolve their ontologies personally. However, with different ontologies, agents are likely to run into communication problems since their vocabularies are different from each other. Therefore, to achieve personalized ontologies, agents must have a means to understand the concepts used by others. Consequently, this paper proposes an approach that enables agents to teach each other concepts from their ontologies using examples. Unlike other concept learning approaches, our approach enables the learner to elicit most informative examples interactively from the teacher. Hence, the learner participates to the learning process actively. We empirically compare the proposed approach with the previous concept learning approaches. Our experiments show that using the proposed approach, agents can learn new concepts successfully and with fewer examples.

  12. Learning Outcomes of Project-Based and Inquiry-Based Learning Activities

    ERIC Educational Resources Information Center

    Panasan, Mookdaporn; Nuangchalerm, Prasart

    2010-01-01

    Problem statement: Organization of science learning activities is necessary to rely on various methods of organization of learning and to be appropriate to learners. Organization of project-based learning activities and inquiry-based learning activities are teaching methods which can help students understand scientific knowledge. It would be more…

  13. Learning Outcomes between Socioscientific Issues-Based Learning and Conventional Learning Activities

    ERIC Educational Resources Information Center

    Wongsri, Piyaluk; Nuangchalerm, Prasart

    2010-01-01

    Problem statement: Socioscientific issues-based learning activity is essential for scientific reasoning skills and it could be used for analyzing problems be applied to each situation for more successful and suitable. The purposes of this research aimed to compare learning achievement, analytical thinking and moral reasoning of seventh grade…

  14. Syncope. What Is It? Learning Activity Package.

    ERIC Educational Resources Information Center

    Stark, Pam

    This learning activity packaage on syncope (fainting) is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a glossary, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…

  15. Perspectives on Learning, Thinking, and Activity.

    ERIC Educational Resources Information Center

    Anderson, John R.; Greeno, James G.; Reder, Lynne M.; Simon, Herbert A.

    2000-01-01

    Discusses the cognitive and situative research approaches, identifying several points on which they agree (e.g., individual and social perspectives on activity are fundamental in education; learning can be general, and abstractions can be efficacious, but sometimes they are not; and situative and cognitive approaches can cast light on different…

  16. Learning about Outdoor Education through Authentic Activity

    ERIC Educational Resources Information Center

    Moffett, Pamela

    2012-01-01

    The potential, for the learner, of a maths trail was documented in MT219. Here, the focus is on the planning element of such an event from the perspective of a group of student teachers. Personal reactions, and insights are used to demonstrate that "real, and authentic, learning" takes place for all those involved in the activity.

  17. Active/Cooperative Learning in Schools

    ERIC Educational Resources Information Center

    Bandiera, Milena; Bruno, Costanza

    2006-01-01

    The study describes a teaching action undertaken in the belief that the use of methodologies based on active and cooperative learning could obviate some of the most worrying deficiencies in current scientific teaching, while at the same time supporting the validity of the constructivistic theory that prompted them. A teaching action on genetically…

  18. Active Learning Strategies and Vocabulary Achievement

    ERIC Educational Resources Information Center

    Griffith, John R.

    2015-01-01

    Using a quantitative method of data collection, this research explored the question: Do active learning strategies used in grades 5 and 6 affect student vocabulary achievement in a positive or negative direction? In their research, Wolfe (2001), Headley, et al., (1995), Freiberg, et al., (1992), and Brunner (2009) emphasize the importance of…

  19. Active Citizenship, Education and Service Learning

    ERIC Educational Resources Information Center

    Birdwell, Jonathan; Scott, Ralph; Horley, Edward

    2013-01-01

    This article explores how active citizenship can be encouraged through education and community action. It proposes that service learning and a renewed focus on voluntarism can both promote social cohesion between different ethnic and cultural groups while also fostering among the population a greater understanding of and commitment to civic…

  20. Cultural Historical Activity Theory and Professional Learning

    ERIC Educational Resources Information Center

    Daniels, Harry

    2004-01-01

    In this article I will discuss the route by which I came to work with Cultural Historical Activity Theory (CHAT). The brief tracing of my own biography will highlight theoretical and methodological milestones. I will then discuss my current work, with colleagues, on approaches to investigating and improving the learning of professionals who are…

  1. Cashier/Checker Learning Activity Packets (LAPs).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Twenty-four learning activity packets (LAPs) are provided for six areas of instruction in a cashier/checker program. Section A, Orientation, contains an LAP on exploring the job of cashier-checker. Section B, Operations, has nine LAPs, including those on operating the cash register, issuing trading stamps, and completing the cash register balance…

  2. Scalable histopathological image analysis via active learning.

    PubMed

    Zhu, Yan; Zhang, Shaoting; Liu, Wei; Metaxas, Dimitris N

    2014-01-01

    Training an effective and scalable system for medical image analysis usually requires a large amount of labeled data, which incurs a tremendous annotation burden for pathologists. Recent progress in active learning can alleviate this issue, leading to a great reduction on the labeling cost without sacrificing the predicting accuracy too much. However, most existing active learning methods disregard the "structured information" that may exist in medical images (e.g., data from individual patients), and make a simplifying assumption that unlabeled data is independently and identically distributed. Both may not be suitable for real-world medical images. In this paper, we propose a novel batch-mode active learning method which explores and leverages such structured information in annotations of medical images to enforce diversity among the selected data, therefore maximizing the information gain. We formulate the active learning problem as an adaptive submodular function maximization problem subject to a partition matroid constraint, and further present an efficient greedy algorithm to achieve a good solution with a theoretically proven bound. We demonstrate the efficacy of our algorithm on thousands of histopathological images of breast microscopic tissues. PMID:25320821

  3. Active Learning in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Naron, Carol

    Many students enter physics classes filled with misconceptions about physics concepts. Students tend to retain these misconceptions into their adult lives, even after physics instruction. Constructivist researchers have found that students gain understanding through their experiences. Researchers have also found that active learning practices increase conceptual understanding of introductory physics students. This project study sought to examine whether incorporating active learning practices in an advanced placement physics classroom increased conceptual understanding as measured by the force concept inventory (FCI). Physics students at the study site were given the FCI as both a pre- and posttest. Test data were analyzed using two different methods---a repeated-measures t test and the Hake gain method. The results of this research project showed that test score gains were statistically significant, as measured by the t test. The Hake gain results indicated a low (22.5%) gain for the class. The resulting project was a curriculum plan for teaching the mechanics portion of Advanced Placement (AP) physics B as well as several active learning classroom practices supported by the research. This project will allow AP physics teachers an opportunity to improve their curricular practices. Locally, the results of this project study showed that research participants gained understanding of physics concepts. Social change may occur as teachers implement active learning strategies, thus creating improved student understanding of physics concepts.

  4. The Surgical Scrub. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This learning activity package on the surgical scrub is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These…

  5. Learning Activity Package, Algebra-Trigonometry.

    ERIC Educational Resources Information Center

    Holland, Bill

    A series of ten teacher-prepared Learning Activity Packages (LAPs) in advanced algebra and trigonometry, the units cover logic; absolute value, inequalities, exponents, and complex numbers; functions; higher degree equations and the derivative; the trigonometric function; graphs and applications of the trigonometric functions; sequences and…

  6. Measuring Active Learning to Predict Course Quality

    ERIC Educational Resources Information Center

    Taylor, John E.; Ku, Heng-Yu

    2011-01-01

    This study investigated whether active learning within computer-based training courses can be measured and whether it serves as a predictor of learner-perceived course quality. A major corporation participated in this research, providing access to internal employee training courses, training representatives, and historical course evaluation data.…

  7. Learning Activity Package, Pre-Algebra.

    ERIC Educational Resources Information Center

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in topics in pre-algebra, the units cover the decimal numeration system; number theory; fractions and decimals; ratio, proportion, and percent; sets; properties of operations; rational numbers; real numbers; open expressions; and open rational…

  8. The Enlightenment Revisited: Sources & Interpretations. Learning Activities.

    ERIC Educational Resources Information Center

    Donato, Clorinda; And Others

    This resource book provides 26 learning activities with background materials for teaching about the Enlightenment. Topics include: (1) "What Was the Enlightenment?"; (2) "An Introduction to the Philosophes"; (3) "Was the Enlightenment a Revolt Against Rationalism?"; (4) "Were the Philosophes Democrats? A Comparison of the 'Enlightened' Ideas of…

  9. Temperature, Pulse, and Respiration. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This learning activity package on temperature, pulse, and respiration is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  10. An Active Learning Approach to Teaching Statistics.

    ERIC Educational Resources Information Center

    Dolinsky, Beverly

    2001-01-01

    Provides suggestions for using active learning as the primary means to teaching statistics in order to create a collaborative environment. Addresses such strategies as using SPSS Base 7.5 for Windows and course periods centered on answering student-generated questions. Discusses various writing intensive assignments. (CMK)

  11. Active Learning Strategies in Physics Teaching

    ERIC Educational Resources Information Center

    Karamustafaoglu, Orhan

    2009-01-01

    The purpose of this study was to determine physics teachers' opinions about student-centered activities applicable in physics teaching and learning in context. A case study approach was used in this research. First, semi-structured interviews were carried out with 6 physics teachers. Then, a questionnaire was developed based on the data obtained…

  12. Live Scale Active Shooter Exercise: Lessons Learned

    ERIC Educational Resources Information Center

    Ervin, Randy

    2008-01-01

    On October 23, 2007, the Lake Land College Public Safety Department conducted a full-scale live exercise that simulated an active shooter and barricaded hostage. In this article, the author will emphasize what they learned, and how they intend to benefit from it. He will list the law enforcement issues and general issues they encountered, and then…

  13. Hands-On Science, 680 Hands at a Time: Shrinking the Large Lecture with a Collapsing Can Experiment.

    ERIC Educational Resources Information Center

    Shipman, Harry L.

    2001-01-01

    Explains how hands-on science activities can be done in a class designed as a lecture setting. Uses the collapsing can activity to demonstrate the birth of a black hole. Evaluates student responses to the hands-on approach. (YDS)

  14. Hands-on Science. How Fireflies Communicate.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1995-01-01

    One creative way that elementary science educators can teach their students about animal communication is to give them glow sticks and a set of cards with descriptions of what different firefly flash signals mean. The paper describes such a project and presents related activities. (SM)

  15. Graduate Faculty Perceptions of Experiential Learning Activities in Multicultural Classrooms

    ERIC Educational Resources Information Center

    Su, Yu-Han

    2012-01-01

    Current graduate programs employ many effective teaching methods. One of these methods, using experiential learning activities (Lee & Caffarella, 1994) in class, includes the subcomponents of cooperative learning, self-directed learning, and active learning. While these methods are commonly used, not much scholarly literature has examined the…

  16. Active Learning Environment with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  17. The Validation of the Active Learning in Health Professions Scale

    ERIC Educational Resources Information Center

    Kammer, Rebecca; Schreiner, Laurie; Kim, Young K.; Denial, Aurora

    2015-01-01

    There is a need for an assessment tool for evaluating the effectiveness of active learning strategies such as problem-based learning in promoting deep learning and clinical reasoning skills within the dual environments of didactic and clinical settings in health professions education. The Active Learning in Health Professions Scale (ALPHS)…

  18. Transfer Learning for Activity Recognition: A Survey

    PubMed Central

    Cook, Diane; Feuz, Kyle D.; Krishnan, Narayanan C.

