Science.gov

Sample records for active hepatitis cah

  1. Antibodies to liver membrane antigens in chronic active hepatitis (CAH). II. Specificity for autoimmune CAH.

    PubMed Central

    Frazer, I H; Kronborg, I J; Mackay, I R

    1983-01-01

    An immunoradiometric assay for IgG class autoantibody to liver membrane antigens, based on serum binding to glutaraldehyde treated monkey hepatocytes, was used to examine sera from patients with chronic active hepatitis (CAH) and other acute and chronic liver diseases. All sera from normals and patients showed binding, up to a titre of 1/2,048. For comparison of assays, results were normalized by selecting two reference sera, one with a high degree of binding, and one from a healthy subject with a low degree of binding: at a dilution of 1/2,048, these sera were given binding values of 100% and 0%. The values for the binding of unknown sera at the same dilution were calculated from these two reference values. For 26 patients with autoimmune CAH, the mean (+/- s.d.) percentage binding value (70 +/- 33%) was significantly higher than the mean value for 26 healthy subjects (10 +/- 15%), and high binding values were significantly associated with biochemically active hepatitis. The mean percentage binding value was moderately increased for eight patients with HBsAg associated CAH (42 +/- 12%), 13 patients with alcoholic hepatitis with cirrhosis (37 +/- 25%) and 45 patients with acute viral hepatitis A (40 +/- 27%) or B (52 +/- 37%). At a cut-off binding value of 65%, the assay as a single diagnostic procedure was shown to have a 70% sensitivity and a 95% specificity for the diagnosis of autoimmune CAH. Better understanding of the pathogenetic significance of antibodies to liver membrane antigens in CAH and other liver diseases will depend upon biochemical analysis of the presumably multiple antigenic determinants on the hepatocyte membrane. PMID:6616969

  2. Personality characteristics and platelet MAO activity in women with congenital adrenal hyperplasia (CAH).

    PubMed

    Helleday, J; Edman, G; Ritzén, E M; Siwers, B

    1993-01-01

    Personality traits and platelet monoamine oxidase (MAO) activity were studied in 22 women, 17-34 years old, with prenatal virilization due to congenital adrenal hyperplasia (CAH) (21-hydroxylase deficiency) and 22 healthy controls. The CAH group differed significantly on two of the eight scales of the Karolinska Scales of Personality (KSP), which have earlier shown significant gender differences. Both differences were in the masculine direction, with a high, male level, score for Detachment and a lower score for Indirect Aggression. The Detachment scale reflects distance in social relations, and has earlier been shown to be strongly gender differentiating. There was no significant difference in platelet MAO activity between the CAH group and the controls. Although an influence of psychosocial factors cannot be excluded, the results suggest a possible association between prenatal androgen exposure and the high Detachment score for the CAH group. Gender differences in empathy, affiliation motivation, intimacy and maternal behavior may be relevant parallels.

  3. Increased aggression and activity level in 3- to 11-year-old girls with congenital adrenal hyperplasia (CAH).

    PubMed

    Pasterski, Vickie; Hindmarsh, Peter; Geffner, Mitchell; Brook, Charles; Brain, Caroline; Hines, Melissa

    2007-09-01

    Experimental research in a wide range of mammals has documented powerful influences of androgen during early development on brain systems and behaviors that show sex differences. Clinical research in humans suggests similar influences of early androgen concentrations on some behaviors, including childhood play behavior and adult sexual orientation. However, findings have been inconsistent for some other behaviors that show sex differences, including aggression and activity level in children. This inconsistency may reflect small sample sizes and assessment limitations. In the present study, we assessed aggression and activity level in 3- to 11-year-old children with CAH (38 girls, 29 boys) and in their unaffected siblings (25 girls, 21 boys) using a questionnaire that mothers completed to indicate current aggressive behavior and activity level in their children. Data supported the hypotheses that: (1) unaffected boys are more aggressive and active than unaffected girls; (2) girls with CAH are more aggressive and active than their unaffected sisters; and (3) boys with and without CAH are similar to one another in aggression and activity level. These data suggest that early androgens have a masculinizing effect on both aggressive behavior and activity level in girls.

  4. Increased serum cortisol binding in chronic active hepatitis

    SciTech Connect

    Orbach, O.; Schussler, G.C.

    1989-01-01

    A high serum cortisol concentration, apparently due to increased cortisol-binding globulin (CBG), was found in a patient (index case) with chronic active hepatitis (CAH). We therefore performed further studies to determine whether increased cortisol binding is generally associated with CAH. Serum samples were obtained from 15 hospitalized patients with long-term liver function test elevations but no evidence of cirrhosis, 15 normal subjects without a history of hepatitis, four healthy pregnant women, and 10 alcoholic patients with stigmata of cirrhosis. Serum cortisol binding was measured by an adaptation of a previously described charcoal uptake method. Thyroxine-binding globulin (TBG) and sex hormone-binding globulin were determined by radioimmunoassays. Charcoal uptake of 125I cortisol from sera of normal subjects and additional patients with CAH revealed that increased serum cortisol binding by a saturable site, presumably CBG, was associated with CAH. Cortisol binding was significantly correlated with immunoassayable TBG, suggesting that in CAH, similar mechanisms may be responsible for increasing the serum concentrations of CBG and TBG.

  5. Critical Access Hospitals (CAH)

    MedlinePlus

    ... use requirements for Critical Access Hospitals related to Electronic Health Records (EHRs)? Critical Access Hospital (CAH) are eligible for Electronic Health Record (EHR) incentive payments and can receive ...

  6. PIK3CAH1047R and Her2 initiated mammary tumors escape PI3K dependency by compensatory activation of MEK-ERK signaling

    PubMed Central

    Cheng, Hailing; Liu, Pixu; Ohlson, Carolynn; Xu, Erbo; Symonds, Lynn; Isabella, Adam; Muller, William J.; Lin, Nancy U.; Krop, Ian E.; Roberts, Thomas M.; Winer, Eric P.; Arteaga, Carlos L.; Zhao, Jean J.

    2015-01-01

    Human breast cancers that have HER2 amplification/overexpression frequently carry PIK3CA mutations, and are often associated with a worse prognosis. However, the role of PIK3CA mutations in the initiation and maintenance of these breast cancers remains elusive. In the present study, we generated a compound mouse model that genetically mimics HER2 positive breast cancer with coexisting PIK3CAH1047R. Induction of PIK3CAH1047R expression in mouse mammary glands with constitutive expression of activated Her2/Neu resulted in accelerated mammary tumorigenesis with enhanced metastatic potential. Interestingly, inducible expression of mutant PIK3CA resulted in a robust activation of PI3K/AKT signaling but attenuation of Her2/Her3 signaling, and this can be reversed by deinduction of PIK3CAH1047R expression. Strikingly, while these Her2+ PIK3CAH1047R initiated primary mammary tumors are refractory to HER2-targeted therapy, all tumors responded to inactivation of the oncogenic PIK3CAH1047R, a situation closely mimicking the use of a highly effective inhibitor specifically targeting the mutant PIK3CA/p110a. Notably, these tumors eventually resumed growth, and a fraction of them escaped PI3K dependence by compensatory ERK activation, which can be blocked by combined inhibition of Her2 and MEK. Together, these results suggest that PIK3CA-specific inhibition as a monotherapy followed by combination therapy targeting MAPK and HER2 in a timely manner may be an effective treatment approach against HER2 positive cancers with coexisting PIK3CA-activating mutations. PMID:26640141

  7. Studies on the Pathogenesis of Experimental Chronic Active Hepatitis in Rabbits

    PubMed Central

    Hopf, U.; Meyer zum Büschenfelde, K.-H.

    1974-01-01

    Isolated hepatocytes of rabbits with experimentally induced chronic active hepatitis (CAH) in different stages and liver cirrhosis, respectively, and of animals without liver lesions were studied by immunofluorescence with regard to surface bound immunoglobulin. In 8 of 9 animals with CAH immunoglobulin could be demonstrated on the membranes of the hepatocytes. One animal with liver cirrhosis did not show fixed gammaglobulin; 8 animals without liver lesions which had been immunized with xenogeneic (human) together with allogeneic liver specific proteins (RLP) had no immunoglobulin bound to their hepatocytes, with one exception. The antibody titres in the serum of these animals against liver specific proteins (passive haemagglutination and gel diffusion) were not different from those in animals with liver lesions. The skin test reactivity with RLP as antigen corresponded largely to the development of liver lesions. The pathogenic importance of an antibody mediated lymphocytic cytotoxicity for the induction of CAH is discussed. ImagesFig. PMID:4217635

  8. Features of chronic hepatitis in alcoholics. A survey in Milan.

    PubMed

    Adelasco, L; Monarca, A; Dantes, M; Moioli, M G; Vinci, M; Croce, G; Tavani, E; Natangelo, R; Lucchelli, P D

    1987-10-01

    A study was carried out to confirm the pathogenetic role of ethanol in the development of chronic active hepatitis (CAH) and to assess if previous or current superimposed hepatitis B virus (HBV) infection could be relevant to the course of alcoholic liver disease (ALD). We examined clinical and laboratory reports of 57 alcoholics with biopsy-proven CAH. Serum and/or tissue HBV markers and the presence or absence of cirrhosis were investigated. Alcohol was the only aetiological factor present in a small group of CAH, with or without histological findings suggestive of alcoholic damage. Age, sex and survival were similar among the subgroups of CAH with and without previous or current HBV infection and among the subgroups of CAH with and without associated histological alcoholic features. Among the laboratory data, the AST/ALT ratio was higher in CAH without previous or current HBV infection. The mean age was comparable in CAH patients with and without cirrhosis, whereas the cumulative 5-year survival was worse in CAH with cirrhosis (87% vs. 49%). These data suggest a difference in alcohol susceptibility in our subjects.

  9. T lymphocyte subpopulations defined by two sets of monoclonal antibodies in chronic active hepatitis and systemic lupus erythematosus.

    PubMed Central

    Frazer, I H; Mackay, I R

    1982-01-01

    Lymphocyte subpopulations were enumerated in human peripheral blood using murine monoclonal antibodies with specificity for all peripheral blood T lymphocytes (OKT3, alpha-Leu 1) and for the helper subset (OKT4, alpha Leu 3a) and suppressor/cytotoxic subset (OKT8, alpha Leu 2a). Patients with chronic active hepatitis (CAH) (23) or systemic lupus erythematosus (SLE) (10), compared with healthy subjects (20), had a lower mean T lymphocyte count. Patients with CAH had normal numbers of suppressor/cytotoxic (TSC) cells, but fewer helper (TH) cells than healthy subjects (0 . 96 +/- 0 . 11 X 10(9)/1 versus 1 . 45 +/- 0 . 15 X 10(9)/1), and those with SLE also had fewer TH cells (0 . 93 +/- 0 . 11 X 10(9)/1). Patients with CAH receiving azathioprine (n = 8) had significantly fewer TSC cells, and a higher TH/TSC ratio (2 . 69 +/- 0 . 35) than those (n = 15) not on this therapy (1 . 85 +/- 0 . 15). When patients taking azathioprine were excluded, no correlation was found between disease activity and the TH/TSC ratio for either disease. PMID:6216997

  10. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis

    PubMed Central

    Schon, Hans-Theo; Bartneck, Matthias; Borkham-Kamphorst, Erawan; Nattermann, Jacob; Lammers, Twan; Tacke, Frank; Weiskirchen, Ralf

    2016-01-01

    The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs. PMID:26941644

  11. (+)-Catechin attenuates activation of hepatic stellate cells.

    PubMed

    Bragança de Moraes, Cristina Machado; Bitencourt, Shanna; de Mesquita, Fernanda Cristina; Mello, Denizar; de Oliveira, Leticia Paranhos; da Silva, Gabriela Viegas; Lorini, Vinicius; Caberlon, Eduardo; de Souza Basso, Bruno; Schmid, Julia; Ferreira, Gabriela Acevedo; de Oliveira, Jarbas Rodrigues

    2014-04-01

    (+)-Catechin is a type of catechin present in large amounts in açaí fruits and cocoa seeds. Besides its antioxidant and anti-inflammatory activities, little is known about its effects in the liver, especially during hepatic fibrosis. We report here the effects of (+)-catechin on hepatic stellate cells. (+)-Catechin induced quiescent phenotype in GRX cells, along with an increase in lipid droplets. Proliferator-activated receptor γ mRNA expression was upregulated, whereas type I collagen mRNA expression was downregulated. Pro-inflammatory cytokines were not influenced by (+)-catechin, whereas the levels of interleukin 10 were significantly increased. The data provide evidence that (+)-catechin can reduce hepatic stellate cell activation.

  12. Crystal structure and functional characterization of photosystem II-associated carbonic anhydrase CAH3 in Chlamydomonas reinhardtii.

    PubMed

    Benlloch, Reyes; Shevela, Dmitriy; Hainzl, Tobias; Grundström, Christin; Shutova, Tatyana; Messinger, Johannes; Samuelsson, Göran; Sauer-Eriksson, A Elisabeth

    2015-03-01

    In oxygenic photosynthesis, light energy is stored in the form of chemical energy by converting CO2 and water into carbohydrates. The light-driven oxidation of water that provides the electrons and protons for the subsequent CO2 fixation takes place in photosystem II (PSII). Recent studies show that in higher plants, HCO3 (-) increases PSII activity by acting as a mobile acceptor of the protons produced by PSII. In the green alga Chlamydomonas reinhardtii, a luminal carbonic anhydrase, CrCAH3, was suggested to improve proton removal from PSII, possibly by rapid reformation of HCO3 (-) from CO2. In this study, we investigated the interplay between PSII and CrCAH3 by membrane inlet mass spectrometry and x-ray crystallography. Membrane inlet mass spectrometry measurements showed that CrCAH3 was most active at the slightly acidic pH values prevalent in the thylakoid lumen under illumination. Two crystal structures of CrCAH3 in complex with either acetazolamide or phosphate ions were determined at 2.6- and 2.7-Å resolution, respectively. CrCAH3 is a dimer at pH 4.1 that is stabilized by swapping of the N-terminal arms, a feature not previously observed in α-type carbonic anhydrases. The structure contains a disulfide bond, and redox titration of CrCAH3 function with dithiothreitol suggested a possible redox regulation of the enzyme. The stimulating effect of CrCAH3 and CO2/HCO3 (-) on PSII activity was demonstrated by comparing the flash-induced oxygen evolution pattern of wild-type and CrCAH3-less PSII preparations. We showed that CrCAH3 has unique structural features that allow this enzyme to maximize PSII activity at low pH and CO2 concentration.

  13. Autoimmune hepatitis: what must be said.

    PubMed

    Mackay, Ian R

    2012-12-01

    Autoimmune hepatitis (AIH) was first studied under its earlier name of "chronic active hepatitis" (CAH) from the 1950s, coincident with a renaissance of interest in autoimmunity. The definition of autoimmune serum reactants in disease, including CAH, gave new insights into chronic hepatitis and liver cirrhosis, and led to refinements of Burnet's clonal selection theory of acquired immunity, 1957-59. Various discoveries including serological reactants in CAH prompted its designation in 1965 as autoimmune hepatitis, and treatment with immunosuppressive drug regimens transformed outcomes and survival. Serological observations further indicated that AIH could exist as either of two types, clinically similar but genetically different: Type 1 aligned more with the non-organ-specific multisystem diseases, and the infrequent Type 2 more with the organ-specific diseases. However, events in either type that could explain the onset of autoimmunity in the normally tolerogenic milieu of the liver have not been discerned. In the genetically predisposed individual, initiation may depend on non-specific death of hepatocytes after which fragments derived from disordered apoptosis acquire the capacity for ongoing auto-immunogenic stimulation. Insufficiency in numbers and function of Treg populations appears important in the promotion of this autoimmune process.

  14. DMBA induced mouse mammary tumors display high incidence of activating Pik3caH1047 and loss of function Pten mutations

    PubMed Central

    Abba, Martín C.; Zhong, Yi; Lee, Jaeho; Kil, Hyunsuk; Lu, Yue; Takata, Yoko; Simper, Melissa S.; Gaddis, Sally; Shen, Jianjun; Aldaz, C. Marcelo

    2016-01-01

    Controversy always existed on the utility of chemically induced mouse mammary carcinogenesis models as valid equivalents for the study of human breast cancer. Here, we performed whole exome and RNA sequencing on long latency mammary tumors (218 ± 27 days) induced by the carcinogen 7,12-Dimethylbenzathracene (DMBA) and short latency tumors (65 ± 11 days) induced by the progestin Medroxyprogesterone Acetate (MPA) plus DMBA in CD2F1 mice. Long latency tumors displayed a high frequency of Pi3kca and/or Pten mutations detected in 11 of 13 (85%) long latency cases (14/22, 64% overall). Eighty-two percent (9/11) of tumors carried the Pik3ca H1047L/R hot-spot mutation, as frequently found in human breast cancer. These tumors were luminal-like and mostly ER/PR+, as in humans. Transcriptome profiling indicated a significant activation of the PI3K-Akt pathway (p=3.82e-6). On the other hand MPA+DMBA induced short latency tumors displayed mutations in cancer drivers not commonly found mutated in human breast cancer (e.g. Hras and Apc). These tumors were mostly basal-like and MPA exposure led to Rankl overexpression (60 fold induction) and immunosuppressive gene expression signatures. In summary, long latency DMBA induced mouse mammary tumors reproduce the molecular profile of human luminal breast carcinomas representing an excellent preclinical model for the testing of PIK3CA/Akt/mTOR pathway inhibitory therapies and a good platform for the developing of additional preclinical tools such as syngeneic transplants in immunocompetent hosts. PMID:27588403

  15. 42 CFR 485.606 - Designation and certification of CAHs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Designation and certification of CAHs. 485.606 Section 485.606 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... flexibility program described in section 1820(c) of the Act may designate one or more facilities as CAHs...

  16. 42 CFR 485.606 - Designation and certification of CAHs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Designation and certification of CAHs. 485.606 Section 485.606 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... flexibility program described in section 1820(c) of the Act may designate one or more facilities as CAHs...

  17. 42 CFR 485.606 - Designation and certification of CAHs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Designation and certification of CAHs. 485.606 Section 485.606 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... flexibility program described in section 1820(c) of the Act may designate one or more facilities as CAHs...

  18. 42 CFR 485.606 - Designation and certification of CAHs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Designation and certification of CAHs. 485.606 Section 485.606 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... flexibility program described in section 1820(c) of the Act may designate one or more facilities as CAHs...

