Sample records for active head movements

  1. Contribution of the cerebellar flocculus to gaze control during active head movements

    NASA Technical Reports Server (NTRS)

    Belton, T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    The flocculus and ventral paraflocculus are adjacent regions of the cerebellar cortex that are essential for controlling smooth pursuit eye movements and for altering the performance of the vestibulo-ocular reflex (VOR). The question addressed in this study is whether these regions of the cerebellum are more globally involved in controlling gaze, regardless of whether eye or active head movements are used to pursue moving visual targets. Single-unit recordings were obtained from Purkinje (Pk) cells in the floccular region of squirrel monkeys that were trained to fixate and pursue small visual targets. Cell firing rate was recorded during smooth pursuit eye movements, cancellation of the VOR, combined eye-head pursuit, and spontaneous gaze shifts in the absence of targets. Pk cells were found to be much less sensitive to gaze velocity during combined eye-head pursuit than during ocular pursuit. They were not sensitive to gaze or head velocity during gaze saccades. Temporary inactivation of the floccular region by muscimol injection compromised ocular pursuit but had little effect on the ability of monkeys to pursue visual targets with head movements or to cancel the VOR during active head movements. Thus the signals produced by Pk cells in the floccular region are necessary for controlling smooth pursuit eye movements but not for coordinating gaze during active head movements. The results imply that individual functional modules in the cerebellar cortex are less involved in the global organization and coordination of movements than with parametric control of movements produced by a specific part of the body.

  2. Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons

    NASA Technical Reports Server (NTRS)

    McCrea, R. A.; Gdowski, G. T.; Boyle, R.; Belton, T.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    The firing behavior of 51 non-eye movement related central vestibular neurons that were sensitive to passive head rotation in the plane of the horizontal semicircular canal was studied in three squirrel monkeys whose heads were free to move in the horizontal plane. Unit sensitivity to active head movements during spontaneous gaze saccades was compared with sensitivity to passive head rotation. Most units (29/35 tested) were activated at monosynaptic latencies following electrical stimulation of the ipsilateral vestibular nerve. Nine were vestibulo-spinal units that were antidromically activated following electrical stimulation of the ventromedial funiculi of the spinal cord at C1. All of the units were less sensitive to active head movements than to passive whole body rotation. In the majority of cells (37/51, 73%), including all nine identified vestibulo-spinal units, the vestibular signals related to active head movements were canceled. The remaining units (n = 14, 27%) were sensitive to active head movements, but their responses were attenuated by 20-75%. Most units were nearly as sensitive to passive head-on-trunk rotation as they were to whole body rotation; this suggests that vestibular signals related to active head movements were cancelled primarily by subtraction of a head movement efference copy signal. The sensitivity of most units to passive whole body rotation was unchanged during gaze saccades. A fundamental feature of sensory processing is the ability to distinguish between self-generated and externally induced sensory events. Our observations suggest that the distinction is made at an early stage of processing in the vestibular system.

  3. Sensory processing in the vestibular nuclei during active head movements

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; Boyle, R.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    2000-01-01

    Many secondary vestibular neurons are sensitive to head on trunk rotation during reflex-induced and voluntary head movements. During passive whole body rotation the interaction of head on trunk signals related to the vestibulo-collic reflex with vestibular signals increases the rotational gain of many secondary vestibular neurons, including many that project to the spinal cord. In some units, the sensitivity to head on trunk and vestibular input is matched and the resulting interaction produces an output that is related to the trunk velocity in space. In other units the head on trunk inputs are stronger and the resulting interaction produces an output that is larger during the reflex. During voluntary head movements, inputs related to head on trunk movement combine destructively with vestibular signals, and often cancel the sensory reafferent consequences of self-generated movements. Cancellation of sensory vestibular signals was observed in all of the antidromically identified secondary vestibulospinal units, even though many of these units were not significantly affected by reflexive head on trunk movements. The results imply that the inputs to vestibular neurons related to head on trunk rotation during reflexive and voluntary movements arise from different sources. We suggest that the relative strength of reflexive head on trunk input to different vestibular neurons might reflect the different functional roles they have in controlling the posture of the neck and body.

  4. Head Rotation Movement Times.

    PubMed

    Hoffmann, Errol R; Chan, Alan H S; Heung, P T

    2017-09-01

    The aim of this study was to measure head rotation movement times in a Fitts' paradigm and to investigate the transition region from ballistic movements to visually controlled movements as the task index of difficulty (ID) increases. For head rotation, there are gaps in the knowledge of the effects of movement amplitude and task difficulty around the critical transition region from ballistic movements to visually controlled movements. Under the conditions of 11 ID values (from 1.0 to 6.0) and five movement amplitudes (20° to 60°), participants performed a head rotation task, and movement times were measured. Both the movement amplitude and task difficulty have effects on movement times at low IDs, but movement times are dependent only on ID at higher ID values. Movement times of participants are higher than for arm/hand movements, for both ballistic and visually controlled movements. The information-processing rate of head rotational movements, at high ID values, is about half that of arm movements. As an input mode, head rotations are not as efficient as the arm system either in ability to use rapid ballistic movements or in the rate at which information may be processed. The data of this study add to those in the review of Hoffmann for the critical IDs of different body motions. The data also allow design for the best arrangement of display that is under the design constraints of limited display area and difficulty of head-controlled movements in a data-inputting task.

  5. Vestibulospinal control of reflex and voluntary head movement

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Peterson, B. W. (Principal Investigator)

    2001-01-01

    Secondary canal-related vestibulospinal neurons respond to an externally applied movement of the head in the form of a firing rate modulation that encodes the angular velocity of the movement, and reflects in large part the input "head velocity in space" signal carried by the semicircular canal afferents. In addition to the head velocity signal, the vestibulospinal neurons can carry a more processed signal that includes eye position or eye velocity, or both (see Boyle on ref. list). To understand the control signals used by the central vestibular pathways in the generation of reflex head stabilization, such as the vestibulocollic reflex (VCR), and the maintenance of head posture, it is essential to record directly from identified vestibulospinal neurons projecting to the cervical spinal segments in the alert animal. The present report discusses two key features of the primate vestibulospinal system. First, the termination morphology of vestibulospinal axons in the cervical segments of the spinal cord is described to lay the structural basis of vestibulospinal control of head/neck posture and movement. And second, the head movement signal content carried by the same class of secondary vestibulospinal neurons during the actual execution of the VCR and during self-generated, or active, rapid head movements is presented.

  6. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  7. Cerebellar re-encoding of self-generated head movements

    PubMed Central

    Dugué, Guillaume P; Tihy, Matthieu; Gourévitch, Boris; Léna, Clément

    2017-01-01

    Head movements are primarily sensed in a reference frame tied to the head, yet they are used to calculate self-orientation relative to the world. This requires to re-encode head kinematic signals into a reference frame anchored to earth-centered landmarks such as gravity, through computations whose neuronal substrate remains to be determined. Here, we studied the encoding of self-generated head movements in the rat caudal cerebellar vermis, an area essential for graviceptive functions. We found that, contrarily to peripheral vestibular inputs, most Purkinje cells exhibited a mixed sensitivity to head rotational and gravitational information and were differentially modulated by active and passive movements. In a subpopulation of cells, this mixed sensitivity underlay a tuning to rotations about an axis defined relative to gravity. Therefore, we show that the caudal vermis hosts a re-encoded, gravitationally polarized representation of self-generated head kinematics in freely moving rats. DOI: http://dx.doi.org/10.7554/eLife.26179.001 PMID:28608779

  8. The perception of heading during eye movements

    NASA Technical Reports Server (NTRS)

    Royden, Constance S.; Banks, Martin S.; Crowell, James A.

    1992-01-01

    Warren and Hannon (1988, 1990), while studying the perception of heading during eye movements, concluded that people do not require extraretinal information to judge heading with eye/head movements present. Here, heading judgments are examined at higher, more typical eye movement velocities than the extremely slow tracking eye movements used by Warren and Hannon. It is found that people require extraretinal information about eye position to perceive heading accurately under many viewing conditions.

  9. Effects of External Loads on Human Head Movement Control Systems

    NASA Technical Reports Server (NTRS)

    Nam, M. H.; Choi, O. M.

    1984-01-01

    The central and reflexive control strategies underlying movements were elucidated by studying the effects of external loads on human head movement control systems. Some experimental results are presented on dynamic changes weigh the addition of aviation helmet (SPH4) and lead weights (6 kg). Intended time-optimal movements, their dynamics and electromyographic activity of neck muscles in normal movements, and also in movements made with external weights applied to the head were measured. It was observed that, when the external loads were added, the subject went through complex adapting processes and the head movement trajectory and its derivatives reached steady conditions only after transient adapting period. The steady adapted state was reached after 15 to 20 seconds (i.e., 5 to 6 movements).

  10. Human activities recognition by head movement using partial recurrent neural network

    NASA Astrophysics Data System (ADS)

    Tan, Henry C. C.; Jia, Kui; De Silva, Liyanage C.

    2003-06-01

    Traditionally, human activities recognition has been achieved mainly by the statistical pattern recognition methods or the Hidden Markov Model (HMM). In this paper, we propose a novel use of the connectionist approach for the recognition of ten simple human activities: walking, sitting down, getting up, squatting down and standing up, in both lateral and frontal views, in an office environment. By means of tracking the head movement of the subjects over consecutive frames from a database of different color image sequences, and incorporating the Elman model of the partial recurrent neural network (RNN) that learns the sequential patterns of relative change of the head location in the images, the proposed system is able to robustly classify all the ten activities performed by unseen subjects from both sexes, of different race and physique, with a recognition rate as high as 92.5%. This demonstrates the potential of employing partial RNN to recognize complex activities in the increasingly popular human-activities-based applications.

  11. Adjustment of saccade characteristics during head movements.

    NASA Technical Reports Server (NTRS)

    Morasso, P.; Bizzi, E.; Dichgans, J.

    1973-01-01

    Saccade characteristics have been studied during coordinated eye-head movements in monkeys. Amplitude, duration, and peak velocity of saccades with head turning were compared with saccades executed while the head was artificially restrained. The results indicate that the saccade characteristics are modulated as a function of head movement, hence the gaze movement (eye+head) exactly matches saccades with head fixed. Saccade modulation is achieved by way of negative vestibulo-ocular feedback. The neck proprioceptors, because of their longer latency, are effective only if the head starts moving prior to the onset of saccade. It is concluded that saccades make with head turning are not 'ballistic' movements because their trajectory is not entirely predetermined by a central command.

  12. Penguin head movement detected using small accelerometers: a proxy of prey encounter rate.

    PubMed

    Kokubun, Nobuo; Kim, Jeong-Hoon; Shin, Hyoung-Chul; Naito, Yasuhiko; Takahashi, Akinori

    2011-11-15

    Determining temporal and spatial variation in feeding rates is essential for understanding the relationship between habitat features and the foraging behavior of top predators. In this study we examined the utility of head movement as a proxy of prey encounter rates in medium-sized Antarctic penguins, under the presumption that the birds should move their heads actively when they encounter and peck prey. A field study of free-ranging chinstrap and gentoo penguins was conducted at King George Island, Antarctica. Head movement was recorded using small accelerometers attached to the head, with simultaneous monitoring for prey encounter or body angle. The main prey was Antarctic krill (>99% in wet mass) for both species. Penguin head movement coincided with a slow change in body angle during dives. Active head movements were extracted using a high-pass filter (5 Hz acceleration signals) and the remaining acceleration peaks (higher than a threshold acceleration of 1.0 g) were counted. The timing of head movements coincided well with images of prey taken from the back-mounted cameras: head movement was recorded within ±2.5 s of a prey image on 89.1±16.1% (N=7 trips) of images. The number of head movements varied largely among dive bouts, suggesting large temporal variations in prey encounter rates. Our results show that head movement is an effective proxy of prey encounter, and we suggest that the method will be widely applicable for a variety of predators.

  13. Adapted head- and eye-movement responses to added-head inertia

    NASA Technical Reports Server (NTRS)

    Gauthier, G. M.; Martin, B. J.; Stark, L. W.

    1986-01-01

    Adaptation to inertia added to the head was studied in men by mounting masses on a rigidly attached helmet until two- to ten-fold increases of inertia were produced, while an overhead suspension compensated for the weights. The observed changes in the eye and head movement coordination included increased head movement latencies, as well as changes in the eye movement amplitude, and later stabilizing alternate contractions of the neck muscles. Oscillopsia, or continual displacement or instability of the visual world, which is a symptom of a breakdown of space constancy, was prominent and consistent in the perceptual reports of the subjects. Although adaptation resulting from adding inertia to the head occurred much faster than that induced by adding prisms or lenses, it has similar perceptual and motor components that may be objectively studied in detail.

  14. Smooth-pursuit eye movements without head movement disrupt the static body balance.

    PubMed

    Kim, Sang-Yeob; Moon, Byeong-Yeon; Cho, Hyun Gug

    2016-04-01

    [Purpose] To investigate the changes of body balance in static posture in smooth-pursuit eye movements (SPEMs) without head movement. [Subjects and Methods] Forty subjects (24 males, 16 females) aged 23.24 ± 2.58 years participated. SPEMs were activated in three directions (horizontal, vertical, and diagonal movements); the target speed was set at three conditions (10°/s, 20°/s, and 30°/s); and the binocular visual field was limited to 50°. To compare the body balance changes, the general stability (ST) and the fall risk index (FI) were measured with TETRAX. The subjects wore a head-neck collar and stood on a balance plate for 32 s during each measurement in three directions. SPEMs were induced to each subject with nine target speeds and directions. All measured values were compared with those in stationary fixation. [Results] The ST and FI increased significantly in all SPEMs directions, with an increased target speed than that in stationary fixation. In the same condition of the target speed, the FI had the highest value relative to diagonal SPEMs. [Conclusion] SPEMs without head movement disrupt the stability of body balance in a static posture, and diagonal SPEMs may have a more negative effect in maintaining body balance than horizontal or vertical SPEMs.

  15. Head movements encode emotions during speech and song.

    PubMed

    Livingstone, Steven R; Palmer, Caroline

    2016-04-01

    When speaking or singing, vocalists often move their heads in an expressive fashion, yet the influence of emotion on vocalists' head motion is unknown. Using a comparative speech/song task, we examined whether vocalists' intended emotions influence head movements and whether those movements influence the perceived emotion. In Experiment 1, vocalists were recorded with motion capture while speaking and singing each statement with different emotional intentions (very happy, happy, neutral, sad, very sad). Functional data analyses showed that head movements differed in translational and rotational displacement across emotional intentions, yet were similar across speech and song, transcending differences in F0 (varied freely in speech, fixed in song) and lexical variability. Head motion specific to emotional state occurred before and after vocalizations, as well as during sound production, confirming that some aspects of movement were not simply a by-product of sound production. In Experiment 2, observers accurately identified vocalists' intended emotion on the basis of silent, face-occluded videos of head movements during speech and song. These results provide the first evidence that head movements encode a vocalist's emotional intent and that observers decode emotional information from these movements. We discuss implications for models of head motion during vocalizations and applied outcomes in social robotics and automated emotion recognition. (c) 2016 APA, all rights reserved).

  16. Head movements and postures as pain behavior

    PubMed Central

    Al-Hamadi, Ayoub; Limbrecht-Ecklundt, Kerstin; Walter, Steffen; Traue, Harald C.

    2018-01-01

    Pain assessment can benefit from observation of pain behaviors, such as guarding or facial expression, and observational pain scales are widely used in clinical practice with nonverbal patients. However, little is known about head movements and postures in the context of pain. In this regard, we analyze videos of three publically available datasets. The BioVid dataset was recorded with healthy participants subjected to painful heat stimuli. In the BP4D dataset, healthy participants performed a cold-pressor test and several other tasks (meant to elicit emotion). The UNBC dataset videos show shoulder pain patients during range-of-motion tests to their affected and unaffected limbs. In all videos, participants were sitting in an upright position. We studied head movements and postures that occurred during the painful and control trials by measuring head orientation from video over time, followed by analyzing posture and movement summary statistics and occurrence frequencies of typical postures and movements. We found significant differences between pain and control trials with analyses of variance and binomial tests. In BioVid and BP4D, pain was accompanied by head movements and postures that tend to be oriented downwards or towards the pain site. We also found differences in movement range and speed in all three datasets. The results suggest that head movements and postures should be considered for pain assessment and research. As additional pain indicators, they possibly might improve pain management whenever behavior is assessed, especially in nonverbal individuals such as infants or patients with dementia. However, in advance more research is needed to identify specific head movements and postures in pain patients. PMID:29444153

  17. Active head rotations and eye-head coordination

    NASA Technical Reports Server (NTRS)

    Zangemeister, W. H.; Stark, L.

    1981-01-01

    It is pointed out that head movements play an important role in gaze. The interaction between eye and head movements involves both their shared role in directing gaze and the compensatory vestibular ocular reflex. The dynamics of head trajectories are discussed, taking into account the use of parameterization to obtain the peak velocity, peak accelerations, the times of these extrema, and the duration of the movement. Attention is given to the main sequence, neck muscle EMG and details of the head-movement trajectory, types of head model accelerations, the latency of eye and head movement in coordinated gaze, gaze latency as a function of various factors, and coordinated gaze types. Clinical examples of gaze-plane analysis are considered along with the instantaneous change of compensatory eye movement (CEM) gain, and aspects of variability.

  18. HEAD MOVEMENT DURING WALKING IN THE CAT

    PubMed Central

    ZUBAIR, HUMZA N.; BELOOZEROVA, IRINA N.; SUN, HAI; MARLINSKI, VLADIMIR

    2016-01-01

    Knowledge of how the head moves during locomotion is essential for understanding how locomotion is controlled by sensory systems of the head. We have analyzed head movements of the cat walking along a straight flat pathway in the darkness and light. We found that cats' head left-right translations, and roll and yaw rotations oscillated once per stride, while fore-aft and vertical translations, and pitch rotations oscillated twice. The head reached its highest vertical positions during second half of each forelimb swing, following maxima of the shoulder/trunk by 20–90°. Nose-up rotation followed head upward translation by another 40–90° delay. The peak-to-peak amplitude of vertical translation was ~1.5 cm and amplitude of pitch rotation was ~3°. Amplitudes of lateral translation and roll rotation were ~1 cm and 1.5–3°, respectively. Overall, cats' heads were neutral in roll and 10–30° nose-down, maintaining horizontal semicircular canals and utriculi within 10° of the earth horizontal. The head longitudinal velocity was 0.5–1 m/s, maximal upward and downward linear velocities were ~0.05 and ~0.1 m/s, respectively, and maximal lateral velocity was ~0.05 m/s. Maximal velocities of head pitch rotation were 20–50 °/s. During walking in light, cats stood 0.3–0.5 cm taller and held their head 0.5–2 cm higher than in darkness. Forward acceleration was 25–100% higher and peak-to-peak amplitude of head pitch oscillations was ~20 °/s larger. We concluded that, during walking, the head of the cat is held actively. Reflexes appear to play only a partial role in determining head movement, and vision might further diminish their role. PMID:27339731

  19. Head movement during walking in the cat.

    PubMed

    Zubair, Humza N; Beloozerova, Irina N; Sun, Hai; Marlinski, Vladimir

    2016-09-22

    Knowledge of how the head moves during locomotion is essential for understanding how locomotion is controlled by sensory systems of the head. We have analyzed head movements of the cat walking along a straight flat pathway in the darkness and light. We found that cats' head left-right translations, and roll and yaw rotations oscillated once per stride, while fore-aft and vertical translations, and pitch rotations oscillated twice. The head reached its highest vertical positions during second half of each forelimb swing, following maxima of the shoulder/trunk by 20-90°. Nose-up rotation followed head upward translation by another 40-90° delay. The peak-to-peak amplitude of vertical translation was ∼1.5cm and amplitude of pitch rotation was ∼3°. Amplitudes of lateral translation and roll rotation were ∼1cm and 1.5-3°, respectively. Overall, cats' heads were neutral in roll and 10-30° nose-down, maintaining horizontal semicircular canals and utriculi within 10° of the earth horizontal. The head longitudinal velocity was 0.5-1m/s, maximal upward and downward linear velocities were ∼0.05 and ∼0.1m/s, respectively, and maximal lateral velocity was ∼0.05m/s. Maximal velocities of head pitch rotation were 20-50°/s. During walking in light, cats stood 0.3-0.5cm taller and held their head 0.5-2cm higher than in darkness. Forward acceleration was 25-100% higher and peak-to-peak amplitude of head pitch oscillations was ∼20°/s larger. We concluded that, during walking, the head of the cat is held actively. Reflexes appear to play only a partial role in determining head movement, and vision might further diminish their role. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. I. Characteristics of evoked head movements.

    PubMed

    Quessy, Stephan; Freedman, Edward G

    2004-06-01

    The nucleus reticularis gigantocellularis (NRG) receives monosynaptic input from the superior colliculus (SC) and projects directly to neck motor neuron pools. Neurons in NRG are well situated to play a critical role in transforming SC signals into head movement commands. A previous study of movements evoked by NRG stimulation in the primate reported a variety of ipsilateral and contralateral head movements with horizontal, vertical and torsional components. In addition to head movements, it was reported that NRG stimulation could evoke movements of the pinnae, face, upper torso, and co-contraction of neck muscles. In this report, the role of the rhesus monkey NRG in head movement control was investigated using electrical stimulation of the rostral portion of the NRG. The goal was to characterize head movements evoked by NRG stimulation, describe the effects of altering stimulation parameters, and assess the relative movements of the eyes and head. Results indicate that electrical stimulation in the rostral portion of the NRG of the primate can consistently evoke ipsilateral head rotations in the horizontal plane. Head movement amplitude and peak velocity depend upon stimulation parameters (primarily frequency and duration of stimulation trains). During stimulation-induced head movements the eyes counter-rotate (presumably a result of the vestibulo-ocular reflex: VOR). At 46 stimulation sites from two subjects the average gain of this counter-rotation was -0.38 (+/-0.18). After the end of the stimulation train the head generally continued to move. During this epoch, after electrical stimulation ceased, VOR gain remained at this reduced level. In addition, VOR gain was similarly low when electrical stimulation was carried out during active fixation of a visual target. These data extend existing descriptions of head movements evoked by electrical stimulation of the NRG, and add to the understanding of the role of this structure in producing head movements.

  1. Model of head-neck joint fast movements in the frontal plane.

    PubMed

    Pedrocchi, A; Ferrigno, G

    2004-06-01

    The objective of this work is to develop a model representing the physiological systems driving fast head movements in frontal plane. All the contributions occurring mechanically in the head movement are considered: damping, stiffness, physiological limit of range of motion, gravitational field, and muscular torques due to voluntary activation as well as to stretch reflex depending on fusal afferences. Model parameters are partly derived from the literature, when possible, whereas undetermined block parameters are determined by optimising the model output, fitting to real kinematics data acquired by a motion capture system in specific experimental set-ups. The optimisation for parameter identification is performed by genetic algorithms. Results show that the model represents very well fast head movements in the whole range of inclination in the frontal plane. Such a model could be proposed as a tool for transforming kinematics data on head movements in 'neural equivalent data', especially for assessing head control disease and properly planning the rehabilitation process. In addition, the use of genetic algorithms seems to fit well the problem of parameter identification, allowing for the use of a very simple experimental set-up and granting model robustness.

  2. Early intensive postural and movement training advances head control in very young infants.

    PubMed

    Lee, Hui-Min; Galloway, James Cole

    2012-07-01

    Daily experiences are thought to play an important role in motor development during infancy. There are limited studies on the effect of postural and movement experiences on head control. The purpose of this study was to quantify the effects of postural and movement experiences on head control through a comprehensive set of measurements beginning when infants were 1 month old. This was a prospective, longitudinal, 2-cohort study. Twenty-two full-term infants who were healthy were randomly assigned to either a training group or a control group. Infants were observed every other week from 1 to 4 months of age. Head control was assessed using a standardized developmental assessment tool, the Test of Infant Motor Performance (TIMP), as well as behavioral coding and kinematics of infants' head postures and movements in a supported sitting position. Caregivers performed at least 20 minutes of daily postural and movement activities (training group), or social interaction (control group) for 4 weeks. The training group had higher TIMP scores on head control-related items during the training period and after training stopped compared with the control group. Starting from the during training phase, the training group infants had their heads in a vertical and midline position longer compared with the control group infants. After training stopped, the training group infants actively moved their heads forward more often and for larger distances. The experiences outside daily training were not monitored, and the results may be specific to the experimental setup for infants with typical development. Young infants are able to take advantage of postural and movement experiences to rapidly advance their head control as early as 4 to 6 weeks of postnatal life. Infant positioning, caregiver handling, and caregiver-infant interactions were likely contributing factors. This database of comprehensive measures may be useful in future trials focused on head control in infants with special

  3. Paroxysmal eye–head movements in Glut1 deficiency syndrome

    PubMed Central

    Engelstad, Kristin; Kane, Steven A.; Goldberg, Michael E.; De Vivo, Darryl C.

    2017-01-01

    Objective: To describe a characteristic paroxysmal eye–head movement disorder that occurs in infants with Glut1 deficiency syndrome (Glut1 DS). Methods: We retrospectively reviewed the medical charts of 101 patients with Glut1 DS to obtain clinical data about episodic abnormal eye movements and analyzed video recordings of 18 eye movement episodes from 10 patients. Results: A documented history of paroxysmal abnormal eye movements was found in 32/101 patients (32%), and a detailed description was available in 18 patients, presented here. Episodes started before age 6 months in 15/18 patients (83%), and preceded the onset of seizures in 10/16 patients (63%) who experienced both types of episodes. Eye movement episodes resolved, with or without treatment, by 6 years of age in 7/8 patients with documented long-term course. Episodes were brief (usually <5 minutes). Video analysis revealed that the eye movements were rapid, multidirectional, and often accompanied by a head movement in the same direction. Eye movements were separated by clear intervals of fixation, usually ranging from 200 to 800 ms. The movements were consistent with eye–head gaze saccades. These movements can be distinguished from opsoclonus by the presence of a clear intermovement fixation interval and the association of a same-direction head movement. Conclusions: Paroxysmal eye–head movements, for which we suggest the term aberrant gaze saccades, are an early symptom of Glut1 DS in infancy. Recognition of the episodes will facilitate prompt diagnosis of this treatable neurodevelopmental disorder. PMID:28341645

  4. Sliding movement of single actin filaments on one-headed myosin filaments

    NASA Astrophysics Data System (ADS)

    Harada, Yoshie; Noguchi, Akira; Kishino, Akiyoshi; Yanagida, Toshio

    1987-04-01

    The myosin molecule consists of two heads, each of which contains an enzymatic active site and an actin-binding site. The fundamental problem of whether the two heads function independently or cooperatively during muscle contraction has been studied by methods using an actomyosin thread1, superprecipitation2-4 and chemical modification of muscle fibres5. No clear conclusion has yet been reached. We have approached this question using an assay system in which sliding movements of fluorescently labelled single actin filaments along myosin filaments can be observed directly6,7. Here, we report direct measurement of the sliding of single actin filaments along one-headed myosin filaments in which the density of heads was varied over a wide range. Our results show that cooperative interaction between the two heads of myosin is not essential for inducing the sliding movement of actin filaments.

  5. Can Functional Movement Assessment Predict Football Head Impact Biomechanics?

    PubMed

    Ford, Julia M; Campbell, Kody R; Ford, Cassie B; Boyd, Kenneth E; Padua, Darin A; Mihalik, Jason P

    2018-06-01

    The purposes of this study was to determine functional movement assessments' ability to predict head impact biomechanics in college football players and to determine whether head impact biomechanics could explain preseason to postseason changes in functional movement performance. Participants (N = 44; mass, 109.0 ± 20.8 kg; age, 20.0 ± 1.3 yr) underwent two preseason and postseason functional movement assessment screenings: 1) Fusionetics Movement Efficiency Test and 2) Landing Error Scoring System (LESS). Fusionetics is scored 0 to 100, and participants were categorized into the following movement quality groups as previously published: good (≥75), moderate (50-75), and poor (<50). The LESS is scored 0 to 17, and participants were categorized into the following previously published movement quality groups: good (≤5 errors), moderate (6-7 errors), and poor (>7 errors). The Head Impact Telemetry (HIT) System measured head impact frequency and magnitude (linear acceleration and rotational acceleration). An encoder with six single-axis accelerometers was inserted between the padding of a commercially available Riddell football helmet. We used random intercepts general linear-mixed models to analyze our data. There were no effects of preseason movement assessment group on the two Head Impact Telemetry System impact outcomes: linear acceleration and rotational acceleration. Head impact frequency did not significantly predict preseason to postseason score changes obtained from the Fusionetics (F1,36 = 0.22, P = 0.643, R = 0.006) or the LESS (F1,36 < 0.01, P = 0.988, R < 0.001) assessments. Previous research has demonstrated an association between concussion and musculoskeletal injury, as well as functional movement assessment performance and musculoskeletal injury. The functional movement assessments chosen may not be sensitive enough to detect neurological and neuromuscular differences within the sample and subtle changes after sustaining head impacts.

  6. Coordination of eye and head components of movements evoked by stimulation of the paramedian pontine reticular formation.

    PubMed

    Gandhi, Neeraj J; Barton, Ellen J; Sparks, David L

    2008-07-01

    Constant frequency microstimulation of the paramedian pontine reticular formation (PPRF) in head-restrained monkeys evokes a constant velocity eye movement. Since the PPRF receives significant projections from structures that control coordinated eye-head movements, we asked whether stimulation of the pontine reticular formation in the head-unrestrained animal generates a combined eye-head movement or only an eye movement. Microstimulation of most sites yielded a constant-velocity gaze shift executed as a coordinated eye-head movement, although eye-only movements were evoked from some sites. The eye and head contributions to the stimulation-evoked movements varied across stimulation sites and were drastically different from the lawful relationship observed for visually-guided gaze shifts. These results indicate that the microstimulation activated elements that issued movement commands to the extraocular and, for most sites, neck motoneurons. In addition, the stimulation-evoked changes in gaze were similar in the head-restrained and head-unrestrained conditions despite the assortment of eye and head contributions, suggesting that the vestibulo-ocular reflex (VOR) gain must be near unity during the coordinated eye-head movements evoked by stimulation of the PPRF. These findings contrast the attenuation of VOR gain associated with visually-guided gaze shifts and suggest that the vestibulo-ocular pathway processes volitional and PPRF stimulation-evoked gaze shifts differently.

  7. Muscle activity and head kinematics in unconstrained movements in subjects with chronic neck pain; cervical motor dysfunction or low exertion motor output?

    PubMed

    Vikne, Harald; Bakke, Eva Sigrid; Liestøl, Knut; Engen, Stian R; Vøllestad, Nina

    2013-11-04

    Chronic neck pain after whiplash associated disorders (WAD) may lead to reduced displacement and peak velocity of neck movements. Dynamic neck movements in people with chronic WAD are also reported to display altered movement patterns such as increased irregularity, which is suggested to signify impaired motor control. As movement irregularity is strongly related to the velocity and displacement of movement, we wanted to examine whether the increased irregularity in chronic WAD could be accounted for by these factors. Head movements were completed in four directions in the sagittal plane at three speeds; slow (S), preferred (P) and maximum (M) in 15 men and women with chronic WAD and 15 healthy, sex and age-matched control participants. Head kinematics and measures of movement smoothness and symmetry were calculated from position data. Surface electromyography (EMG) was recorded bilaterally from the sternocleidomastoid and splenius muscles and the root mean square (rms) EMG amplitude for the accelerative and decelerative phases of movement were analyzed. The groups differed significantly with regard to movement velocity, acceleration, displacement, smoothness and rmsEMG amplitude in agonist and antagonist muscles for a series of comparisons across the test conditions (range 17-121%, all p-values < 0.05). The group differences in peak movement velocity and acceleration persisted after controlling for movement displacement. Controlling for differences between the groups in displacement and velocity abolished the difference in measures of movement smoothness and rmsEMG amplitude. Simple, unconstrained head movements in participants with chronic WAD are accomplished with reduced velocity and displacement, but with normal muscle activation levels and movement patterns for a given velocity and displacement. We suggest that while reductions in movement velocity and displacement are robust changes and may be of clinical importance in chronic WAD, movement smoothness of

  8. Destabilizing effects of visual environment motions simulating eye movements or head movements

    NASA Technical Reports Server (NTRS)

    White, Keith D.; Shuman, D.; Krantz, J. H.; Woods, C. B.; Kuntz, L. A.

    1991-01-01

    In the present paper, we explore effects on the human of exposure to a visual virtual environment which has been enslaved to simulate the human user's head movements or eye movements. Specifically, we have studied the capacity of our experimental subjects to maintain stable spatial orientation in the context of moving their entire visible surroundings by using the parameters of the subjects' natural movements. Our index of the subjects' spatial orientation was the extent of involuntary sways of the body while attempting to stand still, as measured by translations and rotations of the head. We also observed, informally, their symptoms of motion sickness.

  9. Head and pelvic movement asymmetry during lungeing in horses with symmetrical movement on the straight.

    PubMed

    Rhodin, M; Roepstorff, L; French, A; Keegan, K G; Pfau, T; Egenvall, A

    2016-05-01

    Lungeing is commonly used as part of standard lameness examinations in horses. Knowledge of how lungeing influences motion symmetry in sound horses is needed. The aim of this study was to objectively evaluate the symmetry of vertical head and pelvic motion during lungeing in a large number of horses with symmetric motion during straight line evaluation. Cross-sectional prospective study. A pool of 201 riding horses, all functioning well and considered sound by their owners, were evaluated in trot on a straight line and during lungeing to the left and right. From this pool, horses with symmetric vertical head and pelvic movement during the straight line trot (n = 94) were retained for analysis. Vertical head and pelvic movements were measured with body mounted uniaxial accelerometers. Differences between vertical maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) heights between left and right forelimb and hindlimb stances were compared between straight line trot and lungeing in either direction. Vertical head and pelvic movements during lungeing were more asymmetric than during trot on a straight line. Common asymmetric patterns seen in the head were more upward movement during push-off of the outside forelimb and less downward movement during impact of the inside limb. Common asymmetric patterns seen in the pelvis were less upward movement during push-off of the outside hindlimb and less downward movement of the pelvis during impact of the inside hindlimb. Asymmetric patterns in one lunge direction were frequently not the same as in the opposite direction. Lungeing induces systematic asymmetries in vertical head and pelvic motion patterns in horses that may not be the same in both directions. These asymmetries may mask or mimic fore- or hindlimb lameness. © 2015 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

  10. Dynamic and kinematic strategies for head movement control

    NASA Technical Reports Server (NTRS)

    Peterson, B. W.; Choi, H.; Hain, T.; Keshner, E.; Peng, G. C.

    2001-01-01

    This paper describes our analysis of the complex head-neck system using a combination of experimental and modeling approaches. Dynamical analysis of head movements and EMG activation elicited by perturbation of trunk position has examined functional contributions of biomechanically and neurally generated forces in lumped systems with greatly simplified kinematics. This has revealed that visual and voluntary control of neck muscles and the dynamic and static vestibulocollic and cervicocollic reflexes preferentially govern head-neck system state in different frequency domains. It also documents redundant control, which allows the system to compensate for lesions and creates a potential for substantial variability within and between subjects. Kinematic studies have indicated the existence of reciprocal and co-contraction strategies for voluntary force generation, of a vestibulocollic strategy for stabilizing the head during body perturbations and of at least two strategies for voluntary head tracking. Each strategy appears to be executed by a specific muscle synergy that is presumably optimized to efficiently meet the demands of the task.

  11. Infant-Directed Visual Prosody: Mothers’ Head Movements and Speech Acoustics

    PubMed Central

    Smith, Nicholas A.; Strader, Heather L.

    2014-01-01

    Acoustical changes in the prosody of mothers’ speech to infants are distinct and near universal. However, less is known about the visible properties mothers’ infant-directed (ID) speech, and their relation to speech acoustics. Mothers’ head movements were tracked as they interacted with their infants using ID speech, and compared to movements accompanying their adult-directed (AD) speech. Movement measures along three dimensions of head translation, and three axes of head rotation were calculated. Overall, more head movement was found for ID than AD speech, suggesting that mothers exaggerate their visual prosody in a manner analogous to the acoustical exaggerations in their speech. Regression analyses examined the relation between changing head position and changing acoustical pitch (F0) over time. Head movements and voice pitch were more strongly related in ID speech than in AD speech. When these relations were examined across time windows of different durations, stronger relations were observed for shorter time windows (< 5 sec). However, the particular form of these more local relations did not extend or generalize to longer time windows. This suggests that the multimodal correspondences in speech prosody are variable in form, and occur within limited time spans. PMID:25242907

  12. Objective measurement of head movement differences in children with and without autism spectrum disorder.

    PubMed

    Martin, Katherine B; Hammal, Zakia; Ren, Gang; Cohn, Jeffrey F; Cassell, Justine; Ogihara, Mitsunori; Britton, Jennifer C; Gutierrez, Anibal; Messinger, Daniel S

    2018-01-01

    Deficits in motor movement in children with autism spectrum disorder (ASD) have typically been characterized qualitatively by human observers. Although clinicians have noted the importance of atypical head positioning (e.g. social peering and repetitive head banging) when diagnosing children with ASD, a quantitative understanding of head movement in ASD is lacking. Here, we conduct a quantitative comparison of head movement dynamics in children with and without ASD using automated, person-independent computer-vision based head tracking (Zface). Because children with ASD often exhibit preferential attention to nonsocial versus social stimuli, we investigated whether children with and without ASD differed in their head movement dynamics depending on stimulus sociality. The current study examined differences in head movement dynamics in children with ( n  = 21) and without ASD ( n  = 21). Children were video-recorded while watching a 16-min video of social and nonsocial stimuli. Three dimensions of rigid head movement-pitch (head nods), yaw (head turns), and roll (lateral head inclinations)-were tracked using Zface. The root mean square of pitch, yaw, and roll was calculated to index the magnitude of head angular displacement (quantity of head movement) and angular velocity (speed). Compared with children without ASD, children with ASD exhibited greater yaw displacement, indicating greater head turning, and greater velocity of yaw and roll, indicating faster head turning and inclination. Follow-up analyses indicated that differences in head movement dynamics were specific to the social rather than the nonsocial stimulus condition. Head movement dynamics (displacement and velocity) were greater in children with ASD than in children without ASD, providing a quantitative foundation for previous clinical reports. Head movement differences were evident in lateral (yaw and roll) but not vertical (pitch) movement and were specific to a social rather than nonsocial

  13. Stride-Cycle Influences on Goal-Directed Head Movements Made During Walking

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; vanEmmerik, Richard E. A.; Bloomberg, Jacob J.

    2006-01-01

    Horizontal head movements were studied in six subjects as they made rapid horizontal gaze adjustments while walking. The aim of the present research was to determine if gait-cycle events alter the head movement response to a visual target acquisition task. Gaze shifts of approximately 40deg were elicited by a step change in the position of a visual target from a central location to a second location in the left or right horizontal periphery. The timing of the target position change was constrained to occur at 25,50,75 and 100% of the stride cycle. The trials were randomly presented as the subjects walked on a treadmill at their preferred speed (range: 1.25 to 1.48 m/s, mean: 1.39 +/- 0.09 m/s ) . Analyses focused on the movement onset latencies of the head and eyes and on the peak velocity and saccade amplitude of the head movement response. A comparison of the group means indicated that the head movement onset lagged the eye onset (262 ms versus 252 ms). The head and eye movement onset latencies were not affected by either the direction of the target change nor the point in the gait cycle during which the target relocation occurred. However, the presence of an interaction between the gait cycle events and the direction of the visual target shift indicates that the peak head saccade velocity and head saccade amplitude are affected by the natural head oscillations that occur while walking.

  14. Eye Tracking and Head Movement Detection: A State-of-Art Survey

    PubMed Central

    2013-01-01

    Eye-gaze detection and tracking have been an active research field in the past years as it adds convenience to a variety of applications. It is considered a significant untraditional method of human computer interaction. Head movement detection has also received researchers' attention and interest as it has been found to be a simple and effective interaction method. Both technologies are considered the easiest alternative interface methods. They serve a wide range of severely disabled people who are left with minimal motor abilities. For both eye tracking and head movement detection, several different approaches have been proposed and used to implement different algorithms for these technologies. Despite the amount of research done on both technologies, researchers are still trying to find robust methods to use effectively in various applications. This paper presents a state-of-art survey for eye tracking and head movement detection methods proposed in the literature. Examples of different fields of applications for both technologies, such as human-computer interaction, driving assistance systems, and assistive technologies are also investigated. PMID:27170851

  15. Non-intrusive head movement analysis of videotaped seizures of epileptic origin.

    PubMed

    Mandal, Bappaditya; Eng, How-Lung; Lu, Haiping; Chan, Derrick W S; Ng, Yen-Ling

    2012-01-01

    In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.

  16. Head movement measurement: An alternative method for posturography studies.

    PubMed

    Ciria, L F; Muñoz, M A; Gea, J; Peña, N; Miranda, J G V; Montoya, P; Vila, J

    2017-02-01

    The present study evaluated the measurement of head movements as a valid method for postural emotional studies using the comparison of simultaneous recording of center of pressure (COP) sway as criterion. Thirty female students viewed a set of 12 pleasant, 12 unpleasant and 12 neutral pictures from the International Affective Picture System, repeated twice, using a block presentation procedure while standing on a force platform (AMTI AccuSway). Head movements were recorded using a webcam (©KPC139E) located in the ceiling in line with the force platform and a light-emitting diode (LED) placed on the top of the head. Open source software (CvMob 3.1) was used to process the data. High indices of correlation and coherence between head and COP sway were observed. In addition, pleasant pictures, compared with unpleasant pictures, elicited greater body sway in the anterior-posterior axis, suggesting an approach response to appetitive stimuli. Thus, the measurement of head movement can be an alternative or complementary method to recording COP for studying human postural changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization of the head-twitch response induced by hallucinogens in mice: detection of the behavior based on the dynamics of head movement.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2013-06-01

    The head-twitch response (HTR) is a rapid side-to-side rotational head movement that occurs in rats and mice after administration of serotonergic hallucinogens and other 5-HT2A agonists. The HTR is widely used as a behavioral assay for 5-HT2A activation and to probe for interactions between the 5-HT2A receptor and other transmitter systems. High-speed video recordings were used to analyze the head movement that occurs during head twitches in C57BL/6J mice. Experiments were also conducted in C57BL/6J mice to determine whether a head-mounted magnet and a magnetometer coil could be used to detect the HTR induced by serotonergic hallucinations based on the dynamics of the response. Head movement during the HTR was highly rhythmic and occurred within a specific frequency range (mean head movement frequency of 90.3 Hz). Head twitches produced wave-like oscillations of magnetometer coil voltage that matched the frequency of head movement during the response. The magnetometer coil detected the HTR induced by the serotonergic hallucinogens 2,5-dimethoxy-4-iodoamphetamine (DOI; 0.25, 0.5, and 1.0 mg/kg, i.p.) and lysergic acid diethylamide (LSD; 0.05, 0.1, 0.2, and 0.4 mg/kg, i.p.) with extremely high sensitivity and specificity. Magnetometer coil recordings demonstrated that the non-hallucinogenic compounds (+)-amphetamine (2.5 and 5.0 mg/kg, i.p.) and lisuride (0.8, 1.6, and 3.2 mg/kg, i.p.) did not induce the HTR. These studies confirm that a magnetometer coil can be used to detect the HTR induced by hallucinogens. The use of magnetometer-based HTR detection provides a high-throughput, semi-automated assay for this behavior, and offers several advantages over traditional assessment methods.

  18. Head Movement Dynamics During Play and Perturbed Mother-Infant Interaction

    PubMed Central

    Hammal, Zakia; Cohn, Jeffrey F; Messinger, Daniel S

    2015-01-01

    We investigated the dynamics of head movement in mothers and infants during an age-appropriate, well-validated emotion induction, the Still Face paradigm. In this paradigm, mothers and infants play normally for 2 minutes (Play) followed by 2 minutes in which the mothers remain unresponsive (Still Face), and then two minutes in which they resume normal behavior (Reunion). Participants were 42 ethnically diverse 4-month-old infants and their mothers. Mother and infant angular displacement and angular velocity were measured using the CSIRO head tracker. In male but not female infants, angular displacement increased from Play to Still-Face and decreased from Still Face to Reunion. Infant angular velocity was higher during Still-Face than Reunion with no differences between male and female infants. Windowed cross-correlation suggested changes in how infant and mother head movements are associated, revealing dramatic changes in direction of association. Coordination between mother and infant head movement velocity was greater during Play compared with Reunion. Together, these findings suggest that angular displacement, angular velocity and their coordination between mothers and infants are strongly related to age-appropriate emotion challenge. Attention to head movement can deepen our understanding of emotion communication. PMID:26640622

  19. Hawk eyes II: diurnal raptors differ in head movement strategies when scanning from perches.

    PubMed

    O'Rourke, Colleen T; Pitlik, Todd; Hoover, Melissa; Fernández-Juricic, Esteban

    2010-09-22

    Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper's Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. Cooper's Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction.

  20. [EMG activities of the head, neck and upper trunk muscles with mandibular movements in healthy adults and mandibular asymmetry patients].

    PubMed

    Jiang, Ting; Zhang, Zhenkang; Yang, Zhaohui; Yi, Biao; Feng, Hailan; Wang, Xing

    2002-03-25

    To study the activities of head, neck and upper trunk muscles during mandibular movements in healthy adults and mandibular asymmetry patients. Electromyographic integrogram was used to record and analyze the electromyographic activities of the anterior temporal (Ta), posterior temporal (Tp), sternocleidomastoid (SCM), and trapezius (TRAP) muscles in rest position and during mandibular movement among 10 normal adults and 10 mandibular asymmetry patients. All the four muscles showed constant electromyographic activities when the mandible was in the rest position. The activities of Ta, Tp, and SCM muscles increased with protrusion of mandible, mouth opening, tapping, maximum clenching, and chewing. The activities of Ta and Tp muscles of the patients were 1.7 times greater than that of the normal adults during mandibular movement without occlusion, and were weaker by 50% during mandibular movement with occlusion. The difference between electromyographic activities during mandibular movement and in rest position was less among patients than among normal adults. The TRAP muscle of the patients showed constant electromyographic activities with the activity volume nearly 1.8 times that of the normal adults. The difference between the muscle and its namesake at the opposite side was greater among the patients (21%) than among the normal adults (8%). All the four muscles participate in the maintenance of rest position of mandible and the realization of mandibular movements. The coordination of muscular activities among mandibular asymmetry patients is poorer than that among normal adults.

  1. Gravity and perceptual stability during translational head movement on earth and in microgravity.

    PubMed

    Jaekl, P; Zikovitz, D C; Jenkin, M R; Jenkin, H L; Zacher, J E; Harris, L R

    2005-01-01

    We measured the amount of visual movement judged consistent with translational head movement under normal and microgravity conditions. Subjects wore a virtual reality helmet in which the ratio of the movement of the world to the movement of the head (visual gain) was variable. Using the method of adjustment under normal gravity 10 subjects adjusted the visual gain until the visual world appeared stable during head movements that were either parallel or orthogonal to gravity. Using the method of constant stimuli under normal gravity, seven subjects moved their heads and judged whether the virtual world appeared to move "with" or "against" their movement for several visual gains. One subject repeated the constant stimuli judgements in microgravity during parabolic flight. The accuracy of judgements appeared unaffected by the direction or absence of gravity. Only the variability appeared affected by the absence of gravity. These results are discussed in relation to discomfort during head movements in microgravity. c2005 Elsevier Ltd. All rights reserved.

  2. Identifying Anxiety Through Tracked Head Movements in a Virtual Classroom.

    PubMed

    Won, Andrea Stevenson; Perone, Brian; Friend, Michelle; Bailenson, Jeremy N

    2016-06-01

    Virtual reality allows the controlled simulation of complex social settings, such as classrooms, and thus provides an opportunity to test a range of theories in the social sciences in a way that is both naturalistic and controlled. Importantly, virtual environments also allow the body movements of participants in the virtual world to be tracked and recorded. In the following article, we discuss how tracked head movements were correlated with participants' reports of anxiety in a simulation of a classroom. Participants who reported a high sense of awareness of and concern about the other virtual people in the room showed different patterns of head movement (more lateral head movement, indicating scanning behavior) from those who reported a low level of concern. We discuss the implications of this research for understanding nonverbal behavior associated with anxiety and for the design of online educational systems.

  3. Artificial gravity: head movements during short-radius centrifugation

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.

    2001-01-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects of pitch and yaw head movements in participants placed supine on a rotating bed with their head at the center of rotation, feet at the rim. The vast majority of participants experienced motion sickness, inappropriate vertical nystagmus and illusory tilt and roll as predicted by a semicircular canal model. However, a small but significant number of the 28 participants experienced tilt in the predicted plane but in the opposite direction. Heart rate was elevated following one-second duration head turns. Significant adaptation occurred following a series of head turns in the light. Vertical nystagmus, motion sickness and illusory tilt all decreased with adaptation. Consequences for artificial gravity produced by short-radius centrifuges as a countermeasure are discussed. Grant numbers: NCC 9-58. c 2001. Elsevier Science Ltd. All rights reserved.

  4. Vestibular-somatosensory convergence in head movement control during locomotion after long-duration space flight.

    PubMed

    Mulavara, A P; Ruttley, T; Cohen, H S; Peters, B T; Miller, C; Brady, R; Merkle, L; Bloomberg, J J

    2012-01-01

    Space flight causes astronauts to be exposed to adaptation in both the vestibular and body load-sensing somatosensory systems. The goal of these studies was to examine the contributions of vestibular and body load-sensing somatosensory influences on vestibular mediated head movement control during locomotion after long-duration space flight. Subjects walked on a motor driven treadmill while performing a gaze stabilization task. Data were collected from three independent subject groups that included bilateral labyrinthine deficient (LD) patients, normal subjects before and after 30 minutes of 40% bodyweight unloaded treadmill walking, and astronauts before and after long-duration space flight. Motion data from the head and trunk segments were used to calculate the amplitude of angular head pitch and trunk vertical translation movement while subjects performed a gaze stabilization task, to estimate the contributions of vestibular reflexive mechanisms in head pitch movements. Exposure to unloaded locomotion caused a significant increase in head pitch movements in normal subjects, whereas the head pitch movements of LD patients were significantly decreased. This is the first evidence of adaptation of vestibular mediated head movement responses to unloaded treadmill walking. Astronaut subjects showed a heterogeneous response of both increases and decreases in the amplitude of head pitch movement. We infer that body load-sensing somatosensory input centrally modulates vestibular input and can adaptively modify vestibularly mediated head-movement control during locomotion. Thus, space flight may cause central adaptation of the converging vestibular and body load-sensing somatosensory systems leading to alterations in head movement control.

  5. Hawk Eyes II: Diurnal Raptors Differ in Head Movement Strategies When Scanning from Perches

    PubMed Central

    O'Rourke, Colleen T.; Pitlik, Todd; Hoover, Melissa; Fernández-Juricic, Esteban

    2010-01-01

    Background Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper's Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. Conclusions Cooper's Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction. PMID:20877650

  6. [Discrimination between pain-induced head movement disturbances after whiplash injuries and their simulation].

    PubMed

    Berger, M; Lechner-Steinleitner, S; Hoffmann, F; Schönegger, J

    1998-12-09

    Neck pain after whiplash injury of the cervical spine often induces typical changes in head motion patterns (amplitude, velocity). These changes of kinematics may help to recognize malingerers. We investigated the hypothesis that malingerers are not able to reproduce their simulated head movement disturbances three times. The kinematics of head movements of 23 patients with neck pain after whiplash injury and of 22 healthy subjects trying to act as malingerers were compared. The healthy subjects were informed about the symptomatology of whiplash injury and were asked to simulate painful head movements. Two different kinds of head movements were registered and analyzed by Cervicomotography: (1) the slow free axial head rotation (yaw) and (2) the axial head rotation (yaw) tracking a moving visual target. Each experimental condition was presented three times, expecting the malingerers not to be able to produce as well as to reproduce the same head movement disturbances again and again. In patients, as a consequence of their distinct pain patterns, we expected less variance between the test repetitions. The statistical analysis showed significant differences of the calculated kinematic parameters between both groups and the inability of healthy subjects to simulate and to reproduce convincingly distinct pain patterns.

  7. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.

    PubMed

    Hänzi, Sara; Straka, Hans

    2017-01-15

    During the post-embryonic developmental growth of animals, a number of physiological parameters such as locomotor performance, dynamics and behavioural repertoire are adjusted to match the requirements determined by changes in body size, proportions and shape. Moreover, changes in movement parameters also cause changes in the dynamics of self-generated sensory stimuli, to which motion-detecting sensory systems have to adapt. Here, we examined head movements and swimming kinematics of Xenopus laevis tadpoles with a body length of 10-45 mm (developmental stage 46-54) and compared these parameters with fictive swimming, recorded as ventral root activity in semi-intact in vitro preparations. Head movement kinematics was extracted from high-speed video recordings of freely swimming tadpoles. Analysis of these locomotor episodes indicated that the swimming frequency decreased with development, along with the angular velocity and acceleration of the head, which represent self-generated vestibular stimuli. In contrast, neither head oscillation amplitude nor forward velocity changed with development despite the ∼3-fold increase in body size. The comparison between free and fictive locomotor dynamics revealed very similar swimming frequencies for similarly sized animals, including a comparable developmental decrease of the swimming frequency. Body morphology and the motor output rhythm of the spinal central pattern generator therefore develop concurrently. This study thus describes development-specific naturalistic head motion profiles, which form the basis for more natural stimuli in future studies probing the vestibular system. © 2017. Published by The Company of Biologists Ltd.

  8. Transcranial magnetic stimulation over the cerebellum delays predictive head movements in the coordination of gaze.

    PubMed

    Zangemeister, W H; Nagel, M

    2001-01-01

    We investigated coordinated saccadic eye and head movements following predictive horizontal visual targets at +/- 30 degrees by applying transcranial magnetic stimulation (TMS) over the cerebellum before the start of the gaze movement in 10 young subjects. We found three effects of TMS on eye-head movements: 1. Saccadic latency effect. When stimulation took place shortly before movements commenced (75-25 ms before), significantly shorter latencies were found between predictive target presentation and initiation of saccades. Eye latencies were significantly decreased by 45 ms on average, but head latencies were not. 2. Gaze amplitude effect. Without TMS, for the 60 degrees target amplitudes, head movements usually preceded eye movements, as expected (predictive gaze type 3). With TMS 5-75 ms before the gaze movement, the number of eye movements preceding head movements by 20-50 ms was significantly increased (p < 0.001) and the delay between eye and head movements was reversed (p < 0.001), i.e. we found eye-predictive gaze type 1. 3. Saccadic peak velocity effect. For TMS 5-25 s before the start of head movement, mean peak velocity of synkinetic eye saccades increased by 20-30% up to 600 degrees/s, compared to 350-400 degrees/s without TMS. We conclude that transient functional cerebellar deficits exerted by means of TMS can change the central synkinesis of eye-head coordination, including the preprogramming of the saccadic pulse and step of a coordinated gaze movement.

  9. Head position affects the direction of occlusal force during tapping movement.

    PubMed

    Nakamura, K; Minami, I; Wada, J; Ikawa, Y; Wakabayashi, N

    2018-05-01

    Despite numerous reports describing the relationship between head position and mandibular movement in human subjects, the direction and magnitude of force at the occlusal contacts have not been investigated in relation to head position. The objective was to investigate the effect of head position on the direction of occlusal force while subjects performed a tapping movement. Twenty-three healthy adult subjects were asked to sit on a chair with their back upright and to perform 15 tapping movements in five different head positions: natural head position (control); forward; backward; and right and left rolled. The direction and magnitude of force were measured using a small triaxial force sensor. The Wilcoxon signed-rank test and Bonferroni test were used to compare head positions in each angle of the anteroposterior axis direction and the lateral axis direction with respect to the superior axis. The force element in the anteroposterior axis shifted to the forward direction in the head position pitched backward, compared with control, pitched forward and rolled left positions (P = .02, <.01 and <.01, respectively). The force direction in the lateral axis with the head position rolled to the right or left shifted to the left and right directions, respectively, compared with those in the other positions (P < .05). Results of this study suggest that the head should be maintained in a position in which a stable tapping movement can be performed in a relaxed position without anteroposterior and lateral loading. © 2018 John Wiley & Sons Ltd.

  10. Flight display dynamics and compensatory head movements in pilots.

    PubMed

    Beer, Jeremy; Freeman, David

    2007-06-01

    Experiments measured the optokinetic cervical reflex (OKCR), wherein the banking pilot aligns the head with the horizon. In a synthetic cockpit, the flight display was manipulated to test whether changing the visual reference frame would alter OKCR. Eight subjects (five rated pilots) flew a route in simulated visual meteorological conditions that required them to bank the aircraft frequently. Pilots' head tilt was characterized using both the conventional method of regressing against simultaneous aircraft bank, and also an event-based analysis, which identified head movements before, during, and after each turn. Three display configurations were compared to determine whether pilots' orientation would ever migrate from the horizon to the aircraft symbol. The first was a conventional "Inside-Out" condition. A "Frequency-Separated" condition combined Inside-Out horizon geometry with Outside-In dynamics for the aircraft symbol, which depicted joystick bank inputs. In the "Outside-In" condition, the aircraft symbol rolled against a static horizon. Regressions identified an interaction (p < 0.001) between display condition and aircraft bank: head tilt followed horizon tilt in Inside-Out and Frequency-Separated conditions, while remaining mostly level in the Outside-In condition. The event-based analysis identified anticipatory head movements in Inside-Out and Frequency-Separated conditions: 95% CI indicated that before each turn, head tilt favored the direction of the imminent bank. While the conventional analysis confirmed that the horizon comprises a primary spatial reference, the finer-grained event-based analysis indicated that pilots' reference can migrate at least temporarily to the vehicle, and that OKCR can be preceded by anticipatory head movements in the opposite direction.

  11. Intersegmental Eye-Head-Body Interactions during Complex Whole Body Movements

    PubMed Central

    von Laßberg, Christoph; Beykirch, Karl A.; Mohler, Betty J.; Bülthoff, Heinrich H.

    2014-01-01

    Using state-of-the-art technology, interactions of eye, head and intersegmental body movements were analyzed for the first time during multiple twisting somersaults of high-level gymnasts. With this aim, we used a unique combination of a 16-channel infrared kinemetric system; a three-dimensional video kinemetric system; wireless electromyography; and a specialized wireless sport-video-oculography system, which was able to capture and calculate precise oculomotor data under conditions of rapid multiaxial acceleration. All data were synchronized and integrated in a multimodal software tool for three-dimensional analysis. During specific phases of the recorded movements, a previously unknown eye-head-body interaction was observed. The phenomenon was marked by a prolonged and complete suppression of gaze-stabilizing eye movements, in favor of a tight coupling with the head, spine and joint movements of the gymnasts. Potential reasons for these observations are discussed with regard to earlier findings and integrated within a functional model. PMID:24763143

  12. Characterization of the head-twitch response induced by hallucinogens in mice: detection of the behavior based on the dynamics of head movement

    PubMed Central

    Halberstadt, Adam L.; Geyer, Mark A.

    2013-01-01

    Rationale The head-twitch response (HTR) is a rapid side-to-side rotational head movement that occurs in rats and mice after administration of serotonergic hallucinogens and other 5-HT2A agonists. The HTR is widely used as a behavioral assay for 5-HT2A activation and to probe for interactions between the 5-HT2A receptor and other transmitter systems. Objective High-speed video recordings were used to analyze the head movement that occurs during head twitches in C57BL/6J mice. Experiments were also conducted in C57BL/6J mice to determine whether a head-mounted magnet and a magnetometer coil could be used to detect the HTR induced by serotonergic hallucinations based on the dynamics of the response. Results Head movement during the HTR was highly rhythmic and occurred within a specific frequency range (mean reciprocation frequency of 90.3 Hz). Head twitches produced wave-like oscillations of magnetometer coil voltage that matched the frequency of head movement during the response. The magnetometer coil detected the HTR induced by the serotonergic hallucinogens 2,5-dimethoxy-4-iodoamphetamine (DOI; 0.25, 0.5, and 1.0 mg/kg, IP) and lysergic acid diethylamide (LSD; 0.05, 0.1, 0.2, and 0.4 mg/kg, IP) with extremely high sensitivity and specificity. Magnetometer coil recordings demonstrated that the non-hallucinogenic compounds (+)-amphetamine (2.5 and 5.0 mg/kg, IP) and lisuride (0.8, 1.6, and 3.2 mg/kg, IP) did not induce the HTR. Conclusions These studies confirm that a magnetometer coil can be used to detect the HTR induced by hallucinogens. The use of magnetometer-based HTR detection provides a high-throughput, semi-automated assay for this behavior, and offers several advantages over traditional assessment methods. PMID:23407781

  13. Eye-Pursuit and Reafferent Head Movement Signals Carried by Pursuit Neurons in the Caudal Part of the Frontal Eye Fields during Head-Free Pursuit

    PubMed Central

    Kasahara, Satoshi; Akao, Teppei; Kurkin, Sergei; Peterson, Barry W.

    2009-01-01

    Eye and head movements are coordinated during head-free pursuit. To examine whether pursuit neurons in frontal eye fields (FEF) carry gaze-pursuit commands that drive both eye-pursuit and head-pursuit, monkeys whose heads were free to rotate about a vertical axis were trained to pursue a juice feeder with their head and a target with their eyes. Initially the feeder and target moved synchronously with the same visual angle. FEF neurons responding to this gaze-pursuit were tested for eye-pursuit of target motion while the feeder was stationary and for head-pursuit while the target was stationary. The majority of pursuit neurons exhibited modulation during head-pursuit, but their preferred directions during eye-pursuit and head-pursuit were different. Although peak modulation occurred during head movements, the onset of discharge usually was not aligned with the head movement onset. The minority of neurons whose discharge onset was so aligned discharged after the head movement onset. These results do not support the idea that the head-pursuit–related modulation reflects head-pursuit commands. Furthermore, modulation similar to that during head-pursuit was obtained by passive head rotation on stationary trunk. Our results suggest that FEF pursuit neurons issue gaze or eye movement commands during gaze-pursuit and that the head-pursuit–related modulation primarily reflects reafferent signals resulting from head movements. PMID:18483002

  14. Effect of external viscous load on head movement

    NASA Technical Reports Server (NTRS)

    Nam, M.-H.; Lakshminarayanan, V.; Stark, L. W.

    1984-01-01

    Quantitative measurements of horizontal head rotation were obtained from normal human subjects intending to make 'time optimal' trajectories between targets. By mounting large, lightweight vanes on the head, viscous damping B, up to 15 times normal could be added to the usual mechanical load of the head. With the added viscosity, the head trajectory was slowed and of larger duration (as expected) since fixed and maximal (for that amplitude) muscle forces had to accelerate the added viscous load. This decreased acceleration and velocity and longer duration movement still ensued in spite of adaptive compensation; this provided evidence that quasi-'time optimal' movements do indeed employ maximal muscle forces. The adaptation to this added load was rapid. Then the 'adapted state' subjects produced changed trajectories. The adaptation depended in part on the differing detailed instructions given to the subjects. This differential adaptation provided evidence for the existence of preprogrammed controller signals, sensitive to intended criterion, and neurologically ballistic or open loop rather than modified by feedback from proprioceptors or vision.

  15. The Contribution of Head Movement to the Externalization and Internalization of Sounds

    PubMed Central

    Brimijoin, W. Owen; Boyd, Alan W.; Akeroyd, Michael A.

    2013-01-01

    Background When stimuli are presented over headphones, they are typically perceived as internalized; i.e., they appear to emanate from inside the head. Sounds presented in the free-field tend to be externalized, i.e., perceived to be emanating from a source in the world. This phenomenon is frequently attributed to reverberation and to the spectral characteristics of the sounds: those sounds whose spectrum and reverberation matches that of free-field signals arriving at the ear canal tend to be more frequently externalized. Another factor, however, is that the virtual location of signals presented over headphones moves in perfect concert with any movements of the head, whereas the location of free-field signals moves in opposition to head movements. The effects of head movement have not been systematically disentangled from reverberation and/or spectral cues, so we measured the degree to which movements contribute to externalization. Methodology/Principal Findings We performed two experiments: 1) Using motion tracking and free-field loudspeaker presentation, we presented signals that moved in their spatial location to match listeners’ head movements. 2) Using motion tracking and binaural room impulse responses, we presented filtered signals over headphones that appeared to remain static relative to the world. The results from experiment 1 showed that free-field signals from the front that move with the head are less likely to be externalized (23%) than those that remain fixed (63%). Experiment 2 showed that virtual signals whose position was fixed relative to the world are more likely to be externalized (65%) than those fixed relative to the head (20%), regardless of the fidelity of the individual impulse responses. Conclusions/Significance Head movements play a significant role in the externalization of sound sources. These findings imply tight integration between binaural cues and self motion cues and underscore the importance of self motion for spatial auditory

  16. Head, withers and pelvic movement asymmetry and their relative timing in trot in racing Thoroughbreds in training.

    PubMed

    Pfau, T; Noordwijk, K; Sepulveda Caviedes, M F; Persson-Sjodin, E; Barstow, A; Forbes, B; Rhodin, M

    2018-01-01

    Horses show compensatory head movement in hindlimb lameness and compensatory pelvis movement in forelimb lameness but little is known about the relationship of withers movement symmetry with head and pelvic asymmetry in horses with naturally occurring gait asymmetries. To document head, withers and pelvic movement asymmetry and timing differences in horses with naturally occurring gait asymmetries. Retrospective analysis of gait data. Head, withers and pelvic movement asymmetry and timing of displacement minima and maxima were quantified from inertial sensors in 163 Thoroughbreds during trot-ups on hard ground. Horses were divided into 4 subgroups using the direction of head and withers movement asymmetry. Scatter plots of head vs. pelvic movement asymmetry illustrated how the head-withers relationship distinguishes between contralateral and ipsilateral head-pelvic movement asymmetry. Independent t test or Mann-Whitney U test (P<0.05) compared pelvic movement asymmetry and timing differences between groups. The relationship between head and withers asymmetry (i.e. same sided or opposite sided asymmetry) predicts the relationship between head and pelvic asymmetry in 69-77% of horses. Pelvic movement symmetry was significantly different between horses with same sign vs. opposite sign of head-withers asymmetry (P<0.0001). Timing of the maximum head height reached after contralateral ('sound') stance was delayed compared to withers (P = 0.02) and pelvis (P = 0.04) in horses with contralateral head-withers asymmetry. The clinical lameness status of the horses was not investigated. In the Thoroughbreds with natural gait asymmetries investigated here, the direction of head vs. withers movement asymmetry identifies the majority of horses with ipsilateral and contralateral head and pelvic movement asymmetries. Withers movement should be further investigated for differentiating between forelimb and hindlimb lame horses. Horses with opposite sided head and withers

  17. Effects of head movement and proprioceptive feedback in training of sound localization

    PubMed Central

    Honda, Akio; Shibata, Hiroshi; Hidaka, Souta; Gyoba, Jiro; Iwaya, Yukio; Suzuki, Yôiti

    2013-01-01

    We investigated the effects of listeners' head movements and proprioceptive feedback during sound localization practice on the subsequent accuracy of sound localization performance. The effects were examined under both restricted and unrestricted head movement conditions in the practice stage. In both cases, the participants were divided into two groups: a feedback group performed a sound localization drill with accurate proprioceptive feedback; a control group conducted it without the feedback. Results showed that (1) sound localization practice, while allowing for free head movement, led to improvement in sound localization performance and decreased actual angular errors along the horizontal plane, and that (2) proprioceptive feedback during practice decreased actual angular errors in the vertical plane. Our findings suggest that unrestricted head movement and proprioceptive feedback during sound localization training enhance perceptual motor learning by enabling listeners to use variable auditory cues and proprioceptive information. PMID:24349686

  18. Contribution of the frontal eye field to gaze shifts in the head-unrestrained rhesus monkey: neuronal activity.

    PubMed

    Knight, T A

    2012-12-06

    The frontal eye field (FEF) has a strong influence on saccadic eye movements with the head restrained. With the head unrestrained, eye saccades combine with head movements to produce large gaze shifts, and microstimulation of the FEF evokes both eye and head movements. To test whether the dorsomedial FEF provides commands for the entire gaze shift or its separate eye and head components, we recorded extracellular single-unit activity in monkeys trained to make large head-unrestrained gaze shifts. We recorded 80 units active during gaze shifts, and closely examined 26 of these that discharged a burst of action potentials that preceded horizontal gaze movements. These units were movement or visuomovement related and most exhibited open movement fields with respect to amplitude. To reveal the relations of burst parameters to gaze, eye, and/or head movement metrics, we used behavioral dissociations of gaze, eye, and head movements and linear regression analyses. The burst number of spikes (NOS) was strongly correlated with movement amplitude and burst temporal parameters were strongly correlated with movement temporal metrics for eight gaze-related burst neurons and five saccade-related burst neurons. For the remaining 13 neurons, the NOS was strongly correlated with the head movement amplitude, but burst temporal parameters were most strongly correlated with eye movement temporal metrics (head-eye-related burst neurons, HEBNs). These results suggest that FEF units do not encode a command for the unified gaze shift only; instead, different units may carry signals related to the overall gaze shift or its eye and/or head components. Moreover, the HEBNs exhibit bursts whose magnitude and timing may encode a head displacement signal and a signal that influences the timing of the eye saccade, thereby serving as a mechanism for coordinating the eye and head movements of a gaze shift. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Non-Instrumental Movement Inhibition (NIMI) Differentially Suppresses Head and Thigh Movements during Screenic Engagement: Dependence on Interaction

    PubMed Central

    Witchel, Harry J.; Santos, Carlos P.; Ackah, James K.; Westling, Carina E. I.; Chockalingam, Nachiappan

    2016-01-01

    Background: Estimating engagement levels from postural micromovements has been summarized by some researchers as: increased proximity to the screen is a marker for engagement, while increased postural movement is a signal for disengagement or negative affect. However, these findings are inconclusive: the movement hypothesis challenges other findings of dyadic interaction in humans, and experiments on the positional hypothesis diverge from it. Hypotheses: (1) Under controlled conditions, adding a relevant visual stimulus to an auditory stimulus will preferentially result in Non-Instrumental Movement Inhibition (NIMI) of the head. (2) When instrumental movements are eliminated and computer-interaction rate is held constant, for two identically-structured stimuli, cognitive engagement (i.e., interest) will result in measurable NIMI of the body generally. Methods: Twenty-seven healthy participants were seated in front of a computer monitor and speakers. Discrete 3-min stimuli were presented with interactions mediated via a handheld trackball without any keyboard, to minimize instrumental movements of the participant's body. Music videos and audio-only music were used to test hypothesis (1). Time-sensitive, highly interactive stimuli were used to test hypothesis (2). Subjective responses were assessed via visual analog scales. The computer users' movements were quantified using video motion tracking from the lateral aspect. Repeated measures ANOVAs with Tukey post hoc comparisons were performed. Results: For two equivalently-engaging music videos, eliminating the visual content elicited significantly increased non-instrumental movements of the head (while also decreasing subjective engagement); a highly engaging user-selected piece of favorite music led to further increased non-instrumental movement. For two comparable reading tasks, the more engaging reading significantly inhibited (42%) movement of the head and thigh; however, when a highly engaging video game was

  20. Non-Instrumental Movement Inhibition (NIMI) Differentially Suppresses Head and Thigh Movements during Screenic Engagement: Dependence on Interaction.