    2013-01-01

    Many intelligent systems that focus on the needs of a human require information about the activities being performed by the human. At the core of this capability is activity recognition, which is a challenging and well-researched problem. Activity recognition algorithms require substantial amounts of labeled training data yet need to perform well under very diverse circumstances. As a result, researchers have been designing methods to identify and utilize subtle connections between activity recognition datasets, or to perform transfer-based activity recognition. In this paper we survey the literature to highlight recent advances in transfer learning for activity recognition. We characterize existing approaches to transfer-based activity recognition by sensor modality, by differences between source and target environments, by data availability, and by type of information that is transferred. Finally, we present some grand challenges for the community to consider as this field is further developed. PMID:24039326

  19. Hands-On Whole Science. The Fitness Challenge.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1991-01-01

    Presents suggestions for teaching children the science of physical fitness along with cross-curricular activities that help them stay in shape. Activities include making a fitness log to keep track of newly learned daily exercises, teaching about the Appalachian Trail then calculating and walking the equivalent distance, and charting family…

  20. Calculator-Controlled Robots: Hands-On Mathematics and Science Discovery

    ERIC Educational Resources Information Center

    Tuchscherer, Tyson

    2010-01-01

    The Calculator Controlled Robots activities are designed to engage students in hands-on inquiry-based missions. These activities address National science and technology standards, as well as specifically focusing on mathematics content and process standards. There are ten missions and three exploration extensions that provide activities for up to…

  1. Hands-On Science and Student Achievement. Dissertation.

    ERIC Educational Resources Information Center

    Ruby, Allen

    From the late 1950s through today, hands-on science has been promoted as a method of science instruction. Currently, recent national science reform efforts seek to temper its role. However, no consensus has been reached on the relationship of hands-on science to student achievement, though this has been researched since the turn of the 20th…

  2. Math in Action. Hands-On, Minds-On Math.

    ERIC Educational Resources Information Center

    Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.

    1998-01-01

    Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)

  3. Incorporation of Socio-scientific Content into Active Learning Activities

    NASA Astrophysics Data System (ADS)

    King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Moog, R.

    2014-12-01

    Active learning has gained increasing support as an effective pedagogical technique to improve student learning. One way to promote active learning in the classroom is the use of in-class activities in place of lecturing. As part of an NSF-funded project, a set of in-class activities have been created that use climate change topics to teach chemistry content. These activities use the Process Oriented Guided Inquiry Learning (POGIL) methodology. In this pedagogical approach a set of models and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities in their groups, with the faculty member as a facilitator of learning. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. Each of these climate change activities contains a socio-scientific component, e.g., social, ethical and economic data. In one activity, greenhouse gases are used to explain the concept of dipole moment. Data about natural and anthropogenic production rates, global warming potential and atmospheric lifetimes for a list of greenhouse gases are presented. The students are asked to identify which greenhouse gas they would regulate, with a corresponding explanation for their choice. They are also asked to identify the disadvantages of regulating the gas they chose in the previous question. In another activity, where carbon sequestration is used to demonstrate the utility of a phase diagram, students use economic and environmental data to choose the best location for sequestration. Too often discussions about climate change (both in and outside the classroom) consist of purely emotional responses. These activities force students to use data to support their arguments and hypothesize about what other data could be used in the corresponding discussion to

  4. Improving chemical education from high school to college using a more hands-on approach

    NASA Astrophysics Data System (ADS)

    Ruddick, Kristie Winfield

    In this work, various alternative teaching methods and activities for chemical education are developed, presented, and evaluated. In the first study, an original hands-on activity using LEGO® blocks to model ionic chemical formulas is presented together with quantitative and qualitative data regarding its educational effectiveness. Students explore cation to anion ratios using LEGO® blocks to represent trivalent, divalent and monovalent cations and anions. High school chemistry students who participated in the LEGO® lab showed significantly higher post-test scores than other students. The second study grows out of the creation of a computational lab module that is shown to significantly increase student learning in the subject of molecular orbital theory in first semester college General Chemistry. The third and final study presented is a course redesign project for college CHEM 1100, Preparation for General Chemistry. In this project the classroom is “flipped”. Students watch video lectures at home, and spend class time working with peers and the instructor on problem solving activities. The results presented here are one of the first quantitative studies showing the effectiveness of “flipping the classroom”. Students who were taught using the Reverse-Instruction (RI) method had significantly higher success in both the Preparation for General Chemistry course and traditionally taught General Chemistry I the following semester.

  5. Fostering Innovation through an Active Learning Activity Inspired by the Baghdad Battery

    ERIC Educational Resources Information Center

    Lu, Xu; Anariba, Franklin

    2014-01-01

    A hands-on activity based on general electrochemistry concepts with the aim at introducing design science elements is presented. The main goals of the activity are to reinforce electrochemical principles while fostering innovation in the students through the assembly and optimization of a voltaic device and subsequent evaluation by powering…

  6. Successful Application of Active Learning Techniques to Introductory Microbiology.

    ERIC Educational Resources Information Center

    Hoffman, Elizabeth A.

    2001-01-01

    Points out the low student achievement in microbiology courses and presents an active learning method applied in an introductory microbiology course which features daily quizzes, cooperative learning activities, and group projects. (Contains 30 references.) (YDS)

  7. How an active-learning class influences physics self-efficacy in pre-service teachers

    NASA Astrophysics Data System (ADS)

    Gaffney, Jon D. H.; Housley Gaffney, Amy L.; Usher, Ellen L.; Mamaril, Natasha A.

    2013-01-01

    Education majors in an inquiry-based physics content course were asked to reflect on the ways the course affected their self-efficacy for completing physics tasks, such as creating a circuit. Responses were coded according to the contributor of the influence and whether that influence was positive or negative. The group learning structure, hands-on activities in the class, and the constructed repertoire of science knowledge, processes, and activities, were all reported to be positive influences on self-efficacy, whereas the influence of the instructor was mixed. Overall, students' responses indicated both a desire for more guidance and lecture and an appreciation for their ability to construct their own understanding through the class activities.

  8. Adapting a successful inquiry-based immersion program to create an Authentic, Hands- on, Field based Curriculum in Environmental Science at Barnard College

    NASA Astrophysics Data System (ADS)

    Kenna, T. C.; Pfirman, S.; Mailloux, B. J.; Martin, S.; Kelsey, R.; Bower, P.

    2008-12-01

    Adapting a successful inquiry-based immersion program to create an Authentic, Hands-on, Field based Curriculum in Environmental Science at Barnard College T. C. Kenna, S. Pfirman, B. J. Mailloux, M. Stute, R. Kelsey, and P. Bower By adapting a successful inquiry-based immersion program (SEA semester) to the typical college format of classes, we are improving the technical and quantitative skills of undergraduate women and minorities in environmental science and improving their critical thinking and problem-solving by exposing our students to open-ended real-world environmental issues. Our approach uses the Hudson River Estuary as a natural laboratory. In a series of hands-on inquiry-based activities, students use advanced equipment to collect data and samples. Each class session introduces new analytical and data analysis techniques. All classes have the connecting theme of the river. Working with real data is open-ended. Our major findings as indicated by surveys as well as journaling throughout the semester are that the field- based experience significantly contributed to student learning and engagement. Journaling responses indicated that nearly all students discussed the importance and excitement of an authentic research experience. Some students were frustrated with data irregularities, uncertainty in methods and data, and the general challenge of a curriculum with inherent ambiguity. The majority were satisfied with the aims of the course to provide an integrative experience. All students demonstrated transfer of learned skills. This project has had a significant impact on our undergraduate female students: several students have pursued senior thesis projects stemming from grant activities, stating that the field activities were the highlight of their semester. Some students love the experience and want more. Others decide that they want to pursue a different career. All learn how science is conducted and have a better foundation to understand concepts such

  9. Developing hands-on ergonomics lessons for youth

    SciTech Connect

    Bennett, C; Alexandre, M; Jacobs, K

    2006-02-22

    By the time students are ready to enter the workforce they have been exposed to up to 20 years of ergonomics risk factors. As technology evolves, it provides more opportunities for intensive repetitive motion and with computers, cell phones, personal digital assistants (PDAs), and electronic games. The average student engages in fewer active physical activities, sit stationary in mismatched furniture in schools for hours and carry heavy backpacks. While long-term effects remain to be identified, increasingly ergonomists and others concerned with musculoskeletal health and wellness, see a need for early ergonomics education. This interactive session provides a hands-on approach to introducing ergonomics to students. Although different approaches may effectively introduce ergonomics at even early stages of development, this program was designed for youth at the middle to high school age. Attendees will participate in four activities designed to introduce ergonomics at an experiential level. The modules focus on grip strength, effective breathing, optimizing your chair, and backpack safety. The workshop will include presentation and worksheets designed for use by teachers with minimal ergonomics training. Feedback from the participants will be sought for further refining the usability and safety of the training package.

  10. Active Kids Active Minds: A Physical Activity Intervention to Promote Learning?

    ERIC Educational Resources Information Center

    lisahunter; Abbott, Rebecca; Macdonald, Doune; Ziviani, Jennifer; Cuskelly, Monica

    2014-01-01

    This study assessed the feasibility and impact of introducing a programme of an additional 30 minutes per day of moderate physical activity within curriculum time on learning and readiness to learn in a large elementary school in south-east Queensland, Australia. The programme, Active Kids Active Minds (AKAM), involved Year 5 students (n = 107),…

  11. Active Learning: The Importance of Developing a Comprehensive Measure

    ERIC Educational Resources Information Center

    Carr, Rodney; Palmer, Stuart; Hagel, Pauline

    2015-01-01

    This article reports on an investigation into the validity of a widely used scale for measuring the extent to which higher education students employ active learning strategies. The scale is the active learning scale in the Australasian Survey of Student Engagement. This scale is based on the Active and Collaborative Learning scale of the National…

  12. Reference Framework for Active Learning in Higher Education

    ERIC Educational Resources Information Center

    Naithani, Pranav

    2008-01-01

    The work presented in this paper traces the history of active learning and further utilizes the available literature to define the meaning and importance of active learning in higher education. The study highlights common practical problems faced by students and instructors in implementing active learning in higher education and further identifies…

  13. Projects: Making Hands-On Science Easy. A Guide to Science Project Management with Stress Prevention for Teachers & Parents.

    ERIC Educational Resources Information Center

    Tant, Carl

    Many science educators emphasize the need and importance of hands- and minds-on education in science. This document provides numerous hands-on science activities for students and tips for parents and teachers to help take some of the stress out of hands-on projects. Some of the suggestions made to teachers are related to the following concerns:…

  14. The Hands-On Optics Project: a demonstration of module 3-magnificent magnifications

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.

    2014-07-01

    The Hands-On Optics project offers an example of a set of instructional modules that foster active prolonged engagement. Developed by SPIE, OSA, and NOAO through funding from the U.S. National Science Foundation, the modules were originally designed for afterschool settings and museums. However, because they were based on national standards in mathematics, science, and technology, they were easily adapted for use in classrooms. The philosophy and implementation strategies of the six modules will be described as well as lessons learned in training educators. The modules were implementing with the help of optics industry professionals who served as expert volunteers to assist educators. A key element of the modules was that they were developed around an understanding of optics misconceptions and used culminating activities in each module as a form of authentic assessment. Thus student achievement could be measured by evaluating the actual product created by each student in applying key concepts, tools, and applications together at the end of each module. The program used a progression of disciplinary core concepts to build an integrated sequence and crosscutting ideas and practices to infuse the principles of the modern electro-optical field into the modules. Whenever possible, students were encouraged to experiment and to create, and to pursue inquiry-based approaches. The result was a program that had high appeal to regular as well as gifted students.

  15. Hands-On Science: Is It an Acid or a Base? These Colorful Tests Tell All!

    ERIC Educational Resources Information Center

    VanCleave, Janice

    1998-01-01

    Two hands-on science activities for K-6 students teach them how to determine if something is an acid or a base. The activities require acid/base indicator juice, testing strips, and a base solution. A recipe for making them in the classroom using red cabbage and baking soda is provided. (SM)

  16. Active Learning in the Era of Big Data

    SciTech Connect

    Jamieson, Kevin; Davis, IV, Warren L.