  19. Increased tumour necrosis factor alpha production by neutrophils in patients with hepatitis B.

    PubMed Central

    Fan, X; Zhang, Z

    1994-01-01

    AIMS--To investigate the role of serum and neutrophil tumour necrosis factor alpha (TNF alpha) in patients with viral hepatitis. METHODS--The activities of serum and neutrophil TNF alpha were measured using a bioassay of in vitro cytotoxicity against L929 cells in 57 patients with viral hepatitis and 20 healthy blood donors. RESULTS--Both serum and neutrophil TNF alpha in patients with chronic active hepatitis (CAH) and subacute fulminant hepatitis (SAFH) increased compared with those in normal controls (p < 0.01). No such differences were seen in patients with acute hepatitis. Serum and neutrophil TNF alpha were obviously reduced in patients with CAH and SAFH during convalescence compared with the active period (p < 0.05; p < 0.01). Furthermore, serum TNF alpha was significantly increased in patients with SAFH and complications compared with those without (p < 0.01), and in patients with SAFH who died compared with those who survived (p < 0.01). Neutrophil TNF alpha was significantly higher in patients with SAFH and secondary bacterial infections (p < 0.05). CONCLUSIONS--Production of serum and neutrophil TNF alpha is increased in patients with CAH and SAFH, suggesting that neutrophil TNF alpha causes liver injury in these patients. PMID:8089217

  20. 42 CFR 495.106 - Incentive payments to CAHs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... computers and associated hardware and software, necessary to administer certified EHR technology as defined... (CONTINUED) STANDARDS AND CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY INCENTIVE... of certified EHR technology for a qualifying CAH means the reasonable acquisition costs incurred...

  1. 42 CFR 495.106 - Incentive payments to CAHs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... computers and associated hardware and software, necessary to administer certified EHR technology as defined... (CONTINUED) STANDARDS AND CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY INCENTIVE... of certified EHR technology for a qualifying CAH means the reasonable acquisition costs incurred...

  2. Hepatitis

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hepatitis KidsHealth > For Teens > Hepatitis Print A A A ... to a liver condition called hepatitis . What Is Hepatitis? The liver is one of the body's powerhouses. ...

  3. Hepatitis

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... an important digestive liquid called bile . What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  4. Ab initio transition dipole moments and potential energy curves for the low-lying electronic states of CaH

    NASA Astrophysics Data System (ADS)

    Shayesteh, Alireza; Alavi, S. Fatemeh; Rahman, Moloud; Gharib-Nezhad, Ehsan

    2017-01-01

    Ab initio potential energy curves have been calculated for the X2Σ+, A2Π, B2Σ+, 12Δ, E2Π and D2Σ+ states of CaH using the multi-reference configuration interaction method with large active space and basis sets. Transition dipole moments were calculated at Ca-H distances from 2.0 a0 to 14.0 a0, and excited state lifetimes were obtained. Our theoretical transition dipole moments can be combined with the available experimental data on the X2Σ+, A2Π and B2Σ+ states to calculate Einstein A coefficients for all rovibronic transitions of CaH appearing in solar and stellar spectra.

  5. Hepatic SATB1 induces paracrine activation of hepatic stellate cells and is upregulated by HBx

    PubMed Central

    Gong, Jin; Tu, Wei; Han, Jian; He, Jiayi; Liu, Jingmei; Han, Ping; Wang, Yunwu; Li, Mengke; Liu, Mei; Liao, Jiazhi; Tian, Dean

    2016-01-01

    Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver diseases, but its involvement in hepatic fibrogenesis remains unclear. Special AT-rich binding protein 1 (SATB1) has been implicated in reprogramming chromatin organization and transcription profiles in many cancers and non-cancer-related conditions. We found that hepatic SATB1 expression was significantly up-regulated in fibrotic tissues from chronic hepatitis B virus (HBV)-infected patients and HBV transgenic (HBV-Tg) mouse model. Knockdown of SATB1 in the liver significantly alleviated CCl4-induced fibrosis in HBV-Tg mouse model. Moreover, we suggested HBV encoded x protein (HBx) induced SATB1 expression through activation of JNK and ERK pathways. Enforced expression of SATB1 in hepatocytes promoted the activation and proliferation of hepatic stellate cells (HSCs) by secretion of connective tissue growth factor (CTGF), Interleukin-6 (IL-6) and platelet derived growth factor-A (PDGF-AA). Our findings demonstrated that HBx upregulated hepatic SATB1 which exerted pro-fibrotic effects by paracrine activation of stellate cells in HBV-related fibrosis. PMID:27883059

  6. Hepatitis

    MedlinePlus

    ... clotting problems or chronic liver disease. previous continue Hepatitis B and Hepatitis C Although hep A is a ... does — through direct contact with infected body fluids. Hepatitis B and C are even more easily passed in ...

  7. Hepatitis

    MedlinePlus

    ... A if they've been vaccinated against it. Hepatitis B Hepatitis B is a more serious infection. It may lead ... of which cause severe illness and even death. Hepatitis B virus (HBV) is transmitted from person to person ...

  8. Hepatitis

    MedlinePlus

    ... Issues Listen Español Text Size Email Print Share Hepatitis Page Content Article Body Hepatitis means “inflammation of ... it has been associated with drinking contaminated water. Hepatitis Viruses Type Transmission Prognosis A Fecal-oral (stool ...

  9. [Hepatitis non-A, non-B: epidemiological significance in acute viral hepatitis and chronic active hepatitis of hepatological consultation].

    PubMed

    Jmelnitzky, A C; Basualdo, J A; Belloni, P O; Ponce de León, H H; García, C; Curciarello, J

    1987-01-01

    157 acute viral hepatitis and 60 chronic active ones have been analyzed focusing on NANB etiology. HAV was implicated in 36.3% of the hole acute viral hepatitis sample, HBV in 29.3%, and HNANBV was presumed as etiology in 31.2%, 5 patients (3.2%) had acute infection by HAV, on previous one by HBV, except for Epstein-Barr virus, no other test for viruses were determined (CMV, HSV, etc.). Male/female ratio was 1.4:1, 1.9:1, and 1.4:1 for HAV, HBV and HNANBV acute hepatitis respectively; HAV was the main etiology in the 0-9 age group (72.2%) although it only represents 11.5% of the sample; small occurrence of HAV hepatitis were found in patients over 40 (8.8%); HBV was clearly prevalent in patients over 50 (65.2%); the highest concentration of NANB etiology was found between 20-39 years old, but it was represented in all age-groups. Out of 49 NANB acute hepatitis, 12.2% had related transfusional antecedents, 12.2% belonged to health care worker group, and 4.1% had a close family NANB hepatitis contact; 71.5% had no reported antecedent. Viral source was presumably implicated in 75.0% of chronic active hepatitis, 25.0% attributable to HNANBV. Results seem not feasible to transfer to general population due to the facts that most patients were of specialized consult, and pediatric assistance is unusual to the authors practice.

  10. [Chronic active hepatitis: clinical, biochemical, and histopathologic correlation].

    PubMed

    Subauste, M C

    1989-01-01

    A retrospective study over 26 female patients with chronic active hepatitis was made. The mean age was 39 years old, the mean length of illness of 8 months; 5 patients had positive markers for hepatitis B. Patients were selected with the grade of histological activity: 8 patients had a mild form from disease (2A) and 16 with a severe one (2B). The predominant group was 2B. Severe inflammatory infiltration was the hallmark and multiobulillar necrosis, bridging, eosinophils and hiperplasia of kuppfer cells were found only in this group. Clinical features range from hepatic manifestations to systemic ones. Chronic active hepatitis may present with cholestasis, but the latter is not always related with the grade of activity. Group 2B had elevated aminotransferases and a low concentration for protrobine.

  11. Catalase ameliorates hepatic fibrosis by inhibition of hepatic stellate cells activation.

    PubMed

    Dong, Yuwei; Qu, Ying; Xu, Mingyi; Wang, Xingpeng; Lu, Lungen

    2014-01-01

    Catalase, an endogenous antioxidant enzyme, is thought to have rescue effects on hepatic fibrosis. In this study, the regulation of catalase in CCl₄-induced hepatic fibrogenesis was investigated. Our results indicated that catalase expression was decreased upon CCl₄ treatment in a time-dependent manner, while the expression of several profibrosis and proangiogenic factors, including transforming growth factor (TGF)-beta 1, vascular endothelial growth factor (VEGF), and angiopoietin 1 were significantly increased. To assess the role of catalase in hepatic fibrosis, catalase was overexpressed in HSC-T6 cells. This overexpression resulted in the inhibition of cell proliferation, migratory activity, and alpha-smooth muscle actin (alpha-SMA) expression, key features that characterize activation of hepatic stellate cells (HSC). Overexpression of catalase led to a decrease in the secretion of collagen type 1 and angiopoietin 1. These results indicate that loss of catalase activity is involved in the pathogenesis of hepatic fibrosis caused by the activation of HSCs.

  12. 42 CFR 495.106 - Incentive payments to CAHs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Incentive payments to CAHs. 495.106 Section 495.106 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY...

  13. Should CAH in Females Be Classified as DSD?

    PubMed Central

    González, Ricardo; Ludwikowski, Barbara M.

    2016-01-01

    Great controversies and misunderstandings have developed around the relatively recently coined term disorders of sex development (DSD). In this article, we question the wisdom of including XX individuals with congenital adrenal hyperplasia (CAH) in the DSD category and develop arguments against it based on the published literature on the subject. It is clear that females with CAH assigned the female gender before 24 months of age and properly managed retain the female gender identity regardless of the Prader grade. Females with CAH and low Prader grades have the potential for a normal sexual and reproductive life. Those with greater degrees of prenatal androgen exposure (Prader grades IV and V) raised as females also identify themselves as females but experience more male-like behavior in childhood, have a greater rate of homosexuality, and have greater difficulty with vaginal penetration and maintaining pregnancies. Improvement in surgical techniques, better endocrinological, psychological, and surgical follow-up may lessen these problems in the future. Given the fact that the term DSD includes many conditions with problematic gender identity and conflicts with the gender assigned at birth, it may be appropriate to exclude females with CAH from the DSD classification. PMID:27242977

  14. Should CAH in Females Be Classified as DSD?

    PubMed

    González, Ricardo; Ludwikowski, Barbara M

    2016-01-01

    Great controversies and misunderstandings have developed around the relatively recently coined term disorders of sex development (DSD). In this article, we question the wisdom of including XX individuals with congenital adrenal hyperplasia (CAH) in the DSD category and develop arguments against it based on the published literature on the subject. It is clear that females with CAH assigned the female gender before 24 months of age and properly managed retain the female gender identity regardless of the Prader grade. Females with CAH and low Prader grades have the potential for a normal sexual and reproductive life. Those with greater degrees of prenatal androgen exposure (Prader grades IV and V) raised as females also identify themselves as females but experience more male-like behavior in childhood, have a greater rate of homosexuality, and have greater difficulty with vaginal penetration and maintaining pregnancies. Improvement in surgical techniques, better endocrinological, psychological, and surgical follow-up may lessen these problems in the future. Given the fact that the term DSD includes many conditions with problematic gender identity and conflicts with the gender assigned at birth, it may be appropriate to exclude females with CAH from the DSD classification.

  15. UTILIZATION OF TREATABILITY AND PILOT TESTS TO PREDICT CAH BIOREMEDIATION

    EPA Science Inventory

    Multiple tools have been suggested to help in the design of enhanced anaerobic bioremediation systems for CAHs:
    - Extensive high quality microcosm testing followed by small-scale, thoroughly observed field pilot tests (i.e., RABITT Protocol, Morse 1998)
    - More limited ...

  16. Hepatitis B virus X protein regulates hepatic glucose homeostasis via activation of inducible nitric oxide synthase.

    PubMed

    Shin, Hye-Jun; Park, Young-Ho; Kim, Sun-Uk; Moon, Hyung-Bae; Park, Do Sim; Han, Ying-Hao; Lee, Chul-Ho; Lee, Dong-Seok; Song, In-Sung; Lee, Dae Ho; Kim, Minhye; Kim, Nam-Soon; Kim, Dae-Ghon; Kim, Jin-Man; Kim, Sang-Keun; Kim, Yo Na; Kim, Su Sung; Choi, Cheol Soo; Kim, Young-Bum; Yu, Dae-Yeul

    2011-08-26

    Dysregulation of liver functions leads to insulin resistance causing type 2 diabetes mellitus and is often found in chronic liver diseases. However, the mechanisms of hepatic dysfunction leading to hepatic metabolic disorder are still poorly understood in chronic liver diseases. The current work investigated the role of hepatitis B virus X protein (HBx) in regulating glucose metabolism. We studied HBx-overexpressing (HBxTg) mice and HBxTg mice lacking inducible nitric oxide synthase (iNOS). Here we show that gene expressions of the key gluconeogenic enzymes were significantly increased in HepG2 cells expressing HBx (HepG2-HBx) and in non-tumor liver tissues of hepatitis B virus patients with high levels of HBx expression. In the liver of HBxTg mice, the expressions of gluconeogenic genes were also elevated, leading to hyperglycemia by increasing hepatic glucose production. However, this effect was insufficient to cause systemic insulin resistance. Importantly, the actions of HBx on hepatic glucose metabolism are thought to be mediated via iNOS signaling, as evidenced by the fact that deficiency of iNOS restored HBx-induced hyperglycemia by suppressing the gene expression of gluconeogenic enzymes. Treatment of HepG2-HBx cells with nitric oxide (NO) caused a significant increase in the expression of gluconeogenic genes, but JNK1 inhibition was completely normalized. Furthermore, hyperactivation of JNK1 in the liver of HBxTg mice was also suppressed in the absence of iNOS, indicating the critical role for JNK in the mutual regulation of HBx- and iNOS-mediated glucose metabolism. These findings establish a novel mechanism of HBx-driven hepatic metabolic disorder that is modulated by iNOS-mediated activation of JNK.

  17. Hepatitis B virus replication in steroid-treated severe HBsAg-positive chronic active hepatitis.

    PubMed

    Davis, G L; Czaja, A J; Taswell, H F; Ludwig, J; Go, V L

    1985-02-01

    To determine the effect of corticosteroids on the replication of hepatitis B virus and to assess the relationship between virus replication and prognosis, the behavior of serum and tissue HBcAg was evaluated in 16 patients with severe HBsAg-positive chronic active hepatitis who were treated with prednisone and followed for up to 10 years (mean +/- SEM, 66 +/- 9 months). Hepatitis B virus replication was assessed in serum by a solid-phase radioimmunoassay of Dane particle-associated HBcAg and in liver tissue by indirect immunoperoxidase staining for HBcAg. Despite the presence of severe inflammatory activity, only low levels of hepatitis B virus replication were demonstrated. Mean serum HBcAg levels were low at accession and remained essentially unchanged or gradually decreased during corticosteroid therapy. Serum HBcAg appeared in only one patient in whom no virus replication was detected prior to therapy. HBeAg was frequently detected at low titers by radioimmunoassay when serum HBcAg was undetectable. Loss of HBcAg preceded loss of HBeAg by radioimmunoassay, and disappearance of both markers was a prerequisite for sustained histologic remission. In eight patients, inflammation was present despite absence of serum or tissue HBcAg; in three of these, disease activity continued after loss of HBeAg. We conclude that low levels of hepatitis B virus replication may be associated with severe inflammatory activity, and these levels are not increased by long-term corticosteroid therapy. Inflammation can continue despite loss of HBeAg and absence of detectable virus replication.

  18. [Gallbladder motor activity in patients with virus hepatitis B].

    PubMed

    Mamos, Arkadiusz; Wichan, Paweł; Chojnacki, Jan; Grzegorczyk, Krzysztof

    2003-12-01

    In acute stage of virus hepatitis B patients often complain of dyspeptic discomfort. They may be a consequence of alimentary tract motor activity disorders including these of gallbladder. Routine ultrasonography in an early phase of virus hepatitis often reveals gallbladder wall thickening what may confirm the above thesis. Thus, a group of 15 patients in an acute phase of virus hepatitis B was subjected to examinations. Gallbladder motor activity was assessed by ultrasonographic method determining its total volume and ejection fraction and volume after test meal stimulus. First examination was performed in the first week since the appearance of yellowing of the walls, successive in 4 and 8 week of the disease. Obtained results were compared to the values obtained in the group of 25 healthy volunteers. It was found out that gallbladder volume was significantly decreased and ejection fraction increased in the acute phase of virus hepatitis B than in the controls. This may speak for gallbladder hyperreactivity in patients in the course of virus hepatitis B. These disorders decreased during two-month observation but even in the 8 week the investigated parameters differed from those found in the control group.

  19. Applications of CaH Photometry to Red Stars

    NASA Astrophysics Data System (ADS)

    Robertson, Thomas H.

    2011-01-01

    A photometric system using Kron-Cousins R and I magnitudes with an intermediate-band CaH filter has been in use for a number of years. This system was designed to produce luminosity classes and photometric parallaxes for red dwarf stars with R-I > 0.7. Observations have been made on three different telescopes equipped with four different CCD cameras, two different CaH filters and three different Kron-Cousins filter sets. The system has remained consistent and provides for relatively easy transformation from one set in instrumental/standard magnitudes to another. Data collected using these various hardware systems have been transformed to a uniform system and the numerical parameters for luminosity classification are provided.

  20. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    SciTech Connect

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  1. Cellular and humoral immune reactions in chronic active liver disease. II. Lymphocyte subsets and viral antigens in liver biopsies of patients with acute and chronic hepatitis B.