    PubMed

    Witchel, Harry J; Santos, Carlos P; Ackah, James K; Westling, Carina E I; Chockalingam, Nachiappan

    2016-01-01

    Estimating engagement levels from postural micromovements has been summarized by some researchers as: increased proximity to the screen is a marker for engagement, while increased postural movement is a signal for disengagement or negative affect. However, these findings are inconclusive: the movement hypothesis challenges other findings of dyadic interaction in humans, and experiments on the positional hypothesis diverge from it. (1) Under controlled conditions, adding a relevant visual stimulus to an auditory stimulus will preferentially result in Non-Instrumental Movement Inhibition (NIMI) of the head. (2) When instrumental movements are eliminated and computer-interaction rate is held constant, for two identically-structured stimuli, cognitive engagement (i.e., interest) will result in measurable NIMI of the body generally. Twenty-seven healthy participants were seated in front of a computer monitor and speakers. Discrete 3-min stimuli were presented with interactions mediated via a handheld trackball without any keyboard, to minimize instrumental movements of the participant's body. Music videos and audio-only music were used to test hypothesis (1). Time-sensitive, highly interactive stimuli were used to test hypothesis (2). Subjective responses were assessed via visual analog scales. The computer users' movements were quantified using video motion tracking from the lateral aspect. Repeated measures ANOVAs with Tukey post hoc comparisons were performed. For two equivalently-engaging music videos, eliminating the visual content elicited significantly increased non-instrumental movements of the head (while also decreasing subjective engagement); a highly engaging user-selected piece of favorite music led to further increased non-instrumental movement. For two comparable reading tasks, the more engaging reading significantly inhibited (42%) movement of the head and thigh; however, when a highly engaging video game was compared to the boring reading, even though

  1. On the barn owl's visual pre-attack behavior: I. Structure of head movements and motion patterns.

    PubMed

    Ohayon, Shay; van der Willigen, Robert F; Wagner, Hermann; Katsman, Igor; Rivlin, Ehud

    2006-09-01

    Barn owls exhibit a rich repertoire of head movements before taking off for prey capture. These movements occur mainly at light levels that allow for the visual detection of prey. To investigate these movements and their functional relevance, we filmed the pre-attack behavior of barn owls. Off-line image analysis enabled reconstruction of all six degrees of freedom of head movements. Three categories of head movements were observed: fixations, head translations and head rotations. The observed rotations contained a translational component. Head rotations did not follow Listing's law, but could be well described by a second-order surface, which indicated that they are in close agreement with Donder's law. Head translations did not contain any significant rotational components. Translations were further segmented into straight-line and curved paths. Translations along an axis perpendicular to the line of sight were similar to peering movements observed in other animals. We suggest that these basic motion elements (fixations, head rotations, translations along a straight line, and translation along a curved trajectory) may be combined to form longer and more complex behavior. We speculate that these head movements mainly underlie estimation of distance during prey capture.

  2. Online and offline tools for head movement compensation in MEG.

    PubMed

    Stolk, Arjen; Todorovic, Ana; Schoffelen, Jan-Mathijs; Oostenveld, Robert

    2013-03-01

    Magnetoencephalography (MEG) is measured above the head, which makes it sensitive to variations of the head position with respect to the sensors. Head movements blur the topography of the neuronal sources of the MEG signal, increase localization errors, and reduce statistical sensitivity. Here we describe two novel and readily applicable methods that compensate for the detrimental effects of head motion on the statistical sensitivity of MEG experiments. First, we introduce an online procedure that continuously monitors head position. Second, we describe an offline analysis method that takes into account the head position time-series. We quantify the performance of these methods in the context of three different experimental settings, involving somatosensory, visual and auditory stimuli, assessing both individual and group-level statistics. The online head localization procedure allowed for optimal repositioning of the subjects over multiple sessions, resulting in a 28% reduction of the variance in dipole position and an improvement of up to 15% in statistical sensitivity. Offline incorporation of the head position time-series into the general linear model resulted in improvements of group-level statistical sensitivity between 15% and 29%. These tools can substantially reduce the influence of head movement within and between sessions, increasing the sensitivity of many cognitive neuroscience experiments. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Rhythmic movement disorder (head banging) in an adult during rapid eye movement sleep.

    PubMed

    Anderson, Kirstie N; Smith, Ian E; Shneerson, John M

    2006-06-01

    Sleep-related rhythmic movements (head banging or body rocking) are extremely common in normal infants and young children, but less than 5% of children over the age of 5 years old exhibit these stereotyped motor behaviors. They characteristically occur during drowsiness or sleep onset rather than in deep sleep or rapid eye movement (REM) sleep. We present a 27-year-old man with typical rhythmic movement disorder that had persisted into adult life and was restricted to REM sleep. This man is the oldest subject with this presentation reported to date and highlights the importance of recognizing this nocturnal movement disorder when it does occur in adults.

  4. Head bobbing and the body movement of little egrets ( Egretta garzetta) during walking.

    PubMed

    Fujita, Masaki

    2003-01-01

    Although previous studies have indicated that head bobbing of birds is an optokinetic movement, head bobbing can also be controlled by some biomechanical constraints when it occurs during walking. In the present study, the head bobbing, center of gravity, and body movements of little egrets (Egretta garzetta) during walking were examined by determination of the position of the center of gravity using carcasses and by motion analysis of video films of wild egrets during walking. The results showed that the hold phase occurs while the center of gravity is over the supporting foot during the single support phase. In addition, the peak speed of neck extension was coincident with the peak speed of the center of gravity. These movements are similar to those of pigeons, and suggest the presence of biomechanical constraints on the pattern of head bobbing and body movements during walking.

  5. Hemianopic and Quadrantanopic Field Loss, Eye and Head Movements, and Driving

    PubMed Central

    McGwin, Gerald; Elgin, Jennifer; Vaphiades, Michael S.; Braswell, Ronald A.; DeCarlo, Dawn K.; Kline, Lanning B.; Owsley, Cynthia

    2011-01-01

    Purpose. To compare eye and head movements, lane keeping, and vehicle control of drivers with hemianopic and quadrantanopic field defects with controls, and to identify differences in these parameters between hemianopic and quadrantanopic drivers rated safe to drive by a clinical driving rehabilitation specialist compared with those rated as unsafe. Methods. Eye and head movements and lane keeping were rated in 22 persons with homonymous hemianopic defects and 8 with quadrantanopic defects (mean age, 53 years) who were ≥6 months post-injury and 30 persons with normal fields (mean age, 53 years). All were licensed to drive and were current drivers or aimed to resume driving. Participants drove a 6.3-mile route along non-interstate city roads under in-traffic conditions. Vehicle control was assessed objectively by vehicle instrumentation for speed, braking, acceleration, and cornering. Results. As a group, drivers with hemianopic or quadrantanopic defects drove slower, exhibited less excessive cornering or acceleration, and executed more shoulder movements than the controls. Those drivers with hemianopic or quadrantanopic defects rated as safe also made more head movements into their blind field, received superior ratings regarding eye movement extent and lane position stability, and exhibited less sudden braking and drove faster than those rated unsafe. Conclusions. Persons with hemianopic and quadrantanopic defects rated as safe to drive compensated by making more head movements into their blind field, combined with more stable lane keeping and less sudden braking. Future research should evaluate whether these characteristics could be trained in rehabilitation programs aimed at improving driving safety in this population. PMID:21367969

  6. A head movement image (HMI)-controlled computer mouse for people with disabilities.

    PubMed

    Chen, Yu-Luen; Chen, Weoi-Luen; Kuo, Te-Son; Lai, Jin-Shin

    2003-02-04

    This study proposes image processing and microprocessor technology for use in developing a head movement image (HMI)-controlled computer mouse system for the spinal cord injured (SCI). The system controls the movement and direction of the mouse cursor by capturing head movement images using a marker installed on the user's headset. In the clinical trial, this new mouse system was compared with an infrared-controlled mouse system on various tasks with nine subjects with SCI. The results were favourable to the new mouse system. The differences between the new mouse system and the infrared-controlled mouse were reaching statistical significance in each of the test situations (p<0.05). The HMI-controlled computer mouse improves the input speed. People with disabilities need only wear the headset and move their heads to freely control the movement of the mouse cursor.

  7. A new head holder for reducing axial movement and repositioning errors during physiological CT imaging.

    PubMed

    Shrawder, S; Lapin, G D; Allen, C V; Vick, N A; Groothuis, D R

    1994-01-01

    We designed a new head holder for immobilization and repositioning in dynamic CT studies of the brain. A customized thermoplastic face mask and foam head rest were made to restrict movement of the head in all directions, but particularly out of the axial plane (z-movement). This design provided a rigid, detailed mold of the face and back of the head that minimized motion during lengthy CT studies and enabled accurate repositioning of the head for follow-up studies. Markers applied directly to the skin were used to quantify z-movement. When tested on 12 subjects, immobilization was limited to < 2.0 mm under worst-case conditions when the subject was asked to attempt forced movements. Repositioning was accurate to < 1.5 mm when the subject was removed from the head holder and then placed back into it.

  8. Head and pelvic movements during a dynamic reaching task in sitting: implications for physical therapists.

    PubMed

    Campbell, F M; Ashburn, A M; Pickering, R M; Burnett, M

    2001-12-01

    To describe the distance reached, speed, and movement of the head and pelvis of healthy volunteers; to describe any influence of age on these variables; and to compare healthy volunteers and subjects with hemiplegia while performing a seated reaching task. Age-matched, case-control study. Gait laboratory in a general hospital. A convenience sample of 53 healthy volunteers (30 women; 23 men; mean age, 57yr; range, 30-79yr) and 5 subjects with hemiplegia (2 women, 3 men; mean age, 65yr; range, 60-78yr) were recruited within 6 weeks poststroke. Participants sat on a bench with feet supported and reached laterally as far as they could without falling. The speed, distance reached, and angular movements of the head and pelvis were recorded by using the 3-dimensional movement analysis system. A significant age-related reduction in the distance reached (p < .001), velocity of the movement (p =.000), and pelvic tilt used (p < .01) was found among healthy volunteers. Comparison of data from healthy volunteers and subjects with hemiplegia showed a significant reduction in the angular movements of the heads of subjects with hemiplegia. The findings suggest conservation of movement with increasing age and stroke. This movement reduction could have negative effects on a subject's ability to make postural changes in response to disturbance and activity. Such information may assist therapists to gain insight into the nature of balance deficits and the adaptive behavior that could result. Copyright 2001 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  9. Variability in the control of head movements in seated humans: a link with whiplash injuries?

    PubMed Central

    Vibert, N; MacDougall, H G; de Waele, C; Gilchrist, D P D; Burgess, A M; Sidis, A; Migliaccio, A; Curthoys, I S; Vidal, P P

    2001-01-01

    The aim of this study was to determine how context and on-line sensory information are combined to control posture in seated subjects submitted to high-jerk, passive linear accelerations. Subjects were seated with eyes closed on a servo-controlled linear sled. They were asked to relax and received brief accelerations either sideways or in the fore-aft direction. The stimuli had an abrupt onset, comparable to the jerk experienced during a minor car collision. Rotation and translation of the head and body were measured using an Optotrak system. In some of the subjects, surface electromyographic (EMG) responses of selected neck and/or back muscles were recorded simultaneously. For each subject, responses were highly stereotyped from the first trial, and showed little sign of habituation or sensitisation. Comparable results were obtained with sideways and fore-aft accelerations. During each impulse, the head lagged behind the trunk for several tens of milliseconds. The subjects' head movement responses were distributed as a continuum in between two extreme categories. The ‘stiff’ subjects showed little rotation or translation of the head relative to the trunk for the whole duration of the impulse. In contrast, the ‘floppy’ subjects showed a large roll or pitch of the head relative to the trunk in the direction opposite to the sled movement. This response appeared as an exaggerated ‘inertial’ response to the impulse. Surface EMG recordings showed that most of the stiff subjects were not contracting their superficial neck or back muscles. We think they relied on bilateral contractions of their deep, axial musculature to keep the head-neck ensemble in line with the trunk during the movement. About half of the floppy subjects displayed reflex activation of the neck muscles on the side opposite to the direction of acceleration, which occurred before or during the head movement and tended to exaggerate it. The other floppy subjects seemed to rely on only the

  10. Peripheral optogenetic stimulation induces whisker movement and sensory perception in head-fixed mice.

    PubMed

    Park, Sunmee; Bandi, Akhil; Lee, Christian R; Margolis, David J

    2016-06-08

    We discovered that optical stimulation of the mystacial pad in Emx1-Cre;Ai27D transgenic mice induces whisker movements due to activation of ChR2 expressed in muscles controlling retraction and protraction. Using high-speed videography in anesthetized mice, we characterize the amplitude of whisker protractions evoked by varying the intensity, duration, and frequency of optogenetic stimulation. Recordings from primary somatosensory cortex (S1) in anesthetized mice indicated that optogenetic whisker pad stimulation evokes robust yet longer latency responses than mechanical whisker stimulation. In head-fixed mice trained to report optogenetic whisker pad stimulation, psychometric curves showed similar dependence on stimulus duration as evoked whisker movements and S1 activity. Furthermore, optogenetic stimulation of S1 in expert mice was sufficient to substitute for peripheral stimulation. We conclude that whisker protractions evoked by optogenetic activation of whisker pad muscles results in cortical activity and sensory perception, consistent with the coding of evoked whisker movements by reafferent sensory input.

  11. Adult head-banging and stereotypic movement disorders.

    PubMed

    Mendez, M F; Mirea, A

    1998-09-01

    Stereotypic movement disorders (SMD) such as head-banging, which are common among children with mental retardation or pervasive developmental disorders, may also occur in intellectually normal adults. We report a 27-year history of daily head-banging with self-injury in a 49-year-old man with normal cognition. The patient had no personal or family history of Tourette's syndrome, tic disorder, obsessive-compulsive disorder (OCD), or mental retardation. The frequency of his stereotypical head-banging increased with anxiety, loud noises with startle, and boredom. He reported a sense of pleasure from his head-banging, and the frequency of this behavior decreased when he was treated with the opioid antagonist naltrexone. Although not diagnostic, the self-stimulatory or pleasurable component of head-banging, body-rocking, thumb-sucking, and other SMD may help distinguish them from tics, Tourette's syndrome, OCD, and deliberate self-harming behavior. This report reviews the disorders associated with SMD and discusses the potential mechanisms for these behaviors. The treatment of SMD includes drugs that work through opioid, serotonergic, or dopaminergic systems.

  12. Vestibular-Somatosensory Convergence in Head Movement Control During Locomotion after Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob

    2010-01-01

    Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.

  13. Irregular head movement patterns in whiplash patients during a trajectory task.

    PubMed

    Woodhouse, Astrid; Stavdahl, Øyvind; Vasseljen, Ottar

    2010-03-01

    Patients with whiplash associated disorders (WAD) have shown less accuracy in trajectory head motion compared to asymptomatic controls, which comply with clinical observations. The aim of this study was to investigate whether a trajectory head movement task can differ between WAD patients, chronic non-traumatic neck pain (CNP) patients and asymptomatic controls. Study groups included subjects with WAD (n = 35) with persistent neck pain after a car accident, CNP (n = 45), and asymptomatic controls (n = 48). Head motion was recorded from an unsupported standing position using a 3D Fastrak device. A laser pointer was attached to the head and by moving the head the subjects were asked to trace a figure of eight displayed on the wall at three different paces (slow, moderate and fast). The motion signal was decomposed into 1 Hz frequency bands and angular velocity (deg/s) within each frequency band was calculated. Significantly higher angular RMS velocity was found in the WAD group compared to the two other groups for the slow paced test (3-4 and 4-5 Hz frequency bands) and the moderate paced test (3-4 Hz frequency band) indicating irregular and uncoordinated movements. Angular RMS velocity was associated with pain and dizziness, but only with severe symptom levels. In conclusion, irregular head movements during a complex task were found in the WAD group, indicating altered central sensorimotor processing. The irregularities were found within frequency levels observable to clinicians.

  14. Effects of damping head movement and facial expression in dyadic conversation using real–time facial expression tracking and synthesized avatars

    PubMed Central

    Boker, Steven M.; Cohn, Jeffrey F.; Theobald, Barry-John; Matthews, Iain; Brick, Timothy R.; Spies, Jeffrey R.

    2009-01-01

    When people speak with one another, they tend to adapt their head movements and facial expressions in response to each others' head movements and facial expressions. We present an experiment in which confederates' head movements and facial expressions were motion tracked during videoconference conversations, an avatar face was reconstructed in real time, and naive participants spoke with the avatar face. No naive participant guessed that the computer generated face was not video. Confederates' facial expressions, vocal inflections and head movements were attenuated at 1 min intervals in a fully crossed experimental design. Attenuated head movements led to increased head nods and lateral head turns, and attenuated facial expressions led to increased head nodding in both naive participants and confederates. Together, these results are consistent with a hypothesis that the dynamics of head movements in dyadicconversation include a shared equilibrium. Although both conversational partners were blind to the manipulation, when apparent head movement of one conversant was attenuated, both partners responded by increasing the velocity of their head movements. PMID:19884143

  15. Increased Brain Activation for Foot Movement During 70-Day 6 Deg Head-Down Bed Rest (HDBR): Evidence from Functional Magnetic Resonance Imaging (fMRI)

    NASA Technical Reports Server (NTRS)

    Yuan, P.; Koppelmans, V.; Cassady, K.; Cooke, K.; De Dios, Y. E.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, P. A.; hide

    2015-01-01

    Bed rest has been widely used as a simulation of weightlessness in studying the effects of microgravity exposure on human physiology and cognition. Changes in muscle function and functional mobility have been reported to be associated with bed rest. Understanding the effect of bed rest on neural control of movement would provide helpful information for spaceflight. In the current study, we evaluated how the brain activation for foot movement changed as a function of bed rest. Eighteen healthy men (aged 25 to 39 years) participated in this HDBR study. They remained continuously in the 6deg head-down tilt position for 70 days. Functional MRI was acquired during 1-Hz right foot tapping, and repeated at 7 time points: 12 days pre-, 8 days pre-, 7 days in-, 50 days in-, 70 days in-, 8 days post-, and 12 days post- HDBR. In all 7 sessions, we observed increased activation in the left motor cortex, right cerebellum and right occipital cortex during foot movement blocks compared to rest. Compared to the pre-HDBR baseline (1st and 2nd sessions), foot movement-induced activation in the left hippocampus increased during HDBR. This increase emerged in the 4th session, enlarged in the 5th session, and remained significant in the 6th and 7th sessions. Furthermore, increased activation relative to the baseline in left precuneus was observed in the 5th, 6th and 7th sessions. In addition, in comparison with baseline, increased activation in the left cerebellum was found in the 4th and 5th sessions, whereas increased activation in the right cerebellum was observed in the 4th, 6th and 7th sessions. No brain region exhibited decreased activation during bed rest compared to baseline. The increase of foot movement related brain activation during HDBR suggests that in a long-term head-down position, more neural control is needed to accomplish foot movements. This change required a couple of weeks to develop in HDBR (between 3rd and 4th sessions), and did not return to baseline even 12

  16. Comparison of bilateral whisker movement in freely exploring and head-fixed adult rats.

    PubMed

    Sellien, Heike; Eshenroder, Donna S; Ebner, Ford F

    2005-09-01

    Rats move their whiskers actively during tactile exploration of their environment. The whiskers emanate from densely innervated whisker follicles that are moved individually by intrinsic facial muscles and as a group by extrinsic muscles. Several descriptions of whisker movements in normal adult rats during unrestrained exploration indicate that rats move their whiskers in the 6-9 Hz range when exploring a new environment. The rate can be elevated to nearly 20 Hz for brief episodes just prior to making a behavioural decision. The present studies were undertaken to compare whisker dynamics in head-restrained and freely moving rats with symmetrical or asymmetrical numbers of whiskers on the two sides of their face and to provide a description of differences in whisker use in exploring rats after trimming all but two whiskers on one side of the face, a condition that has been shown to induce robust cortical plasticity. Head-fixed rats were trained to protract their whiskers against a contact detector with sufficient force to trigger a chocolate milk reward. Whisker movements were analyzed, and the results from head-fixed animals were compared with free-running animals using trials taken during their initial exploration of novel objects that blocked the rat's progress down an elevated runway. The results show that symmetrical whisker movements are modulated both by the nature of the task and the number of whiskers available for exploration. Rats can change their whisker movements when the sensitivity (threshold) of a contact detector is raised or lowered, or when the nature of the task requires bilateral input from the whiskers. We show that trimming some, but not all whiskers on one side of the face modifies the synchrony of whisker movement compared to untrimmed or symmetrically trimmed whiskers.

  17. Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Single-unit recordings were obtained from 107 horizontal semicircular canal-related central vestibular neurons in three alert squirrel monkeys during passive sinusoidal whole-body rotation (WBR) while the head was free to move in the yaw plane (2.3 Hz, 20 degrees /s). Most of the units were identified as secondary vestibular neurons by electrical stimulation of the ipsilateral vestibular nerve (61/80 tested). Both non-eye-movement (n = 52) and eye-movement-related (n = 55) units were studied. Unit responses recorded when the head was free to move were compared with responses recorded when the head was restrained from moving. WBR in the absence of a visual target evoked a compensatory vestibulocollic reflex (VCR) that effectively reduced the head velocity in space by an average of 33 +/- 14%. In 73 units, the compensatory head movements were sufficiently large to permit the effect of the VCR on vestibular signal processing to be assessed quantitatively. The VCR affected the rotational responses of different vestibular neurons in different ways. Approximately one-half of the units (34/73, 47%) had responses that decreased as head velocity decreased. However, the responses of many other units (24/73) showed little change. These cells had signals that were better correlated with trunk velocity than with head velocity. The remaining units had responses that were significantly larger (15/73, 21%) when the VCR produced a decrease in head velocity. Eye-movement-related units tended to have rotational responses that were correlated with head velocity. On the other hand, non-eye-movement units tended to have rotational responses that were better correlated with trunk velocity. We conclude that sensory vestibular signals are transformed from head-in-space coordinates to trunk-in-space coordinates on many secondary vestibular neurons in the vestibular nuclei by the addition of inputs related to head rotation on the trunk. This coordinate transformation is presumably important

  18. Experimental support that ocular tremor in Parkinson's disease does not originate from head movement.

    PubMed

    Gitchel, George T; Wetzel, Paul A; Qutubuddin, Abu; Baron, Mark S

    2014-07-01

    Our recent report of ocular tremor in Parkinson's disease (PD) has raised considerable controversy as to the origin of the tremor. Using an infrared based eye tracker and a magnetic head tracker, we reported that ocular tremor was recordable in PD subjects with no apparent head tremor. However, other investigators suggest that the ocular tremor may represent either transmitted appendicular tremor or subclinical head tremor inducing the vestibulo-ocular reflex (VOR). The present study aimed to further investigate the origin of ocular tremor in PD. Eye movements were recorded in 8 PD subjects both head free, and with full head restraint by means of a head holding device and a dental impression bite plate. Head movements were recorded independently using both a high sensitivity tri-axial accelerometer and a magnetic tracking system, each synchronized to the eye tracker. Ocular tremor was observed in all 8 PD subjects and was not influenced by head free and head fixed conditions. Both magnetic tracking and accelerometer recordings supported that the ocular tremor was fully independent of head position. The present study findings support our initial findings that ocular tremor is a fundamental feature of PD unrelated to head movements. Although the utility of ocular tremor for diagnostic purposes requires validation, current findings in large cohorts of PD subjects suggest its potential as a reliable clinical biomarker. Published by Elsevier Ltd.

  19. Head movements in low and high gravitoinertial force environments elicit motion sickness - Implications for space motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, James R.; Graybiel, Ashton

    1987-01-01

    Astronauts report that head movements in flight tend to bring on symptoms of space motion sickness (SMS). The effects of head movements in pitch, yaw, and roll (made both with normal vision and with eyes occluded) on susceptibility to motion sickness in the zero G phase of parabolic flight maneuvers were evaluated. The findings are clear-cut: pitch head movements are most provocative, yaw least provocative, and roll intermediate. These experiments suggest that SMS is not a unique nosological entity, but is the consequence of exposure to nonterrestrial force levels. Head movements during departures in either direction from 1 G elicit symptoms.

  20. Detection of Sound Image Movement During Horizontal Head Rotation

    PubMed Central

    Ohba, Kagesho; Iwaya, Yukio; Suzuki, Yôiti

    2016-01-01

    Movement detection for a virtual sound source was measured during the listener’s horizontal head rotation. Listeners were instructed to do head rotation at a given speed. A trial consisted of two intervals. During an interval, a virtual sound source was presented 60° to the right or left of the listener, who was instructed to rotate the head to face the sound image position. Then in one of a pair of intervals, the sound position was moved slightly in the middle of the rotation. Listeners were asked to judge the interval in a trial during which the sound stimuli moved. Results suggest that detection thresholds are higher when listeners do head rotation. Moreover, this effect was found to be independent of the rotation velocity. PMID:27698993

  1. Effect of direction of head movement on motion sickness caused by Coriolis stimulation.

    PubMed

    Woodman, P D; Griffin, M J

    1997-02-01

    During constant speed rotation of the body, head rotation about an axis other than the axis of rotation of the body (i.e., Coriolis is stimulation) induces motion sickness. The position of the body relative to the center of rotation will influence the sickness caused by Coriolis stimulation; the direction of head movement will not affect the sickness caused by Coriolis stimulation. There were 24 seated subjects (12 male, 12 female) who made 30 degrees pitch motions of the head every 30 s while rotating about a vertical axis at 10 r.p.m. on a turntable at two separate locations: a) at the center of rotation; and b) 0.75 m from the center of rotation. After each head movement the subjects gave ratings of motion illness. There was no significant difference between illness 0.75 m from the center of rotation and illness at the center of rotation, or between the illness ratings from male and female subjects. Moving the head up from the horizontal caused significantly fewer increases in ratings of motion illness than moving the head back down to the horizontal. Precise location of the body at the center of rotation is not critical during Coriolis stimulation, but the direction of head movement has a large effect on nausea. An influence of somatosensory information on sickness caused by Coriolis stimulation is suggested.

  2. Head and pelvic movement symmetry in horses during circular motion and in rising trot.

    PubMed

    Robartes, Helen; Fairhurst, Harriet; Pfau, Thilo

    2013-12-01

    Lameness examinations in horses often include lungeing and ridden exercise. To incorporate these exercises into the evidence-based decision making process aided by quantitative sensor based gait analysis, guideline values for movement asymmetry are needed. In this study, movement symmetry (MS) was quantified in horses during unridden and ridden trot on the straight and on the circle. Systematic changes in MS were expected as a result of the 'asymmetrical loading' caused by circular movement, the rising trot and the combination of the two. Out of 23 horses (age 4-20 years, height 13.3-17.2 hands), 13 presented within normal limits for head movement and 22 for pelvic movement. Inertial measurement units assessed MS of vertical head and sacral movement during trot in-hand, on the lunge and in rising trot (straight, left/right circle). Changes in MS between straight line trot and ridden exercise on the circle were more pronounced for the head than for the sacrum. The highest amount of asymmetry was observed during rising trot on the circle (symmetry index of the head: 1.23 for the left rein, 0.83 for the right rein; symmetry index of the sacrum 0.84 for the left rein, 1.15 for the right rein). Change in MS was significant between exercise conditions except for the difference between head displacement maxima. Horses had greatest asymmetry during rising trot on the circle, with MS values of comparable magnitude to mild lameness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Activity of long-lead burst neurons in pontine reticular formation during head-unrestrained gaze shifts.

    PubMed

    Walton, Mark M G; Freedman, Edward G

    2014-01-01

    Primates explore a visual scene through a succession of saccades. Much of what is known about the neural circuitry that generates these movements has come from neurophysiological studies using subjects with their heads restrained. Horizontal saccades and the horizontal components of oblique saccades are associated with high-frequency bursts of spikes in medium-lead burst neurons (MLBs) and long-lead burst neurons (LLBNs) in the paramedian pontine reticular formation. For LLBNs, the high-frequency burst is preceded by a low-frequency prelude that begins 12-150 ms before saccade onset. In terms of the lead time between the onset of prelude activity and saccade onset, the anatomical projections, and the movement field characteristics, LLBNs are a heterogeneous group of neurons. Whether this heterogeneity is endemic of multiple functional subclasses is an open question. One possibility is that some may carry signals related to head movement. We recorded from LLBNs while monkeys performed head-unrestrained gaze shifts, during which the kinematics of the eye and head components were dissociable. Many cells had peak firing rates that never exceeded 200 spikes/s for gaze shifts of any vector. The activity of these low-frequency cells often persisted beyond the end of the gaze shift and was usually related to head-movement kinematics. A subset was tested during head-unrestrained pursuit and showed clear modulation in the absence of saccades. These "low-frequency" cells were intermingled with MLBs and traditional LLBNs and may represent a separate functional class carrying signals related to head movement.

  4. The Struggle Begins Early: Head Start and the Mississippi Freedom Movement

    ERIC Educational Resources Information Center

    Hale, Jon N.

    2012-01-01

    This article examines the history of Head Start, a federally funded program, whose conceptualization emerged in earlier phases of the Civil Rights Movement in order to provide education, nourishing meals, medical services, and a positive social environment for children about to enter the first grade. While Head Start was implemented in states…

  5. Inverse Modelling to Obtain Head Movement Controller Signal

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Lee, S. H.; Hannaford, B.; Stark, L.

    1984-01-01

    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements.

  6. Countermanding eye-head gaze shifts in humans: marching orders are delivered to the head first.

    PubMed

    Corneil, Brian D; Elsley, James K

    2005-07-01

    The countermanding task requires subjects to cancel a planned movement on appearance of a stop signal, providing insights into response generation and suppression. Here, we studied human eye-head gaze shifts in a countermanding task with targets located beyond the horizontal oculomotor range. Consistent with head-restrained saccadic countermanding studies, the proportion of gaze shifts on stop trials increased the longer the stop signal was delayed after target presentation, and gaze shift stop-signal reaction times (SSRTs: a derived statistic measuring how long it takes to cancel a movement) averaged approximately 120 ms across seven subjects. We also observed a marked proportion of trials (13% of all stop trials) during which gaze remained stable but the head moved toward the target. Such head movements were more common at intermediate stop signal delays. We never observed the converse sequence wherein gaze moved while the head remained stable. SSRTs for head movements averaged approximately 190 ms or approximately 70-75 ms longer than gaze SSRTs. Although our findings are inconsistent with a single race to threshold as proposed for controlling saccadic eye movements, movement parameters on stop trials attested to interactions consistent with a race model architecture. To explain our data, we tested two extensions to the saccadic race model. The first assumed that gaze shifts and head movements are controlled by parallel but independent races. The second model assumed that gaze shifts and head movements are controlled by a single race, preceded by terminal ballistic intervals not under inhibitory control, and that the head-movement branch is activated at a lower threshold. Although simulations of both models produced acceptable fits to the empirical data, we favor the second alternative as it is more parsimonious with recent findings in the oculomotor system. Using the second model, estimates for gaze and head ballistic intervals were approximately 25 and 90 ms

  7. Effect of lungeing on head and pelvic movement asymmetry in horses with induced lameness.

    PubMed

    Rhodin, M; Pfau, T; Roepstorff, L; Egenvall, A

    2013-12-01

    Lungeing is an important part of lameness examinations, since the circular path enforced during lungeing is thought to accentuate low grade lameness. However, during lungeing the movement of sound horses becomes naturally asymmetric, which may mimic lameness. Also, compensatory movements in the opposite half of the body may mimic lameness. The aim of this study was to objectively study the presence of circle-dependent and compensatory movement asymmetries in horses with induced lameness. Ten horses were trotted in a straight line and lunged in both directions on a hard surface. Lameness was induced (reversible hoof pressure) in each limb, one at a time, in random order. Vertical head and pelvic movements were measured with body-mounted, uni-axial accelerometers. Differences between maximum and minimum height observed during/after left and right stance phases for the head (HDmax, HDmin) and pelvis (PDmax, PDmin) were measured. Mixed models were constructed to study the effect of lungeing direction and induction, and to quantify secondary compensatory asymmetry mechanisms in the forelimbs and hind limbs. Head and pelvic movement symmetries were affected by lungeing. Minimum pelvic height difference (PDmin) changed markedly, increasing significantly during lungeing, giving the impression of inner hind limb lameness. Primary hind limb lameness induced compensatory head movement, which mimicked an ipsilateral forelimb lameness of almost equal magnitude to the primary hind limb lameness. This could contribute to difficulty in correctly detecting hind limb lameness. Induced forelimb lameness caused both a compensatory contralateral (change in PDmax) and an ipsilateral (change in PDmin) hind limb asymmetry, potentially mimicking hind limb lameness, but of smaller magnitude. Both circle-dependent and compensatory movement mechanisms must be taken into account when evaluating lameness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Eye, head, and body coordination during large gaze shifts in rhesus monkeys: movement kinematics and the influence of posture.

    PubMed

    McCluskey, Meaghan K; Cullen, Kathleen E

    2007-04-01

    Coordinated movements of the eye, head, and body are used to redirect the axis of gaze between objects of interest. However, previous studies of eye-head gaze shifts in head-unrestrained primates generally assumed the contribution of body movement to be negligible. Here we characterized eye-head-body coordination during horizontal gaze shifts made by trained rhesus monkeys to visual targets while they sat upright in a standard primate chair and assumed a more natural sitting posture in a custom-designed chair. In both postures, gaze shifts were characterized by the sequential onset of eye, head, and body movements, which could be described by predictable relationships. Body motion made a small but significant contribution to gaze shifts that were > or =40 degrees in amplitude. Furthermore, as gaze shift amplitude increased (40-120 degrees ), body contribution and velocity increased systematically. In contrast, peak eye and head velocities plateaued at velocities of approximately 250-300 degrees /s, and the rotation of the eye-in-orbit and head-on-body remained well within the physical limits of ocular and neck motility during large gaze shifts, saturating at approximately 35 and 60 degrees , respectively. Gaze shifts initiated with the eye more contralateral in the orbit were accompanied by smaller body as well as head movement amplitudes and velocities were greater when monkeys were seated in the more natural body posture. Taken together, our findings show that body movement makes a predictable contribution to gaze shifts that is systematically influenced by factors such as orbital position and posture. We conclude that body movements are part of a coordinated series of motor events that are used to voluntarily reorient gaze and that these movements can be significant even in a typical laboratory setting. Our results emphasize the need for caution in the interpretation of data from neurophysiological studies of the control of saccadic eye movements and/or eye-head

  9. Adaptive Changes in the Perception of Fast and Slow Movement at Different Head Positions.

    PubMed

    Panichi, Roberto; Occhigrossi, Chiara; Ferraresi, Aldo; Faralli, Mario; Lucertini, Marco; Pettorossi, Vito E

    2017-05-01

    This paper examines the subjective sense of orientation during asymmetric body rotations in normal subjects. Self-motion perception was investigated in 10 healthy individuals during asymmetric whole-body rotation with different head orientations. Both on-vertical axis and off-vertical axis rotations were employed. Subjects tracked a remembered earth-fixed visual target while rotating in the dark for four cycles of asymmetric rotation (two half-sinusoidal cycles of the same amplitude, but of different duration). The rotations induced a bias in the perception of velocity (more pronounced with fast than with slow motion). At the end of rotation, a marked target position error (TPE) was present. For the on-vertical axis rotations, the TPE was no different if the rotations were performed with a 30° nose-down, a 60° nose-up, or a 90° side-down head tilt. With off-vertical axis rotations, the simultaneous activation of the semicircular canals and otolithic receptors produced a significant increase of TPE for all head positions. This difference between on-vertical and off-vertical axis rotation was probably partly due to the vestibular transfer function and partly due to different adaptation to the speed of rotation. Such a phenomenon might be generated in different components of the vestibular system. The adaptive process enhancing the perception of dynamic movement around the vertical axis is not related to the specific semicircular canals that are activated; the addition of an otolithic component results in a significant increase of the TPE.Panichi R, Occhigrossi C, Ferraresi A, Faralli M, Lucertini M, Pettorossi VE. Adaptive changes in the perception of fast and slow movement at different head positions. Aerosp Med Hum Perform. 2017; 88(5):463-468.

  10. Optokinetic motion sickness - Attenuation of visually-induced apparent self-rotation by passive head movements

    NASA Technical Reports Server (NTRS)

    Teixeira, R. A.; Lackner, J. R.

    1979-01-01

    An experimental study was conducted on seven normal subjects to evaluate the effectiveness of passive head movements in suppressing the optokinetically-induced illusory self-rotation. Visual simulation was provided by a servo-controlled optokinetic drum. Each subject participated in two experimental sessions. In one condition, the subject's head remained stationary while he gazed passively at a moving stripe pattern. In the other, he gazed passively and relaxed his neck muscles while his head was rotated from side to side. It appears that suppression of optokinetically-induced illusory self-rotation with passive head movements results from the operation of a spatial constancy mechanism interrelating visual, vestibular, and kinesthetic information on ongoing body orientation. The results support the view that optokinetic 'motion sickness' is related, at least in part, to an oculomotor disturbance rather than a visually triggered disturbance of specifically vestibular etiology.

  11. Spatial coding of eye movements relative to perceived earth and head orientations during static roll tilt

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Paloski, W. H.; Reschke, M. F.

    1998-01-01

    This purpose of this study was to examine the spatial coding of eye movements during static roll tilt (up to +/-45 degrees) relative to perceived earth and head orientations. Binocular videographic recordings obtained in darkness from eight subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the true earth and head orientations. We found that both variability and curvature of gaze trajectories increased with roll tilt. The trajectories of eye movements made along the perceived earth-horizontal (PEH) were more accurate than movements along the perceived head-horizontal (PHH). The trajectories of both PEH and PHH saccades tended to deviate in the same direction as the head tilt. The deviations in gaze trajectories along the perceived earth-vertical (PEV) and perceived head-vertical (PHV) were both similar to the PHH orientation, except that saccades along the PEV deviated in the opposite direction relative to the head tilt. The magnitude of deviations along the PEV, PHH, and PHV corresponded to perceptual overestimations of roll tilt obtained from verbal reports. Both PEV gaze trajectories and perceptual estimates of tilt orientation were different following clockwise rather than counterclockwise tilt rotation; however, the PEH gaze trajectories were less affected by the direction of tilt rotation. Our results suggest that errors in gaze trajectories along PEV and perceived head orientations increase during roll tilt in a similar way to perceptual errors of tilt orientation. Although PEH and PEV gaze trajectories became nonorthogonal during roll tilt, we conclude that the spatial coding of eye movements during roll tilt is overall more accurate for the perceived earth reference frame than for the perceived head reference frame.

  12. Cervical helical axis characteristics and its center of rotation during active head and upper arm movements-comparisons of whiplash-associated disorders, non-specific neck pain and asymptomatic individuals.

    PubMed

    Grip, Helena; Sundelin, Gunnevi; Gerdle, Björn; Stefan Karlsson, J

    2008-09-18

    The helical axis model can be used to describe translation and rotation of spine segments. The aim of this study was to investigate the cervical helical axis and its center of rotation during fast head movements (side rotation and flexion/extension) and ball catching in patients with non-specific neck pain or pain due to whiplash injury as compared with matched controls. The aim was also to investigate correlations with neck pain intensity. A finite helical axis model with a time-varying window was used. The intersection point of the axis during different movement conditions was calculated. A repeated-measures ANOVA model was used to investigate the cervical helical axis and its rotation center for consecutive levels of 15 degrees during head movement. Irregularities in axis movement were derived using a zero-crossing approach. In addition, head, arm and upper body range of motion and velocity were observed. A general increase of axis irregularity that correlated to pain intensity was observed in the whiplash group. The rotation center was superiorly displaced in the non-specific neck pain group during side rotation, with the same tendency for the whiplash group. During ball catching, an anterior displacement (and a tendency to an inferior displacement) of the center of rotation and slower and more restricted upper body movements implied a changed movement strategy in neck pain patients, possibly as an attempt to stabilize the cervical spine during head movement.

  13. Experimental procedure for measuring and comparing head-neck-trunk posture and movements caused by different progressive addition lens designs.

    PubMed

    Mateo, B; Porcar-Seder, R; Solaz, J S; Dürsteler, J C

    2010-07-01

    This study demonstrates that appropriate measurement procedures can detect differences in head movement in a near reading task when using three different progressive addition lenses (PALs). The movements were measured using an anatomical reference system with a biomechanical rationale. This reference system was capable of representing rotations for comparing head flexion relative to trunk, head flexion relative to neck, head rotation relative to trunk and trunk flexion. The subject sample comprised 31 volunteers and three PAL designs with different viewing zones were selected. Significant differences were found between the lenses for three of the seven movement parameters examined. The differences occurred for both vertical and horizontal head movements and could be attributed to aspects of the PAL design. The measurement of the complete kinematic trunk-neck-head chain improved the number of differences that were found over those in previous studies. STATEMENT OF RELEVANCE: The study proposes a methodology based on a biomechanical rationale able to differentiate head-neck-trunk posture and movements caused by different progressive addition lens designs with minimum invasiveness. This methodology could also be applied to analyse the ergonomics of other devices that restrict the user's field of view, such as helmets, personal protective equipment or helmet-mounted displays for pilots. This analysis will allow designers to optimise designs offering higher comfort and performance.

  14. Dynamic interactions of eye and head movements when reading with single-vision and progressive lenses in a simulated computer-based environment.

    PubMed

    Han, Ying; Ciuffreda, Kenneth J; Selenow, Arkady; Ali, Steven R

    2003-04-01

    To assess dynamic interactions of eye and head movements during return-sweep saccades (RSS) when reading with single-vision (SVL) versus progressive-addition (PAL) lenses in a simulated computer-based business environment. Horizontal eye and head movements were recorded objectively and simultaneously at a rate of 60 Hz during reading of single-page (SP; 14 degrees horizontal [H]) and double-page (DP; 37 degrees H) formats at 60 cm with binocular viewing. Subjects included 11 individuals with normal presbyopic vision aged 45 to 71 years selected by convenience sampling from a clinic population. Reading was performed with three types of spectacle lenses with a different clear near field of view (FOV): a SVL (60 degrees H clear FOV), a PAL-I with a relatively wide intermediate zone (7.85 mm; 18 degrees H clear FOV), and a PAL-II with a relatively narrow intermediate zone (5.60 mm; 13 degrees H clear FOV). Eye movements were initiated before head movements in the SP condition, and the reverse was found in the DP condition, with all three lens types. Duration of eye movements increased as the zone of clear vision decreased in the SP condition, and they were longer with the PALs than with the SVL in the DP condition. Gaze stabilization occurred later with the PALs than with the SVL in both the SP and DP conditions. The duration of head movements was longer with the PAL-II than with the SVL in both the SP and DP conditions. Eye movement peak velocity was greater with the SVL than the PALs in the DP condition. Eye movement and head movement strategies and timing were contingent on viewing conditions. The longer eye movement duration and gaze-stabilization times suggested that additional eye movements were needed to locate the clear-vision zone and commence reading after the RSS. Head movements with PALs for the SP condition were similarly optically induced. These eye movement and head movement results may contribute to the reduced reading rate and related symptoms reported

  15. Head-body righting reflex from the supine position and preparatory eye movements.

    PubMed

    Troiani, Diana; Ferraresi, Aldo; Manni, Ermanno

    2005-05-01

    Saccular and utricular maculae can provide information on the supine static position, considering that both have pronounced curved structures with hair cells having a variety of polarization vectors that enable them to sense an inverted position and thus direct the righting reflex. The vestibular system is essential for the structuring of motor behaviour, senses linear and angular acceleration and has a strong influence on posture and balance at rest, during locomotion and in head body righting reflexes. Using guinea pigs in the supine position with a symmetrical head and trunk position, the ocular position was analysed to ascertain whether any ocular movement that occurred would adopt a spatial deviation indicative of the subsequent head and body righting. The characteristics of the righting reflex (direction, latency, duration and velocity) were analysed in guinea pigs from position signals obtained from search coils implanted in the eye, head and pelvis. The animals were kept in a supine position for a few seconds or even minutes with the eyes in a stable primary position and the head and body symmetrical and immobile. The righting reflex took place either immediately or after a slow deviation of the eyes. In both cases the righting sequence (eyes, head, body) was stereotyped and consistent. The direction of head and body righting was along the longitudinal axis of the animal and was either clockwise or anticlockwise and the direction of righting was related to the direction of the eye deviation. The ocular deviation and the direction of deviation that initiated and determined the direction of the righting reflex could be explained by possible otolithic activation.

  16. SU-E-T-603: Analysis of Optical Tracked Head Inter-Fraction Movements Within Masks to Access Intracranial Immobilization Techniques in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsi, W; Zeidan, O

    2014-06-01

    Purpose: We present a quantitative methodology utilizing an optical tracking system for monitoring head inter-fraction movements within brain masks to assess the effectiveness of two intracranial immobilization techniques. Methods and Materials: A 3-point-tracking method was developed to measure the mask location for a treatment field at each fraction. Measured displacement of mask location to its location at first fraction is equivalent to the head movement within the mask. Head movements for each of treatment fields were measured over about 10 fractions at each patient for seven patients; five treated in supine and two treated in prone. The Q-fix Base-of-Skull headmore » frame was used in supine while the CIVCO uni-frame baseplate was used in prone. Displacements of recoded couch position of each field post imaging at each fraction were extracted for those seven patients. Standard deviation (S.D.) of head movements and couch displacements was scored for statistical analysis. Results: The accuracy of 3PtTrack method was within 1.0 mm by phantom measurements. Patterns of head movement and couch displacement were similar for patients treated in either supine or prone. In superior-inferior direction, mean value of scored standard deviations over seven patients were 1.6 mm and 3.4 mm for the head movement and the couch displacement, respectively. The result indicated that the head movement combined with a loose fixation between the mask-to-head frame results large couch displacements for each patient, and also large variation between patients. However, the head movement is the main cause for the couch displacement with similar magnitude of around 1.0 mm in anterior-posterior and lateral directions. Conclusions: Optical-tracking methodology independently quantifying head movements could improve immobilization devices by correctly acting on causes for head motions within mask. A confidence in the quality of intracranial immobilization techniques could be more

  17. The Phonetics of Head and Body Movement in the Realization of American Sign Language Signs.

    PubMed

    Tyrone, Martha E; Mauk, Claude E

    2016-01-01

    Because the primary articulators for sign languages are the hands, sign phonology and phonetics have focused mainly on them and treated other articulators as passive targets. However, there is abundant research on the role of nonmanual articulators in sign language grammar and prosody. The current study examines how hand and head/body movements are coordinated to realize phonetic targets. Kinematic data were collected from 5 deaf American Sign Language (ASL) signers to allow the analysis of movements of the hands, head and body during signing. In particular, we examine how the chin, forehead and torso move during the production of ASL signs at those three phonological locations. Our findings suggest that for signs with a lexical movement toward the head, the forehead and chin move to facilitate convergence with the hand. By comparison, the torso does not move to facilitate convergence with the hand for signs located at the torso. These results imply that the nonmanual articulators serve a phonetic as well as a grammatical or prosodic role in sign languages. Future models of sign phonetics and phonology should take into consideration the movements of the nonmanual articulators in the realization of signs. © 2016 S. Karger AG, Basel.

  18. Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations

    NASA Technical Reports Server (NTRS)

    Robinson, F. R.; Tomko, D. L.

    1987-01-01

    Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

  19. Voluntary presetting of the vestibular ocular reflex permits gaze stabilization despite perturbation of fast head movements

    NASA Technical Reports Server (NTRS)

    Zangemeister, Wolfgang H.

    1989-01-01

    Normal subjects are able to change voluntarily and continuously their head-eye latency together with their compensatory eye movement gain. A continuous spectrum of intent-latency modes of the subject's coordinated gaze through verbal feedback could be demonstrated. It was also demonstrated that the intent to counteract any perturbation of head-eye movement, i.e., the mental set, permitted the subjects to manipulate consciously their vestibular ocular reflex (VOR) gain. From the data, it is inferred that the VOR is always on. It may be, however, variably suppressed by higher cortical control. With appropriate training, head-mounted displays should permit an easy VOR presetting that leads to image stabilization, perhaps together with a decrease of possible misjudgements.

  20. Optogenetic stimulation of cortex to map evoked whisker movements in awake head-restrained mice.

    PubMed

    Auffret, Matthieu; Ravano, Veronica L; Rossi, Giulia M C; Hankov, Nicolas; Petersen, Merissa F A; Petersen, Carl C H

    2018-01-01

    Whisker movements are used by rodents to touch objects in order to extract spatial and textural tactile information about their immediate surroundings. To understand the mechanisms of such active sensorimotor processing it is important to investigate whisker motor control. The activity of neurons in the neocortex affects whisker movements, but many aspects of the organization of cortical whisker motor control remain unknown. Here, we filmed whisker movements evoked by sequential optogenetic stimulation of different locations across the left dorsal sensorimotor cortex of awake head-restrained mice. Whisker movements were evoked by optogenetic stimulation of many regions in the dorsal sensorimotor cortex. Optogenetic stimulation of whisker sensory barrel cortex evoked retraction of the contralateral whisker after a short latency, and a delayed rhythmic protraction of the ipsilateral whisker. Optogenetic stimulation of frontal cortex evoked rhythmic bilateral whisker protraction with a longer latency compared to stimulation of sensory cortex. Compared to frontal cortex stimulation, larger amplitude bilateral rhythmic whisking in a less protracted position was evoked at a similar latency by stimulating a cortical region posterior to Bregma and close to the midline. These data suggest that whisker motor control might be broadly distributed across the dorsal mouse sensorimotor cortex. Future experiments must investigate the complex neuronal circuits connecting specific cell-types in various cortical regions with the whisker motor neurons located in the facial nucleus. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Motion sickness adaptation to Coriolis-inducing head movements in a sustained G flight simulator.

    PubMed

    Newman, Michael C; McCarthy, Geoffrey W; Glaser, Scott T; Bonato, Frederick; Bubka, Andrea

    2013-02-01

    Technological advances have allowed centrifuges to become more than physiological testing and training devices; sustained G, fully interactive flight simulation is now possible. However, head movements under G can result in vestibular stimulation that can lead to motion sickness (MS) symptoms that are potentially distracting, nauseogenic, and unpleasant. In the current study an MS adaptation protocol was tested for head movements under +Gz. Experienced pilots made 14 predetermined head movements in a sustained G flight simulator (at 3 +Gz) on 5 consecutive days and 17 d after training. Symptoms were measured after each head turn using a subjective 0-10 MS scale. The Simulator Sickness Questionnaire (SSQ) was also administered before and after each daily training session. After five daily training sessions, normalized mean MS scores were 58% lower than on Day 1. Mean total, nausea, and disorientation SSQ scores were 55%, 52%, and 78% lower, respectively. During retesting 17 d after training, nearly all scores indicated 90-100% retention of training benefits. The reduction of unpleasant effects associated with sustained G flight simulation using an adaptation training protocol may enhance the effectiveness of simulation. Practical use of sustained G simulators is also likely to be interspersed with other types of ground and in-flight training. Hence, it would be undesirable and unpleasant for trainees to lose adaptation benefits after a short gap in centrifuge use. However, current results suggest that training gaps in excess of 2 wk may be permissible with almost no loss of adaptation training benefits.

  2. Real-time head movement system and embedded Linux implementation for the control of power wheelchairs.

    PubMed

    Nguyen, H T; King, L M; Knight, G

    2004-01-01

    Mobility has become very important for our quality of life. A loss of mobility due to an injury is usually accompanied by a loss of self-confidence. For many individuals, independent mobility is an important aspect of self-esteem. Head movement is a natural form of pointing and can be used to directly replace the joystick whilst still allowing for similar control. Through the use of embedded LINUX and artificial intelligence, a hands-free head movement wheelchair controller has been designed and implemented successfully. This system provides for severely disabled users an effective power wheelchair control method with improved posture, ease of use and attractiveness.

  3. Geometric adjustments to account for eye eccentricity in processing horizontal and vertical eye and head movement data

    NASA Technical Reports Server (NTRS)

    Huebner, W. P.; Paloski, W. H.; Reschke, M. F.; Bloomberg, J. J.

    1995-01-01

    Neglecting the eccentric position of the eyes in the head can lead to erroneous interpretation of ocular motor data, particularly for near targets. We discuss the geometric effects that eye eccentricity has on the processing of target-directed eye and head movement data, and we highlight two approaches to processing and interpreting such data. The first approach involves determining the true position of the target with respect to the location of the eyes in space for evaluating the efficacy of gaze, and it allows calculation of retinal error directly from measured eye, head, and target data. The second approach effectively eliminates eye eccentricity effects by adjusting measured eye movement data to yield equivalent responses relative to a specified reference location (such as the center of head rotation). This latter technique can be used to standardize measured eye movement signals, enabling waveforms collected under different experimental conditions to be directly compared, both with the measured target signals and with each other. Mathematical relationships describing these approaches are presented for horizontal and vertical rotations, for both tangential and circumferential display screens, and efforts are made to describe the sensitivity of parameter variations on the calculated results.

  4. The syntactic organization of pasta-eating and the structure of reach movements in the head-fixed mouse.

    PubMed

    Whishaw, Ian Q; Faraji, Jamshid; Kuntz, Jessica R; Mirza Agha, Behroo; Metz, Gerlinde A S; Mohajerani, Majid H

    2017-09-08

    Mice are adept in the use of their hands for activities such as feeding, which has led to their use in investigations of the neural basis of skilled-movements. We describe the syntactic organization of pasta-eating and the structure of hand movements used for pasta manipulation by the head-fixed mouse. An ethogram of mice consuming pieces of spaghetti reveals that they eat in bite/chew bouts. A bout begins with pasta lifted to the mouth and then manipulated with hand movements into a preferred orientation for biting. Manipulation involves many hand release-reach movements, each with a similar structure. A hand is advanced from a digit closed and flexed (collect) position to a digit extended and open position (overgrasp) and then to a digit closed and flexed (grasp) position. Reach distance, hand shaping, and grasp patterns featuring precision grasps or whole hand grasps are related. To bite, mice display hand preference and asymmetric grasps; one hand (guide grasp) directs food into the mouth and the other stabilizes the pasta for biting. When chewing after biting, the hands hold the pasta in a symmetric resting position. Pasta-eating is organized and features structured hand movements and so lends itself to the neural investigation of skilled-movements.

  5. Thermal activation energy for bidirectional movement of actin along bipolar tracks of myosin filaments.

    PubMed

    Okubo, Hiroyuki; Iwai, Masanori; Iwai, Sosuke; Chaen, Shigeru

    2010-05-28

    Previous in vitro motility assays using bipolar myosin thick filaments demonstrated that actin filaments were capable of moving in both directions along the myosin filament tracks. The movements; however, were slower in the direction leading away from the central bare zone than towards it. To understand the mechanism underlying these different direction-dependent motilities, we have examined the effects of temperature on the velocities of the bidirectional movements along reconstituted myosin filaments. Activation energies of the movements were determined by Arrhenius plots at high and low concentrations of ATP. As a result, the thermal activation energy of the movement away from the central bare zone was significantly higher than that of the movement toward the zone. Given that the backward movement away from the central bare zone would cause the myosin heads to be constrained and the stiffness of the cross-bridges to increase, these results suggest that elastic energy required for the cross-bridge transition is supplied by thermal fluctuations. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. Disturbed jaw behavior in whiplash-associated disorders during rhythmic jaw movements.

    PubMed

    Häggman-Henrikson, B; Zafar, H; Eriksson, P-O

    2002-11-01

    As shown previously, "functional jaw movements" are the result of coordinated activation of jaw as well as neck muscles, leading to simultaneous movements in the temporomandibular, atlanto-occipital, and cervical spine joints. In this study, the effect of neck trauma on natural jaw function was evaluated in 12 individuals suffering from whiplash-associated disorders (WAD). Spatiotemporal characteristics of mandibular and concomitant head movements were evaluated for three different modes of rhythmic jaw activities: self-paced continuous maximal jaw-opening/-closing movements, paced continuous maximal jaw-opening/-closing movements at 50 cycles/minute, and unilateral chewing. Compared with healthy subjects, the WAD group showed smaller magnitude and altered coordination pattern (a change in temporal relations) of mandibular and head movements. In conclusion, these results show that neck trauma can derange integrated jaw and neck behavior, and underline the functional coupling between the jaw and head-neck motor systems.

  7. Vestibular and Non-vestibular Contributions to Eye Movements that Compensate for Head Rotations during Viewing of Near Targets

    NASA Technical Reports Server (NTRS)

    Han, Yanning H.

    2006-01-01

    We studied horizontal eye movements induced by en-bloc yaw rotation, over a frequency range 0.2 - 2.8 Hz, in 10 normal human subjects as they monocularly viewed a target located at their near point of focus. We measured gain and phase relationships between eye-in-head velocity and head velocity when the near target was either earth-fixed or head-fixed. During viewing of the earth-fixed near target, median gain was 1.49 (range 1.24 - 1.87) at 0.2 Hz for the group of subjects, but declined at higher frequencies, so that at 2.8 Hz median gain was 1.08 (range 0.68 - 1.67). During viewing of the head-fixed near target , median gain was 0.03 (range 0.01 - 0.10) at 0.2 Hz for the group of subjects, but increased at higher frequencies, so that at 2.8 Hz median gain was 0.71 (range 0.28 - 0.94). We estimated the vestibular contribution to these responses vestibulo-ocular reflex gain (Gvor) by applying transient head perturbations (peak acceleration> 1,000 deg/s(exp 2)) during sinusoidal rotation under the two viewing conditions. Median Gvor, estimated < 70ms after the onset of head perturbation, was 0.98 (range 0.39 - 1.42) while viewing the earth-fixed near target, and 0.97 (range 0.37 - 1.33) while viewing the head-fixed near target. For the group of subjects, 9 out of 10 subjects showed no significant difference of Gvor between the two viewing conditions ( p > 0.053 ) at all test frequencies. Since Gvor accounted for only -73% of the overall response gain during viewing of the earth-fixed target, we investigated the relative contributions of non-vestibular factors. When subjects viewed the earth-fixed target under strobe illumination, to eliminate retinal image slip information, the gain of compensatory eye movements declined compared with viewing in ambient room light. During sum-of-sine head rotations, while viewing the earth-fixed target, to Han et al./VOR during near-viewing minimize contributions from predictive mechanisms, gain also declined Nonetheless, simple

  8. Neck muscle activation and head postures in common high performance aerial combat maneuvers.

    PubMed

    Netto, Kevin J; Burnett, Angus F

    2006-10-01

    Neck injuries are common in high performance combat pilots and have been attributed to high gravitational forces and the non-neutral head postures adopted during aerial combat maneuvers. There is still little known about the pathomechanics of these injuries. Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels (1, 3, and 5) and four head postures (Neutral, Turn, Extension, and Check-6). Surface electromyography from neck and shoulder muscles was recorded in flight. Three-dimensional measures of head postures adopted in flight were estimated postflight with respect to end-range of the cervical spine using an electromagnetic tracking device. Mean muscle activation increased significantly with both increasing +Gz and non-neutral head postures. Check-6 at +5 Gz (mean activation of all muscles = 51% MVIC) elicited significantly greater muscle activation in most muscles when compared with Neutral, Extension, and Turn head postures. High levels of muscle co-contraction were evident in high acceleration and non-neutral head postures. Head kinematics showed Check-6 was closest to end-range in any movement plane (86% ROM in rotation) and produced the greatest magnitude of rotation in other planes. Turn and Extension showed a large magnitude of rotation with reference to end-range in the primary plane of motion but displayed smaller rotations in other planes. High levels of neck muscle activation and co-contraction due to high +Gz and head postures close to end range were evident in this study, suggesting the major influence of these factors on the pathomechanics of neck injuries in high performance combat pilots.

  9. Timing of head movements is consistent with energy minimization in walking ungulates

    PubMed Central

    Loscher, David M.; Meyer, Fiete; Kracht, Kerstin

    2016-01-01

    Many ungulates show a conspicuous nodding motion of the head when walking. Until now, the functional significance of this behaviour remained unclear. Combining in vivo kinematics of quadrupedal mammals with a computer model, we show that the timing of vertical displacements of the head and neck is consistent with minimizing energy expenditure for carrying these body parts in an inverted pendulum walking gait. Varying the timing of head movements in the model resulted in increased metabolic cost estimate for carrying the head and neck of up to 63%. Oscillations of the head–neck unit result in weight force oscillations transmitted to the forelimbs. Advantageous timing increases the load in single support phases, in which redirecting the trajectory of the centre of mass (COM) is thought to be energetically inexpensive. During double support, in which—according to collision mechanics—directional changes of the impulse of the COM are expensive, the observed timing decreases the load. Because the head and neck comprise approximately 10% of body mass, the effect shown here should also affect the animals' overall energy expenditure. This mechanism, working analogously in high-tech backpacks for energy-saving load carriage, is widespread in ungulates, and provides insight into how animals economize locomotion. PMID:27903873

  10. Movement initiation-locked activity of the anterior putamen predicts future movement instability in periodic bimanual movement.

    PubMed

    Aramaki, Yu; Haruno, Masahiko; Osu, Rieko; Sadato, Norihiro

    2011-07-06

    In periodic bimanual movements, anti-phase-coordinated patterns often change into in-phase patterns suddenly and involuntarily. Because behavior in the initial period of a sequence of cycles often does not show any obvious errors, it is difficult to predict subsequent movement errors in the later period of the cyclical sequence. Here, we evaluated performance in the later period of the cyclical sequence of bimanual periodic movements using human brain activity measured with functional magnetic resonance imaging as well as using initial movement features. Eighteen subjects performed a 30 s bimanual finger-tapping task. We calculated differences in initiation-locked transient brain activity between antiphase and in-phase tapping conditions. Correlation analysis revealed that the difference in the anterior putamen activity during antiphase compared within-phase tapping conditions was strongly correlated with future instability as measured by the mean absolute deviation of the left-hand intertap interval during antiphase movements relative to in-phase movements (r = 0.81). Among the initial movement features we measured, only the number of taps to establish the antiphase movement pattern exhibited a significant correlation. However, the correlation efficient of 0.60 was not high enough to predict the characteristics of subsequent movement. There was no significant correlation between putamen activity and initial movement features. It is likely that initiating unskilled difficult movements requires increased anterior putamen activity, and this activity increase may facilitate the initiation of movement via the basal ganglia-thalamocortical circuit. Our results suggest that initiation-locked transient activity of the anterior putamen can be used to predict future motor performance.

  11. Motion versus position in the perception of head-centred movement.

    PubMed

    Freeman, Tom C A; Sumnall, Jane H

    2002-01-01

    Abstract. Observers can recover motion with respect to the head during an eye movement by comparing signals encoding retinal motion and the velocity of pursuit. Evidently there is a mismatch between these signals because perceived head-centred motion is not always veridical. One example is the Filehne illusion, in which a stationary object appears to move in the opposite direction to pursuit. Like the motion aftereffect, the phenomenal experience of the Filehne illusion is one in which the stimulus moves but does not seem to go anywhere. This raises problems when measuring the illusion by motion nulling because the more traditional technique confounds perceived motion with changes in perceived position. We devised a new nulling technique using global-motion stimuli that degraded familiar position cues but preserved cues to motion. Stimuli consisted of random-dot patterns comprising signal and noise dots that moved at the same retinal 'base' speed. Noise moved in random directions. In an eye-stationary speed-matching experiment we found noise slowed perceived retinal speed as 'coherence strength' (ie percentage of signal) was reduced. The effect occurred over the two-octave range of base speeds studied and well above direction threshold. When the same stimuli were combined with pursuit, observers were able to null the Filehne illusion by adjusting coherence. A power law relating coherence to retinal base speed fit the data well with a negative exponent. Eye-movement recordings showed that pursuit was quite accurate. We then tested the hypothesis that the stimuli found at the null-points appeared to move at the same retinal speed. Two observers supported the hypothesis, a third partially, and a fourth showed a small linear trend. In addition, the retinal speed found by the traditional Filehne technique was similar to the matches obtained with the global-motion stimuli. The results provide support for the idea that speed is the critical cue in head-centred motion

  12. Vestibular and Non-vestibular Contributions to Eye Movements that Compensate for Head Rotations during Viewing of Near Targets

    NASA Technical Reports Server (NTRS)

    Han, Yanning H.; Kumar, Arun N.; Reschke, Millard F.; Somers, Jeffrey T.; Dell'Osso, Louis F.; Leigh, R. John

    2004-01-01

    We studied horizontal eye movements induced by en-bloc yaw rotation, over a frequency range 0.2 - 2.8 Hz, in 10 normal human subjects as th ey monocularly viewed a target located at their near point of focus. We measured gain and phase relationships between eye-in-head velocity and head velocity when the near target was either earth-fixed or head-fixed. During viewing of the earth-fixed near target,median gain was 1.49 (range 1.24 - 1.87) at 0.2 Hz for the group of subjects, but decl ined at higher frequencies, so that at 2.8 Hz median gain was 1.08 (r ange 0.68 - 1.67). During viewing of the head-fixed near target, median gain was 0.03 (range 0.01 - 0.10) at 0.2 Hz for the group of subjec ts, but increased at higher frequencies, so that at 2.8 Hz median gai n was 0.71 (range 0.28 - 0.94). We estimated the vestibular contribution to these responses (vestibulo-ocular reflex gain, Gvor) by applyin g transient head perturbations (peak acceleration> 1,000 deg's(exp 2) ) during sinusoidal rotation under the two viewing conditions. Median Gvor, estimated < 70m after the onset of head perturbation, was 0.98 (range 0.39 - 1.42) while viewing the earth-fixed near target, and 0. 97 (range 0.37 - 1.33) while viewing the head-fixed near target. For the group of subjects, 9 out of 10 subjects showed no sigificant diff erence of Gvor between the two viewing conditions ( p > 0.053 ) at all test frequencies. Since Gvor accounted for only approximately 73% of the overall response gain during viewing of the earth-fixed target, we investigated the relative contributions of non-vestibular factors. When subjects viewed the earth-fixed target under strobe illumination , to eliminate retinal image slip information, the gain of compensato ry eye movements declined compared with viewing in ambient room light . During sum-of-sine head rotations, while viewing the earth-fixed target, to minimize contributions from predictive mechanisms, gain also declined Nonetheless, simple superposition of

  13. Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head: experiments and model

    NASA Astrophysics Data System (ADS)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2017-07-01

    In inkjet applications, it is normal to search for an optimal drive waveform when dispensing a fresh fluid or adjusting a newly fabricated print-head. To test trial waveforms with different dwell times, a camera and a strobe light were used to image the protruding or retracting liquid tongues without ejecting any droplets. An edge detection method was used to calculate the lengths of the liquid tongues to draw the meniscus movement curves. The meniscus movement is determined by the time-domain response of the acoustic pressure at the nozzle of the print-head. Starting at the inverse piezoelectric effect, a mathematical model which considers the liquid viscosity in acoustic propagation is constructed to study the acoustic pressure response at the nozzle of the print-head. The liquid viscosity retards the propagation speed and dampens the harmonic amplitude. The pressure response, which is the combined effect of the acoustic pressures generated during the rising time and the falling time and after their propagations and reflections, explains the meniscus movements well. Finally, the optimal dwell time for droplet ejections is discussed.

  14. Spatiotopic coding during dynamic head tilt

    PubMed Central

    Turi, Marco; Burr, David C.