    2015-10-01

    Active learning methods automatically adapt data collection by selecting the most informative samples in order to accelerate machine learning. Because of this, real-world testing and comparing active learning algorithms requires collecting new datasets (adaptively), rather than simply applying algorithms to benchmark datasets, as is the norm in (passive) machine learning research. To facilitate the development, testing and deployment of active learning for real applications, we have built an open-source software system for large-scale active learning research and experimentation. The system, called NEXT, provides a unique platform for realworld, reproducible active learning research. This paper details the challenges of building the system and demonstrates its capabilities with several experiments. The results show how experimentation can help expose strengths and weaknesses of active learning algorithms, in sometimes unexpected and enlightening ways.

  17. Understanding Fatty Acid Metabolism through an Active Learning Approach

    ERIC Educational Resources Information Center

    Fardilha, M.; Schrader, M.; da Cruz e Silva, O. A. B.; da Cruz e Silva, E. F.

    2010-01-01

    A multi-method active learning approach (MALA) was implemented in the Medical Biochemistry teaching unit of the Biomedical Sciences degree at the University of Aveiro, using problem-based learning as the main learning approach. In this type of learning strategy, students are involved beyond the mere exercise of being taught by listening. Less…

  18. Notetaking Activity as a Logical Classroom Learning Strategy.

    ERIC Educational Resources Information Center

    Taylor, William; And Others

    The impact on learning performance of a notetaking strategy called the Directed Overt Activity Strategy (DOA) was evaluated on three types of instructional tasks: spatial learning, simple concept learning, and complex concept learning. One hundred volunteer freshman psychology students from Ohio State University used either the DOA or their own…

  19. Navigating the Active Learning Swamp: Creating an Inviting Environment for Learning.

    ERIC Educational Resources Information Center

    Johnson, Marie C.; Malinowski, Jon C.

    2001-01-01

    Reports on a survey of faculty members (n=29) asking them to define active learning, to rate how effectively different teaching techniques contribute to active learning, and to list the three teaching techniques they use most frequently. Concludes that active learning requires establishing an environment rather than employing a specific teaching…

  20. Patterns of regional brain activation associated with different forms of motor learning.

    PubMed

    Ghilardi, M; Ghez, C; Dhawan, V; Moeller, J; Mentis, M; Nakamura, T; Antonini, A; Eidelberg, D

    2000-07-14

    To examine the variations in regional cerebral blood flow during execution and learning of reaching movements, we employed a family of kinematically and dynamically controlled motor tasks in which cognitive, mnemonic and executive features of performance were differentiated and characterized quantitatively. During 15O-labeled water positron emission tomography (PET) scans, twelve right-handed subjects moved their dominant hand on a digitizing tablet from a central location to equidistant targets displayed with a cursor on a computer screen in synchrony with a tone. In the preceding week, all subjects practiced three motor tasks: 1) movements to a predictable sequence of targets; 2) learning of new visuomotor transformations in which screen cursor motion was rotated by 30 degrees -60 degrees; 3) learning new target sequences by trial and error, by using previously acquired routines in a task placing heavy load on spatial working memory. The control condition was observing screen and audio displays. Subtraction images were analyzed with Statistical Parametric Mapping to identify significant brain activation foci. Execution of predictable sequences was characterized by a modest decrease in movement time and spatial error. The underlying pattern of activation involved primary motor and sensory areas, cerebellum, basal ganglia. Adaptation to a rotated reference frame, a form of procedural learning, was associated with decrease in the imposed directional bias. This task was associated with activation in the right posterior parietal cortex. New sequences were learned explicitly. Significant activation was found in dorsolateral prefrontal and anterior cingulate cortices. In this study, we have introduced a series of flexible motor tasks with similar kinematic characteristics and different spatial attributes. These tasks can be used to assess specific aspects of motor learning with imaging in health and disease. PMID:10882792

  1. Hands-on Science: Getting-to-Know-You Graphing.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1992-01-01

    Elementary teachers can use graphing to introduce students to one another. An eye color graphing activity helps students learn more about each other while experimenting with different ways of organizing and displaying information. For follow up, students can apply their graphing knowledge by collecting and displaying data from their families. (SM)

  2. Hands-on-Entropy, Energy Balance with Biological Relevance

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  3. Education: Linking History and Hands-On Biology.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1991-01-01

    Discusses the idea that hands-on science education should give credit to the scientists who originally conducted the experiments now repeated in classrooms. Plant experiments originally done by Stephen Hales are described and given as examples. (KR)

  4. Hands-On Fractals and the Unexpected in Mathematics

    ERIC Educational Resources Information Center

    Gluchoff, Alan

    2006-01-01

    This article describes a hands-on project in which unusual fractal images are produced using only a photocopy machine and office supplies. The resulting images are an example of the contraction mapping principle.

  5. Close view of statue showing her right hand on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close view of statue showing her right hand on the hilt of a sword - U.S. Capitol, Statue of Freedom, Intersection of North, South, & East Capitol Streets & Capitol Mall, Washington, District of Columbia, DC

  6. The New Science of Learning: Active Learning, Metacognition, and Transfer of Knowledge in E-Learning Applications

    ERIC Educational Resources Information Center

    Huffaker, David A.; Calvert, Sandra L.

    2003-01-01

    This article examines the key concepts of active learning, metacognition, and transfer of knowledge, as put forth by the National Research Council's approach to the new science of learning, in relation to ways that E-Learning applications might improve learning both inside and outside the classroom. Several initiatives are highlighted to…

  7. STEM learning activity among home-educating families

    NASA Astrophysics Data System (ADS)

    Bachman, Jennifer

    2011-12-01

    Science, technology, engineering, and mathematics (STEM) learning was studied among families in a group of home-educators in the Pacific Northwest. Ethnographic methods recorded learning activity (video, audio, fieldnotes, and artifacts) which was analyzed using a unique combination of Cultural-Historical Activity Theory (CHAT) and Mediated Action (MA), enabling analysis of activity at multiple levels. Findings indicate that STEM learning activity is family-led, guided by parents' values and goals for learning, and negotiated with children to account for learner interests and differences, and available resources. Families' STEM education practice is dynamic, evolves, and influenced by larger societal STEM learning activity. Parents actively seek support and resources for STEM learning within their home-school community, working individually and collectively to share their funds of knowledge. Home-schoolers also access a wide variety of free-choice learning resources: web-based materials, museums, libraries, and community education opportunities (e.g. afterschool, weekend and summer programs, science clubs and classes, etc.). A lesson-heuristic, grounded in Mediated Action, represents and analyzes home STEM learning activity in terms of tensions between parental goals, roles, and lesson structure. One tension observed was between 'academic' goals or school-like activity and 'lifelong' goals or everyday learning activity. Theoretical and experiential learning was found in both activity, though parents with academic goals tended to focus more on theoretical learning and those with lifelong learning goals tended to be more experiential. Examples of the National Research Council's science learning strands (NRC, 2009) were observed in the STEM practices of all these families. Findings contribute to the small but growing body of empirical CHAT research in science education, specifically to the empirical base of family STEM learning practices at home. It also fills a

  8. Incorporating Active Learning Techniques into a Genetics Class

    ERIC Educational Resources Information Center

    Lee, W. Theodore; Jabot, Michael E.

    2011-01-01

    We revised a sophomore-level genetics class to more actively engage the students in their learning. The students worked in groups on quizzes using the Immediate Feedback Assessment Technique (IF-AT) and active-learning projects. The IF-AT quizzes allowed students to discuss key concepts in small groups and learn the correct answers in class. The…

  9. Navigated Active Learning in an International Academic Virtual Enterprise

    ERIC Educational Resources Information Center

    Horvath, Imre; Wiersma, Meindert; Duhovnik, Joze; Stroud, Ian

    2004-01-01

    Active learning is an educational paradigm that has been reinvented and methodologically underpinned many times in order to intensify learning in various forms. This paper presents a complex approach to active learning in a design-centred academic course with international participation. Research and design were considered as vehicles of active…

  10. Effects of Sharing Clickers in an Active Learning Environment

    ERIC Educational Resources Information Center

    Daniel, Todd; Tivener, Kristin

    2016-01-01

    Scientific research into learning enhancement gained by the use of clickers in active classrooms has largely focused on the use of individual clickers. In this study, we compared the learning experiences of participants in active learning groups in which an entire small group shared a single clicker to groups in which each member of the group had…

  11. Silent Students' Participation in a Large Active Learning Science Classroom

    ERIC Educational Resources Information Center

    Obenland, Carrie A.; Munson, Ashlyn H.; Hutchinson, John S.

    2012-01-01

    Active learning in large science classrooms furthers opportunities for students to engage in the content and in meaningful learning, yet students can still remain anonymously silent. This study aims to understand the impact of active learning on these silent students in a large General Chemistry course taught via Socratic questioning and…

  12. Active Learning in the Library Instruction Environment: An Exploratory Study

    ERIC Educational Resources Information Center

    Ross, Alanna; Furno, Christine

    2011-01-01

    This paper describes an exploratory study investigating the impact of problem-based learning and clicker technology as active learning strategies at the American University of Sharjah Library, United Arab Emirates (UAE). Studies compared traditional and active learning classes. The present article maps the successes and challenges of these unique…

  13. Bipart: Learning Block Structure for Activity Detection

    PubMed Central

    Mu, Yang; Lo, Henry Z.; Ding, Wei; Amaral, Kevin; Crouter, Scott E.

    2014-01-01

    Physical activity consists complex behavior, typically structured in bouts which can consist of one continuous movement (e.g. exercise) or many sporadic movements (e.g. household chores). Each bout can be represented as a block of feature vectors corresponding to the same activity type. This paper introduces a general distance metric technique to use this block representation to first predict activity type, and then uses the predicted activity to estimate energy expenditure within a novel framework. This distance metric, dubbed Bipart, learns block-level information from both training and test sets, combining both to form a projection space which materializes block-level constraints. Thus, Bipart provides a space which can improve the bout classification performance of all classifiers. We also propose an energy expenditure estimation framework which leverages activity classification in order to improve estimates. Comprehensive experiments on waist-mounted accelerometer data, comparing Bipart against many similar methods as well as other classifiers, demonstrate the superior activity recognition of Bipart, especially in low-information experimental settings. PMID:25328361

  14. Using Assistive Technology Adaptations To Include Students with Learning Disabilities in Cooperative Learning Activities.

    ERIC Educational Resources Information Center

    Bryant, Diane Pedrotty; Bryant, Brian R.

    1998-01-01

    Discusses a process for integrating technology adaptations for students with learning disabilities into cooperative-learning activities in terms of three components: (1) selecting adaptations; (2) monitoring use of adaptations during cooperative-learning activities; and (3) evaluating the adaptations' effectiveness. Barriers to and support systems…

  15. Patterns of Field Learning Activities and Their Relation to Learning Outcome

    ERIC Educational Resources Information Center

    Lee, Mingun; Fortune, Anne E.

    2013-01-01

    Field practicum is an active learning process. This study explores the different learning stages or processes students experience during their field practicum. First-year master's of social work students in field practica were asked how much they had engaged in educational learning activities such as observation, working independently,…

  16. Active-Learning versus Teacher-Centered Instruction for Learning Acids and Bases

    ERIC Educational Resources Information Center

    Sesen, Burcin Acar; Tarhan, Leman

    2011-01-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of "acids and bases". Sample: The sample of this study was…

  17. Build a Band Hands-on Challenge: Investigate Sound with PBS's "Design Squad Nation"[TM

    ERIC Educational Resources Information Center

    Feinberg, Lauren

    2010-01-01

    This article describes "Build a Band" hands-on activity from "Design Squad Nation," which allows kids to use simple materials to build a four-stringed instrument, then tune it and play a song. Kids explore frequency, pitch, and sound energy while following the steps of the engineering design process. By weaving "Design Squad Nation" episodes,…

  18. A Hands-On Approach to Teaching Protein Translation & Translocation into the ER

    ERIC Educational Resources Information Center

    LaBonte, Michelle L.