    PubMed Central

    Eggink, H F; Houthoff, H J; Huitema, S; Wolters, G; Poppema, S; Gips, C H

    1984-01-01

    The characteristics and distribution of the inflammatory infiltrate in liver biopsies of 25 patients with hepatitis B viral (HBV) infection were studied in relation to the distribution and expression of HBV antigens. Mononuclear subsets were characterized with monoclonal (OKT, OKM, Leu) antibodies to surface antigens. For the demonstration of viral antigens directly conjugated antibodies to surface (HBsAg), core (HBcAg) and 'e' (HBeAg) antigen were used. For the study of mutual relations all methods were performed on serial cut tissue sections. In chronic active hepatitis B (CAH-B, n = 12) OKT8+ lymphocytes of T cell origin were the only cell type present in areas with liver cell degeneration and T cell cytotoxicity appears to be the only immune mechanism. In chronic persistent hepatitis B (CPH-B, n = 7) the only conspicuous feature was the presence of many Leu 3+ lymphocytes of the helper/inducer population in the portal tracts. In acute hepatitis B (AHB, n = 6) OKT8+ cells of non-T origin (OKT1-,3-) and Leu 7+ cells of presumed natural killer (NK) potential predominated in the areas with liver cell necrosis, and non-T cell cytotoxicity appears to be the predominant immune mechanism. In none of these disease entities a positive spatial relation could be established between the cytotoxic cells and the demonstrable expression of HBV antigens in hepatocytes. It is concluded that differences in immunological reaction pattern may explain the different course in the three forms of HBV infection studied. Images Fig. 1 Fig. 2 PMID:6713726

  2. [Hepatic manifestation of a macrophage activation syndrome (MAS)].

    PubMed

    Nagel, Michael; Schwarting, Andreas; Straub, Beate K; Galle, Peter R; Zimmermann, Tim

    2017-04-04

    Background Elevated liver values are the most common pathological laboratory result in Germany. Frequent findings, especially in younger patients, are nutritive- or medicamentous- toxic reasons, viral or autoimmune hepatitis. A macrophage activation syndrome (MAS) may manifest like a viral infectious disease with fever, hepatosplenomegaly and pancytopenia and is associated with a high mortality. It is based on an enhanced activation of macrophages with increased cytokine release, leading to organ damage and multi-organ failure. In addition to genetic causes, MAS is commonly associated with infections and rheumatic diseases. We report the case of a 26-year-old female patient suffering from MAS as a rare cause of elevated liver enzymes. Methods Patient characteristics, laboratory values, liver histology, bone marrow and radiological imaging were documented and analyzed. Case Report After an ordinary upper airway infection with bronchitis, a rheumatic arthritis appeared and was treated with leflunomide und methotrexate. In the further course of the disease, the patient developed an acute hepatitis with fever, pancytopenia and massive hyperferritinemia. Immunohistochemistry of the liver biopsy revealed hemophagocytosis and activation of CD68-positive macrophages. In the radiological and histological diagnostics of the liver and bone marrow, an MAS was diagnosed as underlying disease of the acute hepatitis. Under therapy with prednisolone, the fever disappeared and transaminases and ferritin rapidly normalized. Conclusion Aside from the frequent causes of elevated liver values in younger patients, such as nutritive toxic, drug induced liver injury, viral or autoimmune hepatitis, especially in case of massive hyperferritinemia, a MAS should be considered as a rare cause of acute liver disease.

  3. Individual variation in hepatic aldehyde oxidase activity.

    PubMed

    Al-Salmy, H S

    2001-04-01

    Aldehyde oxidase (AO) is a molybdo-flavo enzyme expressed predominantly in the liver, lung, and kidney. AO plays a major role in oxidation of aldehydes, as well as oxidation of various N-heterocyclic compounds of pharmacological and toxicological importance including antiviral (famciclovir), antimalarial (quinine), antitumour (methotrexate), and nicotine. The aim of this study was to investigate cytosolic aldehyde oxidase activity in human liver. Cytosolic AO was characterised using both the metabolism of N-[(2-dimethylamino)ethyl] acridine-4-carboxamide (DACA) and benzaldehyde to form DACA-9(10H)-acridone (quantified by HPLC with fluorescence detection) and benzoic acid (quantified spectrophotometrically). Thirteen livers (10 female, 3 male) were examined. The intrinsic clearance (Vmax/Km) of DACA varied 18-fold (0.03-0.50 m/min/mg). Vmax ranged from 0.20-3.10 nmol/ min/mg, and Km ranged from 3.5-14.2 microM. In the same specimens, the intrinsic clearance for benzaldehyde varied 5-fold (0.40-1.8 ml/min/mg). Vmax ranged from 3.60-12.6 nmol/min/mg and Km ranged from 3.6-14.6 microM. Furthermore, there were no differences in AO activity between male and female human livers, nor was there any relationship to age of donor (range 29-73 years), smoking status, or disease status. In conclusion, our results showed that there are variations in AO activity in human liver. These variations in aldehyde oxidase activity might reflect individual variations or they might be due to AO stability during processing and storage.

  4. Miltefosine Suppresses Hepatic Steatosis by Activating AMPK Signal Pathway

    PubMed Central

    Zhu, Yaqin; Tong, Xing; Li, Kexue; Bai, Hui; Li, Xiaoyu; Ben, Jingjing; Zhang, Hanwen; Yang, Qing; Chen, Qi

    2016-01-01

    Background and Purpose It has been accepted that AMPK (Adenosine monophosphate–activated protein kinase) activation exhibits many beneficial effects on glucolipid metabolism. Lysophosphatidylcholine (LPC) is an important lysophospholipid which can improve blood glucose levels in diabetic mice and attenuate inflammation by activating AMPK signal pathway in macrophages. Synthetic alkylphospholipids (ALPs), such as miltefosine, is used as an alternate of LPC for the clinical application. Here, we investigated whether miltefosine could have an impact on hepatic steatosis and related metabolic disorders. Experimental Approach Mice were fed with high fat diet (HFD) for 16 weeks to generate an obese model. Next, the obese mice were randomly divided into three groups: saline-treated and miltefosine-treated (2.5 or 5 mg/kg/d) groups. Miltefosine was intraperitoneally administrated into mice for additional 4 weeks plus HFD treatment. Key Results It was shown that miltefosine treatment could substantially improve glucose metabolism, prevented hepatic lipid accumulation, and inhibited liver inflammation in HFD-fed mice by activating AMPK signal pathway. In vitro, miltefosine stimulated AMPKα phosphorylation both in time and dose dependent manner and decreased lipid accumulation in liver cells. When a specific AMPK inhibitor compound C was used to treat mice, the antagonistic effects of miltefosine on HFD-induced mouse hyperlipidaemia and liver steatosis were abolished. Treatment with miltefosine also dramatically inhibited the HFD-induced liver inflammation in mice. Conclusions and Implications Here we demonstrated that miltefosine might be a new activator of AMPK signal pathway in vivo and in vitro and be useful for treatment of hepatic steatosis and related metabolic disorders. PMID:27681040

  5. Hepatitis B antigen in hepatocytes of chronic active liver disease.

    PubMed

    Kawanishi, H

    1979-04-01

    To study the morphologic interrelation of hepatocytes with the replication of hepatitis B vius (HBV) and immunocompetent cells in chronic active liver disease(CALD), organ cultures were prepared from liver biopsy specimens. Replication of hepatitis B core antigen (HBcAg) appears to occur in the nucleus of the hepatocyte in close association with intranuclear electron-dense strands and sometimes intranucleolar matrixes (likely HBcAg genomes), and cytoplasmic maturation of the HBcAg takes place in the preautolytic condition of host hepatocytes. Immunocompetent cells became progressively autolyzed in the early period of cultures. No difference in progression of hepatocyte injury in tissues from normal subjects and from hepatitis B surface antigen (HBsAg)-positive and HBsAg-negative patients with CALD may suggest that intracellular synthesis of HBV alone is not cytopathic to host hepatocytes. This model is promising for the study of HBV replication and development, and also for testing the efficacy of new antiviral agents against the virus.

  6. Viral hepatitis A, active component, U.S. Armed Forces, 2000-2010.

    PubMed

    2011-08-01

    From 2000 to 2010, there were 214 incident diagnoses of acute hepatitis A among active component members of the U.S. Armed Forces; the crude overall incidence rate during the period was 1.37 per 100,000 person-years. Rates of incident diagnoses of acute hepatitis A were relatively low throughout the period and much lower than during the pre-vaccine era (1990-1996). There were disproportionate numbers of diagnoses of acute hepatitis A among service members born in countries endemic for the infection. The low rates of acute hepatitis A among U.S. military members overall reflect the widespread use of hepatitis A virus vaccine.

  7. RSPOs facilitated HSC activation and promoted hepatic fibrogenesis

    PubMed Central

    Yin, Xinguang; Yi, Huixing; Wang, Linlin; Wu, Wanxin; Wu, Xiaojun; Yu, Linghua

    2016-01-01

    Roof plate-specific spondin (RSPO) proteins are potent Wnt pathway agonists and involve in a broad range of developmental and physiological processes. This study investigated the activities and mechanisms of RSPOs in liver fibrogenesis, especially in hepatic stellate cell (HSC) activation. HSC activation was assessed by fibrosis biomarker (α-smooth muscle actin and Collagen-I), phenotypic change (accumulation of lipid droplets), and increased proliferation. Similarly, Wnt pathway activity was evaluated by the expression of nuclear β-catenin and T cell-specific transcription factors (TCF) activity. We found RSPOs were overexpressed in human fibrotic liver tissue and the expressions were correlated with liver fibrosis stages. In vitro studies showed RSPOs level increased during HSC activation, and stimuli with RSPOs enhanced Wnt pathway activity and promoted HSC activation subsequently. Furthermore, in vivo experiments demonstrated that the knockdown of RSPOs suppressed both Wnt pathway activity and HSC activation. Interestingly, the inhibitor of the Wnt signaling pathway Dickkopf1 impairs RSPOs effects on HSCs. Taken together, our results revealed that RSPOs facilitated HSC activation and promote liver fibrogenesis by enhancing the Wnt pathway. PMID:27572318

  8. Hepatitis B virus X protein activates human hepatic stellate cells through upregulating TGFβ1.

    PubMed

    Chen, H-Y; Chen, Z-X; Huang, R-F; Lin, N; Wang, X-Z

    2014-10-27

    We investigated the effects of the hepatitis B virus X gene (HBV X) on the activation of human hepatic stellate cells (HSCs) and the possible mechanisms underlying the pathway. Recombinant plasmid pHBV-X-IRES2-EGFP was constructed and transfected into HL-7702 cells using a lipid-mediated method. Transfected cells were screened by G418, which detected stable expression of the X gene by reverse transcription (RT)-PCR and Western blot analysis, and named L02/x. Cells not subjected to G418-selection were analyzed to confirm the transient expression of the X gene and named L02/48x. Subsequently, L02/x and L02/48x, together with non-HBx-expressing cells, were co-cultured with HSCs in a non-contact transwell system. After 36 h of co-culture, the proliferation and migration of HSCs was detected using different cell counting methods. Finally, the mRNA and protein levels of α-SMA, Col I, and TGFβ1 in HSCs were detected by real-time PCR and western blot analysis. RT-PCR and Western blot analysis showed that L02/x and L02/48x cells can express HBV X gene mRNA and protein. Additionally, HSCs co-cultured with L02/x or L02/48x cells showed significantly higher proliferation and migration levels than control groups. Real-time PCR and Western blot analysis showed that the mRNA and protein expressions of α-SMA, Col I, and TGFβ1 in HSCs co-cultured with HBx-expressing liver cells were higher than those in control groups. HBx protein activated HSCs in vitro, leading to increased proliferation and migration of HSCs and upregulation of α-SMA and Col I. The TGFβ1 gene may be involved in this pathway.

  9. 42 CFR 409.12 - Nursing and related services, medical social services; use of hospital or CAH facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... services; use of hospital or CAH facilities. 409.12 Section 409.12 Public Health CENTERS FOR MEDICARE... services, medical social services; use of hospital or CAH facilities. (a) Except as provided in paragraph... facilities, and medical social services as inpatient hospital or inpatient CAH services only if...

  10. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells

    SciTech Connect

    Parekkadan, Biju; Poll, Daan van; Megeed, Zaki; Kobayashi, Naoya; Tilles, Arno W.; Berthiaume, Francois; Yarmush, Martin L.

    2007-11-16

    Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-{alpha} abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis.

  11. Association of interleukin-15-induced peripheral immune activation with hepatic stellate cell activation in persons coinfected with hepatitis C virus and HIV.

    PubMed

    Allison, Robert D; Katsounas, Antonios; Koziol, Deloris E; Kleiner, David E; Alter, Harvey J; Lempicki, Richard A; Wood, Brad; Yang, Jun; Fullmer, Brandie; Cortez, Karoll J; Polis, Michael A; Kottilil, Shyam

    2009-08-15

    Hepatic stellate cells (HSCs) mediate hepatitis C virus (HCV)-related liver fibrosis, and increased HSC activation in human immunodeficiency virus (HIV)/HCV coinfection may be associated with accelerated fibrosis. We examined the level of HSC activation in HIV/HCV-coinfected and HCV-monoinfected subjects and its relationship to the level of activation and gene expression of peripheral immune cells in coinfected subjects. HSC activation levels positively correlated with peripheral CD4+ and CD8+ T cell immune activation and were associated with enhanced interleukin-15 (IL-15) gene expression, suggesting a pathogenic role for IL-15-driven immunomediated hepatic fibrosis. Future strategies that reduce immune activation and HSC activation may delay progression of liver fibrosis.

  12. The slowed brain: cortical oscillatory activity in hepatic encephalopathy.

    PubMed

    Butz, Markus; May, Elisabeth S; Häussinger, Dieter; Schnitzler, Alfons

    2013-08-15

    Oscillatory activity of the human brain has received growing interest as a key mechanism of large-scale integration across different brain regions. Besides a crucial role of oscillatory activity in the emergence of other neurological and psychiatric diseases, recent evidence indicates a key role in the pathophysiology of hepatic encephalopathy (HE). This review summarizes the current knowledge on pathological alterations of oscillatory brain activity in association with liver dysfunction and HE in the context of spontaneous brain activity, motor symptoms, sensory processing, and attention. The existing literature demonstrates a prominent slowing of the frequency of oscillatory activity as shown for spontaneous brain activity at rest, with respect to deficits of motor behavior and motor symptoms, and in the context of visual attention processes. The observed slowing extends across different subsystems of the brain and has been confirmed across different frequency bands, providing evidence for ubiquitous changes of oscillatory activity in HE. For example, the frequency of cortico-muscular coherence in HE patients appears at the frequency of the mini-asterixis (⩽12Hz), while cirrhotics without overt signs of HE show coherence similar to healthy subjects, i.e. at 13-30Hz. Interestingly, the so-called critical flicker frequency (CFF) as a measure of the processing of an oscillating visual stimulus has emerged as a useful tool to quantify HE disease severity, correlating with behavioral and neurophysiological alterations. Moreover, the CFF reliably distinguishes patients with manifest HE from cirrhotics without any signs of HE and healthy controls using a cut-off frequency of 39Hz. In conclusion, oscillatory activity is globally slowed in HE in close association with HE symptoms and disease severity. Although the underlying causal mechanisms are not yet understood, these results indicate that pathological changes of oscillatory activity play an important role in the

  13. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content.

  14. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins

    PubMed Central

    Yang, Peng; Subbaiah, Papasani V.

    2015-01-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  15. Human T cell microparticles circulate in blood of hepatitis patients and induce fibrolytic activation of hepatic stellate cells

    PubMed Central

    Kornek, Miroslaw; Popov, Yury; Libermann, Towia A.; Afdhal, Nezam H.; Schuppan, Detlef

    2010-01-01

    Microparticles (MP) are small cell membrane vesicles which are released from cells during apoptosis or activation. While circulating platelet MP have been studied in some detail, the existence and functional role of T cell MP remain elusive. We show that blood from patients with active hepatitis C (ALT>100 IU/ml) contains elevated numbers of T cell MP compared to patients with mild hepatitis C (ALT<40 IU/ml) and healthy controls. T cell MP fuse with cell membranes of hepatic stellate cells (HSC), the major effector cells for excess matrix deposition in liver fibrosis and cirrhosis. MP uptake is partly ICAM-1 dependent and leads to activation of NFkB and ERK1/2 and subsequent upregulation of fibrolytic genes in HSC, to downregulation of procollagen α1(I) mRNA, and blunting of profibrogenic activities of TGFβ1. Ex vivo the induced fibrolytic activity is evident in MP derived from activated CD4+ T cells, and highest with MP from activated and apoptotic CD8+ T cells. Mass spectrometry, FACS analysis and function blocking antibodies revealed CD147/Emmprin as candidate transmembrane molecule in HSC fibrolytic activation by CD8+ T cell MP. We conclude that 1) circulating T cell MP are a novel diagnostic marker for inflammatory liver diseases, and 2) in vivo induction of T cell MP may be a novel strategy to induce regression of liver fibrosis. PMID:20979056

  16. Saturated fatty acids activate ERK signaling to downregulate hepatic sortilin 1 in obese and diabetic mice.

    PubMed

    Bi, Lipeng; Chiang, John Y L; Ding, Wen-Xing; Dunn, Winston; Roberts, Benjamin; Li, Tiangang

    2013-10-01

    Hepatic VLDL overproduction is a characteristic feature of diabetes and an important contributor to diabetic dyslipidemia. Hepatic sortilin 1 (Sort1), a cellular trafficking receptor, is a novel regulator of plasma lipid metabolism and reduces plasma cholesterol and triglycerides by inhibiting hepatic apolipoprotein B production. Elevated circulating free fatty acids play key roles in hepatic VLDL overproduction and the development of dyslipidemia. This study investigated the regulation of hepatic Sort1 in obesity and diabetes and the potential implications in diabetic dyslipidemia. Results showed that hepatic Sort1 protein was markedly decreased in mouse models of type I and type II diabetes and in human individuals with obesity and liver steatosis, whereas increasing hepatic Sort1 expression reduced plasma cholesterol and triglycerides in mice. Mechanistic studies showed that the saturated fatty acid palmitate activated extracellular signal-regulated kinase (ERK) and inhibited Sort1 protein by mechanisms involving Sort1 protein ubiquitination and degradation. Consistently, hepatic ERK signaling was activated in diabetic mice, whereas blocking ERK signaling by an ERK inhibitor increased hepatic Sort1 protein in mice. These results suggest that increased saturated fatty acids downregulate liver Sort1 protein, which may contribute to the development of dyslipidemia in obesity and diabetes.

  17. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  18. Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia

    PubMed Central

    Hilliard, Kristie L.; Allen, Eri; Traber, Katrina E.; Kim, Yuri; Wasserman, Gregory A.; Jones, Matthew R.; Mizgerd, Joseph P.