    2016-01-01

    Humans maintain a stable representation of the visual world effortlessly, despite constant movements of the eyes, head, and body, across multiple planes. Whereas visual stability in the face of saccadic eye movements has been intensely researched, fewer studies have investigated retinal image transformations induced by head movements, especially in the frontal plane. Unlike head rotations in the horizontal and sagittal planes, tilting the head in the frontal plane is only partially counteracted by torsional eye movements and consequently induces a distortion of the retinal image to which we seem to be completely oblivious. One possible mechanism aiding perceptual stability is an active reconstruction of a spatiotopic map of the visual world, anchored in allocentric coordinates. To explore this possibility, we measured the positional motion aftereffect (PMAE; the apparent change in position after adaptation to motion) with head tilts of ∼42° between adaptation and test (to dissociate retinal from allocentric coordinates). The aftereffect was shown to have both a retinotopic and spatiotopic component. When tested with unpatterned Gaussian blobs rather than sinusoidal grating stimuli, the retinotopic component was greatly reduced, whereas the spatiotopic component remained. The results suggest that perceptual stability may be maintained at least partially through mechanisms involving spatiotopic coding. NEW & NOTEWORTHY Given that spatiotopic coding could play a key role in maintaining visual stability, we look for evidence of spatiotopic coding after retinal image transformations caused by head tilt. To this end, we measure the strength of the positional motion aftereffect (PMAE; previously shown to be largely spatiotopic after saccades) after large head tilts. We find that, as with eye movements, the spatial selectivity of the PMAE has a large spatiotopic component after head rotation. PMID:27903636

  15. Influence of seating styles on head and pelvic vertical movement symmetry in horses ridden at trot

    PubMed Central

    Hernlund, Elin; Pfau, Thilo; Haubro Andersen, Pia; Rhodin, Marie

    2018-01-01

    Detailed knowledge of how a rider’s seating style and riding on a circle influences the movement symmetry of the horse’s head and pelvis may aid rider and trainer in an early recognition of low grade lameness. Such knowledge is also important during both subjective and objective lameness evaluations in the ridden horse in a clinical setting. In this study, inertial sensors were used to assess how different rider seating styles may influence head and pelvic movement symmetry in horses trotting in a straight line and on the circle in both directions. A total of 26 horses were subjected to 15 different conditions at trot: three unridden conditions and 12 ridden conditions where the rider performed three different seating styles (rising trot, sitting trot and two point seat). Rising trot induced systematic changes in movement symmetry of the horses. The most prominent effect was decreased pelvic rise that occurred as the rider was actively rising up in the stirrups, thus creating a downward momentum counteracting the horses push off. This mimics a push off lameness in the hindlimb that is in stance when the rider sits down in the saddle during the rising trot. On the circle, the asymmetries induced by rising trot on the correct diagonal counteracted the circle induced asymmetries, rendering the horse more symmetrical. This finding offers an explanation to the equestrian tradition of rising on the ‘correct diagonal.’ In horses with small pre-existing movement asymmetries, the asymmetry induced by rising trot, as well as the circular track, attenuated or reduced the horse’s baseline asymmetry, depending on the sitting diagonal and direction on the circle. A push off hindlimb lameness would be expected to increase when the rider sits during the lame hindlimb stance whereas an impact hindlimb lameness would be expected to decrease. These findings suggest that the rising trot may be useful for identifying the type of lameness during subjective lameness assessment

  16. Ranging in Human Sonar: Effects of Additional Early Reflections and Exploratory Head Movements

    PubMed Central

    Wallmeier, Ludwig; Wiegrebe, Lutz

    2014-01-01

    Many blind people rely on echoes from self-produced sounds to assess their environment. It has been shown that human subjects can use echolocation for directional localization and orientation in a room, but echo-acoustic distance perception - e.g. to determine one's position in a room - has received little scientific attention, and systematic studies on the influence of additional early reflections and exploratory head movements are lacking. This study investigates echo-acoustic distance discrimination in virtual echo-acoustic space, using the impulse responses of a real corridor. Six blindfolded sighted subjects and a blind echolocation expert had to discriminate between two positions in the virtual corridor, which differed by their distance to the front wall, but not to the lateral walls. To solve this task, participants evaluated echoes that were generated in real time from self-produced vocalizations. Across experimental conditions, we systematically varied the restrictions for head rotations, the subjects' orientation in virtual space and the reference position. Three key results were observed. First, all participants successfully solved the task with discrimination thresholds below 1 m for all reference distances (0.75–4 m). Performance was best for the smallest reference distance of 0.75 m, with thresholds around 20 cm. Second, distance discrimination performance was relatively robust against additional early reflections, compared to other echolocation tasks like directional localization. Third, free head rotations during echolocation can improve distance discrimination performance in complex environmental settings. However, head movements do not necessarily provide a benefit over static echolocation from an optimal single orientation. These results show that accurate distance discrimination through echolocation is possible over a wide range of reference distances and environmental conditions. This is an important functional benefit of human echolocation

  17. Regional differences in hyoid muscle activity and length-dynamics during mammalian head-shaking

    PubMed Central

    Wentzel, Sarah E.; Konow, Nicolai; German, Rebecca Z.

    2010-01-01

    The sternohyoid (SH) and geniohyoid (GH) are antagonist strap-muscles that are active during a number of different behaviors, including sucking, intraoral transport, swallowing, breathing, and extension/flexion of the neck. Because these muscles have served different functions through the evolutionary history of vertebrates, it is quite likely they will have complex patterns of electrical activity and muscle fiber contraction. Different regions of the sternohyoid exhibit different contraction and activity patterns during a swallow. We examined the dynamics of the sternohyoid and geniohyoid muscles during an unrestrained, and vigorous head-shake behavior in an animal model of human head, neck and hyolingual movement. A gentle touch to infant pig ears elicited a head shake of several head revolutions. Using sonomicrometry and intramuscular EMG we measured regional (within) muscle strain and activity in SH and GH. We found that EMG was consistent across three regions (anterior, belly and posterior) of each muscle. Changes in muscle length however, were more complex. In the SH, mid-belly length-change occurred out of phase with the anterior and posterior end-regions, but with a zero-lag timing; the anterior region shortened prior to the posterior. In the GH, the anterior region shortened prior to, and out of phase with the mid-belly and posterior regions. Head-shaking is a relatively simple reflex behavior, yet the underlying patterns of muscle length-dynamics and EMG activity are not. The regional complexity in SH and GH, similar to regionalization of SH during swallowing, suggests that these ‘simple hyoid strap muscles’ are more complex than textbooks often suggest. PMID:21370479

  18. Evaluation of document location during computer use in terms of neck muscle activity and neck movement.

    PubMed

    Goostrey, Sonya; Treleaven, Julia; Johnston, Venerina

    2014-05-01

    This study evaluated the impact on neck movement and muscle activity of placing documents in three commonly used locations: in-line, flat desktop left of the keyboard and laterally placed level with the computer screen. Neck excursion during three standard head movements between the computer monitor and each document location and neck extensor and upper trapezius muscle activity during a 5 min typing task for each of the document locations was measured in 20 healthy participants. Results indicated that muscle activity and neck flexion were least when documents were placed laterally suggesting it may be the optimal location. The desktop option produced both the greatest neck movement and muscle activity in all muscle groups. The in-line document location required significantly more neck flexion but less lateral flexion and rotation than the laterally placed document. Evaluation of other holders is needed to guide decision making for this commonly used office equipment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Evolutionarily conserved morphogenetic movements at the vertebrate head-trunk interface coordinate the transport and assembly of hypopharyngeal structures.

    PubMed

    Lours-Calet, Corinne; Alvares, Lucia E; El-Hanfy, Amira S; Gandesha, Saniel; Walters, Esther H; Sobreira, Débora Rodrigues; Wotton, Karl R; Jorge, Erika C; Lawson, Jennifer A; Kelsey Lewis, A; Tada, Masazumi; Sharpe, Colin; Kardon, Gabrielle; Dietrich, Susanne

    2014-06-15

    The vertebrate head-trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head-trunk interface. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons.

    PubMed

    Gaffield, Michael A; Christie, Jason M

    2017-05-03

    Inhibition from molecular layer interneurons (MLIs) is thought to play an important role in cerebellar function by sharpening the precision of Purkinje cell spike output. Yet the coding features of MLIs during behavior are poorly understood. To study MLI activity, we used in vivo Ca 2+ imaging in head-fixed mice during the performance of a rhythmic motor behavior, licking during water consumption. MLIs were robustly active during lick-related movement across a lobule-specific region of the cerebellum showing high temporal correspondence within their population. Average MLI Ca 2+ activity strongly correlated with movement rate but not to the intentional, or unexpected, adjustment of lick position or to sensory feedback that varied with task condition. Chemogenetic suppression of MLI output reduced lick rate and altered tongue movements, indicating that activity of these interneurons not only encodes temporal aspects of movement kinematics but also influences motor outcome pointing to an integral role in online control of rhythmic behavior. SIGNIFICANCE STATEMENT The cerebellum helps fine-tune coordinated motor actions via signaling from projection neurons called Purkinje cells. Molecular layer interneurons (MLIs) provide powerful inhibition onto Purkinje cells, but little is understood about how this inhibitory circuit is engaged during behavior or what type of information is transmitted through these neurons. Our work establishes that MLIs in the lateral cerebellum are broadly activated during movement with calcium activity corresponding to movement rate. We also show that suppression of MLI output slows and disorganizes the precise movement pattern. Therefore, MLIs are an important circuit element in the cerebellum allowing for accurate motor control. Copyright © 2017 the authors 0270-6474/17/374751-15$15.00/0.

  1. Active Movement Warm-Up Routines

    ERIC Educational Resources Information Center

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  2. Music and Movement in Head Start Classrooms: Implications and Applications

    ERIC Educational Resources Information Center

    Yazejian, Noreen; Peisner-Feinberg, Ellen S.; Heyge, Lorna Lutz

    2009-01-01

    This article describes a music and movement intervention for children in preschool classrooms. The intervention, consisting of sequenced music and movement activities, has been studied as a curriculum conducted by outside interventionists (Yazejian & Peisner-Feinberg, 2009/this issue) with results providing some support for the beneficial effects…

  3. Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.

    PubMed

    Paré, M; Guitton, D

    1998-06-01

    When the head is unrestrained, rapid displacements of the visual axis-gaze shifts (eye-re-space)-are made by coordinated movements of the eyes (eye-re-head) and head (head-re-space). To address the problem of the neural control of gaze shifts, we studied and contrasted the discharges of omnipause neurons (OPNs) during a variety of combined eye-head gaze shifts and head-fixed eye saccades executed by alert cats. OPNs discharged tonically during intersaccadic intervals and at a reduced level during slow perisaccadic gaze movements sometimes accompanying saccades. Their activity ceased for the duration of the saccadic gaze shifts the animal executed, either by head-fixed eye saccades alone or by combined eye-head movements. This was true for all types of gaze shifts studied: active movements to visual targets; passive movements induced by whole-body rotation or by head rotation about stationary body; and electrically evoked movements by stimulation of the caudal part of the superior colliculus (SC), a central structure for gaze control. For combined eye-head gaze shifts, the OPN pause was therefore not correlated to the eye-in-head trajectory. For instance, in active gaze movements, the end of the pause was better correlated with the gaze end than with either the eye saccade end or the time of eye counterrotation. The hypothesis that cat OPNs participate in controlling gaze shifts is supported by these results, and also by the observation that the movements of both the eyes and the head were transiently interrupted by stimulation of OPNs during gaze shifts. However, we found that the OPN pause could be dissociated from the gaze-motor-error signal producing the gaze shift. First, OPNs resumed discharging when perturbation of head motion briefly interrupted a gaze shift before its intended amplitude was attained. Second, stimulation of caudal SC sites in head-free cat elicited large head-free gaze shifts consistent with the creation of a large gaze-motor-error signal

  4. Isolating gait-related movement artifacts in electroencephalography during human walking.

    PubMed

    Kline, Julia E; Huang, Helen J; Snyder, Kristine L; Ferris, Daniel P

    2015-08-01

    High-density electroencephelography (EEG) can provide an insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4 to 1.6 m s(-1). We then tested artifact removal methods including moving average and wavelet-based techniques. Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removal of EEG movement artifact to advance the field.

  5. Isolating gait-related movement artifacts in electroencephalography during human walking

    PubMed Central

    Kline, Julia E.; Huang, Helen J.; Snyder, Kristine L.; Ferris, Daniel P.

    2016-01-01

    Objective High-density electroencephelography (EEG) can provide insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. Approach We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4–1.6 m/s. We then tested artifact removal methods including moving average and wavelet-based techniques. Main Results Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Significance Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removing of EEG movement

  6. Head eye co-ordination and gaze stability in subjects with persistent whiplash associated disorders.

    PubMed

    Treleaven, Julia; Jull, Gwendolen; Grip, Helena

    2011-06-01

    Symptoms of dizziness, unsteadiness and visual disturbances are frequent complaints in persons with persistent whiplash associated disorders. This study investigated eye, head co-ordination and gaze stability in subjects with persistent whiplash (n = 20) and asymptomatic controls (n = 20). Wireless motion sensors and electro-oculography were used to measure: head rotation during unconstrained head movement, head rotation during gaze stability and sequential head and eye movements. Ten control subjects participated in a repeatability study (two occasions one week apart). Between-day repeatability was acceptable (ICC > 0.6) for most measures. The whiplash group had significantly less maximal eye angle to the left, range of head movement during the gaze stability task and decreased velocity of head movement in head eye co-ordination and gaze stability tasks compared to the control group (p < 0.01). There were significant correlations (r > 0.55) between both unrestrained neck movement and neck pain and head movement and velocity in the whiplash group. Deficits in gaze stability and head eye co-ordination may be related to disturbed reflex activity associated with decreased head range of motion and/or neck pain. Further research is required to explore the mechanisms behind these deficits, the nature of changes over time and the tests' ability to measure change in response to rehabilitation. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  7. Puzzling mass movement features in the Navarinsky Canyon head, Bering Sea

    USGS Publications Warehouse

    Carlson, P.R.; Karl, Herman A.; Edwards, B.D.

    1982-01-01

    Two types of morphologic features in the head of Navarinsky Canyon are attributed to mass movement of near-surface sediment. A series of pull-aparts is located downslope of large sand waves. These pull-aparts, possibly induced by liquefaction, affect the upper 5 to 10 m of sandy sediment (water depths 350 to 600 m) on a 1o slope. A hummocky elongate mound of muddy sand (water depths 550 to 800 m) contains chaotic internal reflectors to a subbottom depth of 30 to 40 m and possibly is the product of a shallow slide. We speculate that Holocene seismicity is the likely triggering mechanism. ?? 1982 A. M. Dowden, Inc.

  8. Movement patterns of Bar-headed Geese Anser indicus during breeding and post-breeding periods at Qinghai Lake, China

    USGS Publications Warehouse

    Cui, Peng; Hou, Yuansheng; Tang, Mingjie; Zhang, Haiting; Zuohua, Yuanchun; Yin, Zuohua; Li, Tianxian; Guo, Shan; Xing, Zhi; He, Yubang; Prosser, Diann J.; Newman, Scott H.; Takekawa, John Y.; Yan, Baoping; Lei, Fumin

    2011-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 outbreak at Qinghai Lake, China, in 2005 caused the death of over 6,000 migratory birds, half of which were Bar-headed Geese Anser indicus. Understanding the movements of this species may inform monitoring of outbreak risks for HPAI viruses; thus, we investigated the movement patterns of 29 Bar-headed Geese at Qinghai Lake, China during 2007 and 2008 by using high resolution GPS satellite telemetry. We described the movements and distribution of marked Bar-headed Geese during the pre-nesting, nesting, and moulting periods. Of 21 Bar-headed Geese with complete transmission records, 3 moved to other areas during the nesting period: 2 to Jianghe wetland (50 km northwest of Qinghai Lake) and 1 to Cuolongka Lake (220 km northwest of Qinghai Lake) during the nesting period. We identified nesting attempts of 7 of the marked geese at Qinghai Lake. Four completed successful nesting attempts according to our rules of judgment for the breeding status, and 2 geese lost broods soon after hatching (hereafter referred to as unsuccessful breeders). Of 18 geese present at Qinghai Lake during the nesting period, 9 (6 non-breeders, 2 successful breeders and 1 unsuccessful breeder) remained at Qinghai Lake during the moulting period; and 9 (5 non-breeders, 4 unsuccessful breeders) left Qinghai Lake for moulting. Kuhai Lake, Donggeicuona Lake, Alake Lake, Zhaling-Eling Lake area and Huangheyuan wetland area were used as moulting sites. Geese that moulted at Qinghai Lake, Cuolongka Lake, Kuhai Lake, Donggeicuona Lake and Alake Lake also moved to Zhaling-Eling Lake area or Huangheyuan wetland area and stayed there for several days prior to autumn migration. Mean home range and core area estimates did not differ significantly by sex, year and between breeders and non-breeders.

  9. Movement patterns of Bar-headed Geese Anser indicus during breeding and post-breeding periods at Qinghai Lake, China

    USGS Publications Warehouse

    Cui, P.; Hou, Y.; Tang, M.; Zhang, H.; Zhou, Y.; Yin, Z.; Li, T.; Guo, S.; Xing, Z.; He, Y.; Prosser, D.J.; Newman, S.H.; Takekawa, John Y.; Yan, B.; Lei, F.

    2011-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 outbreak at Qinghai Lake, China, in 2005 caused the death of over 6,000 migratory birds, half of which were Bar-headed Geese Anser indicus. Understanding the movements of this species may inform monitoring of outbreak risks for HPAI viruses; thus, we investigated the movement patterns of 29 Bar-headed Geese at Qinghai Lake, China during 2007 and 2008 by using high resolution GPS satellite telemetry. We described the movements and distribution of marked Bar-headed Geese during the pre-nesting, nesting, and moulting periods. Of 21 Bar-headed Geese with complete transmission records, 3 moved to other areas during the nesting period: 2 to Jianghe wetland (50 km northwest of Qinghai Lake) and 1 to Cuolongka Lake (220 km northwest of Qinghai Lake) during the nesting period. We identified nesting attempts of 7 of the marked geese at Qinghai Lake. Four completed successful nesting attempts according to our rules of judgment for the breeding status, and 2 geese lost broods soon after hatching (hereafter referred to as unsuccessful breeders). Of 18 geese present at Qinghai Lake during the nesting period, 9 (6 non-breeders, 2 successful breeders and 1 unsuccessful breeder) remained at Qinghai Lake during the moulting period; and 9 (5 non-breeders, 4 unsuccessful breeders) left Qinghai Lake for moulting. Kuhai Lake, Donggeicuona Lake, Alake Lake, Zhaling-Eling Lake area and Huangheyuan wetland area were used as moulting sites. Geese that moulted at Qinghai Lake, Cuolongka Lake, Kuhai Lake, Donggeicuona Lake and Alake Lake also moved to Zhaling-Eling Lake area or Huangheyuan wetland area and stayed there for several days prior to autumn migration. Mean home range and core area estimates did not differ significantly by sex, year and between breeders and non-breeders. ?? 2010 Dt. Ornithologen-Gesellschaft e.V.

  10. Matching the oculomotor drive during head-restrained and head-unrestrained gaze shifts in monkey.

    PubMed

    Bechara, Bernard P; Gandhi, Neeraj J

    2010-08-01

    High-frequency burst neurons in the pons provide the eye velocity command (equivalently, the primary oculomotor drive) to the abducens nucleus for generation of the horizontal component of both head-restrained (HR) and head-unrestrained (HU) gaze shifts. We sought to characterize how gaze and its eye-in-head component differ when an "identical" oculomotor drive is used to produce HR and HU movements. To address this objective, the activities of pontine burst neurons were recorded during horizontal HR and HU gaze shifts. The burst profile recorded on each HU trial was compared with the burst waveform of every HR trial obtained for the same neuron. The oculomotor drive was assumed to be comparable for the pair yielding the lowest root-mean-squared error. For matched pairs of HR and HU trials, the peak eye-in-head velocity was substantially smaller in the HU condition, and the reduction was usually greater than the peak head velocity of the HU trial. A time-varying attenuation index, defined as the difference in HR and HU eye velocity waveforms divided by head velocity [alpha = (H(hr) - E(hu))/H] was computed. The index was variable at the onset of the gaze shift, but it settled at values several times greater than 1. The index then decreased gradually during the movement and stabilized at 1 around the end of gaze shift. These results imply that substantial attenuation in eye velocity occurs, at least partially, downstream of the burst neurons. We speculate on the potential roles of burst-tonic neurons in the neural integrator and various cell types in the vestibular nuclei in mediating the attenuation in eye velocity in the presence of head movements.

  11. Translational head movements of pigeons in response to a rotating pattern: characteristics and tool to analyse mechanisms underlying detection of rotational and translational optical flow.

    PubMed

    Nalbach, H O

    1992-01-01

    Pigeons freely standing in the centre of a two-dimensionally textured cylinder not only rotate but also laterally translate their head in response to the pattern sinusoidally oscillating or unidirectionally rotating around their vertical axis. The translational head movement dominates the response at high oscillation frequencies, whereas in a unidirectionally rotating drum head translation declines at about the same rate as the rotational response increases. It is suggested that this is a consequence of charging the 'velocity storage' in the vestibulo-ocular system. Similar to the rotational head movement (opto-collic reflex), the translational head movement is elicited via a wide-field motion sensitive system. The underlying mechanism can be described as vector integration of movement vectors tangential to the pattern rotation. Stimulation of the frontal visual field elicits largest translational responses while rotational responses can be elicited equally well from any azimuthal position of a moving pattern. Experiments where most of the pattern is occluded by a screen and the pigeon is allowed to view the stimulus through one or two windows demonstrate a short-range inhibition and long-range excitation between movement detectors that feed into the rotational system. Furthermore, the results obtained from such types of experiments suggest that the rotational system inhibits the translational system. These mechanisms may help the pigeon to decompose image flow into its translational and rotational components. Because of their translational response to a rotational stimulus, it is concluded, however, that pigeons either generally cannot perfectly perform the task or they need further visual information, like differential image motion, that was not available to them in the paradigms.

  12. Design, simulation and evaluation of uniform magnetic field systems for head-free eye movement recordings with scleral search coils.

    PubMed

    Eibenberger, Karin; Eibenberger, Bernhard; Rucci, Michele

    2016-08-01

    The precise measurement of eye movements is important for investigating vision, oculomotor control and vestibular function. The magnetic scleral search coil technique is one of the most precise measurement techniques for recording eye movements with very high spatial (≈ 1 arcmin) and temporal (>kHz) resolution. The technique is based on measuring voltage induced in a search coil through a large magnetic field. This search coil is embedded in a contact lens worn by a human subject. The measured voltage is in direct relationship to the orientation of the eye in space. This requires a magnetic field with a high homogeneity in the center, since otherwise the field inhomogeneity would give the false impression of a rotation of the eye due to a translational movement of the head. To circumvent this problem, a bite bar typically restricts head movement to a minimum. However, the need often emerges to precisely record eye movements under natural viewing conditions. To this end, one needs a uniform magnetic field that is uniform over a large area. In this paper, we present the numerical and finite element simulations of the magnetic flux density of different coil geometries that could be used for search coil recordings. Based on the results, we built a 2.2 × 2.2 × 2.2 meter coil frame with a set of 3 × 4 coils to generate a 3D magnetic field and compared the measured flux density with our simulation results. In agreement with simulation results, the system yields a highly uniform field enabling high-resolution recordings of eye movements.

  13. Effect of viewing distance on the generation of vertical eye movements during locomotion

    NASA Technical Reports Server (NTRS)

    Moore, S. T.; Hirasaki, E.; Cohen, B.; Raphan, T.

    1999-01-01

    Vertical head and eye coordination was studied as a function of viewing distance during locomotion. Vertical head translation and pitch movements were measured using a video motion analysis system (Optotrak 3020). Vertical eye movements were recorded using a video-based pupil tracker (Iscan). Subjects (five) walked on a linear treadmill at a speed of 1.67 m/s (6 km/h) while viewing a target screen placed at distances ranging from 0.25 to 2.0 m at 0. 25-m intervals. The predominant frequency of vertical head movement was 2 Hz. In accordance with previous studies, there was a small head pitch rotation, which was compensatory for vertical head translation. The magnitude of the vertical head movements and the phase relationship between head translation and pitch were little affected by viewing distance, and tended to orient the naso-occipital axis of the head at a point approximately 1 m in front of the subject (the head fixation distance or HFD). In contrast, eye velocity was significantly affected by viewing distance. When viewing a far (2-m) target, vertical eye velocity was 180 degrees out of phase with head pitch velocity, with a gain of 0. 8. This indicated that the angular vestibulo-ocular reflex (aVOR) was generating the eye movement response. The major finding was that, at a close viewing distance (0.25 m), eye velocity was in phase with head pitch and compensatory for vertical head translation, suggesting that activation of the linear vestibulo-ocular reflex (lVOR) was contributing to the eye movement response. There was also a threefold increase in the magnitude of eye velocity when viewing near targets, which was consistent with the goal of maintaining gaze on target. The required vertical lVOR sensitivity to cancel an unmodified aVOR response and generate the observed eye velocity magnitude for near targets was almost 3 times that previously measured. Supplementary experiments were performed utilizing body-fixed active head pitch rotations at 1 and 2 Hz

  14. Heading in the right direction? An innovative approach toward proper patient head positioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grush, William H.; Steffen, Gary A

    2002-12-31

    An in-house-manufactured modification of the standard A-F foam rubber head-neck supports (aka. Timo Supports) was designed to eliminate clinical setup problems with head immobilization and instability during treatment, thus providing for a more comfortable head rest for the patient. The custom design of this head holder seeks to eliminate superior-to-inferior shift, and minimize the lateral right-to-left rotational movement of the head when coupled with an AquaPlast casting system. By focusing attention to the seating of the occipital portion of the head and contour of the patient's neck, the aforementioned problems of movement were addressed, while adhering to the interests ofmore » patient comfort in this modified head support system.« less

  15. A Public Database of Immersive VR Videos with Corresponding Ratings of Arousal, Valence, and Correlations between Head Movements and Self Report Measures.

    PubMed

    Li, Benjamin J; Bailenson, Jeremy N; Pines, Adam; Greenleaf, Walter J; Williams, Leanne M

    2017-01-01

    Virtual reality (VR) has been proposed as a methodological tool to study the basic science of psychology and other fields. One key advantage of VR is that sharing of virtual content can lead to more robust replication and representative sampling. A database of standardized content will help fulfill this vision. There are two objectives to this study. First, we seek to establish and allow public access to a database of immersive VR video clips that can act as a potential resource for studies on emotion induction using virtual reality. Second, given the large sample size of participants needed to get reliable valence and arousal ratings for our video, we were able to explore the possible links between the head movements of the observer and the emotions he or she feels while viewing immersive VR. To accomplish our goals, we sourced for and tested 73 immersive VR clips which participants rated on valence and arousal dimensions using self-assessment manikins. We also tracked participants' rotational head movements as they watched the clips, allowing us to correlate head movements and affect. Based on past research, we predicted relationships between the standard deviation of head yaw and valence and arousal ratings. Results showed that the stimuli varied reasonably well along the dimensions of valence and arousal, with a slight underrepresentation of clips that are of negative valence and highly arousing. The standard deviation of yaw positively correlated with valence, while a significant positive relationship was found between head pitch and arousal. The immersive VR clips tested are available online as supplemental material.

  16. A Public Database of Immersive VR Videos with Corresponding Ratings of Arousal, Valence, and Correlations between Head Movements and Self Report Measures

    PubMed Central

    Li, Benjamin J.; Bailenson, Jeremy N.; Pines, Adam; Greenleaf, Walter J.; Williams, Leanne M.

    2017-01-01

    Virtual reality (VR) has been proposed as a methodological tool to study the basic science of psychology and other fields. One key advantage of VR is that sharing of virtual content can lead to more robust replication and representative sampling. A database of standardized content will help fulfill this vision. There are two objectives to this study. First, we seek to establish and allow public access to a database of immersive VR video clips that can act as a potential resource for studies on emotion induction using virtual reality. Second, given the large sample size of participants needed to get reliable valence and arousal ratings for our video, we were able to explore the possible links between the head movements of the observer and the emotions he or she feels while viewing immersive VR. To accomplish our goals, we sourced for and tested 73 immersive VR clips which participants rated on valence and arousal dimensions using self-assessment manikins. We also tracked participants' rotational head movements as they watched the clips, allowing us to correlate head movements and affect. Based on past research, we predicted relationships between the standard deviation of head yaw and valence and arousal ratings. Results showed that the stimuli varied reasonably well along the dimensions of valence and arousal, with a slight underrepresentation of clips that are of negative valence and highly arousing. The standard deviation of yaw positively correlated with valence, while a significant positive relationship was found between head pitch and arousal. The immersive VR clips tested are available online as supplemental material. PMID:29259571

  17. Kinematics of the human mandible for different head postures.

    PubMed

    Visscher, C M; Huddleston Slater, J J; Lobbezoo, F; Naeije, M

    2000-04-01

    The influence of head posture on movement paths of the incisal point (IP) and of the mandibular condyles during free open-close movements was studied. Ten persons, without craniomandibular or cervical spine disorders, participated in the study. Open close mandibular movements were recorded with the head in five postures, viz., natural head posture, forward head posture, military posture, and lateroflexion to the right and to the left side, using the Oral Kinesiologic Analysis System (OKAS-3D). This study showed that in a military head posture, the opening movement path of the incisal point is shifted anteriorly relative to the path in a natural head posture. In a forward head posture, the movement path is shifted posteriorly whereas during lateroflexion, it deviates to the side the head has moved to. Moreover, the intra-articular distance in the temporomandibular joint during closing is smaller with the head in military posture and greater in forward head posture, as compared to the natural head posture. During lateroflexion, the intra-articular distance on the ipsilateral side is smaller. The influence of head posture upon the kinematics of the mandible is probably a manifestation of differences in mandibular loading in the different head postures.

  18. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect

    PubMed Central

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants’ behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.’s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out. PMID:26594188

  19. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas

    PubMed Central

    Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen

    2015-01-01

    EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657

  20. Distinct eye movement patterns enhance dynamic visual acuity.

    PubMed

    Palidis, Dimitrios J; Wyder-Hodge, Pearson A; Fooken, Jolande; Spering, Miriam

    2017-01-01

    Dynamic visual acuity (DVA) is the ability to resolve fine spatial detail in dynamic objects during head fixation, or in static objects during head or body rotation. This ability is important for many activities such as ball sports, and a close relation has been shown between DVA and sports expertise. DVA tasks involve eye movements, yet, it is unclear which aspects of eye movements contribute to successful performance. Here we examined the relation between DVA and the kinematics of smooth pursuit and saccadic eye movements in a cohort of 23 varsity baseball players. In a computerized dynamic-object DVA test, observers reported the location of the gap in a small Landolt-C ring moving at various speeds while eye movements were recorded. Smooth pursuit kinematics-eye latency, acceleration, velocity gain, position error-and the direction and amplitude of saccadic eye movements were linked to perceptual performance. Results reveal that distinct eye movement patterns-minimizing eye position error, tracking smoothly, and inhibiting reverse saccades-were related to dynamic visual acuity. The close link between eye movement quality and DVA performance has important implications for the development of perceptual training programs to improve DVA.

  1. Distinct eye movement patterns enhance dynamic visual acuity

    PubMed Central

    Palidis, Dimitrios J.; Wyder-Hodge, Pearson A.; Fooken, Jolande; Spering, Miriam

    2017-01-01

    Dynamic visual acuity (DVA) is the ability to resolve fine spatial detail in dynamic objects during head fixation, or in static objects during head or body rotation. This ability is important for many activities such as ball sports, and a close relation has been shown between DVA and sports expertise. DVA tasks involve eye movements, yet, it is unclear which aspects of eye movements contribute to successful performance. Here we examined the relation between DVA and the kinematics of smooth pursuit and saccadic eye movements in a cohort of 23 varsity baseball players. In a computerized dynamic-object DVA test, observers reported the location of the gap in a small Landolt-C ring moving at various speeds while eye movements were recorded. Smooth pursuit kinematics—eye latency, acceleration, velocity gain, position error—and the direction and amplitude of saccadic eye movements were linked to perceptual performance. Results reveal that distinct eye movement patterns—minimizing eye position error, tracking smoothly, and inhibiting reverse saccades—were related to dynamic visual acuity. The close link between eye movement quality and DVA performance has important implications for the development of perceptual training programs to improve DVA. PMID:28187157

  2. Spared Ability to Perceive Direction of Locomotor Heading and Scene-Relative Object Movement Despite Inability to Perceive Relative Motion

    PubMed Central

    Vaina, Lucia M.; Buonanno, Ferdinando; Rushton, Simon K.

    2014-01-01

    Background All contemporary models of perception of locomotor heading from optic flow (the characteristic patterns of retinal motion that result from self-movement) begin with relative motion. Therefore it would be expected that an impairment on perception of relative motion should impact on the ability to judge heading and other 3D motion tasks. Material/Methods We report two patients with occipital lobe lesions whom we tested on a battery of motion tasks. Patients were impaired on all tests that involved relative motion in plane (motion discontinuity, form from differences in motion direction or speed). Despite this they retained the ability to judge their direction of heading relative to a target. A potential confound is that observers can derive information about heading from scale changes bypassing the need to use optic flow. Therefore we ran further experiments in which we isolated optic flow and scale change. Results Patients’ performance was in normal ranges on both tests. The finding that ability to perceive heading can be retained despite an impairment on ability to judge relative motion questions the assumption that heading perception proceeds from initial processing of relative motion. Furthermore, on a collision detection task, SS and SR’s performance was significantly better for simulated forward movement of the observer in the 3D scene, than for the static observer. This suggests that in spite of severe deficits on relative motion in the frontoparlel (xy) plane, information from self-motion helped identification objects moving along an intercept 3D relative motion trajectory. Conclusions This result suggests a potential use of a flow parsing strategy to detect in a 3D world the trajectory of moving objects when the observer is moving forward. These results have implications for developing rehabilitation strategies for deficits in visually guided navigation. PMID:25183375

  3. Dynamic modeling of the neck muscles during horizontal head movement. Part II: Model construction in Pro/Engineer.

    PubMed

    Haapala, Stephenie A; Enderle, John D

    2003-01-01

    This paper describes the next phase of research on a parametric model of the head-neck system for dynamic simulation of horizontal head rotation. A skull has been imported into Pro/Engineer software and has been assigned mass properties such as density, surface area and moments of inertia. The origin of a universal coordinate system has been located at the center of gravity of the T1 vertebrae. Identification of this origin allows insertion and attachment points of the sternocleidomastoid (SCOM) and splenius capitis to be located. An assembly has been created, marking the location of both muscle sets. This paper will also explore the obstacles encountered when working with an imported feature in Pro/E and attempts to resolve some of these issues. The goal of this work involves the creation of a 3D homeomorphic saccadic eye and head movement system.

  4. 10 CFR 1706.4 - Head of the contracting activity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Head of the contracting activity. 1706.4 Section 1706.4 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.4 Head of the contracting activity. The head of the contracting activity for the Board shall be...

  5. 10 CFR 1706.4 - Head of the contracting activity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Head of the contracting activity. 1706.4 Section 1706.4 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.4 Head of the contracting activity. The head of the contracting activity for the Board shall be...

  6. 10 CFR 1706.4 - Head of the contracting activity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Head of the contracting activity. 1706.4 Section 1706.4 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.4 Head of the contracting activity. The head of the contracting activity for the Board shall be...

  7. 10 CFR 1706.4 - Head of the contracting activity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Head of the contracting activity. 1706.4 Section 1706.4 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.4 Head of the contracting activity. The head of the contracting activity for the Board shall be...

  8. 10 CFR 1706.4 - Head of the contracting activity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Head of the contracting activity. 1706.4 Section 1706.4 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.4 Head of the contracting activity. The head of the contracting activity for the Board shall be...

  9. Progressive addition spectacle lenses: Design preferences and head movements while reading

    NASA Astrophysics Data System (ADS)

    Preston, Julie Lynn

    In a subjective preference study, two key progressive addition lens parameters, near zone width and corridor length, were varied in a double-masked, randomized, clinical trial of 49 patients. Each subject received a complete eye examination and a new frame. Each wore 6 pairs of lenses for one week at a time and completed questionnaires relating to vision, adaptation, and satisfaction. The preferred lens was identified from the three near zone width lenses and from the three corridor length lenses. Patient characteristics were analyzed for their effect on design preference. Satisfaction ratings following a brief experience with each design were compared to ratings after one week of wear in order to ascertain the predictability of initial impressions. One lens design appeared twice in the preference trial, providing an assessment of the repeatability of the rating instrument. The lens design with the widest near zone was rated significantly lower than the other near zone width designs for nearly every question relating to vision, adaptation, and satisfaction. This lens was also least preferred of all the designs. Preferences for corridor length were evenly distributed among the three designs. Of patient characteristics, years of progressive addition lens wear and gender significantly affected design preference in this population. Initial impressions were not predictive of satisfaction after a week of wear. The rating instrument was judged to have low repeatability. In the head movement portion of the study, 18 participants from the preference study wore the three near zone width designs while reading three paragraphs of varying print size. From a 20 second recording for each of three different paragraphs with each lens, measures of head rotation and posture were collected. The amplitude of head rotation was significantly affected by print size but not by lens design. The effective zone widths on the lenses scanned by the eyes and the locations of the reading levels

  10. Simulation of saltwater movement in the Floridan aquifer system, Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Bush, Peter W.

    1988-01-01

    aquifer beneath Hilton Head Island should remain below 250 milligrams per liter for the next 45 to 50 years. Aquifer properties and selected boundary conditions were tested with several 1,000-year simulations which show that lateral permeability, transverse dispersivity, and landward boundary flow have the most influence on saltwater movement in the Upper Floridan aquifer.

  11. Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks.

    PubMed

    Ebina, Teppei; Masamizu, Yoshito; Tanaka, Yasuhiro R; Watakabe, Akiya; Hirakawa, Reiko; Hirayama, Yuka; Hira, Riichiro; Terada, Shin-Ichiro; Koketsu, Daisuke; Hikosaka, Kazuo; Mizukami, Hiroaki; Nambu, Atsushi; Sasaki, Erika; Yamamori, Tetsuo; Matsuzaki, Masanori

    2018-05-14

    Two-photon imaging in behaving animals has revealed neuronal activities related to behavioral and cognitive function at single-cell resolution. However, marmosets have posed a challenge due to limited success in training on motor tasks. Here we report the development of protocols to train head-fixed common marmosets to perform upper-limb movement tasks and simultaneously perform two-photon imaging. After 2-5 months of training sessions, head-fixed marmosets can control a manipulandum to move a cursor to a target on a screen. We conduct two-photon calcium imaging of layer 2/3 neurons in the motor cortex during this motor task performance, and detect task-relevant activity from multiple neurons at cellular and subcellular resolutions. In a two-target reaching task, some neurons show direction-selective activity over the training days. In a short-term force-field adaptation task, some neurons change their activity when the force field is on. Two-photon calcium imaging in behaving marmosets may become a fundamental technique for determining the spatial organization of the cortical dynamics underlying action and cognition.

  12. Effects of canal plugging on the vestibuloocular reflex and vestibular nerve discharge during passive and active head rotations.

    PubMed

    Sadeghi, Soroush G; Goldberg, Jay M; Minor, Lloyd B; Cullen, Kathleen E

    2009-11-01

    Mechanical occlusion (plugging) of the slender ducts of semicircular canals has been used in the clinic as well as in basic vestibular research. Here, we investigated the effect of canal plugging in two macaque monkeys on the horizontal vestibuloocular reflex (VOR) and the responses of vestibular-nerve afferents during passive head rotations. Afferent responses to active head movements were also studied. The horizontal VOR gain decreased after plugging to <0.1 for frequencies <2 Hz but rose to about 0.6 as frequency was increased to 15 Hz. Afferents innervating plugged horizontal canals had response sensitivities that increased with the frequency of passive rotations from <0.01 (spikes/s)/( degrees/s) at 0.5 Hz to values of about 0.2 and 0.5 (spikes/s)/( degrees/s) at 8 Hz for regular and irregular afferents, respectively (<50% of responses in controls). An increase in phase lead was also noted following plugging in afferent discharge, but not in the VOR. Because the phase discrepancy between the VOR and afferent discharge is much larger than that seen in control animals, this suggests that central adaptation shapes VOR dynamics following plugging. The effect of canal plugging on afferent responses can be modeled as an increase in stiffness and a reduction in the dominant time constant and gain in the transfer function describing canal dynamics. Responses were also evident during active head rotations, consistent with the frequency content of these movements. We conclude that canal plugging in macaques is effective only at frequencies <2 Hz. At higher frequencies, afferents show significant responses, with a nearly 90 degrees phase lead, such that they encode near-rotational acceleration. Our results demonstrate that afferents innervating plugged canals respond robustly during voluntary movements, a finding that has implications for understanding the effects of canal plugging in clinical practice.

  13. Effects of Canal Plugging on the Vestibuloocular Reflex and Vestibular Nerve Discharge During Passive and Active Head Rotations

    PubMed Central

    Sadeghi, Soroush G.; Goldberg, Jay M.; Minor, Lloyd B.

    2009-01-01

    Mechanical occlusion (plugging) of the slender ducts of semicircular canals has been used in the clinic as well as in basic vestibular research. Here, we investigated the effect of canal plugging in two macaque monkeys on the horizontal vestibuloocular reflex (VOR) and the responses of vestibular-nerve afferents during passive head rotations. Afferent responses to active head movements were also studied. The horizontal VOR gain decreased after plugging to <0.1 for frequencies <2 Hz but rose to about 0.6 as frequency was increased to 15 Hz. Afferents innervating plugged horizontal canals had response sensitivities that increased with the frequency of passive rotations from <0.01 (spikes/s)/(°/s) at 0.5 Hz to values of about 0.2 and 0.5 (spikes/s)/(°/s) at 8 Hz for regular and irregular afferents, respectively (<50% of responses in controls). An increase in phase lead was also noted following plugging in afferent discharge, but not in the VOR. Because the phase discrepancy between the VOR and afferent discharge is much larger than that seen in control animals, this suggests that central adaptation shapes VOR dynamics following plugging. The effect of canal plugging on afferent responses can be modeled as an increase in stiffness and a reduction in the dominant time constant and gain in the transfer function describing canal dynamics. Responses were also evident during active head rotations, consistent with the frequency content of these movements. We conclude that canal plugging in macaques is effective only at frequencies <2 Hz. At higher frequencies, afferents show significant responses, with a nearly 90° phase lead, such that they encode near-rotational acceleration. Our results demonstrate that afferents innervating plugged canals respond robustly during voluntary movements, a finding that has implications for understanding the effects of canal plugging in clinical practice. PMID:19726724

  14. A comparison of economy and sagittal plane trunk movements among back-, back/front- and head-loading.

    PubMed

    Hudson, Sean; Cooke, Carlton; Davies, Simeon; West, Sacha; Gamieldien, Raeeq; Low, Chris; Lloyd, Ray

    2018-05-14

    It has been suggested that freedom of movement in the trunk could influence load carriage economy. This study aimed to compare the economy and sagittal plane trunk movements associated with three load carriage methods that constrain posture differently. Eighteen females walked at 3 km.h -1 with loads of 0, 3, 6, 9, 12, 15 and 20 kg carried on the back, back/front and head. Load carriage economy was assessed using the Extra Load Index (ELI). Change in sagittal plane trunk forward lean and trunk angle excursion from unloaded to loaded walking were assessed. Results show no difference in economy between methods (p = 0.483), despite differences in the change in trunk forward lean (p = 0.001) and trunk angle excursion (p = 0.021) from unloaded to loaded walking. We conclude that economy is not different among the three methods of load carriage, despite significant differences in sagittal plane trunk movements.

  15. Human amygdala activation during rapid eye movements of rapid eye movement sleep: an intracranial study.

    PubMed

    Corsi-Cabrera, María; Velasco, Francisco; Del Río-Portilla, Yolanda; Armony, Jorge L; Trejo-Martínez, David; Guevara, Miguel A; Velasco, Ana L

    2016-10-01

    The amygdaloid complex plays a crucial role in processing emotional signals and in the formation of emotional memories. Neuroimaging studies have shown human amygdala activation during rapid eye movement sleep (REM). Stereotactically implanted electrodes for presurgical evaluation in epileptic patients provide a unique opportunity to directly record amygdala activity. The present study analysed amygdala activity associated with REM sleep eye movements on the millisecond scale. We propose that phasic activation associated with rapid eye movements may provide the amygdala with endogenous excitation during REM sleep. Standard polysomnography and stereo-electroencephalograph (SEEG) were recorded simultaneously during spontaneous sleep in the left amygdala of four patients. Time-frequency analysis and absolute power of gamma activity were obtained for 250 ms time windows preceding and following eye movement onset in REM sleep, and in spontaneous waking eye movements in the dark. Absolute power of the 44-48 Hz band increased significantly during the 250 ms time window after REM sleep rapid eye movements onset, but not during waking eye movements. Transient activation of the amygdala provides physiological support for the proposed participation of the amygdala in emotional expression, in the emotional content of dreams and for the reactivation and consolidation of emotional memories during REM sleep, as well as for next-day emotional regulation, and its possible role in the bidirectional interaction between REM sleep and such sleep disorders as nightmares, anxiety and post-traumatic sleep disorder. These results provide unique, direct evidence of increased activation of the human amygdala time-locked to REM sleep rapid eye movements. © 2016 European Sleep Research Society.

  16. Turning a cylindrical treadmill with feet: an MR-compatible device for assessment of the neural correlates of lower-limb movement.

    PubMed

    Toyomura, Akira; Yokosawa, Koichi; Shimojo, Atsushi; Fujii, Tetsunoshin; Kuriki, Shinya

    2018-06-17

    Locomotion, which is one of the most basic motor functions, is critical for performing various daily-life activities. Despite its essential function, assessment of brain activity during lower-limb movement is still limited because of the constraints of existing brain imaging methods. Here, we describe an MR-compatible, cylindrical treadmill device that allows participants to perform stepping movements on an MRI scanner table. The device was constructed from wood and all of the parts were handmade by the authors. We confirmed the MR-compatibility of the device by evaluating the temporal signal-to-noise ratio of 64 voxels of a phantom during scanning. Brain activity was measured while twenty participants turned the treadmill with feet in sync with metronome sounds. The rotary speed of the cylinder was encoded by optical fibers. The post/pre-central gyrus and cerebellum showed significant activity during the movements, which was comparable to the activity patterns reported in previous studies. Head movement on the y- and z-axes was influenced more by lower-limb movement than was head movement on the x-axis. Among the 60 runs (3 runs × 20 participants), head movement during two of the runs (3.3%) was excessive due to the lower-limb movement. Compared to MR-compatible devices proposed in the previous studies, the advantage of this device may be simple structure and replicability to realize stepping movement with a supine position. Collectively, our results suggest that the treadmill device is useful for evaluating lower-limb-related neural activity. Copyright © 2018. Published by Elsevier B.V.

  17. Eye-head coordination during free exploration in human and cat.

    PubMed

    Einhäuser, Wolfgang; Moeller, Gudrun U; Schumann, Frank; Conradt, Jörg; Vockeroth, Johannes; Bartl, Klaus; Schneider, Erich; König, Peter

    2009-05-01

    Eye, head, and body movements jointly control the direction of gaze and the stability of retinal images in most mammalian species. The contribution of the individual movement components, however, will largely depend on the ecological niche the animal occupies and the layout of the animal's retina, in particular its photoreceptor density distribution. Here the relative contribution of eye-in-head and head-in-world movements in cats is measured, and the results are compared to recent human data. For the cat, a lightweight custom-made head-mounted video setup was used (CatCam). Human data were acquired with the novel EyeSeeCam device, which measures eye position to control a gaze-contingent camera in real time. For both species, analysis was based on simultaneous recordings of eye and head movements during free exploration of a natural environment. Despite the substantial differences in ecological niche, photoreceptor density, and saccade frequency, eye-movement characteristics in both species are remarkably similar. Coordinated eye and head movements dominate the dynamics of the retinal input. Interestingly, compensatory (gaze-stabilizing) movements play a more dominant role in humans than they do in cats. This finding was interpreted to be a consequence of substantially different timescales for head movements, with cats' head movements showing about a 5-fold faster dynamics than humans. For both species, models and laboratory experiments therefore need to account for this rich input dynamic to obtain validity for ecologically realistic settings.

  18. Kinematics and muscle activity of the head, lumbar and knee joints during 180° turning and sitting down task in older adults.

    PubMed

    Kuo, Fang-Chuan; Hong, Chang-Zern; Liau, Ben-Yi

    2014-01-01

    The "180° turning and sitting down task" is a very conscious movement that requires focusing on turning at the exact moment, and very few studies address on this topic in older adults. The purpose of the study was to compare kinematics and electromyography of the head, lumbar and knee joints during 180°turning in older and young adults. Twenty older adults and 20 younger adults were assessed. A 16-channel telemetry electromyography system with electrogoniometers and an inclinometer were used to record the head, lumbar and knee joint kinematic and electromyography data during the 180° turning. This movement had been further divided into 4 phases (braking, mid-stance, swing, and terminal loading) for analysis. There were significant differences in the joint displacement and muscular activity among the different phases. Comparison between groups showed that the older adults group had less lateral lumbar flexion, less knee flexion and lower velocity of the head and knee flexion compared to young adults during turning. The electromyography data of the left biceps femoris, left gastrocnemius and left erector spinae muscles in the older adults group showed significantly higher levels than in the young adults. Older adults need to adjust velocities of moving joints and increase the extensor synergy muscles of the back and the stance leg to provide posture stability. Kinematics and neuromuscular modulations of the head, lumbar and knee are required according to the various phases of the turn movements and change with aging. © 2013.

  19. Using movement and intentions to understand human activity.

    PubMed

    Zacks, Jeffrey M; Kumar, Shawn; Abrams, Richard A; Mehta, Ritesh

    2009-08-01

    During perception, people segment continuous activity into discrete events. They do so in part by monitoring changes in features of an ongoing activity. Characterizing these features is important for theories of event perception and may be helpful for designing information systems. The three experiments reported here asked whether the body movements of an actor predict when viewers will perceive event boundaries. Body movements were recorded using a magnetic motion tracking system and compared with viewers' segmentation of his activity into events. Changes in movement features were strongly associated with segmentation. This was more true for fine-grained than for coarse-grained boundaries, and was strengthened when the stimulus displays were reduced from live-action movies to simplified animations. These results suggest that movement variables play an important role in the process of segmenting activity into meaningful events, and that the influence of movement on segmentation depends on the availability of other information sources.

  20. Development and use of an observation tool for active gaming and movement (OTAGM) to measure children's movement skill components during active video game play.

    PubMed

    Rosa, Rita L; Ridgers, Nicola D; Barnett, Lisa M

    2013-12-01

    This article presents a direct observational tool for assessing children's body movements and movement skills during active video games. The Observation Tool of Active Gaming and Movement (OTGAM) was informed by the Test of Gross Motor Development-2. 18 elementary school children (12 boys, 6 girls; M age = 6.1 yr., SD = 0.9) were observed during Nintendo Wii game play. Using the OTAGM, researchers were able to capture and quantify the children's body movements and movement skills during active play of video games. Furthermore, the OTAGM captured specific components of object control skills: strike, throw, and roll. Game designers, health promotion practitioners, and researchers could use this information to enhance children's physical activity and movement skills.

  1. Integration of visual and non-visual self-motion cues during voluntary head movements in the human brain.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2018-05-15

    Our phenomenological experience of the stable world is maintained by continuous integration of visual self-motion with extra-retinal signals. However, due to conventional constraints of fMRI acquisition in humans, neural responses to visuo-vestibular integration have only been studied using artificial stimuli, in the absence of voluntary head-motion. We here circumvented these limitations and let participants to move their heads during scanning. The slow dynamics of the BOLD signal allowed us to acquire neural signal related to head motion after the observer's head was stabilized by inflatable aircushions. Visual stimuli were presented on head-fixed display goggles and updated in real time as a function of head-motion that was tracked using an external camera. Two conditions simulated forward translation of the participant. During physical head rotation, the congruent condition simulated a stable world, whereas the incongruent condition added arbitrary lateral motion. Importantly, both conditions were precisely matched in visual properties and head-rotation. By comparing congruent with incongruent conditions we found evidence consistent with the multi-modal integration of visual cues with head motion into a coherent "stable world" percept in the parietal operculum and in an anterior part of parieto-insular cortex (aPIC). In the visual motion network, human regions MST, a dorsal part of VIP, the cingulate sulcus visual area (CSv) and a region in precuneus (Pc) showed differential responses to the same contrast. The results demonstrate for the first time neural multimodal interactions between precisely matched congruent versus incongruent visual and non-visual cues during physical head-movement in the human brain. The methodological approach opens the path to a new class of fMRI studies with unprecedented temporal and spatial control over visuo-vestibular stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A typewriting system operated by head movements, based on home-computer equipment.

    PubMed

    Heuvelmans, A M; Mélotte, H E; Neve, J J

    1990-06-01

    For persons who cannot move their hands and legs we have designed a relatively inexpensive typewriting system which can be operated by movements of the head. The typewriter is made up of commercially available home computer equipment - i e, a computer including monitor and printer and a headset replacing the mouse. A user-friendly software program has been designed to replace the mouse button and to make this equipment act as a typewriter with simple text-editing features. Some ergonomics aspects of the typewriter set-up and the results of an evaluation of the typewriter by two patients suffering from amyotrophic lateral sclerosis (ALS) are given. Several factors relevant to the design, construction, evaluation and application of the typewriter are discussed.

  3. Physical activity and head and neck cancer risk.

    PubMed

    Leitzmann, Michael F; Koebnick, Corinna; Freedman, Neal D; Park, Yikyung; Ballard-Barbash, Rachel; Hollenbeck, Albert R; Schatzkin, Arthur; Abnet, Christian C

    2008-12-01

    To investigate the relation of physical activity to head and neck cancer. We prospectively examined the association between physical activity and head and neck cancer in 487,732 men and women, who, at baseline in 1995-1996, were 50-71 years old and free of cancer and emphysema. Follow-up occurred through 31 December 2003. During follow-up, 1,249 participants developed head and neck cancer, of which 42.0%, 18.9%, and 32.5% were located in the oral cavity, pharynx, and larynx, respectively. In analyses adjusted for age and gender, the relative risks (RR) of head and neck cancer for increasing frequency of physical activity (0, < 1, 1-2, 3-4, and >or=5 times per week) were 1.0 (reference), 0.76, 0.66, 0.57, and 0.62 (95% CI = 0.52-0.74), respectively (p for trend < 0.001). After multivariate adjustment including smoking, the relation was attenuated and became statistically non-significant (RR comparing extreme physical activity categories = 0.89, 95% CI = 0.74-1.06; p for trend = 0.272). In analyses of head and neck cancer subtypes, the corresponding RRs for cancers of the oral cavity, pharynx, and larynx were 0.98 (95% CI = 0.75-1.29), 0.70 (95% CI = 0.45-1.08), and 0.82 (95% CI = 0.59-1.13), respectively. Our findings suggest that physical activity is unlikely to play an important role in the prevention of head and neck cancer.

  4. Clinical identification of the simple sleep-related movement disorders.

    PubMed

    Walters, Arthur S

    2007-04-01

    Simple sleep-related movement disorders must be distinguished from daytime movement disorders that persist during sleep, sleep-related epilepsy, and parasomnias, which are generally characterized by activity that appears to be simultaneously complex, goal-directed, and purposeful but is outside the conscious awareness of the patient and, therefore, inappropriate. Once it is determined that the patient has a simple sleep-related movement disorder, the part of the body affected by the movement and the age of the patient give clues as to which sleep-related movement disorder is present. In some cases, all-night polysomnography with accompanying video may be necessary to make the diagnosis. Hypnic jerks (ie, sleep starts), bruxism, rhythmic movement disorder (ie, head banging/body rocking), and nocturnal leg cramps are discussed in addition to less well-appreciated disorders such as benign sleep myoclonus of infancy, excessive fragmentary myoclonus, and hypnagogic foot tremor/alternating leg muscle activation.

  5. Impact of communicative head movements on the quality of functional near-infrared spectroscopy signals: negligible effects for affirmative and negative gestures and consistent artifacts related to raising eyebrows

    NASA Astrophysics Data System (ADS)

    Balardin, Joana Bisol; Morais, Guilherme Augusto Zimeo; Furucho, Rogério Akira; Trambaiolli, Lucas Romualdo; Sato, João Ricardo

    2017-04-01

    Functional near-infrared spectroscopy (fNIRS) is currently one of the most promising tools in the neuroscientific research to study brain hemodynamics during naturalistic social communication. The application of fNIRS by studies in this field of knowledge has been widely justified by its strong resilience to motion artifacts, including those that might be generated by communicative head and facial movements. Previous studies have focused on the identification and correction of these artifacts, but a quantification of the differential contribution of common communicative movements on the quality of fNIRS signals is still missing. We assessed the impact of four movements (nodding head up and down, reading aloud, nodding head sideways, and raising eyebrows) performed during rest and task conditions on two metrics of signal quality control: an estimative of signal-to-noise performance and the negative correlation between oxygenated and deoxygenated hemoglobin (oxy-Hb and deoxy-Hb). Channel-wise group analysis confirmed the robustness of the fNIRS technique to head nodding movements but showed a large effect of raising eyebrows in both signal quality control metrics, both during task and rest conditions. Reading aloud did not disrupt the expected anticorrelation between oxy-Hb and deoxy-Hb but had a relatively large effect on signal-to-noise performance. These findings may have implications to the interpretation of fNIRS studies examining communicative processes.

  6. Pigeons (C. livia) Follow Their Head during Turning Flight: Head Stabilization Underlies the Visual Control of Flight.

    PubMed

    Ros, Ivo G; Biewener, Andrew A

    2017-01-01

    Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades), and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles.

  7. Pigeons (C. livia) Follow Their Head during Turning Flight: Head Stabilization Underlies the Visual Control of Flight

    PubMed Central

    Ros, Ivo G.; Biewener, Andrew A.

    2017-01-01

    Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades), and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles. PMID:29249929

  8. Auditory compensation for head rotation is incomplete.

    PubMed

    Freeman, Tom C A; Culling, John F; Akeroyd, Michael A; Brimijoin, W Owen

    2017-02-01

    Hearing is confronted by a similar problem to vision when the observer moves. The image motion that is created remains ambiguous until the observer knows the velocity of eye and/or head. One way the visual system solves this problem is to use motor commands, proprioception, and vestibular information. These "extraretinal signals" compensate for self-movement, converting image motion into head-centered coordinates, although not always perfectly. We investigated whether the auditory system also transforms coordinates by examining the degree of compensation for head rotation when judging a moving sound. Real-time recordings of head motion were used to change the "movement gain" relating head movement to source movement across a loudspeaker array. We then determined psychophysically the gain that corresponded to a perceptually stationary source. Experiment 1 showed that the gain was small and positive for a wide range of trained head speeds. Hence, listeners perceived a stationary source as moving slightly opposite to the head rotation, in much the same way that observers see stationary visual objects move against a smooth pursuit eye movement. Experiment 2 showed the degree of compensation remained the same for sounds presented at different azimuths, although the precision of performance declined when the sound was eccentric. We discuss two possible explanations for incomplete compensation, one based on differences in the accuracy of signals encoding image motion and self-movement and one concerning statistical optimization that sacrifices accuracy for precision. We then consider the degree to which such explanations can be applied to auditory motion perception in moving listeners. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. A Theatre Movement Bibliography, 1978 Edition.

    ERIC Educational Resources Information Center

    Norris, Lynne

    Reference materials that deal with various aspects of theater movement are grouped in this partially annotated bibliography under the following headings: anatomy, kinesiology, and physiology; combat and martial arts; integrated approaches to movement; mime; miscellaneous acting and movement approaches; movement notations systems; movement…

  10. Heading control and the effects of display characteristics

    NASA Technical Reports Server (NTRS)

    Hinz, Stephanie J.; Bennett, C. Thomas

    1989-01-01

    The present study evaluates whether type of display (dot or wire frame) and direction of movement have an effect on a person's ability to actively maintain a specific heading angle. The questions addressed were: (1) does the magnitude of the heading angle errors differ in the two displays, (2) are some heading angles more difficult to maintain than others, and (3) does the magnitude of some errors differ as a function of display type and direction of movement. Differences between the results of this study and previous research are explained by methodological differences across the studies. Another factor that may be responsible for the difference between previous findings and those presented here is the type of graphics used to display the simulated motion. The physical characteristics of the display or the graphics engines that generate the scene have varied greatly across the studies. Analyses and diagrams are presented showing results of the study and the differences generated from previous studies on this subject.

  11. Developmental Changes in the Effect of Active Left and Right Head Rotation on Random Number Generation

    PubMed Central

    Sosson, Charlotte; Georges, Carrie; Guillaume, Mathieu; Schuller, Anne-Marie; Schiltz, Christine

    2018-01-01

    Numbers are thought to be spatially organized along a left-to-right horizontal axis with small/large numbers on its left/right respectively. Behavioral evidence for this mental number line (MNL) comes from studies showing that the reallocation of spatial attention by active left/right head rotation facilitated the generation of small/large numbers respectively. While spatial biases in random number generation (RNG) during active movement are well established in adults, comparable evidence in children is lacking and it remains unclear whether and how children’s access to the MNL is affected by active head rotation. To get a better understanding of the development of embodied number processing, we investigated the effect of active head rotation on the mean of generated numbers as well as the mean difference between each number and its immediately preceding response (the first order difference; FOD) not only in adults (n = 24), but also in 7- to 11-year-old elementary school children (n = 70). Since the sign and absolute value of FODs carry distinct information regarding spatial attention shifts along the MNL, namely their direction (left/right) and size (narrow/wide) respectively, we additionally assessed the influence of rotation on the total of negative and positive FODs regardless of their numerical values as well as on their absolute values. In line with previous studies, adults produced on average smaller numbers and generated smaller mean FODs during left than right rotation. More concretely, they produced more negative/positive FODs during left/right rotation respectively and the size of negative FODs was larger (in terms of absolute value) during left than right rotation. Importantly, as opposed to adults, no significant differences in RNG between left and right head rotations were observed in children. Potential explanations for such age-related changes in the effect of active head rotation on RNG are discussed. Altogether, the present study confirms that

  12. Developmental Changes in the Effect of Active Left and Right Head Rotation on Random Number Generation.

    PubMed

    Sosson, Charlotte; Georges, Carrie; Guillaume, Mathieu; Schuller, Anne-Marie; Schiltz, Christine

    2018-01-01

    Numbers are thought to be spatially organized along a left-to-right horizontal axis with small/large numbers on its left/right respectively. Behavioral evidence for this mental number line (MNL) comes from studies showing that the reallocation of spatial attention by active left/right head rotation facilitated the generation of small/large numbers respectively. While spatial biases in random number generation (RNG) during active movement are well established in adults, comparable evidence in children is lacking and it remains unclear whether and how children's access to the MNL is affected by active head rotation. To get a better understanding of the development of embodied number processing, we investigated the effect of active head rotation on the mean of generated numbers as well as the mean difference between each number and its immediately preceding response (the first order difference; FOD) not only in adults ( n = 24), but also in 7- to 11-year-old elementary school children ( n = 70). Since the sign and absolute value of FODs carry distinct information regarding spatial attention shifts along the MNL, namely their direction (left/right) and size (narrow/wide) respectively, we additionally assessed the influence of rotation on the total of negative and positive FODs regardless of their numerical values as well as on their absolute values. In line with previous studies, adults produced on average smaller numbers and generated smaller mean FODs during left than right rotation. More concretely, they produced more negative/positive FODs during left/right rotation respectively and the size of negative FODs was larger (in terms of absolute value) during left than right rotation. Importantly, as opposed to adults, no significant differences in RNG between left and right head rotations were observed in children. Potential explanations for such age-related changes in the effect of active head rotation on RNG are discussed. Altogether, the present study confirms that

  13. Movement disorders secondary to craniocerebral trauma.

    PubMed

    Krauss, Joachim K

    2015-01-01

    Over the past few decades it has been recognized that traumatic brain injury may result in various movement disorders. In survivors of severe head injury, post-traumatic movement disorders were reported in about 20%, and they persisted in about 10% of patients. The most frequent persisting movement disorder in this population is kinetic cerebellar outflow tremor in about 9%, followed by dystonia in about 4%. While tremor is associated most frequently with cerebellar or mesencephalic lesions, patients with dystonia frequently have basal ganglia or thalamic lesions. Moderate or mild traumatic brain injury only rarely causes persistent post-traumatic movement disorders. It appears that the frequency of post-traumatic movement disorders overall has been declining which most likely is secondary to improved treatment of brain injury. In patients with disabling post-traumatic movement disorders which are refractory to medical treatment, stereotactic neurosurgery can provide long-lasting benefit. While in the past the primary option for severe kinetic tremor was thalamotomy and for dystonia thalamotomy or pallidotomy, today deep brain stimulation has become the preferred treatment. Parkinsonism is a rare consequence of single head injury, but repeated head injury such as seen in boxing can result in chronic encephalopathy with parkinsonian features. While there is still controversy whether or not head injury is a risk factor for the development of Parkinson's disease, recent studies indicate that genetic susceptibility might be relevant. © 2015 Elsevier B.V. All rights reserved.

  14. Relationship of physical activity to fundamental movement skills among adolescents.

    PubMed

    Okely, A D; Booth, M L; Patterson, J W

    2001-11-01

    To determine the relationship of participation in organized and nonorganized physical activity with fundamental movement skills among adolescents. Male and female children in Grade 8 (mean age, 13.3 yr) and Grade 10 (mean age, 15.3 yr) were assessed on six fundamental movement skills (run, vertical jump, catch, overhand throw, forehand strike, and kick). Physical activity was assessed using a self-report recall measure where students reported the type, duration, and frequency of participation in organized physical activity and nonorganized physical activity during a usual week. Multiple regression analysis indicated that fundamental movement skills significantly predicted time in organized physical activity, although the percentage of variance it could explain was small. This prediction was stronger for girls than for boys. Multiple regression analysis showed no relationship between time in nonorganized physical activity and fundamental movement skills. Fundamental movement skills are significantly associated with adolescents' participation in organized physical activity, but predict only a small portion of it.

  15. Head stereotypies in STXBP1 encephalopathy.

    PubMed

    Kim, Young Ok; Korff, Christian M; Villaluz, Mel Michel G; Suls, Arvid; Weckhuysen, Sarah; De Jonghe, Peter; Scheffer, Ingrid E

    2013-08-01

    STXBP1 encephalopathy is associated with a range of movement disorders. We observed head stereotypies in three patients. These comprised a slow (<1Hz), high-amplitude, horizontal, 'figure-of-eight' pattern, beginning at age 4-6 years and resulting in neck muscle hypertrophy, in two males; a faster (2-3Hz), side-to-side, 'no' movement, starting at the age of 9 years 6 months was observed in one female. Upper limb and truncal stereotypies and vocalization occurred intermittently with the head movements. The stereotypies increased with excitement but settled with concentration and sleep. Head and upper limb stereotypies are valuable clinical clues to the diagnosis of STXBP1 encephalopathy in patients with profound impairments. © 2013 Mac Keith Press.

  16. Comparison of smooth pursuit and combined eye-head tracking in human subjects with deficient labyrinthine function

    NASA Technical Reports Server (NTRS)

    Leigh, R. J.; Thurston, S. E.; Sharpe, J. A.; Ranalli, P. J.; Hamid, M. A.

    1987-01-01

    The effects of deficient labyrinthine function on smooth visual tracking with the eyes and head were investigated, using ten patients with bilateral peripheral vestibular disease and ten normal controls. Active, combined eye-head tracking (EHT) was significantly better in patients than smooth pursuit with the eyes alone, whereas normal subjects pursued equally well in both cases. Compensatory eye movements during active head rotation in darkness were always less in patients than in normal subjects. These data were used to examine current hypotheses that postulate central cancellation of the vestibulo-ocular reflex (VOR) during EHT. A model that proposes summation of an integral smooth pursuit command and VOR/compensatory eye movements is consistent with the findings. Observation of passive EHT (visual fixation of a head-fixed target during en bloc rotation) appears to indicate that in this mode parametric gain changes contribute to modulation of the VOR.

  17. Natural Whisker-Guided Behavior by Head-Fixed Mice in Tactile Virtual Reality

    PubMed Central

    Sofroniew, Nicholas J.; Cohen, Jeremy D.; Lee, Albert K.

    2014-01-01

    During many natural behaviors the relevant sensory stimuli and motor outputs are difficult to quantify. Furthermore, the high dimensionality of the space of possible stimuli and movements compounds the problem of experimental control. Head fixation facilitates stimulus control and movement tracking, and can be combined with techniques for recording and manipulating neural activity. However, head-fixed mouse behaviors are typically trained through extensive instrumental conditioning. Here we present a whisker-based, tactile virtual reality system for head-fixed mice running on a spherical treadmill. Head-fixed mice displayed natural movements, including running and rhythmic whisking at 16 Hz. Whisking was centered on a set point that changed in concert with running so that more protracted whisking was correlated with faster running. During turning, whiskers moved in an asymmetric manner, with more retracted whisker positions in the turn direction and protracted whisker movements on the other side. Under some conditions, whisker movements were phase-coupled to strides. We simulated a virtual reality tactile corridor, consisting of two moveable walls controlled in a closed-loop by running speed and direction. Mice used their whiskers to track the walls of the winding corridor without training. Whisker curvature changes, which cause forces in the sensory follicles at the base of the whiskers, were tightly coupled to distance from the walls. Our behavioral system allows for precise control of sensorimotor variables during natural tactile navigation. PMID:25031397

  18. Patterns of arm muscle activation involved in octopus reaching movements.

    PubMed

    Gutfreund, Y; Flash, T; Fiorito, G; Hochner, B

    1998-08-01

    The extreme flexibility of the octopus arm allows it to perform many different movements, yet octopuses reach toward a target in a stereotyped manner using a basic invariant motor structure: a bend traveling from the base of the arm toward the tip (Gutfreund et al., 1996a). To study the neuronal control of these movements, arm muscle activation [electromyogram (EMG)] was measured together with the kinematics of reaching movements. The traveling bend is associated with a propagating wave of muscle activation, with maximal muscle activation slightly preceding the traveling bend. Tonic activation was occasionally maintained afterward. Correlation of the EMG signals with the kinematic variables (velocities and accelerations) reveals that a significant part of the kinematic variability can be explained by the level of muscle activation. Furthermore, the EMG level measured during the initial stages of movement predicts the peak velocity attained toward the end of the reaching movement. These results suggest that feed-forward motor commands play an important role in the control of movement velocity and that simple adjustment of the excitation levels at the initial stages of the movement can set the velocity profile of the whole movement. A simple model of octopus arm extension is proposed in which the driving force is set initially and is then decreased in proportion to arm diameter at the bend. The model qualitatively reproduces the typical velocity profiles of octopus reaching movements, suggesting a simple control mechanism for bend propagation in the octopus arm.