    2013-01-01

    The process of protein translation and translocation into the endoplasmic reticulum (ER) can often be challenging for introductory college biology students to visualize. To help them understand how proteins become oriented in the ER membrane, I developed a hands-on activity in which students use Play-Doh to simulate the process of protein…

  19. Paper Table Hands-on Challenge: Explore Structures with PBS's "Design Squad"[TM

    ERIC Educational Resources Information Center

    Feinberg, Lauren

    2010-01-01

    Build a table that's sturdy enough to hold a heavy weight! The catch? Students can only use eight sheets of newspaper, one piece of cardboard, and masking tape. This article describes "Paper Table," a hands-on activity from "Design Squad," in which kids investigate structures while following the steps of the engineering design process. Teachers…

  20. Investigating Plants: Hands-On, Low-Cost Laboratory Exercises in Plant Science.

    ERIC Educational Resources Information Center

    Sinclair, Thomas R.; Johnson, Marty

    This manual describes 14 hands-on exercises for middle school introductory biology courses that are designed to allow all students to be involved in self-discoveries about life and plant life in particular. The exercises were developed to supplement normal classroom activities by allowing students to initiate ongoing projects to investigate the…

  1. Building Communities Through Role Models, Mentors, and Hands-on-Science.

    ERIC Educational Resources Information Center

    Ferreira, Maria

    2001-01-01

    Describes afterschool science program, implemented by a group of women engineers, to provide 18 African American middle-school female students with hands-on science activities related to the manufacture and design of automobiles. Women engineers served as mentors and role models. Program had positive influence on students' attitudes towards math,…

  2. What K-8 Principals Should Know about Hands-On Science

    ERIC Educational Resources Information Center

    Jorgenson, Olaf

    2005-01-01

    In an increasing number of schools and school systems, active, hands-on science is gaining momentum and realizing remarkable gains in students' science, literacy, and mathematics standardized test achievement. Two recent major research projects have documented significant improvements in objective test results, which are supported by extensive…

  3. Is Active Learning Like Broccoli? Student Perceptions of Active Learning in Large Lecture Classes

    ERIC Educational Resources Information Center

    Smith, C. Veronica; Cardaciotto, LeeAnn

    2011-01-01

    Although research suggests that active learning is associated with positive outcomes (e.g., memory, test performance), use of such techniques can be difficult to implement in large lecture-based classes. In the current study, 1,091 students completed out-of-class group exercises to complement course material in an Introductory Psychology class.…

  4. "Heart Shots": a classroom activity to instigate active learning.

    PubMed

    Abraham, Reem Rachel; Vashe, Asha; Torke, Sharmila

    2015-09-01

    The present study aimed to provide undergraduate medical students at Melaka Manipal Medical College (Manipal Campus), Manipal University, in Karnataka, India, an opportunity to apply their knowledge in cardiovascular concepts to real-life situations. A group activity named "Heart Shots" was implemented for a batch of first-year undergraduate students (n = 105) at the end of a block (teaching unit). Students were divided into 10 groups each having 10-11 students. They were requested to make a video/PowerPoint presentation about the application of cardiovascular principles to real-life situations. The presentation was required to be of only pictures/photos and no text material, with a maximum duration of 7 min. More than 95% of students considered that the activity helped them to apply their knowledge in cardiovascular concepts to real-life situations and understand the relevance of physiology in medicine and to revise the topic. More than 90% of students agreed that the activity helped them to apply their creativity in improving their knowledge and to establish a link between concepts rather than learning them as isolated facts. Based on the feedback, we conclude that the activity was student centered and that it facilitated learning. PMID:26330036

  5. On-line and Mobil Learning Activities

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Whittaker, T. M.; Jasmin, T.; Mooney, M. E.

    2012-12-01

    Introductory college-level science courses for non-majors are critical gateways to imparting not only discipline-specific information, but also the basics of the scientific method and how science influences society. They are also indispensable for student success to degree. On-line, web-based homework (whether on computers or mobile devices) is a rapidly growing use of the Internet and is becoming a major component of instruction in science, replacing delayed feedback from a few major exams. Web delivery and grading of traditional textbook-type questions is equally effective as having students write them out for hand grading, as measured by student performance on conceptual and problem solving exams. During this presentation we will demonstrate some of the interactive on-line activities used to teach concepts and how scientists approach problem solving, and how these activities have impacted student learning. Evaluation of the activities, including formative and summative, will be discussed and provide evidence that these interactive activities significantly enhance understanding of introductory meteorological concepts in a college-level science course. More advanced interactive activities are also used in our courses for department majors, some of these will be discussed and demonstrated. Bring your mobile devices to play along! Here is an example on teaching contouring: http://profhorn.aos.wisc.edu/wxwise/contour/index.html

  6. How to learn effectively in medical school: test yourself, learn actively, and repeat in intervals.

    PubMed

    Augustin, Marc

    2014-06-01

    Students in medical school often feel overwhelmed by the excessive amount of factual knowledge they are obliged to learn. Although a large body of research on effective learning methods is published, scientifically based learning strategies are not a standard part of the curriculum in medical school. Students are largely unaware of how to learn successfully and improve memory. This review outlines three fundamental methods that benefit learning: the testing effect, active recall, and spaced repetition. The review summarizes practical learning strategies to learn effectively and optimize long-term retention of factual knowledge. PMID:24910566

  7. UNESCO active learning approach in optics and photonics leads to significant change in Morocco

    NASA Astrophysics Data System (ADS)

    Berrada, K.; Channa, R.; Outzourhit, A.; Azizan, M.; Oueriagli, A.

    2014-07-01

    There are many difficulties in teaching science and technology in developing countries. Several different teaching strategies have to be applied in these cases. More specifically, for developing countries competencies in teaching science in the introductory classroom has attracted much attention. As a specific example we will consider the Moroccan system. In most developing countries everything is moving so slowly that the progress stays static for development. Also, any change needs time, effort and engagement. In our case we discovered that many teachers feel uncomfortable when introducing new teaching methods and evaluation in classes at introductory physics. However, the introduction of an Active Learning in our curricula showed difficulties that students have in understanding physics and especially concepts. Students were interested in having Active Learning courses much more than passive and traditional ones. Changing believes on physical phenomena and reality of the world students become more attractive and their way of thinking Science changed. The main philosophy of fostering modern hands-on learning techniques -adapted to local needs and availability of teaching resources- is elaborated. The Active Learning program provides the teachers with a conceptual evaluation instrument, drawn from relevant physics education research, giving teachers an important tool to measure student learning. We will try to describe the UNESCO Chair project in physics created in 2010 at Cadi Ayyad University since our first experience with UNESCO ALOP program. Many efforts have been done so far and the project helps now to develop more national and international collaborations between universities and Regional Academies of Education and Training. As a new result of these actions and according to our local needs, the translation of the ALOP program into Arabic is now available under the auspice of UNESCO and encouragement of international partners SPIE, ICTP, ICO and OSA.

  8. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    NASA Astrophysics Data System (ADS)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-12-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an alternative or supplement to these traditional hands-on labs. However, physics professors may be very hesitant to give up the hands-on labs, which have been such a central part of their courses, for a more cost and time-saving virtual alternative. Thus, it is important to investigate how the learning from these virtual experiences compares to that acquired through a hands-on experience. This study evaluated a comprehensive set of virtual labs for introductory level college physics courses and compared them to a hands-on physics lab experience. Each of the virtual labs contains everything a student needs to conduct a physics laboratory experiment, including: objectives, background theory, 3D simulation, brief video, data collection tools, pre- and postlab questions, and postlab quiz. This research was conducted with 224 students from two large universities and investigated the learning that occurred with students using the virtual labs either in a lab setting or as a supplement to hands-on labs versus a control group of students using the traditional hands-on labs only. Findings from both university settings showed the virtual labs to be as effective as the traditional hands-on physics labs.

  9. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    NASA Astrophysics Data System (ADS)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-08-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an alternative or supplement to these traditional hands-on labs. However, physics professors may be very hesitant to give up the hands-on labs, which have been such a central part of their courses, for a more cost and time-saving virtual alternative. Thus, it is important to investigate how the learning from these virtual experiences compares to that acquired through a hands-on experience. This study evaluated a comprehensive set of virtual labs for introductory level college physics courses and compared them to a hands-on physics lab experience. Each of the virtual labs contains everything a student needs to conduct a physics laboratory experiment, including: objectives, background theory, 3D simulation, brief video, data collection tools, pre- and postlab questions, and postlab quiz. This research was conducted with 224 students from two large universities and investigated the learning that occurred with students using the virtual labs either in a lab setting or as a supplement to hands-on labs versus a control group of students using the traditional hands-on labs only. Findings from both university settings showed the virtual labs to be as effective as the traditional hands-on physics labs.

  10. Student tutors for hands-on training in focused emergency echocardiography – a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Focused emergency echocardiography performed by non-cardiologists has been shown to be feasible and effective in emergency situations. During resuscitation a short focused emergency echocardiography has been shown to narrow down potential differential diagnoses and to improve patient survival. Quite a large proportion of physicians are eligible to learn focused emergency echocardiography. Training in focused emergency echocardiography usually comprises a lecture, hands-on trainings in very small groups, and a practice phase. There is a shortage of experienced echocardiographers who can supervise the second step, the hands-on training. We thus investigated whether student tutors can perform the hands-on training for focused emergency echocardiography. Methods A total of 30 volunteer 4th and 5th year students were randomly assigned to a twelve-hour basic echocardiography course comprising a lecture followed by a hands-on training in small groups taught either by an expert cardiographer (EC) or by a student tutor (ST). Using a pre-post-design, the students were evaluated by an OSCE. The students had to generate two still frames with the apical five-chamber view and the parasternal long axis in five minutes and to correctly mark twelve anatomical cardiac structures. Two blinded expert cardiographers rated the students’ performance using a standardized checklist. Students could achieve a maximum of 25 points. Results Both groups showed significant improvement after the training (p < .0001). In the group taught by EC the average increased from 2.3±3.4 to 17.1±3.0 points, and in the group taught by ST from 2.7±3.0 to 13.9±2.7 points. The difference in improvement between the groups was also significant (p = .03). Conclusions Hands-on training by student tutors led to a significant gain in echocardiography skills, although inferior to teaching by an expert cardiographer. PMID:23107588

  11. Is Peer Interaction Necessary for Optimal Active Learning?

    PubMed Central

    Farmer, Jan Keith; Peterson, Ernie

    2014-01-01

    Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of inexperience, we should try to provide more explicit implementation recommendations based on research into the key components of effective active learning. We investigated the optimal implementation of active-learning exercises within a “lecture” course. Two sections of nonmajors biology were taught by the same instructor, in the same semester, using the same instructional materials and assessments. Students in one section completed in-class active-learning exercises in cooperative groups, while students in the other section completed the same activities individually. Performance on low-level, multiple-choice assessments was not significantly different between sections. However, students who worked in cooperative groups on the in-class activities significantly outperformed students who completed the activities individually on the higher-level, extended-response questions. Our results provide additional evidence that group processing of activities should be the recommended mode of implementation for in-class active-learning exercises. PMID:26086656

  12. Hands-on Space Exploration through High Altitude Ballooning

    NASA Astrophysics Data System (ADS)

    Hammergren, Mark; Gyuk, G.

    2010-01-01

    The Adler Planetarium's "Far Horizons" high-altitude ballooning effort serves as the focus for a diverse set of educational activities, including middle school summer camps, a high school summer program (the Astro-Science Workshop), school-year internships for high school students, summer internships for undergraduates, a NSF-funded graduate fellowship, and a thriving public volunteer program. The relatively low costs of both the reusable hardware (less than $1000) and expendable supplies (around $150 per launch) allow us to mount frequent missions throughout the year - and make such a program ideal for replication at institutions of any size. The rapid development schedule for each individual mission permits the cradle-to-grave involvement of short-term participants, making it easy to draw in a wide audience. Students are involved literally in a hands-on manner in all aspects of the construction, launch, tracking, and recovery of simple experimental payloads, which typically include sensors for temperature, pressure, light intensity, and radiation. Stunning imagery provided by onboard cameras can attract significant media interest, which can bring outreach efforts to a very broad audience. Future plans include the design and construction of CubeSats - decimeter-sized picosatellites carried to orbit as secondary payloads. Our first satellite will be a relatively simple Earth-imager, built from commercial, off-the-shelf components. As in the ballooning program, students and volunteers will be involved in all stages of this effort. Once operational, imagery and other data from the satellite will be incorporated into a museum exhibit that will allow visitors to submit target requests. This material is based in part upon work supported by the National Science Foundation under Grant No. 0525995.