    2015-01-01

    Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear. By targeting STAT3-dependent acute-phase changes in the liver, we evaluated the role of liver STAT3 activity in promoting host defense in the context of sepsis and pneumonia. We employed a two-hit endotoxemia/pneumonia model, whereby administration of 18 h of intraperitoneal lipopolysaccharide (LPS; 5 mg/kg of body weight) was followed by intratracheal Escherichia coli (106 CFU) in wild-type mice or those lacking hepatocyte STAT3 (hepSTAT3−/−). Pneumonia alone (without endotoxemia) was effectively controlled in the absence of liver STAT3. Following endotoxemia and pneumonia, however, hepSTAT3−/− mice, with significantly reduced levels of circulating and airspace acute-phase proteins, exhibited significantly elevated lung and blood bacterial burdens and mortality. These data suggested that STAT3-dependent liver responses are necessary to promote host defense. While neither recruited airspace neutrophils nor lung injury was altered in endotoxemic hepSTAT3−/− mice, alveolar macrophage reactive oxygen species generation was significantly decreased. Additionally, bronchoalveolar lavage fluid from this group of hepSTAT3−/− mice allowed greater bacterial growth ex vivo. These results suggest that hepatic STAT3 activation promotes both cellular and humoral lung defenses. Taken together, induction of liver STAT3-dependent gene expression programs is essential to countering the deleterious consequences of sepsis on pneumonia susceptibility. PMID:26216424

  19. Inhibitory effect of oestradiol on activation of rat hepatic stellate cells in vivo and in vitro

    PubMed Central

    Shimizu, I; Mizobuchi, Y; Yasuda, M; Shiba, M; Ma, Y; Horie, T; Liu, F; Ito, S

    1999-01-01

    Background—Hepatic stellate cells play a key role in the pathogenesis of hepatic fibrosis. 
Aims—To examine the inhibitory effect of oestradiol on stellate cell activation. 
Methods—In vivo, hepatic fibrosis was induced in rats by dimethylnitrosamine or pig serum. In vitro, rat stellate cells were activated by contact with plastic dishes resulting in their transformation into myofibroblast-like cells. 
Results—In the dimethylnitrosamine and pig serum models, treatment with oestradiol at gestation related doses resulted in a dose dependent suppression of hepatic fibrosis with restored content of hepatic retinyl palmitate, reduced collagen content, lower areas of stellate cells which express α smooth muscle actin (α-SMA) and desmin, and lower procollagen type I and III mRNA levels in the liver. In cultured stellate cells, oestradiol inhibited type I collagen production, α-SMA expression, and cell proliferation. These findings suggest that oestradiol is a potent inhibitor of stellate cell transformation. 
Conclusion—The antifibrogenic role of oestradiol in the liver may contribute to the sex associated differences in the progression from hepatic fibrosis to cirrhosis. 

 Keywords: hepatic stellate cells; hepatic fibrosis; oestradiol; α smooth muscle actin; retinyl palmitate PMID:9862839

  20. Early activated hepatic stellate cell-derived molecules reverse acute hepatic injury

    PubMed Central

    Chang, Wen-Ju; Song, Lu-Jun; Yi, Tuo; Shen, Kun-Tang; Wang, Hong-Shan; Gao, Xiao-Dong; Li, Min; Xu, Jian-Min; Niu, Wei-Xin; Qin, Xin-Yu

    2015-01-01

    AIM: To test whether hepatic stellate cells (HSCs) at different activation stages play different roles in acetaminophen (APAP)-induced acute liver injury (ALI). METHODS: HSCs were isolated from mouse liver and cultured in vitro. Morphological changes of initiation HSCs [HSCs (5d)] and perpetuation HSCs [HSCs (p3)] were observed by immunofluorescence and transmission electron microscopy. The protective effects of HSC-derived molecules, cell lysates and HSC-conditioned medium (HSC-CM) were tested in vivo by survival and histopathological analyses. Liver injury was determined by measuring aminotransferase levels in the serum and by histologic examination of tissue sections under a light microscope. Additionally, to determine the molecular mediators of the observed protective effects of initiation HSCs, we examined HSC-CM using a high-density protein array. RESULTS: HSCs (5d) and HSCs (p3) had different morphological and phenotypic traits. HSCs (5d) presented a star-shaped appearance with expressing α-SMA at non-uniform levels between cells. However, HSCs (p3) evolved into myofibroblast-like cells without lipid droplets and expressed a uniform and higher level of α-SMA. HSC-CM (5d), but not HSC-CM (p3), provided a significant survival benefit and showed a dramatic reduction of hepatocellular necrosis and panlobular leukocyte infiltrates in mice exposed to APAP. However, this protective effect was abrogated at higher cell masses, indicating a therapeutic window of effectiveness. Furthermore, the protein array screen revealed that HSC-CM (5d) was composed of many chemokines and growth factors that correlated with inflammatory inhibition and therapeutic activity. When compared with HSC-CM (p3), higher levels of monocyte chemoattractant protein-1, macrophage inflammatory protein-1γ, hepatocyte growth factor, interleukin-10, and matrix metalloproteinase-2, but lower levels of stem cell factor and Fas-Ligand were observed in HSC-CM (5d). CONCLUSION: These data indicated

  1. Induction of apoptosis by tanshinone I via cytochrome c release in activated hepatic stellate cells.

    PubMed

    Kim, Ji Young; Kim, Kyoung Mi; Nan, Ji-Xing; Zhao, Yu Zhe; Park, Pil-Hoon; Lee, Sang Jun; Sohn, Dong Hwan

    2003-04-01

    Hepatic stellate cells play central roles in hepatic fibrosis. The therapeutic goal in hepatic fibrosis is to halt or reverse fibrosis. Apoptosis is suggested to eliminate activated hepatic stellate cells in fibrosis. Salvia miltiorrhiza is a traditional medicine used to improve blood circulation and treat chronic hepatitis and hepatic fibrosis. We investigated the effect of tanshinone I, an ingredient of Salvia miltiorrhiza, on the apoptotic death of rat hepatic stellate cells transformed by simian virus 40 (T-HSC/Cl-6), which retains the features of activated stellate cells. Treatment of T-HSC/Cl-6 cells with tanshinone I resulted in the induction of typical DNA fragmentation and DNA ladder formation in a concentration- and time-dependent manner. The induction of apoptosis was confirmed by flow cytometric analysis. Treatment of T-HSC/Cl-6 cells with tanshinone I caused activation of caspase-3 and subsequent proteolytic cleavage of poly(ADP-ribose) polymerase. Tanshinone I induced mitochondrial membrane dipolarization and the release of cytochrome c from mitochondria into the cytosol. In conclusion, our results demonstrate that tanshinone I induces apoptosis of T-HSC/Cl-6 cells and that tanshinone I-induced apoptosis involves caspase activation through cytochrome c release and loss of mitochondrial membrane potential.

  2. Lipoprotein electrostatic properties regulate hepatic lipase association and activity.

    PubMed

    Boucher, Jonathan G; Nguyen, Trang; Sparks, Daniel L

    2007-12-01

    The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.

  3. Hepatitis B

    MedlinePlus

    ... times more infectious than HIV. Which adults need hepatitis B vaccine? Any sexually active adult who is not in ... share needles, syringes, or other drug-injection equipment. Hepatitis B vaccine is available alone or in a combination with ...

  4. Mobilization of hepatic calcium pools by platelet activating factor

    SciTech Connect

    Lapointe, D.S.; Hanahan, D.J.; Olson, M.S.

    1987-03-24

    In the perfused rat liver, platelet activating factor, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC), infusion produces an extensive but transient glycogenolytic response which at low AGEPC concentrations is markedly dependent upon the perfusate calcium levels. The role of calcium in the glycogenolytic response of the liver to AGEPC was investigated by assessing the effect of AGEPC on various calcium pools in the intact liver. Livers from fed rats were equilibrated with /sup 45/Ca/sup 2 +/, and the kinetics of /sup 45/Ca/sup 2 +/ efflux were determined in control, AGEPC-stimulated, and phenylephrine-stimulated livers during steady-state washout of /sup 45/Ca/sup 2 +/. AGEPC treatment had only a slight if any effect on the pattern of steady-state calcium efflux from the liver, as opposed to major perturbations in the pattern of calcium efflux effected by the ..cap alpha..-adrenergic agonist phenylephrine. Infusion of short pulses of AGEPC during the washout of /sup 45/Ca/sup 2 +/ from labeled livers caused a transient release of /sup 45/Ca/sup 2 +/ which was not abolished at low calcium concentrations in the perfusate. Infusion of latex beads, which are removed by the reticuloendothelial cells, caused the release of hepatic /sup 45/Ca/sup 2 +/ in a fashion similar to the case with AGEPC. The findings indicate that AGEPC does not perturb a major pool of calcium within the liver as occurs upon ..cap alpha..-adrenergic stimulation; it is likely that AGEPC mobilizes calcium from a smaller yet very important pool, very possibly from nonparenchymal cells in the liver.

  5. Reduced short term memory in congenital adrenal hyperplasia (CAH) and its relationship to spatial and quantitative performance.

    PubMed

    Collaer, Marcia L; Hindmarsh, Peter C; Pasterski, Vickie; Fane, Briony A; Hines, Melissa

    2016-02-01

    Girls and women with classical congenital adrenal hyperplasia (CAH) experience elevated androgens prenatally and show increased male-typical development for certain behaviors. Further, individuals with CAH receive glucocorticoid (GC) treatment postnatally, and this GC treatment could have negative cognitive consequences. We investigated two alternative hypotheses, that: (a) early androgen exposure in females with CAH masculinizes (improves) spatial perception and quantitative abilities at which males typically outperform females, or (b) CAH is associated with performance decrements in these domains, perhaps due to reduced short-term-memory (STM). Adolescent and adult individuals with CAH (40 female and 29 male) were compared with relative controls (29 female and 30 male) on spatial perception and quantitative abilities as well as on Digit Span (DS) to assess STM and on Vocabulary to assess general intelligence. Females with CAH did not perform better (more male-typical) on spatial perception or quantitative abilities than control females, failing to support the hypothesis of cognitive masculinization. Rather, in the sample as a whole individuals with CAH scored lower on spatial perception (p ≤ .009), a quantitative composite (p ≤ .036), and DS (p ≤ .001), despite no differences in general intelligence. Separate analyses of adolescent and adult participants suggested the spatial and quantitative effects might be present only in adult patients with CAH; however, reduced DS performance was found in patients with CAH regardless of age group. Separate regression analyses showed that DS predicted both spatial perception and quantitative performance (both p ≤ .001), when age, sex, and diagnosis status were controlled. Thus, reduced STM in CAH patients versus controls may have more general cognitive consequences, potentially reducing spatial perception and quantitative skills. Although hyponatremia or other aspects of salt-wasting crises or additional hormone

  6. Astrophysical molecules of A1H and CaH - RKR potential and dissociation energies

    NASA Astrophysics Data System (ADS)

    Narasimhamurthy, B.; Rajamanickam, N.

    1983-03-01

    The true potential energy curves for the electronic ground states of astrophysically important AlH and CaH molecules are constructed by the Rydberg-Klein-Rees method. Empirical potential functions, of three-parameters by Lippincott, of five-parameters by Hulburt and Hirschfelder and, of electronegativity by Szöke and Baitz, are examined for the adequacy to represent the true curve. From the best-fitting function, the dissociation energies D00 of AlH and CaH molecules are estimated to be 2.99±0.08 and 2.72±0.06 eV respectively.

  7. Diurnal locomotor activity and oxidative metabolism of the suprachiasmatic nucleus in two models of hepatic insufficiency.

    PubMed

    Lopez, Laudino; Cimadevilla, Jose M; Aller, Maria A; Arias, Jaime; Nava, M Paz; Arias, Jorge L

    2003-08-15

    Subjects with hepatic cirrhosis develop alterations of several rhythmic behavioural and biochemical patterns. Since most cirrhotic patients combine portal hypertension and hepatic impairment, our work aims to assess the extent to which rhythmical changes can be due to hepatic insufficiency or portal hypertension. This was done using two experimental models in rats, portacaval shunt model (PC) and portal hypertension by a triple stenosing ligature of the portal vein (PH). We assess diurnal locomotor activity and determine the oxidative metabolism of the suprachiasmatic nucleus (SCN) by histochemical determination of cytochrome oxidase (COX). The results show that animals with PC have altered diurnal locomotor rhythm compared to control and PH rats (p<0.001). They also present lower COX activity in the SCN (p<0.05). We conclude that rhythmic alterations are due to hepatic insufficiency and not to portal hypertension.

  8. Activated Notch signaling is required for hepatitis B virus X protein to promote proliferation and survival of human hepatic cells.

    PubMed

    Wang, Fan; Zhou, Haiyan; Xia, Xiumei; Sun, Qian; Wang, Ying; Cheng, Bin

    2010-12-01

    Hepatitis B virus X protein (HBx) is a multifunctional oncoprotein which plays a crucial role in the pathogenesis of hepatocellular carcinoma (HCC). However, the exact mechanisms remain controversial. Here we show that HBx strongly stimulated cell growth, promoted cell cycle progression and inhibited apoptosis of human non-tumor hepatic cell line L02 cells. It also accelerated tumor formation of L02 cells in BALB/c nude mice. Furthermore, Notch signaling components were upregulated in HBx-expressing L02 cells compared to normal L02 cells. However, blocking Notch signaling with a γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) attenuated cell growth, shortened the S phase of cell cycle and promoted apoptosis of HBx-expressing L02 cell in a dose- and time-dependent manner, but normal L02 cells were not significantly affected by Notch signaling blocking. Therefore, our findings demonstrate that HBx could promote the growth of human non-tumor hepatic cell line L02 cells both in vitro and in vivo, which may require the activation of Notch signaling pathway.

  9. JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors

    PubMed Central

    Kochat, Veena; Equbal, Zaffar; Baligar, Prakash; Kumar, Vikash; Srivastava, Madhulika; Mukhopadhyay, Asok

    2017-01-01

    The strictly regulated unidirectional differentiation program in some somatic stem/progenitor cells has been found to be modified in the ectopic site (tissue) undergoing regeneration. In these cases, the lineage barrier is crossed by either heterotypic cell fusion or direct differentiation. Though studies have shown the role of coordinated genetic and epigenetic mechanisms in cellular development and differentiation, how the lineage fate of adult bone marrow progenitor cells (BMPCs) is reprogrammed during liver regeneration and whether this lineage switch is stably maintained are not clearly understood. In the present study, we wanted to decipher genetic and epigenetic mechanisms that involve in lineage reprogramming of BMPCs into hepatocyte-like cells. Here we report dynamic transcriptional change during cellular reprogramming of BMPCs to hepatocytes and dissect the epigenetic switch mechanism of BM cell-mediated liver regeneration after acute injury. Genome-wide gene expression analysis in BM-derived hepatocytes, isolated after 1 month and 5 months of transplantation, showed induction of hepatic transcriptional program and diminishing of donor signatures over the time. The transcriptional reprogramming of BM-derived cells was found to be the result of enrichment of activating marks (H3K4me3 and H3K9Ac) and loss of repressive marks (H3K27me3 and H3K9me3) at the promoters of hepatic transcription factors (HTFs). Further analyses showed that BMPCs possess bivalent histone marks (H3K4me3 and H3K27me3) at the promoters of crucial HTFs. H3K27 methylation dynamics at the HTFs was antagonistically regulated by EZH2 and JMJD3. Preliminary evidence suggests a role of JMJD3 in removal of H3K27me3 mark from promoters of HTFs, thus activating epigenetically poised hepatic genes in BMPCs prior to partial nuclear reprogramming. The importance of JMJD3 in reprogramming of BMPCs to hepatic phenotype was confirmed by inhibiting catalytic function of the enzyme using small molecule

  10. Activity-based profiling of the proteasome pathway during hepatitis C virus infection.

    PubMed

    Nasheri, Neda; Ning, Zhibin; Figeys, Daniel; Yao, Shao; Goto, Natalie K; Pezacki, John Paul

    2015-11-01

    Hepatitis C virus (HCV) infection often leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The stability of the HCV proteins is controlled by ubiquitin-dependent and ubiquitin-independent proteasome pathways. Many viruses modulate proteasome function for their propagation. To examine the interrelationship between HCV and the proteasome pathways we employed a quantitative activity-based protein profiling method. Using this approach we were able to quantify the changes in the activity of several proteasome subunits and found that proteasome activity is drastically reduced by HCV replication. The results imply a link between the direct downregulation of the activity of this pathway and chronic HCV infection.

  11. Effects of petroleum on adrenocortical activity and on hepatic naphthalene-metabolizing activity in mallard ducks

    USGS Publications Warehouse

    Gorsline, J.; Holmes, W.N.

    1981-01-01

    Unstressed mallard ducks (Anas platyrhychos), given uncontaminated food and maintained on a short photoperiod, show two daily maxima in plasma corticosterone concentration ([B]); one occurring early in the light phase and a second just before the onset of darkness. After one week of exposure to food containing 3% (v/w) South Louisiana crude oil, plasma [B] were significantly lowered throughout the day. Similar abrupt declines in plasma [B] also occurred during the first 10 days of exposure to food containing 1% and 0.5% crude oil. Although the plasma [B] in birds consuming food contaminated with 0.5% crude oil increased between 10 and 50 days of exposure, the concentration after 50 days was still lower than normal. During the same interval, normal plasma [B] were restored in birds consuming food containing 1% and 3% crude oil. Significant increases occurred in the naphthalene-metabolizing properties of hepatic microsomes prepared from birds acutely exposed to all levels of petroleum-contaminated food and elevated levels were sustained throughout the first 50 days of exposure. Birds given food containing 3% crude oil for more than 50 days, however, showed steady declines in hepatic naphthalene-metabolizing activity. After 500 days, the activity was similar to that found in contemporaneous controls. During the same interval, the plasma [B] increased until the levels were higher than normal after 500 days of exposure; at this time, an inverse relationship, similar to that seen during the first week of exposure to contaminated food, was once more established between plasma [B] and the concomitant hepatic naphthalene-metabolizing activity.

  12. The association of phosphoinositide 3-kinase enhancer A with hepatic insulin receptor enhances its kinase activity.

    PubMed

    Chan, Chi Bun; Liu, Xia; He, Kunyan; Qi, Qi; Jung, Dae Y; Kim, Jason K; Ye, Keqiang

    2011-07-01

    Dysfunction of hepatic insulin receptor tyrosine kinase (IRTK) causes the development of type 2 diabetes. However, the molecular mechanism regulating IRTK activity in the liver remains poorly understood. Here, we show that phosphoinositide 3-kinase enhancer A (PIKE-A) is a new insulin-dependent enhancer of hepatic IRTK. Liver-specific Pike-knockout (LPKO) mice display glucose intolerance with impaired hepatic insulin sensitivity. Specifically, insulin-provoked phosphoinositide 3-kinase/Akt signalling is diminished in the liver of LPKO mice, leading to the failure of insulin-suppressed gluconeogenesis and hyperglycaemia. Thus, hepatic PIKE-A has a key role in mediating insulin signal transduction and regulating glucose homeostasis in the liver.