  19. Evaluation of cervical posture improvement of children with cerebral palsy after physical therapy based on head movements and serious games.

    PubMed

    Velasco, Miguel A; Raya, Rafael; Muzzioli, Luca; Morelli, Daniela; Otero, Abraham; Iosa, Marco; Cincotti, Febo; Rocon, Eduardo

    2017-08-18

    This paper presents the preliminary results of a novel rehabilitation therapy for cervical and trunk control of children with cerebral palsy (CP) based on serious videogames and physical exercise. The therapy is based on the use of the ENLAZA Interface, a head mouse based on inertial technology that will be used to control a set of serious videogames with movements of the head. Ten users with CP participated in the study. Whereas the control group (n = 5) followed traditional therapies, the experimental group (n = 5) complemented these therapies with a series of ten sessions of gaming with ENLAZA to exercise cervical flexion-extensions, rotations and inclinations in a controlled, engaging environment. The ten work sessions yielded improvements in head and trunk control that were higher in the experimental group for Visual Analogue Scale, Goal Attainment Scaling and Trunk Control Measurement Scale (TCMS). Significant differences (27% vs. 2% of percentage improvement) were found between the experimental and control groups for TCMS (p < 0.05). The kinematic assessment shows that there were some improvements in the active and the passive range of motion. However, no significant differences were found pre- and post-intervention. Physical therapy that combines serious games with traditional rehabilitation could allow children with CP to achieve larger function improvements in the trunk and cervical regions. However, given the limited scope of this trial (n = 10) additional studies are needed to corroborate this hypothesis.

  20. Head Rotation Detection in Marmoset Monkeys

    NASA Astrophysics Data System (ADS)

    Simhadri, Sravanthi

    Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys. Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection. The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per

  1. Fundamental movement skills and habitual physical activity in young children.

    PubMed

    Fisher, Abigail; Reilly, John J; Kelly, Louise A; Montgomery, Colette; Williamson, Avril; Paton, James Y; Grant, Stan

    2005-04-01

    To test for relationships between objectively measured habitual physical activity and fundamental movement skills in a relatively large and representative sample of preschool children. Physical activity was measured over 6 d using the Computer Science and Applications (CSA) accelerometer in 394 boys and girls (mean age 4.2, SD 0.5 yr). Children were scored on 15 fundamental movement skills, based on the Movement Assessment Battery, by a single observer. Total physical activity (r=0.10, P<0.05) and percent time spent in moderate to vigorous physical activity (MVPA) (r=0.18, P<0.001) were significantly correlated with total movement skills score. Time spent in light-intensity physical activity was not significantly correlated with motor skills score (r=0.02, P>0.05). In this sample and setting, fundamental movement skills were significantly associated with habitual physical activity, but the association between the two variables was weak. The present study questions whether the widely assumed relationships between motor skills and habitual physical activity actually exist in young children.

  2. Active Manual Movement Improves Directional Perception of Illusory Force.

    PubMed

    Amemiya, Tomohiro; Gomi, Hiroaki

    2016-01-01

    Active touch sensing is known to facilitate the discrimination or recognition of the spatial properties of an object from the movement of tactile sensors on the skin and by integrating proprioceptive feedback about hand positions or motor commands related to ongoing hand movements. On the other hand, several studies have reported that tactile processing is suppressed by hand movement. Thus, it is unclear whether or not the active exploration of force direction by using hand or arm movement improves the perception of the force direction. Here, we show that active manual movement in both the rotational and translational directions enhances the precise perception of the force direction. To make it possible to move a hand in space without any physical constraints, we have adopted a method of inducing the sensation of illusory force by asymmetric vibration. We found that the precision of the perceived force direction was significantly better when the shoulder is rotated medially and laterally. We also found that directional errors supplied by the motor response of the perceived force were smaller than those resulting from perceptual judgments between visual and haptic directional stimuli. These results demonstrate that active manual movement boosts the precision of the perceived direction of an illusory force.

  3. Eye movement analysis for activity recognition using electrooculography.

    PubMed

    Bulling, Andreas; Ward, Jamie A; Gellersen, Hans; Tröster, Gerhard

    2011-04-01

    In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixations, and blinks-and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.

  4. Cybersickness Onset With Reflexive Head Movements During Land and Shipboard Head-Mounted Display Flight Simulation

    DTIC Science & Technology

    2010-09-09

    provoked a predictable OKCR coronal head tilt (p < 0.001) whenever aircraft angle of bank (AOB) increased (Fig. 2). With 90º of simulated AOB, land... head pitch were –3.3 ± 3.8 to 6.8 ± 5.9 on land, and –4.0º ± 5.6 to 7.6º ± 9.7 at sea (Fig. 3). 7 Combined Coronal OKCR ( Head Tilt ) Data for...Land OKCR Figure 2: Coronal OKCR ( head tilt ) vs. angle of bank, during both land based and shipboard HMD/VR flight simulation. Combined

  5. Cortical preparatory activity: representation of movement or first cog in a dynamical machine?

    PubMed Central

    Churchland, MM; Cunningham, JP; Kaufman, MT; Ryu, SI; Shenoy, KV

    2010-01-01

    Summary The motor cortices are active during both movement and movement preparation. A common assumption is that preparatory activity constitutes a sub-threshold form of movement activity: a neuron active during rightwards movements becomes modestly active during preparation of a rightwards movement. We asked whether this pattern of activity is in fact observed. We found that it was not: at the level of a single neuron, preparatory tuning was weakly correlated with movement-period tuning. Yet somewhat paradoxically, preparatory tuning could be captured by a preferred direction in an abstract ‘space’ that described the population-level pattern of movement activity. In fact, this relationship accounted for preparatory responses better than did traditional tuning models. These results are expected if preparatory activity provides the initial state of a dynamical system whose evolution produces movement activity. Our results thus suggest that preparatory activity may not represent specific factors, and may instead play a more mechanistic role. PMID:21040842

  6. Comparative functional MRI study to assess brain activation upon active and passive finger movements in patients with cerebral infarction.

    PubMed

    Fu, Yue; Zhang, Quan; Zhang, Jing; Zhang, Yun Ting

    2015-01-01

    To compare the effects of active and passive movements on brain activation in patients with cerebral infarction using fMRI. Twenty-four hemiplegic patients with cerebral infarction were evaluated using fMRI. All patients performed active and passive finger opposition movements. Patients were instructed to perform the finger opposition movement for the active movement task. For the passive movement task, the subject's fingers were moved by the examiner to perform the finger opposition movement. Statistical parametric mapping software was used for statistical analyses and to process all data. In the affected hemisphere, sensorimotor cortex (SMC) activation intensity and range were significantly stronger during the passive movement of the affected fingers compared to the active movement of the affected fingers (p < 0.05). However, there were no significant differences between active and passive movements of unaffected fingers in SMC activation intensity and range in the unaffected hemisphere (p > 0.05). In addition, the passive movement activated many other regions of the brain. The brain regions activated by passive movements of the affected fingers tended to center toward the contralateral SMC. Our findings suggest that passive movements induce cortical reorganization in patients with cerebral infarction. Therefore, passive movement is likely beneficial for motor function recovery in patients with cerebral infarction.

  7. The Costs and Risks of Social Activism: A Study of Sanctuary Movement Activism.

    ERIC Educational Resources Information Center

    Wiltfang, Gregory L.; McAdam, Doug

    1991-01-01

    Among 141 activists with varying levels of participation in the sanctuary movement, biographical availability factors--younger age and greater discretionary time--best predict high-cost activism (more hours devoted to the movement), whereas ideological socialization factors best predict high-risk activism (direct contact with refugees). Contains…

  8. Dissociation of eye and head components of gaze shifts by stimulation of the omnipause neuron region.

    PubMed

    Gandhi, Neeraj J; Sparks, David L

    2007-07-01

    Natural movements often include actions integrated across multiple effectors. Coordinated eye-head movements are driven by a command to shift the line of sight by a desired displacement vector. Yet because extraocular and neck motoneurons are separate entities, the gaze shift command must be separated into independent signals for eye and head movement control. We report that this separation occurs, at least partially, at or before the level of pontine omnipause neurons (OPNs). Stimulation of the OPNs prior to and during gaze shifts temporally decoupled the eye and head components by inhibiting gaze and eye saccades. In contrast, head movements were consistently initiated before gaze onset, and ongoing head movements continued along their trajectories, albeit with some characteristic modulations. After stimulation offset, a gaze shift composed of an eye saccade, and a reaccelerated head movement was produced to preserve gaze accuracy. We conclude that signals subject to OPN inhibition produce the eye-movement component of a coordinated eye-head gaze shift and are not the only signals involved in the generation of the head component of the gaze shift.

  9. Kinematic and electromyographic analysis of the push movement in tai chi

    PubMed Central

    Chan, S; Luk, T; Hong, Y

    2003-01-01

    Background: Tai chi is a form of exercise derived from the martial art folk traditions of China. The force used in tai chi includes different principles of mechanical advantage. No studies on the kinematic features of tai chi exercise have been published. Objective: To analyse the kinematics and electromyographic characteristics of tai chi. Methods: An experienced tai chi master was asked to perform a sequence of basic movements: ward off, roll back, press, and push. The movements were videotaped and digitised using a motion analysis system. Electromyographic activities of the lumbar erector spinae, rectus femoris, medial hamstrings, and medial head of gastrocnemius were recorded by surface electrodes. The push movement data were analysed. Results: The medial hamstrings and medial head of gastrocnemius muscle groups maintained low activity, with higher electromyographic values in the lumbar erector spinae and substantially higher ones in the rectus femoris during the push movement. Both concentric and eccentric contractions occurred in muscles of the lower limbs, with eccentric contraction occurring mainly in the anti-gravity muscles such as the rectus femoris and the medial head of gastrocnemius. The forward and backward shifts in centre of gravity (CG) were mainly accomplished by increasing and decreasing respectively the joint angles of the bilateral lower limbs rather than by adopting a forward or backward postural lean. The path of the CG in the anteroposterior and mediolateral component was unique, and the sway or deviation from the path was small. The master maintained an upright posture and maintained a low CG (hips, knees, and ankles bent) while travelling slowly and steadily from one position to another. Conclusion: The eccentric muscle contraction of the lower limbs in the push movement of tai chi may help to strengthen the muscles. PMID:12893721

  10. Visual–Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey

    PubMed Central

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P.; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-01-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual–motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. PMID:25491118

  11. Postural control and head stability during natural gaze behaviour in 6- to 12-year-old children.

    PubMed

    Schärli, A M; van de Langenberg, R; Murer, K; Müller, R M

    2013-06-01

    We investigated how the influence of natural exploratory gaze behaviour on postural control develops from childhood into adulthood. In a cross-sectional design, we compared four age groups: 6-, 9-, 12-year-olds and young adults. Two experimental trials were performed: quiet stance with a fixed gaze (fixed) and quiet stance with natural exploratory gaze behaviour (exploratory). The latter was elicited by having participants watch an animated short film on a large screen in front of them. 3D head rotations in space and centre of pressure (COP) excursions on the ground plane were measured. Across conditions, both head rotation and COP displacement decreased with increasing age. Head movement was greater in the exploratory condition in all age groups. In all children-but not in adults-COP displacement was markedly greater in the exploratory condition. Bivariate correlations across groups showed highly significant positive correlations between COP displacement in ML direction and head rotation in yaw, roll, and pitch in both conditions. The regularity of COP displacements did not show a clear developmental trend, which indicates that COP dynamics were qualitatively similar across age groups. Together, the results suggest that the contribution of head movement to eye-head saccades decreases with age and that head instability-in part resulting from such gaze-related head movements-is an important limiting factor in children's postural control. The lack of head stabilisation might particularly affect children in everyday activities in which both postural control and visual exploration are required.

  12. Daily physical activity assessment: what is the importance of upper limb movements vs whole body movements?

    PubMed

    Kumahara, H; Tanaka, H; Schutz, Y

    2004-09-01

    The movement of the upper limbs (eg fidgeting-like activities) is a meaningful component of nonexercise activity thermogenesis (NEAT). This study examined the relationship between upper limb movements and whole body trunk movements, by simultaneously measuring energy expenditure during the course of the day. A cross-sectional study consisting of 88 subjects with a wide range in body mass index (17.3-32.5 kg/m(2)). The energy expenditure over a 24-h period was measured in a large respiratory chamber. The body movements were assessed by two uniaxial-accelerometers during daytime, one on the waist and the other on the dominant arm. The accelerometry scores from level 0 (=immobile) up to level 9 (=maximal intensity) were recorded. The activities of subjects were classified into eight categories: walking at two speeds on a horizontal treadmill (A & B), ambling (C), self-care tasks (D), desk work (E), meals (F), reading (G), watching TV (H). There was a significant relationship between the accelerometry scores from the waist (ACwaist) and that from the wrist (ACwrist) over the daytime period (R(2)=0.64; P<0.001). The ACwrist was systematically higher than the ACwaist during sedentary activities, whereas it was the reverse for walking activities. ACwrist to ACwaist ratio of activities E-H were above 1.0 and for walking activities (A-C) were below 1.0. A multiple regression analysis for predicting daytime energy expenditure revealed that the explained variance improved by 2% only when the ACwrist was added as a second predictor in addition to the ACwaist. This indicates that the effect of the ACwrist for predicting energy expenditure was of limited importance in our conditions of measurement. The acceleration of the upper limbs which includes fidgeting is more elevated than that of the whole body for sitting/lying down activities. However, their contribution to energy expenditure is lower than whole body trunk movements, thus indicating that the weight-bearing locomotion

  13. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement

    PubMed Central

    Pasquereau, Benjamin; DeLong, Mahlon R.

    2016-01-01

    Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson’s disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (−22%), speed (−40%), acceleration (−49%) and hand position (−33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (−50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes

  14. 48 CFR 702.170-10 - Head of the contracting activity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Head of the contracting activity. 702.170-10 Section 702.170-10 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL DEFINITIONS OF WORDS AND TERMS Definitions 702.170-10 Head of the contracting activity. (a...

  15. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.

    PubMed

    Kimmig, H; Ohlendorf, S; Speck, O; Sprenger, A; Rutschmann, R M; Haller, S; Greenlee, M W

    2008-01-01

    Smooth pursuit eye movements (SP) are driven by moving objects. The pursuit system processes the visual input signals and transforms this information into an oculomotor output signal. Despite the object's movement on the retina and the eyes' movement in the head, we are able to locate the object in space implying coordinate transformations from retinal to head and space coordinates. To test for the visual and oculomotor components of SP and the possible transformation sites, we investigated three experimental conditions: (I) fixation of a stationary target with a second target moving across the retina (visual), (II) pursuit of the moving target with the second target moving in phase (oculomotor), (III) pursuit of the moving target with the second target remaining stationary (visuo-oculomotor). Precise eye movement data were simultaneously measured with the fMRI data. Visual components of activation during SP were located in the motion-sensitive, temporo-parieto-occipital region MT+ and the right posterior parietal cortex (PPC). Motor components comprised more widespread activation in these regions and additional activations in the frontal and supplementary eye fields (FEF, SEF), the cingulate gyrus and precuneus. The combined visuo-oculomotor stimulus revealed additional activation in the putamen. Possible transformation sites were found in MT+ and PPC. The MT+ activation evoked by the motion of a single visual dot was very localized, while the activation of the same single dot motion driving the eye was rather extended across MT+. The eye movement information appeared to be dispersed across the visual map of MT+. This could be interpreted as a transfer of the one-dimensional eye movement information into the two-dimensional visual map. Potentially, the dispersed information could be used to remap MT+ to space coordinates rather than retinal coordinates and to provide the basis for a motor output control. A similar interpretation holds for our results in the PPC

  16. Molecular mechanics of 30S subunit head rotation.

    PubMed

    Mohan, Srividya; Donohue, John Paul; Noller, Harry F

    2014-09-16

    During ribosomal translocation, a process central to the elongation phase of protein synthesis, movement of mRNA and tRNAs requires large-scale rotation of the head domain of the small (30S) subunit of the ribosome. It has generally been accepted that the head rotates by pivoting around the neck helix (h28) of 16S rRNA, its sole covalent connection to the body domain. Surprisingly, we observe that the calculated axis of rotation does not coincide with the neck. Instead, comparative structure analysis across 55 ribosome structures shows that 30S head movement results from flexing at two hinge points lying within conserved elements of 16S rRNA. Hinge 1, although located within the neck, moves by straightening of the kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies within a three-way helix junction that extends to the body through a second, noncovalent connection; its movement results from flexing between helices h34 and h35 in a plane orthogonal to the movement of hinge 1. Concerted movement at these two hinges accounts for the observed magnitudes of head rotation. Our findings also explain the mode of action of spectinomycin, an antibiotic that blocks translocation by binding to hinge 2.

  17. Molecular mechanics of 30S subunit head rotation

    PubMed Central

    Mohan, Srividya; Donohue, John Paul; Noller, Harry F.

    2014-01-01

    During ribosomal translocation, a process central to the elongation phase of protein synthesis, movement of mRNA and tRNAs requires large-scale rotation of the head domain of the small (30S) subunit of the ribosome. It has generally been accepted that the head rotates by pivoting around the neck helix (h28) of 16S rRNA, its sole covalent connection to the body domain. Surprisingly, we observe that the calculated axis of rotation does not coincide with the neck. Instead, comparative structure analysis across 55 ribosome structures shows that 30S head movement results from flexing at two hinge points lying within conserved elements of 16S rRNA. Hinge 1, although located within the neck, moves by straightening of the kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies within a three-way helix junction that extends to the body through a second, noncovalent connection; its movement results from flexing between helices h34 and h35 in a plane orthogonal to the movement of hinge 1. Concerted movement at these two hinges accounts for the observed magnitudes of head rotation. Our findings also explain the mode of action of spectinomycin, an antibiotic that blocks translocation by binding to hinge 2. PMID:25187561

  18. Effect of viewing distance and location of the axis of head rotation on the monkey's vestibuloocular reflex. I. Eye movement responses.

    PubMed

    Snyder, L H; King, W M

    1992-04-01

    1. The vestibuloocular reflex (VOR) stabilizes images on the retina against movements of the head in space. Viewing distance, target eccentricity, and location of the axis of rotation may influence VOR responses because rotation of the head about most axes in space rotates and translates the eyes relative to visual targets. To study the VOR response to combined rotation and translation, monkeys were placed on a rate table and rotated briefly in the dark about a vertical axis that was located in front of or behind the eyes. The monkeys fixated a near or far visual target that was extinguished before the rotation. Eye movements were recorded from both eyes by the use of the search coil technique. 2. Peak eye velocity evoked by the VOR was linearly related to vergence angle for any axis of rotation. The percent change in the VOR with near target viewing relative to far target viewing at a vergence angle of 20 degrees was linearly related to the location of the axis of rotation. Axes located behind the eyes produced positive changes in VOR amplitude, and axes located in front of the eyes produced negative changes in VOR amplitude. An axis of rotation located in the coronal plane containing the centers of rotation of the eyes produced no modification of VOR amplitude. For any axis, the VOR compensated for approximately 90% of the translation of the eye relative to near targets. 3. The initial VOR response was not correct in magnitude but was refined by a series of three temporally delayed corrections of increasing complexity. The earliest VOR-evoked eye movement (10-20 ms after rotation onset) was independent of viewing distance and rotational axis location. In the next 100 ms, eye speed appeared to be sequentially modified three times: within 20 ms by viewing distance; within 30 ms by otolith translation; and within 100 ms by eye translation relative to the visual target. 4. These data suggest a formal model of the VOR consisting of four channels. Channel 1 conveys an

  19. African American Preschool Children's Physical Activity Levels in Head Start

    ERIC Educational Resources Information Center

    Shen, Bo; Reinhart-Lee, Tamara; Janisse, Heather; Brogan, Kathryn; Danford, Cynthia; Jen, K-L. C.

    2012-01-01

    The purpose of this study was to describe the physical activity levels of urban inner city preschoolers while attending Head Start, the federally funded preschool program for children from low-income families. Participants were 158 African American children. Their physical activity during Head Start days was measured using programmed RT-3…

  20. Physical Activity and Movement Proficiency: The Need for a Biocultural Approach.

    PubMed

    Malina, Robert M; Cumming, Sean P; Coelho E Silva, Manuel J

    2016-05-01

    "Gaps in Our Knowledge" are discussed in the context of the need to integrate biological and behavioral factors in a biocultural approach to physical activity and movement proficiency. Specific issues considered include outdoor play, organized and informal activity, biological maturation, tracking of activity, development of movement proficiency, and individual differences. Studies considered are largely based on youth in economically better-off, developed countries in the western culture context. There is a need to extend studies of physical activity and movement proficiency to different cultural contexts.

  1. A Pilot Study of Horizontal Head and Eye Rotations in Baseball Batting.

    PubMed

    Fogt, Nick; Persson, Tyler W

    2017-08-01

    The purpose of the study was to measure and compare horizontal head and eye tracking movements as baseball batters "took" pitches and swung at baseball pitches. Two former college baseball players were tested in two conditions. A pitching machine was used to project tennis balls toward the subjects. In the first condition, subjects acted as if they were taking (i.e., not swinging) the pitches. In the second condition, subjects attempted to bat the pitched balls. Head movements were measured with an inertial sensor; eye movements were measured with a video eye tracker. For each condition, the relationship between the horizontal head and eye rotations was similar for the two subjects, as were the overall head-, eye-, and gaze-tracking strategies. In the "take" condition, head movements in the direction of the ball were larger than eye movements for much of the pitch trajectory. Large eye movements occurred only late in the pitch trajectory. Gaze was directed near the ball until approximately 150 milliseconds before the ball arrived at the batter, at which time gaze was directed ahead of the ball to a location near that occupied when the ball crosses the plate. In the "swing" condition, head movements in the direction of the ball were larger than eye movements throughout the pitch trajectory. Gaze was directed near the ball until approximately 50 to 60 milliseconds prior to pitch arrival at the batter. Horizontal head rotations were larger than horizontal eye rotations in both the "take" and "swing" conditions. Gaze was directed ahead of the ball late in the pitch trajectory in the "take" condition, whereas gaze was directed near the ball throughout much of the pitch trajectory in the "swing" condition.

  2. Fundamental movement skills and motivational factors influencing engagement in physical activity.

    PubMed

    Kalaja, Sami; Jaakkola, Timo; Liukkonen, Jarmo; Watt, Anthony

    2010-08-01

    To assess whether subgroups based on children's fundamental movement skills, perceived competence, and self-determined motivation toward physical education vary with current self-reported physical activity, a sample of 316 Finnish Grade 7 students completed fundamental movement skills measures and self-report questionnaires assessing perceived competence, self-determined motivation toward physical education, and current physical activity. Cluster analysis indicated a three-cluster structure: "Low motivation/low skills profile," "High skills/low motivation profile," and "High skills/high motivation profile." Analysis of variance indicated that students in the third cluster engaged in significantly more physical activity than students of clusters one and two. These results provide support for previous claims regarding the importance of the relationship of fundamental movement skills with continuing engagement in physical activity. High fundamental movement skills, however, may represent only one element in maintaining adolescents' engagement in physical activity.

  3. Fall movements of Red-headed woodpeckers in South Carolina

    Treesearch

    Mark Vukovich; John C. Kilgo

    2013-01-01

    Fall migration of Red-headed Woodpeckers (Melanerpes erythrocephalus) can be erratic, with departure rates, directions, and distances varying among populations and individuals. We report fall migration departure dates, rates, and routes, and the size of fall home ranges of 62 radio-tagged Red-headed Woodpeckers in western South Carolina. Rates of fall migration...

  4. Influence of vision on head stabilization strategies in older adults during walking.

    PubMed

    Cromwell, Ronita L; Newton, Roberta A; Forrest, Gail

    2002-07-01

    Maintaining balance during dynamic activities is essential for preventing falls in older adults. Head stabilization contributes to dynamic balance, especially during the functional task of walking. Head stability and the role of vision in this process have not been studied during walking in older adults. Seventeen older adults (76.2 +/- 6.9 years) and 20 young adults (26.0 +/- 3.4 years) walked with their eyes open (EO), with their eyes closed (EC), and with fixed gaze (FG). Participants performed three trials of each condition. Sagittal plane head and trunk angular velocities in space were obtained using an infrared camera system with passive reflective markers. Frequency analyses of head-on-trunk with respect to trunk gains and phases were examined for head-trunk movement strategies used for head stability. Average walking velocity, cadence, and peak head velocity were calculated for each condition. Differences between age groups demonstrated that older adults decreased walking velocity in EO (p =.022). FG (p = .021), and EC (p = .022). and decreased cadence during EC (p = .007). Peak head velocity also decreased across conditions (p < .0001) for older adults. Movement patterns demonstrated increased head stability during EO. diminished head stability with EC, and improved head stability with FG as older adult patterns resembled those of young adults. Increased stability of the lower extremity outcome measures for older adults was indicated by reductions in walking velocity and cadence. Concomitant increases in head stability were related to visual tasks. Increased stability may serve as a protective mechanism to prevent falls. Further, vision facilitates the head stabilization process for older adults to compensate for age-related decrements in other sensory systems subserving dynamic balance.

  5. Visual-Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey.

    PubMed

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-10-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.

  6. Vertical movement symmetry of the withers in horses with induced forelimb and hindlimb lameness at trot.

    PubMed

    Rhodin, M; Persson-Sjodin, E; Egenvall, A; Serra Bragança, F M; Pfau, T; Roepstorff, L; Weishaupt, M A; Thomsen, M H; van Weeren, P R; Hernlund, E

    2018-04-15

    The main criteria for lameness assessment in horses are head movement for forelimb lameness and pelvic movement for hindlimb lameness. However, compensatory head nod in horses with primary hindlimb lameness is a well-known phenomenon. This compensatory head nod movement can be easily misinterpreted as a sign of primary ipsilateral forelimb lameness. Therefore, discriminating compensatory asymmetries from primary directly pain-related movement asymmetries is a prerequisite for successful lameness assessment. To investigate the association between head, withers and pelvis movement asymmetry in horses with induced forelimb and hindlimb lameness. Experimental study. In 10 clinically sound Warmblood riding horses, forelimb and hindlimb lameness were induced using a sole pressure model. The horses were then trotted on a treadmill. Three-dimensional optical motion capture was used to collect kinematic data from reflective markers attached to the poll, withers and tubera sacrale. The magnitude and side (left or right) of the following symmetry parameters, vertical difference in minimum position, maximum position and range-up were calculated for head, withers, and pelvis. Mixed models were used to analyse data from induced forelimb and hindlimb lameness. For each mm increase in pelvic asymmetry in response to hindlimb lameness induction, withers movement asymmetry increased by 0.35-0.55 mm, but towards the contralateral side. In induced forelimb lameness, for each mm increase in head movement asymmetry, withers movement asymmetry increased by 0.05-0.10 mm, in agreement with the head movement asymmetry direction, both indicating lameness in the induced forelimb. Results must be confirmed in clinically lame horses trotting overground. The vertical asymmetry pattern of the withers discriminated a head nod associated with true forelimb lameness from the compensatory head movement asymmetry caused by primary hindlimb lameness. Measuring movement symmetry of the withers may, thus

  7. Does induced masseter muscle pain affect integrated jaw-neck movements similarly in men and women?

    PubMed

    Wiesinger, Birgitta; Häggman-Henrikson, Birgitta; Hellström, Fredrik; Englund, Erling; Wänman, Anders

    2016-12-01

    Normal jaw opening-closing involves simultaneous jaw and head-neck movements. We previously showed that, in men, integrated jaw-neck movements during jaw function are altered by induced masseter muscle pain. The aim of this study was to investigate possible sex-related differences in integrated jaw-neck movements following experimental masseter muscle pain. We evaluated head-neck and jaw movements in 22 healthy women and 16 healthy men in a jaw opening-closing task. The participants performed one control trial and one trial with masseter muscle pain induced by injection of hypertonic saline. Jaw and head movements were registered using a three-dimensional optoelectronic recording system. There were no significant sex-related differences in jaw and head movement amplitudes. Head movement amplitudes were significantly greater in the pain trials for both men and women. The proportional involvement of the neck motor system during jaw movements increased in pain trials for 13 of 16 men and for 18 of 22 women. Thus, acute pain may alter integrated jaw-neck movements, although, given the similarities between men and women, this interaction between acute pain and motor behaviour does not explain sex differences in musculoskeletal pain in the jaw and neck regions. © 2016 Eur J Oral Sci.

  8. Self-motion perception and vestibulo-ocular reflex during whole body yaw rotation in standing subjects: the role of head position and neck proprioception.

    PubMed

    Panichi, Roberto; Botti, Fabio Massimo; Ferraresi, Aldo; Faralli, Mario; Kyriakareli, Artemis; Schieppati, Marco; Pettorossi, Vito Enrico

    2011-04-01

    Self-motion perception and vestibulo-ocular reflex (VOR) were studied during whole body yaw rotation in the dark at different static head positions. Rotations consisted of four cycles of symmetric sinusoidal and asymmetric oscillations. Self-motion perception was evaluated by measuring the ability of subjects to manually track a static remembered target. VOR was recorded separately and the slow phase eye position (SPEP) was computed. Three different head static yaw deviations (active and passive) relative to the trunk (0°, 45° to right and 45° to left) were examined. Active head deviations had a significant effect during asymmetric oscillation: the movement perception was enhanced when the head was kept turned toward the side of body rotation and decreased in the opposite direction. Conversely, passive head deviations had no effect on movement perception. Further, vibration (100 Hz) of the neck muscles splenius capitis and sternocleidomastoideus remarkably influenced perceived rotation during asymmetric oscillation. On the other hand, SPEP of VOR was modulated by active head deviation, but was not influenced by neck muscle vibration. Through its effects on motion perception and reflex gain, head position improved gaze stability and enhanced self-motion perception in the direction of the head deviation. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Cerebral Activations Related to Ballistic, Stepwise Interrupted and Gradually Modulated Movements in Parkinson Patients

    PubMed Central

    Toxopeus, Carolien M.; Maurits, Natasha M.; Valsan, Gopal; Conway, Bernard A.; Leenders, Klaus L.; de Jong, Bauke M.

    2012-01-01

    Patients with Parkinson’s disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced

  10. Vestibulo-Cervico-Ocular Responses and Tracking Eye Movements after Prolonged Exposure to Microgravity

    NASA Technical Reports Server (NTRS)

    Kornilova, L. N.; Naumov, I. A.; Azarov, K. A.; Sagalovitch, S. V.; Reschke, Millard F.; Kozlovskaya, I. B.

    2007-01-01

    The vestibular function and tracking eye movements were investigated in 12 Russian crew members of ISS missions on days 1(2), 4(5-6), and 8(9-10) after prolonged exposure to microgravity (126 to 195 days). The spontaneous oculomotor activity, static torsional otolith-cervico-ocular reflex, dynamic vestibulo-cervico-ocular responses, vestibular reactivity, tracking eye movements, and gaze-holding were studied using videooculography (VOG) and electrooculography (EOG) for parallel eye movement recording. On post-flight days 1-2 (R+1-2) some cosmonauts demonstrated: - an increased spontaneous oculomotor activity (floating eye movements, spontaneous nystagmus of the typical and atypical form, square wave jerks, gaze nystagmus) with the head held in the vertical position; - suppressed otolith function (absent or reduced by one half amplitude of torsional compensatory eye counter-rolling) with the head inclined statically right- or leftward by 300; - increased vestibular reactivity (lowered threshold and increased intensity of the vestibular nystagmus) during head turns around the longitudinal body axis at 0.125 Hz; - a significant change in the accuracy, velocity, and temporal characteristics of the eye tracking. The pattern, depth, dynamics, and velocity of the vestibular function and tracking eye movements recovery varied with individual participants in the investigation. However, there were also regular responses during readaptation to the normal gravity: - suppression of the otolith function was typically accompanied by an exaggerated vestibular reactivity; - the structure of visual tracking (the accuracy of fixational eye rotations, smooth tracking, and gaze-holding) was disturbed (the appearance of correcting saccades, the transition of smooth tracking to saccadic tracking) only in those cosmonauts who, in parallel to an increased reactivity of the vestibular input, also had central changes in the oculomotor system (spontaneous nystagmus, gaze nystagmus).

  11. The use of head/eye-centered, hand-centered and allocentric representations for visually guided hand movements and perceptual judgments.

    PubMed

    Thaler, Lore; Todd, James T

    2009-04-01

    Two experiments are reported that were designed to measure the accuracy and reliability of both visually guided hand movements (Exp. 1) and perceptual matching judgments (Exp. 2). The specific procedure for informing subjects of the required response on each trial was manipulated so that some tasks could only be performed using an allocentric representation of the visual target; others could be performed using either an allocentric or hand-centered representation; still others could be performed based on an allocentric, hand-centered or head/eye-centered representation. Both head/eye and hand centered representations are egocentric because they specify visual coordinates with respect to the subject. The results reveal that accuracy and reliability of both motor and perceptual responses are highest when subjects direct their response towards a visible target location, which allows them to rely on a representation of the target in head/eye-centered coordinates. Systematic changes in averages and standard deviations of responses are observed when subjects cannot direct their response towards a visible target location, but have to represent target distance and direction in either hand-centered or allocentric visual coordinates instead. Subjects' motor and perceptual performance agree quantitatively well. These results strongly suggest that subjects process head/eye-centered representations differently from hand-centered or allocentric representations, but that they process visual information for motor actions and perceptual judgments together.

  12. An Orientation Sensor-Based Head Tracking System for Driver Behaviour Monitoring

    PubMed Central

    Görne, Lorenz; Yuen, Iek-Man; Cao, Dongpu; Sullman, Mark; Auger, Daniel; Lv, Chen; Wang, Huaji; Matthias, Rebecca; Skrypchuk, Lee; Mouzakitis, Alexandros

    2017-01-01

    Although at present legislation does not allow drivers in a Level 3 autonomous vehicle to engage in a secondary task, there may become a time when it does. Monitoring the behaviour of drivers engaging in various non-driving activities (NDAs) is crucial to decide how well the driver will be able to take over control of the vehicle. One limitation of the commonly used face-based head tracking system, using cameras, is that sufficient features of the face must be visible, which limits the detectable angle of head movement and thereby measurable NDAs, unless multiple cameras are used. This paper proposes a novel orientation sensor based head tracking system that includes twin devices, one of which measures the movement of the vehicle while the other measures the absolute movement of the head. Measurement error in the shaking and nodding axes were less than 0.4°, while error in the rolling axis was less than 2°. Comparison with a camera-based system, through in-house tests and on-road tests, showed that the main advantage of the proposed system is the ability to detect angles larger than 20° in the shaking and nodding axes. Finally, a case study demonstrated that the measurement of the shaking and nodding angles, produced from the proposed system, can effectively characterise the drivers’ behaviour while engaged in the NDAs of chatting to a passenger and playing on a smartphone. PMID:29165331

  13. An Orientation Sensor-Based Head Tracking System for Driver Behaviour Monitoring.

    PubMed

    Zhao, Yifan; Görne, Lorenz; Yuen, Iek-Man; Cao, Dongpu; Sullman, Mark; Auger, Daniel; Lv, Chen; Wang, Huaji; Matthias, Rebecca; Skrypchuk, Lee; Mouzakitis, Alexandros

    2017-11-22

    Although at present legislation does not allow drivers in a Level 3 autonomous vehicle to engage in a secondary task, there may become a time when it does. Monitoring the behaviour of drivers engaging in various non-driving activities (NDAs) is crucial to decide how well the driver will be able to take over control of the vehicle. One limitation of the commonly used face-based head tracking system, using cameras, is that sufficient features of the face must be visible, which limits the detectable angle of head movement and thereby measurable NDAs, unless multiple cameras are used. This paper proposes a novel orientation sensor based head tracking system that includes twin devices, one of which measures the movement of the vehicle while the other measures the absolute movement of the head. Measurement error in the shaking and nodding axes were less than 0.4°, while error in the rolling axis was less than 2°. Comparison with a camera-based system, through in-house tests and on-road tests, showed that the main advantage of the proposed system is the ability to detect angles larger than 20° in the shaking and nodding axes. Finally, a case study demonstrated that the measurement of the shaking and nodding angles, produced from the proposed system, can effectively characterise the drivers' behaviour while engaged in the NDAs of chatting to a passenger and playing on a smartphone.

  14. Assistive Technology as an artificial intelligence opportunity: Case study of letter-based, head movement driven communication.

    PubMed

    Miksztai-Réthey, Brigitta; Faragó, Kinga Bettina

    2015-01-01

    We studied an artificial intelligent assisted interaction between a computer and a human with severe speech and physical impairments (SSPI). In order to speed up AAC, we extended a former study of typing performance optimization using a framework that included head movement controlled assistive technology and an onscreen writing device. Quantitative and qualitative data were collected and analysed with mathematical methods, manual interpretation and semi-supervised machine video annotation. As the result of our research, in contrast to the former experiment's conclusions, we found that our participant had at least two different typing strategies. To maximize his communication efficiency, a more complex assistive tool is suggested, which takes the different methods into consideration.

  15. Gravitoinertial force level influences arm movement control

    NASA Technical Reports Server (NTRS)

    Fisk, J.; Lackner, J. R.; DiZio, P.

    1993-01-01

    1. The ability to move the forearm between remembered elbow joint angles immediately after rapid increases or decreases of the background gravitoinertial force (G) level was measured. The movements had been well-practiced in a normal 1G environment before the measurements in high-(1.8G) and low-force (0G) environments. The forearm and upper arm were always unsupported to maximize the influence of altered G-loading and to minimize extraneous cues about arm position. 2. Horizontal and vertical movement planes were studied to measure the effects of varying the G load in the movement plane within a given G background. Rapid and slow movements were studied to assess the role of proprioceptive feedback. 3. G level did not affect the amplitude of rapid movements, indicating that subjects were able to plan and to generate appropriate motor commands for the new G loading of the arm. The amplitude of slow movements was affected by G level, indicating that proprioceptive feedback is influenced by G level. 4. The effects of G level were similar for horizontal and vertical movements, indicating that proprioceptive information from supporting structures, such as the shoulder joint and muscles, had a role in allowing generation of the appropriate motor commands. 5. The incidence and size of dynamic overshoots were greater in 0G and for rapid movements. This G-related change in damping suggests a decrease in muscle spindle activity in 0G. A decrease in muscle spindle activity in 0G and an increase in 1.8G are consistent with the results of our prior studies on the tonic vibration reflex, locomotion, and perception of head movement trajectory in varying force backgrounds.

  16. Cortical activity in the null space: permitting preparation without movement

    PubMed Central

    Kaufman, Matthew T.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-01-01

    Neural circuits must perform computations and then selectively output the results to other circuits. Yet synapses do not change radically at millisecond timescales. A key question then is: how is communication between neural circuits controlled? In motor control, brain areas directly involved in driving movement are active well before movement begins. Muscle activity is some readout of neural activity, yet remains largely unchanged during preparation. Here we find that during preparation, while the monkey holds still, changes in motor cortical activity cancel out at the level of these population readouts. Motor cortex can thereby prepare the movement without prematurely causing it. Further, we found evidence that this mechanism also operates in dorsal premotor cortex (PMd), largely accounting for how preparatory activity is attenuated in primary motor cortex (M1). Selective use of “output-null” vs. “output-potent” patterns of activity may thus help control communication to the muscles and between these brain areas. PMID:24487233

  17. Interaction of the body, head, and eyes during walking and turning

    NASA Technical Reports Server (NTRS)

    Imai, T.; Moore, S. T.; Raphan, T.; Cohen, B.

    2001-01-01

    Body, head, and eye movements were measured in five subjects during straight walking and while turning corners. The purpose was to determine how well the head and eyes followed the linear trajectory of the body in space and whether head orientation followed changes in the gravito-inertial acceleration vector (GIA). Head and body movements were measured with a video-based motion analysis system and horizontal, vertical, and torsional eye movements with video-oculography. During straight walking, there was lateral body motion at the stride frequency, which was at half the frequency of stepping. The GIA oscillated about the direction of heading, according to the acceleration and deceleration associated with heel strike and toe flexion, and the body yawed in concert with stepping. Despite the linear and rotatory motions of the head and body, the head pointed along the forward motion of the body during straight walking. The head pitch/roll component appeared to compensate for vertical and horizontal acceleration of the head rather than orienting to the tilt of the GIA or anticipating it. When turning corners, subjects walked on a 50-cm radius over two steps or on a 200-cm radius in five to seven steps. Maximum centripetal accelerations in sharp turns were ca.0.4 g, which tilted the GIA ca.21 degrees with regard to the heading. This was anticipated by a roll tilt of the head of up to 8 degrees. The eyes rolled 1-1.5 degrees and moved down into the direction of linear acceleration during the tilts of the GIA. Yaw head deviations moved smoothly through the turn, anticipating the shift in lateral body trajectory by as much as 25 degrees. The trunk did not anticipate the change in trajectory. Thus, in contrast to straight walking, the tilt axes of the head and the GIA tended to align during turns. Gaze was stable in space during the slow phases and jumped forward in saccades along the trajectory, leading it by larger angles when the angular velocity of turning was greater

  18. Development of Foundational Movement Skills: A Conceptual Model for Physical Activity Across the Lifespan.

    PubMed

    Hulteen, Ryan M; Morgan, Philip J; Barnett, Lisa M; Stodden, David F; Lubans, David R

    2018-03-09

    Evidence supports a positive association between competence in fundamental movement skills (e.g., kicking, jumping) and physical activity in young people. Whilst important, fundamental movement skills do not reflect the broad diversity of skills utilized in physical activity pursuits across the lifespan. Debate surrounds the question of what are the most salient skills to be learned which facilitate physical activity participation across the lifespan. In this paper, it is proposed that the term 'fundamental movement skills' be replaced with 'foundational movement skills'. The term 'foundational movement skills' better reflects the broad range of movement forms that increase in complexity and specificity and can be applied in a variety of settings. Thus, 'foundational movement skills' includes both traditionally conceptualized 'fundamental' movement skills and other skills (e.g., bodyweight squat, cycling, swimming strokes) that support physical activity engagement across the lifespan. A proposed conceptual model outlines how foundational movement skill competency can provide a direct or indirect pathway, via specialized movement skills, to a lifetime of physical activity. Foundational movement skill development is hypothesized to vary according to culture and/or geographical location. Further, skill development may be hindered or enhanced by physical (i.e., fitness, weight status) and psychological (i.e., perceived competence, self-efficacy) attributes. This conceptual model may advance the application of motor development principles within the public health domain. Additionally, it promotes the continued development of human movement in the context of how it leads to skillful performance and how movement skill development supports and maintains a lifetime of physical activity engagement.

  19. Heading perception in patients with advanced retinitis pigmentosa

    NASA Technical Reports Server (NTRS)

    Li, Li; Peli, Eli; Warren, William H.

    2002-01-01

    PURPOSE: We investigated whether retinis pigmentosa (RP) patients with residual visual field of < 100 degrees could perceive heading from optic flow. METHODS: Four RP patients and four age-matched normally sighted control subjects viewed displays simulating an observer walking over a ground. In experiment 1, subjects viewed either the entire display with free fixation (full-field condition) or through an aperture with a fixation point at the center (aperture condition). In experiment 2, patients viewed displays of different durations. RESULTS: RP patients' performance was comparable to that of the age-matched control subjects: heading judgment was better in the full-field condition than in the aperture condition. Increasing display duration from 0.5 s to 1 s improved patients' heading performance, but giving them more time (3 s) to gather more visual information did not consistently further improve their performance. CONCLUSIONS: RP patients use active scanning eye movements to compensate for their visual field loss in heading perception; they might be able to gather sufficient optic flow information for heading perception in about 1 s.

  20. Heading perception in patients with advanced retinitis pigmentosa.

    PubMed

    Li, Li; Peli, Eli; Warren, William H

    2002-09-01

    We investigated whether retinis pigmentosa (RP) patients with residual visual field of < 100 degrees could perceive heading from optic flow. Four RP patients and four age-matched normally sighted control subjects viewed displays simulating an observer walking over a ground. In experiment 1, subjects viewed either the entire display with free fixation (full-field condition) or through an aperture with a fixation point at the center (aperture condition). In experiment 2, patients viewed displays of different durations. RP patients' performance was comparable to that of the age-matched control subjects: heading judgment was better in the full-field condition than in the aperture condition. Increasing display duration from 0.5 s to 1 s improved patients' heading performance, but giving them more time (3 s) to gather more visual information did not consistently further improve their performance. RP patients use active scanning eye movements to compensate for their visual field loss in heading perception; they might be able to gather sufficient optic flow information for heading perception in about 1 s.

  1. Movement Activation and Inhibition in Parkinson’s Disease: a Functional Imaging Study

    PubMed Central

    Disbrow, E. A.; Sigvardt, K. A.; Franz, E. A.; Turner, R. S.; Russo, K. A.; Hinkley, L.B.; Herron, T. J.; Ventura, M. I.; Zhang, L.; Malhado-Chang, N.

    2015-01-01

    Background Parkinson’s disease (PD), traditionally considered a movement disorder, has been shown to affect executive function such as the ability to adapt behavior in response to new environmental situations. Objective to identify the impact of PD on neural substrates subserving two specific components of normal movement which we refer to as activation (initiating an un-cued response) and inhibition (suppressing a cued response). Methods We used fMRI to measure pre-movement processes associated with activating an un-cued response and inhibiting a cued response plan in 13 PD (ON anti-parkinsonian medications) and 13 control subjects. Subjects were shown a visual arrow cue followed by a matched or mismatched response target that instructed them to respond with a right, left, or bilateral button press. In mismatched trials, an un-cued (new) response was initiated, or the previously cued response was suppressed. Results We were able to isolate pre-movement responses in dorsolateral prefrontal cortex, specifically in the right hemisphere. During the activation of an un-cued movement, PD subjects showed decreased activity in the putamen and increased cortical activity in bilateral DLPFC, SMA, subcentral gyrus and inferior frontal operculum. During inhibition of a previously cued movement, the PD group showed increased activation in SMA, S1/M1, premotor and superior parietal areas. Conclusion Right DLPFC plays a role in pre-movement processes, and DLPFC activity is abnormal in PD. Decreased specificity of responses was observed in multiple ROI’s. The basal ganglia are involved in circuits that coordinate activation and inhibition involved in action selection as well as execution. PMID:23938347

  2. Changes in Head Stability Control in Response to a Lateral Perturbation while Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2008-01-01

    Falling is a main contributor of injury in older adults. The decline in sensory systems associated with aging limits information needed to successfully compensate for unexpected perturbations. Therefore, sensory changes result in older adults having problems maintaining balance stability when experiencing an unexpected lateral perturbation (e.g. slip) in the environment. The goal of this study was to determine head stability movement strategies used by older adults when experiencing an unexpected lateral perturbation during walking. A total of 16 healthy adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors were placed on the center of mass for the head and trunk segments to collect head and trunk movement in all three planes of motion. The predominant movement strategies for maintaining head stability were determined from the results of the cross-correlation analyses between the head and trunk segments. The Chi square test of independence was used to evaluate the movement pattern distributions of head-trunk coordination during perturbed and non-perturbed walking. When perturbed, head stabilization was significantly challenged in the yaw and roll planes of motion. Subjects demonstrated a movement pattern of the head leading the trunk in an effort to stabilize the head. The older adult subjects used this head stabilization movement pattern to compensate for sensory changes when experiencing the unexpected lateral perturbation.

  3. Research study on neck injury lessening with active head restraint using human body FE model.

    PubMed

    Kitagawa, Yuichi; Yasuki, Tsuyoshi; Hasegawa, Junji

    2008-12-01

    The objective of this study is to examine the effectiveness of the active head restraint system in reducing neck injury risk of car occupants in low-speed rear impacts. A human body FE model "THUMS" was used to simulate head and neck kinematics of the occupant and to evaluate loading to the neck. Joint capsule strain was calculated to predict neck injury risk as well as NIC. The validity of the model was confirmed comparing its mechanical responses to those in human subjects in the literatures. Seat FE models were also prepared representing one with a fixed head restraint and the other one with an active head restraint system. The active head restraint system was designed to move the head restraint forward and upward when the lower unit was lower unit was loaded by the pelvis. Rear impact simulations were performed assuming a triangular acceleration pulse at a delta-V of 25 km/h. The model reproduced similar head and neck motions to those measured in the human volunteer test, except for active muscular responses. The calculated joint capsule strain also showed a good match with those of PMHS tests in the literature. A rear-impact simulation was conducted using the model with the fixed head restraint. The result revealed that NIC was strongly correlated with the relative acceleration between the head and the torso and that its maximum peak appeared when the head contacted the head restraint. It was also found that joint capsule strain grew in later timing synchronizing with the relative displacement. Another simulation with the active head restraint system showed that both NIC and joint capsule strain were lowered owing to the forward and upward motion of the head restraint. A close investigation of the vertebral motion indicated that the active head restraint reduced the magnitude of shear deformation in the facet joint, which contributed to the strain growth in the fixed head restraint case. Rear-impact simulations were conducted using a human body FE model, THUMS

  4. Improving the interpersonal competences of head nurses through Peplau's theoretical active learning approach.

    PubMed

    Suhariyanto; Hariyati, Rr Tutik Sri; Ungsianik, Titin

    2018-02-01

    Effective interpersonal skills are essential for head nurses in governing and managing their work units. Therefore, an active learning strategy could be the key to enhance the interpersonal competences of head nurses. This study aimed to investigate the effects of Peplau's theoretical approach of active learning on the improvement of head nurses' interpersonal skills. This study used a pre-experimental design with one group having pretests and posttests, without control group. A total sample of 25 head nurses from inpatient units of a wellknown private hospital in Jakarta was involved in the study. Data were analyzed using the paired t-test. The results showed a significant increase in head nurses' knowledge following the training to strengthen their interpersonal roles (P=.003). The results also revealed significant increases in the head nurses' skills in playing the roles of leader (P=.006), guardian (P=.014), and teacher/speaker (P=.015). Nonetheless, the results showed no significant increases in the head nurses' skills in playing the roles of counselor (P=.092) and stranger (P=.182). Training in strengthening the interpersonal roles of head nurses significantly increased the head nurses' knowledge and skills. The results of the study suggested the continuation of active learning strategies to improve the interpersonal abilities of head nurses. Furthermore, these strategies could be used to build the abilities of head nurses in other managerial fields. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  5. Understanding the Effects of Spaceflight on Head-trunk Coordination During Walking and Obstacle Avoidance

    NASA Technical Reports Server (NTRS)

    Madansingh, S.; Bloomberg, J. J.

    2014-01-01

    Prolonged exposure to spaceflight conditions results in a battery of physiological changes, some of which contribute to sensorimotor and neurovestibular deficits. Upon return to Earth, functional performance changes are tested using the Functional Task Test (FTT), which includes an obstacle course to observe post-flight balance and postural stability, specifically during turning. The goal of this study was to quantify changes in movement strategies during turning events by observing the latency between head-and-trunk coordinated movements. It was hypothesized that subjects experiencing neurovestibular adaptations would exhibit head-to-trunk locking ('en bloc' movement) during turning, exhibited by a decrease in latency between head and trunk movement. FTT data samples were collected from 13 ISS astronauts and 26 male 70-day head down tilt bed rest subjects, including bed rest controls (10 BRC) and bed rest exercisers (16 BRE). Samples were analyzed three times pre-exposure, immediately post-exposure (0 or 1 day post) and 2-to-3 times during recovery from the unloading environment. Two 3D inertial measurements units (XSens MTx) were attached to subjects, one on the head and one on the upper back. This study focused primarily on the yaw movements about the subject's center of rotation. Time differences (latency) between head and trunk movement were averaged across a slalom obstacle portion, consisting of three turns (approximately three 60° turns). All participants were grouped as 'decreaser' or 'increaser,' relating to their change in head-to-trunk movement latency between pre- and post- environmental adaptation measures. Space flight unloading (ISS) showed a bimodal response between the 'increaser' and 'decreaser' group, while both bed rest control (BRC) and bed rest exercise (BRE) populations showed increased preference towards a 'decreaser' categorization, displaying greater head-trunk locking. It is clear that changes in movement strategies are adopted during

  6. Catch-up saccades in head-unrestrained conditions reveal that saccade amplitude is corrected using an internal model of target movement

    PubMed Central

    Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe

    2014-01-01

    This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378

  7. Understanding the Effects of Spaceflight on Head-trunk Coordination during Walking and Obstacle Avoidance

    NASA Technical Reports Server (NTRS)

    Madansingh, S.; Bloomberg, J.

    2013-01-01

    Prolonged exposure to spaceflight conditions results in a battery of physiological changes, some of which contribute to sensorimotor and neurovestibular deficits. Upon return to Earth, functional performance changes are tested using the Functional Task Test (FTT), which includes an obstacle course to observe post-flight balance and postural stability, specifically during turning. Aims: To quantify changes in movement strategies during turning events by observing the latency between head-andtrunk coordinated movement. Hypothesis: It is hypothesized that subjects experiencing neurovestibular adaptations will exhibit head-to-trunk locking ('en bloc' movement) during turning, exhibited by a decrease in latency between head and trunk movement. Sample: FTT data samples were collected from Shuttle and ISS missions. Samples were analyzed three times pre exposure, immediately post-exposure (0 or 1 day post) and 2-to-3 times during recovery from the microgravity environment. Methods: Two 3D inertial measurements units (XSens MTx) were attached to subjects, one on the head and one on the upper back. This study focused primarily on the yaw movements about the subject's center of rotation. Time differences (latency) between head and trunk movement were calculated at two points: the first turn (Fturn) to enter the obstacle course (approximately 90° turn) and averaged across a slalom obstacle portion, consisting of three turns (approximately three 90° turns). Results: Preliminary analysis of the data shows a trend toward decreasing head-to-trunk movement latency during post-flight ambulation, after reintroduction to Earth gravity in Shuttle and ISS astronauts. Conclusion: It is clear that changes in movement strategies are adopted during exposure to the microgravity environment and upon reintroduction to a gravity environment. Some subjects exhibit symptoms of neurovestibular neuropathy ('en bloc movement') that may impact their ability to perform post-flight functional tasks.

  8. An Annotated Bibliography on Movement Education.

    ERIC Educational Resources Information Center

    Rizzitiello, Theresa, G.

    This bibliography is a collection of selected resources significant to a deeper understanding of the many aspects and definitions of movement education. The one hundred seventy-three annotations are arranged and ordered in a pattern to reflect an overview of both theory and practice, the latter examined under the headings of basic movement,…

  9. Arrestant Effect of Human Scalp Components on Head Louse (Phthiraptera: Pediculidae) Behavior.

    PubMed

    Ortega-Insaurralde, Isabel; Ceferino Toloza, Ariel; Gonzalez-Audino, Paola; Inés Picollo, María

    2017-03-01

    Relevant evidence has shown that parasites process host-related information using chemical, visual, tactile, or auditory cues. However, the cues that are involved in the host-parasite interaction between Pediculus humanus capitis (De Geer 1767) and humans have not been identified yet. In this work, we studied the effect of human scalp components on the behavior of adult head lice. Filter paper segments were rubbed on volunteers' scalps and then placed in the experimental arena, where adult head lice were individually tested. The movement of the insects was recorded for each arena using the software EthoVision. Average movement parameters were calculated for the treatments in the bioassays such as total distance, velocity, number of times a head louse crossed between zones of the arena, and time in each zone of the arena. We found that scalp components induced head lice to decrease average locomotor activity and to remain arrested on the treated paper. The effect of the ageing of human scalp samples in the response of head lice was not statistically significant (i.e., human scalp samples of 4, 18, 40, and 60 h of ageing did not elicit a significant change in head louse behavior). When we analyzed the effect of the sex in the response of head lice to human scalp samples, males demonstrated significant differences. Our results showed for the first time the effect of host components conditioning head lice behavior. We discuss the role of these components in the dynamic of head lice infestation. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum

    PubMed Central

    Hasselmo, Michael E.

    2008-01-01

    The spiking activity of hippocampal neurons during REM sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories (Louie and Wilson, 2001). Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the movement of the simulated rat drives activity of a population of head direction cells that updates the activity of a population of entorhinal grid cells. The population of grid cells drives the activity of place cells coding individual locations. Associations between location and movement direction are encoded by modification of excitatory synaptic connections from place cells to speed modulated head direction cells. During simulated REM sleep, the population of place cells coding an experienced location activates the head direction cells coding the associated movement direction. Spiking of head direction cells then causes frequency shifts within the population of entorhinal grid cells to update a phase representation of location. Spiking grid cells then activate new place cells that drive new head direction activity. In contrast to models that perform temporally compressed sequence retrieval similar to sharp wave activity, this model can simulate data on temporally structured replay of hippocampal place cell activity during REM sleep at time scales similar to those observed during waking. These mechanisms could be important for episodic memory of trajectories. PMID:18973557

  11. A reliability study on brain activation during active and passive arm movements supported by an MRI-compatible robot.

    PubMed

    Estévez, Natalia; Yu, Ningbo; Brügger, Mike; Villiger, Michael; Hepp-Reymond, Marie-Claude; Riener, Robert; Kollias, Spyros

    2014-11-01

    In neurorehabilitation, longitudinal assessment of arm movement related brain function in patients with motor disability is challenging due to variability in task performance. MRI-compatible robots monitor and control task performance, yielding more reliable evaluation of brain function over time. The main goals of the present study were first to define the brain network activated while performing active and passive elbow movements with an MRI-compatible arm robot (MaRIA) in healthy subjects, and second to test the reproducibility of this activation over time. For the fMRI analysis two models were compared. In model 1 movement onset and duration were included, whereas in model 2 force and range of motion were added to the analysis. Reliability of brain activation was tested with several statistical approaches applied on individual and group activation maps and on summary statistics. The activated network included mainly the primary motor cortex, primary and secondary somatosensory cortex, superior and inferior parietal cortex, medial and lateral premotor regions, and subcortical structures. Reliability analyses revealed robust activation for active movements with both fMRI models and all the statistical methods used. Imposed passive movements also elicited mainly robust brain activation for individual and group activation maps, and reliability was improved by including additional force and range of motion using model 2. These findings demonstrate that the use of robotic devices, such as MaRIA, can be useful to reliably assess arm movement related brain activation in longitudinal studies and may contribute in studies evaluating therapies and brain plasticity following injury in the nervous system.

  12. 48 CFR 719.271-4 - Heads of contracting activities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... activities. 719.271-4 Section 719.271-4 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 719.271-4 Heads of contracting activities. In order for the agency small business program to be effective, the active support of top management...

  13. Trunk muscle activity increases with unstable squat movements.

    PubMed

    Anderson, Kenneth; Behm, David G

    2005-02-01

    The objective of this study was to determine differences in electromyographic (EMG) activity of the soleus (SOL), vastus lateralis (VL), biceps femoris (BF), abdominal stabilizers (AS), upper lumbar erector spinae (ULES), and lumbo-sacral erector spinae (LSES) muscles while performing squats of varied stability and resistance. Stability was altered by doing the squat movement on a Smith machine, a free squat, and while standing on two balance discs. Fourteen male subjects performed the movements. Activities of the SOL, AS, ULES, and LSES were highest during the unstable squat and lowest with the Smith machine protocol (p < 0.05). Increased EMG activity of these muscles may be attributed to their postural and stabilization role. Furthermore, EMG activity was higher during concentric contractions compared to eccentric contractions. Performing squats on unstable surfaces may permit a training adaptation of the trunk muscles responsible for supporting the spinal column (i.e., erector spinae) as well as the muscles most responsible for maintaining posture (i.e., SOL).

  14. Multisensory Integration in the Virtual Hand Illusion with Active Movement

    PubMed Central

    Satoh, Satoru; Hachimura, Kozaburo

    2016-01-01

    Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality. PMID:27847822

  15. Effect of the bitterness of food on muscular activity and masticatory movement.

    PubMed

    Okada, Yamato; Shiga, Hiroshi

    2017-10-01

    The purpose of this study was to clarify the effect of the bitterness of food on muscular activity and masticatory movement. Twenty healthy subjects were asked to chew a non-bitter gummy jelly and a bitter gummy jelly on their habitual chewing side. The masseter muscular activity and the movement of mandibular incisal point were recorded simultaneously. For all cycles excluding the first cycle, parameters representing the muscular activity (total integral value and integral value per cycle) and masticatory movement (path, rhythm, and stability) were calculated and compared between the two types of gummy jellies. The total integral value of masseter muscular activity during the chewing of bitter gummy jelly was significantly smaller than during the chewing of non-bitter gummy jelly, however, no definite trends in the integral value per cycle and the stability of movement were observed. The parameters representing the movement path tended to be small during the chewing of bitter gummy jelly than during the chewing of non-bitter gummy jelly. The masticatory width was significantly smaller during the chewing of bitter gummy jelly. The parameters representing the rhythm of movement were significantly longer during the chewing of bitter gummy jelly than during the chewing of non-bitter gummy jelly. From these results it was suggested that the bitterness of food does not affect the integral value per cycle or the stability of the masticatory movement, but it does affect the movement path and rhythm, with narrowing of the path and slowing of the rhythm. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  16. Event-Related Beta EEG Changes During Active, Passive Movement and Functional Electrical Stimulation of the Lower Limb.

    PubMed

    Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong

    2016-02-01

    A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement.

  17. CHILDREN'S MOVEMENT SKILLS WHEN PLAYING ACTIVE VIDEO GAMES.

    PubMed

    Hulteen, Ryan M; Johnson, Tara M; Ridgers, Nicola D; Mellecker, Robin R; Barnett, Lisa M

    2015-12-01

    Active video games (AVGs) may be useful for movement skill practice. This study examined children's skill execution while playing Xbox Kinect™ and during movement skill assessment. Nineteen children (10 boys, 9 girls; M age=7.9 yr., SD=1.4) had their skills assessed before AVG play and then were observed once a week for 6 wk. while playing AVGs for 50 min. While AVG play showed evidence of correct skill performance (at least 30-50% of the time when playing table tennis, tennis, and baseball), nearly all skills were more correctly performed during skill assessment (generally more than 50% of the time). This study may help researchers to better understand the role AVGs could play in enhancing real life movement skills.

  18. Regulatory coiled-coil domains promote head-to-head assemblies of AAA+ chaperones essential for tunable activity control.

    PubMed

    Carroni, Marta; Franke, Kamila B; Maurer, Michael; Jäger, Jasmin; Hantke, Ingo; Gloge, Felix; Linder, Daniela; Gremer, Sebastian; Turgay, Kürşad; Bukau, Bernd; Mogk, Axel

    2017-11-22

    Ring-forming AAA+ chaperones exert ATP-fueled substrate unfolding by threading through a central pore. This activity is potentially harmful requiring mechanisms for tight repression and substrate-specific activation. The AAA+ chaperone ClpC with the peptidase ClpP forms a bacterial protease essential to virulence and stress resistance. The adaptor MecA activates ClpC by targeting substrates and stimulating ClpC ATPase activity. We show how ClpC is repressed in its ground state by determining ClpC cryo-EM structures with and without MecA. ClpC forms large two-helical assemblies that associate via head-to-head contacts between coiled-coil middle domains (MDs). MecA converts this resting state to an active planar ring structure by binding to MD interaction sites. Loss of ClpC repression in MD mutants causes constitutive activation and severe cellular toxicity. These findings unravel an unexpected regulatory concept executed by coiled-coil MDs to tightly control AAA+ chaperone activity.

  19. Incidental movement, lifestyle-embedded activity and sleep: new frontiers in physical activity assessment.

    PubMed

    Tremblay, Mark S; Esliger, Dale W; Tremblay, Angelo; Colley, Rachel

    2007-01-01

    Canadian public health messages relating to physical activity have historically focused on the prescription of purposeful exercise, most often assessing leisure-time physical activity (LTPA). Although LTPA contributes to total energy expenditure (TEE), a large part of the day remains neglected unless one also considers the energy expended outside of purposeful exercise. This paper reviews the potential impact of incidental (non-exercise or non-purposeful) physical activity and lifestyle-embedded activities (chores and incidental walking) upon TEE and indicators of health. Given that incidental movement occurs sporadically throughout the day, this form of energy expenditure is perhaps most vulnerable to increasingly ubiquitous mechanization and automation. The paper also explores the relationship of physical inactivity, including sleep, to physical activity, TEE, and health outcomes. Suggestions are provided for a more comprehensive physical activity recommendation that includes all components of TEE. Objective physical activity monitors with time stamps are considered as a better means to capture and examine human movements over the entire day.

  20. Brain activation associated with eccentric movement: A narrative review of the literature.

    PubMed

    Perrey, Stéphane

    2018-02-01

    The movement occurring when a muscle exerts tension while lengthening is known as eccentric muscle action. Literature contains limited evidence on how our brain controls eccentric movement. However, how the cortical regions in the motor network are activated during eccentric muscle actions may be critical for understanding the underlying control mechanism of eccentric movements encountered in daily tasks. This is a novel topic that has only recently begun to be investigated through advancements in neuroimaging methods (electroencephalography, EEG; functional magnetic resonance imaging, fMRI). This review summarizes a selection of seven studies indicating mainly: longer time and higher cortical signal amplitude (EEG) for eccentric movement preparation and execution, greater magnitude of cortical signals with wider activated brain area (EEG, fMRI), and weaker brain functional connectivity (fMRI) between primary motor cortex (M1) and other cortical areas involved in the motor network during eccentric muscle actions. Only some differences among studies due to the forms of movement with overload were observed in the contralateral (to the active hand) M1 activity during eccentric movement. Altogether, the findings indicate an important challenge to the brain for controlling the eccentric movement. However, our understanding remains limited regarding the acute effects of eccentric exercise on cortical regions and their cooperation as functional networks that support motor functions. Further analysis and standardized protocols will provide deeper insights into how different cortical regions of the underlying motor network interplay with each other in increasingly demanding muscle exertions in eccentric mode.

  1. Experiment K-7-31: Studies of Vestibular Primary Afferents and Eye Movements in Normal, Hypergravity and Hypogravity - Axon Cosmos Flight 2044

    NASA Technical Reports Server (NTRS)

    Correia, M. J.; Perachio, A. A.; Dickman, J. D.; Kozlovskaya, I.; Sirota, M.; Yakushin, S.; Beloozerova, I. N.

    1994-01-01

    Fourteen days of active head movements in microgravity appear to modify the gain and neural adaptation properties of the horizontal semicircular canals in the rhesus monkey. This is the first demonstration of adaptive plasticity in the sensory receptor. Reversing prisms, for example, do not modify the gain of the primary afferent response. Pulse yaw rotation, sinusoidal rotation, and sum of sinusoidal rotation testing during the first day following recovery revealed that the gain of a sample of afferents was significantly greater than the gain derived from afferent responses obtained during pre-flight and control monkey testing. There was no strong evidence of tilt sensitivity in the sample of afferents that we tested either during the pre-flight or control tests or during the first day post-flight. Two irregular afferents tested on postflight day 2 showed changes with tilt but the responses were not systematic. The spontaneous discharge did not change following flight. Mean firing rate and coefficient of variation remained constant during the post flight tests and was near the value measured during pre flight tests. The change in gain of horizontal canal afferents might be adaptive. The animals were required to look at a target for food. This required active head and eye movements. Active head movements have been shown to be hypometric and eye movements have been shown to be hypermetric during the first few days of past Cosmos flights (see introduction). It might be that the increased gain in the horizontal semicircular canals permit accurate target acquisition during hypometric head movements by driving the eyes to greater angles for smaller angles of head movement. The mechanism by which the semicircular canals recalibrate (increase their gain) is unknown. The efferent vestibular system is a logical candidate. Horizontal nystagmus during rotation about an earth vertical axis with the horizontal semicircular canals in the plane of rotation produced the same

  2. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.

    PubMed

    Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu

    2015-05-01

    We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination. © 2015 Wiley Periodicals, Inc.

  3. Persistent neural activity in head direction cells

    NASA Technical Reports Server (NTRS)

    Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)

    2003-01-01

    Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.