  13. An Innovative Teaching Method To Promote Active Learning: Team-Based Learning

    NASA Astrophysics Data System (ADS)

    Balasubramanian, R.

    2007-12-01

    Traditional teaching practice based on the textbook-whiteboard- lecture-homework-test paradigm is not very effective in helping students with diverse academic backgrounds achieve higher-order critical thinking skills such as analysis, synthesis, and evaluation. Consequently, there is a critical need for developing a new pedagogical approach to create a collaborative and interactive learning environment in which students with complementary academic backgrounds and learning skills can work together to enhance their learning outcomes. In this presentation, I will discuss an innovative teaching method ('Team-Based Learning (TBL)") which I recently developed at National University of Singapore to promote active learning among students in the environmental engineering program with learning abilities. I implemented this new educational activity in a graduate course. Student feedback indicates that this pedagogical approach is appealing to most students, and promotes active & interactive learning in class. Data will be presented to show that the innovative teaching method has contributed to improved student learning and achievement.

  14. Individualized Instruction in Science, Earth Space Project, Learning Activities Package.

    ERIC Educational Resources Information Center

    Kuczma, R. M.

    Learning Activity Packages (LAP) relating to the earth and space are presented for use in sampling a new type of learning for a whole year. Eighteen topics are incorporated into five units: (1) introduction to individualized learning, (2) observation versus interpretation, (3) chemistry in the space age, (4) the space age interdisciplines, and (5)…

  15. Informal Forum: Fostering Active Learning in a Teacher Preparation Program

    ERIC Educational Resources Information Center

    Huang, Grace Hui-Chen

    2006-01-01

    "Informal Forum," grounded in constructivism has been developed to foster active learning and deep understanding. Learning is an interdependent process, and is most effective when students construct their own meaning of knowledge. If one believes in the value of constructivist learning, it is important to teach how we preach in higher education.…

  16. Teacher Feedback during Active Learning: Current Practices in Primary Schools

    ERIC Educational Resources Information Center

    van den Bergh, Linda; Ros, Anje; Beijaard, Douwe

    2013-01-01

    Background: Feedback is one of the most powerful tools, which teachers can use to enhance student learning. It appears dif?cult for teachers to give qualitatively good feedback, especially during active learning. In this context, teachers should provide facilitative feedback that is focused on the development of meta-cognition and social learning.…

  17. Active Learning by Play Dough Modeling in the Medical Profession

    ERIC Educational Resources Information Center

    Herur, Anita; Kolagi, Sanjeev; Chinagudi, Surekharani; Manjula, R.; Patil, Shailaja

    2011-01-01

    Active learning produces meaningful learning, improves attitudes toward learning, and increases knowledge and retention, but is still not fully institutionalized in the undergraduate sciences. A few studies have compared the effectiveness of PowerPoint presentations, student seminars, quizzes, and use of CD-ROMs with blackboard teaching and…

  18. CurioCity, Developing an "Active Learning" Game.

    ERIC Educational Resources Information Center

    Ferguson, Lynne

    1999-01-01

    Describes a case study that takes readers through a human-centered design process used in developing an "Active Learning" tool, CurioCity, a game for students in grades 7-10. Attempts to better understand multiculturalism and to bridge formal in-school learning with informal field trip learning. (SC)

  19. An Experimental Method for the Active Learning of Greedy Algorithms

    ERIC Educational Resources Information Center

    Velazquez-Iturbide, J. Angel

    2013-01-01

    Greedy algorithms constitute an apparently simple algorithm design technique, but its learning goals are not simple to achieve.We present a didacticmethod aimed at promoting active learning of greedy algorithms. The method is focused on the concept of selection function, and is based on explicit learning goals. It mainly consists of an…

  20. Oxalate Blockage of Calcium and Iron: A Student Learning Activity.

    ERIC Educational Resources Information Center

    Walker, Noojin

    1988-01-01

    Describes a student learning activity used to teach the meaning of percentage composition, mole concept, selective precipitation, and limiting factors. Presents two word problems and their solutions. (CW)

  1. Improving the Laboratory Experience for Introductory Geology Students Using Active Learning and Evidence-Based Reform

    NASA Astrophysics Data System (ADS)

    Oien, R. P.; Anders, A. M.; Long, A.

    2014-12-01

    We present the initial results of transitioning laboratory activities in an introductory physical geology course from passive to active learning. Educational research demonstrates that student-driven investigations promote increased engagement and better retention of material. Surveys of students in introductory physical geology helped us identify lab activities which do not engage students. We designed new lab activities to be more collaborative, open-ended and "hands-on". Student feedback was most negative for lab activities which are computer-based. In response, we have removed computers from the lab space and increased the length and number of activities involving physical manipulation of samples and models. These changes required investment in lab equipment and supplies. New lab activities also include student-driven exploration of data with open-ended responses. Student-evaluations of the new lab activities will be compiled during Fall 2014 and Spring 2015 to allow us to measure the impact of the changes on student satisfaction and we will report on our findings to date. Modification of this course has been sponsored by NSF's Widening Implementation & Demonstration of Evidence Based Reforms (WIDER) program through grant #1347722 to the University of Illinois. The overall goal of the grant is to increase retention and satisfaction of STEM students in introductory courses.

  2. Kids Making Sense of Air Quality Around Them Through a Hands-On, STEM-Based Program

    NASA Astrophysics Data System (ADS)

    Dye, T.

    2015-12-01

    Air pollution in many parts of the world is harming millions of people, shortening lives, and taking a toll on our ecosystem. Cities in India, China, and even the United States frequently exceed air quality standards. The use of localized data is a powerful enhancement to regulatory monitoring site data. Learning about air quality at a local level is a powerful driver for change. The Kids Making Sense program unites Science, Technology, Engineering, and Mathematics (STEM) education with a complete measurement and environmental education system that teaches youth about air pollution and empowers them to drive positive change in their communities. With this program, youth learn about particle pollution, its sources, and health effects. A half-day lecture is followed by hands-on activity using handheld air sensors paired with an app on smartphones. Students make measurements around schools to discover pollution sources and cleaner areas. Next, the data they collect are crowdsourced on a website for guided discussion and data interpretation. This program meets Next Generation Science Standards, encourages project-based learning and deep understanding of applied science, and allows students to practice science like real scientists. The program has been successfully implemented in several schools in the United States and Asia, including New York City, San Francisco, Los Angeles, and Sacramento in the United States, and Taipei and Taichung in Taiwan. During this talk, we'll provide an overview of the program, discuss some of the challenges, and lay out the next steps for Kids Making Sense.

  3. Seafloor Science and Remotely Operated Vehicle (SSROV) Day Camp: A Week-Long, Hands-On STEM Summer Camp

    NASA Astrophysics Data System (ADS)

    Wheat, C. G.; Fournier, T.; Monahan, K.; Paul, C.

    2015-12-01

    RETINA (Robotic Exploration Technologies IN Astrobiology) has developed a program geared towards stimulating our youth with innovative and relevant hands-on learning modules under a STEM umbrella. Given the breadth of potential science and engineering topics that excite children, the RETINA Program focuses on interactive participation in the design and development of simple robotic and sensor systems, providing a range of challenges to engage students through project-based learning (PBL). Thus, young students experience scientific discovery through the use and understanding of technology. This groundwork serves as the foundation for SSROV Camp, a week-long, summer day camp for 6th-8th grade students. The camp is centered on the sensors and platforms that guide seafloor exploration and discovery and builds upon the notion that transformative discoveries in the deep sea result from either sampling new environments or making new measurements with sensors adapted to this extreme environment. These technical and scientific needs are folded into the curriculum. Each of the first four days of the camp includes four team-based, hands-on technical challenges, communication among peer groups, and competition. The fifth day includes additional activities, culminating in camper-led presentations to describe a planned mission based on a given geologic setting. Presentations include hypotheses, operational requirements and expected data products. SSROV Camp was initiated last summer for three sessions, two in Monterey, CA and one in Oxford, MS. Campers from both regions grasped key elements of the program, based on written responses to questions before and after the camp. On average, 32% of the pre-test questions were answered correctly compared with 80% of the post-test questions. Additional confirmation of gains in campers' knowledge, skills, and critical thinking on environmental issues and engineering problems were apparent during the "jeopardy" competition, nightly homework

  4. Pedagogical Distance: Explaining Misalignment in Student-Driven Online Learning Activities Using Activity Theory

    ERIC Educational Resources Information Center

    Westberry, Nicola; Franken, Margaret

    2015-01-01

    This paper provides an Activity Theory analysis of two online student-driven interactive learning activities to interrogate assumptions that such groups can effectively learn in the absence of the teacher. Such an analysis conceptualises learning tasks as constructed objects that drive pedagogical activity. The analysis shows a disconnect between…

  5. Enhancing Students' Inferential Reasoning: From Hands-On to "Movies"

    ERIC Educational Resources Information Center

    Arnold, Pip; Pfannkuch, Maxine; Wild, Chris J.; Regan, Matt; Budgett, Stephanie

    2011-01-01

    Computer simulations and animations for developing statistical concepts are often not understood by beginners. Hands-on physical simulations that morph into computer simulations are teaching approaches that can build students' concepts. In this paper we review the literature on visual and verbal cognitive processing and on the efficacy of…

  6. Google Earth for Landowners: Insights from Hands-on Workshops

    ERIC Educational Resources Information Center

    Huff, Tristan

    2014-01-01

    Google Earth is an accessible, user-friendly GIS that can help landowners in their management planning. I offered hands-on Google Earth workshops to landowners to teach skills, including mapmaking, length and area measurement, and database management. Workshop participants were surveyed at least 6 months following workshop completion, and learning…

  7. Teaching Hands-On Linux Host Computer Security

    ERIC Educational Resources Information Center

    Shumba, Rose

    2006-01-01

    In the summer of 2003, a project to augment and improve the teaching of information assurance courses was started at IUP. Thus far, ten hands-on exercises have been developed. The exercises described in this article, and presented in the appendix, are based on actions required to secure a Linux host. Publicly available resources were used to…

  8. Hands on CERN: A Well-Used Physics Education Project

    ERIC Educational Resources Information Center

    Johansson, K. E.

    2006-01-01

    The "Hands on CERN" education project makes it possible for students and teachers to get close to the forefront of scientific research. The project confronts the students with contemporary physics at its most fundamental level with the help of particle collisions from the DELPHI particle physics experiment at CERN. It now exists in 14 languages…

  9. Hands-On Classroom Photolithography Laboratory Module to Explore Nanotechnology

    ERIC Educational Resources Information Center

    Stelick, Scott J.; Alger, William H.; Laufer, Jesse S.; Waldron, Anna M.; Batt, Carl A.

    2005-01-01

    Nanotechnology is an area of significant interest and can be used as a motivator for students in subject areas including physics, chemistry, and life sciences. A 5X reducer system and associated lesson plan was used to provide students a hands-on exposure to the basic principles of photolithography and microscale circuit fabrication.

  10. ECHOS: Early Childhood Hands-On Science Efficacy Study

    ERIC Educational Resources Information Center

    Brown, Judy A.; Greenfield, Daryl B.; Bell, Elizabeth; Juárez, Cheryl Lani; Myers, Ted; Nayfeld, Irena

    2013-01-01

    "ECHOS: Early Childhood Hands-On Science" was developed at the Miami Science Museum as a comprehensive set of science lessons sequenced to lead children toward a deeper understanding of science content and the use of science process skills. The purpose of the research is to determine whether use of the "ECHOS" model will…

  11. A Set of Hands-On Exercises on Conformational Analysis

    ERIC Educational Resources Information Center

    Pellegrinet, Silvina C.; Mata, Ernesto G.