  13. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    SciTech Connect

    Shlomai, Amir; Shaul, Yosef

    2009-04-17

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  14. 42 CFR 495.6 - Meaningful use objectives and measures for EPs, eligible hospitals, and CAHs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... criteria in the applicable objective that would permit the attestation. (C) Attests. (ii) (A) An exclusion... criteria that were applicable for 2013. (B) The Stage 1 criteria that are applicable beginning 2014. (C) If... 2014. (C) If the eligible hospital or CAH is scheduled to begin Stage 2 in 2014, the Stage 2...

  15. 42 CFR 413.70 - Payment for services of a CAH.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Payment for services of a CAH. 413.70 Section 413.70 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PRINCIPLES OF REASONABLE COST REIMBURSEMENT; PAYMENT FOR END-STAGE RENAL DISEASE...

  16. 42 CFR 413.70 - Payment for services of a CAH.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Payment for services of a CAH. 413.70 Section 413.70 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PRINCIPLES OF REASONABLE COST REIMBURSEMENT; PAYMENT FOR END-STAGE RENAL DISEASE...

  17. 42 CFR 413.70 - Payment for services of a CAH.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Payment for services of a CAH. 413.70 Section 413.70 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PRINCIPLES OF REASONABLE COST REIMBURSEMENT; PAYMENT FOR END-STAGE RENAL DISEASE...

  18. 42 CFR 413.70 - Payment for services of a CAH.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Payment for services of a CAH. 413.70 Section 413.70 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PRINCIPLES OF REASONABLE COST REIMBURSEMENT; PAYMENT FOR END-STAGE RENAL DISEASE...

  19. Early androgen exposure modulates spatial cognition in congenital adrenal hyperplasia (CAH).

    PubMed

    Mueller, S C; Temple, V; Oh, E; VanRyzin, C; Williams, A; Cornwell, B; Grillon, C; Pine, D S; Ernst, M; Merke, D P

    2008-08-01

    Major questions remain about the exact role of hormones in cognition. Furthermore, the extent to which early perturbation in steroid function affects human brain development continues to be a wide open area of research. Congenital adrenal hyperplasia (CAH), a genetic disorder of steroid dysfunction characterized in part by in utero over-production of testosterone, was used as a natural model for addressing this question. Here, CAH (n=54, mean age=17.53, 31 female) patients were compared to healthy age- and sex-matched individuals (n=55, mean age=19.02, 22 female) on a virtual equivalent of the Morris Water Maze task [Morris, R., 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47-60], an established measure of sex differences in spatial cognition in rodents. Findings revealed that females with CAH with the most severe form of the disease and expected highest level of in utero exposure to androgens were found to perform similarly to both healthy males and CAH males, whereas strong sex differences were apparent in milder forms of the disorder and in controls. Moreover, advanced bone age, an indicator of long-term childhood exposure to testosterone was correlated with improved performance. The results indicate that individuals exposed to both excess androgens prenatally and prolonged exposure during childhood may manifest long-lasting changes in cognitive function. Such finding suggests a pivotal role of hormonal function on brain development in humans, mirroring results from the animal literature.

  20. 42 CFR 495.6 - Meaningful use objectives and measures for EPs, eligible hospitals, and CAHs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Objective. Record smoking status for patients 13 years old or older. (ii) Measure. Subject to paragraph (c... have smoking status recorded as structured data. (iii) Exclusion in accordance with paragraph (a)(2) of...) Date and preliminary cause of death in the event of mortality in the eligible hospital or CAH....

  1. 42 CFR 495.6 - Meaningful use objectives and measures for EPs, eligible hospitals, and CAHs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...)(B)(2) of this section. (9)(i) Objective. Record smoking status for patients 13 years old or older... years old or older seen by the EP have smoking status recorded as structured data. (iii) Exclusion in...) Date and preliminary cause of death in the event of mortality in the eligible hospital or CAH....

  2. UTILIZATION OF TREATABILITY AND PILOT TESTS TO PREDICT CAH BIOREMEDIATION (Battelle)

    EPA Science Inventory

    Multiple tools have been suggested to help in the design of enhanced anaerobic bioremediation systems for CAHs:
    Extensive high quality microcosm testing followed by small-scale, thoroughly observed, induced flow field pilot tests (i.e. RABITT Protocol, Morse 1998)
    More...

  3. 42 CFR 410.28 - Hospital or CAH diagnostic services furnished to outpatients: Conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... where the procedure is performed. (2) For services furnished under arrangement in nonhospital locations... 42 Public Health 2 2014-10-01 2014-10-01 false Hospital or CAH diagnostic services furnished to outpatients: Conditions. 410.28 Section 410.28 Public Health CENTERS FOR MEDICARE & MEDICAID...

  4. 42 CFR 413.70 - Payment for services of a CAH.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Payment for services of a CAH. 413.70 Section 413.70 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PRINCIPLES OF REASONABLE COST REIMBURSEMENT; PAYMENT FOR END-STAGE RENAL DISEASE...

  5. Mouse Hepatitis Virus Infection Induces a Toll-Like Receptor 2-Dependent Activation of Inflammatory Functions in Liver Sinusoidal Endothelial Cells during Acute Hepatitis

    PubMed Central

    Bleau, Christian; Filliol, Aveline; Samson, Michel

    2016-01-01

    ABSTRACT Under physiological conditions, the liver sinusoidal endothelial cells (LSECs) mediate hepatic immune tolerance toward self or foreign antigens through constitutive expression of anti-inflammatory mediators. However, upon viral infection or Toll-like receptor 2 (TLR2) activation, LSECs can achieve proinflammatory functions, but their role in hepatic inflammation during acute viral hepatitis is unknown. Using the highly virulent mouse hepatitis virus type 3 (MHV3) and the attenuated variants 51.6-MHV3 and YAC-MHV3, exhibiting lower tropism for LSECs, we investigated in vivo and in vitro the consequence of LSEC infection on their proinflammatory profiles and the aggravation of acute hepatitis process. In vivo infection with virulent MHV3, in comparison to attenuated strains, resulted in fulminant hepatitis associated with higher hepatic viral load, tissue necrosis, and levels of inflammatory mediators and earlier recruitment of inflammatory cells. Such hepatic inflammatory disorders correlated with disturbed production of interleukin-10 (IL-10) and vascular factors by LSECs. We next showed in vitro that infection of LSECs by the virulent MHV3 strain altered their production of anti-inflammatory cytokines and promoted higher release of proinflammatory and procoagulant factors and earlier cell damage than infection by attenuated strains. This higher replication and proinflammatory activation in LSECs by the virulent MHV3 strain was associated with a specific activation of TLR2 signaling by the virus. We provide evidence that TLR2 activation of LSCEs by MHV3 is an aggravating factor of hepatic inflammation and correlates with the severity of hepatitis. Taken together, these results indicate that preservation of the immunotolerant properties of LSECs during acute viral hepatitis is imperative in order to limit hepatic inflammation and damage. IMPORTANCE Viral hepatitis B and C infections are serious health problems affecting over 350 million and 170 million

  6. Activation of the aryl hydrocarbon receptor induces hepatic steatosis via the upregulation of fatty acid transport.

    PubMed

    Kawano, Yuki; Nishiumi, Shin; Tanaka, Shinwa; Nobutani, Kentaro; Miki, Akira; Yano, Yoshihiko; Seo, Yasushi; Kutsumi, Hiromu; Ashida, Hitoshi; Azuma, Takeshi; Yoshida, Masaru

    2010-12-15

    The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix/Per-ARNT-Sim domain transcription factor, which is activated by various xenobiotic ligands. AHR is known to be abundant in liver tissue and to be associated with hepatic steatosis. However, it has not yet been elucidated how the activation of AHR promotes hepatic steatosis. The aim of this study is to clarify the role of AHR in hepatic steatosis. The intraperitoneal injection of 3-methylcholanthrene (3MC), a potent AHR ligand, into C57BL/6J mice significantly increased the levels of triglycerides and six long-chain monounsaturated fatty acids in the livers of mice, resulting in hepatic microvesicular steatosis. 3MC significantly enhanced the expression level of fatty acid translocase (FAT), a factor regulating the uptake of long-chain fatty acids into hepatocytes, in the liver. In an in vitro experiment using human hepatoma HepG2 cells, 3MC increased the expression level of FAT, and the downregulation of AHR by AHR siRNA led to the suppression of 3MC-induced FAT expression. In addition, the mRNA level of peroxisome proliferator-activated receptor (PPAR) α, an upstream factor of FAT, was increased in the livers of 3MC-treated mice. Taking together, AHR activation induces hepatic microvesicular steatosis by increasing the expression level of FAT.

  7. Unusual phenotype of congenital adrenal hyperplasia (CAH) with a novel mutation of the CYP21A2 gene.

    PubMed

    Raisingani, Manish; Contreras, Maria F; Prasad, Kris; Pappas, John G; Kluge, Michelle L; Shah, Bina; David, Raphael

    2016-07-01

    Gonadotropin independent sexual precocity (SP) may be due to congenital adrenal hyperplasia (CAH), and its timing usually depends on the type of mutation in the CYP21A2 gene. Compound heterozygotes are common and express phenotypes of varying severity. The objective of this case report was to investigate the hormonal pattern and unusual genetic profile in a 7-year-old boy who presented with pubic hair, acne, an enlarged phallus, slightly increased testicular volume and advanced bone age. Clinical, hormonal and genetic studies were undertaken in the patient as well as his parents. We found elevated serum 17-hydroxyprogesterone (17-OHP) and androstenedione that were suppressed with dexamethasone, and elevated testosterone that actually rose after giving dexamethasone, indicating activity of the hypothalamic-pituitary-gonadal (HPG) axis. An initial search for common mutations was negative, but a more detailed genetic analysis of the CYP21A2 gene revealed two mutations including R341W, a non-classical mutation inherited from his mother, and g.823G>A, a novel not previously reported consensus donor splice site mutation inherited from his father, which is predicted to be salt wasting. However, the child had a normal plasma renin activity. He was effectively treated with low-dose dexamethasone and a GnRH agonist. His father was an unaffected carrier, but his mother had evidence of mild non-classical CAH. In a male child presenting with gonadotropin independent SP it is important to investigate adrenal function with respect to the androgen profile, and to carry out appropriate genetic studies.

  8. Acetylcholinesterase activity in an experimental rat model of Type C hepatic encephalopathy.

    PubMed

    Méndez, Marta; Méndez-López, Magdalena; López, Laudino; Aller, María A; Arias, Jaime; Arias, Jorge L

    2011-05-01

    Patients with liver malfunction often suffer from hepatic encephalopathy, a neurological complication which can affect attention and cognition. Diverse experimental models have been used to study brain alterations that may be responsible for hepatic encephalopathy symptoms. The aim of the study was to determine whether cognitive impairment found in cirrhosis could be due to disturbance of acetylcholinesterase activity. Acetylcholinesterase activity was assessed in the brains of Wistar rats with thioacetamide-induced cirrhosis. The cirrhotic group displayed up-regulation of acetylcholinesterase levels in the entorrhinal cortex, anterodorsal and anteroventral thalamus and accumbens, whereas down-regulation was found in the CA1, CA3 and dentate gyrus of the hippocampus. Our results indicate that the experimental model of hepatic encephalopathy by chronic administration of thioacetamide presents alterations of acetylcholinesterase activity in brain limbic system regions, which play a role in attention and memory.

  9. Erythropoietin alleviates hepatic insulin resistance via PPARγ-dependent AKT activation

    PubMed Central

    Ge, Zhijuan; Zhang, Pengzi; Hong, Ting; Tang, Sunyinyan; Meng, Ran; Bi, Yan; Zhu, Dalong

    2015-01-01

    Erythropoietin (EPO) has beneficial effects on glucose metabolism and insulin resistance. However, the mechanism underlying these effects has not yet been elucidated. This study aimed to investigate how EPO affects hepatic glucose metabolism. Here, we report that EPO administration promoted phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation in palmitic acid (PA)-treated HepG2 cells and in the liver of high-fat diet (HFD)-fed mice, whereas adenovirus-mediated silencing of the erythropoietin receptor (EPOR) blocked EPO-induced AKT signalling in HepG2 cells. Importantly, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist and PPARγ small interfering RNA (siRNA) abrogated the EPO-induced increase in p-AKT in HepG2 cells. Lentiviral vector-mediated hepatic PPARγ silencing in HFD-fed C57BL/6 mice impaired EPO-mediated increases in glucose tolerance, insulin sensitivity and hepatic AKT activation. Furthermore, EPO activated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling pathway, and AMPKα and SIRT1 knockdown each attenuated the EPO-induced PPARγ expression and deacetylation and PPARγ-dependent AKT activation in HepG2 cells. In summary, these findings suggest that PPARγ is involved in EPO/EPOR-induced AKT activation, and targeting the PPARγ/AKT pathway via EPO may have therapeutic implications for hepatic insulin resistance and type 2 diabetes. PMID:26643367

  10. Investigation on LiBH4-CaH2 composite and its potential for thermal energy storage.

    PubMed

    Li, Yang; Li, Ping; Qu, Xuanhui

    2017-01-31

    The LiBH4/CaH2 composite are firstly studied as Concentrating Solar Power Thermal Storage Material. The LiBH4/CaH2 composite according to the stoichiometric ratio are synthesized by high-energy ball milling method. The kinetics, thermodynamics and cycling stability of LiBH4/CaH2 composite are investigated by XRD (X-ray diffraction), DSC (Differential scanning calorimeter) and TEM (Transmission electron microscope). The reaction enthalpy of LiBH4/CaH2 composite is almost 60 kJ/mol H2 and equilibrium pressure is 0.482 MPa at 450 °C. The thermal storage density of LiBH4/CaH2 composite is 3504.6 kJ/kg. XRD results show that the main phase after dehydrogenation is LiH and CaB6. The existence of TiCl3 and NbF5 can effectively enhance the cycling perfomance of LiBH4/CaH2 composite, with 6-7 wt% hydrogen capacity after 10 cycles. The high thermal storage density, high working temperature and low equilibrium pressure make LiBH4/CaH2 composite a potential thermal storage material.

  11. Investigation on LiBH4-CaH2 composite and its potential for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ping; Qu, Xuanhui

    2017-01-01

    The LiBH4/CaH2 composite are firstly studied as Concentrating Solar Power Thermal Storage Material. The LiBH4/CaH2 composite according to the stoichiometric ratio are synthesized by high-energy ball milling method. The kinetics, thermodynamics and cycling stability of LiBH4/CaH2 composite are investigated by XRD (X-ray diffraction), DSC (Differential scanning calorimeter) and TEM (Transmission electron microscope). The reaction enthalpy of LiBH4/CaH2 composite is almost 60 kJ/mol H2 and equilibrium pressure is 0.482 MPa at 450 °C. The thermal storage density of LiBH4/CaH2 composite is 3504.6 kJ/kg. XRD results show that the main phase after dehydrogenation is LiH and CaB6. The existence of TiCl3 and NbF5 can effectively enhance the cycling perfomance of LiBH4/CaH2 composite, with 6–7 wt% hydrogen capacity after 10 cycles. The high thermal storage density, high working temperature and low equilibrium pressure make LiBH4/CaH2 composite a potential thermal storage material.

  12. Investigation on LiBH4-CaH2 composite and its potential for thermal energy storage

    PubMed Central

    Li, Yang; Li, Ping; Qu, Xuanhui

    2017-01-01

    The LiBH4/CaH2 composite are firstly studied as Concentrating Solar Power Thermal Storage Material. The LiBH4/CaH2 composite according to the stoichiometric ratio are synthesized by high-energy ball milling method. The kinetics, thermodynamics and cycling stability of LiBH4/CaH2 composite are investigated by XRD (X-ray diffraction), DSC (Differential scanning calorimeter) and TEM (Transmission electron microscope). The reaction enthalpy of LiBH4/CaH2 composite is almost 60 kJ/mol H2 and equilibrium pressure is 0.482 MPa at 450 °C. The thermal storage density of LiBH4/CaH2 composite is 3504.6 kJ/kg. XRD results show that the main phase after dehydrogenation is LiH and CaB6. The existence of TiCl3 and NbF5 can effectively enhance the cycling perfomance of LiBH4/CaH2 composite, with 6–7 wt% hydrogen capacity after 10 cycles. The high thermal storage density, high working temperature and low equilibrium pressure make LiBH4/CaH2 composite a potential thermal storage material. PMID:28139740

  13. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    SciTech Connect

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-02-22

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity.

  14. IRF5 governs liver macrophage activation that promotes hepatic fibrosis in mice and humans

    PubMed Central

    Alzaid, Fawaz; Lagadec, Floriane; Albuquerque, Miguel; Ballaire, Raphaëlle; Orliaguet, Lucie; Hainault, Isabelle; Blugeon, Corinne; Lemoine, Sophie; Lehuen, Agnès; Saliba, David G.; Udalova, Irina A.; Paradis, Valérie; Foufelle, Fabienne

    2016-01-01

    Hepatic fibrosis arises from inflammation in the liver initiated by resident macrophage activation and massive leukocyte accumulation. Hepatic macrophages hold a central position in maintaining homeostasis in the liver and in the pathogenesis of acute and chronic liver injury linked to fibrogenesis. Interferon regulatory factor 5 (IRF5) has recently emerged as an important proinflammatory transcription factor involved in macrophage activation under acute and chronic inflammation. Here, we revealed that IRF5 is significantly induced in liver macrophages from human subjects developing liver fibrosis from nonalcoholic fatty liver disease or hepatitis C virus infection. Furthermore, IRF5 expression positively correlated with clinical markers of liver damage, such as plasma transaminase and bilirubin levels. Interestingly, mice lacking IRF5 in myeloid cells (MKO) were protected from hepatic fibrosis induced by metabolic or toxic stresses. Transcriptional reprogramming of macrophages lacking IRF5 was characterized by immunosuppressive and antiapoptotic properties. Consequently, IRF5 MKO mice respond to hepatocellular stress by promoting hepatocyte survival, leading to complete protection from hepatic fibrogenesis. Our findings reveal a regulatory network, governed by IRF5, that mediates hepatocyte death and liver fibrosis in mice and humans. Therefore, modulating IRF5 function may be an attractive approach to experimental therapeutics in fibroinflammatory liver disease. PMID:27942586

  15. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    PubMed Central

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  16. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1.