  4. Movement amplitude on the Functional Re-adaptive Exercise Device: deep spinal muscle activity and movement control.

    PubMed

    Winnard, A; Debuse, D; Wilkinson, M; Samson, L; Weber, T; Caplan, Nick

    2017-08-01

    Lumbar multifidus (LM) and transversus abdominis (TrA) show altered motor control, and LM is atrophied, in people with low-back pain (LBP). The Functional Re-adaptive Exercise Device (FRED) involves cyclical lower-limb movement against minimal resistance in an upright posture. It has been shown to recruit LM and TrA automatically, and may have potential as an intervention for non-specific LBP. However, no studies have yet investigated the effects of changes in FRED movement amplitude on the activity of these muscles. This study aimed to assess the effects of different FRED movement amplitudes on LM and TrA muscle thickness and movement variability, to inform an evidence-based exercise prescription. Lumbar multifidus and TrA thickness of eight healthy male volunteers were examined using ultrasound imaging during FRED exercise, normalised to rest at four different movement amplitudes. Movement variability was also measured. Magnitude-based inferences were used to compare each amplitude. Exercise at all amplitudes recruited LM and TrA more than rest, with thickness increases of approximately 5 and 1 mm, respectively. Larger amplitudes also caused increased TrA thickness, LM and TrA muscle thickness variability and movement variability. The data suggests that all amplitudes are useful for recruiting LM and TrA. A progressive training protocol should start in the smallest amplitude, increasing the setting once participants can maintain a consistent movement speed, to continue to challenge the motor control system.

  5. Comparison of lower limb muscle activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults.

    PubMed

    Kim, Min-Ju; Kim, Joong-Hwi

    2016-01-01

    [Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], adductor longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six muscles for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb muscle enhancement.

  6. 48 CFR 218.270 - Head of contracting activity determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES EMERGENCY ACQUISITIONS Emergency Acquisition Flexibilities 218.270 Head of contracting activity determinations. For contract... contracting activity,” as defined in FAR 2.101, in the following locations: (a) FAR 2.101: (1) Definition of...

  7. Adolescents' Perception of the Relationship between Movement Skills, Physical Activity and Sport

    ERIC Educational Resources Information Center

    Barnett, Lisa; Cliff, Ken; Morgan, Philip; van Beurden, Eric

    2013-01-01

    Movement skill competence is important to organised youth physical activity participation, but it is unclear how adolescents view this relationship. The primary aim of this study was to explore adolescents' perception of the relationship between movement skills, physical activity and sport, and whether their perceptions differed according to…

  8. Subthalamic nucleus gamma activity increases not only during movement but also during movement inhibition

    PubMed Central

    Fischer, Petra; Pogosyan, Alek; Herz, Damian M; Cheeran, Binith; Green, Alexander L; Fitzgerald, James; Aziz, Tipu Z; Hyam, Jonathan; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Tan, Huiling

    2017-01-01

    Gamma activity in the subthalamic nucleus (STN) is widely viewed as a pro-kinetic rhythm. Here we test the hypothesis that rather than being specifically linked to movement execution, gamma activity reflects dynamic processing in this nucleus. We investigated the role of gamma during fast stopping and recorded scalp electroencephalogram and local field potentials from deep brain stimulation electrodes in 9 Parkinson’s disease patients. Patients interrupted finger tapping (paced by a metronome) in response to a stop-signal sound, which was timed such that successful stopping would occur only in ~50% of all trials. STN gamma (60–90 Hz) increased most strongly when the tap was successfully stopped, whereas phase-based connectivity between the contralateral STN and motor cortex decreased. Beta or theta power seemed less directly related to stopping. In summary, STN gamma activity may support flexible motor control as it did not only increase during movement execution but also during rapid action-stopping. DOI: http://dx.doi.org/10.7554/eLife.23947.001 PMID:28742498

  9. Comparison of Video Head Impulse Test (vHIT) Gains Between Two Commercially Available Devices and by Different Gain Analytical Methods.

    PubMed

    Lee, Sang Hun; Yoo, Myung Hoon; Park, Jun Woo; Kang, Byung Chul; Yang, Chan Joo; Kang, Woo Suk; Ahn, Joong Ho; Chung, Jong Woo; Park, Hong Ju

    2018-06-01

    To evaluate whether video head impulse test (vHIT) gains are dependent on the measuring device and method of analysis. Prospective study. vHIT was performed in 25 healthy subjects using two devices simultaneously. vHIT gains were compared between these instruments and using five different methods of comparing position and velocity gains during head movement intervals. The two devices produced different vHIT gain results with the same method of analysis. There were also significant differences in the vHIT gains measured using different analytical methods. The gain analytic method that compares the areas under the velocity curve (AUC) of the head and eye movements during head movements showed lower vHIT gains than a method that compared the peak velocities of the head and eye movements. The former method produced the vHIT gain with the smallest standard deviation among the five procedures tested in this study. vHIT gains differ in normal subjects depending on the device and method of analysis used, suggesting that it is advisable for each device to have its own normal values. Gain calculations that compare the AUC of the head and eye movements during the head movements show the smallest variance.

  10. Control of a trackball by the chin for communication applications, with and without neck movements.

    PubMed

    Jacobs, R; Hendrickx, E; Van Mele, I; Edwards, K; Verheust, M; Spaepen, A; van Steenberghe, D

    1997-03-01

    The overall aim was to evaluate whether a trackball could be used for communication by people who cannot speak due to severe motor impairment. The precision of trackball control by isolated jaw movements or a combination of jaw and head movements was evaluated in 18 healthy physical-education students, free of overt symptoms of craniomandibular dysfunction. The participants were asked to operate a trackball using the chin to type a standard text of four short sentences. There were two experimental situations: nine participants performed the typewriting task with their heads fixed; the other nine performed this task with free head movements. Trackball operation moved to the cursor over an alphabetical keyboard displayed on a computer screen and character selection was made by depression of the left-hand click button using the chin. Participants were asked to perform the task as quickly and accurately as possible. Result showed that those with free head movement typed the test significantly faster than those restricted to using only their jaw muscles. The mean time per character selection was 2.4 s (SD 0.3) for the group with free head movement and 2.7 s (SD 0.3) for the group using only jaw muscles. Group scores were not significantly different with regard to accuracy. It is suggested that a chin-operated trackball could be used for communication applications both with and without neck movements.

  11. Responses of somatosensory area 2 neurons to actively and passively generated limb movements

    PubMed Central

    London, Brian M.

    2013-01-01

    Control of reaching movements requires an accurate estimate of the state of the limb, yet sensory signals are inherently noisy, because of both noise at the receptors themselves and the stochastic nature of the information representation by neural discharge. One way to derive an accurate representation from noisy sensor data is to combine it with the output of a forward model that considers both the previous state estimate and the noisy input. We recorded from primary somatosensory cortex (S1) in macaques (Macaca mulatta) during both active and passive movements to investigate how the proprioceptive representation of movement in S1 may be modified by the motor command (through efference copy). We found neurons in S1 that respond to one or both movement types covering a broad distribution from active movement only, to both, to passive movement only. Those neurons that responded to both active and passive movements responded with similar directional tuning. Confirming earlier results, some, but not all, neurons responded before the onset of volitional movements, possibly as a result of efference copy. Consequently, many of the features necessary to combine the forward model with proprioceptive feedback appear to be present in S1. These features would not be expected from combinations of afferent receptor responses alone. PMID:23274308

  12. Otolith Dysfunction Alters Exploratory Movement in Mice

    PubMed Central

    Blankenship, Philip A.; Cherep, Lucia A.; Donaldson, Tia N.; Brockman, Sarah N.; Trainer, Alexandria D.; Yoder, Ryan M.; Wallace, Douglas G.

    2017-01-01

    The organization of rodent exploratory behavior appears to depend on self-movement cue processing. As of yet, however, no studies have directly examined the vestibular system’s contribution to the organization of exploratory movement. The current study sequentially segmented open field behavior into progressions and stops in order to characterize differences in movement organization between control and otoconia-deficient tilted mice under conditions with and without access to visual cues. Under completely dark conditions, tilted mice exhibited similar distance traveled and stop times overall, but had significantly more circuitous progressions, larger changes in heading between progressions, and less stable clustering of home bases, relative to control mice. In light conditions, control and tilted mice were similar on all measures except for the change in heading between progressions. This pattern of results is consistent with otoconia-deficient tilted mice using visual cues to compensate for impaired self-movement cue processing. This work provides the first empirical evidence that signals from the otolithic organs mediate the organization of exploratory behavior, based on a novel assessment of spatial orientation. PMID:28235587

  13. Gross Motor Activities: Movement for Fun and Learning.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara

    1983-01-01

    Examples are provided of ways in which gross motor activities are integrated into mathematics, language arts, social studies, art, and music and creative movement concepts for preschool- and primary-age children with special needs. (CL)

  14. Kinematics and eye-head coordination of gaze shifts evoked from different sites in the superior colliculus of the cat.

    PubMed

    Guillaume, Alain; Pélisson, Denis

    2006-12-15

    Shifting gaze requires precise coordination of eye and head movements. It is clear that the superior colliculus (SC) is involved with saccadic gaze shifts. Here we investigate its role in controlling both eye and head movements during gaze shifts. Gaze shifts of the same amplitude can be evoked from different SC sites by controlled electrical microstimulation. To describe how the SC coordinates the eye and the head, we compare the characteristics of these amplitude-matched gaze shifts evoked from different SC sites. We show that matched amplitude gaze shifts elicited from progressively more caudal sites are progressively slower and associated with a greater head contribution. Stimulation at more caudal SC sites decreased the peak velocity of the eye but not of the head, suggesting that the lower peak gaze velocity for the caudal sites is due to the increased contribution of the slower-moving head. Eye-head coordination across the SC motor map is also indicated by the relative latencies of the eye and head movements. For some amplitudes of gaze shift, rostral stimulation evoked eye movement before head movement, whereas this reversed with caudal stimulation, which caused the head to move before the eyes. These results show that gaze shifts of similar amplitude evoked from different SC sites are produced with different kinematics and coordination of eye and head movements. In other words, gaze shifts evoked from different SC sites follow different amplitude-velocity curves, with different eye-head contributions. These findings shed light on mechanisms used by the central nervous system to translate a high-level motor representation (a desired gaze displacement on the SC map) into motor commands appropriate for the involved body segments (the eye and the head).

  15. Modulation of head movement control in humans during treadmill walking

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Verstraete, Mary C.; Bloomberg, Jacob J.

    2002-01-01

    The purpose of this study was to investigate the coordination of the head relative to the trunk within a gait cycle during gaze fixation. Nine normal subjects walked on a motorized treadmill driven at 1.79 m/s (20 s trials) while fixing their gaze on a centrally located earth-fixed target positioned at a distance of 2 m from their eyes. The net and relative angular motions of the head about the three axes of rotations, as well as the corresponding values for the moments acting on it relative to the trunk during the gait cycle were quantified and used as measures of coordination. The average net moment, as well as the average moments about the different axes were significantly different (P<0.01) between the high impact and low/no impact phases of the gait cycle. However, the average net angular displacement as well as the average angular displacement about the axial rotation axis of the head relative to the trunk was maintained uniform (P>0.01) throughout the gait cycle. The average angular displacement about the lateral bending axis was significantly increased (P<0.01) during the high impact phase while that about the flexion-extension axis was significantly decreased (P<0.01) throughout the gait cycle. Thus, the coordination of the motion of the head relative to the trunk during walking is dynamically modulated depending on the behavioral events occurring in the gait cycle. This modulation may serve to aid stabilization of the head by counteracting the force variations acting on the upper body that may aid in the visual fixation of targets during walking.

  16. Constraining eye movement in individuals with Parkinson's disease during walking turns.

    PubMed

    Ambati, V N Pradeep; Saucedo, Fabricio; Murray, Nicholas G; Powell, Douglas W; Reed-Jones, Rebecca J

    2016-10-01

    Walking and turning is a movement that places individuals with Parkinson's disease (PD) at increased risk for fall-related injury. However, turning is an essential movement in activities of daily living, making up to 45 % of the total steps taken in a given day. Hypotheses regarding how turning is controlled suggest an essential role of anticipatory eye movements to provide feedforward information for body coordination. However, little research has investigated control of turning in individuals with PD with specific consideration for eye movements. The purpose of this study was to examine eye movement behavior and body segment coordination in individuals with PD during walking turns. Three experimental groups, a group of individuals with PD, a group of healthy young adults (YAC), and a group of healthy older adults (OAC), performed walking and turning tasks under two visual conditions: free gaze and fixed gaze. Whole-body motion capture and eye tracking characterized body segment coordination and eye movement behavior during walking trials. Statistical analysis revealed significant main effects of group (PD, YAC, and OAC) and visual condition (free and fixed gaze) on timing of segment rotation and horizontal eye movement. Within group comparisons, revealed timing of eye and head movement was significantly different between the free and fixed gaze conditions for YAC (p < 0.001) and OAC (p < 0.05), but not for the PD group (p > 0.05). In addition, while intersegment timings (reflecting segment coordination) were significantly different for YAC and OAC during free gaze (p < 0.05), they were not significantly different in PD. These results suggest individuals with PD do not make anticipatory eye and head movements ahead of turning and that this may result in altered segment coordination during turning. As such, eye movements may be an important addition to training programs for those with PD, possibly promoting better coordination during turning and

  17. Quantifying Leg Movement Activity During Sleep.

    PubMed

    Ferri, Raffaele; Fulda, Stephany

    2016-12-01

    Currently, 2 sets of similar rules for recording and scoring leg movement (LM) exist, including periodic LM during sleep (PLMS) and periodic LM during wakefulness. The former were published in 2006 by a task force of the International Restless Legs Syndrome Study Group, and the second in 2007 by the American Academy of Sleep Medicine. This article reviews the basic recording methods, scoring rules, and computer-based programs for PLMS. Less frequent LM activities, such as alternating leg muscle activation, hypnagogic foot tremor, high-frequency LMs, and excessive fragmentary myoclonus are briefly described. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Head position modulates optokinetic nystagmus

    PubMed Central

    Ferraresi, A.; Botti, F. M.; Panichi, R.; Barmack, N. H.

    2011-01-01

    Orientation and movement relies on both visual and vestibular information mapped in separate coordinate systems. Here, we examine how coordinate systems interact to guide eye movements of rabbits. We exposed rabbits to continuous horizontal optokinetic stimulation (HOKS) at 5°/s to evoke horizontal eye movements, while they were statically or dynamically roll-tilted about the longitudinal axis. During monocular or binocular HOKS, when the rabbit was roll-tilted 30° onto the side of the eye stimulated in the posterior → anterior (P → A) direction, slow phase eye velocity (SPEV) increased by 3.5–5°/s. When the rabbit was roll-tilted 30° onto the side of the eye stimulated in the A → P direction, SPEV decreased to ~2.5°/s. We also tested the effect of roll-tilt after prolonged optokinetic stimulation had induced a negative optokinetic afternystagmus (OKAN II). In this condition, the SPEV occurred in the dark, “open loop.” Modulation of SPEV of OKAN II depended on the direction of the nystagmus and was consistent with that observed during “closed loop” HOKS. Dynamic roll-tilt influenced SPEV evoked by HOKS in a similar way. The amplitude and the phase of SPEV depended on the frequency of vestibular oscillation and on HOKS velocity. We conclude that the change in the linear acceleration of the gravity vector with respect to the head during roll-tilt modulates the gain of SPEV depending on its direction. This modulation improves gaze stability at different image retinal slip velocities caused by head roll-tilt during centric or eccentric head movement. PMID:21735244

  19. Head position modulates optokinetic nystagmus.

    PubMed

    Pettorossi, V E; Ferraresi, A; Botti, F M; Panichi, R; Barmack, N H

    2011-08-01

    Orientation and movement relies on both visual and vestibular information mapped in separate coordinate systems. Here, we examine how coordinate systems interact to guide eye movements of rabbits. We exposed rabbits to continuous horizontal optokinetic stimulation (HOKS) at 5°/s to evoke horizontal eye movements, while they were statically or dynamically roll-tilted about the longitudinal axis. During monocular or binocular HOKS, when the rabbit was roll-tilted 30° onto the side of the eye stimulated in the posterior → anterior (P → A) direction, slow phase eye velocity (SPEV) increased by 3.5-5°/s. When the rabbit was roll-tilted 30° onto the side of the eye stimulated in the A → P direction, SPEV decreased to ~2.5°/s. We also tested the effect of roll-tilt after prolonged optokinetic stimulation had induced a negative optokinetic afternystagmus (OKAN II). In this condition, the SPEV occurred in the dark, "open loop." Modulation of SPEV of OKAN II depended on the direction of the nystagmus and was consistent with that observed during "closed loop" HOKS. Dynamic roll-tilt influenced SPEV evoked by HOKS in a similar way. The amplitude and the phase of SPEV depended on the frequency of vestibular oscillation and on HOKS velocity. We conclude that the change in the linear acceleration of the gravity vector with respect to the head during roll-tilt modulates the gain of SPEV depending on its direction. This modulation improves gaze stability at different image retinal slip velocities caused by head roll-tilt during centric or eccentric head movement.

  20. Moving to Music: Effects of Heard and Imagined Musical Cues on Movement-Related Brain Activity

    PubMed Central

    Schaefer, Rebecca S.; Morcom, Alexa M.; Roberts, Neil; Overy, Katie

    2014-01-01

    Music is commonly used to facilitate or support movement, and increasingly used in movement rehabilitation. Additionally, there is some evidence to suggest that music imagery, which is reported to lead to brain signatures similar to music perception, may also assist movement. However, it is not yet known whether either imagined or musical cueing changes the way in which the motor system of the human brain is activated during simple movements. Here, functional magnetic resonance imaging was used to compare neural activity during wrist flexions performed to either heard or imagined music with self-pacing of the same movement without any cueing. Focusing specifically on the motor network of the brain, analyses were performed within a mask of BA4, BA6, the basal ganglia (putamen, caudate, and pallidum), the motor nuclei of the thalamus, and the whole cerebellum. Results revealed that moving to music compared with self-paced movement resulted in significantly increased activation in left cerebellum VI. Moving to imagined music led to significantly more activation in pre-supplementary motor area (pre-SMA) and right globus pallidus, relative to self-paced movement. When the music and imagery cueing conditions were contrasted directly, movements in the music condition showed significantly more activity in left hemisphere cerebellum VII and right hemisphere and vermis of cerebellum IX, while the imagery condition revealed more significant activity in pre-SMA. These results suggest that cueing movement with actual or imagined music impacts upon engagement of motor network regions during the movement, and suggest that heard and imagined cues can modulate movement in subtly different ways. These results may have implications for the applicability of auditory cueing in movement rehabilitation for different patient populations. PMID:25309407

  1. Muscle activation patterns in acceleration-based phases during reach-to-grasp movement.

    PubMed

    Tokuda, Keisuke; Lee, Bumsuk; Shiihara, Yasufumi; Takahashi, Kazuhiro; Wada, Naoki; Shirakura, Kenji; Watanabe, Hideomi

    2016-11-01

    [Purpose] An earlier study divided reaching activity into characteristic phases based on hand velocity profiles. By synchronizing muscle activities and the acceleration profile, a phasing approach for reaching movement, based on hand acceleration profiles, was attempted in order to elucidate the roles of individual muscle activities in the different phases of the acceleration profile in reaching movements. [Subjects and Methods] Ten healthy volunteer subjects participated in this study. The aim was to electromyographically evaluate muscles around the shoulder, the upper trapezius, the anterior deltoid, the biceps brachii, and the triceps brachii, most of which have been used to evaluate arm motion, as well as the acceleration of the upper limb during simple reaching movement in the reach-to-grasp task. [Results] Analysis showed the kinematic trajectories of the acceleration during a simple biphasic profile of the reaching movement could be divided into four phases: increasing acceleration (IA), decreasing acceleration (DA), increasing deceleration (ID), and decreasing deceleration (DD). Muscles around the shoulder showed different activity patterns, which were closely associated with these acceleration phases. [Conclusion] These results suggest the important role of the four phases, derived from the acceleration trajectory, in the elucidation of the muscular mechanisms which regulate and coordinate the muscles around the shoulder in reaching movements.

  2. An ocular biomechanic model for dynamic simulation of different eye movements.

    PubMed

    Iskander, J; Hossny, M; Nahavandi, S; Del Porto, L

    2018-04-11

    Simulating and analysing eye movement is useful for assessing visual system contribution to discomfort with respect to body movements, especially in virtual environments where simulation sickness might occur. It can also be used in the design of eye prosthesis or humanoid robot eye. In this paper, we present two biomechanic ocular models that are easily integrated into the available musculoskeletal models. The model was previously used to simulate eye-head coordination. The models are used to simulate and analyse eye movements. The proposed models are based on physiological and kinematic properties of the human eye. They incorporate an eye-globe, orbital suspension tissues and six muscles with their connective tissues (pulleys). Pulleys were incorporated in rectus and inferior oblique muscles. The two proposed models are the passive pulleys and the active pulleys models. Dynamic simulations of different eye movements, including fixation, saccade and smooth pursuit, are performed to validate both models. The resultant force-length curves of the models were similar to the experimental data. The simulation results show that the proposed models are suitable to generate eye movement simulations with results comparable to other musculoskeletal models. The maximum kinematic root mean square error (RMSE) is 5.68° and 4.35° for the passive and active pulley models, respectively. The analysis of the muscle forces showed realistic muscle activation with increased muscle synergy in the active pulley model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Human cortical activity related to unilateral movements. A high resolution EEG study.

    PubMed

    Urbano, A; Babiloni, C; Onorati, P; Babiloni, F

    1996-12-20

    In the present study a modern high resolution electroencephalography (EEG) technique was used to investigate the dynamic functional topography of human cortical activity related to simple unilateral internally triggered finger movements. The sensorimotor area (M1-S1) contralateral to the movement as well as the supplementary motor area (SMA) and to a lesser extent the ipsilateral M1-S1 were active during the preparation and execution of these movements. These findings suggest that both hemispheres may cooperate in both planning and production of simple unilateral volitional acts.

  4. Bobble-head doll syndrome associated with Dandy-Walker syndrome. Case report.

    PubMed

    de Brito Henriques, José Gilberto; Henriques, Karina Santos Wandeck; Filho, Geraldo Pianetti; Fonseca, Luiz Fernando; Cardoso, Francisco; Da Silva, Márcia Cristina

    2007-09-01

    Bobble-head doll syndrome (BHDS) presents in childhood and is usually associated with lesions of the third ventricle. This disorder is characterized by stereotypical head movements of the type "yes-yes" (up and down) at a frequency of 2 to 3 Hz. Rarely, movements of the type "no-no" (side-to-side) are described. There are a few hypotheses to explain the mechanism responsible for BHDS, but its real pathophysiological characteristics are still unknown. The authors describe the case of a child born with hydrocephalus and Dandy-Walker syndrome. A ventriculoperitoneal shunt was implanted in the child because of progressive head enlargement. One year after shunt placement, she began making frequent horizontal head movements of the type "no-no". There were no other signs or symptoms. Imaging studies demonstrated small ventricles and a posterior fossa cyst with no signs of hypertension. The child's growth, development, and head circumference (within the 5th percentile) remained satisfactory. Three aspects of this case were of interest: the association of BHDS with Dandy-Walker syndrome, the rare occurrence of BHDS of the "no-no" type, and the absence of third ventricle dilation. The authors' findings support the hypothesis that cerebellar malformations themselves can

  5. Comparison of lower limb muscle activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults

    PubMed Central

    Kim, Min-Ju; Kim, Joong-Hwi

    2016-01-01

    [Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], adductor longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six muscles for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb muscle enhancement. PMID:26957762

  6. Cognitive context determines dorsal premotor cortical activity during hand movement in patients after stroke.

    PubMed

    Dennis, Andrea; Bosnell, Rose; Dawes, Helen; Howells, Ken; Cockburn, Janet; Kischka, Udo; Matthews, Paul; Johansen-Berg, Heidi

    2011-04-01

    Stroke patients often have difficulties in simultaneously performing a motor and cognitive task. Functional imaging studies have shown that movement of an affected hand after stroke is associated with increased activity in multiple cortical areas, particularly in the contralesional hemisphere. We hypothesized patients for whom executing simple movements demands greater selective attention will show greater brain activity during movement. Eight chronic stroke patients performed a behavioral interference test using a visuo-motor tracking with and without a simultaneous cognitive task. The magnitude of behavioral task decrement under cognitive motor interference (CMI) conditions was calculated for each subject. Functional MRI was used to assess brain activity in the same patients during performance of a visuo-motor tracking task alone; correlations between CMI score and movement-related brain activation were then explored. Movement-related activation in the dorsal precentral gyrus of the contralesional hemisphere correlated strongly and positively with CMI score (r(2) at peak voxel=0.92; P<0.05). Similar but weaker relationships were observed in the ventral precentral and middle frontal gyrus. There was no independent relationship between hand motor impairment and CMI. Results suggest that variations in the degree to which a cognitive task interferes with performance of a concurrent motor task explains a substantial proportion of the variations in movement-related brain activity in patients after stroke. The results emphasize the importance of considering cognitive context when interpreting brain activity patterns and provide a rationale for further evaluation of integrated cognitive and movement interventions for rehabilitation in stroke.

  7. Neuromagnetic Cerebellar Activity Entrains to the Kinematics of Executed Finger Movements.

    PubMed

    Marty, Brice; Wens, V; Bourguignon, M; Naeije, G; Goldman, S; Jousmäki, V; De Tiège, X

    2018-05-03

    This magnetoencephalography (MEG) study aims at characterizing the coupling between cerebellar activity and the kinematics of repetitive self-paced finger movements. Neuromagnetic signals were recorded in 11 right-handed healthy adults while they performed repetitive flexion-extensions of right-hand fingers at three different movement rates: slow (~ 1 Hz), medium (~ 2 Hz), and fast (~ 3 Hz). Right index finger acceleration was monitored with an accelerometer. Coherence analysis was used to index the coupling between right index finger acceleration and neuromagnetic signals. Dynamic imaging of coherent sources was used to locate coherent sources. Coupling directionality between primary sensorimotor (SM1), cerebellar, and accelerometer signals was assessed with renormalized partial directed coherence. Permutation-based statistics coupled with maximum statistic over the entire brain volume or restricted to the cerebellum were used. At all movement rates, maximum coherence peaked at SM1 cortex contralateral to finger movements at movement frequency (F0) and its first harmonic (F1). Significant (statistics restricted to the cerebellum) coherence consistently peaked at the right posterior lobe of the cerebellum at F0 with no influence of movement rate. Coupling between Acc and cerebellar signals was significantly stronger in the afferent than in the efferent direction with no effective contribution of cortico-cerebellar or cerebello-cortical pathways. This study demonstrates the existence of significant coupling between finger movement kinematics and neuromagnetic activity at the posterior cerebellar lobe ipsilateral to finger movement at F0. This coupling is mainly driven by spinocerebellar, presumably proprioceptive, afferences.

  8. Task-specific stability in muscle activation space during unintentional movements.

    PubMed

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L

    2014-11-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy.

  9. Gender differences in head-neck segment dynamic stabilization during head acceleration.

    PubMed

    Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph

    2005-02-01

    Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum

  10. Head-bobbing behavior in foraging Whooping Cranes

    USGS Publications Warehouse

    Cronin, T.; Kinloch, M.; Olsen, Glenn H.

    2006-01-01

    Many species of cursorial birds 'head-bob', that is, they alternately thrust the head forward, then hold it stiII as they walk. Such a motion stabilizes visual fields intermittently and could be critical for visual search; yet the time available for stabilization vs. forward thrust varies with walking speed. Whooping Cranes (Grus americana) are extremely tall birds that visually search the ground for seeds, berries, and small prey. We examined head movements in unrestrained Whooping Cranes using digital video subsequently analyzed with a computer graphical overlay. When foraging, the cranes walk at speeds that allow the head to be held still for at least 50% of the time. This behavior is thought to balance the two needs for covering as much ground as possible and for maximizing the time for visual fixation of the ground in the search for prey. Our results strongly suggest that in cranes, and probably many other bird species, visual fixation of the ground is required for object detection and identification. The thrust phase of the head-bobbing cycle is probably also important for vision. As the head moves forward, the movement generates visual flow and motion parallax, providing visual cues for distances and the relative locations of objects. The eyes commonly change their point of fixation when the head is moving too, suggesting that they remain visually competent throughout the entire cycle of thrust and stabilization.

  11. Relationship between speed and EEG activity during imagined and executed hand movements

    NASA Astrophysics Data System (ADS)

    Yuan, Han; Perdoni, Christopher; He, Bin

    2010-04-01

    The relationship between primary motor cortex and movement kinematics has been shown in nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the neural activities accompanying or immediately preceding the movement encode the direction, speed and other information. Here we investigated the relationship between the kinematics of imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human subjects. Study participants were asked to perform and imagine clenching of the left hand and right hand at various speeds. The EEG activity in the alpha (8-12 Hz) and beta (18-28 Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching. Similar parametric modulation was also found during the execution of hand movements. A single equation relating the EEG activity to the speed and the hand (left versus right) was developed. This equation, which contained a linear independent combination of the two parameters, described the time-varying neural activity during the tasks. Based on the model, a regression approach was developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated the continuous decoding of dynamic hand and speed information of the imagined clenching. In particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our findings suggest an application to providing continuous and complex control of noninvasive brain-computer interface for movement-impaired paralytics.

  12. Infant brain activity while viewing facial movement of point-light displays as measured by near-infrared spectroscopy (NIRS).

    PubMed

    Ichikawa, Hiroko; Kanazawa, So; Yamaguchi, Masami K; Kakigi, Ryusuke

    2010-09-27

    Adult observers can quickly identify specific actions performed by an invisible actor from the points of lights attached to the actor's head and major joints. Infants are also sensitive to biological motion and prefer to see it depicted by a dynamic point-light display. In detecting biological motion such as whole body and facial movements, neuroimaging studies have demonstrated the involvement of the occipitotemporal cortex, including the superior temporal sulcus (STS). In the present study, we used the point-light display technique and near-infrared spectroscopy (NIRS) to examine infant brain activity while viewing facial biological motion depicted in a point-light display. Dynamic facial point-light displays (PLD) were made from video recordings of three actors making a facial expression of surprise in a dark room. As in Bassili's study, about 80 luminous markers were scattered over the surface of the actor's faces. In the experiment, we measured infant's hemodynamic responses to these displays using NIRS. We hypothesized that infants would show different neural activity for upright and inverted PLD. The responses were compared to the baseline activation during the presentation of individual still images, which were frames extracted from the dynamic PLD. We found that the concentration of oxy-Hb increased in the right temporal area during the presentation of the upright PLD compared to that of the baseline period. This is the first study to demonstrate that infant's brain activity in face processing is induced only by the motion cue of facial movement depicted by dynamic PLD. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Visual perception of axes of head rotation

    PubMed Central

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is

  14. Clitics and Head-Movement as Intra-Syntactic Morphology

    ERIC Educational Resources Information Center

    DiGirolamo, Cara Masten

    2017-01-01

    This dissertation approaches the idea of lexical types such as word, clitic and affix from an oblique angle. Starting with Cardinaletti & Starke's (1999) diagnostics for the Weak Pronoun, I deconstruct the category of clitic, breaking it down into two binary qualities: the syntactic primitive of being linked to a head of a different basic…

  15. Do Activity Level Outcome Measures Commonly Used in Neurological Practice Assess Upper-Limb Movement Quality?

    PubMed

    Demers, Marika; Levin, Mindy F

    2017-07-01

    Movement is described in terms of task-related end point characteristics in external space and movement quality (joint rotations in body space). Assessment of upper-limb (UL) movement quality can assist therapists in designing effective treatment approaches for retraining lost motor elements and provide more detailed measurements of UL motor improvements over time. To determine the extent to which current activity level outcome measures used in neurological practice assess UL movement quality. Outcome measures assessing arm/hand function at the International Classification of Function activity level recommended by neurological clinical practice guidelines were reviewed. Measures assessing the UL as part of a general mobility assessment, those strictly evaluating body function/structure or participation, and paediatric measures were excluded. In all, 15 activity level outcome measures were identified; 9 measures assess how movement is performed by measuring either end point characteristics or movement quality. However, except for the Reaching Performance Scale for Stroke and the Motor Evaluation Scale for Upper Extremity in Stroke Patients, these measures only account for deficits indirectly by giving a partial score if movements are slower or if the person experiences difficulties. Six outcome measures neither assess any parameters related to movement quality, nor distinguish between improvements resulting from motor compensation or recovery of desired movement strategies. Current activity measures may not distinguish recovery from compensation and adequately track changes in movement quality over time. Movement quality may be incorporated into clinical assessment using observational kinematics with or without low-cost motion tracking technology.

  16. Anticancer activity of drug conjugates in head and neck cancer cells.

    PubMed

    Majumdar, Debatosh; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Shin, Dong M

    2016-06-01

    Sexually transmitted oral cancer/head and neck cancer is increasing rapidly. Human papilloma virus (HPV) is playing a role in the pathogenesis of a subset of squamous cell carcinoma of head and neck (SCCHN). Paclitaxel is a widely used anticancer drug for breast, ovarian, testicular, cervical, non-small cell lung, head and neck cancer. However, it is water insoluble and orally inactive. We report the synthesis of water soluble nanosize conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide by employing native chemical ligation. We performed a native chemical ligation between the N-hydroxy succinimide (NHS) ester of paclitaxel succinate and cysteine at pH 6.5 to give the cysteine-conjugated paclitaxel derivative. The thiol functionality of cysteine was activated and subsequently conjugated to multiarm thiol-PEG to obtain the paclitaxel branched PEG conjugate. Finally, we conjugated an EGFR-targeting peptide to obtain conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide. These conjugates show anticancer activity against squamous cell carcinoma of head and neck cells (SCCHN, Tu212).

  17. Impact of Structured Movement Time on Preschoolers' Physical Activity Engagement

    ERIC Educational Resources Information Center

    Palmer, Kara K.; Matsuyama, Abigail L.; Robinson, Leah E.

    2017-01-01

    Preschool-aged children are not meeting national physical activity recommendations. This study compares preschoolers' physical activity engagement during two different physical activity opportunities: outdoor free play or a structured movement session. Eighty-seven children served as participants: 40 children participated in outdoor free play and…

  18. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.

    PubMed

    Muraoka, Tetsuro; Ishida, Yuki; Obu, Takashi; Crawshaw, Larry; Kanosue, Kazuyuki

    2013-04-01

    When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Electron Microscopic Recording of the Power and Recovery Strokes of Individual Myosin Heads Coupled with ATP Hydrolysis: Facts and Implications.

    PubMed

    Sugi, Haruo; Chaen, Shigeru; Akimoto, Tsuyoshi

    2018-05-04

    The most straightforward way to get information on the performance of individual myosin heads producing muscle contraction may be to record their movement, coupled with ATP hydrolysis, electron-microscopically using the gas environmental chamber (EC). The EC enables us to visualize and record ATP-induced myosin head movement in hydrated skeletal muscle myosin filaments. When actin filaments are absent, myosin heads fluctuate around a definite neutral position, so that their time-averaged mean position remains unchanged. On application of ATP, myosin heads are found to move away from, but not towards, the bare region, indicating that myosin heads perform a recovery stroke (average amplitude, 6 nm). After exhaustion of ATP, myosin heads return to their neutral position. In the actin⁻myosin filament mixture, myosin heads form rigor actin myosin linkages, and on application of ATP, they perform a power stroke by stretching adjacent elastic structures because of a limited amount of applied ATP ≤ 10 µM. The average amplitude of the power stroke is 3.3 nm and 2.5 nm at the distal and the proximal regions of the myosin head catalytic domain (CAD), respectively. The power stroke amplitude increases appreciably at low ionic strength, which is known to enhance Ca 2+ -activated force in muscle. In both the power and recovery strokes, myosin heads return to their neutral position after exhaustion of ATP.

  20. Reversed cortical over-activity during movement imagination following neurofeedback treatment for central neuropathic pain.

    PubMed

    Hasan, Muhammad Abul; Fraser, Matthew; Conway, Bernard A; Allan, David B; Vučković, Aleksandra

    2016-09-01

    One of the brain signatures of the central neuropathic pain (CNP) is the theta band over-activity of wider cortical structures, during imagination of movement. The objective of the study was to investigate whether this over-activity is reversible following the neurofeedback treatment of CNP. Five paraplegic patients with pain in their legs underwent from twenty to forty neurofeedback sessions that significantly reduced their pain. In order to assess their dynamic cortical activity they were asked to imagine movements of all limbs a week before the first and a week after the last neurofeedback session. Using time-frequency analysis we compared EEG activity during imagination of movement before and after the therapy and further compared it with EEG signals of ten paraplegic patients with no pain and a control group of ten able-bodied people. Neurofeedback treatment resulted in reduced CNP and a wide spread reduction of cortical activity during imagination of movement. The reduction was significant in the alpha and beta band but was largest in the theta band. As a result cortical activity became similar to the activity of other two groups with no pain. Reduction of CNP is accompanied by reduced cortical over-activity during movement imagination. Understanding causes and consequences mechanism through which CNP affects cortical activity. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds.

    PubMed

    Raffalt, P C; Guul, M K; Nielsen, A N; Puthusserypady, S; Alkjær, T

    2017-03-08

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior-posterior and mediolateral centre of mass accelerations which coincided with the most energy-efficient walking speed. Furthermore, the dynamics of the joint angle trajectories and the muscle activation strategy was closely linked to the functional role and biomechanical constraints of the joints.

  2. [Strategies for simultaneous control of the equilibrium and of the head position during the raising movement of a leg].

    PubMed

    Mouchnino, L; Aurenty, R; Massion, J; Pedotti, A

    1991-01-01

    The coordination between equilibrium control and the ability to maintain the position of given segments (head, trunk) was studied in standing subjects, instructed to raise one leg laterally at an angle of 45 degrees in response to a light. Two sources of light placed at eye level indicated the side on which the movement was to be performed. Two populations were compared: naive subjects and dancers. Two control strategies were identified. An "inclination" strategy was used by the naive subjects. This consisted of an external rotation of the body around the antero-posterior ankle joint axis; a counter-rotation of the head with respect to the trunk was observed, which ensured some stabilization in the horizontal plane of the interorbital line. A "translation" strategy was used by the dancers. Here the external rotation of the leg around the ankle joint was associated with a feed-forward counter-rotation of the trunk around the coxofemoral joint so that the horizontality of the interorbital line and the verticality of the trunk axis were maintained. This new coordination results from a long-term training and indicates that a new motor program has been elaborated.

  3. Acetylcholine contributes to the integration of self-movement cues in head direction cells.

    PubMed

    Yoder, Ryan M; Chan, Jeremy H M; Taube, Jeffrey S

    2017-08-01

    Acetylcholine contributes to accurate performance on some navigational tasks, but details of its contribution to the underlying brain signals are not fully understood. The medial septal area provides widespread cholinergic input to various brain regions, but selective damage to medial septal cholinergic neurons generally has little effect on landmark-based navigation, or the underlying neural representations of location and directional heading in visual environments. In contrast, the loss of medial septal cholinergic neurons disrupts navigation based on path integration, but no studies have tested whether these path integration deficits are associated with disrupted head direction (HD) cell activity. Therefore, we evaluated HD cell responses to visual cue rotations in a familiar arena, and during navigation between familiar and novel arenas, after muscarinic receptor blockade with systemic atropine. Atropine treatment reduced the peak firing rate of HD cells, but failed to significantly affect other HD cell firing properties. Atropine also failed to significantly disrupt the dominant landmark control of the HD signal, even though we used a procedure that challenged this landmark control. In contrast, atropine disrupted HD cell stability during navigation between familiar and novel arenas, where path integration normally maintains a consistent HD cell signal across arenas. These results suggest that acetylcholine contributes to path integration, in part, by facilitating the use of idiothetic cues to maintain a consistent representation of directional heading. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Different Head Environments in Tarantula Thick Filaments Support a Cooperative Activation Process

    PubMed Central

    Sulbarán, Guidenn; Biasutto, Antonio; Alamo, Lorenzo; Riggs, Claire; Pinto, Antonio; Méndez, Franklin; Craig, Roger; Padrón, Raúl

    2013-01-01

    Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). Structural analysis of relaxed tarantula thick filaments shows that the RLCs of the interacting free and blocked myosin heads are in different environments. This and other data suggested a phosphorylation mechanism in which Ser-35 of the free head is exposed and constitutively phosphorylated by protein kinase C, whereas the blocked head is hidden and unphosphorylated; on activation, myosin light chain kinase phosphorylates the monophosphorylated free head followed by the unphosphorylated blocked head, both at Ser-45. Our goal was to test this model of phosphorylation. Mass spectrometry of quickly frozen, intact muscles showed that only Ser-35 was phosphorylated in the relaxed state. The location of this constitutively phosphorylated Ser-35 was analyzed by immunofluorescence, using antibodies specific for unphosphorylated or phosphorylated Ser-35. In the relaxed state, myofibrils were labeled by anti-pSer-35 but not by anti-Ser-35, whereas in rigor, labeling was similar with both. This suggests that only pSer-35 is exposed in the relaxed state, while in rigor, Ser-35 is also exposed. In the interacting-head motif of relaxed filaments, only the free head RLCs are exposed, suggesting that the constitutive pSer-35 is on the free heads, consistent with the proposed mechanism. PMID:24209856

  5. A Novel Saccadic Strategy Revealed by Suppression Head Impulse Testing of Patients with Bilateral Vestibular Loss.

    PubMed

    de Waele, Catherine; Shen, Qiwen; Magnani, Christophe; Curthoys, Ian S

    2017-01-01

    We examined the eye movement response patterns of a group of patients with bilateral vestibular loss (BVL) during suppression head impulse testing. Some showed a new saccadic strategy that may have potential for explaining how patients use saccades to recover from vestibular loss. Eight patients with severe BVL [vestibulo-ocular reflex (VOR) gains less than 0.35 and absent otolithic function] were tested. All patients were given the Dizziness Handicap Inventory and questioned about oscillopsia during abrupt head movements. Two paradigms of video head impulse testing of the horizontal VOR were used: (1) the classical head impulse paradigm [called head impulse test (HIMPs)]-fixating an earth-fixed target during the head impulse and (2) the new complementary test paradigm-fixating a head-fixed target during the head impulse (called SHIMPs). The VOR gain of HIMPs was quantified by two algorithms. During SHIMPs testing, some BVL patients consistently generated an inappropriate covert compensatory saccade during the head impulse that required a corresponding large anti-compensatory saccade at the end of the head impulse in order to obey the instructions to maintain gaze on the head-fixed target. By contrast, other BVL patients did not generate this inappropriate covert saccade and did not exhibit a corresponding anti-compensatory saccade. The latencies of the covert saccade in SHIMPs and HIMPs were similar. The pattern of covert saccades during SHIMPs appears to be related to the reduction of oscillopsia during abrupt head movements. BVL patients who did not report oscillopsia showed this unusual saccadic pattern, whereas BVL patients who reported oscillopsia did not show this pattern. This inappropriate covert SHIMPs saccade may be an objective indicator of how some patients with vestibular loss have learned to trigger covert saccades during head movements in everyday life.

  6. Contact Analog/Compressed Symbology Heading Tape Assessment

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Atencio, Adolph; Turpin, Terry; Dowell, Susan

    2002-01-01

    A simulation assessed the performance, handling qualities and workload associated with a contact-analog, world-referenced heading tape as implemented on the Comanche Helmet Integrated Display Sight System (HIDSS) when compared with a screen-fixed, compressed heading tape. Six pilots, four active duty Army Aviators and two civilians flew three ADS-33 maneuvers and a traffic pattern in the Ames Vertical Motion Simulation facility. Small, but statistically significant advantages were found for the compressed symbology for handling qualities, workload, and some of the performance measures. It should be noted however that the level of performance and handling qualities for both symbology sets fell within the acceptable tolerance levels. Both symbology sets yield satisfactory handling qualities and performance in velocity stabilization mode and adequate handling qualities in the automatic flight control mode. Pilot comments about the contact analog symbology highlighted the lack of useful rate of change information in the heading tape and "blurring" due to the rapid movement of the heading tape. These issues warrant further study. Care must be taken in interpreting the operational significance of these results. The symbology sets yielded categorically similar data, i.e., acceptable handling qualities and adequate performance, so while the results point to the need for further study, their operational significance has yet to be determined.

  7. Precise Head Tracking in Hearing Applications

    NASA Astrophysics Data System (ADS)

    Helle, A. M.; Pilinski, J.; Luhmann, T.

    2015-05-01

    The paper gives an overview about two research projects, both dealing with optical head tracking in hearing applications. As part of the project "Development of a real-time low-cost tracking system for medical and audiological problems (ELCoT)" a cost-effective single camera 3D tracking system has been developed which enables the detection of arm and head movements of human patients. Amongst others, the measuring system is designed for a new hearing test (based on the "Mainzer Kindertisch"), which analyzes the directional hearing capabilities of children in cooperation with the research project ERKI (Evaluation of acoustic sound source localization for children). As part of the research project framework "Hearing in everyday life (HALLO)" a stereo tracking system is being used for analyzing the head movement of human patients during complex acoustic events. Together with the consideration of biosignals like skin conductance the speech comprehension and listening effort of persons with reduced hearing ability, especially in situations with background noise, is evaluated. For both projects the system design, accuracy aspects and results of practical tests are discussed.

  8. Initiating head development in mouse embryos: integrating signalling and transcriptional activity.

    PubMed

    Arkell, Ruth M; Tam, Patrick P L

    2012-03-01

    The generation of an embryonic body plan is the outcome of inductive interactions between the progenitor tissues that underpin their specification, regionalization and morphogenesis. The intercellular signalling activity driving these processes is deployed in a time- and site-specific manner, and the signal strength must be precisely controlled. Receptor and ligand functions are modulated by secreted antagonists to impose a dynamic pattern of globally controlled and locally graded signals onto the tissues of early post-implantation mouse embryo. In response to the WNT, Nodal and Bone Morphogenetic Protein (BMP) signalling cascades, the embryo acquires its body plan, which manifests as differences in the developmental fate of cells located at different positions in the anterior-posterior body axis. The initial formation of the anterior (head) structures in the mouse embryo is critically dependent on the morphogenetic activity emanating from two signalling centres that are juxtaposed with the progenitor tissues of the head. A common property of these centres is that they are the source of antagonistic factors and the hub of transcriptional activities that negatively modulate the function of WNT, Nodal and BMP signalling cascades. These events generate the scaffold of the embryonic head by the early-somite stage of development. Beyond this, additional tissue interactions continue to support the growth, regionalization, differentiation and morphogenesis required for the elaboration of the structure recognizable as the embryonic head.

  9. Gas cushion control of OVJP print head position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R

    An OVJP apparatus and method for applying organic vapor or other flowable material to a substrate using a printing head mechanism in which the print head spacing from the substrate is controllable using a cushion of air or other gas applied between the print head and substrate. The print head is mounted for translational movement towards and away from the substrate and is biased toward the substrate by springs or other means. A gas cushion feed assembly supplies a gas under pressure between the print head and substrate which opposes the biasing of the print head toward the substrate somore » as to form a space between the print head and substrate. By controlling the pressure of gas supplied, the print head separation from the substrate can be precisely controlled.« less

  10. Validity of Activity Monitor Step Detection Is Related to Movement Patterns.

    PubMed

    Hickey, Amanda; John, Dinesh; Sasaki, Jeffer E; Mavilia, Marianna; Freedson, Patty

    2016-02-01

    There is a need to examine step-counting accuracy of activity monitors during different types of movements. The purpose of this study was to compare activity monitor and manually counted steps during treadmill and simulated free-living activities and to compare the activity monitor steps to the StepWatch (SW) in a natural setting. Fifteen participants performed laboratory-based treadmill (2.4, 4.8, 7.2 and 9.7 km/h) and simulated free-living activities (eg, cleaning room) while wearing an activPAL, Omron HJ720-ITC, Yamax Digi- Walker SW-200, 2 ActiGraph GT3Xs (1 in "low-frequency extension" [AGLFE] and 1 in "normal-frequency" mode), an ActiGraph 7164, and a SW. Participants also wore monitors for 1-day in their free-living environment. Linear mixed models identified differences between activity monitor steps and the criterion in the laboratory/free-living settings. Most monitors performed poorly during treadmill walking at 2.4 km/h. Cleaning a room had the largest errors of all simulated free-living activities. The accuracy was highest for forward/rhythmic movements for all monitors. In the free-living environment, the AGLFE had the largest discrepancy with the SW. This study highlights the need to verify step-counting accuracy of activity monitors with activities that include different movement types/directions. This is important to understand the origin of errors in step-counting during free-living conditions.

  11. The Head Tracks and Gaze Predicts: How the World’s Best Batters Hit a Ball

    PubMed Central

    Mann, David L.; Spratford, Wayne; Abernethy, Bruce

    2013-01-01

    Hitters in fast ball-sports do not align their gaze with the ball throughout ball-flight; rather, they use predictive eye movement strategies that contribute towards their level of interceptive skill. Existing studies claim that (i) baseball and cricket batters cannot track the ball because it moves too quickly to be tracked by the eyes, and that consequently (ii) batters do not – and possibly cannot – watch the ball at the moment they hit it. However, to date no studies have examined the gaze of truly elite batters. We examined the eye and head movements of two of the world’s best cricket batters and found both claims do not apply to these batters. Remarkably, the batters coupled the rotation of their head to the movement of the ball, ensuring the ball remained in a consistent direction relative to their head. To this end, the ball could be followed if the batters simply moved their head and kept their eyes still. Instead of doing so, we show the elite batters used distinctive eye movement strategies, usually relying on two predictive saccades to anticipate (i) the location of ball-bounce, and (ii) the location of bat-ball contact, ensuring they could direct their gaze towards the ball as they hit it. These specific head and eye movement strategies play important functional roles in contributing towards interceptive expertise. PMID:23516460

  12. Proprioceptive encoding of head position in the black soldier fly, Hermetia illucens (L.) (Stratiomyidae).

    PubMed

    Paulk, Angelique; Gilbert, Cole

    2006-10-01

    Because the eyes of insects cannot be moved independently of the head, information about head posture is essential for stabilizing the visual world or providing information about the direction of gaze. We examined the external anatomy and physiological capabilities of a head posture proprioceptor, the prosternal organ (PO), located at the base of the neck in the black soldier fly, Hermetia illucens (L.) (Family: Stratiomyidae). The PO is sexually isomorphic and is composed of two fused plates of about 130 mechanosensory hairs set in asymmetrical sockets whose orientation varies across the organ. A multi-joint mechanical coupling between the head, neck membrane, and contact sclerites deflects the hairs more or less to increase or decrease their level of excitation. The PO sensory afferents project to the central nervous system (CNS) via a pair of bilateral prosternal nerves (PN) to the fused thoracic ganglia. Simultaneous recording of spiking activity in the PN and videotaping of wind-induced and voluntary head movements around all three axes of head rotation reveal that a few PN afferents are active at rest, but activity increases tonically in response to head deflections. Activity is significantly modulated by change in head angles around the pitch (+/-40 degrees ), yaw (+/-30 degrees ) and roll (more than +/-90 degrees ) axes, although the dynamic range of spiking activity differs for each axis of rotation. Prosternal nerve afferents are bilaterally excited (inhibited) by pitch down (up); excited (inhibited) by head yaw toward the ipsilateral (contralateral) side; excited by roll down toward the ipsilateral side, but little inhibited by roll toward the opposite side. Although bilateral comparison of activity in PN afferents reliably encodes head posture around a given rotational axis, from the point of view of the CNS, the problem of encoding head posture is ill-posed with three axes of rotation and only two streams of afferent information. Furthermore, when the

  13. Changes in music tempo entrain movement related brain activity.

    PubMed

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength.

  14. The Influence of Neck Muscle Activation on Head and Neck Injuries of Occupants in Frontal Impacts.

    PubMed

    Li, Fan; Lu, Ronggui; Hu, Wei; Li, Honggeng; Hu, Shiping; Hu, Jiangzhong; Wang, Haibin; Xie, He

    2018-01-01

    The aim of the present paper was to study the influence of neck muscle activation on head and neck injuries of vehicle occupants in frontal impacts. A mixed dummy-human finite element model was developed to simulate a frontal impact. The head-neck part of a Hybrid III dummy model was replaced by a well-validated head-neck FE model with passive and active muscle characteristics. The mixed dummy-human FE model was validated by 15 G frontal volunteer tests conducted in the Naval Biodynamics Laboratory. The effects of neck muscle activation on the head dynamic responses and neck injuries of occupants in three frontal impact intensities, low speed (10 km/h), medium speed (30 km/h), and high speed (50 km/h), were studied. The results showed that the mixed dummy-human FE model has good biofidelity. The activation of neck muscles can not only lower the head resultant acceleration under different impact intensities and the head angular acceleration in medium- and high-speed impacts, thereby reducing the risks of head injury, but also protect the neck from injury in low-speed impacts.

  15. Head-bobbing behavior in walking whooping cranes (Grus americana) and sandhill cranes (Grus canadensis)

    USGS Publications Warehouse

    Cronin, Thomas W.; Kinloch, Matthew R.; Olsen, Glenn H.

    2007-01-01

    Head-bobbing is a common and characteristic behavior of walking birds. While the activity could have a relatively minor biomechanical function, for balance and stabilization of gait, head-bobbing is thought to be primarily a visual behavior in which fixation of gaze alternates with a forward movement that generates visual flow. We studied head-bobbing in locomoting whooping cranes (Grus americana) and sandhill cranes (Grus canadensis), using food strewn on the ground to motivate them to walk or run. When the cranes walked, head-bobbing proceeded in a four-step sequence that was closely linked to the stepping cycle. The time available for gaze stabilization decreased with travel speed, and running cranes did not head-bob at all. As a crane extended its bill towards the ground for food, it also exhibited a series of short head-bobs that were not associated with forward travel. Head-bobbing is a flexible behavior that varies with gait and with visual search, most notably as the cranes prepare to strike with the bill.

  16. Basal Ganglia Neuronal Activity during Scanning Eye Movements in Parkinson’s Disease

    PubMed Central

    Sieger, Tomáš; Bonnet, Cecilia; Serranová, Tereza; Wild, Jiří; Novák, Daniel; Růžička, Filip; Urgošík, Dušan; Růžička, Evžen; Gaymard, Bertrand; Jech, Robert

    2013-01-01

    The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control. PMID:24223158

  17. Adaptability and Prediction of Anticipatory Muscular Activity Parameters to Different Movements in the Sitting Position.

    PubMed

    Chikh, Soufien; Watelain, Eric; Faupin, Arnaud; Pinti, Antonio; Jarraya, Mohamed; Garnier, Cyril

    2016-08-01

    Voluntary movement often causes postural perturbation that requires an anticipatory postural adjustment to minimize perturbation and increase the efficiency and coordination during execution. This systematic review focuses specifically on the relationship between the parameters of anticipatory muscular activities and movement finality in sitting position among adults, to study the adaptability and predictability of anticipatory muscular activities parameters to different movements and conditions in sitting position in adults. A systematic literature search was performed using PubMed, Science Direct, Web of Science, Springer-Link, Engineering Village, and EbscoHost. Inclusion and exclusion criteria were applied to retain the most rigorous and specific studies, yielding 76 articles, Seventeen articles were excluded at first reading, and after the application of inclusion and exclusion criteria, 23 were retained. In a sitting position, central nervous system activity precedes movement by diverse anticipatory muscular activities and shows the ability to adapt anticipatory muscular activity parameters to the movement direction, postural stability, or charge weight. In addition, these parameters could be adapted to the speed of execution, as found for the standing position. Parameters of anticipatory muscular activities (duration, order, and amplitude of muscle contractions constituting the anticipatory muscular activity) could be used as a predictive indicator of forthcoming movement. In addition, this systematic review may improve methodology in empirical studies and assistive technology for people with disabilities. © The Author(s) 2016.

  18. Movement Coordination during Conversation

    PubMed Central

    Latif, Nida; Barbosa, Adriano V.; Vatiokiotis-Bateson, Eric; Castelhano, Monica S.; Munhall, K. G.

    2014-01-01

    Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers’ perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers. PMID:25119189

  19. Computer-assisted kinematic evaluation of induced compensatory movements resembling lameness in horses trotting on a treadmill.

    PubMed

    Kelmer, Gal; Keegan, Kevin G; Kramer, Joanne; Wilson, David A; Pai, Frank P; Singh, Prableen

    2005-04-01

    To characterize compensatory movements of the head and pelvis that resemble lameness in horses. 17 adult horses. Kinematic evaluations were performed while horses trotted on a treadmill before and after shoe-induced lameness. Lameness was quantified and the affected limb determined by algorithms that measured asymmetry in vertical movement of the head and pelvis. Induced primary lameness and compensatory movements resembling lameness were assessed by the Friedman test. Association between induced lameness and compensatory movements was examined by regression analysis. Compensatory movements resembling lameness in the ipsilateral forelimb were seen with induced lameness of a hind limb. There was less downward and less upward head movement during and after the stance phase of the ipsilateral forelimb. Doubling the severity of lameness in the hind limb increased severity of the compensatory movements in the ipsilateral forelimb by 50%. Compensatory movements resembling lameness of the hind limb were seen after induced lameness in a forelimb. There was less upward movement of the pelvis after the stance phase of the contralateral hind limb and, to a lesser extent, less downward movement of the pelvis during the stance phase of the ipsilateral hind limb. Doubling the severity of lameness in the forelimb increased compensatory movements of the contralateral hind limb by 5%. Induced lameness in a hind limb causes prominent compensatory movements resembling lameness in the ipsilateral forelimb. Induced lameness in a forelimb causes slight compensatory movements resembling lameness in the ipsilateral and contralateral hind limbs.

  20. Selection of head and whisker coordination strategies during goal-oriented active touch.

    PubMed

    Schroeder, Joseph B; Ritt, Jason T

    2016-04-01

    In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly "correct" their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts. Copyright © 2016 the American Physiological Society.

  1. Selection of head and whisker coordination strategies during goal-oriented active touch

    PubMed Central

    2016-01-01

    In the rodent whisker system, a key model for neural processing and behavioral choices during active sensing, whisker motion is increasingly recognized as only part of a broader motor repertoire employed by rodents during active touch. In particular, recent studies suggest whisker and head motions are tightly coordinated. However, conditions governing the selection and temporal organization of such coordinated sensing strategies remain poorly understood. We videographically reconstructed head and whisker motions of freely moving mice searching for a randomly located rewarded aperture, focusing on trials in which animals appeared to rapidly “correct” their trajectory under tactile guidance. Mice orienting after unilateral contact repositioned their whiskers similarly to previously reported head-turning asymmetry. However, whisker repositioning preceded head turn onsets and was not bilaterally symmetric. Moreover, mice selectively employed a strategy we term contact maintenance, with whisking modulated to counteract head motion and facilitate repeated contacts on subsequent whisks. Significantly, contact maintenance was not observed following initial contact with an aperture boundary, when the mouse needed to make a large corrective head motion to the front of the aperture, but only following contact by the same whisker field with the opposite aperture boundary, when the mouse needed to precisely align its head with the reward spout. Together these results suggest that mice can select from a diverse range of sensing strategies incorporating both knowledge of the task and whisk-by-whisk sensory information and, moreover, suggest the existence of high level control (not solely reflexive) of sensing motions coordinated between multiple body parts. PMID:26792880

  2. Movement-related and steady-state electromyographic activity of human elbow flexors in slow transition movements between two equilibrium states.

    PubMed

    Tal'nov, A N; Cherkassky, V L; Kostyukov, A I

    1997-08-01

    The electromyograms were recorded in healthy human subjects by surface electrodes from the mm. biceps brachii (caput longum et. brevis), brachioradialis, and triceps brachii (caput longum) during slow transition movements in elbow joint against a weak extending torque. The test movements (flexion transitions between two steady-states) were fulfilled under visual control through combining on a monitor screen a signal from a joint angle sensor with a corresponding command generated by a computer. Movement velocities ranged between 5 and 80 degrees/s, subjects were asked to move forearm without activation of elbow extensors. Surface electromyograms were full-wave rectified, filtered and averaged within sets of 10 identical tests. Amplitudes of dynamic and steady-state components of the electromyograms were determined in dependence on a final value of joint angle, slow and fast movements were compared. An exponential-like increase of dynamic component was observed in electromyograms recorded from m. biceps brachii, the component had been increased with movement velocity and with load increment. In many experiments a statistically significant decrease of static component could be noticed within middle range of joint angles (40-60 degrees) followed by a well expressed increment for larger movements. This pattern of the static component in electromyograms could vary in different experiments even in the same subjects. A steady discharge in m. brachioradialis at ramp phase has usually been recorded only under a notable load. Variable and quite often unpredictable character of the static components of the electromyograms recorded from elbow flexors in the transition movements makes it difficult to use the equilibrium point hypothesis to describe the central processes of movement. It has been assumed that during active muscle shortening the dynamic components in arriving efferent activity should play a predominant role. A simple scheme could be proposed for transition to a

  3. Anticipatory activity in primary motor cortex codes memorized movement sequences.

    PubMed

    Lu, Xiaofeng; Ashe, James

    2005-03-24

    Movement sequences, defined both by the component movements and by the serial order in which they are produced, are fundamental building blocks of motor behavior. The serial order of sequence production is strongly encoded in medial motor areas. It is not known to what extent sequences are further elaborated or encoded in primary motor cortex. Here, we describe cells in the primary motor cortex of the monkey that show anticipatory activity exclusively related to a specific memorized sequence of upcoming movements. In addition, the injection of muscimol, a GABA agonist, into motor cortex resulted in an increase in the error rate during sequence production, without concomitant effects on nonsequenced motor performance. Our results challenge the role of medial motor areas in the control of well-practiced movement sequences and suggest that motor cortex contains a complete apparatus for the planning and production of this complex behavior.

  4. Initiation of migration and movement rates of Atlantic salmon smolts in fresh water

    USGS Publications Warehouse

    Stich, Daniel S.; Kinnison, Michael T.; Kocik, John F.; Zydlewski, Joseph D.

    2015-01-01

    Timing of ocean entry is critical for marine survival of both hatchery and wild Atlantic salmon (Salmo salar) smolts. Management practices and barriers to migration such as dams may constrain timing of smolt migrations resulting in suboptimal performance at saltwater entry. We modeled influences of stocking location, smolt development, and environmental conditions on (i) initiation of migration by hatchery-reared smolts and (ii) movement rate of hatchery- and wild-reared Atlantic salmon smolts in the Penobscot River, Maine, USA, from 2005 through 2014 using acoustic telemetry data. We also compared movement rates in free-flowing reaches with rates in reaches with hydropower dams and head ponds. We compared movement rates before and after (1) removal of two mainstem dams and (2) construction of new powerhouses. Initiation of movement by hatchery fish was influenced by smolt development, stocking location, and environmental conditions. Smolts with the greatest gill Na+, K+-ATPase (NKA) activity initiated migration 24 h sooner than fish with the lowest gill NKA activity. Fish with the greatest cumulative thermal experience initiated migration 5 days earlier than those with lowest cumulative thermal experience. Smolts released furthest from the ocean initiated migration earlier than those released downstream, but movement rate increased by fivefold closer to the ocean, indicating behavioral trade-offs between initiation and movement rate. Dams had a strong effect on movement rate. Movement rate increased from 2.8 to 5.4 km·h−1 in reaches where dams were removed, but decreased from 2.1 to 0.1 km·h−1 in reaches where new powerhouses were constructed. Movement rate varied throughout the migratory period and was inversely related to temperature. Fish moved slower at extreme high or low discharge. Responses in fish movement rates to dam removal indicate the potential scope of recovery for these activities.

  5. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA

    USGS Publications Warehouse

    Nosal, D.C.; Cartamil, D.C.; Long, J.W.; Luhrmann, M.; Wegner, N.C.; Graham, J.B.

    2013-01-01

    The demography, spatial distribution, and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon in La Jolla, California, USA, were investigated to resolve the causal explanations for this and similar shark aggregations. All sharks sampled from the aggregation site (n=140) were sexually mature and 97.1 % were female. Aerial photographs taken during tethered balloon surveys revealed high densities of milling sharks of up to 5470 sharks ha-1. Eight sharks were each tagged with a continuous acoustic transmitter and manually tracked without interruption for up to 48 h. Sharks exhibited strong site-fidelity and were generally confined to a divergence (shadow) zone of low wave energy, which results from wave refraction over the steep bathymetric contours of the submarine canyon. Within this divergence zone, the movements of sharks were strongly localized over the seismically active Rose Canyon Fault. Tracked sharks spent most of their time in shallow water (≤2 m for 71.0 % and ≤10 m for 95.9 % of time), with some dispersing to deeper (max: 53.9 m) and cooler (min: 12.7 °C) water after sunset, subsequently returning by sunrise. These findings suggest multiple functions of this aggregation and that the mechanism controlling its formation, maintenance, and dissolution is complex and rooted in the sharks' variable response to numerous confounding environmental factors.

  6. Distinct neural circuits for control of movement vs. holding still

    PubMed Central

    2017-01-01

    In generating a point-to-point movement, the brain does more than produce the transient commands needed to move the body part; it also produces the sustained commands that are needed to hold the body part at its destination. In the oculomotor system, these functions are mapped onto two distinct circuits: a premotor circuit that specializes in generating the transient activity that displaces the eyes and a “neural integrator” that transforms that transient input into sustained activity that holds the eyes. Different parts of the cerebellum adaptively control the motor commands during these two phases: the oculomotor vermis participates in fine tuning the transient neural signals that move the eyes, monitoring the activity of the premotor circuit via efference copy, whereas the flocculus participates in controlling the sustained neural signals that hold the eyes, monitoring the activity of the neural integrator. Here, I review the oculomotor literature and then ask whether this separation of control between moving and holding is a design principle that may be shared with other modalities of movement. To answer this question, I consider neurophysiological and psychophysical data in various species during control of head movements, arm movements, and locomotion, focusing on the brain stem, motor cortex, and hippocampus, respectively. The review of the data raises the possibility that across modalities of motor control, circuits that are responsible for producing commands that change the sensory state of a body part are distinct from those that produce commands that maintain that sensory state. PMID:28053244

  7. Basic Movement Activities. Perceptual Motor Development. Book 1.

    ERIC Educational Resources Information Center

    Capon, Jack J.

    This textbook on basic movement activities for children in the primary grades is divided into two sections. The first section presents methods of evaluating the physical strengths and weaknesses of individual children. The seven tests outlined and illustrated provide the teacher with the means for assessing each child's abilities and potential for…

  8. Who Benefits from Cooperative Learning with Movement Activity?

    ERIC Educational Resources Information Center

    Shoval, Ella; Shulruf, Boaz

    2011-01-01

    The goal of this study is to identify learners who are most likely to benefit from a small group cooperative learning strategy, which includes tasks involving movement activities. The study comprised 158 learners from five second and third grade classes learning about angles. The research tools included structured observation of each learner and…

  9. Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements

    PubMed Central

    Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A. F.

    2004-01-01

    We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that ≈100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior. PMID:14970334

  10. The Human Engineering Eye Movement Measurement Research Facility.

    DTIC Science & Technology

    1985-04-01

    tracked reliably. When tracking is disrupted (e.g., by gross and sudden head movements, gross change in the head position, sneezing, prolonged eye...these are density ^\\ and " busyness " of the slides (stimulus material), as well as consistency . I„ between successive... change the material being projected based on the subject’s previous performance. The minicomputer relays the calibrated data to one of the magnetic

  11. Activity patterns of extrinsic finger flexors and extensors during movements of instructed and non-instructed fingers.

    PubMed

    van Beek, Nathalie; Stegeman, Dick F; van den Noort, Josien C; H E J Veeger, DirkJan; Maas, Huub

    2018-02-01

    The fingers of the human hand cannot be controlled fully independently. This phenomenon may have a neurological as well as a mechanical basis. Despite previous studies, the neuromechanics of finger movements are not fully understood. The aims of this study were (1) to assess the activation and coactivation patterns of finger specific flexor and extensor muscle regions during instructed single finger flexion and (2) to determine the relationship between enslaved finger movements and respective finger muscle activation. In 9 healthy subjects (age 22-29), muscle activation was assessed during single finger flexion using a 90 surface electromyography electrode grid placed over the flexor digitorum superficialis (FDS) and the extensor digitorum (ED). We found (1) no significant differences in muscle activation timing between fingers, (2) considerable muscle activity in flexor and extensor regions associated with the non-instructed fingers and (3) no correlation between the muscle activations and corresponding movement of non-instructed fingers. A clear disparity was found between the movement pattern of the non-instructed fingers and the activity pattern of the corresponding muscle regions. This suggests that mechanical factors, such as intertendinous and myofascial connections, may also affect finger movement independency and need to be taken into consideration when studying finger movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Movement asymmetry in working polo horses.

    PubMed

    Pfau, T; Parkes, R S; Burden, E R; Bell, N; Fairhurst, H; Witte, T H

    2016-07-01

    The high, repetitive demands imposed on polo horses in training and competition may predispose them to musculoskeletal injuries and lameness. To quantify movement symmetry and lameness in a population of polo horses, and to investigate the existence of a relationship with age. Convenience sampled cross-sectional study. Sixty polo horses were equipped with inertial measurement units (IMUs) attached to the poll, and between the tubera sacrale. Six movement symmetry measures were calculated for vertical head and pelvic displacement during in-hand trot and compared with values for perfect symmetry, compared between left and right limb lame horses, and compared with published thresholds for lameness. Regression lines were calculated as a function of age of horse. Based on 2 different sets of published asymmetry thresholds 52-53% of the horses were quantified with head movement asymmetry and 27-50% with pelvic movement asymmetry resulting in 60-67% of horses being classified with movement asymmetry outside published guideline values for either the forelimbs, hindlimbs or both. Neither forelimb nor hindlimb asymmetries were preferentially left or right sided, with directional asymmetry values across all horses not different from perfect symmetry and absolute values not different between left and right lame horses (P values >0.6 for all forelimb symmetry measures and >0.2 for all hindlimb symmetry measures). None of the symmetry parameters increased or decreased significantly with age. A large proportion of polo horses show gait asymmetries consistent with previously defined thresholds for lameness. These do not appear to be lateralised or associated with age. © 2015 EVJ Ltd.