    2005-01-01

    Conformational analysis is one of the first topics in the organic chemistry curriculum that deals with the crucial problem of viewing and drawing organic molecules. A set of comprehensive exercises is devised that facilitates the students understanding of elementary concepts of conformational analysis with the use of a hands-on approach.

  12. Teaching DNA Fingerprinting using a Hands-on Simulation.

    ERIC Educational Resources Information Center

    Schug, Thatcher

    1998-01-01

    Presents an inexpensive hands-on lesson in DNA fingerprinting that can be completed in a single class period. Involves students in solving a murder in which a drop of blood is fingerprinted and matched with the blood of the murderer. (DDR)

  13. Hands on CERN: a well-used physics education project

    NASA Astrophysics Data System (ADS)

    Johansson, K. E.

    2006-03-01

    The 'Hands on CERN' education project makes it possible for students and teachers to get close to the forefront of scientific research. The project confronts the students with contemporary physics at its most fundamental level with the help of particle collisions from the DELPHI particle physics experiment at CERN. It now exists in 14 languages and has received a lot of international attention.

  14. Hands-On Science. Trace Water to Its Source.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1993-01-01

    A hands-on science project on watersheds helps elementary students understand the water cycle. The unit, which focuses on the fact that all living things need water and that watersheds are sources of water for rivers and streams, teaches students to observe, make inferences, predict, and draw conclusions. (SM)

  15. Students´ Perspectives on eLearning Activities in Person-Centered, Blended Learning Settings

    ERIC Educational Resources Information Center

    Haselberger, David; Motsching, Renate

    2016-01-01

    Blended or hybrid learning has become a frequent practice in higher education. In this article our primary research interest was to find out how students perceived eLearning activities in blended learning courses based on the person-centered paradigm. Through analyzing the content of a series of semi-structured interviews we found out that…

  16. Experiential Learning and Learning Environments: The Case of Active Listening Skills

    ERIC Educational Resources Information Center

    Huerta-Wong, Juan Enrique; Schoech, Richard

    2010-01-01

    Social work education research frequently has suggested an interaction between teaching techniques and learning environments. However, this interaction has never been tested. This study compared virtual and face-to-face learning environments and included active listening concepts to test whether the effectiveness of learning environments depends…

  17. How Do Teachers Learn in the Workplace? An Examination of Teacher Learning Activities

    ERIC Educational Resources Information Center

    Meirink, Jacobiene A.; Meijer, Paulien C.; Verloop, Nico; Bergen, Theo C. M.

    2009-01-01

    In this study, two data collection instruments were used to examine how Dutch secondary school teachers learn in the workplace. Firstly, they completed a questionnaire on their preferences for learning activities on two occasions. Secondly, during the intermediate period, they reported learning experiences in digital logs. Results of both…

  18. Advancing the M-Learning Research Agenda for Active, Experiential Learning: Four Case Studies

    ERIC Educational Resources Information Center

    Dyson, Laurel Evelyn; Litchfield, Andrew; Lawrence, Elaine; Raban, Ryszard; Leijdekkers, Peter

    2009-01-01

    This article reports on an m-learning research agenda instituted at our university in order to explore how mobile technology can enhance active, experiential learning. Details of the implementation and results of four areas of m-learning are presented: mobile supported fieldwork, fostering interactivity in large lectures with mobile technology,…

  19. Multiliteracies and Active Learning in CLIL--The Development of Learn Web2.0

    ERIC Educational Resources Information Center

    Marenzi, I.; Zerr, S.

    2012-01-01

    This paper discusses the development of LearnWeb2.0, a search and collaboration environment for supporting searching, organizing, and sharing distributed resources, and our pedagogical setup based on the multiliteracies approach. In LearnWeb2.0, collaborative and active learning is supported through project-focused search and aggregation, with…

  20. Designing for Inquiry-Based Learning with the Learning Activity Management System

    ERIC Educational Resources Information Center

    Levy, P.; Aiyegbayo, O.; Little, S.

    2009-01-01

    This paper explores the relationship between practitioners' pedagogical purposes, values and practices in designing for inquiry-based learning in higher education, and the affordances of the Learning Activity Management System (LAMS) as a tool for creating learning designs in this context. Using a qualitative research methodology, variation was…

  1. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    SciTech Connect

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  2. Students' Learning Activities While Studying Biological Process Diagrams

    NASA Astrophysics Data System (ADS)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-08-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal data and eye-tracking data were collected as indications of students' learning activities. For the verbal data, we applied a fine-grained coding scheme to optimally describe students' learning activities. For the eye-tracking data, we used fixation time and transitions between areas of interest in the process diagrams as indices of learning activities. Various learning activities while studying process diagrams were found that distinguished between more and less successful students. Results showed that between-student variance in comprehension score was highly predicted by meaning making of the process arrows (80%) and fixation time in the main area (65%). Students employed successful learning activities consistently across learning tasks. Furthermore, compared to unsuccessful students, successful students used a more coherent approach of interrelated learning activities for comprehending process diagrams.

  3. Blended Inquiry with Hands-On and Virtual Laboratories: The Role of Perceptual Features during Knowledge Construction

    ERIC Educational Resources Information Center

    Toth, Eva Erdosne; Ludvico, Lisa R.; Morrow, Becky L.

    2014-01-01

    This study examined the characteristics of virtual and hands-on inquiry environments for the development of blended learning in a popular domain of bio-nanotechnology: the separation of different-sized DNA fragments using gel-electrophoresis, also known as DNA-fingerprinting. Since the latest scientific developments in nano- and micro-scale tools…

  4. Active-Learning Processes Used in US Pharmacy Education

    PubMed Central

    Brown, Stacy D.; Clavier, Cheri W.; Wyatt, Jarrett

    2011-01-01

    Objective To document the type and extent of active-learning techniques used in US colleges and schools of pharmacy as well as factors associated with use of these techniques. Methods A survey instrument was developed to assess whether and to what extent active learning was used by faculty members of US colleges and schools of pharmacy. This survey instrument was distributed via the American Association of Colleges of Pharmacy (AACP) mailing list. Results Ninety-five percent (114) of all US colleges and schools of pharmacy were represented with at least 1 survey among the 1179 responses received. Eighty-seven percent of respondents used active-learning techniques in their classroom activities. The heavier the teaching workload the more active-learning strategies were used. Other factors correlated with higher use of active-learning strategies included younger faculty member age (inverse relationship), lower faculty member rank (inverse relationship), and departments that focused on practice, clinical and social, behavioral, and/or administrative sciences. Conclusions Active learning has been embraced by pharmacy educators and is used to some extent by the majority of US colleges and schools of pharmacy. Future research should focus on how active-learning methods can be used most effectively within pharmacy education, how it can gain even broader acceptance throughout the academy, and how the effect of active learning on programmatic outcomes can be better documented. PMID:21769144

  5. Hands-on lessons in ergonomics for youth

    SciTech Connect

    Bennett, C; Alexandre, M; Jacobs, K

    2005-09-29

    Ergonomics risk factors apply to everybody. Numerous adults have experienced disabling injuries related to use of computers and other forms of technology. Now children are using technology even more than adults. Increasingly ergonomics risk factors are being recognized as present in the world of children. Outreach to schools and the surrounding community by employers may help protect the future work force. A growing body of researchers believe that children can benefit from the early introduction of ergonomics awareness and preventative measures. While individual representatives of the educational system may embrace the concept of introducing ergonomics into the classroom, a number of barriers can prevent implementation of integrated programs. Some of the barriers to introducing ergonomics in schools have been absence of a tie to educational standards, the existing demands on teaching hours, and the absence of easily executable lesson plans. Ergonomics is rarely included in teacher training and professional ergonomics expertise is needed for the development of a class-based program. As part of Strategic Vision plan for 2025, a National Laboratory identified community outreach and the future workforces as key areas for initiatives. A series of hands-on interactive modules have been developed by professional ergonomics specialists. They are being tested with elementary, middle and high school students. Where possible, the content has been tied to the educational standards in the State of California in the USA. Currently the modules include grip strength, effective breathing, optimal keyboard and mouse positions, optimizing chairs, posture and movement, backpack safety and safe lifting. Each module takes the students through a related activity or experience. An individual worksheet asks them questions about the experience and guides them to consider implications in their activities of daily living. A module on hearing is under development. The goal is to have a

  6. Employing Augmented-Reality-Embedded Instruction to Disperse the Imparities of Individual Differences in Earth Science Learning

    ERIC Educational Resources Information Center

    Chen, Cheng-ping; Wang, Chang-Hwa

    2015-01-01

    Studies have proven that merging hands-on and online learning can result in an enhanced experience in learning science. In contrast to traditional online learning, multiple in-classroom activities may be involved in an augmented-reality (AR)-embedded e-learning process and thus could reduce the effects of individual differences. Using a…

  7. E-Collaboration Technologies in Teaching/Learning Activity

    ERIC Educational Resources Information Center

    Zascerinska, Jelena; Ahrens, Andreas

    2009-01-01

    A proper use of e-collaboration technologies in the teaching/learning process is provided by varied cooperative networks, which penetrate teachers' and students' activity more thoroughly with the availability of broadband services. However, the successful use of e-collaboration technologies in teaching/learning activity within a multicultural…

  8. Students as Doers: Examples of Successful E-Learning Activities

    ERIC Educational Resources Information Center

    Tammelin, Maija; Peltonen, Berit; Puranen, Pasi; Auvinen, Lis

    2012-01-01

    This paper discusses learning language and communication activities that focus on students' concrete involvement in their learning process. The activities first deal with student-produced blogs and digital videos in business Spanish. They then present student-produced podcasts for Swedish business communication learners that are meant for…

  9. Incorporating Active Learning with Videos: A Case Study from Physics

    ERIC Educational Resources Information Center

    Lee, Kester J.; Sharma, Manjula D.

    2008-01-01

    Watching a video often results in passive learning and does not actively engage students. In this study, a class of 20 HSC Physics students were introduced to a teaching model that incorporated active learning principles with the watching of a video that explored the Meissner Effect and superconductors. Students would watch short sections of the…

  10. Brain Gym. Simple Activities for Whole Brain Learning.

    ERIC Educational Resources Information Center

    Dennison, Paul E.; Dennison, Gail E.

    This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…

  11. Tractor Mechanics: Learning Activity Packages 1-19.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    Learning activity packages are presented for teaching tractor mechanics. The first of two sections deals with miscellaneous tasks and contains learning activity packages on cleaning the tractor and receiving new tractor parts. Section 2 is concerned with maintaining and servicing the electrical system, and it includes the following learning…

  12. Active Learning's Effect upon Preservice Teachers' Attitudes toward Inclusion.

    ERIC Educational Resources Information Center

    Andrews, Sharon; Clementson, John J.