    PubMed

    Yang, Yan; Yang, Feng; Wu, Xiaojuan; Lv, Xiongwen; Li, Jun

    2016-05-01

    Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1.

  17. Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator-activated receptors in rats with intake of tart cherry.

    PubMed

    Seymour, E Mitchell; Singer, Andrew A M; Kirakosyan, Ara; Urcuyo-Llanes, Daniel E; Kaufman, Peter B; Bolling, Steven F

    2008-06-01

    Elevated plasma lipids, glucose, insulin, and fatty liver are among components of metabolic syndrome, a phenotypic pattern that typically precedes the development of Type 2 diabetes. Animal studies show that intake of anthocyanins reduces hyperlipidemia, obesity, and atherosclerosis and that anthocyanin-rich extracts may exert these effects in association with altered activity of tissue peroxisome proliferator-activated receptors (PPARs). However, studies are lacking to test this correlation using physiologically relevant, whole food sources of anthocyanins. Tart cherries are a rich source of anthocyanins, and whole cherry fruit intake may also affect hyperlipidemia and/or affect tissue PPARs. This hypothesis was tested in the Dahl Salt-Sensitive rat having insulin resistance and hyperlipidemia. For 90 days, Dahl rats were pair-fed AIN-76a-based diets supplemented with either 1% (wt:wt) freeze-dried whole tart cherry or with 0.85% additional carbohydrate to match macronutrient and calorie provision. After 90 days, the cherry-enriched diet was associated with reduced fasting blood glucose, hyperlipidemia, hyperinsulinemia, and reduced fatty liver. The cherry diet was also associated with significantly enhanced hepatic PPAR-alpha mRNA, enhanced hepatic PPAR-alpha target acyl-coenzyme A oxidase mRNA and activity, and increased plasma antioxidant capacity. In conclusion, physiologically relevant tart cherry consumption reduced several phenotypic risk factors that are associated with risk for metabolic syndrome and Type 2 diabetes. Tart cherries may represent a whole food research model of the health effects of anthocyanin-rich foods and may possess nutraceutical value against risk factors for metabolic syndrome and its clinical sequelae.

  18. Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment.

    PubMed

    Velimirovic, Milica; Simons, Queenie; Bastiaens, Leen

    2015-09-01

    The release of fine zerovalent iron (ZVI) particles in the environment after being introduced for in-situ treatment of compounds like chlorinated aliphatic hydrocarbons (CAHs) may raise questions toward environmental safety, especially for nanoscale materials. Classical single-species ecotoxicity tests do focus on aerobic conditions and are only relevant for the scenario when ZVI-particles reach surface water. Herein, we present an alternative approach where a CAH-degrading mixed bacterial culture was used as test-organisms relevant for the anaerobic subsurface. The impact of different ZVI particles on the bacterial culture was evaluated mainly by quantifying ATP, a reporter molecule giving a general indication of the microbial activity. These lab-scale batch tests were performed in liquid medium, without protecting and buffering aquifer material, as such representing worst-case scenario. The activity of the bacterial culture was negatively influenced by nanoscale zerovalent iron at doses as low as 0.05 g L(-1). On the other hand, concentrations up to 2 g L(-1) of several different types of microscale zerovalent iron (mZVI) particles stimulated the activity. However, very high doses of 15-30 g L(-1) of mZVI showed an inhibiting effect on the bacterial community. Negative effects of ZVIs were confirmed by H2 accumulation in the batch reactors and the absence of lactate consumption. Observed inhibition also corresponded to a pH increase above 7.5, explicable by ZVI corrosion that was found to be dose-dependent. The obtained results suggest that low doses of mZVIs will not show severe inhibition effects on the microbial community once used for in-situ treatment of CAHs.

  19. Mapping Metabolic Brain Activity in Three Models of Hepatic Encephalopathy

    PubMed Central

    Méndez, Marta; Fidalgo, Camino; Aller, María Ángeles; Arias, Jaime; Arias, Jorge L.

    2013-01-01

    Cirrhosis is a common disease in Western countries. Liver failure, hyperammonemia, and portal hypertension are the main factors that contribute to human cirrhosis that frequently leads to a neuropsychiatric disorder known as hepatic encephalopathy (HE). In this study, we examined the differential contribution of these leading factors to the oxidative metabolism of diverse brain limbic system regions frequently involved in memory process by histochemical labelling of cytochrome oxidase (COx). We have analyzed cortical structures such as the infralimbic and prelimbic cotices, subcortical structures such as hippocampus and ventral striatum, at thalamic level like the anterodorsal, anteroventral, and mediodorsal thalamus, and, finally, the hypothalamus, where the mammillary nuclei (medial and lateral) were measured. The severest alteration is found in the model that mimics intoxication by ammonia, followed by the thioacetamide-treated group and the portal hypertension group. No changes were found at the mammillary bodies for any of the experimental groups. PMID:23573412

  20. Enhanced CAH dechlorination in a low permeability, variably-saturated medium

    USGS Publications Warehouse

    Martin, J.P.; Sorenson, K.S.; Peterson, L.N.; Brennan, R.A.; Werth, C.J.; Sanford, R.A.; Bures, G.H.; Taylor, C.J.; ,

    2002-01-01

    An innovative pilot-scale field test was performed to enhance the anaerobic reductive dechlorination (ARD) of chlorinated aliphatic hydrocarbons (CAHs) in a low permeability, variably-saturated formation. The selected technology combines the use of a hydraulic fracturing (fracking) technique with enhanced bioremediation through the creation of highly-permeable sand- and electron donor-filled fractures in the low permeability matrix. Chitin was selected as the electron donor because of its unique properties as a polymeric organic material and based on the results of lab studies that indicated its ability to support ARD. The distribution and impact of chitin- and sand-filled fractures to the system was evaluated using hydrologic, geophysical, and geochemical parameters. The results indicate that, where distributed, chitin favorably impacted redox conditions and supported enhanced ARD of CAHs. These results indicate that this technology may be a viable and cost-effective approach for remediation of low-permeability, variably saturated systems.

  1. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}

    SciTech Connect

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin; Park, Min Jung; Kim, Kwang Jin; Cheong, JaeHun . E-mail: molecule85@pusan.ac.kr

    2007-04-20

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfected with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.

  2. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  3. Angiotensin Receptor Blockade Recovers Hepatic UCP2 Expression and Aconitase and SDH Activities and Ameliorates Hepatic Oxidative Damage in Insulin Resistant Rats

    PubMed Central

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A.; Viscarra, José A.; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira

    2012-01-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity. PMID:23087176

  4. Angiotensin receptor blockade recovers hepatic UCP2 expression and aconitase and SDH activities and ameliorates hepatic oxidative damage in insulin resistant rats.

    PubMed

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A; Viscarra, José A; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2012-12-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity.

  5. Anti-hepatitis B activity of isoquinoline alkaloids of plant origin.

    PubMed

    Aljofan, Mohamad; Netter, Hans J; Aljarbou, Ahmed N; Hadda, Taibi Ben; Orhan, Ilkay Erdogan; Sener, Bilge; Mungall, Bruce A

    2014-05-01

    Hepatitis B virus (HBV) is the causative agent of B-type hepatitis in humans, a vaccine-preventable disease. Despite the availability of effective vaccines, globally, 2 billion people show evidence of past or current HBV infection, of which 350 million people are persistently infected, with an estimated annual increase of 1 million. There is no cure for chronic HBV infections, which are associated with cirrhotic liver failure and with an increased risk of developing hepatocellular carcinoma. Hepatitis antiviral research has focused primarily on the development of inhibitors of viral polymerase through the use of nucleoside analogues. Therefore, there is an urgent need for the development of non-nucleoside compounds to be used as an alternative or to complement the current therapy. To address this need, 18 isoquinoline alkaloids were evaluated for their potential antiviral activity against HBV in vitro.

  6. Central neural regulation by adrenergic nerves of the daily rhythm in hepatic tyrosine transaminase activity

    PubMed Central

    Black, Ira B.; Reis, Donald J.

    1971-01-01

    1. In adrenalectomized fasted rats transection of the spinal cord at C7-C8 or placement of bilateral electrolytic lesions in the lateral hypothalamus when performed in the morning interrupted the daily rhythm of hepatic tyrosine transaminase by elevating low (AM) enzyme activities to high (PM) levels; lesions placed in PM did not affect the late afternoon rise in enzyme activity. 2. Bilateral thalamic lesions had no affect on enzyme activity. 3. The activity of hepatic catechol-O-methyl transferase was unaffected by hypothalamic lesions. 4. The lesion-evoked rise of tyrosine transaminase activity was abolished by exogenously administered norepinephrine. 5. Cycloheximide blocked the rise of tyrosine transaminase activity caused by hypothalamic lesions. 6. The results suggest that rhythmic activity of sympathetic nerves governed by lateral hypothalamus contribute to regulation of the daily rhythm in tyrosine transaminase by regulating the release of norepinephrine peripherally; norepinephrine may block the daily rise of enzyme by interfering with protein synthesis, possibly of new enzyme, by competing with pyridoxal co-factor. 7. It is proposed that alternating activity of sympathetic-adrenergic and vagal-cholinergic nerves to liver, controlled by the C.N.S., contribute to rhythmic activity of hepatic tyrosine transaminase. ImagesFig. 2 PMID:4400586

  7. Anion inhibition study of the β-carbonic anhydrase (CahB1) from the cyanobacterium Coleofasciculus chthonoplastes (ex-Microcoleus chthonoplastes).

    PubMed

    Vullo, Daniela; Kupriyanova, Elena V; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

    2014-03-01

    We investigated the catalytic activity and inhibition of the β-class carbonic anhydrase (CA, EC 4.2.1.1) CahB1, from the relict cyanobacterium Coleofasciculus chthonoplastes (previously denominated Microcoleus chthonoplastes). The enzyme showed good activity as a catalyst for the CO2 hydration, with a kcat of 2.4 × 10(5)s(-1) and a kcat/Km of 6.3 × 10(7)M(-1)s(-1). A range of inorganic anions and small molecules were investigated as inhibitors of CahB1. Perchlorate and tetrafluoroborate did not inhibit the enzyme (KIs >200 mM) whereas selenate and selenocyanide were ineffective inhibitors too, with KIs of 29.9-48.61 mM. The halides, pseudohalides, carbonate, bicarbonate, trithiocarbonate and a range of heavy metal ions-containing anions were submillimolar-millimolar inhibitors (KIs in the range of 0.15-0.90 mM). The best CahB1 inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 8-75 μM, whereas acetazolamide inhibited the enzyme with a KI of 76 nM. This is the first kinetic and inhibition study of a cyanobacterial CA. As these enzymes are widespread in many cyanobacteria, being crucial for the carbon concentrating mechanism which assures substrate to RubisCO for the CO2 fixation by these organisms, a detailed kinetic/inhibition study may be essential for a better understanding of this superfamily of metalloenzymes and for potential biotechnological applications in biomimetic CO2 capture processes.

  8. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis.

    PubMed

    Kir, Serkan; Beddow, Sara A; Samuel, Varman T; Miller, Paul; Previs, Stephen F; Suino-Powell, Kelly; Xu, H Eric; Shulman, Gerald I; Kliewer, Steven A; Mangelsdorf, David J

    2011-03-25

    Fibroblast growth factor (FGF) 19 is an enterokine synthesized and released when bile acids are taken up into the ileum. We show that FGF19 stimulates hepatic protein and glycogen synthesis but does not induce lipogenesis. The effects of FGF19 are independent of the activity of either insulin or the protein kinase Akt and, instead, are mediated through a mitogen-activated protein kinase signaling pathway that activates components of the protein translation machinery and stimulates glycogen synthase activity. Mice lacking FGF15 (the mouse FGF19 ortholog) fail to properly maintain blood concentrations of glucose and normal postprandial amounts of liver glycogen. FGF19 treatment restored the loss of glycogen in diabetic animals lacking insulin. Thus, FGF19 activates a physiologically important, insulin-independent endocrine pathway that regulates hepatic protein and glycogen metabolism.

  9. New Results on CaH2 Thermal Neutron Scattering Cross Sections

    SciTech Connect

    Serot, O.

    2005-05-24

    Calcium hydride (CaH2) is a compound of interest in the frame of a current research program on the transmutation of long-lived nuclear wastes. Since CaH2 is relatively stable in liquid sodium, it is one possible material that can be used for local moderation of the neutron spectrum in fast neutron reactors such as PHENIX. In order to describe the moderated region from Monte Carlo and/or deterministic calculations, thermal neutron scattering data are needed. In particular, an adequate treatment of the thermal inelastic scattering cross sections for bound hydrogen is requested. The present work aims at the determination of these data. The first step was the measurement of the phonon frequency spectrum, which was carried out on the three axis spectrometer of the Institut Laue Langevin in Grenoble (France). This phonon frequency spectrum has already been published and so only a brief description of this measurement will be given here. Then, from physical grounds, the acoustic mode has been weighted relative to the optical modes in order to treat Hydrogen atoms bound in CaH2. The S({alpha},{beta}) scattering laws have been generated for various temperatures using the NJOY code working in the incoherent approximation and the Gaussian approximation. The deduced incoherent elastic and incoherent inelastic cross sections are shown and discussed. These new thermal neutron scattering data will be proposed in the JEFF3.1 European library.

  10. Reduced short term memory in congenital adrenal hyperplasia (CAH) and its relationship to spatial and quantitative performance

    PubMed Central

    Collaer, Marcia L.; Hindmarsh, Peter C.; Pasterski, Vickie; Fane, Briony A.; Hines, Melissa

    2015-01-01

    Girls and women with classical congenital adrenal hyperplasia (CAH) experience elevated androgens prenatally and show increased male-typical development for certain behaviors. Further, individuals with CAH receive glucocorticoid (GC) treatment postnatally, and this GC treatment could have negative cognitive consequences. We investigated two alternative hypotheses, that: (a) early androgen exposure in females with CAH masculinizes (improves) spatial perception and quantitative abilities at which males typically outperform females, or (b) CAH is associated with performance decrements in these domains, perhaps due to reduced short-term-memory (STM). Adolescent and adult individuals with CAH (40 female and 29 male) were compared with relative controls (29 female and 30 male) on spatial perception and quantitative abilities as well as on Digit Span (DS) to assess STM and on Vocabulary to assess general intelligence. Females with CAH did not perform better (more male-typical) on spatial perception or quantitative abilities than control females, failing to support the hypothesis of cognitive masculinization. Rather, in the sample as a whole individuals with CAH scored lower on spatial perception (p ≤ .009), a quantitative composite (p ≤ .036), and DS (p ≤ .001), despite no differences in general intelligence. Separate analyses of adolescent and adult participants suggested the spatial and quantitative effects might be present only in adult patients with CAH; however, reduced DS performance was found in patients with CAH regardless of age group. Separate regression analyses showed that DS predicted both spatial perception and quantitative performance (both p ≤ .001), when age, sex, and diagnosis status were controlled. Thus, reduced STM in CAH patients versus controls may have more general cognitive consequences, potentially reducing spatial perception and quantitative skills. Although hyponatremia or other aspects of salt-wasting crises, or additional hormone

  11. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21.

    PubMed

    Cyphert, Holly A; Ge, Xuemei; Kohan, Alison B; Salati, Lisa M; Zhang, Yanqiao; Hillgartner, F Bradley

    2012-07-20

    Previous studies have shown that starvation or consumption of a high fat, low carbohydrate (HF-LC) ketogenic diet induces hepatic fibroblast growth factor 21 (FGF21) gene expression in part by activating the peroxisome proliferator-activated receptor-α (PPARα). Using primary hepatocyte cultures to screen for endogenous signals that mediate the nutritional regulation of FGF21 expression, we identified two sources of PPARα activators (i.e. nonesterified unsaturated fatty acids and chylomicron remnants) that induced FGF21 gene expression. In addition, we discovered that natural (i.e. bile acids) and synthetic (i.e. GW4064) activators of the farnesoid X receptor (FXR) increased FGF21 gene expression and secretion. The effects of bile acids were additive with the effects of nonesterified unsaturated fatty acids in regulating FGF21 expression. FXR activation of FGF21 gene transcription was mediated by an FXR/retinoid X receptor binding site in the 5'-flanking region of the FGF21 gene. FGF19, a gut hormone whose expression and secretion is induced by intestinal bile acids, also increased hepatic FGF21 secretion. Deletion of FXR in mice suppressed the ability of an HF-LC ketogenic diet to induce hepatic FGF21 gene expression. The results of this study identify FXR as a new signaling pathway activating FGF21 expression and provide evidence that FXR activators work in combination with PPARα activators to mediate the stimulatory effect of an HF-LC ketogenic diet on FGF21 expression. We propose that the enhanced enterohepatic flux of bile acids during HF-LC consumption leads to activation of hepatic FXR and FGF19 signaling activity and an increase in FGF21 gene expression and secretion.

  12. Therapeutic insulin and hepatic glucose-6-phosphatase activity in preterm infants

    PubMed Central

    Burchell, A; McGeechan, A; Hume, R

    2000-01-01

    BACKGROUND—Hepatic glucose-6-phosphatase activity is low at birth, and in term infants rises rapidly to adult levels. In contrast, in most preterm infants, it remains low postnatally making them vulnerable to repeated hypoglycaemic episodes, resultant cerebral damage, or risk of sudden and unexpected death.
AIMS—To investigate the clinical features of preterm infants with low glucose-6-phosphatase enzyme activity to determine the influencing factors.
METHODS—Clinical data from 36 preterm infants were correlated by stepwise multiple regression analysis with Vmax of hepatic glucose-6-phosphatase as the dependent variable.
RESULTS—The most significant correlation was with the administration of insulin (units/kg/h postnatal life) with lesser effects of respiratory distress syndrome and dopamine administration. The Vmax changes reflected changes in the level of expression of the glucose-6-phosphatase protein.
CONCLUSION—In a variety of animal models, hepatic glucose-6-phosphatase levels have been shown to decrease in response to insulin, which also decreases transcription of the glucose-6-phosphatase gene. The association of insulin administration with high levels of hepatic glucose-6-phosphatase activity and protein expression was therefore most unexpected. Results from model systems, or adults, must be extrapolated to the metabolism of preterm infants with caution.