  13. Orienting movements in area 9 identified by long-train ICMS.

    PubMed

    Lanzilotto, M; Perciavalle, V; Lucchetti, C

    2015-03-01

    The effect of intracortical microstimulation has been studied in several cortical areas from motor to sensory areas. The frontal pole has received particular attention, and several microstimulation studies have been conducted in the frontal eye field, supplementary eye field, and the premotor ear-eye field, but no microstimulation studies concerning area 9 are currently available in the literature. In the present study, to fill up this gap, electrical microstimulation was applied to area 9 in two macaque monkeys using long-train pulses of 500-700-800 and 1,000 ms, during two different experimental conditions: a spontaneous condition, while the animals were not actively fixating on a visual target, and during a visual fixation task. In these experiments, we identified backward ear movements, goal-directed eye movements, and the development of head forces. Kinematic parameters for ear and eye movements overlapped in the spontaneous condition, but they were different during the visual fixation task. In this condition, ear and eye kinematics have an opposite behavior: movement amplitude, duration, and maximal and mean velocities increase during a visual fixation task for the ear, while they decrease for the eye. Therefore, a top-down visual attention engagement could modify the kinematic parameters for these two effectors. Stimulation with the longest train durations, i.e., 800/1,000 ms, evokes not only the highest eye amplitude, but also a significant development of head forces. In this research article, we propose a new vision of the frontal oculomotor fields, speculating a role for area 9 in the control of goal-directed orienting behaviors and gaze shift control.

  14. [Primary versus secondary stereotypic movements].

    PubMed

    Fernandez Alvarez, E

    2004-02-01

    Stereotypic movements are repetitive patterns of movements whose physiopathology and relations to other neurobehavioural disorders are still only poorly understood. In this paper our aim is to distinguish between primary stereotypic movements, which are the sole manifestation of an anomaly, while the complementary examinations, except for those involving molecular genetics, are normal; associated stereotypic movements, when they meet primary disorder criteria but there are other coexisting independent neurological signs, that is to say, they are neither the cause nor the consequence of the movement disorder; and secondary stereotypic movements, when they are the consequence of a lesion or acquired neurological dysfunction. Examples of primary stereotypic movements include episodes of parasomnia, such as head rocking, in subjects who are otherwise normal, and stereotypic movements due to emotional disorders, severe environmental deprivation or in institutionalised infants. Examples of associated stereotypic movements are those observed in Rett syndrome, in subjects with sensory defects or with mental retardation due to a variety of causes. And as instances of secondary stereotypic movements we have those that can be seen in infinite like syndrome caused by congenital cerebellar lesions. The purpose of the classification is to lay the foundations for the identification of new syndromes, which would without a doubt facilitate research into their physiopathology, their aetiology and the possible therapeutic attitude to be adopted.

  15. Inter-day Reliability of the IDEEA Activity Monitor for Measuring Movement and Non-Movement Behaviors in Older Adults.

    PubMed

    de la Cámara, Miguel Ángel; Higueras-Fresnillo, Sara; Martinez-Gomez, David; Veiga, Oscar L

    2018-05-29

    The inter-day reliability of the Intelligent Device for Energy Expenditure and Activity (IDEEA) has not been studied to date. The study purpose was to examine the inter-day variability and reliability on two consecutive days collected with the IDEEA, as well as to predict the number of days needed to provide a reliable estimate of several movement (walking and climbing stairs) and non-movement behaviors (lying, reclining, sitting) and standing in older adults. The sample included 126 older adults (74 women) who wore the IDEEA for 48-h. Results showed low variability between the two days and its reliability was from moderate (ICC=0.34) to high (ICC=0.80) in most of movement and non-movement behaviors analyzed. The Bland-Altman plots showed a high-moderate agreement between days and the Spearman-Brown formula estimated ranged from 1.2 and 9.1 days of monitoring with the IDEEA are needed to achieve ICCs≥0.70 in older adults for sitting and climbing stairs, respectively.

  16. Head stabilisation in fast running lizards.

    PubMed

    Goyens, Jana; Aerts, Peter

    2018-04-01

    The cyclic patterns of terrestrial animal locomotion are frequently perturbed in natural environments. The terrain can be complex or inclined, the substrate can move unexpectedly and animals can misjudge situations. Loosing stability due to perturbations increases the probability of capture by predators and decreases the chance of successful prey capture and winning intraspecific battles. When controlled corrective actions are necessary to negotiate perturbations, animals rely on their exteroceptive and proprioceptive senses to monitor the environment and their own body movements. The vestibular system in the inner ear perceives linear and angular accelerations. This information enables gaze stabilisation and the creation of a stable, world-bound reference frame for the integration of the information of other senses. During locomotion, both functions are known to be facilitated by head stabilisation in several animals with an erect posture. Animals with a sprawled body posture, however, undergo very large body undulations while running. Using high speed video recordings, we tested whether they nevertheless stabilise their head during running, and how this is influenced by perturbations. We found that running Acanthodactylus boskianus lizards strongly stabilise their head yaw rotations when running on a flat, straight runway: the head rotation amplitude is only 4.76±0.99°, while the adjacent trunk part rotates over 27.0±3.8°. Lateral head translations are not stabilised (average amplitude of 7.4±2.0mm). When the lizards are experimentally perturbed by a large and unexpected lateral substrate movement, lateral translations of both the head and the body decrease (on average by 1.52±0.81mm). At the same time, the rotations of the head and trunk also decrease (on average by 1.62°±7.21°). These results show that head stabilisation intensifies because of the perturbation, which emphasises the importance of vestibular perception and balance in these fast and

  17. Modulation of WNT signaling activity is key to the formation of the embryonic head.

    PubMed

    Fossat, Nicolas; Jones, Vanessa; Garcia-Garcia, Maria J; Tam, Patrick P L

    2012-01-01

    The formation of the embryonic head begins with the assembly of the progenitor tissues of the brain, the head and face primordia and the foregut that are derived from the primary germ layers during gastrulation. Specification of the anterior-posterior polarity of major body parts and the morphogenesis of the head and brain specifically is driven by inductive signals including those mediated by BMP, Nodal, FGF and WNT. A critical role of β-catenin dependent WNT signalling activity for head morphogenesis has been revealed through the analysis of the phenotypic impact of loss of function mutation of an antagonist: DKK1, a transcriptional repressor: GSC; and the outcome of interaction of Dkk1 with genes coding three components of the canonical signalling pathway: the ligand WNT3, the co-receptor LRP6 and the transcriptional co-factor, β-catenin. The findings highlight the requirement of a stringent control of the timing, domain and level of canonical WNT signalling activity for the formation of the embryonic head.

  18. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network.

    PubMed

    Tam, Patrick P L; Fossat, Nicolas; Wilkie, Emilie; Loebel, David A F; Ip, Chi Kin; Ramialison, Mirana

    2016-01-01

    The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head. © 2016 Elsevier Inc. All rights reserved.

  19. 48 CFR 719.271-4 - Heads of contracting activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Heads of contracting activities. 719.271-4 Section 719.271-4 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL... decisions in cases resulting from non-acceptances by their contracting officers of set-aside recommendations...

  20. Movement of unlined landfill under preloading surcharge.

    PubMed

    Al-Yaqout, Anwar F; Hamoda, Mohamed F

    2007-01-01

    As organic solid waste is decomposed in a landfill and mass is lost due to gas and leachate formation, the landfill settles. Settlement of a landfill interferes with the rehabilitation and subsequent use of the landfill site after closure. This study examined the soil/solid waste movement at the Al-Qurain landfill in Kuwait after 15 years of closure as plans are underway for redevelopment of the landfill site that occupies about a km(2) with an average depth of 8-15m. Field experiments were conducted for 6 mo to measure soil/solid waste movement and water behavior within the landfill using two settlement plates with a level survey access, Casagrande-type piezometers, pneumatic piezometers, and magnetic probe extensometers. Previous results obtained indicated that biological decomposition of refuse continued after closure of the landfill site. The subsurface water rise enhanced the biological activities, which resulted in the production of increasing quantities of landfill gas. The refuse fill materials recorded a high movement rate under the imposed preloading as a result of an increase in the stress state. Up to 55% of the total movement was observed during the first 2 weeks of fill placement and increased to 80% within the first month of the 6-mo preloading test. Pneumatic piezometers showed an increase in water head, which is attributed to the developed pressure of gases escaping during the preloading period.

  1. Laser optical disk position encoder with active heads

    NASA Technical Reports Server (NTRS)

    Osborne, Eric P.

    1991-01-01

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  2. Migration from full-head mask to "open-face" mask for immobilization of patients with head and neck cancer.

    PubMed

    Li, Guang; Lovelock, D Michael; Mechalakos, James; Rao, Shyam; Della-Biancia, Cesar; Amols, Howard; Lee, Nancy

    2013-09-06

    To provide an alternative device for immobilization of the head while easing claustrophobia and improving comfort, an "open-face" thermoplastic mask was evaluated using video-based optical surface imaging (OSI) and kilovoltage (kV) X-ray radiography. A three-point thermoplastic head mask with a precut opening and reinforced strips was developed. After molding, it provided sufficient visible facial area as the region of interest for OSI. Using real-time OSI, the head motion of ten volunteers in the new mask was evaluated during mask locking and 15minutes lying on the treatment couch. Using a nose mark with reference to room lasers, forced head movement in open-face and full-head masks (with a nose hole) was compared. Five patients with claustrophobia were immobilized with open-face masks, set up using OSI and kV, and treated in 121 fractions, in which 61 fractions were monitored during treatment using real-time OSI. With the open-face mask, head motion was found to be 1.0 ± 0.6 mm and 0.4° ± 0.2° in volunteers during the experiment, and 0.8 ± 0.3 mm and 0.4° ± 0.2° in patients during treatment. These agree with patient motion calculated from pre-/post-treatment OSI and kV data using different anatomical landmarks. In volunteers, the head shift induced by mask-locking was 2.3 ± 1.7 mm and 1.8° ± 0.6°, and the range of forced movements in the open-face and full-head masks were found to be similar. Most (80%) of the volunteers preferred the open-face mask to the full-head mask, while claustrophobic patients could only tolerate the open-face mask. The open-face mask is characterized for its immobilization capability and can immobilize patients sufficiently (< 2 mm) during radiotherapy. It provides a clinical solution to the immobilization of patients with head and neck (HN) cancer undergoing radiotherapy, and is particularly beneficial for claustrophobic patients. This new open-face mask is readily adopted in radiotherapy clinic as a superior alternative

  3. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface of the femoral head.

    PubMed

    Rhyu, Kee Hyung; Cho, Chang Hoon; Yoon, Kyung Sik; Chun, Young Soo

    2016-12-01

    To evaluate cellular activity in milled versus unmilled surface of the femoral head in 21 patients who underwent robot-assisted total hip arthroplasty(THA). The femoral head of 21 consecutive patients who underwent robot-assisted THA for osteonecrosis was used. 10 cc of trabecular bone from the entire milled surface was obtained using a curette. The same amount of trabecular bone was obtained at least 1 cm away from the milled surface and served as a matched control. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface were assessed. Cell morphology of the milled or unmilled surface was comparable; cells were smaller in the milled surface. Cell viability was a mean of 40% higher in the milled surface (107.4% vs. 67.2%, p<0.001); cell viability at 5 time points was comparable in each group. Osteocalcin activity of cells was slightly higher in the milled surface (1.43 vs. 1.24 ng/ml, p=0.69). Alkaline phosphatase activity of cells was slightly higher in the unmilled surface (150 105 vs. 141 789 U/L, p=0.078). The milled and unmilled surfaces of the femoral head were comparable in terms of cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity.

  4. Atypical Headbanging Presentation of Idiopathic Sleep Related Rhythmic Movement Disorder: Three Cases with Video-Polysomnographic Documentation

    PubMed Central

    Yeh, Shih-Bin; Schenck, Carlos H.

    2012-01-01

    Study Objectives: To describe three cases of sleep related, idiopathic rhythmic movement disorder (RMD) with atypical headbanging, consisting of head punching and head slapping. Methods: Three consecutive patients (2 males [11 and 13 years old) and one female [22 years old]) presented with atypical headbanging of 6 years, 7 years, and 17 years duration. In 2 cases, typical rhythmic headbanging (with use of the head) shifted after 3-4 years to atypical headbanging, with frontal head punching that was quasi-rhythmic. In one case, atypical headbanging (head-slapping) was the initial and only RMD. There was no injury from the headbanging. Prenatal, perinatal, developmental, behavioral-psychological, medical-neurological, and family histories were negative. Clinical evaluations and nocturnal video-polysomnography with seizure montage were performed on all patients. Results: Atypical headbanging was documented in all 3 cases; episodes always emerged late in the sleep cycle: from N2 sleep in 11 episodes, from REM sleep in 4 episodes, and from N1 sleep in 1 episode. Epileptiform activity was not detected. Clonazepam therapy was substantially effective in 1 case but not effective in 2 cases. Conclusions: These 3 cases of idiopathic atypical headbanging expand the literature on this RMD variant, as to our knowledge only one previously documented case has been reported. Citation: Yeh SB; Schenck CH. Atypical headbanging presentation of idiopathic sleep related rhythmic movement disorder: three cases with video-polysomnographic documentation. J Clin Sleep Med 2012;8(4):403-411. PMID:22893771

  5. Multiple forms of rhythmic movements in an adolescent boy with rhythmic movement disorder.

    PubMed

    Su, Changjun; Miao, Jianting; Liu, Yu; Liu, Rui; Lei, Gesheng; Zhang, Wei; Yang, Ting; Li, Zhuyi

    2009-12-01

    Rhythmic movement disorder (RMD) refers to a group of stereotyped, repetitive movements involving large muscles, usually occurring prior to the onset of sleep and persisting into sleep. RMD more commonly exhibits only one or two forms of rhythmic movements (RM) in most reported cases. However, multiple RM forms of RMD occurring in a patient in the same night have rarely been reported. In this report, we present the unique case of a 15-year-old boy with RMD affected by multiple forms of RM in the same night, including four known forms (i.e., body rocking, head banging, leg rolling, and rhythmic feet movements) and two new kinds of RM (bilateral rhythmic arm rocking and rhythmic hands movements). Two video-polysomnographic recordings were performed in this patient before starting pharmacologic treatment and after long-term oral clonazepam treatment (1.0mg nightly for 3 months). The characteristics of RMD with multiple RM forms and the effectiveness of clonazepam on the RM episodes and polysomnographic findings observed in our patient are discussed. This report raises the fact that a patient with RMD may present with multiple complex rhythmic movements disrupting sleep, which emphasizes that better understanding of the clinical features of complex rhythmic movements during sleep in primary care settings is essential for early clinical diagnosis and optimal management.

  6. Mirror movements in unilateral spastic cerebral palsy: Specific negative impact on bimanual activities of daily living.

    PubMed

    Adler, Caroline; Berweck, Steffen; Lidzba, Karen; Becher, Thomas; Staudt, Martin

    2015-09-01

    Mirror movements are involuntary movements of the other hand during voluntary unimanual movements. Some, but not all children with unilateral spastic cerebral palsy (USCP) show this phenomenon. In this observational study, we investigated whether these mirror movements have a specific negative impact on bimanual activities of daily living. Eighteen children (six girls; age range, 6-16 years; mean age, 12 years 1 month; SD, 3 years 3 month) with USCP, nine with and nine without mirror movements, underwent the Jebsen Taylor Hand Function Test (unimanual capacity) and the Assisting Hand Assessment (bimanual performance). In addition, we measured the time the participants needed for the completion of five activities we had identified as particularly difficult for children with mirror movements. Multivariate analysis demonstrated that mirror movements indeed have a specific negative impact on bimanual performance (Assisting Hand Assessment) and on the time needed for the completion of these five particularly difficult activities. This effect was independent from unimanual capacity. Functional therapies in children with USCP and mirror movements should address this phenomenon. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  7. The IBM HeadTracking Pointer: improvements in vision-based pointer control.

    PubMed

    Kjeldsen, Rick

    2008-07-01

    Vision-based head trackers have been around for some years and are even beginning to be commercialized, but problems remain with respect to usability. Users without the ability to use traditional pointing devices--the intended audience of such systems--have no alternative if the automatic bootstrapping process fails. There is room for improvement in face tracking, and the pointer movement dynamics do not support accurate and efficient pointing. This paper describes the IBM HeadTracking Pointer, a system which attempts to directly address some of these issues. Head gestures are used to provide the end user a greater level of autonomous control over the system. A novel face-tracking algorithm reduces drift under variable lighting conditions, allowing the use of absolute, rather than relative, pointer positioning. Most importantly, the pointer dynamics have been designed to take into account the constraints of head-based pointing, with a non-linear gain which allows stability in fine pointer movement, high speed on long transitions and adjustability to support users with different movement dynamics. User studies have identified some difficulties with training the system and some characteristics of the pointer motion that take time to get used to, but also good user feedback and very promising performance results.

  8. Interpretation of fusimotor activity in cat masseter nerve during reflex jaw movements.

    PubMed Central

    Gottlieb, S; Taylor, A

    1983-01-01

    Simultaneous recordings were made from fusimotor axons in the central ends of filaments of the masseter nerve, and from masseter and temporalis spindle afferents in the mesencephalic nucleus of the fifth cranial nerve in lightly anaesthetized cats. Fusimotor and alpha-motor units in the masseter nerve were differentiated on the basis of their response to passive ramp and hold stretches applied to the jaw. Spindle afferents were identified as primary or secondary according to their dynamic index after administration of suxamethonium. The activity of a given fusimotor unit during reflex movements of the jaw followed one of two distinct patterns: so-called 'tonic' units showed a general increase in activity during a movement, without detailed relation to lengthening or shortening, while 'modulated' units displayed a striking modulation of their activity with shortening, and were usually silent during subsequent lengthening. Comparison of the simultaneously recorded fusimotor and spindle afferent activity suggests that modulated units may be representative of a population of static fusimotor neurones, and tonic units of a population of dynamic fusimotor neurones. In these lightly anaesthetized animals, both primary and secondary spindle afferents showed increased firing during muscle shortening as well as during lengthening. This increase during shortening is not usually seen in conscious animals and reasons are given for the view that it is due to greater depression of alpha-motor activity than of static fusimotor activity during anaesthesia. The results are discussed in relation to the theories of 'alpha-gamma co-activation' and of 'servo-assistance'; and it is suggested that static fusimotor neurones provide a 'temporal template' of the intended movement, while dynamic fusimotor neurones set the required dynamic sensitivity to deviations from the intended movement pattern. PMID:6229627

  9. Effects of passive and active movement on vibrotactile detection thresholds of the Pacinian channel and forward masking.

    PubMed

    Yıldız, Mustafa Z; Toker, İpek; Özkan, Fatma B; Güçlü, Burak

    2015-01-01

    We investigated the gating effect of passive and active movement on the vibrotactile detection thresholds of the Pacinian (P) psychophysical channel and forward masking. Previous work on gating mostly used electrocutaneous stimulation and did not allow focusing on tactile submodalities. Ten healthy adults participated in our study. Passive movement was achieved by swinging a platform, on which the participant's stimulated hand was attached, manually by a trained operator. The root-mean-square value of the movement speed was kept in a narrow range (slow: 10-20 cm/s, fast: 50-60 cm/s). Active movement was performed by the participant him-/herself using the same apparatus. The tactile stimuli consisted of 250-Hz sinusoidal mechanical vibrations, which were generated by a shaker mounted on the movement platform and applied to the middle fingertip. In the forward-masking experiments, a high-level masking stimulus preceded the test stimulus. Each movement condition was tested separately in a two-interval forced-choice detection task. Both passive and active movement caused a robust gating effect, that is, elevation of thresholds, in the fast speed range. Statistically significant change of thresholds was not found in slow movement conditions. Passive movement yielded higher thresholds than those measured during active movement, but this could not be confirmed statistically. On the other hand, the effect of forward masking was approximately constant as the movement condition varied. These results imply that gating depends on both peripheral and central factors in the P channel. Active movement may have some facilitatory role and produce less gating. Additionally, the results support the hypothesis regarding a critical speed for gating, which may be relevant for daily situations involving vibrations transmitted through grasped objects and for manual exploration.

  10. Context-specific function of the LIM homeobox 1 transcription factor in head formation of the mouse embryo.

    PubMed

    Fossat, Nicolas; Ip, Chi Kin; Jones, Vanessa J; Studdert, Joshua B; Khoo, Poh-Lynn; Lewis, Samara L; Power, Melinda; Tourle, Karin; Loebel, David A F; Kwan, Kin Ming; Behringer, Richard R; Tam, Patrick P L

    2015-06-01

    Lhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression. LHX1 also regulates, in the anterior mesendoderm, the transcription of genes encoding negative regulators of WNT signalling, such as Dkk1, Hesx1, Cer1 and Gsc. Embryos carrying mutations in Pcdh7, generated using CRISPR-Cas9 technology, and embryos without Lhx1 function specifically in the anterior mesendoderm displayed head defects that partially phenocopied the truncation defects of Lhx1-null mutants. Therefore, disruption of Lhx1-dependent movement of the anterior mesendoderm cells and failure to modulate WNT signalling both resulted in the truncation of head structures. Compound mutants of Lhx1, Dkk1 and Ctnnb1 show an enhanced head truncation phenotype, pointing to a functional link between LHX1 transcriptional activity and the regulation of WNT signalling. Collectively, these results provide comprehensive insight into the context-specific function of LHX1 in head formation: LHX1 enables the formation of the anterior mesendoderm that is instrumental for mediating the inductive interaction with the anterior neuroectoderm and LHX1 also regulates the expression of factors in the signalling cascade that modulate the level of WNT activity. © 2015. Published by The Company of Biologists Ltd.

  11. Structure-based molecular simulations reveal the enhancement of biased Brownian motions in single-headed kinesin.

    PubMed

    Kanada, Ryo; Kuwata, Takeshi; Kenzaki, Hiroo; Takada, Shoji

    2013-01-01

    Kinesin is a family of molecular motors that move unidirectionally along microtubules (MT) using ATP hydrolysis free energy. In the family, the conventional two-headed kinesin was experimentally characterized to move unidirectionally through "walking" in a hand-over-hand fashion by coordinated motions of the two heads. Interestingly a single-headed kinesin, a truncated KIF1A, still can generate a biased Brownian movement along MT, as observed by in vitro single molecule experiments. Thus, KIF1A must use a different mechanism from the conventional kinesin to achieve the unidirectional motions. Based on the energy landscape view of proteins, for the first time, we conducted a set of molecular simulations of the truncated KIF1A movements over an ATP hydrolysis cycle and found a mechanism exhibiting and enhancing stochastic forward-biased movements in a similar way to those in experiments. First, simulating stand-alone KIF1A, we did not find any biased movements, while we found that KIF1A with a large friction cargo-analog attached to the C-terminus can generate clearly biased Brownian movements upon an ATP hydrolysis cycle. The linked cargo-analog enhanced the detachment of the KIF1A from MT. Once detached, diffusion of the KIF1A head was restricted around the large cargo which was located in front of the head at the time of detachment, thus generating a forward bias of the diffusion. The cargo plays the role of a diffusional anchor, or cane, in KIF1A "walking."

  12. EEG Analysis During Active and Assisted Repetitive Movements: Evidence for Differences in Neural Engagement.

    PubMed

    Tacchino, Giulia; Gandolla, Marta; Coelli, Stefania; Barbieri, Riccardo; Pedrocchi, Alessandra; Bianchi, Anna M

    2017-06-01

    Two key ingredients of a successful neuro-rehabilitative intervention have been identified as intensive and repetitive training and subject's active participation, which can be coupled in an active robot-assisted training. To exploit these two elements, we recorded electroencephalography, electromyography and kinematics signals from nine healthy subjects performing a 2×2 factorial design protocol, with subject's volitional intention and robotic glove assistance as factors. We quantitatively evaluated primary sensorimotor, premotor and supplementary motor areas activation during movement execution by computing event-related desynchronization (ERD) patterns associated to mu and beta rhythms. ERD patterns showed a similar behavior for all investigated regions: statistically significant ERDs began earlier in conditions requiring subject's volitional contribution; ERDs were prolonged towards the end of movement in conditions in which the robotic assistance was present. Our study suggests that the combination between subject volitional contribution and movement assistance provided by the robotic device (i.e., active robot-assisted modality) is able to provide early brain activation (i.e., earlier ERD) associated with stronger proprioceptive feedback (i.e., longer ERD). This finding might be particularly important for neurological patients, where movement cannot be completed autonomously and passive/active robot-assisted modalities are the only possibilities of execution.

  13. Issues in Humanoid Audition and Sound Source Localization by Active Audition

    NASA Astrophysics Data System (ADS)

    Nakadai, Kazuhiro; Okuno, Hiroshi G.; Kitano, Hiroaki

    In this paper, we present an active audition system which is implemented on the humanoid robot "SIG the humanoid". The audition system for highly intelligent humanoids localizes sound sources and recognizes auditory events in the auditory scene. Active audition reported in this paper enables SIG to track sources by integrating audition, vision, and motor movements. Given the multiple sound sources in the auditory scene, SIG actively moves its head to improve localization by aligning microphones orthogonal to the sound source and by capturing the possible sound sources by vision. However, such an active head movement inevitably creates motor noises.The system adaptively cancels motor noises using motor control signals and the cover acoustics. The experimental result demonstrates that active audition by integration of audition, vision, and motor control attains sound source tracking in variety of conditions.onditions.

  14. Physiological state characterization by clustering heart rate, heart rate variability and movement activity information.

    PubMed

    Bidargaddi, Niranjan; Sarela, Antti; Korhonen, Ilkka

    2008-01-01

    The objective is to identify whether it is possible to discriminate between normal and abnormal physiological state based on heart rate (HR), heart rate variability (HRV) and movement activity information in subjects with cardiovascular complications. HR, HRV and movement information were obtained from cardiac patients over a period of 6 weeks using an ambulatory activity and single lead ECG monitor. By applying k-means clustering on HR, HRV and movement information obtained from cardiac patients, we obtained 3 clusters in inactive state and one cluster in active state. Two clusters in inactive state characterized by - a) high HR and low HRV b) low HRV and low HR, could be inferred as pathological with abnormal autonomic function. Further, activity information was significant in differentiating between the normal cluster found in active and an abnormal cluster found in inactive states, both with low HRV. This indicates that the activity information must be taken into account while interpreting HR and HRV information.

  15. Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations.

    PubMed

    Thurtell, M J; Black, R A; Halmagyi, G M; Curthoys, I S; Aw, S T

    1999-05-01

    Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the

  16. Movements and activity of juvenile Brown Treesnakes (Boiga irregularis)

    USGS Publications Warehouse

    Lardner, Bjorn; Savidge, Julie A.; Reed, Robert N.; Rodda, Gordon H.

    2014-01-01

    Understanding the spatial ecology and foraging strategy of invasive animals is essential for success in control or eradication. We studied movements and activity in juvenile Brown Treesnakes on Guam, as this population segment has proven particularly difficult to control. Distance between daytime refugia (from telemetry of 18 juveniles, 423-800 mm snout-vent length) ranged from 0-118 m (n  =  86), with a grand mean of 43 m. There were tendencies for shorter snake movements on nights directly following a full moon and on dry nights, but variation among snakes was of a larger magnitude and would greatly reduce chances to detect moon or rain effects unless corrected for. Snake activity was estimated from audio recordings of signals from “tipping” radio transmitters, analyzed for pulse period and amplitude. Activity was highest in the hours immediately after sunset, and gradually declined throughout the night before dropping abruptly in conjunction with sunrise. Snake activity was higher on rainy nights, and tended to be highest during waning moons and when the moon was below the horizon. We conclude that small Brown Treesnakes forage actively and appear to move far enough to regularly encounter the traps and bait used on Guam for control purposes, suggesting that alternative explanations are required for their low capture rates with these control tools.

  17. A unified internal model theory to resolve the paradox of active versus passive self-motion sensation

    PubMed Central

    Angelaki, Dora E

    2017-01-01

    Brainstem and cerebellar neurons implement an internal model to accurately estimate self-motion during externally generated (‘passive’) movements. However, these neurons show reduced responses during self-generated (‘active’) movements, indicating that predicted sensory consequences of motor commands cancel sensory signals. Remarkably, the computational processes underlying sensory prediction during active motion and their relationship to internal model computations during passive movements remain unknown. We construct a Kalman filter that incorporates motor commands into a previously established model of optimal passive self-motion estimation. The simulated sensory error and feedback signals match experimentally measured neuronal responses during active and passive head and trunk rotations and translations. We conclude that a single sensory internal model can combine motor commands with vestibular and proprioceptive signals optimally. Thus, although neurons carrying sensory prediction error or feedback signals show attenuated modulation, the sensory cues and internal model are both engaged and critically important for accurate self-motion estimation during active head movements. PMID:29043978

  18. Peak firing rates of rat anterodorsal thalamic head direction cells are higher during faster passive rotations.

    PubMed

    Zugaro, Michaël B; Berthoz, Alain; Wiener, Sidney I

    2002-01-01

    Head direction cells discharge selectively when the head of the animal is oriented in a specific direction. The goal of this study was to determine how sensory signals arising from passive rotations (e.g., triggered by vestibular stimulation and dynamic visual inputs) influence the responses of anterodorsal thalamic head direction cells in the absence of voluntary movement cues (e.g., motor command, efference copy, and associated kinesthetic signals). Three unrestrained rats consumed water from a reservoir at the center of a circular platform while passively subjected to sinusoidal rotatory oscillations at fast (153 +/- 27 degrees/s, sd) and slow (38 +/- 15 degrees/s) peak velocities. In 14 anterodorsal thalamic head direction cells, the preferred directions, angular response ranges and baseline firing rates remained stable, but the peak firing rates were, on average, 36% higher during the fast rotations (Wilcoxon matched-pairs test, p < 0.001; variation range: +11% to approximately +100%). No cell changed its peak firing rate by less than 10%, while three cells (21%) increased their peak firing rates by more than 50%. The velocity-dependent increase in peak firing rates was similar for left and right rotations, and the skewness of the directional response curves were not significantly different between left and right turns (Wilcoxon matched-pairs tests, n = 14, ns). These results show that sensory signals concerning self-movements modulate the responses of the head direction cells in the absence of active locomotion.

  19. Neck movement and muscle activity characteristics in female office workers with neck pain.

    PubMed

    Johnston, V; Jull, G; Souvlis, T; Jimmieson, N L

    2008-03-01

    Cross-sectional study. To explore aspects of cervical musculoskeletal function in female office workers with neck pain. Evidence of physical characteristics that differentiate computer workers with and without neck pain is sparse. Patients with chronic neck pain demonstrate reduced motion and altered patterns of muscle control in the cervical flexor and upper trapezius (UT) muscles during specific tasks. Understanding cervical musculoskeletal function in office workers will better direct intervention and prevention strategies. Measures included neck range of motion; superficial neck flexor muscle activity during a clinical test, the craniocervical flexion test; and a motor task, a unilateral muscle coordination task, to assess the activity of both the anterior and posterior neck muscles. Office workers with and without neck pain were formed into 3 groups based on their scores on the Neck Disability Index. Nonworking women without neck pain formed the control group. Surface electromyographic activity was recorded bilaterally from the sternocleidomastoid, anterior scalene (AS), cervical extensor (CE) and UT muscles. Workers with neck pain had reduced rotation range and increased activity of the superficial cervical flexors during the craniocervical flexion test. During the coordination task, workers with pain demonstrated greater activity in the CE muscles bilaterally. On completion of the task, the UT and dominant CE and AS muscles demonstrated an inability to relax in workers with pain. In general, there was a linear relationship between the workers' self-reported levels of pain and disability and the movement and muscle changes. These results are consistent with those found in other cervical musculoskeletal disorders and may represent an altered muscle recruitment strategy to stabilize the head and neck. An exercise program including motor reeducation may assist in the management of neck pain in office workers.

  20. In search of rules behind environmental framing; the case of head pitch.

    PubMed

    Wilson, Gwendoline Ixia; Norman, Brad; Walker, James; Williams, Hannah J; Holton, M D; Clarke, D; Wilson, Rory P

    2015-01-01

    Whether, and how, animals move requires them to assess their environment to determine the most appropriate action and trajectory, although the precise way the environment is scanned has been little studied. We hypothesized that head attitude, which effectively frames the environment for the eyes, and the way it changes over time, would be modulated by the environment. To test this, we used a head-mounted device (Human-Interfaced Personal Observation platform - HIPOP) on people moving through three different environments; a botanical garden ('green' space), a reef ('blue' space), and a featureless corridor, to examine if head movement in the vertical axis differed between environments. Template matching was used to identify and quantify distinct behaviours. The data on head pitch from all subjects and environments over time showed essentially continuous clear waveforms with varying amplitude and wavelength. There were three stylised behaviours consisting of smooth, regular peaks and troughs in head pitch angle and variable length fixations during which the head pitch remained constant. These three behaviours accounted for ca. 40 % of the total time, with irregular head pitch changes accounting for the rest. There were differences in rates of manifestation of behaviour according to environment as well as environmentally different head pitch values of peaks, troughs and fixations. Finally, although there was considerable variation in head pitch angles, the peak and trough values bounded most of the variation in the fixation pitch values. It is suggested that the constant waveforms in head pitch serve to inform people about their environment, providing a scanning mechanism. Particular emphasis to certain sectors is manifest within the peak and trough limits and these appear modulated by the distribution of the points where fixation, interpreted as being due to objects of interest, occurs. This behaviour explains how animals allocate processing resources to the

  1. Saltwater movement in the upper Floridan aquifer beneath Port Royal Sound, South Carolina

    USGS Publications Warehouse

    Smith, Barry S.

    1994-01-01

    Freshwater for Hilton Head Island, South Carolina, is supplied by withdrawals from the Upper Floridan aquifer. Freshwater for the nearby city of Savannah, Georgia, and for the industry that has grown adjacent to the city, has also been supplied, in part, by withdrawal from the Upper Floridan aquifer since 1885. The withdrawal of ground water has caused water levels in the Upper Floridan aquifer to decline over a broad area, forming a cone of depression in the potentiometric surface of the aquifer centered near Savannah. In 1984, the cone of depression extended beneath Hilton Head Island as far as Port Royal Sound. Flow in the aquifer, which had previously been toward Port Royal Sound, has been reversed, and, as a result, saltwater in the aquifer beneath Port Royal Sound has begun to move toward Hilton Head Island. The Saturated-Unsaturated Transport (SUTRA) model of the U.S. Geological Survey was used for the simulation of density-dependent ground-water flow and solute transport for a vertical section of the Upper Floridan aquifer and upper confining unit beneath Hilton Head Island and Port Royal Sound. The model simulated a dynamic equilibrium between the flow of seawater and freshwater in the aquifer near the Gyben-Herzberg position estimated for the period before withdrawals began in 1885; it simulated reasonable movements of brackish water and saltwater from that position to the position determined by chemical analyses of samples withdrawn from the aquifer in 1984, and it approximated hydraulic heads measured in the aquifer in 1976 and 1984. The solute-transport simulations indicate that the transition zone would continue to move toward Hilton Head Island even if pumping ceased on the island. Increases in existing withdrawals or additional withdrawals on or near Hilton Head Island would accelerate movement of the transition zone toward the island, but reduction in withdrawals or the injection of freshwater would slow movement toward the island, according to the

  2. Role of visual and non-visual cues in constructing a rotation-invariant representation of heading in parietal cortex

    PubMed Central

    Sunkara, Adhira

    2015-01-01

    As we navigate through the world, eye and head movements add rotational velocity patterns to the retinal image. When such rotations accompany observer translation, the rotational velocity patterns must be discounted to accurately perceive heading. The conventional view holds that this computation requires efference copies of self-generated eye/head movements. Here we demonstrate that the brain implements an alternative solution in which retinal velocity patterns are themselves used to dissociate translations from rotations. These results reveal a novel role for visual cues in achieving a rotation-invariant representation of heading in the macaque ventral intraparietal area. Specifically, we show that the visual system utilizes both local motion parallax cues and global perspective distortions to estimate heading in the presence of rotations. These findings further suggest that the brain is capable of performing complex computations to infer eye movements and discount their sensory consequences based solely on visual cues. DOI: http://dx.doi.org/10.7554/eLife.04693.001 PMID:25693417

  3. Does the vestibular system contribute to head direction cell activity in the rat?

    NASA Technical Reports Server (NTRS)

    Brown, J. E.; Yates, B. J.; Taube, J. S.; Oman, C. M. (Principal Investigator)

    2002-01-01

    Head direction cells (HDC) located in several regions of the brain, including the anterior dorsal nucleus of the thalamus (ADN), postsubiculum (PoS), and lateral mammillary nuclei (LMN), provide the neural substrate for the determination of head direction. Although activity of HDC is influenced by various sensory signals and internally generated cues, lesion studies and some anatomical and physiological evidence suggest that vestibular inputs are critical for the maintenance of directional sensitivity of these cells. However, vestibular inputs must be transformed considerably in order to signal head direction, and the neuronal circuitry that accomplishes this signal processing has not been fully established. Furthermore, it is unclear why the removal of vestibular inputs abolishes the directional sensitivity of HDC, as visual and other sensory inputs and motor feedback signals strongly affect the firing of these neurons and would be expected to maintain their directional-related activity. Further physiological studies will be required to establish the role of vestibular system in producing HDC responses, and anatomical studies are needed to determine the neural circuitry that mediates vestibular influences on determination of head direction.

  4. Moving through the Solar System: Using Movement Activities To Learn about the Solar System.

    ERIC Educational Resources Information Center

    Nygard, Bonnie; Shaw, Donna Gail

    1997-01-01

    Presents a rationale for acknowledging the importance of movement to learning to help children understand abstract concepts. Includes seven activities that employ movement to enable students to understand the nature of the solar system. (DDR)

  5. Influence of Ankle Active Dorsiflexion Movement Guided by Inspiration on the Venous Return From the Lower Limbs: A Prospective Study.

    PubMed

    Pi, Hongying; Ku, Hong'an; Zhao, Ting; Wang, Jie; Fu, Yicheng

    2018-04-01

    Active ankle movement is recommended intervention for preventing deep vein thrombosis effectively and easily by promoting venous return from the lower limbs. The active ankle dorsiflexion and plantar flexion movement guided by deep breathing is considered the most effective method, although outstanding problems remain, including low patient compliance and difficult motion essentials. The aims of this study were to compare the influence of different ankle active movements on venous return from the lower limbs and to suggest the optimal movement for preventing deep venous thrombosis in the lower limbs. A self-controlled study on 130 subjects was undertaken. The femoral venous hemodynamics of the left femoral vein and changes in pulse oxygen saturation and heart rate were compared among the three states of quiescent, active ankle 30° dorsiflexion movement, and active ankle 30° dorsiflexion with active plantar 45° flexion movement. The immediate master rates of the two ankle movements were examined before the study. The femoral venous hemodynamics of the left femoral vein were significantly higher in both movement states compared with the quiescent state. Moreover, no significant difference was found among the three states in terms of pulse oxygen saturation and heart rate. The immediate master rate was significantly higher in the active ankle 30° dorsiflexion movement than in the active ankle 30° dorsiflexion and active plantar 45° flexion movement. Therefore, active ankle 30° dorsiflexion movement guided by inspiration was found in this study to increase femoral venous hemodynamics, which heightened the immediate master rate but had no obvious influence on pulse oxygen saturation and heart rate. Active ankle 30° dorsiflexion movement guided by inspiration effectively promotes venous return from the lower limbs and is a better method to prevent deep vein thrombosis of the lower limbs.

  6. Plasminogen activator inhibitor-1 as regulator of tumor-initiating cell properties in head and neck cancers.

    PubMed

    Lee, Yueh-Chun; Yu, Cheng-Chia; Lan, Chih; Lee, Che-Hsin; Lee, Hsueh-Te; Kuo, Yu-Liang; Wang, Po-Hui; Chang, Wen-Wei

    2016-04-01

    The existence of tumor-initiating cells (TICs) has been described in head and neck cancers. Plasminogen activator inhibitor-1 (PAI-1) has been demonstrated to act as a prognostic factor in head and neck cancers. Tiplaxtinin (PAI-039), a specific inhibitor of PAI-1, and PAI-1-specific siRNA were used to examine the role of PAI-1 in the self-renewal property of head and neck cancer-TICs by tumorsphere formation. Western blot, real-time polymerase chain reaction, and luciferase-based reporter assay were used to study the effect of PAI-039 in the sex-determining region Y-box 2 (Sox2) expression. PAI-039 suppressed the self-renewal capability of head and neck cancer-TICs derived from head and neck cancer cell lines through the inhibition of Sox2 expression. PAI-039 decreased the activity of the core promoter and the enhancer of the Sox2 gene in head and neck cancer-TICs. Knockdown of PAI-1 expression also inhibited self-renewal and radioresistance properties of head and neck cancer-TICs. The inhibition of PAI-1 by PAI-039 or siRNA could suppress head and neck cancer-TICs within head and neck cancer cell lines through the downregulation of Sox2. © 2015 Wiley Periodicals, Inc. Head Neck 38: E895-E904, 2016. © 2015 Wiley Periodicals, Inc.

  7. Fatigue-Induced Changes in Movement Pattern and Muscle Activity During Ballet Releve on Demi-Pointe.

    PubMed

    Lin, Cheng-Feng; Lee, Wan-Chin; Chen, Yi-An; Hsue, Bih-Jen

    2016-08-01

    Fatigue in ballet dancers may lead to injury, particularly in the lower extremities. However, few studies have investigated the effects of fatigue on ballet dancers' performance and movement patterns. Thus, the current study examines the effect of fatigue on the balance, movement pattern, and muscle activities of the lower extremities in ballet dancers. Twenty healthy, female ballet dancers performed releve on demi-pointe before and after fatigue. The trajectory of the whole body movement and the muscle activities of the major lower extremity muscles were recorded continuously during task performance. The results show that fatigue increases the medial-lateral center of mass (COM) displacement and hip and trunk motion, but decreases the COM velocity and ankle motion. Moreover, fatigue reduces the activities of the hamstrings and tibialis anterior, but increases that of the soleus. Finally, greater proximal hip and trunk motions are applied to compensate for the effects of fatigue, leading to a greater COM movement. Overall, the present findings show that fatigue results in impaired movement control and may therefore increase the risk of dance injury.

  8. The relationship between adolescents' physical activity, fundamental movement skills and weight status.

    PubMed

    O' Brien, Wesley; Belton, Sarahjane; Issartel, Johann

    2016-01-01

    The aim of this study was to determine if a potential relationship among physical activity (PA), fundamental movement skills and weight status exists amongst early adolescent youth. Participants were a sample of 85 students; 54 boys (mean age = 12.94 ± 0.33 years) and 31 girls (mean age = 12.75 ± 0.43 years). Data gathered during physical education class included PA (accelerometry), fundamental movement skills and anthropometric measurements. Standard multiple regression revealed that PA and total fundamental movement skill proficiency scores explained 16.5% (P < 0.001) of the variance in the prediction of body mass index. Chi-square tests for independence further indicated that compared with overweight or obese adolescents, a significantly higher proportion of adolescents classified as normal weight achieved mastery/near-mastery in fundamental movement skills. Results from the current investigation indicate that weight status is an important correlate of fundamental movement skill proficiency during adolescence. Aligned with most recent research, school- and community-based programmes that include developmentally structured learning experiences delivered by specialists can significantly improve fundamental movement skill proficiency in youth.

  9. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  10. Saccade-related activity in the prefrontal cortex: its role in eye movement control and cognitive functions

    PubMed Central

    Funahashi, Shintaro

    2014-01-01

    Prefrontal neurons exhibit saccade-related activity and pre-saccadic memory-related activity often encodes the directions of forthcoming eye movements, in line with demonstrated prefrontal contribution to flexible control of voluntary eye movements. However, many prefrontal neurons exhibit post-saccadic activity that is initiated well after the initiation of eye movement. Although post-saccadic activity has been observed in the frontal eye field, this activity is thought to be a corollary discharge from oculomotor centers, because this activity shows no directional tuning and is observed whenever the monkeys perform eye movements regardless of goal-directed or not. However, prefrontal post-saccadic activities exhibit directional tunings similar as pre-saccadic activities and show context dependency, such that post-saccadic activity is observed only when monkeys perform goal-directed saccades. Context-dependency of prefrontal post-saccadic activity suggests that this activity is not a result of corollary signals from oculomotor centers, but contributes to other functions of the prefrontal cortex. One function might be the termination of memory-related activity after a behavioral response is done. This is supported by the observation that the termination of memory-related activity coincides with the initiation of post-saccadic activity in population analyses of prefrontal activities. The termination of memory-related activity at the end of the trial ensures that the subjects can prepare to receive new and updated information. Another function might be the monitoring of behavioral performance, since the termination of memory-related activity by post-saccadic activity could be associated with informing the correctness of the response and the termination of the trial. However, further studies are needed to examine the characteristics of saccade-related activities in the prefrontal cortex and their functions in eye movement control and a variety of cognitive functions

  11. Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review.

    PubMed

    Chiu, Hsiu-Ching; Ada, Louise

    2016-07-01

    Does constraint-induced movement therapy improve activity and participation in children with hemiplegic cerebral palsy? Does it improve activity and participation more than the same dose of upper limb therapy without restraint? Is the effect of constraint-induced movement therapy related to the duration of intervention or the age of the children? Systematic review of randomised trials with meta-analysis. Children with hemiplegic cerebral palsy with any level of motor disability. The experimental group received constraint-induced movement therapy (defined as restraint of the less affected upper limb during supervised activity practice of the more affected upper limb). The control group received no intervention, sham intervention, or the same dose of upper limb therapy. Measures of upper limb activity and participation were used in the analysis. Constraint-induced movement therapy was more effective than no/sham intervention in terms of upper limb activity (SMD 0.63, 95% CI 0.20 to 1.06) and participation (SMD 1.21, 95% CI 0.41 to 2.02). However, constraint-induced movement therapy was no better than the same dose of upper limb therapy without restraint either in terms of upper limb activity (SMD 0.05, 95% CI -0.21 to 0.32) or participation (SMD -0.02, 95% CI -0.34 to 0.31). The effect of constraint-induced movement therapy was not related to the duration of intervention or the age of the children. This review suggests that constraint-induced movement therapy is more effective than no intervention, but no more effective than the same dose of upper limb practice without restraint. PROSPERO CRD42015024665. [Chiu H-C, Ada L (2016) Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review.Journal of Physiotherapy62: 130-137]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  12. Eye-Head Coordination in 31 Space Shuttle Astronauts during Visual Target Acquisition.

    PubMed

    Reschke, Millard F; Kolev, Ognyan I; Clément, Gilles

    2017-10-27

    Between 1989 and 1995, NASA evaluated how increases in flight duration of up to 17 days affected the health and performance of Space Shuttle astronauts. Thirty-one Space Shuttle pilots participating in 17 space missions were tested at 3 different times before flight and 3 different times after flight, starting within a few hours of return to Earth. The astronauts moved their head and eyes as quickly as possible from the central fixation point to a specified target located 20°, 30°, or 60° off center. Eye movements were measured with electro-oculography (EOG). Head movements were measured with a triaxial rate sensor system mounted on a headband. The mean time to visually acquire the targets immediately after landing was 7-10% (30-34 ms) slower than mean preflight values, but results returned to baseline after 48 hours. This increase in gaze latency was due to a decrease in velocity and amplitude of both the eye saccade and head movement toward the target. Results were similar after all space missions, regardless of length.

  13. Does weight status influence associations between children's fundamental movement skills and physical activity?

    PubMed

    Hume, Clare; Okely, Anthony; Bagley, Sarah; Telford, Amanda; Booth, Michael; Crawford, David; Salmon, Jo

    2008-06-01

    This study sought to determine whether weight status influences the association among children's fundamental movement skills (FMS) and physical activity (PA). Two hundred forty-eight children ages 9-12 years participated. Proficiency in three object-control skills and two locomotor skills was examined. Accelerometers objectively assessed physical activity. Body mass index was calculated to determine weight status. Correlations between physical activity and FMS proficiency were evident among boys and girls. No significant interaction was apparent when examining FMS proficiency scores, PA variables, and weight status. Future studies should examine a broader range of skills and types of activities to better characterize this relationship and to inform the promotion of movement skill proficiency and PA.

  14. Structured Free-Play to Reduce Disruptive Activity Changes in a Head Start Classroom.

    ERIC Educational Resources Information Center

    Stollar, Stephanie A.; And Others

    1994-01-01

    Developed intervention to decrease number of inappropriate activity changes in Head Start classroom. Measurement of rate of activity changes was taken for two target children and comparison children. Intervention was able to reduce inappropriate activity changes by adding relatively unobtrusive classroom structure to activities. (Author/NB)

  15. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  16. Feature selection in classification of eye movements using electrooculography for activity recognition.

    PubMed

    Mala, S; Latha, K

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.

  17. Development of Junior High School Students' Fundamental Movement Skills and Physical Activity in a Naturalistic Physical Education Setting

    ERIC Educational Resources Information Center

    Kalaja, Sami Pekka; Jaakkola, Timo Tapio; Liukkonen, Jarmo Olavi; Digelidis, Nikolaos

    2012-01-01

    Background: There is evidence showing that fundamental movement skills and physical activity are related with each other. The ability to perform a variety of fundamental movement skills increases the likelihood of children participating in different physical activities throughout their lives. However, no fundamental movement skill interventions…

  18. Development of a Kinect Software Tool to Classify Movements during Active Video Gaming.

    PubMed

    Rosenberg, Michael; Thornton, Ashleigh L; Lay, Brendan S; Ward, Brodie; Nathan, David; Hunt, Daniel; Braham, Rebecca

    2016-01-01

    While it has been established that using full body motion to play active video games results in increased levels of energy expenditure, there is little information on the classification of human movement during active video game play in relationship to fundamental movement skills. The aim of this study was to validate software utilising Kinect sensor motion capture technology to recognise fundamental movement skills (FMS), during active video game play. Two human assessors rated jumping and side-stepping and these assessments were compared to the Kinect Action Recognition Tool (KART), to establish a level of agreement and determine the number of movements completed during five minutes of active video game play, for 43 children (m = 12 years 7 months ± 1 year 6 months). During five minutes of active video game play, inter-rater reliability, when examining the two human raters, was found to be higher for the jump (r = 0.94, p < .01) than the sidestep (r = 0.87, p < .01), although both were excellent. Excellent reliability was also found between human raters and the KART system for the jump (r = 0.84, p, .01) and moderate reliability for sidestep (r = 0.6983, p < .01) during game play, demonstrating that both humans and KART had higher agreement for jumps than sidesteps in the game play condition. The results of the study provide confidence that the Kinect sensor can be used to count the number of jumps and sidestep during five minutes of active video game play with a similar level of accuracy as human raters. However, in contrast to humans, the KART system required a fraction of the time to analyse and tabulate the results.

  19. Development of a Kinect Software Tool to Classify Movements during Active Video Gaming

    PubMed Central

    Rosenberg, Michael; Lay, Brendan S.; Ward, Brodie; Nathan, David; Hunt, Daniel; Braham, Rebecca

    2016-01-01

    While it has been established that using full body motion to play active video games results in increased levels of energy expenditure, there is little information on the classification of human movement during active video game play in relationship to fundamental movement skills. The aim of this study was to validate software utilising Kinect sensor motion capture technology to recognise fundamental movement skills (FMS), during active video game play. Two human assessors rated jumping and side-stepping and these assessments were compared to the Kinect Action Recognition Tool (KART), to establish a level of agreement and determine the number of movements completed during five minutes of active video game play, for 43 children (m = 12 years 7 months ± 1 year 6 months). During five minutes of active video game play, inter-rater reliability, when examining the two human raters, was found to be higher for the jump (r = 0.94, p < .01) than the sidestep (r = 0.87, p < .01), although both were excellent. Excellent reliability was also found between human raters and the KART system for the jump (r = 0.84, p, .01) and moderate reliability for sidestep (r = 0.6983, p < .01) during game play, demonstrating that both humans and KART had higher agreement for jumps than sidesteps in the game play condition. The results of the study provide confidence that the Kinect sensor can be used to count the number of jumps and sidestep during five minutes of active video game play with a similar level of accuracy as human raters. However, in contrast to humans, the KART system required a fraction of the time to analyse and tabulate the results. PMID:27442437

  20. A comparison of muscle activity in concentric and counter movement maximum bench press.

    PubMed

    van den Tillaar, Roland; Ettema, Gertjan

    2013-01-01

    The purpose of this study was to compare the kinematics and muscle activation patterns of regular free-weight bench press (counter movement) with pure concentric lifts in the ascending phase of a successful one repetition maximum (1-RM) attempt in the bench press. Our aim was to evaluate if diminishing potentiation could be the cause of the sticking region. Since diminishing potentiation cannot occur in pure concentric lifts, the occurrence of a sticking region in this type of muscle actions would support the hypothesis that the sticking region is due to a poor mechanical position. Eleven male participants (age 21.9 ± 1.7 yrs, body mass 80.7 ± 10.9 kg, body height 1.79 ± 0.07 m) conducted 1-RM lifts in counter movement and in pure concentric bench presses in which kinematics and EMG activity were measured. In both conditions, a sticking region occurred. However, the start of the sticking region was different between the two bench presses. In addition, in four of six muscles, the muscle activity was higher in the counter movement bench press compared to the concentric one. Considering the findings of the muscle activity of six muscles during the maximal lifts it was concluded that the diminishing effect of force potentiation, which occurs in the counter movement bench press, in combination with a delayed muscle activation unlikely explains the existence of the sticking region in a 1-RM bench press. Most likely, the sticking region is the result of a poor mechanical force position.

  1. A Comparison of Muscle Activity in Concentric and Counter Movement Maximum Bench Press

    PubMed Central

    van den Tillaar, Roland; Ettema, Gertjan

    2013-01-01

    The purpose of this study was to compare the kinematics and muscle activation patterns of regular free-weight bench press (counter movement) with pure concentric lifts in the ascending phase of a successful one repetition maximum (1-RM) attempt in the bench press. Our aim was to evaluate if diminishing potentiation could be the cause of the sticking region. Since diminishing potentiation cannot occur in pure concentric lifts, the occurrence of a sticking region in this type of muscle actions would support the hypothesis that the sticking region is due to a poor mechanical position. Eleven male participants (age 21.9 ± 1.7 yrs, body mass 80.7 ± 10.9 kg, body height 1.79 ± 0.07 m) conducted 1-RM lifts in counter movement and in pure concentric bench presses in which kinematics and EMG activity were measured. In both conditions, a sticking region occurred. However, the start of the sticking region was different between the two bench presses. In addition, in four of six muscles, the muscle activity was higher in the counter movement bench press compared to the concentric one. Considering the findings of the muscle activity of six muscles during the maximal lifts it was concluded that the diminishing effect of force potentiation, which occurs in the counter movement bench press, in combination with a delayed muscle activation unlikely explains the existence of the sticking region in a 1-RM bench press. Most likely, the sticking region is the result of a poor mechanical force position. PMID:24235985

  2. Corrective response times in a coordinated eye-head-arm countermanding task.

    PubMed

    Tao, Gordon; Khan, Aarlenne Z; Blohm, Gunnar

    2018-06-01

    Inhibition of motor responses has been described as a race between two competing decision processes of motor initiation and inhibition, which manifest as the reaction time (RT) and the stop signal reaction time (SSRT); in the case where motor initiation wins out over inhibition, an erroneous movement occurs that usually needs to be corrected, leading to corrective response times (CRTs). Here we used a combined eye-head-arm movement countermanding task to investigate the mechanisms governing multiple effector coordination and the timing of corrective responses. We found a high degree of correlation between effector response times for RT, SSRT, and CRT, suggesting that decision processes are strongly dependent across effectors. To gain further insight into the mechanisms underlying CRTs, we tested multiple models to describe the distribution of RTs, SSRTs, and CRTs. The best-ranked model (according to 3 information criteria) extends the LATER race model governing RTs and SSRTs, whereby a second motor initiation process triggers the corrective response (CRT) only after the inhibition process completes in an expedited fashion. Our model suggests that the neural processing underpinning a failed decision has a residual effect on subsequent actions. NEW & NOTEWORTHY Failure to inhibit erroneous movements typically results in corrective movements. For coordinated eye-head-hand movements we show that corrective movements are only initiated after the erroneous movement cancellation signal has reached a decision threshold in an accelerated fashion.

  3. The association between upper trapezius activity and thorax movement in classical singing.

    PubMed

    Pettersen, V; Westgaard, R H

    2004-12-01

    This study aimed to examine in classical singing the phasing of the activity in upper trapezius (TR) to upper and lower thorax movement and to the phasing of activity in the intercostals (INT) and in the lateral abdominal (OBL) muscles. Electromyographic (EMG) activity was recorded from the TR, INT, and OBL muscles on the right side. Thorax movement (TX) was traced with two strain gauge sensors placed around the upper and lower thorax. Four professional opera singers (soprano, mezzo, tenor, and baritone) and four advanced student classical singers (three sopranos and one mezzo) participated. Three of the professional singers were 33 years, and one was 40 years. The students were between 23 and 30 years. Different arias, freely chosen by the singers from their professional repertoire, served as the singing task for the opera singers. All students sang "Summertime" from Porgy and Bess. All subjects performed their task three times with variation in vocal loudness (normal, forte, piano). Thereafter, for all subjects, a biofeedback (BF) procedure was performed on TR to lower TR activity and a repeat performance of the singing tasks was carried out. EMG activity from the three recording sites and upper and lower TX circumference were compared before and after BF. A phasing of upper TR activity to INT and OBL activity was discovered, all muscles supporting the expiration phase. During phonation, the upper TR contributes in the compression of upper TX, thus serving as an accessory muscle of expiration. Group results from both opera singers and student singers showed that EMG activity was significantly lowered after BF. The lowered TR activity resulted in an expanded upper TX circumference and less TX respiratory movement after BF.

  4. Relations among physical activity patterns, lifestyle activities, and fundamental movement skills for Finnish students in grade 7.

    PubMed

    Jaakkola, Timo; Kalaja, Sami; Liukkonen, Jarmo; Jutila, Ari; Virtanen, Petri; Watt, Anthony

    2009-02-01

    To investigate the relations among leisure time physical activity and in sport clubs, lifestyle activities, and the locomotor, balance manipulative skills of Grade 7 students participating in Finnish physical education at a secondary school in central Finland completed self-report questionnaires on their physical activity patterns at leisure time and during sport club participation, and time spent watching television and using the computer and other electronic media. Locomotor skills were analyzed by the leaping test, balance skills by the flamingo standing test, and manipulative skills by the accuracy throwing test. Analysis indicated physical activity in sport clubs positively explained scores on balance and locomotor tests but not on accuracy of throwing. Leisure time physical activity and lifestyle activities were not statistically significant predictors of performance on any movement skill tests. Girls scored higher on the static balance skill and boys higher on the throwing task. Overall, physical activity in sport clubs was more strongly associated with performance on the fundamental movement tasks than was physical activity during leisure.

  5. Self-Schemata for Movement Activities: The Influence of Race and Gender.

    ERIC Educational Resources Information Center

    Harrison, Louis, Jr.; And Others

    This study investigated the influence of race and gender on students' self-schema for movement activities. Study participants were 168 male and female seventh- and eighth-grade students, both African American and Euro American, from a semi-rural school in a Southeastern state. The Physical Activity Schema Analysis (PASA) was administered to…

  6. Effect of neck flexor muscle activation on impact velocity of the head during backward falls in young adults.

    PubMed

    Choi, W J; Robinovitch, S N; Ross, S A; Phan, J; Cipriani, D

    2017-11-01

    Falls are a common cause of traumatic brain injuries (TBI) across the lifespan. A proposed but untested hypothesis is that neck muscle activation influences impact severity and risk for TBI during a fall. We conducted backward falling experiments to test whether activation of the neck flexor muscles facilitates the avoidance of head impact, and reduces impact velocity if the head contacts the ground. Young adults (n=8) fell from standing onto a 30cm thick gymnastics mat while wearing a helmet. Participants were instructed to fall backward and (a) prevent their head from impacting the mat ("no head impact" trials); (b) allow their head to impact the mat, but with minimal impact severity ("soft impact" trials); and (c) allow their head to impact the mat, while inhibiting efforts to reduce impact severity ("hard impact" trials). Trial type associated with peak magnitude of electromyographic activity of the sternocleidomastoid (SCM) muscles (p<0.017), and with the vertical and horizontal velocity of the head at impact (p<0.001). Peak SCM activations, expressed as percent maximal voluntary isometric contraction (%MVIC), averaged 75.3, 67.5, and 44.5%MVIC in "no head impact", "soft impact", and "hard impact" trials, respectively. When compared to "soft impact" trials, vertical impact velocities in "hard impact" trials averaged 87% greater (3.23 versus 1.73m/s) and horizontal velocities averaged 83% greater (2.74 versus 1.50m/s). For every 10% increase in SCM %MVIC, vertical impact velocity decreased 0.24m/s and horizontal velocity decreased 0.22m/s. We conclude that SCM activation contributes to the prevention and modulation of head impact severity during backward falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Eye movements and abducens motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis.

    PubMed

    Márquez-Ruiz, Javier; Escudero, Miguel

    2010-11-01

    the aim of this work was to characterize eye movements and abducens (ABD) motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis (NRPC). six female adult cats were prepared for chronic recording of eye movements (using the scleral search-coil technique), electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves in the lateral geniculate nucleus, and ABD motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPC. unilateral microinjections of carbachol in the NRPC induced tonic and phasic phenomena in the oculomotor system. Tonic effects consisted of ipsiversive rotation to the injected side, convergence, and downward rotation of the eyes. Phasic effects consisted of bursts of rhythmic rapid eye movements directed contralaterally to the injected side along with PGO-like waves in the lateral geniculate and ABD nuclei. Although tonic effects were dependent on the level of drowsiness, phasic effects were always present and appeared along with normal saccades when the animal was vigilant. ABD motoneurons showed phasic activities associated with ABD PGO-like waves during bursts of rapid eye movements, and tonic and phasic activities related to eye position and velocity during alertness. the cholinergic activation of the NRPC induces oculomotor phenomena that are somewhat similar to those described during REM sleep. A precise comparison of the dynamics and timing of the eye movements further suggests that a temporal organization of both NRPCs is needed to reproduce the complexity of the oculomotor behavior during REM sleep.

  8. Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil

    PubMed Central

    Nagy, Zoltan; Oliver-Taylor, Aaron; Kuehne, Andre; Goluch, Sigrun; Weiskopf, Nikolaus

    2017-01-01

    The transmit–receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil. PMID:28184184

  9. Migration from full‐head mask to “open‐face” mask for immobilization of patients with head and neck cancer

    PubMed Central

    Lovelock, D. Michael; Mechalakos, James; Rao, Shyam; Della‐Biancia, Cesar; Amols, Howard; Lee, Nancy

    2013-01-01

    To provide an alternative device for immobilization of the head while easing claustrophobia and improving comfort, an “open‐face” thermoplastic mask was evaluated using video‐based optical surface imaging (OSI) and kilovoltage (kV) X‐ray radiography. A three‐point thermoplastic head mask with a precut opening and reinforced strips was developed. After molding, it provided sufficient visible facial area as the region of interest for OSI. Using real‐time OSI, the head motion of ten volunteers in the new mask was evaluated during mask locking and 15 minutes lying on the treatment couch. Using a nose mark with reference to room lasers, forced head movement in open‐face and full‐head masks (with a nose hole) was compared. Five patients with claustrophobia were immobilized with open‐face masks, set up using OSI and kV, and treated in 121 fractions, in which 61 fractions were monitored during treatment using real‐time OSI. With the open‐face mask, head motion was found to be 1.0 ± 0.6 mm and 0.4° ± 0.2° in volunteers during the experiment, and 0.8 ± 0.3 mm and 0.4° ± 0.2° in patients during treatment. These agree with patient motion calculated from pre‐/post‐treatment OSI and kV data using different anatomical landmarks. In volunteers, the head shift induced by mask‐locking was 2.3 ± 1.7 mm and 1.8° ± 0.6°, and the range of forced movements in the open‐face and full‐head masks were found to be similar. Most (80%) of the volunteers preferred the open‐face mask to the full‐head mask, while claustrophobic patients could only tolerate the open‐face mask. The open‐face mask is characterized for its immobilization capability and can immobilize patients sufficiently (< 2 mm) during radiotherapy. It provides a clinical solution to the immobilization of patients with head and neck (HN) cancer undergoing radiotherapy, and is particularly beneficial for claustrophobic patients. This new open

  10. Eye Movements of Patients with Tunnel Vision while Walking

    PubMed Central

    Vargas-Martín, Fernando; Peli, Eli

    2006-01-01

    Purpose To determine how severe peripheral field loss (PFL) affects the dispersion of eye movements relative to the head, while walking in real environments. This information should help to better define the visual field and clearance requirements for head-mounted mobility visual aids. Methods Eye positions relative to the head were recorded in five retinitis pigmentosa patients with less than 15° of visual field and three normally-sighted people, each walking in varied environments for more than 30 minutes. The eye position recorder was made portable by modifying a head-mounted ISCAN system. Custom data processing was implemented to reject unreliable data. Sample standard deviations of eye position (dispersion) were compared across subject groups and environments. Results PFL patients exhibited narrower horizontal eye position dispersions than normally-sighted subjects (9.4° vs. 14.2°, p < 0.0001) and PFL patients’ vertical dispersions were smaller when walking indoors than outdoors (8.2° vs. 10.3°, p = 0.048). Conclusions When walking, the PFL patients did not increase their scanning eye movements to compensate for missing peripheral vision information. Their horizontal scanning was actually reduced, possibly because saccadic amplitude is limited by a lack of peripheral stimulation. The results suggest that a field-of-view as wide as 40° may be needed for closed (immersive) head-mounted mobility aids, while a much narrower display, perhaps as narrow as 20°, might be sufficient with an open design. PMID:17122116

  11. Head stabilization in whooping cranes

    USGS Publications Warehouse

    Kinloch, M.R.; Cronin, T.W.; Olsen, Glenn H.; Chavez-Ramirez, Felipe

    2005-01-01

    The whooping crane (Grus americana) is the tallest bird in North America, yet not much is known about its visual ecology. How these birds overcome their unusual height to identify, locate, track, and capture prey items is not well understood. There have been many studies on head and eye stabilization in large wading birds (herons and egrets), but the pattern of head movement and stabilization during foraging is unclear. Patterns of head movement and stabilization during walking were examined in whooping cranes at Patuxent Wildlife Research Center, Laurel, Maryland USA. Four whooping cranes (1 male and 3 females) were videotaped for this study. All birds were already acclimated to the presence of people and to food rewards. Whooping cranes were videotaped using both digital and Hi-8 Sony video cameras (Sony Corporation, 7-35 Kitashinagawa, 6-Chome, Shinagawa-ku, Tokyo, Japan), placed on a tripod and set at bird height in the cranes' home pens. The cranes were videotaped repeatedly, at different locations in the pens and while walking (or running) at different speeds. Rewards (meal worms, smelt, crickets and corn) were used to entice the cranes to walk across the camera's view plane. The resulting videotape was analyzed at the University of Maryland at Baltimore County. Briefly, we used a computerized reduced graphic model of a crane superimposed over each frame of analyzed tape segments by means of a custom written program (T. W. Cronin, using C++) with the ability to combine video and computer graphic input. The speed of the birds in analyzed segments ranged from 0.30 m/s to 2.64 m/s, and the proportion of time the head was stabilized ranged from 79% to 0%, respectively. The speed at which the proportion reached 0% was 1.83 m/s. The analyses suggest that the proportion of time the head is stable decreases as speed of the bird increases. In all cases, birds were able to reach their target prey with little difficulty. Thus when cranes are walking searching for food

  12. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2002-01-01

    The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2 m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, tibia and foot, accelerations along the vertical axis at the head and the tibia, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the tibia and the transmission of the shock wave at heel strike (measured by the peak acceleration ratio of the head/tibia and the time lag between the tibial

  13. Disassociation between primary motor cortical activity and movement kinematics during adaptation to reach perturbations.

    PubMed

    Cai, X; Shimansky, Y P; Weber, D J; He, Jiping

    2004-01-01

    The relationship between movement kinematics and motor cortical activity was studied in monkeys performing a center-out reaching task during their adaptation to force perturbations applied to the wrist. The main feature of adaptive changes in movement kinematics was anticipatory deviation of hand paths in the direction opposite to that of the upcoming perturbation. We identified a group of neurons in the dorsal lateral portion of the primary motor cortex where a gradual buildup of spike activity immediately preceding the actual (in perturbation trials) or the "would-be" (in unperturbed/catch trials) perturbation onset was observed. These neurons were actively involved in the adaptation process, which was evident from the gradual increase in the amplitude of their movement-related modulation of spike activity from virtual zero and development of certain directional tuning pattern (DTP). However, the day-to-day dynamics of the kinematics adaptation was dramatically different from that of the neuronal activity. Hence, the adaptive modification of the motor cortical activity is more likely to reflect the development of the internal model of the perturbation dynamics, rather than motor instructions determining the adaptive behavior.