    The purpose of this study was to determine the effect of active learning techniques and the use of supplemental literature dealing with disabilities in a required introduction to education and special education course on preservice teachers (N=67) attitudes toward inclusion. The active learning techniques included participation in simulation…

  13. Service Learning and Active Citizenship Education in England

    ERIC Educational Resources Information Center

    Jerome, Lee

    2012-01-01

    This article compares the English tradition of active citizenship education with the US tradition of service learning. It starts by outlining service learning and noting some of the defining characteristics as well as some of the tensions. It then discusses the model of active citizenship that has been promoted in England's secondary school…

  14. Supporting "Learning by Design" Activities Using Group Blogs

    ERIC Educational Resources Information Center

    Fessakis, Georgios; Tatsis, Konstantinos; Dimitracopoulou, Angelique

    2008-01-01

    The paper presents a case study of the educational exploitation of group blogging for the implementation of a "learning by design" activity. More specifically, a group of students used a blog as a communication and information management tool in the University course of ICT-enhanced Geometry learning activities. The analysis of the designed…

  15. The Learning Activities Questionnaire: A Tool to Enhance Teaching

    ERIC Educational Resources Information Center

    Ager, Richard

    2012-01-01

    This article describes the Learning Activities Questionnaire (LAQ) and how it can be employed to evaluate learning tasks not typically examined in course evaluation instruments such as readings and assignments. Drawing from behavioral theory in its focus on specific activities, this instrument is simple to interpret and provides clear direction…

  16. Teaching Sociological Theory through Active Learning: The Irrigation Exercise

    ERIC Educational Resources Information Center

    Holtzman, Mellisa

    2005-01-01

    For students, theory is often one of the most daunting aspects of sociology--it seems abstract, removed from the concrete events of their everyday lives, and therefore intimidating. In an attempt to break down student resistance to theory, instructors are increasingly turning to active learning approaches. Active learning exercises, then, appear…

  17. Teaching for Engagement: Part 3: Designing for Active Learning

    ERIC Educational Resources Information Center

    Hunter, William J.

    2015-01-01

    In the first two parts of this series, ("Teaching for Engagement: Part 1: Constructivist Principles, Case-Based Teaching, and Active Learning") and ("Teaching for Engagement: Part 2: Technology in the Service of Active Learning"), William J. Hunter sought to outline the theoretical rationale and research basis for such active…

  18. The Green Revolution in Transportation. Resource Recovery. Technology Learning Activities.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    These two learning activities provide context, objectives, list of materials, student activity, and evaluation criteria. The first involves an automotive class in developing a model alternative fueled vehicle, and the second involves the design of a useful recyclable product. (JOW)

  19. Conducting Original, Hands-On Astronomical Research in the Classroom

    NASA Astrophysics Data System (ADS)

    Corneau, M. J.

    2009-12-01

    teachers to convey moderately complex computer science, optical, geographic, mathematical, informational and physical principles through hands-on telescope operations. In addition to the general studies aspects of classroom internet-based astronomy, Tzec Maun supports real science by enabling operators precisely point telescopes and acquire extremely faint, magnitude 19+ CCD images. Thanks to the creative Team of Photometrica (photometrica.org), my teams now have the ability to process and analyze images online and produce results in short order. Normally, astronomical data analysis packages cost greater than thousands of dollars for single license operations. Free to my team members, Photometrica allows students to upload their data to a cloud computing server and read precise photometric and/or astrometric results. I’m indebted to Michael and Geir for their support. The efficacy of student-based research is well documented. The Council on Undergraduate Research defines student research as, "an inquiry or investigation conducted by an undergraduate that makes an original intellectual or creative contribution to the discipline." (http://serc.carleton.edu/introgeo/studentresearch/What. Teaching from Tzec Maun in the classroom is the most original teaching research I can imagine. I very much look forward to presenting this program to the convened body.

  20. Postnatal TLR2 activation impairs learning and memory in adulthood.

    PubMed

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. PMID:26021559

  1. Postnatal TLR2 activation impairs learning and memory in adulthood

    PubMed Central

    Madar, Ravit; Rotter, Aviva; Ben-Asher, Hiba Waldman; Mughal, Mohamed R.; Arumugam, Thiruma V.; Wood, WH; Becker, KG; Mattson, Mark P.; Okun, Eitan

    2015-01-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. PMID:26021559

  2. 3"H"s Education: Examining Hands-On, Heads-On and Hearts-On Early Childhood Science Education

    ERIC Educational Resources Information Center

    Inan, Hatice Zeynep; Inan, Taskin

    2015-01-01

    Active engagement has become the focus of many early childhood science education curricula and standards. However, active engagement usually emphasizes getting children engaged with science solely through hands-on activities. Active engagement by way of hands, heads, and hearts are kept separate and rarely discussed in terms of getting all to work…

  3. Hands-on force spectroscopy: weird springs and protein folding

    NASA Astrophysics Data System (ADS)

    Euler, Manfred

    2008-05-01

    A force spectroscopy model experiment is presented using a low-cost tensile apparatus described earlier. Force-extension measurements of twisted rubber bands are obtained. They exhibit a complex nonlinear elastic behaviour that resembles atomic force spectroscopy investigations of molecules of titin, a muscle protein. The model experiments open up intriguing possibilities to stimulate insight into entropy-driven self-organization of soft biological matter at the nanometre scale and into protein folding by hands-on experience and analogical transfer.

  4. Orchestrating Learning Activities Using the CADMOS Learning Design Tool

    ERIC Educational Resources Information Center

    Katsamani, Maria; Retalis, Symeon

    2013-01-01

    This paper gives an overview of CADMOS (CoursewAre Development Methodology for Open instructional Systems), a graphical IMS-LD Level A & B compliant learning design (LD) tool, which promotes the concept of "separation of concerns" during the design process, via the creation of two models: the conceptual model, which describes the…

  5. Learning Comes to Life: An Active Learning Program for Teens.

    ERIC Educational Resources Information Center

    Ilfeld, Ellen Meredith

    The High/Scope Institute for IDEAS began in the early 1960s as a summer camp program and is now a dynamic learning program for teens that emphasizes working with them in an environment which supports emotional, social, and intellectual development. The High/Scope model for adolescent programs is based on the following principles: (1) adolescents…

  6. Learning To Learn: 15 Vocabulary Acquisition Activities. Tips and Hints.

    ERIC Educational Resources Information Center

    Holden, William R.

    1999-01-01

    This article describes a variety of ways learners can help themselves remember new words, choosing the ones that best suit their learning styles. It is asserted that repeated exposure to new lexical items using a variety of means is the most consistent predictor of retention. The use of verbal, visual, tactile, textual, kinesthetic, and sonic…

  7. Creating Stimulating Learning and Thinking Using New Models of Activity-Based Learning and Metacognitive-Based Activities

    ERIC Educational Resources Information Center

    Pang, Katherine

    2010-01-01

    The purpose of this paper is to present a novel way to stimulate learning, creativity, and thinking based on a new understanding of activity-based learning (ABL) and two methods for developing metacognitive-based activities for the classroom. ABL, in this model, is based on the premise that teachers are distillers and facilitators of information…

  8. Gardening and Groundskeeping. A Series of Learning Activity Packages. Volume II: Learning Activity Packages 43-84.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This series of learning activity packages is based on a catalog of performance objectives, criterion-referenced measures, and performance guides for gardening/groundskeeping developed by the Vocational Education Consortium of States (V-TECS). Learning Activity packages are presented in three areas: (1) preparing or improving soil, (2) operating…

  9. Towards Active Learning: A Case Study on Active Learning in a Small Rural School in Finland. Research [Report].

    ERIC Educational Resources Information Center

    Kimonen, Eija; Nevalainen, Raimo

    As part of an international comparative study of active learning in seven countries, a case study examined active learning practices of students and teachers in a small rural school in Finland. Small schools have traditionally existed in the sparsely populated Finnish countryside, and 60 percent of Finnish elementary schools have 1-3 teachers.…

  10. Using videos, apps and hands-on experience in undergraduate hydrology teaching

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne

    2016-04-01

    Hydrological sciences teaching always needs to make a link between the classroom and the outside world. This can be done with fieldwork and excursions, but the increasing availability of open educational resources gives more-and-more other options to make theory more understandable and applicable. In the undergraduate teaching of hydrology at the University of Birmingham we make use of a number of tools to enhance the hydrology 'experience' of students. Firstly, we add hydrological science videos available in the public domain to our explanations of theory. These are both visualisations of concepts and recorded demonstrations in the field or the lab. One example is the concept of catchments and travel times which has been excellently visualised by MetEd. Secondly, we use a number of mobile phone apps, which provide virtual reality information and real-time monitoring information. We use the MySoil App (by Natural Environment Research Council (NERC), British Geological Survey (BGS) and Centre for Ecology & Hydrology (CEH)) and iGeology / iGeology3D (by BGS) to let students explore soil properties and hydrogeology of an area of interest. And we use the River Levels App (by OGL based on Environment Agency real time data) for exploring real time river levels and investigating spatial variability. Finally, we developed small hands-on projects for students to apply the theory outside the classroom. We for instance let them do simple infiltration experiments and ask them to them design a measurement plan. Evaluations have shown that students enjoy these activities and that it helps their learning. In this presentation we hope to share our experience so that the options for using open (educational) resources for hydrology teaching become more used in linking the classroom to the outside world.

  11. Distributed Collaboration Activities in a Blended Learning Scenario and the Effects on Learning Performance

    ERIC Educational Resources Information Center

    Gerber, M.; Grund, S.; Grote, G.

    2008-01-01

    The aim of this study was to investigate the nature of tutor and student online communication and collaboration activities in a blended learning course. The hypothesis that these activities are related to student learning performance (exam results) was tested based on the number of messages posted, as well as the nature of these messages (type of…

  12. Attitudes of Face-to-Face and E-Learning Instructors toward "Active Learning"

    ERIC Educational Resources Information Center

    Pundak, David; Herscovitz, Orit; Shacham, Miri

    2010-01-01

    Instruction in higher education has developed significantly over the past two decades, influenced by two trends: promotion of active learning methods and integration of web technology in e-Learning. Many studies found that active teaching improves students' success, involvement and thinking skills. Nevertheless, internationally, most instructors…

  13. Learning Microbiology through Cooperation: Designing Cooperative Learning Activities That Promote Interdependence, Interaction, and Accountability.

    ERIC Educational Resources Information Center

    Trempy, Janine E.; Skinner, Monica M.; Siebold, William A.

    2002-01-01

    Describes the course "The World According to Microbes" which puts science, mathematics, engineering, and technology majors into teams of students charged with problem solving activities that are microbial in origin. Describes the development of learning activities that utilize key components of cooperative learning including positive…

  14. Active Inference and Learning in the Cerebellum.

    PubMed

    Friston, Karl; Herreros, Ivan

    2016-09-01

    This letter offers a computational account of Pavlovian conditioning in the cerebellum based on active inference and predictive coding. Using eyeblink conditioning as a canonical paradigm, we formulate a minimal generative model that can account for spontaneous blinking, startle responses, and (delay or trace) conditioning. We then establish the face validity of the model using simulated responses to unconditioned and conditioned stimuli to reproduce the sorts of behavior that are observed empirically. The scheme's anatomical validity is then addressed by associating variables in the predictive coding scheme with nuclei and neuronal populations to match the (extrinsic and intrinsic) connectivity of the cerebellar (eyeblink conditioning) system. Finally, we try to establish predictive validity by reproducing selective failures of delay conditioning, trace conditioning, and extinction using (simulated and reversible) focal lesions. Although rather metaphorical, the ensuing scheme can account for a remarkable range of anatomical and neurophysiological aspects of cerebellar circuitry-and the specificity of lesion-deficit mappings that have been established experimentally. From a computational perspective, this work shows how conditioning or learning can be formulated in terms of minimizing variational free energy (or maximizing Bayesian model evidence) using exactly the same principles that underlie predictive coding in perception. PMID:27391681

  15. Reconstructing Causal Biological Networks through Active Learning.

    PubMed

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  16. Reconstructing Causal Biological Networks through Active Learning

    PubMed Central

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  17. Metaphor, computing systems, and active learning

    SciTech Connect

    Carroll, J.M.; Mack, R.L.

    1982-01-01

    The authors discuss the learning process that is directed towards particular goals and is initiated by the learner, through which metaphors become relevant and effective in learning. This allows an analysis of metaphors that explains why metaphors are incomplete and open-ended, and how this stimulates the construction of mental models. 9 references.