 PMID:10794792

  13. Puerarin ameliorates hepatic steatosis by activating the PPARα and AMPK signaling pathways in hepatocytes.

    PubMed

    Kang, Ok-Hwa; Kim, Sung-Bae; Mun, Su-Hyun; Seo, Yun-Soo; Hwang, Hyeong-Chil; Lee, Young-Mi; Lee, Ho-Seob; Kang, Dae-Gil; Kwon, Dong-Yeul

    2015-03-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by the hepatic manifestation of metabolic syndrome and is the leading cause of chronic liver disease. Steatohepatitis plays a critical role in the process resulting in liver fibrosis and cirrhosis. Puerarin is a herbal product widely used in Asia, and is believed to have therapeutic benefits for alleviating the symptoms of steatohepatitis. The present study was designed to investigate the effects and mechanisms of action of puerarin in reducing lipid accumulation in oleic acid (OA)-treated HepG2 cells. Hepatocytes were treated with OA with or without puerarin to observe lipid accumulation by Oil Red O staining. We also examined hepatic lipid contents (e.g., triacylglycerol and cholesterol) following treatment with puerarin. Western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) were used to measure sterol regulatory element binding protein (SREBP)-1, fatty acid synthase (FAS), peroxisome proliferator-activated receptor α (PPARα) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) protein and mRNA expression, respectively. Our results revealed that puerarin suppressed OA-induced lipid accumulation, and reduced the triacylglycerol and cholesterol levels. Furthermore, puerarin decreased the expression levels of lipogenic enzymes, such as FAS and SREBPs, and increased the expression levels of PPARα, which are critical regulators of hepatic lipid metabolism through the AMPK signaling pathway. These results indicate that puerarin has the same ability to activate AMPK, and reduce SREBP-1 and FAS expression, thus inhibiting hepatic lipogenesis and increasing hepatic antioxidant activity. We found that puerarin exerted a regulatory effect on lipid accumulation by decreasing lipogenesis in hepatocytes. Therefore, puerarin extract may have therapeutic benefits in the treatment of fatty liver and lipid-related metabolic disorders.

  14. EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis.

    PubMed

    Yang, Yang; Chen, Xiao-Xia; Li, Wan-Xia; Wu, Xiao-Qin; Huang, Cheng; Xie, Juan; Zhao, Yu-Xin; Meng, Xiao-Ming; Li, Jun

    2017-03-23

    EZH2, a histone H3 lysine-27-specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway-stimulated fibroblasts in vitro and in vivo by repressing Dkk-1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl4 -induced rat liver and primary HSCs as well as TGF-β1-treated HSC-T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF-β1-induced proliferation of HSC-T6 cells and the expression of α-SMA. In addition, knockdown of Dkk1 promoted TGF-β1-induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk-1 through trimethylation of H3K27me3 in TGF-β1-treated HSC-T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2-mediated repression of Dkk1 promotes the activation of Wnt/β-catenin pathway, which is an essential event for HSC activation.

  15. Ionone Derivatives from the Mycelium of Phellinus linteus and the Inhibitory Effect on Activated Rat Hepatic Stellate Cells

    PubMed Central

    Huang, Shiow-Chyn; Kuo, Ping-Chung; Hung, Hsin-Yi; Pan, Tai-Long; Chen, Fu-An; Wu, Tian-Shung

    2016-01-01

    Three new γ-ionylideneacetic acid derivatives, phellinulins A–C (1–3), were characterized from the mycelium extract of Phellinus linteus. The chemical structures were established based on the spectroscopic analysis. In addition, phellinulin A (1) was subjected to the examination of effects on activated rat hepatic stellate cells and exhibited significant inhibition of hepatic fibrosis. PMID:27164091

  16. Chronic hepatitis C infection–induced liver fibrogenesis is associated with M2 macrophage activation

    PubMed Central

    Bility, Moses T.; Nio, Kouki; Li, Feng; McGivern, David R.; Lemon, Stanley M.; Feeney, Eoin R.; Chung, Raymond T.; Su, Lishan

    2016-01-01

    The immuno-pathogenic mechanisms of chronic hepatitis C virus (HCV) infection remain to be elucidated and pose a major hurdle in treating or preventing chronic HCV-induced advanced liver diseases such as cirrhosis. Macrophages are a major component of the inflammatory milieu in chronic HCV–induced liver disease, and are generally derived from circulating inflammatory monocytes; however very little is known about their role in liver diseases. To investigate the activation and role of macrophages in chronic HCV–induced liver fibrosis, we utilized a recently developed humanized mouse model with autologous human immune and liver cells, human liver and blood samples and cell culture models of monocyte/macrophage and/or hepatic stellate cell activation. We showed that M2 macrophage activation was associated with liver fibrosis during chronic HCV infection in the livers of both humanized mice and patients, and direct-acting antiviral therapy attenuated M2 macrophage activation and associated liver fibrosis. We demonstrated that supernatant from HCV-infected liver cells activated human monocytes/macrophages with M2-like phenotypes. Importantly, HCV-activated monocytes/macrophages promoted hepatic stellate cell activation. These results suggest a critical role for M2 macrophage induction in chronic HCV-associated immune dysregulation and liver fibrosis. PMID:28000758

  17. Chronic hepatitis C infection-induced liver fibrogenesis is associated with M2 macrophage activation.

    PubMed

    Bility, Moses T; Nio, Kouki; Li, Feng; McGivern, David R; Lemon, Stanley M; Feeney, Eoin R; Chung, Raymond T; Su, Lishan

    2016-12-21

    The immuno-pathogenic mechanisms of chronic hepatitis C virus (HCV) infection remain to be elucidated and pose a major hurdle in treating or preventing chronic HCV-induced advanced liver diseases such as cirrhosis. Macrophages are a major component of the inflammatory milieu in chronic HCV-induced liver disease, and are generally derived from circulating inflammatory monocytes; however very little is known about their role in liver diseases. To investigate the activation and role of macrophages in chronic HCV-induced liver fibrosis, we utilized a recently developed humanized mouse model with autologous human immune and liver cells, human liver and blood samples and cell culture models of monocyte/macrophage and/or hepatic stellate cell activation. We showed that M2 macrophage activation was associated with liver fibrosis during chronic HCV infection in the livers of both humanized mice and patients, and direct-acting antiviral therapy attenuated M2 macrophage activation and associated liver fibrosis. We demonstrated that supernatant from HCV-infected liver cells activated human monocytes/macrophages with M2-like phenotypes. Importantly, HCV-activated monocytes/macrophages promoted hepatic stellate cell activation. These results suggest a critical role for M2 macrophage induction in chronic HCV-associated immune dysregulation and liver fibrosis.

  18. Thrombin activation and liver inflammation in advanced hepatitis C virus infection

    PubMed Central

    González-Reimers, Emilio; Quintero-Platt, Geraldine; Martín-González, Candelaria; Pérez-Hernández, Onán; Romero-Acevedo, Lucía; Santolaria-Fernández, Francisco

    2016-01-01

    Hepatitis C virus (HCV) infection is associated with increased thrombotic risk. Several mechanisms are involved including direct endothelial damage by the HCV virus, with activation of tissue factor, altered fibrinolysis and increased platelet aggregation and activation. In advanced stages, chronic HCV infection may evolve to liver cirrhosis, a condition in which alterations in the portal microcirculation may also ultimately lead to thrombin activation, platelet aggregation, and clot formation. Therefore in advanced HCV liver disease there is an increased prevalence of thrombotic phenomena in portal vein radicles. Increased thrombin formation may activate hepatic stellate cells and promote liver fibrosis. In addition, ischemic changes derived from vascular occlusion by microthrombi favor the so called parenchymal extinction, a process that promotes collapse of hepatocytes and the formation of gross fibrous tracts. These reasons may explain why advanced HCV infection may evolve more rapidly to end-stage liver disease than other forms of cirrhosis. PMID:27182154

  19. Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li-Mg-N-H system.

    PubMed

    Li, Bo; Liu, Yongfeng; Gu, Jian; Gao, Mingxia; Pan, Hongge

    2013-02-01

    Hydrogen storage properties and mechanisms of the Ca(BH(4))(2)-doped Mg(NH(2))(2)-2LiH system are systematically investigated. It is found that a metathesis reaction between Ca(BH(4))(2) and LiH readily occurs to yield CaH(2) and LiBH(4) during ball milling. The Mg(NH(2))(2) -2LiH-0.1Ca(BH(4))(2) composite exhibits optimal hydrogen storage properties as it can reversibly store more than 4.5 wt% of H(2) with an onset temperature of about 90 °C for dehydrogenation and 60 °C for rehydrogenation. Isothermal measurements show that approximately 4.0 wt% of H(2) is rapidly desorbed from the Mg(NH(2))(2) -2LiH-0.1Ca(BH(4))(2) composite within 100 minutes at 140 °C, and rehydrogenation can be completed within 140 minutes at 105 °C and 100 bar H(2). In comparison with the pristine sample, the apparent activation energy and the reaction enthalpy change for dehydrogenation of the Mg(NH(2))(2)-2LiH-0.1Ca(BH(4))(2) composite are decreased by about 16.5% and 28.1%, respectively, and thus are responsible for the lower operating temperature and the faster dehydrogenation/hydrogenation kinetics. The fact that the hydrogen storage performances of the Ca(BH(4))(2)-doped sample are superior to the individually CaH(2)- or LiBH(4)-doped samples suggests that the in situ formed CaH(2) and LiBH(4) provide a synergetic effect on improving the hydrogen storage properties of the Mg(NH(2))(2)-2LiH system.

  20. Cholesterol overloading leads to hepatic L02 cell damage through activation of the unfolded protein response.

    PubMed

    Li, Qi; Liu, Zhiguo; Guo, Jianli; Chen, Jiangyuan; Yang, Pu; Tian, Jun; Sun, Jun; Zong, Yiqiang; Qu, Shen

    2009-10-01

    Reported data indicate that cholesterol loading in the liver can cause hepatic injury. To explore the possible mechanisms of cell damage resulting from cholesterol overloading in hepatocytes, cell apoptosis, the unfolded protein response (UPR) and the correlation between them were assessed in the cholesterol-overloaded normal human hepatic cell line L02. L02 cells were incubated with 200 microg/ ml of low density lipoprotein (LDL) for 24 h with or without 20 microg/ml 58035, an inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT). In the LDL+58035 group, the intracellular cholesterol level was dramatically increased, which was measured by an enzymatic combined high performance liquid chromatography assay. Expression of immunoglobulin-binding protein, X-box binding protein 1, activating transcription factor 6, activating transcription factor 4, CCAAT/enhancer-binding protein homologous protein-10, markers of endoplasmic reticulum stress (ERS)/ UPR, were up-regulated as determined using reverse transcription-polymerase chain reaction (RT-PCR) or Western blot analysis. The rate of cell apoptic death increased 21.3+/-2.4%. Meanwhile, the active caspase-3 protein expression was increased 8.4-fold compared to the active caspase-3 protein expression in the controls. Furthermore, 4-phenylbutyric acid, an inhibitor of UPR, partly reduced cell apoptosis and activation of caspase-3. This study suggests that cholesterol overloading in hepatic L02 cells induces ERS and activates the UPR which, in part, leads to the apoptotic damage of cells.

  1. Eastern region represents a worrying cluster of active hepatitis C in Algeria in 2012.

    PubMed

    Bensalem, Aïcha; Selmani, Karima; Hihi, Narjes; Bencherifa, Nesrine; Mostefaoui, Fatma; Kerioui, Cherif; Pineau, Pascal; Debzi, Nabil; Berkane, Saadi

    2016-08-01

    Algeria is the largest country of Africa, peopled with populations living a range of traditional/rural and modern/urban lifestyles. The variations of prevalence of chronic active hepatitis care poorly known on the Algerian territory. We conducted a retrospective survey on all patients (n = 998) referred to our institution in 2012 and confirmed by us for an active hepatitis C. Half of the hepatitis C virus (HCV) isolates were genotyped. Forty Algerian regions out of the 48 were represented in our study. Three geographical clusters (Aïn-Temouchent/SidiBelAbbes, Algiers, and a large Eastern region) with an excess of active hepatitis C were observed. Patients coming from the Eastern cluster (Batna, Khenchela, Oum el Bouaghi, and Tebessa) were strongly over-represented (49% of cases, OR = 14.5, P < 0.0001). The hallmarks of Eastern region were an excess of women (65% vs. 46% in the remaining population, P < 0.0001) and the almost exclusive presence of HCV genotype 1 (93% vs. 63%, P = 0.0001). The core of the epidemics was apparently located in Khenchela (odds ratio = 24.6, P < 0.0001). This situation is plausibly connected with nosocomial transmission or traditional practices as scarification (Hijama), piercing or tattooing, very lively in this region. Distinct hepatitis C epidemics are currently affecting Algerian population. The most worrying situation is observed in rural regions located east of Algeria. J. Med. Virol. 88:1394-1403, 2016. © 2016 Wiley Periodicals, Inc.

  2. Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARγ and Fatty Acid Uptake

    PubMed Central

    Labrie, Marilyne; Lalonde, Simon; Najyb, Ouafa; Thiery, Maxime; Daneault, Caroline; Des Rosiers, Chrisitne; Rassart, Eric; Mounier, Catherine

    2015-01-01

    Transgenic mice (Tg) overexpressing human apolipoprotein D (H-apoD) in the brain are resistant to neurodegeneration. Despite the use of a neuron-specific promoter to generate the Tg mice, they expressed significant levels of H-apoD in both plasma and liver and they slowly develop hepatic steatosis and insulin resistance. We show here that hepatic PPARγ expression in Tg mice is increased by 2-fold compared to wild type (WT) mice. Consequently, PPARγ target genes Plin2 and Cide A/C are overexpressed, leading to increased lipid droplets formation. Expression of the fatty acid transporter CD36, another PPARgamma target, is also increased in Tg mice associated with elevated fatty acid uptake as measured in primary hepatocytes. Elevated expression of AMPK in the liver of Tg leads to phosphorylation of acetyl CoA carboxylase, indicating a decreased activity of the enzyme. Fatty acid synthase expression is also induced but the hepatic lipogenesis measured in vivo is not significantly different between WT and Tg mice. In addition, expression of carnitine palmitoyl transferase 1, the rate-limiting enzyme of beta-oxidation, is slightly upregulated. Finally, we show that overexpressing H-apoD in HepG2 cells in presence of arachidonic acid (AA), the main apoD ligand, increases the transcriptional activity of PPARγ. Supporting the role of apoD in AA transport, we observed enrichment in hepatic AA and a decrease in plasmatic AA concentration. Taken together, our results demonstrate that the hepatic steatosis observed in apoD Tg mice is a consequence of increased PPARγ transcriptional activity by AA leading to increased fatty acid uptake by the liver. PMID:26083030

  3. Nonadiabatic collisions of CaH with Li: Importance of spin-orbit-induced spin relaxation in spin-polarized sympathetic cooling of CaH

    NASA Astrophysics Data System (ADS)

    Warehime, Mick; Kłos, Jacek

    2015-09-01

    We apply our recently developed, quantum, nonadiabatic, two-dimensional finite element method [Warehime et al., J. Chem. Phys. 142, 034108 (2015)., 10.1063/1.4904432] to estimate the probability of the nonadiabatic reaction in spin-polarized Li (2S ) +CaH (2Σ+) . This spin-orbit-induced reaction leads to trap loss due to the opening of a barrierless pathway to the Ca (1S ) +LiH (1Σ+) products. To investigate this reaction we calculate three two-dimensional radial cuts of the potential energy surfaces for the triplet and singlet electronic states. We also calculate the spin-orbit coupling matrix element between these two electronic states. From our nonadiabatic scattering calculations we estimate the spin-flip probability in the sympathetic cooling of the CaH molecule with ultracold Li atoms to be small: on the order of 10-7 and increasing to 10-4 at higher temperatures. We estimate the order of the rate constant in our reduced dimensionality approach for the reaction proceeding on the singlet potential at a temperature of 1 K to be 10-10cm3 /s. This is of the same order as the measured value of 3.6 ×10-10cm3/s [Singh et al., Phys. Rev. Lett. 108, 203201 (2012), 10.1103/PhysRevLett.108.203201]. This reaction rate is at least seven orders of magnitude larger than our estimated rate of the spin-orbit-induced triplet to singlet reaction. Our nonadiabatic result is encouraging for the experimental prospects for this title system.

  4. Ligand activation of peroxisome proliferator-activated receptor-β/δ suppresses liver tumorigenesis in hepatitis B transgenic mice.

    PubMed

    Balandaram, Gayathri; Kramer, Lance R; Kang, Boo-Hyon; Murray, Iain A; Perdew, Gary H; Gonzalez, Frank J; Peters, Jeffrey M

    2016-07-01

    Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits steatosis and inflammation, known risk factors for liver cancer. In this study, the effect of ligand activation of PPARβ/δ in modulating liver tumorigenesis in transgenic hepatitis B virus (HBV) mice was examined. Activation of PPARβ/δ in HBV mice reduced steatosis, the average number of liver foci, and tumor multiplicity. Reduced expression of hepatic CYCLIN D1 and c-MYC, tumor necrosis factor alpha (Tnfa) mRNA, serum levels of alanine aminotransaminase, and an increase in apoptotic signaling was also observed following ligand activation of PPARβ/δ in HBV mice compared to controls. Inhibition of Tnfa mRNA expression was not observed in wild-type hepatocytes. Ligand activation of PPARβ/δ inhibited lipopolysaccharide (LPS)-induced mRNA expression of Tnfa in wild-type, but not in Pparβ/δ-null Kupffer cells. Interestingly, LPS-induced expression of Tnfa mRNA was also inhibited in Kupffer cells from a transgenic mouse line that expressed a DNA binding mutant form of PPARβ/δ compared to controls. Combined, these results suggest that ligand activation of PPARβ/δ attenuates hepatic tumorigenesis in HBV transgenic mice by inhibiting steatosis and cell proliferation, enhancing hepatocyte apoptosis, and modulating anti-inflammatory activity in Kupffer cells.