  14. Movement Actors in the Education Bureaucracy: The Figured World of Activity Based Learning in Tamil Nadu

    ERIC Educational Resources Information Center

    Niesz, Tricia; Krishnamurthy, Ramchandar

    2014-01-01

    Tamil Nadu has gained international recognition for reforming its government school classrooms into active, child-centered learning environments. Our exploration of the history of the Activity Based Learning movement suggests that this reform was achieved by social movement actors serving in and through the state's administration. Participants in…

  15. Lungeing on hard and soft surfaces: Movement symmetry of trotting horses considered sound by their owners.

    PubMed

    Pfau, T; Jennings, C; Mitchell, H; Olsen, E; Walker, A; Egenvall, A; Tröster, S; Weller, R; Rhodin, M

    2016-01-01

    Lungeing is often part of the clinical lameness examination. The difference in movement symmetry, which is a commonly employed lameness measure, has not been quantified between surfaces. To compare head and pelvic movement symmetry between surfaces and reins during lungeing. Quantitative gait analysis in 23 horses considered sound by their owners. Twenty-three horses were assessed in-hand and on the lunge on both reins on hard and soft surfaces with inertial sensors. Seven movement symmetry parameters were quantified and used to establish 2 groups, namely symmetrical (n = 9) and forelimb-lame horses (n = 14), based on values from straight-line assessment. Movement symmetry values for left rein measurements were side corrected to allow comparison of the amount of movement symmetry between reins. A mixed model (P<0.05) was used to study effects on movement symmetry of surface (hard/soft) and rein (inside/outside with respect to movement symmetry on the straight). In forelimb-lame horses, surface and rein were identified as significantly affecting all head movement symmetry measures (rein, all P<0.0001; surface, all P<0.042). In the symmetrical group, no significant influence of surface or rein was identified for head movement symmetry (rein, all P>0.245; surface, all P>0.073). No significant influence of surface or rein was identified for any of the pelvic movement symmetry measures in either group. While more symmetrical horses showed a consistent amount of movement symmetry across surfaces/reins, horses objectively quantified as lame on the straight showed decreased movement symmetry during lungeing, in particular with the lame limb on the inside of a hard circle. The variation within group questions straight-line movement symmetry as a sole measure of lameness without quantification of movement symmetry on the lunge, ideally on hard and soft surfaces to evaluate differences between reins and surfaces. In future, thresholds for lungeing need to be determined using

  16. Effect of passengers' active head tilt and opening/closure of eyes on motion sickness in lateral acceleration environment of cars.

    PubMed

    Wada, Takahiro; Yoshida, Keigo

    2016-08-01

    This study examined the effect of passengers' active head-tilt and eyes-open/eyes-closed conditions on the severity of motion sickness in the lateral acceleration environment of cars. In the centrifugal head-tilt condition, participants intentionally tilted their heads towards the centrifugal force, whereas in the centripetal head-tilt condition, the participants tilted their heads against the centrifugal acceleration. The eyes-open and eyes-closed cases were investigated for each head-tilt condition. In the experimental runs, the sickness rating in the centripetal head-tilt condition was significantly lower than that in the centrifugal head-tilt condition. Moreover, the sickness rating in the eyes-open condition was significantly lower than that in the eyes-closed condition. The results suggest that an active head-tilt motion against the centrifugal acceleration reduces the severity of motion sickness both in the eyes-open and eyes-closed conditions. They also demonstrate that the eyes-open condition significantly reduces the motion sickness even when the head-tilt strategy is used. Practitioner Summary: Little is known about the effect of head-tilt strategies on motion sickness. This study investigated the effects of head-tilt direction and eyes-open/eyes-closed conditions on motion sickness during slalom automobile driving. Passengers' active head tilt towards the centripetal direction and the eyes-open condition greatly reduce the severity of motion sickness.

  17. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  18. Effects of repeated simulated removal activities on feral swine movements and space use

    USGS Publications Warehouse

    Fischer, Justin W.; McMurtry , Dan; Blass, Chad R.; Walter, W. David; Beringer, Jeff; VerCauterren, Kurt C.

    2016-01-01

    Abundance and distribution of feral swine (Sus scrofa) in the USA have increased dramatically during the last 30 years. Effective measures are needed to control and eradicate feral swine populations without displacing animals over wider areas. Our objective was to investigate effects of repeated simulated removal activities on feral swine movements and space use. We analyzed location data from 21 feral swine that we fitted with Global Positioning System harnesses in southern MO, USA. Various removal activities were applied over time to eight feral swine before lethal removal, including trapped-and-released, chased with dogs, chased with hunter, and chased with helicopter. We found that core space-use areas were reduced following the first removal activity, whereas overall space-use areas and diurnal movement distances increased following the second removal activity. Mean geographic centroid shifts did not differ between pre- and post-periods for either the first or second removal activities. Our information on feral swine movements and space use precipitated by human removal activities, such as hunting, trapping, and chasing with dogs, helps fill a knowledge void and will aid wildlife managers. Strategies to optimize management are needed to reduce feral swine populations while preventing enlarged home ranges and displacing individuals, which could lead to increased disease transmission risk and human-feral swine conflict in adjacent areas.

  19. The video head impulse test during post-rotatory nystagmus: physiology and clinical implications.

    PubMed

    Mantokoudis, Georgios; Tehrani, Ali S Saber; Xie, Li; Eibenberger, Karin; Eibenberger, Bernhard; Roberts, Dale; Newman-Toker, David E; Zee, David S

    2016-01-01

    The aim of this study was to test the effects of a sustained nystagmus on the head impulse response of the vestibulo-ocular reflex (VOR) in healthy subjects. VOR gain (slow-phase eye velocity/head velocity) was measured using video head impulse test goggles. Acting as a surrogate for a spontaneous nystagmus (SN), a post-rotatory nystagmus (PRN) was elicited after a sustained, constant-velocity rotation, and then head impulses were applied. 'Raw' VOR gain, uncorrected for PRN, in healthy subjects in response to head impulses with peak velocities in the range of 150°/s-250°/s was significantly increased (as reflected in an increase in the slope of the gain versus head velocity relationship) after inducing PRN with slow phases of nystagmus of high intensity (>30°/s) in the same but not in the opposite direction as the slow-phase response induced by the head impulses. The values of VOR gain themselves, however, remained in the normal range with slow-phase velocities of PRN < 30°/s. Finally, quick phases of PRN were suppressed during the first 20-160 ms of a head impulse; the time frame of suppression depended on the direction of PRN but not on the duration of the head impulse. Our results in normal subjects suggest that VOR gains measured using head impulses may have to be corrected for any superimposed SN when the slow-phase velocity of nystagmus is relatively high and the peak velocity of the head movements is relatively low. The suppression of quick phases during head impulses may help to improve steady fixation during rapid head movements.

  20. The kinematic architecture of the Active Headframe: A new head support for awake brain surgery.

    PubMed

    Malosio, Matteo; Negri, Simone Pio; Pedrocchi, Nicola; Vicentini, Federico; Cardinale, Francesco; Tosatti, Lorenzo Molinari

    2012-01-01

    This paper presents the novel hybrid kinematic structure of the Active Headframe, a robotic head support to be employed in brain surgery operations for an active and dynamic control of the patient's head position and orientation, particularly addressing awake surgery requirements. The topology has been conceived in order to satisfy all the installation, functional and dynamic requirements. A kinetostatic optimization has been performed to obtain the actual geometric dimensions of the prototype currently being developed.

  1. Missing depth cues in virtual reality limit performance and quality of three dimensional reaching movements

    PubMed Central

    Mayo, Johnathan; Baur, Kilian; Wittmann, Frieder; Riener, Robert; Wolf, Peter

    2018-01-01

    Background Goal-directed reaching for real-world objects by humans is enabled through visual depth cues. In virtual environments, the number and quality of available visual depth cues is limited, which may affect reaching performance and quality of reaching movements. Methods We assessed three-dimensional reaching movements in five experimental groups each with ten healthy volunteers. Three groups used a two-dimensional computer screen and two groups used a head-mounted display. The first screen group received the typically recreated visual depth cues, such as aerial and linear perspective, occlusion, shadows, and texture gradients. The second screen group received an abstract minimal rendering lacking those. The third screen group received the cues of the first screen group and absolute depth cues enabled by retinal image size of a known object, which realized with visual renderings of the handheld device and a ghost handheld at the target location. The two head-mounted display groups received the same virtually recreated visual depth cues as the second or the third screen group respectively. Additionally, they could rely on stereopsis and motion parallax due to head-movements. Results and conclusion All groups using the screen performed significantly worse than both groups using the head-mounted display in terms of completion time normalized by the straight-line distance to the target. Both groups using the head-mounted display achieved the optimal minimum in number of speed peaks and in hand path ratio, indicating that our subjects performed natural movements when using a head-mounted display. Virtually recreated visual depth cues had a minor impact on reaching performance. Only the screen group with rendered handhelds could outperform the other screen groups. Thus, if reaching performance in virtual environments is in the main scope of a study, we suggest applying a head-mounted display. Otherwise, when two-dimensional screens are used, achievable performance

  2. Medication-induced acute dystonic reaction: the challenge of diagnosing movement disorders in the intensive care unit.

    PubMed

    Digby, Geneviève; Jalini, Shirin; Taylor, Sean

    2015-09-21

    A 62-year-old man presented with left middle cerebral artery stroke. 1 h postadministration of tissue plasminogen activator, he received a total of 4 mg of haloperidol for combativeness. He developed partial complex status epilepticus, requiring benzodiazepines, phenytoin, propofol and intubation. 5 h later, he developed recurrent stereotyped tonic movements involving arching of the back, extension of the arms and contraction of opposing muscle groups. Repeat CT scan of the head showed evolving insular infarct. Differential diagnoses for these movements included tonic/clonic seizures, extensor (decerebrate) posturing from haemorrhagic conversion, neuroleptic malignant syndrome, or dystonic reaction. Given the lack of response to antiseizure medications, the recent administration of haloperidol, and the prompt resolution of movements following diphenhydramine administration, an acute dystonic reaction was considered. This atypical case of a critically ill patient with stroke highlights the fact that these patients may have multiple abnormal movements requiring careful analysis to guide diagnosis-specific management. 2015 BMJ Publishing Group Ltd.

  3. Consistency of a lumbar movement pattern across functional activities in people with low back pain.

    PubMed

    Marich, Andrej V; Hwang, Ching-Ting; Salsich, Gretchen B; Lang, Catherine E; Van Dillen, Linda R

    2017-05-01

    Limitation in function is a primary reason people with low back pain seek medical treatment. Specific lumbar movement patterns, repeated throughout the day, have been proposed to contribute to the development and course of low back pain. Varying the demands of a functional activity test may provide some insight into whether people display consistent lumbar movement patterns during functional activities. Our purpose was to examine the consistency of the lumbar movement pattern during variations of a functional activity test in people with low back pain and back-healthy people. 16 back-healthy adults and 32 people with low back pain participated. Low back pain participants were classified based on the level of self-reported functional limitations. Participants performed 5 different conditions of a functional activity test. Lumbar excursion in the early phase of movement was examined. The association between functional limitations and early phase lumbar excursion for each test condition was examined. People with low back pain and high levels of functional limitation demonstrated a consistent pattern of greater early phase lumbar excursion across test conditions (p<0.05). For each test condition, the amount of early phase lumbar excursion was associated with functional limitation (r=0.28-0.62). Our research provides preliminary evidence that people with low back pain adopt consistent movement patterns during the performance of functional activities. Our findings indicate that the lumbar spine consistently moves more readily into its available range in people with low back pain and high levels of functional limitation. How the lumbar spine moves during a functional activity may contribute to functional limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. EXTRAOCULAR MUSCLE ACTIVITY, RAPID EYE MOVEMENTS, AND THE DEVELOPMENT OF ACTIVE AND QUIET SLEEP

    PubMed Central

    Seelke, Adele M. H.; Karlsson, Karl Æ.; Gall, Andrew J.; Blumberg, Mark S.

    2008-01-01

    Rapid eye movements (REMs), traditionally measured using the electrooculogram (EOG), help to characterize active sleep in adults. In early infancy, however, they are not clearly expressed. Here we measure extraocular muscle activity in infant rats at 3 days of age (P3), P8, and P14–15 in order to assess the ontogeny of REMs and their relationship with other forms of sleep-related phasic activity. We find that the causal relationship between extraocular muscle twitches and REMs strengthens during the first two postnatal weeks, reflecting increased control of the extraocular muscles over eye movements. As early as P3, however, phasic bursts of extraocular muscle twitching occur in synchrony with twitching in other muscle groups, producing waves of phasic activity interspersed with brief periods of quiescence. Surprisingly, the tone of the extraocular muscles, invisible to standard EOG measures, fluctuates in synchrony with the tone of other muscle groups; focal electrical stimulation within the dorsolateral pontine tegmentum, an area that has been shown to contain wake-on neurons in P8 rats, results in the simultaneous activation of high tone in both nuchal and extraocular muscles. Finally, when state-dependent neocortical electroencephalographic activity was observed at P14, it had already integrated fully with sleep and wakefulness as defined using electromyographic criteria alone; this finding is not consistent with the notion that active sleep in infants at this age is “half-activated.” All together, these results indicate exquisite temporal organization of sleep soon after birth and highlight the possible functional implications of homologous activational states in striated muscle and neocortex. PMID:16115214

  5. Vestibular Dysfunction after Subconcussive Head Impact

    PubMed Central

    Ma, Lei; Kawata, Keisuke; Tierney, Ryan; Jeka, John J.

    2017-01-01

    Abstract Current thinking views mild head impact (i.e., subconcussion) as an underrecognized phenomenon that has the ability to cause significant current and future detrimental neurological effects. Repeated mild impacts to the head, however, often display no observable behavioral deficits based on standard clinical tests, which may lack sensitivity. The current study investigates the effects of subconcussive impacts from soccer heading with innovative measures of vestibular function and walking stability in a pre- 0–2 h, post- 24 h post-heading repeated measures design. The heading group (n = 10) executed 10 headers with soccer balls projected at a velocity of 25 mph (11.2 m/sec) over 10 min. Subjects were evaluated 24 h before, immediately after, and 24 h after soccer heading with: the modified Balance Error Scoring System (mBESS); a walking stability task with visual feedback of trunk movement; and galvanic vestibular stimulation (GVS) while standing with eyes closed on foam. A control group (n = 10) followed the same protocol with no heading. The results showed significant decrease in trunk angle, leg angle gain, and center of mass gain relative to GVS for the heading group compared with controls. Medial-lateral trunk orientation displacement and velocity during treadmill walking increased immediately after mild head impact for the heading group compared with controls. Controls showed an improvement in mBESS scores over time, indicating a learning effect, which was not observed with the heading group. These results suggest that mild head impact leads to a transient dysfunction in vestibular processing, which deters walking stability during task performance. PMID:26885560

  6. Vestibular Dysfunction after Subconcussive Head Impact.

    PubMed

    Hwang, Sungjae; Ma, Lei; Kawata, Keisuke; Tierney, Ryan; Jeka, John J

    2017-01-01

    Current thinking views mild head impact (i.e., subconcussion) as an underrecognized phenomenon that has the ability to cause significant current and future detrimental neurological effects. Repeated mild impacts to the head, however, often display no observable behavioral deficits based on standard clinical tests, which may lack sensitivity. The current study investigates the effects of subconcussive impacts from soccer heading with innovative measures of vestibular function and walking stability in a pre- 0-2 h, post- 24 h post-heading repeated measures design. The heading group (n = 10) executed 10 headers with soccer balls projected at a velocity of 25 mph (11.2 m/sec) over 10 min. Subjects were evaluated 24 h before, immediately after, and 24 h after soccer heading with: the modified Balance Error Scoring System (mBESS); a walking stability task with visual feedback of trunk movement; and galvanic vestibular stimulation (GVS) while standing with eyes closed on foam. A control group (n = 10) followed the same protocol with no heading. The results showed significant decrease in trunk angle, leg angle gain, and center of mass gain relative to GVS for the heading group compared with controls. Medial-lateral trunk orientation displacement and velocity during treadmill walking increased immediately after mild head impact for the heading group compared with controls. Controls showed an improvement in mBESS scores over time, indicating a learning effect, which was not observed with the heading group. These results suggest that mild head impact leads to a transient dysfunction in vestibular processing, which deters walking stability during task performance.

  7. Accidental Head Injury: A Real Life Experience.

    ERIC Educational Resources Information Center

    Blakely, Jim

    1988-01-01

    The adult victim of accidental head injury as a result of an automobile accident recounts his experiences as a brain injured adult with such problems as poor balance, poor speech, spasticity, and lack of fine motor movement. He emphasizes his determination to get on with his life. (DB)

  8. Equilibrium-Based Movement Endpoints Elicited from Primary Motor Cortex Using Repetitive Microstimulation

    PubMed Central

    Van Acker, Gustaf M.; Amundsen, Sommer L.; Messamore, William G.; Zhang, Hongyu Y.; Luchies, Carl W.

    2014-01-01

    High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) is increasingly being used to deduce how the brain encodes coordinated muscle activity and movement. However, the full movement repertoire that can be elicited from the forelimb representation of primary motor cortex (M1) using this method has not been systematically determined. Our goal was to acquire a comprehensive M1 forelimb representational map of movement endpoints elicited with HFLD-ICMS, using stimulus parameters optimal for evoking stable forelimb spatial endpoints. The data reveal a 3D forelimb movement endpoint workspace that is represented in a patchwork fashion on the 2D M1 cortical surface. Although cortical maps of movement endpoints appear quite disorderly with respect to movement space, we show that the endpoint locations in the workspace evoked with HFLD-ICMS of two adjacent cortical points are closer together than would be expected if the organization were random. Although there were few obvious consistencies in the endpoint maps across the two monkeys tested, one notable exception was endpoints bringing the hand to the mouth, which was located at the boundary between the hand and face representation. Endpoints at the extremes of the monkey's workspace and locations above the head were largely absent. Our movement endpoints are best explained as resulting from coactivation of agonist and antagonist muscles driving the joints toward equilibrium positions determined by the length–tension relationships of the muscles. PMID:25411500

  9. Equilibrium-based movement endpoints elicited from primary motor cortex using repetitive microstimulation.

    PubMed

    Van Acker, Gustaf M; Amundsen, Sommer L; Messamore, William G; Zhang, Hongyu Y; Luchies, Carl W; Cheney, Paul D

    2014-11-19

    High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) is increasingly being used to deduce how the brain encodes coordinated muscle activity and movement. However, the full movement repertoire that can be elicited from the forelimb representation of primary motor cortex (M1) using this method has not been systematically determined. Our goal was to acquire a comprehensive M1 forelimb representational map of movement endpoints elicited with HFLD-ICMS, using stimulus parameters optimal for evoking stable forelimb spatial endpoints. The data reveal a 3D forelimb movement endpoint workspace that is represented in a patchwork fashion on the 2D M1 cortical surface. Although cortical maps of movement endpoints appear quite disorderly with respect to movement space, we show that the endpoint locations in the workspace evoked with HFLD-ICMS of two adjacent cortical points are closer together than would be expected if the organization were random. Although there were few obvious consistencies in the endpoint maps across the two monkeys tested, one notable exception was endpoints bringing the hand to the mouth, which was located at the boundary between the hand and face representation. Endpoints at the extremes of the monkey's workspace and locations above the head were largely absent. Our movement endpoints are best explained as resulting from coactivation of agonist and antagonist muscles driving the joints toward equilibrium positions determined by the length-tension relationships of the muscles. Copyright © 2014 the authors 0270-6474/14/3415722-13$15.00/0.

  10. Neuromuscular Impairments Are Associated With Impaired Head and Trunk Stability During Gait in Parkinson Fallers.

    PubMed

    Cole, Michael H; Naughton, Geraldine A; Silburn, Peter A

    2017-01-01

    Background The trunk plays a critical role in attenuating movement-related forces that threaten to challenge the body's postural control system. For people with Parkinson's disease (PD), disease progression often leads to dopamine-resistant axial symptoms, which impair trunk control and increase falls risk. Objective This prospective study aimed to evaluate the relationship between impaired trunk muscle function, segmental coordination, and future falls in people with PD. Methods Seventy-nine PD patients and 82 age-matched controls completed clinical assessments and questionnaires to establish their medical history, symptom severity, balance confidence, and falls history. Gait characteristics and trunk muscle activity were assessed using 3-dimensional motion analysis and surface electromyography. The incidence, cause, and consequence of any falls experienced over the next 12 months were recorded and indicated that 48 PD and 29 control participants fell at least once during this time. Results PD fallers had greater peak and baseline lumbar multifidus (LMF) and thoracic erector spinae (TES) activations than control fallers and nonfallers. Analysis of covariance indicated that the higher LMF activity was attributable to the stooped posture adopted by PD fallers, but TES activity was independent of medication use, symptom severity, and trunk orientation. Furthermore, greater LMF and TES baseline activity contributed to increasing lateral head, trunk, and pelvis movements in PD fallers but not nonfallers or controls. Conclusions The results provide evidence of neuromuscular deficits for PD fallers that are independent of medications, symptom severity, and posture and contribute to impaired head, trunk, and pelvis control associated with falls in this population. © The Author(s) 2016.

  11. Parkinson's disease: increased motor network activity in the absence of movement.

    PubMed

    Ko, Ji Hyun; Mure, Hideo; Tang, Chris C; Ma, Yilong; Dhawan, Vijay; Spetsieris, Phoebe; Eidelberg, David

    2013-03-06

    We used a network approach to assess systems-level abnormalities in motor activation in humans with Parkinson's disease (PD). This was done by measuring the expression of the normal movement-related activation pattern (NMRP), a previously validated activation network deployed by healthy subjects during motor performance. In this study, NMRP expression was prospectively quantified in (15)O-water PET scans from a PD patient cohort comprised of a longitudinal early-stage group (n = 12) scanned at baseline and at two or three follow-up visits two years apart, and a moderately advanced group scanned on and off treatment with either subthalamic nucleus deep brain stimulation (n = 14) or intravenous levodopa infusion (n = 14). For each subject and condition, we measured NMRP expression during both movement and rest. Resting expression of the abnormal PD-related metabolic covariance pattern was likewise determined in the same subjects. NMRP expression was abnormally elevated (p < 0.001) in PD patients scanned in the nonmovement rest state. By contrast, network activity measured during movement did not differ from normal (p = 0.34). In the longitudinal cohort, abnormal increases in resting NMRP expression were evident at the earliest clinical stages (p < 0.05), which progressed significantly over time (p = 0.003). Analogous network changes were present at baseline in the treatment cohort (p = 0.001). These abnormalities improved with subthalamic nucleus stimulation (p < 0.005) but not levodopa (p = 0.25). In both cohorts, the changes in NMRP expression that were observed did not correlate with concurrent PD-related metabolic covariance pattern measurements (p > 0.22). Thus, the resting state in PD is characterized by changes in the activity of normal as well as pathological brain networks.

  12. Protest, Performance and Politics: The Use of "Nano-Media" in Social Movement Activism in South Africa

    ERIC Educational Resources Information Center

    Dawson, Marcelle C.

    2012-01-01

    Considering the lack of coverage in the mass media of certain kinds of social movement activity, many movements make use of smaller scale, independent media to publicise their struggles. From the vantage point of social movements in South Africa, this paper addresses what Mojca Pajnik and John Downing call "nano-media". Based on…

  13. Human recognition based on head-shoulder contour extraction and BP neural network

    NASA Astrophysics Data System (ADS)

    Kong, Xiao-fang; Wang, Xiu-qin; Gu, Guohua; Chen, Qian; Qian, Wei-xian

    2014-11-01

    In practical application scenarios like video surveillance and human-computer interaction, human body movements are uncertain because the human body is a non-rigid object. Based on the fact that the head-shoulder part of human body can be less affected by the movement, and will seldom be obscured by other objects, in human detection and recognition, a head-shoulder model with its stable characteristics can be applied as a detection feature to describe the human body. In order to extract the head-shoulder contour accurately, a head-shoulder model establish method with combination of edge detection and the mean-shift algorithm in image clustering has been proposed in this paper. First, an adaptive method of mixture Gaussian background update has been used to extract targets from the video sequence. Second, edge detection has been used to extract the contour of moving objects, and the mean-shift algorithm has been combined to cluster parts of target's contour. Third, the head-shoulder model can be established, according to the width and height ratio of human head-shoulder combined with the projection histogram of the binary image, and the eigenvectors of the head-shoulder contour can be acquired. Finally, the relationship between head-shoulder contour eigenvectors and the moving objects will be formed by the training of back-propagation (BP) neural network classifier, and the human head-shoulder model can be clustered for human detection and recognition. Experiments have shown that the method combined with edge detection and mean-shift algorithm proposed in this paper can extract the complete head-shoulder contour, with low calculating complexity and high efficiency.

  14. Fundamental movement skills and physical fitness as predictors of physical activity: A 6-year follow-up study.

    PubMed

    Jaakkola, T; Yli-Piipari, S; Huotari, P; Watt, A; Liukkonen, J

    2016-01-01

    The purpose of this study was to examine the extent to which fundamental movement skills and physical fitness scores assessed in early adolescence predict self-reported physical activity assessed 6 years later. The sample comprised 333 (200 girls, 133 boys; M age = 12.41) students. The effects of previous physical activity, sex, and body mass index (BMI) were controlled in the main analyses. Adolescents' fundamental movement skills, physical fitness, self-report physical activity, and BMI were collected at baseline, and their self-report energy expenditure (metabolic equivalents: METs) and intensity of physical activity were collected using the International Physical Activity Questionnaire 6 years later. Results showed that fundamental movement skills predicted METs, light, moderate, and vigorous intensity physical activity levels, whereas fitness predicted METs, moderate, and vigorous physical activity levels. Hierarchical regression analyses also showed that after controlling for previous levels of physical activity, sex, and BMI, the size of the effect of fundamental movement skills and physical fitness on energy expenditure and physical activity intensity was moderate (R(2) change between 0.06 and 0.15), with the effect being stronger for high intensity physical activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Skill-Based and Planned Active Play Versus Free-Play Effects on Fundamental Movement Skills in Preschoolers.

    PubMed

    Roach, Lindsay; Keats, Melanie

    2018-01-01

    Fundamental movement skill interventions are important for promoting physical activity, but the optimal intervention model for preschool children remains unclear. We compared two 8-week interventions, a structured skill-station and a planned active play approach, to a free-play control condition on pre- and postintervention fundamental movement skills. We also collected data regarding program attendance and perceived enjoyment. We found a significant interaction effect between intervention type and time. A Tukey honest significant difference analysis supported a positive intervention effect showing a significant difference between both interventions and the free-play control condition. There was a significant between-group difference in group attendance such that mean attendance was higher for both the free-play and planned active play groups relative to the structured skill-based approach. There were no differences in attendance between free-play and planned active play groups, and there were no differences in enjoyment ratings between the two intervention groups. In sum, while both interventions led to improved fundamental movement skills, the active play approach offered several logistical advantages. Although these findings should be replicated, they can guide feasible and sustainable fundamental movement skill programs within day care settings.

  16. Identifying Head-Trunk and Lower Limb Contributions to Gaze Stabilization During Locomotion

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2003-01-01

    The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as - compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the shank and the transmissibility of the shock wave at heel strike (measured by the peak acceleration ratio of the head/shank) remained unchanged. Taken

  17. Activity in descending dopaminergic neurons represents but is not required for leg movements in the fruit fly Drosophila

    PubMed Central

    Tschida, Katherine; Bhandawat, Vikas

    2015-01-01

    Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output. PMID:25742959

  18. The Correlation Between Cognitive and Movement Shifting and Brain Activity in Children With ADHD.

    PubMed

    Kang, Kyoung Doo; Han, Doug Hyun; Kim, Sun Mi; Bae, Sujin; Renshaw, Perry F

    2018-05-01

    We assessed the correlation between the deficits of cognition, movement, and brain activity in children with Attention Deficit Hyperactvity Disorder (ADHD). We recruited 15 children with ADHD and 15 age- and sex-matched healthy control participants. Clinical symptoms, cognitive shifting, movement shifting, and brain activity were assessed using the Korean ADHD Rating Scale, the Wisconsin Card Sorting Test (WCST), the 7- and 14-ring drill test with hop jumps (7 HJ and 14 HJ), and 3.0 Tesla functional magnetic resonance imaging scanner, respectively. ADHD children showed an increased distance traveled and decreased speed on the 14 HJ task. In response to the WCST task, ADHD children showed decreased activation within right gyrus. Total distance on the 14 HJ task was negatively correlated with the mean β value of Cluster 2 in ADHD children. These results suggested that children with ADHD showed difficulty with attention shifting as well as with movement shifting.

  19. Student Activities Programs: Their Status and the Impact of the Reform Movement.

    ERIC Educational Resources Information Center

    Vornberg, James A.

    Research studies have consistently indicated that participation in school activities benefits both students and schools. Since the school reform movement began in 1983, the importance of school activities and student time commitment to such programs are increasingly being scrutinized. This paper summarizes a study to determine: (1) the current…

  20. Environmental Literacy of Youth Movement Members--Is Environmentalism a Component of Their Social Activism?

    ERIC Educational Resources Information Center

    Goldman, Daphne; Pe'er, Sara; Yavetz, Bela

    2017-01-01

    Youth-movements in Israel are non-formal organizations that educate for social and political involvement and provide a broad platform for youth involvement in the community. This study explored the question: does the social activism of adolescents who both elect for membership in youth movements and a leadership role of instructing younger members…

  1. Oscillatory motor network activity during rest and movement: an fNIRS study

    PubMed Central

    Bajaj, Sahil; Drake, Daniel; Butler, Andrew J.; Dhamala, Mukesh

    2014-01-01

    Coherent network oscillations (<0.1 Hz) linking distributed brain regions are commonly observed in the brain during both rest and task conditions. What oscillatory network exists and how network oscillations change in connectivity strength, frequency and direction when going from rest to explicit task are topics of recent inquiry. Here, we study network oscillations within the sensorimotor regions of able-bodied individuals using hemodynamic activity as measured by functional near-infrared spectroscopy (fNIRS). Using spectral interdependency methods, we examined how the supplementary motor area (SMA), the left premotor cortex (LPMC) and the left primary motor cortex (LM1) are bound as a network during extended resting state (RS) and between-tasks resting state (btRS), and how the activity of the network changes as participants execute left, right, and bilateral hand (LH, RH, and BH) finger movements. We found: (i) power, coherence and Granger causality (GC) spectra had significant peaks within the frequency band (0.01–0.04 Hz) during RS whereas the peaks shifted to a bit higher frequency range (0.04–0.08 Hz) during btRS and finger movement tasks, (ii) there was significant bidirectional connectivity between all the nodes during RS and unidirectional connectivity from the LM1 to SMA and LM1 to LPMC during btRS, and (iii) the connections from SMA to LM1 and from LPMC to LM1 were significantly modulated in LH, RH, and BH finger movements relative to btRS. The unidirectional connectivity from SMA to LM1 just before the actual task changed to the bidirectional connectivity during LH and BH finger movement. The uni-directionality could be associated with movement suppression and the bi-directionality with preparation, sensorimotor update and controlled execution. These results underscore that fNIRS is an effective tool for monitoring spectral signatures of brain activity, which may serve as an important precursor before monitoring the recovery progress following

  2. Eye movements of patients with tunnel vision while walking.

    PubMed

    Vargas-Martín, Fernando; Peli, Eli

    2006-12-01

    To determine how severe peripheral field loss (PFL) affects the dispersion of eye movements relative to the head in patients walking in real environments. This information should help to define the visual field and clearance requirements for head-mounted mobility visual aids. Eye positions relative to the head were recorded in five patients with retinitis pigmentosa who had less than 15 degrees of visual field and in three normally sighted people, each walking in varied environments for more than 30 minutes. The eye-position recorder was made portable by modifying a head-mounted system (ISCAN, Burlington, MA). Custom data processing was implemented, to reject unreliable data. Sample standard deviations of eye position (dispersion) were compared across subject groups and environments. The patients with PFL exhibited narrower horizontal eye-position dispersions than did the normally sighted subjects (9.4 degrees vs. 14.2 degrees , P < 0.0001), and the vertical dispersions of patients with PFL were smaller when they were walking indoors than when walking outdoors (8.2 degrees vs. 10.3 degrees ; P = 0.048). When walking, the patients with PFL did not increase their scanning eye movements to compensate for missing peripheral vision information. Their horizontal scanning was actually reduced, possibly because of lack of peripheral stimulation. The results suggest that a field of view as wide as 40 degrees may be needed for closed (immersive) head-mounted mobility aids, whereas a much narrower display, perhaps as narrow as 20 degrees , may be sufficient with an open design.

  3. Delayed response and biosonar perception explain movement coordination in trawling bats.

    PubMed

    Giuggioli, Luca; McKetterick, Thomas J; Holderied, Marc

    2015-03-01

    Animal coordinated movement interactions are commonly explained by assuming unspecified social forces of attraction, repulsion and alignment with parameters drawn from observed movement data. Here we propose and test a biologically realistic and quantifiable biosonar movement interaction mechanism for echolocating bats based on spatial perceptual bias, i.e. actual sound field, a reaction delay, and observed motor constraints in speed and acceleration. We found that foraging pairs of bats flying over a water surface swapped leader-follower roles and performed chases or coordinated manoeuvres by copying the heading a nearby individual has had up to 500 ms earlier. Our proposed mechanism based on the interplay between sensory-motor constraints and delayed alignment was able to recreate the observed spatial actor-reactor patterns. Remarkably, when we varied model parameters (response delay, hearing threshold and echolocation directionality) beyond those observed in nature, the spatio-temporal interaction patterns created by the model only recreated the observed interactions, i.e. chases, and best matched the observed spatial patterns for just those response delays, hearing thresholds and echolocation directionalities found to be used by bats. This supports the validity of our sensory ecology approach of movement coordination, where interacting bats localise each other by active echolocation rather than eavesdropping.

  4. Delayed Response and Biosonar Perception Explain Movement Coordination in Trawling Bats

    PubMed Central

    Giuggioli, Luca; McKetterick, Thomas J.; Holderied, Marc

    2015-01-01

    Animal coordinated movement interactions are commonly explained by assuming unspecified social forces of attraction, repulsion and alignment with parameters drawn from observed movement data. Here we propose and test a biologically realistic and quantifiable biosonar movement interaction mechanism for echolocating bats based on spatial perceptual bias, i.e. actual sound field, a reaction delay, and observed motor constraints in speed and acceleration. We found that foraging pairs of bats flying over a water surface swapped leader-follower roles and performed chases or coordinated manoeuvres by copying the heading a nearby individual has had up to 500 ms earlier. Our proposed mechanism based on the interplay between sensory-motor constraints and delayed alignment was able to recreate the observed spatial actor-reactor patterns. Remarkably, when we varied model parameters (response delay, hearing threshold and echolocation directionality) beyond those observed in nature, the spatio-temporal interaction patterns created by the model only recreated the observed interactions, i.e. chases, and best matched the observed spatial patterns for just those response delays, hearing thresholds and echolocation directionalities found to be used by bats. This supports the validity of our sensory ecology approach of movement coordination, where interacting bats localise each other by active echolocation rather than eavesdropping. PMID:25811627

  5. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion

    PubMed Central

    Smith, Ross T.; Hunter, Estin V.; Davis, Miles G.; Sterling, Michele; Moseley, G. Lorimer

    2017-01-01

    Background Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can’t be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. Method In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%–200%—the Motor Offset Visual Illusion (MoOVi)—thus simulating more or less movement than that actually occurring. At 50o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360o immersive virtual reality with and without three-dimensional properties, was also investigated. Results Perception of head movement was dependent on visual-kinaesthetic feedback (p = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Discussion Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here

  6. Using visuo-kinetic virtual reality to induce illusory spinal movement: the MoOVi Illusion.

    PubMed

    Harvie, Daniel S; Smith, Ross T; Hunter, Estin V; Davis, Miles G; Sterling, Michele; Moseley, G Lorimer

    2017-01-01

    Illusions that alter perception of the body provide novel opportunities to target brain-based contributions to problems such as persistent pain. One example of this, mirror therapy, uses vision to augment perceived movement of a painful limb to treat pain. Since mirrors can't be used to induce augmented neck or other spinal movement, we aimed to test whether such an illusion could be achieved using virtual reality, in advance of testing its potential therapeutic benefit. We hypothesised that perceived head rotation would depend on visually suggested movement. In a within-subjects repeated measures experiment, 24 healthy volunteers performed neck movements to 50 o of rotation, while a virtual reality system delivered corresponding visual feedback that was offset by a factor of 50%-200%-the Motor Offset Visual Illusion (MoOVi)-thus simulating more or less movement than that actually occurring. At 50 o of real-world head rotation, participants pointed in the direction that they perceived they were facing. The discrepancy between actual and perceived direction was measured and compared between conditions. The impact of including multisensory (auditory and visual) feedback, the presence of a virtual body reference, and the use of 360 o immersive virtual reality with and without three-dimensional properties, was also investigated. Perception of head movement was dependent on visual-kinaesthetic feedback ( p  = 0.001, partial eta squared = 0.17). That is, altered visual feedback caused a kinaesthetic drift in the direction of the visually suggested movement. The magnitude of the drift was not moderated by secondary variables such as the addition of illusory auditory feedback, the presence of a virtual body reference, or three-dimensionality of the scene. Virtual reality can be used to augment perceived movement and body position, such that one can perform a small movement, yet perceive a large one. The MoOVi technique tested here has clear potential for assessment and

  7. Ocular Reflex Phase During Off-Vertical Axis Rotation In Humans Is Modified By Head-On-Trunk Position

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard

    2005-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.

  8. Movement.

    ERIC Educational Resources Information Center

    Roberts, Lynda S.

    This document summarizes 20 articles and books which stress the importance of movement in the overall development of the human species. Each summary ranges in length from 100 to 200 words and often includes direct quotations. A wide range of movement activities suitable for people of all ages (from infants to adults) are discussed. Many summaries…

  9. Integrating animal movement with habitat suitability for estimating dynamic landscape connectivity

    USGS Publications Warehouse

    van Toor, Mariëlle L.; Kranstauber, Bart; Newman, Scott H.; Prosser, Diann J.; Takekawa, John Y.; Technitis, Georgios; Weibel, Robert; Wikelski, Martin; Safi, Kamran

    2018-01-01

    Context High-resolution animal movement data are becoming increasingly available, yet having a multitude of empirical trajectories alone does not allow us to easily predict animal movement. To answer ecological and evolutionary questions at a population level, quantitative estimates of a species’ potential to link patches or populations are of importance. Objectives We introduce an approach that combines movement-informed simulated trajectories with an environment-informed estimate of the trajectories’ plausibility to derive connectivity. Using the example of bar-headed geese we estimated migratory connectivity at a landscape level throughout the annual cycle in their native range. Methods We used tracking data of bar-headed geese to develop a multi-state movement model and to estimate temporally explicit habitat suitability within the species’ range. We simulated migratory movements between range fragments, and calculated a measure we called route viability. The results are compared to expectations derived from published literature. Results Simulated migrations matched empirical trajectories in key characteristics such as stopover duration. The viability of the simulated trajectories was similar to that of the empirical trajectories. We found that, overall, the migratory connectivity was higher within the breeding than in wintering areas, corroborating previous findings for this species. Conclusions We show how empirical tracking data and environmental information can be fused for meaningful predictions of animal movements throughout the year and even outside the spatial range of the available data. Beyond predicting migratory connectivity, our framework will prove useful for modelling ecological processes facilitated by animal movement, such as seed dispersal or disease ecology.

  10. Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense.

    PubMed

    Zafar, H; Alghadir, A H; Iqbal, Z A

    2017-12-01

    To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn't affect head-neck relocation error in normal healthy subjects.

  11. Fundamental Movement Skills and Physical Activity among Children with and without Cerebral Palsy

    ERIC Educational Resources Information Center

    Capio, Catherine M.; Sit, Cindy H. P.; Abernethy, Bruce; Masters, Rich S. W.

    2012-01-01

    Fundamental movement skills (FMS) proficiency is believed to influence children's physical activity (PA), with those more proficient tending to be more active. Children with cerebral palsy (CP), who represent the largest diagnostic group treated in pediatric rehabilitation, have been found to be less active than typically developing children. This…

  12. Fundamental movement skills in relation to weekday and weekend physical activity in preschool children.

    PubMed

    Foweather, Lawrence; Knowles, Zoe; Ridgers, Nicola D; O'Dwyer, Mareesa V; Foulkes, Jonathan D; Stratton, Gareth

    2015-11-01

    To examine associations between fundamental movement skills and weekday and weekend physical activity among preschool children living in deprived communities. Cross-sectional observation study. Six locomotor skills and 6 object-control skills were video-assessed using The Children's Activity and Movement in Preschool Study Motor Skills Protocol. Physical activity was measured via hip-mounted accelerometry. A total of 99 children (53% boys) aged 3-5 years (M 4.6, SD 0.5) completed all assessments. Multilevel mixed regression models were used to examine associations between fundamental movement skills and physical activity. Models were adjusted for clustering, age, sex, standardised body mass index and accelerometer wear time. Boys were more active than girls and had higher object-control skill competency. Total skill score was positively associated with weekend moderate-to-vigorous physical activity (p = 0.034) but not weekday physical activity categories (p > 0.05). When subdomains of skills were examined, object-control skills was positively associated with light physical activity on weekdays (p = 0.008) and with light (p = 0.033), moderate-to-vigorous (p = 0.028) and light- and moderate-to-vigorous (p = 0.008) physical activity at weekends. Locomotor skill competency was positively associated with moderate-to-vigorous physical activity on weekdays (p = 0.016) and light physical activity during the weekend (p = 0.035). The findings suggest that developing competence in both locomotor and object-control skills may be an important element in promoting an active lifestyle in young children during weekdays and at weekends. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Raft-dependent endocytic movement and intracellular cluster formation during T cell activation triggered by concanavalin A.

    PubMed

    Yabuuchi, Satomi; Endo, Satoshi; Baek, KeangOk; Hoshino, Kunihide; Tsujino, Yoshio; Vestergaard, Mun'delanji C; Takagi, Masahiro

    2017-12-01

    Certain food ingredients can stimulate the human immune system. A lectin, concanavalin A (ConA), from Canavalia ensiformis (jack bean) is one of the most well-known food-derived immunostimulants and mediates activation of cell-mediated immunity through T cell proliferation. Generally, T cell activation is known to be triggered by the interaction between T cells and antigen-presenting cells (APCs) via a juxtacrine (contact-dependent) signaling pathway. The mechanism has been well characterized and is referred to as formation of the immunological synapse (IS). We were interested in the mechanism behind the T cell activation by food-derived ConA which might be different from that of T cell activation by APCs. The purpose of this study was to characterize T cell activation by ConA with regard to (i) movement of raft domain, (ii) endocytic vesicular transport, (iii) the cytoskeleton (actin and microtubules), and (iv) cholesterol composition. We found that raft-dependent endocytic movement was important for T cell activation by ConA and this movement was dependent on actin, microtubules, and cholesterol. The T cell signaling mechanism triggered by ConA can be defined as endocrine signaling which is distinct from the activation process triggered by interaction between T cells and APCs by juxtacrine signaling. Therefore, we hypothesized that T cell activation by ConA includes both two-dimensional superficial raft movement on the membrane surface along actin filaments and three-dimensional endocytic movement toward the inside of the cell along microtubules. These findings are important for developing new methods for immune stimulation and cancer therapy based on the function of ConA. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Evaluation of Ultrasound-Based Sensor to Monitor Respiratory and Non-Respiratory Movement and Timing in Infants

    PubMed Central

    Heldt, Gregory P.; Ward, Raymond J.

    2016-01-01

    Goal To describe and validate a non-contacting sensor that used reflected ultrasound to separately monitor respiratory, non-respiratory, and caretaker movements of infants. Methods An In-Phase and Quadrature (I&Q) detection scheme provided adequate bandwidth, in conjunction with post-detection filtering, to separate the 3 types of movement. The respiratory output was validated by comparing it to the electrical activity of the diaphragm (Edi) obtained from an infant ventilator in 11 infants. The non-respiratory movement output was compared to movement detected by miniature accelerometers attached to the wrists, ankles, and heads of 7 additional infants. Caretaker movement was compared to visual observations annotated in the recordings. Results The respiratory rate determined by the sensor was equivalent to that from the Edi signal. The sensor could detect the onset of inspiration significantly earlier than the Edi signal (23+/−69ms). Non-respiratory movement was identified with an agreement of 0.9 with the accelerometers. It potentially interfered with the respiratory output an average of 4.7+/− 4.5% and 14.9+/1 15% of the time in infants not requiring or on ventilatory support, respectively. Caretaker movements were identified with 98% sensitivity and specificity. The sensor outputs were independent of body coverings or position. Conclusion This single, non-contacting sensor can independently quantify these three types of movement. Significance It is feasible to use the sensor as trigger for synchronizing mechanical ventilators to spontaneous breathing, to quantify overall movement, to determine sleep state, to detect seizures, and to document the amount and effects of caretaker activity in infants. PMID:26276983

  15. An Activation Likelihood Estimation Meta-Analysis Study of Simple Motor Movements in Older and Young Adults

    PubMed Central

    Turesky, Ted K.; Turkeltaub, Peter E.; Eden, Guinevere F.

    2016-01-01

    The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum. Their ALE map differed from that of the young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex, and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders. PMID:27799910

  16. Spatial Coding of Eye Movements Relative to Perceived Orientations During Roll Tilt with Different Gravitoinertial Loads

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles

    2013-01-01

    This purpose of this study was to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness from six subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. The trajectories of saccades along perceived horizontal orientations tended to deviate in the same direction as the head tilt, while the deviations in gaze trajectories along the perceived vertical orientations deviated in the opposite direction relative to the head tilt. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. This coupling of horizontal vergence with vertical gaze is in a consistent direction with the vertical slant of the horopter. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements.

  17. The effects of elevated endogenous GABA levels on movement-related network oscillations.

    PubMed

    Muthukumaraswamy, S D; Myers, J F M; Wilson, S J; Nutt, D J; Lingford-Hughes, A; Singh, K D; Hamandi, K

    2013-02-01

    The EEG/MEG signal is generated primarily by the summation of the post-synaptic potentials of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons and cortical oscillations are thought to be dependent on the balance of excitation and inhibition between these cell types. To investigate the dependence of movement-related cortical oscillations on excitation-inhibition balance, we pharmacologically manipulated the GABA system using tiagabine, which blocks GABA Transporter 1(GAT-1), the GABA uptake transporter and increases endogenous GABA activity. In a blinded, placebo-controlled, crossover design, in 15 healthy participants we administered either 15mg of tiagabine or a placebo. We recorded whole-head magnetoencephalograms, while the participants performed a movement task, prior to, one hour post, three hour post and five hour post tiagabine ingestion. Using time-frequency analysis of beamformer source reconstructions, we quantified the baseline level of beta activity (15-30Hz), the post-movement beta rebound (PMBR), beta event-related desynchronisation (beta-ERD) and movement-related gamma synchronisation (MRGS) (60-90Hz). Our results demonstrated that tiagabine, and hence elevated endogenous GABA levels causes, an elevation of baseline beta power, enhanced beta-ERD and reduced PMBR, but no modulation of MRGS. Comparing our results to recent literature (Hall et al., 2011) we suggest that beta-ERD may be a GABAA receptor mediated process while PMBR may be GABAB receptor mediated. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder.

    PubMed

    Wu, Ping; Yu, Huan; Peng, Shichun; Dauvilliers, Yves; Wang, Jian; Ge, Jingjie; Zhang, Huiwei; Eidelberg, David; Ma, Yilong; Zuo, Chuantao

    2014-12-01

    Rapid eye movement sleep behaviour disorder has been evaluated using Parkinson's disease-related metabolic network. It is unknown whether this disorder is itself associated with a unique metabolic network. 18F-fluorodeoxyglucose positron emission tomography was performed in 21 patients (age 65.0±5.6 years) with idiopathic rapid eye movement sleep behaviour disorder and 21 age/gender-matched healthy control subjects (age 62.5±7.5 years) to identify a disease-related pattern and examine its evolution in 21 hemi-parkinsonian patients (age 62.6±5.0 years) and 16 moderate parkinsonian patients (age 56.9±12.2 years). We identified a rapid eye movement sleep behaviour disorder-related metabolic network characterized by increased activity in pons, thalamus, medial frontal and sensorimotor areas, hippocampus, supramarginal and inferior temporal gyri, and posterior cerebellum, with decreased activity in occipital and superior temporal regions. Compared to the healthy control subjects, network expressions were elevated (P<0.0001) in the patients with this disorder and in the parkinsonian cohorts but decreased with disease progression. Parkinson's disease-related network activity was also elevated (P<0.0001) in the patients with rapid eye movement sleep behaviour disorder but lower than in the hemi-parkinsonian cohort. Abnormal metabolic networks may provide markers of idiopathic rapid eye movement sleep behaviour disorder to identify those at higher risk to develop neurodegenerative parkinsonism. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Turnip vein clearing virus movement protein nuclear activity: Do Tobamovirus movement proteins play a role in immune response suppression?

    PubMed

    Levy, Amit

    2015-01-01

    Plant viruses' cell-to-cell movement requires the function of virally encoded movement proteins (MPs). The Tobamovirus, Tobacco mosaic virus (TMV) has served as the model virus to study the activities of single MPs. However, since TMV does not infect the model plant Arabidopsis thaliana I have used a related Tobamovirus, Turnip vein-clearing virus (TVCV). I recently showed that, despite belonging to the same genus, the behavior of the 2 viruses MPs differ significantly during infection. Most notably, MP(TVCV), but not MP(TMV), targets the nucleus and induces the formation of F actin-containing filaments that associate with chromatin. Mutational analyses showed that nuclear localization of MP(TVCV) was necessary for TVCV local and systemic infection in both Nicotiana benthamiana and Arabidopsis. In this addendum, I propose possible targets for the MP(TVCV) nuclear activity, and suggest viewing MPs as viral effector-like proteins, playing a role in the inhibition of plant defense.

  20. Chin plate with a detachable C-tube head serves for both osteotomy fixation and orthodontic anchorage.

    PubMed

    Seo, Kyung-Won; Nahm, Kyung-Yen; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2013-07-01

    This article reports the dual function of a double-Y miniplate with a detachable C-tube head (C-chin plate; Jin Biomed Co., Bucheon, Korea) used to fixate an anterior segmental osteotomy and provide skeletal anchorage during orthodontic tooth movement. Cases were selected for this study from patients who underwent anterior segmental osteotomy under local anesthesia. A detachable C-tube head portion was combined with a double-Y chin plate. The double-Y chin plates were fixated between the osteotomy segments and the mandibular base with screws in a conventional way. The C-tube head portion exited the tissue near the mucogingival junction. Biocreative Chin Plates were placed on the anterior segmental osteotomy sites. The device allowed 3 points of fixation: 1, minor postosteotomy vertical adjustment of the segment during healing; 2, minor shift of the midline during healing; and 3, to serve as temporary skeletal anchorage device during the post-anterior segmental osteotomy orthodontic treatment. When tooth movement goals are accomplished, the C-tube head of the chin plate can be easily detached from the fixation miniplate by twisting the head using a Weingart plier under local anesthesia. This dual-purpose device spares the patient from the need for 2 separate installations for stabilization of osteotomy segments. The dual-purpose double-Y miniplate combined with a C-tube head (Biocreative Chin Plate) provided versatile application of 3 points of post-osteotomy fixation and of temporary skeletal anchorage for orthodontic tooth movement.

  1. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    PubMed

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-08-31

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest.

  2. Live Speech Driven Head-and-Eye Motion Generators.

    PubMed

    Le, Binh H; Ma, Xiaohan; Deng, Zhigang

    2012-11-01

    This paper describes a fully automated framework to generate realistic head motion, eye gaze, and eyelid motion simultaneously based on live (or recorded) speech input. Its central idea is to learn separate yet interrelated statistical models for each component (head motion, gaze, or eyelid motion) from a prerecorded facial motion data set: 1) Gaussian Mixture Models and gradient descent optimization algorithm are employed to generate head motion from speech features; 2) Nonlinear Dynamic Canonical Correlation Analysis model is used to synthesize eye gaze from head motion and speech features, and 3) nonnegative linear regression is used to model voluntary eye lid motion and log-normal distribution is used to describe involuntary eye blinks. Several user studies are conducted to evaluate the effectiveness of the proposed speech-driven head and eye motion generator using the well-established paired comparison methodology. Our evaluation results clearly show that this approach can significantly outperform the state-of-the-art head and eye motion generation algorithms. In addition, a novel mocap+video hybrid data acquisition technique is introduced to record high-fidelity head movement, eye gaze, and eyelid motion simultaneously.

  3. Gaze control for an active camera system by modeling human pursuit eye movements

    NASA Astrophysics Data System (ADS)

    Toelg, Sebastian

    1992-11-01

    The ability to stabilize the image of one moving object in the presence of others by active movements of the visual sensor is an essential task for biological systems, as well as for autonomous mobile robots. An algorithm is presented that evaluates the necessary movements from acquired visual data and controls an active camera system (ACS) in a feedback loop. No a priori assumptions about the visual scene and objects are needed. The algorithm is based on functional models of human pursuit eye movements and is to a large extent influenced by structural principles of neural information processing. An intrinsic object definition based on the homogeneity of the optical flow field of relevant objects, i.e., moving mainly fronto- parallel, is used. Velocity and spatial information are processed in separate pathways, resulting in either smooth or saccadic sensor movements. The program generates a dynamic shape model of the moving object and focuses its attention to regions where the object is expected. The system proved to behave in a stable manner under real-time conditions in complex natural environments and manages general object motion. In addition it exhibits several interesting abilities well-known from psychophysics like: catch-up saccades, grouping due to coherent motion, and optokinetic nystagmus.

  4. Head formation: OTX2 regulates Dkk1 and Lhx1 activity in the anterior mesendoderm.

    PubMed

    Ip, Chi Kin; Fossat, Nicolas; Jones, Vanessa; Lamonerie, Thomas; Tam, Patrick P L

    2014-10-01

    The Otx2 gene encodes a paired-type homeobox transcription factor that is essential for the induction and the patterning of the anterior structures in the mouse embryo. Otx2 knockout embryos fail to form a head. Whereas previous studies have shown that Otx2 is required in the anterior visceral endoderm and the anterior neuroectoderm for head formation, its role in the anterior mesendoderm (AME) has not been assessed specifically. Here, we show that tissue-specific ablation of Otx2 in the AME phenocopies the truncation of the embryonic head of the Otx2 null mutant. Expression of Dkk1 and Lhx1, two genes that are also essential for head formation, is disrupted in the AME of the conditional Otx2-deficient embryos. Consistent with the fact that Dkk1 is a direct target of OTX2, we showed that OTX2 can interact with the H1 regulatory region of Dkk1 to activate its expression. Cross-species comparative analysis, RT-qPCR, ChIP-qPCR and luciferase assays have revealed two conserved regions in the Lhx1 locus to which OTX2 can bind to activate Lhx1 expression. Abnormal development of the embryonic head in Otx2;Lhx1 and Otx2;Dkk1 compound mutant embryos highlights the functional intersection of Otx2, Dkk1 and Lhx1 in the AME for head formation. © 2014. Published by The Company of Biologists Ltd.

  5. Robust human machine interface based on head movements applied to assistive robotics.

    PubMed

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair.

  6. Robust Human Machine Interface Based on Head Movements Applied to Assistive Robotics

    PubMed Central

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair. PMID:24453877

  7. Fear of Movement and Low Self-Efficacy Are Important Barriers in Physical Activity after Renal Transplantation.

    PubMed

    Zelle, Dorien M; Corpeleijn, Eva; Klaassen, Gerald; Schutte, Elise; Navis, Gerjan; Bakker, Stephan J L

    2016-01-01

    Physical activity (PA) and exercise are commonly used as preventive measures for cardiovascular disease in the general population, and could be effective in the management of post-transplantation cardiovascular risk. PA levels are low after renal transplantation and very few renal transplant recipients (RTR) meet the PA guidelines. Identification of barriers to regular PA is important to identify targets for intervention to improve PA levels after renal transplantation. We investigated fear of movement and physical self-efficacy as barriers to PA in RTR. RTR were investigated between 2001-2003. The Tampa Score of Kinesiophobia-Dutch Version (TSK-11) was used to assess fear of movement. Physical self-efficacy was measured with the LIVAS-scale. PA was assessed using validated questionnaires (Tecumseh Occupational Activity Questionnaire and the Minnesota Leisure Time Physical Activity Questionnaire). A total of 487 RTR (age 51±12 years, 55% men) were studied. Median score [interquartile range] on TSK-11 was 22 [17-26]. Low physical self-efficacy (Exp B:0.41[0.31-0.54], p<0.001) and history of myocardial infarction, transient ischemic attack and cerebrovascular accident (Exp B:1.30[1.03-1.63],p = 0.03) were independent determinants for fear of movement. Fear of movement was associated with lower daily PA, occupational, sports and leisure time PA. Mediation-analysis showed that a large part (73%) of the effect of fear of movement on PA was explained by low physical self-efficacy. This study was the first to examine fear of movement and self-efficacy in relation to PA in RTR. Fear of movement was associated with a low PA level, and the larger part of this relation was mediated by low physical self-efficacy. Both fear of movement and physical self-efficacy level are important targets for intervention during rehabilitation after renal transplantation.

  8. Evaluation of lamprey larvicides in the Big Garlic River and Saux Head Lake

    USGS Publications Warehouse

    Manion, Patrick J.

    1969-01-01

    Bayluscide (5,2'-dichloro-4'-nitrosalicylanilide) and TFM (3-trifluoromethyl-4-nitrophenol) were evaluated as selective larvicides for control of the sea lamprey, Petromyzon marinus, in the Big Garlic River and Saux Head Lake in Marquette County, Michigan. Population estimates and movement of ammocetes were determined from the recapture of marked ammocetes released before chemical treatment. In 1966 the estimated population of 3136 ammocetes off the stream mouth in Saux Head Lake was reduced 89% by treatment with granular Bayluscide; this percentage was supported by a population estimate of 120 ammocetes in 1967, an indicated reduction of 96% from 1966. Post-marking movement of ammocetes was greater upstream than downstream.

  9. Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense

    PubMed Central

    Zafar, Hamayun; Alghadir, Ahmad H.; Iqbal, Zaheen A.

    2017-01-01

    Objectives: To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. Methods: 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Results: Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. Conclusions: To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn’t affect head-neck relocation error in normal healthy subjects. PMID:29199196

  10. Research Activities at Fermilab for Big Data Movement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W

    2013-01-01

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  11. Altered sensory-motor control of the head as an etiological factor in space-motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1989-01-01

    Mechanical unloading during head movements in weightlessness may be an etiological factor in space-motion sickness. We simulated altered head loading on Earth without affecting vestibular stimulation by having subjects wear a weighted helmet. Eight subjects were exposed to constant velocity rotation about a vertical axis with direction reversals every 60 sec. for eight reversals with the head loaded and eight with the head unloaded. The severity of motion sickness elicited was significantly higher when the head was loaded. This suggests that altered sensory-motor control of the head is also an etiological factor in space-motion sickness.

  12. Stereotypic movement disorders.

    PubMed

    Singer, Harvey S

    2011-01-01

    Stereotypic movements are repetitive, rhythmic, fixed, patterned in form, amplitude, and localization, but purposeless (e.g., hand shaking, waving, body rocking, head nodding). They are commonly seen in children; both in normal children (primary stereotypy) and in individuals with additional behavioral or neurological signs and symptoms (secondary stereotypy). They should be differentiated from compulsions (OCD), tics (tic disorders), trichotillomania, skin picking disorder, or the direct physiological effect of a substance. There is increasing evidence to support a neurobiological mechanism. Response to behavioral and pharmacological therapies is variable. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Why Do We Move Our Head to Look at an Object in Our Peripheral Region? Lateral Viewing Interferes with Attentive Search

    PubMed Central

    Nakashima, Ryoichi; Shioiri, Satoshi

    2014-01-01

    Why do we frequently fixate an object of interest presented peripherally by moving our head as well as our eyes, even when we are capable of fixating the object with an eye movement alone (lateral viewing)? Studies of eye-head coordination for gaze shifts have suggested that the degree of eye-head coupling could be determined by an unconscious weighing of the motor costs and benefits of executing a head movement. The present study investigated visual perceptual effects of head direction as an additional factor impacting on a cost-benefit organization of eye-head control. Three experiments using visual search tasks were conducted, manipulating eye direction relative to head orientation (front or lateral viewing). Results show that lateral viewing increased the time required to detect a target in a search for the letter T among letter L distractors, a serial attentive search task, but not in a search for T among letter O distractors, a parallel preattentive search task (Experiment 1). The interference could not be attributed to either a deleterious effect of lateral gaze on the accuracy of saccadic eye movements, nor to potentially problematic optical effects of binocular lateral viewing, because effect of head directions was obtained under conditions in which the task was accomplished without saccades (Experiment 2), and during monocular viewing (Experiment 3). These results suggest that a difference between the head and eye directions interferes with visual processing, and that the interference can be explained by the modulation of attention by the relative positions of the eyes and head (or head direction). PMID:24647634

  14. Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements.

    PubMed

    Wang, W; Degenhart, A D; Collinger, J L; Vinjamuri, R; Sudre, G P; Adelson, P D; Holder, D L; Leuthardt, E C; Moran, D W; Boninger, M L; Schwartz, A B; Crammond, D J; Tyler-Kabara, E C; Weber, D J

    2009-01-01

    In this study human motor cortical activity was recorded with a customized micro-ECoG grid during individual finger movements. The quality of the recorded neural signals was characterized in the frequency domain from three different perspectives: (1) coherence between neural signals recorded from different electrodes, (2) modulation of neural signals by finger movement, and (3) accuracy of finger movement decoding. It was found that, for the high frequency band (60-120 Hz), coherence between neighboring micro-ECoG electrodes was 0.3. In addition, the high frequency band showed significant modulation by finger movement both temporally and spatially, and a classification accuracy of 73% (chance level: 20%) was achieved for individual finger movement using neural signals recorded from the micro-ECoG grid. These results suggest that the micro-ECoG grid presented here offers sufficient spatial and temporal resolution for the development of minimally-invasive brain-computer interface applications.

  15. Less head motion during MRI under task than resting-state conditions.

    PubMed

    Huijbers, Willem; Van Dijk, Koene R A; Boenniger, Meta M; Stirnberg, Rüdiger; Breteler, Monique M B

    2017-02-15

    Head motion reduces data quality of neuroimaging data. In three functional magnetic resonance imaging (MRI) experiments we demonstrate that people make less head movements under task than resting-state conditions. In Experiment 1, we observed less head motion during a memory encoding task than during the resting-state condition. In Experiment 2, using publicly shared data from the UCLA Consortium for Neuropsychiatric Phenomics LA5c Study, we again found less head motion during several active task conditions than during a resting-state condition, although some task conditions also showed comparable motion. In the healthy controls, we found more head motion in men than in women and more motion with increasing age. When comparing clinical groups, we found that patients with a clinical diagnosis of bipolar disorder, or schizophrenia, move more compared to healthy controls or patients with ADHD. Both these experiments had a fixed acquisition order across participants, and we could not rule out that a first or last scan during a session might be particularly prone to more head motion. Therefore, we conducted Experiment 3, in which we collected several task and resting-state fMRI runs with an acquisition order counter-balanced. The results of Experiment 3 show again less head motion during several task conditions than during rest. Together these experiments demonstrate that small head motions occur during MRI even with careful instruction to remain still and fixation with foam pillows, but that head motion is lower when participants are engaged in a cognitive task. These finding may inform the choice of functional runs when studying difficult-to-scan populations, such as children or certain patient populations. Our findings also indicate that differences in head motion complicate direct comparisons of measures of functional neuronal networks between task and resting-state fMRI because of potential differences in data quality. In practice, a task to reduce head motion

  16. The Video Head Impulse Test (vHIT) of Semicircular Canal Function - Age-Dependent Normative Values of VOR Gain in Healthy Subjects.

    PubMed

    McGarvie, Leigh A; MacDougall, Hamish G; Halmagyi, G Michael; Burgess, Ann M; Weber, Konrad P; Curthoys, Ian S

    2015-01-01

    The video Head Impulse Test (vHIT) is now widely used to test the function of each of the six semicircular canals individually by measuring the eye rotation response to an abrupt head rotation in the plane of the canal. The main measure of canal adequacy is the ratio of the eye movement response to the head movement stimulus, i.e., the gain of the vestibulo-ocular reflex (VOR). However, there is a need for normative data about how VOR gain is affected by age and also by head velocity, to allow the response of any particular patient to be compared to the responses of healthy subjects in their age range. In this study, we determined for all six semicircular canals, normative values of VOR gain, for each canal across a range of head velocities, for healthy subjects in each decade of life. The VOR gain was measured for all canals across a range of head velocities for at least 10 healthy subjects in decade age bands: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89. The compensatory eye movement response to a small, unpredictable, abrupt head rotation (head impulse) was measured by the ICS impulse prototype system. The same operator delivered every impulse to every subject. Vestibulo-ocular reflex gain decreased at high head velocities, but was largely unaffected by age into the 80- to 89-year age group. There were some small but systematic differences between the two directions of head rotation, which appear to be largely due to the fact that in this study only the right eye was measured. The results are considered in relation to recent evidence about the effect of age on VOR performance. These normative values allow the results of any particular patient to be compared to the values of healthy people in their age range and so allow, for example, detection of whether a patient has a bilateral vestibular loss. VOR gain, as measured directly by the eye movement response to head rotation, seems largely unaffected by aging.

  17. [Vascularization of the head and neck during development].

    PubMed

    Detrait, E; Etchevers, H C

    2005-06-01

    One of the earliest priorities of the embryonic vascular system is to ensure the metabolic needs of the head. This review covers some of the principles that govern the cellular assembly and localization of blood vessels in the head. In order to understand the development and organization of the cephalic vascular tree, one needs to recall the morphogenetic movements underlying vertebrate head formation and giving rise to the constituent cells of the vascular system. Some of the major signaling molecules involved in vascular development are discussed, including the angiopoietins, the endothelins, the FGFs, the Notch receptors, the PDGFs, Sonic hedgehog, the TGF family and the VEGFs, in order to underline similarities between embryonic and postnatal vascular development, even in the context of increasingly divergent form.

  18. Destabilization of Human Balance Control by Static and Dynamic Head Tilts

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Wood, Scott J.; Feiveson, Alan H.; Black, F. Owen; Hwang, Emma Y.; Reschke, Millard F.

    2004-01-01

    To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14,0.33,0.6 Hz) head tilts of +/-30deg in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity.

  19. Facilitation handlings induce increase in electromyographic activity of muscles involved in head control of cerebral palsy children.

    PubMed

    Simon, Anelise de Saldanha; do Pinho, Alexandre Severo; Grazziotin Dos Santos, Camila; Pagnussat, Aline de Souza

    2014-10-01

    This study aimed to investigate the electromyographic (EMG) activation of the main cervical muscles involved in the head control during two postures widely used for the facilitation of head control in children with Cerebral Palsy (CP). A crossover trial involving 31 children with clinical diagnosis of CP and spastic quadriplegia was conducted. Electromyography was used to measure muscular activity in randomized postures. Three positions were at rest: (a) lateral decubitus, (b) ventral decubitus on the floor and (c) ventral decubitus on the wedge. Handlings for facilitating the head control were performed using the hip joint as key point of control in two postures: (a) lateral decubitus and (b) ventral decubitus on wedge. All children underwent standardized handlings, performed by the same researcher with experience in the neurodevelopmental treatment. EMG signal was recorded from muscles involved in the head control (paraspinal and sternocleidomastoid muscles) in sagittal, frontal and transverse planes, at the fourth cervical vertebra (C4), tenth thoracic vertebra (T10) and sternocleidomastoid muscle (SCM) levels. The results showed a significant increase in muscle activation when handling was performed in the lateral decubitus at C4 (P<0.001), T10 (P<0.001) and SCM (P=0.02) levels. A significant higher muscle activation was observed when handling was performed in lateral decubitus when compared to ventral decubitus at C4 level (P<0.001). Handling in ventral decubitus also induced an increase in EMG activation at T10 (P=0.018) and SCM (P=0.004) levels but not at C4 level (P=0.38). In conclusion, handlings performed in both positions may induce the facilitation of head control, as evaluated by the activity of cervical and upper trunk muscles. Handling performed in lateral decubitus may induce a slightly better facilitation of head control. These findings contribute to evidence-based physiotherapy practice for the rehabilitation of severely spastic quadriplegic CP

  20. Altered movement patterns and muscular activity during single and double leg squats in individuals with anterior cruciate ligament injury.

    PubMed

    Trulsson, Anna; Miller, Michael; Hansson, Gert-Åke; Gummesson, Christina; Garwicz, Martin

    2015-02-13

    Individuals with Anterior Cruciate Ligament (ACL) injury often show altered movement patterns, suggested to be partly due to impaired sensorimotor control. Here, we therefore aimed to assess muscular activity during movements often used in ACL-rehabilitation and to characterize associations between deviations in muscular activity and specific altered movement patterns, using and further exploring the previously developed Test for substitution Patterns (TSP). Sixteen participants (10 women) with unilateral ACL rupture performed Single and Double Leg Squats (SLS; DLS). Altered movement patterns were scored according to TSP, and Surface Electromyography (SEMG) was recorded bilaterally in six hip, thigh and shank muscles. To quantify deviations in muscular activity, SEMG ratios were calculated between homonymous muscles on injured and non-injured sides, and between antagonistic muscles on the same side. Correlations between deviations of injured/non-injured side SEMG ratios and specific altered movement patterns were calculated. Injured/non-injured ratios were low at transition from knee flexion to extension in quadriceps in SLS, and in quadriceps and hamstrings in DLS. On injured side, the quadriceps/hamstrings ratio prior to the beginning of DLS and end of DLS and SLS, and tibialis/gastrocnemius ratio at end of DLS were lower than on non-injured side. Correlations were found between specific altered movement patterns and deviating muscular activity at transition from knee flexion to extension in SLS, indicating that the more deviating the muscular activity on injured side, the more pronounced the altered movement pattern. "Knee medial to supporting foot" correlated to lower injured/non-injured ratios in gluteus medius (rs = -0.73, p = 0.001), "lateral displacement of hip-pelvis-region" to lower injured/non-injured ratios in quadriceps (rs = -0.54, p = 0.03) and "displacement of trunk" to higher injured/non-injured ratios in gluteus medius (rs = 0.62, p = 0

  1. Optimal orientation in flows: providing a benchmark for animal movement strategies.

    PubMed

    McLaren, James D; Shamoun-Baranes, Judy; Dokter, Adriaan M; Klaassen, Raymond H G; Bouten, Willem

    2014-10-06

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity.