  18. Learning Choices, Older Australians and Active Ageing

    ERIC Educational Resources Information Center

    Boulton-Lewis, Gillian M.; Buys, Laurie

    2015-01-01

    This paper reports on the findings of qualitative, semistructured interviews conducted with 40 older Australian participants who either did or did not engage in organized learning. Phenomenology was used to guide the interviews and analysis to explore the lived learning experiences and perspectives of these older people. Their experiences of…

  19. An Activity Theory View on Learning Studies

    ERIC Educational Resources Information Center

    Mosvold, Reidar; Bjuland, Raymond

    2011-01-01

    Learning study has been used by many to develop exemplary teaching in school, and this approach has recently been adopted for use in kindergarten as well. When using such approaches in different settings than they were intended for, several challenges potentially arise. This article discusses the implementation of a learning study approach in a…

  20. Learning Activities Developed at The University of Texas at Austin Institute for Geophysics Using Ocean Drilling Science, Technology and Data

    NASA Astrophysics Data System (ADS)

    Bailey, D. M.; Stevens, J.; Clarke, D.; Ellins, K.; Tynes, G.; Petkovsek, M.

    2004-12-01

    NSF GK-12 Fellows at The University of Texas at Austin Institute for Geophysics (UTIG) actively contribute to K-12 education by linking K-12 students and teachers to research scientists and recent discoveries, and by developing hands-on learning activities designed primarily for secondary school learning environments. The excitement of the new Integrated Ocean Drilling Program (IODP), an international research program that explores the history and structure of the Earth by studying the sediments and rocks beneath the seafloor, has provided UTIG's GK-12 Fellows with an incentive to develop new, and revise existing, inquiry-based learning activities based on the science, technology and/or data of scientific ocean drilling. These activities, grouped into a curriculum module, address the mechanics of collecting cores, fossil identification and age relationships within a core, and the interpretation of geophysical logs. They expose teachers and students to the exciting science and advanced technology of the IODP and the achievements of the Ocean Drilling Program, which preceded IODP. UTIG scientists active in the IODP guided the development of the module's science content. The module activities are aligned with U.S. educational standards, but could be adapted for use in other countries that participate in the IODP. Where this isn't possible, they can serve as an example of educational curriculum materials that underscore the vital nature of international collaboration.

  1. The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project

    NASA Astrophysics Data System (ADS)

    Beichner, Robert J.

    2011-04-01

    How do you keep a classroom of 100 undergraduates actively learning? Can students practice communication and teamwork skills in a large class? How do you boost the performance of underrepresented groups? The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project has addressed these concerns. Because of their inclusion in a leading introductory physics textbook, project materials are used by more than 1/3 of all science, math, and engineering majors nationwide. The room design and pedagogy have been adopted at more than 100 leading institutions across the country. Physics, chemistry, math, astronomy, biology, engineering, earth sciences, and even literature classes are currently being taught this way. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. We promote active learning in a redesigned classroom for 100 students or more. (Of course, smaller classes can also benefit.) Class time is spent primarily on "tangibles" and "ponderables"--hands-on activities, simulations, and interesting questions. Nine students sit in three teams at round tables. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Hundreds of hours of classroom video and audio recordings, transcripts of numerous interviews and focus groups, data from conceptual learning assessments (using widely-recognized instruments in a pretest/posttest protocol), and collected portfolios of student work are part of our rigorous assessment effort. Our findings (based on data from over 16,000 students collected over five years as well as replications at adopting sites) can be summarized as the following: 1) Female failure rate is 1/5 of previous levels, even though more is demanded of students. 2) Minority failure rate is 1/4 that seen in traditionally taught courses. 3) At-risk students are more

  2. Activity Book. Catch the Spirit of Learning's Cooperation Games.

    ERIC Educational Resources Information Center

    Bernagozzi, Tom; And Others

    1992-01-01

    This activity book includes across-the-curriculum activities with Olympic themes; a "cooperation relay" (four competitive team activities based on a cooperative learning model); highlights of African Americans' Olympic achievements; a poster on teamwork and activities based on the theme of keeping the Olympic torch alive; and a reproducible…

  3. Learning Risk Factors for Suicide: A Scenario-Based Activity

    ERIC Educational Resources Information Center

    Madson, Laura; Vas, Corey J.

    2003-01-01

    We created a classroom activity to illustrate factors that may predict suicide. In the activity, students rank 4 fictional individuals in terms of their relative risk for attempting or committing suicide. Students described the activity as "eye-opening," and students who participated in the activity learned more about the warning signs of an…

  4. Motor skill learning requires active central myelination.

    PubMed

    McKenzie, Ian A; Ohayon, David; Li, Huiliang; de Faria, Joana Paes; Emery, Ben; Tohyama, Koujiro; Richardson, William D

    2014-10-17

    Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain's white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a "complex wheel" with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills. PMID:25324381

  5. Active controllers and the time duration to learn a task

    NASA Technical Reports Server (NTRS)

    Repperger, D. W.; Goodyear, C.

    1986-01-01

    An active controller was used to help train naive subjects involved in a compensatory tracking task. The controller is called active in this context because it moves the subject's hand in a direction to improve tracking. It is of interest here to question whether the active controller helps the subject to learn a task more rapidly than the passive controller. Six subjects, inexperienced to compensatory tracking, were run to asymptote root mean square error tracking levels with an active controller or a passive controller. The time required to learn the task was defined several different ways. The results of the different measures of learning were examined across pools of subjects and across controllers using statistical tests. The comparison between the active controller and the passive controller as to their ability to accelerate the learning process as well as reduce levels of asymptotic tracking error is reported here.

  6. Wisconsin College for Kids Stresses Active, Independent Learning.

    ERIC Educational Resources Information Center

    Notar, Ellen Elms; Deutsch, Robin

    1983-01-01

    This report describes the second year of an award-winning summer enrichment program aimed at developing independent learning skills and encouraging lifelong learning in gifted elementary students. The program featured contact with university scholars actively involved in problem solving, introduction to general bodies of knowledge, and in-depth…

  7. Using Active Learning Strategies in Psychology Classes: Illustrative Articles.

    ERIC Educational Resources Information Center

    Becker, Judith A.; Eison, James

    This bibliography was designed to assist psychology instructors in incorporating active learning strategies into their courses. The document contains articles that describe specific techniques that should help students to become more involved in learning about psychology than traditional lecture methods allow. The bibliography was prepared by…

  8. A Theory Bite on Learning through Mathematical Activity

    ERIC Educational Resources Information Center

    Steffe, Leslie P.

    2011-01-01

    In this article, the author wishes to emphasize two fundamental points related to theory that were significantly underplayed in Simon et al.'s "A Developing Approach to Studying Students' Learning through Their Mathematical Activity" (2010). The author believes these points are central to any study of children's mathematical learning. The first…

  9. Resource Letter ALIP-1: Active-Learning Instruction in Physics

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.; Thornton, Ronald K.

    2012-06-01

    This Resource Letter provides a guide to the literature on research-based active-learning instruction in physics. These are instructional methods that are based on, assessed by, and validated through research on the teaching and learning of physics. They involve students in their own learning more deeply and more intensely than does traditional instruction, particularly during class time. The instructional methods and supporting body of research reviewed here offer potential for significantly improved learning in comparison to traditional lecture-based methods of college and university physics instruction. We begin with an introduction to the history of active learning in physics in the United States, and then discuss some methods for and outcomes of assessing pedagogical effectiveness. We enumerate and describe common characteristics of successful active-learning instructional strategies in physics. We then discuss a range of methods for introducing active-learning instruction in physics and provide references to those methods for which there is published documentation of student learning gains.

  10. Canada and the United States. Perspective. Learning Activity Packet.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. New England - Atlantic Provinces - Quebec Center.

    The similarities and differences of Canada and the United States are explored in this Learning Activity Packet (LAP). Ten learning objectives are given which encourage students to examine: 1) the misconceptions Americans and Canadians have about each other and their ways of life; 2) the effect and influence of French and English exploration and…

  11. Learning French through Ethnolinguistic Activities and Individual Support

    ERIC Educational Resources Information Center

    Lafond, Celia; Bovey, Nadia Spang

    2013-01-01

    For the last six years, the university has been offering a Tutorial Programme for learning French, combining intensive courses and highly individualised learning activities. The programme is based on an ethnolinguistic approach and it is continuously monitored. It aims at rapid progress through contact with the local population, real-life…

  12. Promoting Technology-Assisted Active Learning in Computer Science Education

    ERIC Educational Resources Information Center

    Gao, Jinzhu; Hargis, Jace

    2010-01-01

    This paper describes specific active learning strategies for teaching computer science, integrating both instructional technologies and non-technology-based strategies shown to be effective in the literature. The theoretical learning components addressed include an intentional method to help students build metacognitive abilities, as well as…

  13. Using Guided, Corpus-Aided Discovery to Generate Active Learning

    ERIC Educational Resources Information Center

    Huang, Li-Shih

    2008-01-01

    Over the years, educators have proposed a variety of active learning pedagogical approaches that focus on encouraging students to discover for themselves the principles and solutions that will engage them in learning and enhance their educational outcomes. Among these approaches are problem-based, inquiry-based, experiential, and discovery…

  14. Active Learning in a Math for Liberal Arts Classroom

    ERIC Educational Resources Information Center

    Lenz, Laurie

    2015-01-01

    Inquiry-based learning is a topic of growing interest in the mathematical community. Much of the focus has been on using these methods in calculus and higher-level classes. This article describes the design and implementation of a set of inquiry-based learning activities in a Math for Liberal Arts course at a small, private, Catholic college.…

  15. Intergenerational Service Learning with Elders: Multidisciplinary Activities and Outcomes

    ERIC Educational Resources Information Center

    Krout, John A.; Bergman, Elizabeth; Bianconi, Penny; Caldwell, Kathryn; Dorsey, Julie; Durnford, Susan; Erickson, Mary Ann; Lapp, Julia; Monroe, Janice Elich; Pogorzala, Christine; Taves, Jessica Valdez

    2010-01-01

    This article provides an overview of the activities included in a 3-year, multidisciplinary, intergenerational service-learning project conducted as part of a Foundation for Long-Term Care Service Learning: Linking Three Generations grant. Courses from four departments (gerontology, psychology, occupational therapy, and health promotion and…

  16. Learning Through Movement: Teaching Cognitive Content through Physical Activities.

    ERIC Educational Resources Information Center

    Werner, Peter H.; Burton, Elsie C.

    Action-oriented learning activities are focused on in this book which attempts to outline an approach for stimulating and motivating children to learn through movement. The book is divided into five parts, each dealing with an aspect of the elementary school curriculum. Part one is concerned with the language arts and is divided into three…

  17. Model Activity Systems: Dialogic Teacher Learning for Social Justice Teaching

    ERIC Educational Resources Information Center

    Hoffman-Kipp, Peter

    2003-01-01

    Interest of teacher educators working in the field of social justice focuses on the ways in which teachers learn to inscribe their professional activity within social movements (for progressive change. The community of practice (COP) approach to understanding learning as a social process has a lot of currency right now in teacher education…

  18. Creating Activating Events for Transformative Learning in a Prison Classroom

    ERIC Educational Resources Information Center

    Keen, Cheryl H.; Woods, Robert

    2016-01-01

    In this article, we interpreted, in light of Mezirow's theory of transformative learning, interviews with 13 educators regarding their work with marginalized adult learners in prisons in the northeastern United States. Transformative learning may have been aided by the educators' response to unplanned activating events, humor, and respect, and…

  19. Active Learning of Biochemistry Made Easy (for the Teacher)

    ERIC Educational Resources Information Center

    Bobich, Joseph A.

    2008-01-01

    This active learning pedagogical technique aims to improve students' learning in a two-semester, upper-division biochemistry course sequence in which the vast majority of students enrolled will continue on to medical or graduate schools. Instead of lecturing, the Instructor moves to the side of the room, thereby becoming "the guide on the side".…

  20. Critique in Academic Disciplines and Active Learning of Academic Content

    ERIC Educational Resources Information Center

    Ford, Michael J.

    2010-01-01

    This article argues for increased theoretical specificity in the active learning process. Whereas constructivist learning emphasizes construction of meaning, the process articulated here complements meaning construction with disciplinary critique. This process is an implication of how disciplinary communities generate new knowledge claims, which…