  2. Optimal orientation in flows: providing a benchmark for animal movement strategies

    PubMed Central

    McLaren, James D.; Shamoun-Baranes, Judy; Dokter, Adriaan M.; Klaassen, Raymond H. G.; Bouten, Willem

    2014-01-01

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity. PMID:25056213

  3. Computational estimation of magnetically induced electric fields in a rotating head

    NASA Astrophysics Data System (ADS)

    Ilvonen, Sami; Laakso, Ilkka

    2009-01-01

    Change in a magnetic field, or similarly, movement in a strong static magnetic field induces electric fields in human tissues, which could potentially cause harmful effects. In this paper, the fields induced by different rotational movements of a head in a strong homogeneous magnetic field are computed numerically. Average field magnitudes near the retinas and inner ears are studied in order to gain insight into the causes of phosphenes and vertigo-like effects, which are associated with extremely low-frequency (ELF) magnetic fields. The induced electric fields are calculated in four different anatomically realistic head models using an efficient finite-element method (FEM) solver. The results are compared with basic restriction limits by IEEE and ICNIRP. Under rotational movement of the head, with a magnetic flux rate of change of 1 T s-1, the maximum IEEE-averaged electric field and maximum ICNIRP-averaged current density were 337 mV m-1 and 8.84 mA m-2, respectively. The limits by IEEE seem significantly stricter than those by ICNIRP. The results show that a magnetic flux rate of change of 1 T s-1 may induce electric field in the range of 50 mV m-1 near retinas, and possibly even larger values near the inner ears. These results provide information for approximating the threshold electric field values of phosphenes and vertigo-like effects.

  4. Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Beyer, M.; Hess, B. J.

    2000-01-01

    During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.

  5. Analysis of posture and eye movement responses to Coriolis stimulation under 1 G and microgravity conditions.

    PubMed

    Sekine, Motoki; Takahashi, Masahiro; Iida, Masahiro

    2009-12-20

    To detect the effect of microgravity on vestibular responses, we conducted Coriolis stimulation experiments at 1 G and μ G. Five men with vision occluded were asked to tilt their head forward while rotating at 100 degrees/sec. Postural changes were recorded by a 3D linear accelerometer, and the distance of upper body movement was derived from recordings of linear acceleration. Eye movements were recorded by a CCD camera. For a second period after commencing head tilt, the upper body moved 10 cm in the direction of inertia input at 1 G, but it moved to the opposite direction at μ G, i.e., 4 cm in the direction of inertia force. Nystagmus peak slow-phase velocity immediately after head tilt and its attenuation process did not differ between 1 G and μ G. The strength of movement sensation and the severity of motion sickness were far weaker at μ G than at 1 G. It was concluded that inertia input is valid to induce postural and sensation responses only when the external reference is given Z axis by gravity. Vestibular ocular response may be maintained at μ G because the head reference is valid even after the external reference becomes arbitrary.

  6. Simultaneous multi-headed imager geometry calibration method

    DOEpatents

    Tran, Vi-Hoa [Newport News, VA; Meikle, Steven Richard [Penshurst, AU; Smith, Mark Frederick [Yorktown, VA

    2008-02-19

    A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.

  7. Does head posture have a significant effect on the hyoid bone position and sternocleidomastoid electromyographic activity in young adults?

    PubMed

    Valenzuela, Saúl; Miralles, Rodolfo; Ravera, María José; Zúñiga, Claudia; Santander, Hugo; Ferrer, Marcelo; Nakouzi, Jorge

    2005-07-01

    The aim of this study was to evaluate the associations between head posture (head extension, normal head posture, and head flexion) and anteroposterior head position, hyoid bone position, and the sternocleidomastoid integrated electromyographic (IEMG) activity in a sample of young adults. The study included 50 individuals with natural dentition and bilateral molar support. A lateral craniocervical radiograph was taken for each subject and a cephalometric analysis was performed. Head posture was measured by means of the craniovertebral angle formed by the MacGregor plane and the odontoid plane. According to the value of this angle, the sample was divided into the following three groups: head extension (less than 95 degrees); normal head posture (between 95 degrees and 106 degrees); and head flexion (more than 106 degrees). The following cephalometric measurements were taken to compare the three groups: anteroposterior head position (true vertical plane/pterygoid distance), anteroposterior hyoid bone position (true vertical plane-Ha distance), vertical hyoid bone position (H-H' distance in the hyoid triangle), and CO-C2 distance. In the three groups, IEMG recordings at rest and during swallowing of saliva and maximal voluntary clenching were performed by placing bipolar surface electrodes on the right and left sternocleidomastoid muscles. In addition, the condition with/without craniomandibular dysfunction (CMD) in each group was also assessed. Head posture showed no significant association with anteroposterior head position, anteroposterior hyoid bone position, vertical hyoid bone position, or sternocleidomastoid IEMG activity. There was no association to head posture with/without the condition of CMD. Clinical relevance of the results is discussed.

  8. Procedures for Behavioral Experiments in Head-Fixed Mice

    PubMed Central

    Guo, Zengcai V.; Hires, S. Andrew; Li, Nuo; O'Connor, Daniel H.; Komiyama, Takaki; Ophir, Eran; Huber, Daniel; Bonardi, Claudia; Morandell, Karin; Gutnisky, Diego; Peron, Simon; Xu, Ning-long; Cox, James; Svoboda, Karel

    2014-01-01

    The mouse is an increasingly prominent model for the analysis of mammalian neuronal circuits. Neural circuits ultimately have to be probed during behaviors that engage the circuits. Linking circuit dynamics to behavior requires precise control of sensory stimuli and measurement of body movements. Head-fixation has been used for behavioral research, particularly in non-human primates, to facilitate precise stimulus control, behavioral monitoring and neural recording. However, choice-based, perceptual decision tasks by head-fixed mice have only recently been introduced. Training mice relies on motivating mice using water restriction. Here we describe procedures for head-fixation, water restriction and behavioral training for head-fixed mice, with a focus on active, whisker-based tactile behaviors. In these experiments mice had restricted access to water (typically 1 ml/day). After ten days of water restriction, body weight stabilized at approximately 80% of initial weight. At that point mice were trained to discriminate sensory stimuli using operant conditioning. Head-fixed mice reported stimuli by licking in go/no-go tasks and also using a forced choice paradigm using a dual lickport. In some cases mice learned to discriminate sensory stimuli in a few trials within the first behavioral session. Delay epochs lasting a second or more were used to separate sensation (e.g. tactile exploration) and action (i.e. licking). Mice performed a variety of perceptual decision tasks with high performance for hundreds of trials per behavioral session. Up to four months of continuous water restriction showed no adverse health effects. Behavioral performance correlated with the degree of water restriction, supporting the importance of controlling access to water. These behavioral paradigms can be combined with cellular resolution imaging, random access photostimulation, and whole cell recordings. PMID:24520413

  9. Ultrasound-based coordinate measuring system for estimating cervical dysfunction during functional movement.

    PubMed

    Hemmati, Nima; Abolhassani, Mohammad Djavad; Forghani, Arash

    2008-01-01

    Cervical range of motion (ROM) is a part of the dynamic component of spine evaluation and can be used as an indication of dysfunction in anatomical structures as well as a diagnostic aid in patients with neck pain. Studies indicate that movement coordination of axial segments such as head in dynamic state, disrupted in pathologic conditions. In recent years, a number of non-invasive instruments with varying degrees of accuracy and repeatability have been utilized to measure active or passive range of motion in asymptomatic adults. The aim of this investigation is to design and implement a new method by evidence based approach for estimating the level of defect in segment stability and improvement after treatment by measuring quality or quantity of movement among cervical segment. Transmitter sensors which have been mounted on body send ultrasonic burst signal periodically and from the delay time it takes for this burst to reach three other sensors which arranged on a T-shape Mechanical base, three dimensional position of the transmitter can be calculated. After sending 3D coordination data to a PC via USB port, a complex and elaborative Visual Basic software calculate the angular dispersion and acceleration for each segment separately. This software also calculates the stabilization parameters such as anchoring index (AI) and cross-correlation function (CCF) between head and trunk.

  10. Increased sternocleidomastoid, but not trapezius, muscle activity in response to increased chewing load.

    PubMed

    Häggman-Henrikson, Birgitta; Nordh, Erik; Eriksson, Per-Olof

    2013-10-01

    Previous findings, during chewing, that boluses of larger size and harder texture result in larger amplitudes of both mandibular and head-neck movements suggest a relationship between increased chewing load and incremental recruitment of jaw and neck muscles. The present report evaluated jaw (masseter and digastric) and neck [sternocleidomastoid (SCM) and trapezius] muscle activity during the chewing of test foods of different sizes and textures by 10 healthy subjects. Muscle activity was recorded by surface electromyography and simultaneous mandibular and head movements were recorded using an optoelectronic technique. Each subject performed continuous jaw-opening/jaw-closing movements whilst chewing small and large boluses of chewing gum and rubber silicone (Optosil). For jaw opening/jaw closing without a bolus, SCM activity was recorded for jaw opening concomitantly with digastric activity. During chewing, SCM activity was recorded for jaw closing concomitantly with masseter activity. Trapezius activity was present in some, but not all, cycles. For the masseter and SCM muscles, higher activity was seen with larger test foods, suggesting increased demand and recruitment of these muscles in response to an increased chewing load. This result reinforces the previous notion of a close functional connection between the jaw and the neck motor systems in jaw actions and has scientific and clinical significance for studying jaw function and dysfunction. © 2013 Eur J Oral Sci.

  11. Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads.

    PubMed

    Eckner, James T; Oh, Youkeun K; Joshi, Monica S; Richardson, James K; Ashton-Miller, James A

    2014-03-01

    Greater neck strength and activating the neck muscles to brace for impact are both thought to reduce an athlete's risk of concussion during a collision by attenuating the head's kinematic response after impact. However, the literature reporting the neck's role in controlling postimpact head kinematics is mixed. Furthermore, these relationships have not been examined in the coronal or transverse planes or in pediatric athletes. In each anatomic plane, peak linear velocity (ΔV) and peak angular velocity (Δω) of the head are inversely related to maximal isometric cervical muscle strength in the opposing direction (H1). Under impulsive loading, ΔV and Δω will be decreased during anticipatory cervical muscle activation compared with the baseline state (H2). Descriptive laboratory study. Maximum isometric neck strength was measured in each anatomic plane in 46 male and female contact sport athletes aged 8 to 30 years. A loading apparatus applied impulsive test forces to athletes' heads in flexion, extension, lateral flexion, and axial rotation during baseline and anticipatory cervical muscle activation conditions. Multivariate linear mixed models were used to determine the effects of neck strength and cervical muscle activation on head ΔV and Δω. Greater isometric neck strength and anticipatory activation were independently associated with decreased head ΔV and Δω after impulsive loading across all planes of motion (all P < .001). Inverse relationships between neck strength and head ΔV and Δω presented moderately strong effect sizes (r = 0.417 to r = 0.657), varying by direction of motion and cervical muscle activation. In male and female athletes across the age spectrum, greater neck strength and anticipatory cervical muscle activation ("bracing for impact") can reduce the magnitude of the head's kinematic response. Future studies should determine whether neck strength contributes to the observed sex and age group differences in concussion incidence. Neck

  12. Head and pelvic movement asymmetries at trot in riding horses in training and perceived as free from lameness by the owner

    PubMed Central

    Egenvall, Agneta; Haubro Andersen, Pia; Pfau, Thilo

    2017-01-01

    Recent studies evaluating horses in training and considered free from lameness by their owners have identified a large proportion of horses with motion asymmetries. However the prevalence, type and magnitude of asymmetries when trotting in a straight line or on the lunge have not been investigated. The aim of this study was to objectively investigate the presence of motion asymmetries in riding horses in training by identifying the side and quantifying the degree and type (impact, pushoff) of forelimb and hind limb asymmetries found during straight line trot and on the lunge. In a cross-sectional study, vertical head and pelvic movement symmetry was measured in 222 Warmblood type riding horses, all without perceived performance issues and considered free from lameness by their owners. Body-mounted uni-axial accelerometers were used and differences between maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) vertical displacement between left and right forelimb and hind limb stances were calculated during straight line trot and on the lunge. Previously reported symmetry thresholds were used. The thresholds for symmetry were exceeded in 161 horses for at least one variable while trotting in a straight line, HDmin (n = 58, mean 14.3 mm, SD 7.1), HDmax (n = 41, mean 12.7 mm, SD 5.5), PDmax (n = 87, mean 6.5 mm, SD 3.10), PDmin (n = 79, mean 5.7 mm, SD 2.1). Contralateral and ipsilateral concurrent forelimb and hind limb asymmetries were detected in 41 and 49 horses, respectively. There was a linear association between the straight line PDmin values and the values on the lunge with the lame limb to the inside of the circle. A large proportion (72.5%) of horses in training which were perceived as free from lameness by their owner showed movement asymmetries above previously reported asymmetry thresholds during straight line trot. It is not known to what extent these asymmetries are related to pain or to mechanical abnormalities. Therefore, one of the most

  13. Head and pelvic movement asymmetries at trot in riding horses in training and perceived as free from lameness by the owner.

    PubMed

    Rhodin, Marie; Egenvall, Agneta; Haubro Andersen, Pia; Pfau, Thilo

    2017-01-01

    Recent studies evaluating horses in training and considered free from lameness by their owners have identified a large proportion of horses with motion asymmetries. However the prevalence, type and magnitude of asymmetries when trotting in a straight line or on the lunge have not been investigated. The aim of this study was to objectively investigate the presence of motion asymmetries in riding horses in training by identifying the side and quantifying the degree and type (impact, pushoff) of forelimb and hind limb asymmetries found during straight line trot and on the lunge. In a cross-sectional study, vertical head and pelvic movement symmetry was measured in 222 Warmblood type riding horses, all without perceived performance issues and considered free from lameness by their owners. Body-mounted uni-axial accelerometers were used and differences between maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) vertical displacement between left and right forelimb and hind limb stances were calculated during straight line trot and on the lunge. Previously reported symmetry thresholds were used. The thresholds for symmetry were exceeded in 161 horses for at least one variable while trotting in a straight line, HDmin (n = 58, mean 14.3 mm, SD 7.1), HDmax (n = 41, mean 12.7 mm, SD 5.5), PDmax (n = 87, mean 6.5 mm, SD 3.10), PDmin (n = 79, mean 5.7 mm, SD 2.1). Contralateral and ipsilateral concurrent forelimb and hind limb asymmetries were detected in 41 and 49 horses, respectively. There was a linear association between the straight line PDmin values and the values on the lunge with the lame limb to the inside of the circle. A large proportion (72.5%) of horses in training which were perceived as free from lameness by their owner showed movement asymmetries above previously reported asymmetry thresholds during straight line trot. It is not known to what extent these asymmetries are related to pain or to mechanical abnormalities. Therefore, one of the most

  14. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  15. Measuring eye movements during locomotion: filtering techniques for obtaining velocity signals from a video-based eye monitor

    NASA Technical Reports Server (NTRS)

    Das, V. E.; Thomas, C. W.; Zivotofsky, A. Z.; Leigh, R. J.

    1996-01-01

    Video-based eye-tracking systems are especially suited to studying eye movements during naturally occurring activities such as locomotion, but eye velocity records suffer from broad band noise that is not amenable to conventional filtering methods. We evaluated the effectiveness of combined median and moving-average filters by comparing prefiltered and postfiltered records made synchronously with a video eye-tracker and the magnetic search coil technique, which is relatively noise free. Root-mean-square noise was reduced by half, without distorting the eye velocity signal. To illustrate the practical use of this technique, we studied normal subjects and patients with deficient labyrinthine function and compared their ability to hold gaze on a visual target that moved with their heads (cancellation of the vestibulo-ocular reflex). Patients and normal subjects performed similarly during active head rotation but, during locomotion, patients held their eyes more steadily on the visual target than did subjects.

  16. When Two Heads Aren't Better than One: Conformity in a Group Activity

    ERIC Educational Resources Information Center

    Fender, C. Melissa; Stickney, Lisa T.

    2017-01-01

    Group and team class decision-making activities often focus on demonstrating that "two heads are better than one." Typically, students solve a problem or complete an assessment individually, then in a group. Generally, the group does better and that is what the students learn. However, if that is all such an activity conveys, then a…

  17. Rhythmic movement disorder in childhood: An integrative review.

    PubMed

    Gwyther, Amy R M; Walters, Arthur S; Hill, Catherine M

    2017-10-01

    Rhythmic movement disorder consists of repetitive stereotypic movements, such as head banging or body rocking, that recur every second or so and may last from a few minutes to hours, usually prior to sleep onset. This review of childhood rhythmic movement disorder highlights the lack of systematic research into core aspects of the condition, relying heavily on small case series or case reports. Interpretation is further limited by almost universal failure to confirm the core diagnostic criteria (C) of the International classification of sleep disorders (III), namely that the rhythmic movements should have clinical consequences. Nonetheless, a number of themes emerge. Rhythmic movement disorder is likely to start in infancy and have a developmental course with spontaneous resolution in early childhood in many cases. Factors associated with persistence are, however, unclear. Associations with ADHD and neurodevelopmental disorders are intriguing, require further study and may shed light on the underlying cause of the condition. There is a pressing need for a systematic approach to classify rhythmic movement disorder, to allow standardization of the much needed research into the underlying aetiology and treatment of this relatively neglected sleep disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Interpersonal Coordination of Head Motion in Distressed Couples

    PubMed Central

    Hammal, Zakia; Cohn, Jeffrey F.; George, David T.

    2015-01-01

    In automatic emotional expression analysis, head motion has been considered mostly a nuisance variable, something to control when extracting features for action unit or expression detection. As an initial step toward understanding the contribution of head motion to emotion communication, we investigated the interpersonal coordination of rigid head motion in intimate couples with a history of interpersonal violence. Episodes of conflict and non-conflict were elicited in dyadic interaction tasks and validated using linguistic criteria. Head motion parameters were analyzed using Student’s paired t-tests; actor-partner analyses to model mutual influence within couples; and windowed cross-correlation to reveal dynamics of change in direction of influence over time. Partners’ RMS angular displacement for yaw and RMS angular velocity for pitch and yaw each demonstrated strong mutual influence between partners. Partners’ RMS angular displacement for pitch was higher during conflict. In both conflict and non-conflict, head angular displacement and angular velocity for pitch and yaw were strongly correlated, with frequent shifts in lead-lag relationships. The overall amount of coordination between partners’ head movement was more highly correlated during non-conflict compared with conflict interaction. While conflict increased head motion, it served to attenuate interpersonal coordination. PMID:26167256

  19. Functional near-infrared spectroscopy to probe sensorimotor region activation during electrical stimulation-evoked movement.

    PubMed

    Muthalib, Makii; Ferrari, Marco; Quaresima, Valentina; Kerr, Graham; Perrey, Stephane

    2017-11-07

    This study used non-invasive functional near-infrared spectroscopy (fNIRS) neuroimaging to monitor bilateral sensorimotor region activation during unilateral voluntary (VOL) and neuromuscular electrical stimulation (NMES)-evoked movements. In eight healthy male volunteers, fNIRS was used to measure relative changes in oxyhaemoglobin (O 2 Hb) and deoxyhaemoglobin (HHb) concentrations from a cortical sensorimotor region of interest in the left (LH) and right (RH) hemispheres during NMES-evoked and VOL wrist extension movements of the right arm. NMES-evoked movements induced significantly greater activation (increase in O 2 Hb and concomitant decrease in HHb) in the contralateral LH than in the ipsilateral RH (O 2 Hb: 0·44 ± 0·16 μM and 0·25 ± 0·22 μM, P = 0·017; HHb: -0·19 ± 0·10 μM and -0·12 ± 0·09 μM, P = 0·036, respectively) as did VOL movements (0·51 ± 0·24 μΜ and 0·34 ± 0·21 μM, P = 0·031; HHb: -0·18 ± 0·07 μΜ and -0·12 ± 0·04 μΜ, P = 0·05, respectively). There was no significant difference between conditions for O 2 Hb (P = 0·144) and HHb (P = 0·958). fNIRS neuroimaging enables quantification of bilateral sensorimotor regional activation profiles during voluntary and NMES-evoked wrist extension movements. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  20. Fundamental movement skills and physical activity among children living in low-income communities: a cross-sectional study.

    PubMed

    Cohen, Kristen E; Morgan, Philip J; Plotnikoff, Ronald C; Callister, Robin; Lubans, David R

    2014-04-08

    Although previous studies have demonstrated that children with high levels of fundamental movement skill competency are more active throughout the day, little is known regarding children's fundamental movement skill competency and their physical activity during key time periods of the school day (i.e., lunchtime, recess and after-school). The purpose of this study was to examine the associations between fundamental movement skill competency and objectively measured moderate-to-vigorous physical activity (MVPA) throughout the school day among children attending primary schools in low-income communities. Eight primary schools from low-income communities and 460 children (8.5 ± 0.6 years, 54% girls) were involved in the study. Children's fundamental movement skill competency (TGMD-2; 6 locomotor and 6 object-control skills), objectively measured physical activity (ActiGraph GT3X and GT3X + accelerometers), height, weight and demographics were assessed. Multilevel linear mixed models were used to assess the cross-sectional associations between fundamental movement skills and MVPA. After adjusting for age, sex, BMI and socio-economic status, locomotor skill competency was positively associated with total (P=0.002, r=0.15) and after-school (P=0.014, r=0.13) MVPA. Object-control skill competency was positively associated with total (P<0.001, r=0.20), lunchtime (P=0.03, r=0.10), recess (P=0.006, r=0.11) and after-school (P=0.022, r=0.13) MVPA. Object-control skill competency appears to be a better predictor of children's MVPA during school-based physical activity opportunities than locomotor skill competency. Improving fundamental movement skill competency, particularly object-control skills, may contribute to increased levels of children's MVPA throughout the day. Australian New Zealand Clinical Trials Registry No: ACTRN12611001080910.

  1. Figure-ground activity in V1 and guidance of saccadic eye movements.

    PubMed

    Supèr, Hans

    2006-01-01

    Every day we shift our gaze about 150.000 times mostly without noticing it. The direction of these gaze shifts are not random but directed by sensory information and internal factors. After each movement the eyes hold still for a brief moment so that visual information at the center of our gaze can be processed in detail. This means that visual information at the saccade target location is sufficient to accurately guide the gaze shift but yet is not sufficiently processed to be fully perceived. In this paper I will discuss the possible role of activity in the primary visual cortex (V1), in particular figure-ground activity, in oculo-motor behavior. Figure-ground activity occurs during the late response period of V1 neurons and correlates with perception. The strength of figure-ground responses predicts the direction and moment of saccadic eye movements. The superior colliculus, a gaze control center that integrates visual and motor signals, receives direct anatomical connections from V1. These projections may convey the perceptual information that is required for appropriate gaze shifts. In conclusion, figure-ground activity in V1 may act as an intermediate component linking visual and motor signals.

  2. Lactate Dehydrogenase Activity in Gingival Crevicular Fluid as a Marker in Orthodontic Tooth Movement

    PubMed Central

    Alfaqeeh, Sarah A; Anil, Sukumaran

    2011-01-01

    Objectives: This study aims at analyzing the changes in gingival crevicular fluid (GCF) lactate dehydrogenase (LDH) activity during orthodontic movement. Methods: Twenty patients all requiring first premolar extractions were selected and treated with conventional straight wire mechanotherapy. Canine retraction was done using 125 g Nitinol closed coil springs. The maxillary canine on one side served as the experimental site while the contralateral canine served as the control. GCF was collected from the canines before initiation of retraction, then 1 hour after initiating canine retraction, followed by 1 day, 7 days, 14 days and 21 days. GCF LDH levels were estimated and compared with the control site. Results The results revealed significantly higher LDH levels on the 7th, 14th and 21st day at the sites where orthodontic force had been applied. The levels also showed a significant increase from 0 hour to the 21st day. Peak levels were seen on 14th and 21st day following initiation of retraction. Conclusions: The study showed that LDH could be successfully estimated in the GCF and its increased levels could indicate active tooth movement, which could aid the clinician in monitoring active orthodontic tooth movement. PMID:21760863

  3. Self-diagnosis of active head lice infestation by individuals from an impoverished community: high sensitivity and specificity.

    PubMed

    Pilger, Daniel; Khakban, Adak; Heukelbach, Jorg; Feldmeier, Hermann

    2008-01-01

    To compare sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of self-diagnosis for head lice infestation with visual inspection, we conducted a study in an urban slum in Brazil. Individuals were asked about active head lice infestation (self-diagnosis); we performed visual inspection and thereafter wet combing (gold standard). Of the 175 individuals included, 77 (44%) had an active head lice infestation. For self-diagnosis, sensitivity (80.5%), specificity (91.8%), PPV (88.6%) and NPV (85.7%) were high. Sensitivity of visual inspection was 35.1%. Public health professionals can use self-diagnosis as a diagnostic tool, to estimate accurately prevalence of pediculosis in a community, and to monitor ongoing intervention strategies.

  4. Wireless inertial measurement of head kinematics in freely-moving rats

    PubMed Central

    Pasquet, Matthieu O.; Tihy, Matthieu; Gourgeon, Aurélie; Pompili, Marco N.; Godsil, Bill P.; Léna, Clément; Dugué, Guillaume P.

    2016-01-01

    While miniature inertial sensors offer a promising means for precisely detecting, quantifying and classifying animal behaviors, versatile inertial sensing devices adapted for small, freely-moving laboratory animals are still lacking. We developed a standalone and cost-effective platform for performing high-rate wireless inertial measurements of head movements in rats. Our system is designed to enable real-time bidirectional communication between the headborne inertial sensing device and third party systems, which can be used for precise data timestamping and low-latency motion-triggered applications. We illustrate the usefulness of our system in diverse experimental situations. We show that our system can be used for precisely quantifying motor responses evoked by external stimuli, for characterizing head kinematics during normal behavior and for monitoring head posture under normal and pathological conditions obtained using unilateral vestibular lesions. We also introduce and validate a novel method for automatically quantifying behavioral freezing during Pavlovian fear conditioning experiments, which offers superior performance in terms of precision, temporal resolution and efficiency. Thus, this system precisely acquires movement information in freely-moving animals, and can enable objective and quantitative behavioral scoring methods in a wide variety of experimental situations. PMID:27767085

  5. [CSF enzyme activities in patients with head injury--especially on GOT, GPT, LDH, and CPK (AUTHOR'S TRANSL)].

    PubMed

    Nakamura, H; Mizuno, T; Kawamura, K; Kamino, T

    1976-08-01

    In our studies on patients with head injury, it was noted that there are some correlations between their clinical courses and the urinary excretion of creatine (cr), creatinine (Crn), 17-ketosteroid and 17-hydroxycorticosteroid. We observed the high urinary excretion of Cr in patients with severe head injury while almost negative in a mild case. We reported those facts in 1974. Also noted in patients with head injury is the relationship between the enzyme-activities (GOT, GPT, LDH and CPK) in the cerebrospinal fluid and their clinical courses. In this paper, we reported 34 cases of head injured patients (simple type: 2, concussion: 9, contusion: 8, acute intracranial hematoma: 7 and chronic intra-cranial hematoma: 8). The control values of CSF enzyme-activities were determined in these 14 cases (simple head injury, whip-lash injury and osteoma of the skull) as GOT less that 15, GPT less than 7, LDH less than 12 and CPK less than 8 units. In the moderate cases, a slight increase in activities of 4 enzymes in CSF were observed, while in severe or comatose cases, the enzyme-activities (especially LDH and CPK) were greater than in the controls. In the dead cases these values were five times as high as the normal case. In the patients recovering from a serious stage, these activities decreased to normal. High CSF enzyme-levels tend to indicate a poor prognosis and low levels a favorable progrosis. In the patients with a significant elevation of CSF enzymes, a high urinary excretion of Cr [normal range: 0-150 (ca. 50)mg/day] was often observed. There was no apparent correlation between the enzyme level in CSF and that in serum and the increase or decrease of these 4 enzymes are not always proprotionate with each other. As reported by Green (1958) and Lending (1961), cerebral cell necrosis and increased permeability of BLB, BBB or cerebral cell membrane can be related to the increase of enzymeactivities. With these observations, it can be considered that severe head

  6. Eye-head coordination during optokinetic stimulation in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Kubo, T.; Igarashi, M.; Jensen, D. W.; Homick, J. L.

    1981-01-01

    Head and eye movements in the yaw plane were recorded during and after optokinetic stimulation in squirrel monkeys. 1) Phasic or tonic head deviations to the side of the ocular quick phase occurred in 94% of total recordings (n = 50) during the perstimulus period, and in 75% of recordings (n = 49) during the poststimulus period. Magnitude of mean head deviation was significantly different between perstimulus and poststimulus periods. 2) Head nystagmus associated with eye nystagmus was consistently observed in seven of nine squirrel monkeys during optokinetic stimulation. Squirrel monkeys are thereby less prone to display head nystagmus than either guinea pigs, pigeons or chickens. 3) Slow phase speeds of coupled head and eye nystagmus were subjected to statistical analysis. A highly significant negative correlation was found between slow phase head and eye speeds. The correlation coefficient was - 0.81 at 60 degrees / sec stimulus (n = 119) and -0.72 at 100 degrees / sec stimulus (n = 131). The gaze speed, calculated by summing the head and eye speeds, was 59.1 plus or minus 6.8 / sec at 60 degrees / sec and 92.2 plus or minus 11.4 at 100 degrees / sec stimulus. There was no significant difference between the gaze speed in a free head condition and the eye speed when the head was fixed.

  7. Empowerment and Education: Civil Rights, Expert-Advocates, and Parent Politics in Head Start, 1964-1980.

    ERIC Educational Resources Information Center

    Kagan, Josh

    2002-01-01

    Examines how Head Start has survived over time, exploring the coalition that emerged between civil rights activists and intellectuals and tracing Head Start's development out of the emerging academic interest in compensatory education for cultural deprivation and the New Left's desire to build a movement emphasizing civil rights and community…

  8. Fear of Movement and Low Self-Efficacy Are Important Barriers in Physical Activity after Renal Transplantation

    PubMed Central

    Zelle, Dorien M.; Corpeleijn, Eva; Klaassen, Gerald; Schutte, Elise; Navis, Gerjan; Bakker, Stephan J. L.

    2016-01-01

    Background Physical activity (PA) and exercise are commonly used as preventive measures for cardiovascular disease in the general population, and could be effective in the management of post-transplantation cardiovascular risk. PA levels are low after renal transplantation and very few renal transplant recipients (RTR) meet the PA guidelines. Identification of barriers to regular PA is important to identify targets for intervention to improve PA levels after renal transplantation. We investigated fear of movement and physical self-efficacy as barriers to PA in RTR. Methods RTR were investigated between 2001–2003. The Tampa Score of Kinesiophobia–Dutch Version (TSK-11) was used to assess fear of movement. Physical self-efficacy was measured with the LIVAS-scale. PA was assessed using validated questionnaires (Tecumseh Occupational Activity Questionnaire and the Minnesota Leisure Time Physical Activity Questionnaire). Results A total of 487 RTR (age 51±12 years, 55% men) were studied. Median score [interquartile range] on TSK-11 was 22 [17–26]. Low physical self-efficacy (Exp B:0.41[0.31–0.54], p<0.001) and history of myocardial infarction, transient ischemic attack and cerebrovascular accident (Exp B:1.30[1.03–1.63],p = 0.03) were independent determinants for fear of movement. Fear of movement was associated with lower daily PA, occupational, sports and leisure time PA. Mediation-analysis showed that a large part (73%) of the effect of fear of movement on PA was explained by low physical self-efficacy. Conclusions This study was the first to examine fear of movement and self-efficacy in relation to PA in RTR. Fear of movement was associated with a low PA level, and the larger part of this relation was mediated by low physical self-efficacy. Both fear of movement and physical self-efficacy level are important targets for intervention during rehabilitation after renal transplantation. PMID:26844883

  9. Mean 24-hours sympathetic nervous system activity decreases during head-down tilted bed rest but not during microgravity

    NASA Astrophysics Data System (ADS)

    Christensen, Nj; Heer, M.; Ivanova, K.; Norsk, P.

    Sympathetic nervous system activity is closely related to gravitational stress in ground based experiments. Thus a high activity is present in the standing-up position and a very low activity is observed during acute head-out water immersion. Adjustments in sympathetic activity are necessary to maintain a constant blood pressure during variations in venous return. Head-down tilted bed rest is applied as a model to simulate changes observed during microgravity. The aim of the present study was to test the hypothesis that mean 24-hours sympathetic activity was low and similar during space flight and in ground based observation obtained during long-term head-down tilted bed rest. Forearm venous plasma noradrenaline was measured by a radioenzymatic technique as an index of muscle sympathetic activity and thrombocyte noradrenaline and adrenaline were measured as indices of mean 24-hours sympathoadrenal activity. Previous results have indicated that thrombocyte noradrenaline level has a half-time of 2 days. Thus to reflect sympathetic activity during a specific experiment the study period must last for at least 6 days and a sample must be obtained within 12 hours after the experiment has ended. Ten normal healthy subjects were studied before and during a 14 days head-down tilted bed rest as well as during an ambulatory study period of a similar length. The whole experiment was repeated while the subjects were on a low calorie diet. Thrombocyte noradrenaline levels were studied in 4 cosmonauts before and within 12 hours after landing after more than 7 days in flight. Thrombocyte noradrenaline decreased markedly during the head-down tilted bed rest (p<0.001), whereas there were no significant changes in the ambulatory study. Plasma noradrenaline decreased in the adaptation period but not during the intervention. During microgravity thrombocyte noradrenaline increased in four cosmonauts and the percentage changes were significantly different in cosmonauts and in subjects

  10. Movement of a large, slow-moving landslide in the North Island, New Zealand, controlled by porewater pressure and river flow

    NASA Astrophysics Data System (ADS)

    McColl, Samuel; Holdsworth, Charlotte; Massey, Chris

    2017-04-01

    New Zealand has 7000 mapped large (> 2 ha) landslides, most of which occur in the Neogene cover rocks, and many of which are active. Active landslides in New Zealand damage lifeline infrastructure, entire suburbs, agricultural land, and they deliver large but little-quantified sediment load to rivers. Despite their prevalence in the landscape and these impacts, much remains unknown of their initiation, movement patterns and processes, or their contributions to landscape evolution. This research assesses how toe cutting and rainfall at a daily to seasonal timescale drive movement of a large (50 hectare) slow-moving, translational rockslide that is severely damaging a farm in the Rangitikei catchment, central North Island. Geomorphological mapping has been undertaken to define the landslide boundary, drainage lines and to assess zones of movements. Since July 2015, 3-monthly GPS-occupations of a survey mark network, and hourly time-lapse photography of the toe of the landslide have been used to identify the distribution and patterns of landslide movement. Pixel-tracking software is being used to quantify movement at the toe from the time-lapse photography at an daily timescale. Movement data are being compared with river flow data (i.e. toe cutting potential) and local rainfall and groundwater from a nearby site (i.e. a proxy for porewater-pressure changes at the landslide). Results so far indicate movement of several mm to cm per year in the upper part of the landslide through a block sliding mechanism, increasing to several metres per year towards the toe where block-sliding transitions sharply to more mobile earth flow-slide behaviour. In the upper part of the landslide, vertical displacements are larger closer to earth flow-slide zone, expressed as decimetre to metre-scale scarps and mini-grabens. The failure surface is exposed at the toe, which is being actively cut by a major river, and reveals a highly remoulded landslide body 1-3 metres thick, overlaying

  11. Changes in movement symmetry over the stages of the shoeing process in military working horses.

    PubMed

    Pfau, T; Daly, K; Davison, J; Bould, A; Housby, N; Weller, R

    2016-08-20

    Military working horses perform a high proportion of work on road surfaces and are shod frequently to deal with high attrition rates. The authors investigate the influence of shoeing on movement symmetry as an indirect indicator of mechanical differences affecting force production between contralateral limbs. In this quantitative observational study, inertial sensor gait analysis was performed in 23 Irish sport type horses (4-21 years, 1.58-1.85 m) in full ceremonial work at the King's Troop, Royal Horse Artillery. Changes in two movement symmetry measures (SI: symmetry index; MinDiff: difference between displacement minima) for head and pelvic movement were assessed at four stages of routine shoeing: 'old shoes', 'shoes removed', 'trimmed', 'reshod'. Horses were assessed applying shoes to the front limbs (N=10), to the hindlimbs (N=10) or both (N=3). Changes in head movement symmetry between conditions were small and inconsistent. Changes in pelvic movement symmetry were small and showed significant differences between shoeing stages (SI: P=0.013, MinDiff: P=0.04) with most symmetrical pelvic movement after trimming. In military working horses with high frequency shoeing small changes in movement symmetry were measured. All significant changes involved trimming, which indicates that future studies should in particular assess changes before/after trimming and investigate longer shoeing intervals. British Veterinary Association.

  12. The effects of arm movement on reaction time in patients with latent and active upper trapezius myofascial trigger point.

    PubMed

    Yassin, Marzieh; Talebian, Saeed; Ebrahimi Takamjani, Ismail; Maroufi, Nader; Ahmadi, Amir; Sarrafzadeh, Javad; Emrani, Anita

    2015-01-01

    Myofascial pain syndrome is a significant source of mechanical pain. The aim of this study was to investigate the effects of arm movement on reaction time in females with latent and active upper trapezius myofascial trigger point. In this interventional study, a convenience sample of fifteen women with one active MTP, fifteen women with one latent MTP in the upper trapezius, and fifteen normal healthy women were participated. Participants were asked to stand for 10 seconds in an erect standing position. Muscle reaction times were recorded including anterior deltoid (AD), cervical paraspinal (CP) lumbar paraspinal (LP), both of upper trapezius (UT), sternocleidomastoid (SCM) and medial head of gastrocnemius (GcM). Participants were asked to flex their arms in response to a sound stimulus preceded by a warning sound stimulus. Data were analyzed using one-way ANOVA Test. There was significant differences in motor time and reaction time between active and control groups (p< 0.05) except for GcM. There was no significant difference in motor time between active and passive groups except for UT without MTP and SCM (p< 0.05). Also, there were no significant differences in motor times between latent MTP and control groups. Furthermore, there was no significant difference in premotor times between the three groups. The present study shows that patients with active MTP need more time to react to stimulus, but patients with latent MTP are similar to healthy subjects in the reaction time. Patients with active MTP had less compatibility with environmental stimulations, and they responded to a specific stimulation with variability in Surface Electromyography (SEMG).

  13. Upward gaze and head deviation with frontal eye field stimulation.

    PubMed

    Kaiboriboon, Kitti; Lüders, Hans O; Miller, Jonathan P; Leigh, R John

    2012-03-01

    Using electrical stimulation to the deep, most caudal part of the right frontal eye field (FEF), we demonstrate a novel pattern of vertical (upward) eye movement that was previously only thought possible by stimulating both frontal eye fields simultaneously. If stimulation was started when the subject looked laterally, the initial eye movement was back to the midline, followed by upward deviation. Our finding challenges current view of topological organisation in the human FEF and may have general implications for concepts of topological organisation of the motor cortex, since sustained stimulation also induced upward head movements as a component of the vertical gaze shift. [Published with video sequences].

  14. Comparison of laterality index of upper and lower limb movement using brain activated fMRI

    NASA Astrophysics Data System (ADS)

    Harirchian, Mohammad Hossein; Oghabian, Mohammad Ali; Rezvanizadeh, Alireza; Bolandzadeh, Niousha

    2008-03-01

    Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions such as motor functions. This asymmetry maybe altered in some clinical conditions such as Multiple Sclerosis (MS). The aim of this study was to delineate the laterality differences for upper and lower limbs in healthy subjects to compare this pattern with subjects suffering from MS in advance. Hence 9 Male healthy subjects underwent fMRI assessment, while they were asked to move their limbs in a predetermined pattern. The results showed that hands movement activates the brain with a significant lateralization in pre-motor cortex in comparison with lower limb. Also, dominant hands activate brain more lateralized than the non-dominant hand. In addition, Left basal ganglia were observed to be activated regardless of the hand used, While, These patterns of Brain activation was not detected in lower limbs. We hypothesize that this difference might be attributed to this point that hand is usually responsible for precise and fine voluntary movements, whereas lower limb joints are mainly responsible for locomotion, a function integrating voluntary and automatic bilateral movements.

  15. Relationships between ground reaction force parameters during a sit-to-stand movement and physical activity and falling risk of the elderly and a comparison of the movement characteristics between the young and the elderly.

    PubMed

    Yamada, Takayoshi; Demura, Shin-ichi

    2009-01-01

    This study aimed to examine the relationships between ground reaction force during a sit-to-stand (STS) movement and physical activity and falling risk of the elderly and the difference of the movement characteristics between the young and the elderly. Sixty elderly females who can achieve a STS movement by themselves and 30 healthy young females were measured for ground reaction force during STS movement from a chair, adjusted for lower leg length height. The elderly's physical activity and falling risk were also assessed. Physical activity and falling risk significantly correlated with parameters on force exertion during hip lift-off and knee-hip joint extension phases (|r|=0.26-0.41). Significant differences were found in ground reaction force parameters of all phases between the young and the elderly and STS movement of the elderly was suggested to result in poor force exertion and slowing down. The above tendency was noticeable in the hip lift-off and knee-hip joint extension phases. In conclusion, force exertion in hip lift-off and knee-hip joint extension phases of STS movement is related to physical activity and falling risk in the elderly. These phases may be useful to evaluate the elderly's physical activity and falling risk.

  16. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User’s Head Movement

    PubMed Central

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user’s head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest. PMID:27589768

  17. Rhythmic neural activity indicates the contribution of attention and memory to the processing of occluded movements in 10-month-old infants.

    PubMed

    Bache, Cathleen; Kopp, Franziska; Springer, Anne; Stadler, Waltraud; Lindenberger, Ulman; Werkle-Bergner, Markus

    2015-11-01

    Infants possess the remarkable capacity to perceive occluded movements as ongoing and coherent. Little is known about the neural mechanisms that enable internal representation of conspecifics' and inanimate objects' movements during visual occlusion. In this study, 10-month-old infants watched briefly occluded human and object movements. Prior to occlusion, continuous and distorted versions of the movement were shown. EEG recordings were used to assess neural activity assumed to relate to processes of attention (occipital alpha), memory (frontal theta), and sensorimotor simulation (central alpha) before, during, and after occlusion. Oscillatory activity was analyzed using an individualized data approach taking idiosyncrasies into account. Results for occipital alpha were consistent with infants' preference for attending to social stimuli. Furthermore, frontal theta activity was more pronounced when tracking distorted as opposed to continuous movement, and when maintaining object as opposed to human movement. Central alpha did not discriminate between experimental conditions. In sum, we conclude that observing occluded movements recruits processes of attention and memory which are modulated by stimulus and movement properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Thymocyte emigration is mediated by active movement away from stroma-derived factors

    PubMed Central

    Poznansky, Mark C.; Olszak, Ivona T.; Evans, Richard H.; Wang, Zhengyu; Foxall, Russell B.; Olson, Douglas P.; Weibrecht, Kathryn; Luster, Andrew D.; Scadden, David T.

    2002-01-01

    T cells leave the thymus at a specific time during differentiation and do not return despite elaboration of known T cell chemoattractants by thymic stroma. We observed differentiation stage–restricted egress of thymocytes from an artificial thymus in which vascular structures or hemodynamics could not have been playing a role. Hypothesizing that active movement of cells away from a thymic product may be responsible, we demonstrated selective reduction in emigration from primary thymus by inhibitors of active movement down a concentration gradient (chemofugetaxis). Immature intrathymic precursors were insensitive to an emigration signal, whereas mature thymocytes and peripheral blood T cells were sensitive. Thymic stroma was noted to elaborate at least two proteins capable of inducing emigration, one of which was stromal cell–derived factor-1. Thymic emigration is mediated, at least in part, by specific fugetaxis-inducing factors to which only mature cells respond. PMID:11956248

  19. Structure-transfection activity relationships in a series of novel cationic lipids with heterocyclic head-groups.

    PubMed

    Ivanova, Ekaterina A; Maslov, Mikhail A; Kabilova, Tatyana O; Puchkov, Pavel A; Alekseeva, Anna S; Boldyrev, Ivan A; Vlassov, Valentin V; Serebrennikova, Galina A; Morozova, Nina G; Zenkova, Marina A

    2013-11-07

    Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions. Liposomes containing these lipids also display high cytotoxicity with respect to all cell lines. Irrespective of chemical structures, all cationic lipids form liposomes with similar sizes and surface potentials. The characteristics of complexes composed of cationic liposomes and nucleic acids depend mostly on the type of nucleic acid and P/N ratios. In the case of oligodeoxyribonucleotide delivery, the transfection activity depends on the type of cationic head-group regardless of the type of hydrophobic domain: all types of cationic liposomes mediate efficient oligonucleotide transfer into 80-90% of the eukaryotic cells, and liposomes based on lipids with N-methylmorpholinium cationic head-group display the highest transfection activity. In the case of plasmid DNA and siRNA, the type of hydrophobic domain determines the transfection activity: liposomes composed of cholesterol-based lipids were the most efficient in DNA transfer, while liposomes containing glycerol-based lipids exhibited reasonable activity in siRNA delivery under serum-free conditions.

  20. Atypical headbanging presentation of idiopathic sleep related rhythmic movement disorder: three cases with video-polysomnographic documentation.

    PubMed

    Yeh, Shih-Bin; Schenck, Carlos H

    2012-08-15

    To describe three cases of sleep related, idiopathic rhythmic movement disorder (RMD) with atypical headbanging, consisting of head punching and head slapping. Three consecutive patients (2 males [11 and 13 years old) and one female [22 years old]) presented with atypical headbanging of 6 years, 7 years, and 17 years duration. In 2 cases, typical rhythmic headbanging (with use of the head) shifted after 3-4 years to atypical headbanging, with frontal head punching that was quasi-rhythmic. In one case, atypical headbanging (head-slapping) was the initial and only RMD. There was no injury from the headbanging. Prenatal, perinatal, developmental, behavioral-psychological, medical-neurological, and family histories were negative. Clinical evaluations and nocturnal video-polysomnography with seizure montage were performed on all patients. Atypical headbanging was documented in all 3 cases; episodes always emerged late in the sleep cycle: from N2 sleep in 11 episodes, from REM sleep in 4 episodes, and from N1 sleep in 1 episode. Epileptiform activity was not detected. Clonazepam therapy was substantially effective in 1 case but not effective in 2 cases. These 3 cases of idiopathic atypical headbanging expand the literature on this RMD variant, as to our knowledge only one previously documented case has been reported.

  1. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    PubMed

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  2. Altered pain sensitivity and axioscapular muscle activity in neck pain patients compared with healthy controls.

    PubMed

    Christensen, S W; Hirata, R P; Graven-Nielsen, T

    2017-11-01

    Previous studies have indicated that neck pain patients feel increased symptoms following upper limb activities, and altered axioscapular muscle function has been proposed as a contributing factor. Pain sensitivity and muscle activity, during arm movements, were assessed in neck pain patients and controls. Patients with ongoing insidious-onset neck pain (IONP, N = 16) and whiplash-associated disorders (WAD, N = 9) were included along with sex- and age-matched controls (N = 25). Six series of repeated arm abductions were performed during electromyographic (EMG) recordings from eight bilateral muscles. The first and last three series were separated by 8 min and 42 s, respectively. Each series consisted of three slow and three fast movements. Pressure pain thresholds (PPTs) were recorded bilaterally from neck, head and arm at baseline, after the third and sixth movement series. Pain intensity was recorded on an electronic visual analogue scale (VAS). Larger pain areas and higher VAS scores were found in patients compared with controls (p < 0.001), and in patients, the VAS scores increased in the course of movements (p < 0.02). PPTs were lower in patients compared with controls at all sites (p < 0.03), and these decreased during arm movements in the IONP group (p < 0.03), while increasing at head and neck sites in controls (p < 0.04). During the slow movements, increasing serratus anterior EMG activity was found in the series with short breaks in-between for the WAD group compared with IONP and controls (p < 0.001). Axioscapular movement caused different responses in pain sensitivity and muscle activity between neck pain patient groups compared with controls. Neck pain patients report increased symptoms following upper limb activities. This study shows that repeated arm movements caused differentiated responses in pain sensitivity and muscle activity between subgroups of neck pain patient and asymptomatic controls. Such findings may be of great

  3. The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy

    PubMed Central

    Kötting, Carsten; Kallenbach, Angela; Suveyzdis, Yan; Wittinghofer, Alfred; Gerwert, Klaus

    2008-01-01

    Members of the Ras superfamily of small G proteins play key roles in signal transduction pathways, which they control by GTP hydrolysis. They are regulated by GTPase activating proteins (GAPs). Mutations that prevent hydrolysis cause severe diseases including cancer. A highly conserved “arginine finger” of GAP is a key residue. Here, we monitor the GTPase reaction of the Ras·RasGAP complex at high temporal and spatial resolution by time-resolved FTIR spectroscopy at 260 K. After triggering the reaction, we observe as the first step a movement of the switch-I region of Ras from the nonsignaling “off” to the signaling “on” state with a rate of 3 s−1. The next step is the movement of the “arginine finger” into the active site of Ras with a rate of k2 = 0.8 s−1. Once the arginine points into the binding pocket, cleavage of GTP is fast and the protein-bound Pi intermediate forms. The switch-I reversal to the “off” state, the release of Pi, and the movement of arginine back into an aqueous environment is observed simultaneously with k3 = 0.1 s−1, the rate-limiting step. Arrhenius plots for the partial reactions show that the activation energy for the cleavage reaction is lowered by favorable positive activation entropy. This seems to indicate that protein-bound structured water molecules are pushed by the “arginine finger” movement out of the binding pocket into the bulk water. The proposed mechanism shows how the high activation barrier for phosphoryl transfer can be reduced by splitting into partial reactions separated by a Pi-intermediate. PMID:18434546

  4. Goal-directed arm movements in children with fetal alcohol syndrome: a kinematic approach.

    PubMed

    Domellöf, E; Fagard, J; Jacquet, A-Y; Rönnqvist, L

    2011-02-01

    Although many studies have documented deficits in general motor functioning in children with fetal alcohol syndrome (FAS), few have employed detailed measurements to explore the specific nature of such disabilities. This pilot study explores whether three-dimensional (3D) kinematic analysis may generate increased knowledge of the effect of intrauterine alcohol exposure on motor control processes by detecting atypical upper-limb movement pattern specificity in children with FAS relative to typically developing (TD) children. Left and right arm and head movements during a sequential unimanual goal-directed precision task in a sample of children with FAS and in TD children were registered by an optoelectronic tracking system (ProReflex, Qualisys Inc.). Children with FAS demonstrated evidently poorer task performance compared with TD children. Additionally, analyses of arm movement kinematics revealed atypical spatio-temporal organization in the children with FAS. In general, they exhibited longer arm movement trajectories at both the proximal and distal level, faster velocities at the proximal level but slower at the distal level, and more segmented distal movements. Children with FAS also showed atypically augmented and fast head movements during the task performance. Findings indicate neuromotor deficits and developmental delay in goal-directed arm movements because of prenatal alcohol exposure. It is suggested that 3D kinematic analysis is a valid technique for furthering the understanding of motor control processes in children with FAS/fetal alcohol spectrum disorders. A combination with relevant neuroimaging techniques in future studies would enable a more clear-cut interpretation of how atypical movement patterns relate to underlying brain abnormalities. © 2010 The Author(s). European Journal of Neurology © 2010 EFNS.

  5. Prediction of the body rotation-induced torques on the arm during reaching movements: evidence from a proprioceptively deafferented subject.

    PubMed

    Guillaud, Etienne; Simoneau, Martin; Blouin, Jean

    2011-06-01

    Reaching for a target while rotating the trunk generates substantial Coriolis and centrifugal torques that push the arm in the opposite direction of the rotations. These torques rarely perturb movement accuracy, suggesting that they are compensated for during the movement. Here we tested whether signals generated during body motion (e.g., vestibular) can be used to predict the torques induced by the body rotation and to modify the motor commands accordingly. We asked a deafferented subject to reach for a memorized visual target in darkness. At the onset of the reaching, the patient was rotated 25° or 40° in the clockwise or the counterclockwise directions. During the rotation, the patient's head remained either fixed in space (Head-Fixed condition) or fixed on the trunk (Head Rotation condition). At the rotation onset, the deafferented patient's hand largely deviated from the mid-sagittal plane in both conditions. The hand deviations were compensated for in the Head Rotation condition only. These results highlight the computational faculty of the brain and show that body rotation-related information can be processed for predicting the consequence of the rotation dynamics on the reaching arm movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Comparative investigation of stimulus-evoked rod outer segment movement and retinal electrophysiological activity

    NASA Astrophysics Data System (ADS)

    Lu, Yiming; Wang, Benquan; Yao, Xincheng

    2017-02-01

    Transient retinal phototropism (TRP) has been observed in rod photoreceptors activated by oblique visible light flashes. Time-lapse confocal microscopy and optical coherence tomography (OCT) revealed rod outer segment (ROS) movements as the physical source of TRP. However, the physiological source of TRP is still not well understood. In this study, concurrent TRP and electroretinogram (ERG) measurements disclosed a remarkably earlier onset time of the ROS movements (<=10 ms) than that ( 38 ms) of the ERG a-wave. Furthermore, low sodium treatment reversibly blocked the photoreceptor ERG a-wave, which is known to reflect hyperpolarization of retinal photoreceptors, but preserved the TRP associated rod OS movements well. Our experimental results and theoretical analysis suggested that the physiological source of TRP might be attributed to early stages of phototransduction, before the hyperpolarization of retinal photoreceptors.

  7. The consummatory origins of visually guided reaching in human infants: a dynamic integration of whole-body and upper-limb movements.

    PubMed

    Foroud, Afra; Whishaw, Ian Q

    2012-06-01

    Reaching-to-eat (skilled reaching) is a natural behaviour that involves reaching for, grasping and withdrawing a target to be placed into the mouth for eating. It is an action performed daily by adults and is among the first complex behaviours to develop in infants. During development, visually guided reaching becomes increasingly refined to the point that grasping of small objects with precision grips of the digits occurs at about one year of age. Integration of the hand, upper-limbs, and whole body are required for successful reaching, but the ontogeny of this integration has not been described. The present longitudinal study used Laban Movement Analysis, a behavioural descriptive method, to investigate the developmental progression of the use and integration of axial, proximal, and distal movements performed during visually guided reaching. Four infants (from 7 to 40 weeks age) were presented with graspable objects (toys or food items). The first prereaching stage was associated with activation of mouth, limb, and hand movements to a visually presented target. Next, reaching attempts consisted of first, the advancement of the head with an opening mouth and then with the head, trunk and opening mouth. Eventually, the axial movements gave way to the refined action of one upper-limb supported by axial adjustments. These findings are discussed in relation to the biological objective of reaching, the evolutionary origins of reaching, and the decomposition of reaching after neurological injury. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Computations underlying the visuomotor transformation for smooth pursuit eye movements

    PubMed Central

    Murdison, T. Scott; Leclercq, Guillaume; Lefèvre, Philippe

    2014-01-01

    Smooth pursuit eye movements are driven by retinal motion and enable us to view moving targets with high acuity. Complicating the generation of these movements is the fact that different eye and head rotations can produce different retinal stimuli but giving rise to identical smooth pursuit trajectories. However, because our eyes accurately pursue targets regardless of eye and head orientation (Blohm G, Lefèvre P. J Neurophysiol 104: 2103–2115, 2010), the brain must somehow take these signals into account. To learn about the neural mechanisms potentially underlying this visual-to-motor transformation, we trained a physiologically inspired neural network model to combine two-dimensional (2D) retinal motion signals with three-dimensional (3D) eye and head orientation and velocity signals to generate a spatially correct 3D pursuit command. We then simulated conditions of 1) head roll-induced ocular counterroll, 2) oblique gaze-induced retinal rotations, 3) eccentric gazes (invoking the half-angle rule), and 4) optokinetic nystagmus to investigate how units in the intermediate layers of the network accounted for different 3D constraints. Simultaneously, we simulated electrophysiological recordings (visual and motor tunings) and microstimulation experiments to quantify the reference frames of signals at each processing stage. We found a gradual retinal-to-intermediate-to-spatial feedforward transformation through the hidden layers. Our model is the first to describe the general 3D transformation for smooth pursuit mediated by eye- and head-dependent gain modulation. Based on several testable experimental predictions, our model provides a mechanism by which the brain could perform the 3D visuomotor transformation for smooth pursuit. PMID:25475344

  9. Quantifying Forearm Muscle Activity during Wrist and Finger Movements by Means of Multi-Channel Electromyography

    PubMed Central

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported. PMID:25289669

  10. Lightweight helmet-mounted eye movement measurement system

    NASA Technical Reports Server (NTRS)

    Barnes, J. A.

    1978-01-01

    The helmet-mounted eye movement measuring system, weighs 1,530 grams; the weight of the present aviators' helmet in standard form with the visor is 1,545 grams. The optical head is standard NAC Eye-Mark. This optical head was mounted on a magnesium yoke which in turn was attached to a slide cam mounted on the flight helmet. The slide cam allows one to adjust the eye-to-optics system distance quite easily and to secure it so that the system will remain in calibration. The design of the yoke and slide cam is such that the subject can, in an emergency, move the optical head forward and upward to the stowed and locked position atop the helmet. This feature was necessary for flight safety. The television camera that is used in the system is a solid state General Electric TN-2000 with a charged induced device imager used as the vidicon.

  11. Leg Movement Activity During Sleep in Adults With Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Garbazza, Corrado; Sauter, Cornelia; Paul, Juliane; Kollek, Jenny; Dujardin, Catharine; Hackethal, Sandra; Dorn, Hans; Peter, Anita; Hansen, Marie-Luise; Manconi, Mauro; Ferri, Raffaele; Danker-Hopfe, Heidi

    2018-01-01

    Objectives: To conduct a first detailed analysis of the pattern of leg movement (LM) activity during sleep in adult subjects with Attention-Deficit/Hyperactivity Disorder (ADHD) compared to healthy controls. Methods: Fifteen ADHD patients and 18 control subjects underwent an in-lab polysomnographic sleep study. The periodic character of LMs was evaluated with established markers of "periodicity," i.e., the periodicity index, intermovement intervals, and time distribution of LM during sleep, in addition to standard parameters such as the periodic leg movement during sleep index (PLMSI) and the periodic leg movement during sleep arousal index (PLMSAI). Subjective sleep and psychiatric symptoms were assessed using several, self-administered, screening questionnaires. Results: Objective sleep parameters from the baseline night did not significantly differ between ADHD and control subjects, except for a longer sleep latency (SL), a longer duration of the periodic leg movements during sleep (PLMS) in REM sleep and a higher PLMSI also in REM sleep. Data from the sleep questionnaires showed perception of poor sleep quality in ADHD patients. Conclusions: Leg movements during sleep in ADHD adults are not significantly more frequent than in healthy controls and the nocturnal motor events do not show an increased periodicity in these patients. The non-periodic character of LMs in ADHD has already been shown in children and seems to differentiate ADHD from other pathophysiological related conditions like restless legs syndrome (RLS) or periodic limb movement disorder (PLMD). The reduced subjective sleep quality reported by ADHD adults contrasted with the normal objective polysomnographic parameters, which could suggest a sleep-state misperception in these individuals or more subtle sleep abnormalities not picked up by the traditional sleep staging.

  12. MULTIPLE SHAFT TOOL HEAD

    DOEpatents

    Colbert, H.P.

    1962-10-23

    An improved tool head arrangement is designed for the automatic expanding of a plurality of ferruled tubes simultaneously. A plurality of output shafts of a multiple spindle drill head are driven in unison by a hydraulic motor. A plurality of tube expanders are respectively coupled to the shafts through individual power train arrangements. The axial or thrust force required for the rolling operation is provided by a double acting hydraulic cylinder having a hollow through shaft with the shaft cooperating with an internally rotatable splined shaft slidably coupled to a coupling rigidly attached to the respectlve output shaft of the drill head, thereby transmitting rotary motion and axial thrust simultaneously to the tube expander. A hydraulic power unit supplies power to each of the double acting cylinders through respective two-position, four-way valves, under control of respective solenoids for each of the cylinders. The solenoids are in turn selectively controlled by a tool selection control unit which in turn is controlled by signals received from a programmed, coded tape from a tape reader. The number of expanders that are extended in a rolling operation, which may be up to 42 expanders, is determined by a predetermined program of operations depending upon the arrangement of the ferruled tubes to be expanded in the tube bundle. The tape reader also supplies dimensional information to a machine tool servo control unit for imparting selected, horizontal and/or vertical movement to the tool head assembly. (AEC)

  13. The virtual morphology and the main movements of the human neck simulations used for car crash studies

    NASA Astrophysics Data System (ADS)

    Ciunel, St.; Tica, B.

    2016-08-01

    The paper presents the studies made on a similar biomechanical system composed by neck, head and thorax bones. The models were defined in a CAD environment which includes Adams algorithm for dynamic simulations. The virtual models and the entire morphology were obtained starting with CT images made on a living human subject. The main movements analyzed were: axial rotation (left-right), lateral bending (left-right) and flexion- extension movement. After simulation was obtained the entire biomechanical behavior based on data tables or diagrams. That virtual model composed by neck and head can be included in complex system (as a car system) and supposed to several impact simulations (virtual crash tests). Also, our research team built main components of a testing device for dummy car crash neck-head system using anatomical data.

  14. Evidence for a retinal velocity memory underlying the direction of anticipatory smooth pursuit eye movements.

    PubMed

    Murdison, T Scott; Paré-Bingley, Chanel A; Blohm, Gunnar

    2013-08-01

    To compute spatially correct smooth pursuit eye movements, the brain uses both retinal motion and extraretinal signals about the eyes and head in space (Blohm and Lefèvre 2010). However, when smooth eye movements rely solely on memorized target velocity, such as during anticipatory pursuit, it is unknown if this velocity memory also accounts for extraretinal information, such as head roll and ocular torsion. To answer this question, we used a novel behavioral updating paradigm in which participants pursued a repetitive, spatially constant fixation-gap-ramp stimulus in series of five trials. During the first four trials, participants' heads were rolled toward one shoulder, inducing ocular counterroll (OCR). With each repetition, participants increased their anticipatory pursuit gain, indicating a robust encoding of velocity memory. On the fifth trial, they rolled their heads to the opposite shoulder before pursuit, also inducing changes in ocular torsion. Consequently, for spatially accurate anticipatory pursuit, the velocity memory had to be updated across changes in head roll and ocular torsion. We tested how the velocity memory accounted for head roll and OCR by observing the effects of changes to these signals on anticipatory trajectories of the memory decoding (fifth) trials. We found that anticipatory pursuit was updated for changes in head roll; however, we observed no evidence of compensation for OCR, representing the absence of ocular torsion signals within the velocity memory. This indicated that the directional component of the memory must be coded retinally and updated to account for changes in head roll, but not OCR.

  15. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minoda, Hiroki; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012; Okabe, Tatsuhiro

    2011-02-25

    Research highlights: {yields} We succeeded in recording structural changes of hydrated myosin cross-bridges. {yields} We succeeded in position-marking the cross-bridges with site-directed antibodies. {yields} We recorded cross-bridge movement at different regions in individual cross-bridge. {yields} The movement was smallest at the cross-bridge-subfragment two boundary. {yields} The results provide evidence for the cross-bridge lever arm mechanism. -- Abstract: Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release ofmore » hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.« less

  16. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements

    NASA Technical Reports Server (NTRS)

    Shaikh, Aasef G.; Ghasia, Fatema F.; Dickman, J. David; Angelaki, Dora E.

    2005-01-01

    The most medial of the deep cerebellar nuclei, the fastigial nucleus (FN), receives sensory vestibular information and direct inhibition from the cerebellar vermis. We investigated the signal processing in the primate FN by recording single-unit activities during translational motion, rotational motion, and eye movements. Firing rate modulation during horizontal plane translation in the absence of eye movements was observed in all non-eye-movement-sensitive cells and 26% of the pursuit eye-movement-sensitive neurons in the caudal FN. Many non-eye-movement-sensitive cells recorded in the rostral FN of three fascicularis monkeys exhibited convergence of signals from both the otolith organs and the semicircular canals. At low frequencies of translation, the majority of these rostral FN cells changed their firing rates in phase with head velocity rather than linear acceleration. As frequency increased, FN vestibular neurons exhibited a wide range of response dynamics with most cells being characterized by increasing phase leads as a function of frequency. Unlike cells in the vestibular nuclei, none of the rostral FN cells responded to rotational motion alone, without simultaneously exhibiting sensitivity to translational motion. Modulation during earth-horizontal axis rotation was observed in more than half (77%) of the neurons, although with smaller gains than during translation. In contrast, only 47% of the cells changed their firing rates during earth-vertical axis rotations in the absence of a dynamic linear acceleration stimulus. These response properties suggest that the rostral FN represents a main processing center of otolith-driven information for inertial motion detection and spatial orientation.

  17. Fetal Eye Movements on Magnetic Resonance Imaging

    PubMed Central

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C.; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Objectives Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Methods Dynamic SSFP sequences were acquired in 72 singleton fetuses (17–40 GW, three age groups [17–23 GW, 24–32 GW, 33–40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. Results In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3–45%. Conclusions In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations. PMID:24194885

  18. Fetal eye movements on magnetic resonance imaging.

    PubMed

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3-45%. In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.

  19. Heading Frequency Is More Strongly Related to Cognitive Performance Than Unintentional Head Impacts in Amateur Soccer Players.

    PubMed

    Stewart, Walter F; Kim, Namhee; Ifrah, Chloe; Sliwinski, Martin; Zimmerman, Molly E; Kim, Mimi; Lipton, Richard B; Lipton, Michael L

    2018-01-01

    Compared to heading, unintentional head impacts (e.g., elbow to head, head to head, head to goalpost) in soccer are more strongly related to risk of moderate to very severe Central Nervous System (CNS) symptoms. But, most head impacts associated with CNS symptoms that occur in soccer are mild and are more strongly related to heading. We tested for a differential relation of heading and unintentional head impacts with neuropsychological (NP) test performance. Active adult amateur soccer players were recruited in New York City and the surrounding areas for this repeated measures longitudinal study of individuals who were enrolled if they had 5+ years of soccer play and were active playing soccer 6+ months/year. All participants completed a baseline validated questionnaire ("HeadCount-2w"), reporting 2-week recall of soccer activity, heading and unintentional head impacts. In addition, participants also completed NP tests of verbal learning, verbal memory, psychomotor speed, attention, and working memory. Most participants also completed one or more identical follow-up protocols (i.e., HeadCount-2w and NP tests) at 3- to 6-month intervals over a 2-year period. Repeated measures General Estimating Equations (GEE) linear models were used to determine if variation in NP tests at each visit was related to variation in either heading or unintentional head impacts in the 2-week period before testing. 308 players (78% male) completed 741 HeadCount-2w. Mean (median) heading/2-weeks was 50 (17) for men and 26 (7) for women. Heading was significantly associated with poorer performance on psychomotor speed ( p  < 0.001) and attention ( p  = 0.02) tasks and was borderline significant with poorer performance on the working memory ( p  = 0.06) task. Unintentional head impacts were not significantly associated with any NP test. Results did not differ after excluding 22 HeadCount-2w with reported concussive or borderline concussive symptoms. Poorer NP test performance was

  20. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements

    PubMed Central

    Riehle, Alexa; Wirtssohn, Sarah; Grün, Sonja; Brochier, Thomas

    2013-01-01

    Grasping an object involves shaping the hand and fingers in relation to the object’s physical properties. Following object contact, it also requires a fine adjustment of grasp forces for secure manipulation. Earlier studies suggest that the control of hand shaping and grasp force involve partially segregated motor cortical networks. However, it is still unclear how information originating from these networks is processed and integrated. We addressed this issue by analyzing massively parallel signals from population measures (local field potentials, LFPs) and single neuron spiking activities recorded simultaneously during a delayed reach-to-grasp task, by using a 100-electrode array chronically implanted in monkey motor cortex. Motor cortical LFPs exhibit a large multi-component movement-related potential (MRP) around movement onset. Here, we show that the peak amplitude of each MRP component and its latency with respect to movement onset vary along the cortical surface covered by the array. Using a comparative mapping approach, we suggest that the spatio-temporal structure of the MRP reflects the complex physical properties of the reach-to-grasp movement. In addition, we explored how the spatio-temporal structure of the MRP relates to two other measures of neuronal activity: the temporal profile of single neuron spiking activity at each electrode site and the somatosensory receptive field properties of single neuron activities. We observe that the spatial representations of LFP and spiking activities overlap extensively and relate to the spatial distribution of proximal and distal representations of the upper limb. Altogether, these data show that, in motor cortex, a precise spatio-temporal pattern of activation is involved for the control of reach-to-grasp movements and provide some new insight about the functional organization of motor cortex during reaching and object manipulation. PMID:23543888