  5. Investigation of antiaromatase activity using hepatic microsomes of Nile tilapia (Oreochromis niloticus).

    PubMed

    Sassa-Deepaeng, Tanongsak; Chaisri, Wasana; Pikulkaew, Surachai; Okonogi, Siriporn

    2017-03-19

    Microsomal aromatase enzymes of humans and rats have been used in antiaromatase assays, but enzyme activity is species-specific. The current study extracted hepatic microsomes of Nile tilapia (Oreochromis niloticus) to investigate and compare the antiaromatase activity of chrysin, quercetin, and quercitrin. This activity was evaluated using a dibenzylfluorescein (DBF) assay. Results revealed that the age and body weight of Nile tilapia affected the yield of extracted microsomes. Extraction of hepatic microsomes of Nile tilapia was most effective when using a reaction medium with a pH of 8.0. A DBF assay using Nile tilapia microsomes revealed significant differences in levels of antiaromatase activity for chrysin, quercetin, and quercitrin. Chrysin was the most potent aromatase inhibitor, with an IC50 of 0.25 mg/mL. In addition, chrysin is an aromatase inhibitor that also inhibits the proliferation of cancer cells. Hepatic microsomes of Nile tilapia can be used to investigate and compare the antiaromatase activity of different compounds.

  6. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.

    PubMed

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N

    2014-08-12

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level.

  7. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    PubMed Central

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  8. Lymphocyte activation and hepatic cellular infiltration in immunocompetent mice infected by dengue virus.

    PubMed

    Chen, Hsuen-Chin; Lai, Show-Yun; Sung, Jui-Min; Lee, Shu-Hwae; Lin, Yu-Chin; Wang, Wei-Kung; Chen, Yee-Chun; Kao, Chuan-Liang; King, Chwan-Chuen; Wu-Hsieh, Betty A

    2004-07-01

    Activation and expansion of dengue virus-specific T cells and abnormal liver functions in dengue patients have been documented. However, it remains to be determined whether T cells are involved in the pathogenic mechanism of dengue virus infection. In this study, immunocompetent C57BL/6 mice were employed to study dengue virus-induced T cell activation. Mice were inoculated with 10(8) PFU dengue virus serotype 2 strain 16681 by the intravenous route. Dengue viral core RNA was detected by RT-PCR in mouse serum, liver, spleen, and brain at different time points after infection. Splenic T cells were activated as evidenced by their expression of CD69 and O-glycosylated CD43 at as early as day 3 after infection. Splenic T cell expression of O-glycosylated CD43 and IFN-gamma production coordinately peaked at day 5. Coincided with the peak of splenic T cell activation was hepatic lymphocyte infiltration and elevation of liver enzymes. Flow cytometric analysis revealed the infiltrating CD8(+) T cell to CD4(+) T cell ratio was 5/3. After a second inoculation of dengue virus, hepatic T cell infiltration and liver enzyme levels increased sharply. The infiltrating hepatic CD8(+) T cell to CD4(+) T cell ratio increased to 5.8/1. A strong correlation was found between T cell activation and hepatic cellular infiltration in immunocompetent mice infected with dengue virus. The kinetics of liver enzyme elevation also correlated with that of T cell activation. These data suggest a relationship between T cell infiltration and elevation of liver enzymes.

  9. Metformin regulates hepatic lipid metabolism through activating AMP-activated protein kinase and inducing ATGL in laying hens.

    PubMed

    Chen, Wei-Lu; Wei, Hen-Wei; Chiu, Wen-Zan; Kang, Ching-Hui; Lin, Ting-Han; Hung, Chien-Ching; Chen, Ming-Chun; Shieh, Ming-Song; Lee, Chin-Cheng; Lee, Horng-Mo

    2011-12-05

    Although many clinical trials have showed that metformin improves non-alcoholic fatty liver disease, which is a common liver disease associated with hepatic enzyme abnormalities, an animal model is required to investigate the effects of altered gene expression and post-translational processing (proteins) in mediating the observed responses. Laying hens appear to develop fatty livers, as in the case in human beings, when ingesting energy in excess of maintenance, and they can be used as an animal model for observing hepatic steatosis. The aim of this study was to investigate whether metformin could improve the non-alcoholic fatty liver of laying hens and to examine the possible mechanisms of lipid-lowering effects. Forty-eight Leghorn laying hens of Hy-Line variety W-36 - 44 weeks with 64.8% hen-day egg production - were randomly assigned into 4 treatments, each receiving 0, 10, 30, or 100mg of metformin with saline per kg body weight by daily wing vein injection. Results showed that, compared with the control, significant decreases existed in the laying rates; plasma triglyceride, cholesterol, and insulin levels; body weights; abdominal fat weights; hepatic lipid contents; and hepatic fatty acid synthase expression of layers receiving 30 or 100mg per kg body weight, whereas significant increases in their hepatic 5'adenosine monophosphate-activated protein kinase, acyl-CoA carboxylase phosphorylation, adipose triglyceride lipase, and carnitine palmitoyl transferase-1 expression were observed. These data suggest that metformin could reduce lipid deposits in the liver and that the laying hen is a valuable animal model for studying hepatic steatosis.

  10. Lysis of primary hepatic tumours by lymphokine activated killer cells.

    PubMed Central

    Hsieh, K H; Shu, S Y; Lee, C S; Chu, C T; Yang, C S; Chang, K J

    1987-01-01

    Lymphokine activated killer cell is a newly described lytic system against a variety of solid tumours and is distinct in several respects from the classic cytolytic T cell and the natural killer systems. This study was conducted to evaluate the lytic activity of lymphokine activated killer cells against fresh autologous and allogeneic, as well as cultured hepatocellular carcinoma cells. Lymphokine activated killer cell was generated by incubating peripheral blood mononuclear cells with various concentrations of recombinant IL-2 (rIL-2, Cetus, USA) for various periods of time. A four hour 51Cr release assay was used to measure cytotoxicity. The results show that fresh and cultured hepatocellular carcinoma cells were only slightly susceptible to natural killer cells. Normal hepatocytes were resistant to lymphokine activated killer-mediated lysis. Lymphokine activated killer cells could be generated from mononuclear cells of hepatocellular carcinoma patients and normal subjects with lytic activity against fresh autologous and allogeneic and cultured hepatocellular carcinoma cells, but lymphokine activated killer cells from the former was less efficient than that from the latter. It is concluded that the adoptive immunotherapy with combined rIL-2 and lymphokine activated killer may be worth trying in early cases of primary hepatocellular carcinoma. PMID:3030899

  11. Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins

    PubMed Central

    Hannukainen, Jarna C; Nuutila, Pirjo; Ronald, Borra; Kaprio, Jaakko; Kujala, Urho M; Janatuinen, Tuula; Heinonen, Olli J; Kapanen, Jukka; Viljanen, Tapio; Haaparanta, Merja; Rönnemaa, Tapani; Parkkola, Riitta; Knuuti, Juhani; Kalliokoski, Kari K

    2007-01-01

    Exercise is considered to be beneficial for free fatty acid (FFA) metabolism, although reports of the effects of increased physical activity on FFA uptake and oxidation in different tissues in vivo in humans have been inconsistent. To investigate the heredity-independent effects of physical activity and fitness on FFA uptake in skeletal muscle, the myocardium, and liver we used positron emission tomography (PET) in nine healthy young male monozygotic twin pairs discordant for physical activity and fitness. The cotwins with higher physical activity constituting the more active group had a similar body mass index but less body fat and 18 ± 10% higher V˙O2,max (P < 0.001) compared to the less active brothers with lower physical activity. Low-intensity knee-extension exercise increased skeletal muscle FFA and oxygen uptake six to 10 times compared to resting values but no differences were observed between the groups at rest or during exercise. At rest the more active group had lower hepatic FFA uptake compared to the less active group (5.5 ± 4.3 versus 9.0 ± 6.1 μmol (100 ml)−1 min−1, P = 0.04). Hepatic FFA uptake associated significantly with body fat percentage (P = 0.05). Myocardial FFA uptake was similar between the groups. In conclusion, in the absence of the confounding effects of genetic factors, moderately increased physical activity and aerobic fitness decrease body adiposity even in normal-weighted healthy young adult men. Further, increased physical activity together with decreased intra-abdominal adiposity seems to decrease hepatic FFA uptake but has no effects on skeletal muscle or myocardial FFA uptake. PMID:17053033

  12. ER Stress-induced Inflammasome Activation Contributes to Hepatic Inflammation and Steatosis

    PubMed Central

    Zhang, Jinyu; Zhang, Kezhong; Li, Zihai; Guo, Beichu

    2016-01-01

    Endoplasmic reticulum (ER) stress functions as a protein folding and quality control mechanism to maintain cell homeostasis. Emerging evidence indicates that ER stress is also involved in metabolic and inflammatory diseases. However, the link between ER stress and inflammation remains not well characterized. In this study, we have demonstrated that ER stress-induced inflammasome activation plays a critical role in the pathogenesis of hepatic steatosis. By utilizing genetic and pharmacological agent-induced hepatic steatosis animal models, we found that hepatic steatosis was associated with inflammasome activation and ER stress. Our results show that caspase-1 ablation alleviated liver inflammation and injury. Liver tissues from caspase-1 KO mice had significantly reduced production of IL-1β under ER stress conditions. We also found that ER stress promoted inflammasome activation and IL-1β processing in both hepatocytes and Kupffer cells/macrophages. Moreover, lack of caspase-1 ameliorated cell death or pyropoptosis of hepatocytes induced by ER stress. Taken together, our findings suggest that ER stress-induced inflammasome activation and IL-1β production generate a positive feedback loop to amplify inflammatory response, eventually leading to liver steatosis and injury. PMID:27942420

  13. Hepatic CD206-positive macrophages express amphiregulin to promote the immunosuppressive activity of regulatory T cells in HBV infection.

    PubMed

    Dai, Kai; Huang, Ling; Sun, Xiaomei; Yang, Lihua; Gong, Zuojiong

    2015-12-01

    Hepatitis B virus is a major cause of chronic liver inflammation worldwide. Innate and adaptive immune responses work together to restrain or eliminate hepatitis B virus in the liver. Compromised or failed adaptive immune response results in persistent virus replication and spread. How to promote antiviral immunity is a research focus for hepatitis B virus prevention and therapy. In this study, we investigated the role of macrophages in the regulation of antiviral immunity. We found that F4/80(+)CD206(+)CD80(lo/+) macrophages were a particular hepatic macrophage subset that expressed amphiregulin in our mouse hepatitis B virus infection model. CD206(+) macrophage-derived amphiregulin promoted the immunosuppressive activity of intrahepatic regulatory T cells, demonstrated by higher expression of CTLA-4, ICOS, and CD39, as well as stronger inhibition of antiviral function of CD8(+) T cells. Amphiregulin-neutralizing antibody diminished the effect of CD206(+) macrophages on regulatory T cells. In addition, we found that CD206(+) macrophage-derived amphiregulin activated mammalian target of rapamycin signaling in regulatory T cells, and this mammalian target of rapamycin activation was essential for promotion of regulatory T cell activity by CD206(+) macrophages. Adoptive transfer of CD206(+) macrophages into hepatitis B virus-infected mice increased cytoplasmic hepatitis B virus DNA in hepatocytes and also increased serum hepatitis B surface antigen. The antiviral activity of CD8(+) T cells was decreased after macrophage transfer. Therefore, our research indicated that amphiregulin produced by CD206(+) macrophages plays an important role in modulating regulatory T cell function and subsequently restrains the antiviral activity of CD8(+) T cells. Our study offers new insights into the immunomodulation in hepatitis B virus infection.

  14. Effect of stress on hepatic 11beta-hydroxysteroid dehydrogenase activity and its influence on carbohydrate metabolism.

    PubMed

    Altuna, María Eugenia; Lelli, Sandra Marcela; San Martín de Viale, Leonor C; Damasco, María Cristina

    2006-10-01

    Stress activates the synthesis and secretion of catecholamines and adrenal glucocorticoids, increasing their circulating levels. In vivo, hepatic 11beta-hydroxysteroid dehydrogenase 1 (HSD1) stimulates the shift of 11-dehydrocorticosterone to corticosterone, enhancing active glucocorticoids at tissue level. We studied the effect of 3 types of stress, 1 induced by bucogastric overload with 200 mmol/L HCl causing metabolic acidosis (HCl), the second induced by bucogastric overload with 0.45% NaCl (NaCl), and the third induced by simulated overload (cannula), on the kinetics of hepatic HSD1 of rats and their influence on the activity of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase, glycemia, and glycogen deposition. Compared with unstressed controls, all types of stress significantly increased HSD1 activity (146% cannula, 130% NaCl, and 253% HCl), phosphoenolpyruvate carboxykinase activity (51% cannula, 48% NaCl, and 86% HCl), and glycemia (29% cannula, 30% NaCl, and 41% HCl), but decreased hepatic glycogen (68% cannula, 68% NaCl, and 78% HCl). Owing to these results, we suggest the following events occur when stress is induced: an increase in hepatic HSD1 activity, augmented active glucocorticoid levels, increased gluconeogenesis, and glycemia. Also involved are the multiple events indirectly related to glucocorticoids, which lead to the depletion of hepatic glycogen deposits, thereby contributing to increased glycemia. This new approach shows that stress increments the activity of hepatic HSD1 and suggests that this enzyme could be involved in the development of the Metabolic Syndrome.

  15. Xenobiotics in gametes of Lake Michigan lake trout (Salvelinus namaycush) induce hepatic monooxygenase activity in their offspring

    SciTech Connect

    Binder, R.L.; Lech, J.J.

    1984-12-01

    Eggs spawned from Lake Michigan lake trout contain a number of xenobiotic compounds, including polychlorinated biphenyls (PCBs). To assess whether this contamination is sufficient to induce hepatic cytochrome P-450-dependent monooxygenase (MO) activity during early development, the hepatic MO systems of laboratory-cultured offspring of Lake Michigan, Green Bay, and Marquette Hatchery lake trout were compared. Additionally, the induction of hepatic cytochrome P-450 systems in developing lake trout by the commercial PCB mixture, Aroclor 1254 (A1254), was characterized. During late embryonic development and at the swim-up stage, the hepatic MO systems of the feral lake trout offspring appeared induced, based on levels of aryl hydrocarbon hydroxylase (AHH) activity that were 3.5- to 8.6-fold higher than the hatchery control levels. Furthermore, at the swim-up stage the feral trout offspring resembled A1254-treated hatchery fry with regard to the degree of inhibition of hepatic AHH activity by alpha-naphthoflavone, and the presence of an inducible Mr . 58,000 polypeptide in hepatic microsomes. The levels of aminopyrine N-demethylase activity, which was relatively unresponsive to inducers, were moderately lower in the Lake Michigan and Green Bay swim-up fry compared to the hatchery control levels. After 7 months of posthatching laboratory culture, when residues of xenobiotics present at fertilization were greatly diluted by growth, the hepatic MO systems of the Lake Michigan and hatchery trout offspring appeared essentially indistinguishable with regard to a number of parameters.

  16. Survey of surveillance systems and select prevention activities for hepatitis B and C, European Union/European Economic Area, 2009.

    PubMed

    Duffell, E F; van de Laar, M J

    2015-04-02

    Hepatitis B and C viral infections are leading causes of hepatic cirrhosis and cancer. The incidence and prevalence of both hepatitis B and C varies across European countries. European wide surveillance data help to understand the dynamic epidemiology of hepatitis B and C, which is important for the implementation and effectiveness of prevention and control activities.Comparison of surveillance data between countries in Europe is hampered by the differences in national healthcare and reporting systems. This report presents the results of a survey in 2009 which was undertaken to collect baseline information on surveillance systems and core prevention programmes for hepatitis B and C in individual European Union/ European Economic Area countries. The results provide key information to aid the interpretation of surveillance data, and while indicating heterogeneity in national surveillance systems and programmes, they highlight the potential of these systems. This resource has supported the implementation of a standardised European enhanced surveillance programme.

  17. Paraproteins with antibody activity in acute viral hepatitis and chronic autoimmune liver diseases

    PubMed Central

    Roux, Maria E. B.; Florin-Christensen, A.; Arana, R. M.; Doniach, Deborah

    1974-01-01

    Of 27 patients with liver disease and cryoglobulinaemia 18 proved to have paraproteins. Six of these monoclonal immunoglobulins were shown to have antibody activity, directed to human gamma globulin, alpha1-fetoprotein, smooth muscle, and mitochondria. Eight of the patients suffered from acute viral hepatitis, five of whom were HB Ag positive; in all these cases the monoclonal spikes were transient and their antibody activities were directed against IgG in two cases and alpha1-fetoprotein in one. Seven of the patients had active chronic hepatitis and in these the paraproteinaemia persisted, though remaining quantitatively unchanged over several years. One of them had a cryoprecipitable monoclonal smooth muscle antibody. Three patients had primary biliary cirrhosis and in two of them monoclonal IgM mitochondrial antibodies were demonstrated. In three out of the 18 cases there was a double M-component. Since these monoclonal antibodies are directed to autoantigens not unlike the polyclonal ones usually seen in autoimmune hepatic diseases, it is suggested that the factor which triggers the uncontrolled plasma cell proliferation to produce paraproteins must meet cells from an already expanding clone. PMID:18668850

  18. Laboratory, Field, and Modeling Studies of Aerobic Cometabolism of CAHs by Butane-Utilizing Microorganisms

    NASA Astrophysics Data System (ADS)

    Mathias, M.; Semprini, L.; Dolan, M. E.; McCarty, P. L.; Hopkins, G. D.

    2002-12-01

    The ability of butane-utilizing microorganisms to aerobically cometabolize a mixture of chlorinated aliphatic hydrocarbons (CAHs) in laboratory microcosms and in an in-situ field demonstration was modeled using parameter values measured in laboratory experiments. The butane grown culture was inoculated into soil and groundwater microcosms and exposed to butane with several repeated additions of 1,1,1-trichloroethane (TCA), 1,1-dichloroethylene (1,1-DCE), and 1,1-dichloroethane (1,1-DCA) at aqueous concentrations of 200 μg/L, 100 μg/L, and 200 μg/L, respectively. The utilization of butane and the transformation of the CAH mixture in the batch microcosms were simulated using differential equations accounting for Michaelis-Menten kinetics with cell growth and decay, substrate utilization, transformation product toxicity, and substrate inhibition of CAH transformation. Both competitive inhibition kinetics and mixed inhibition kinetics, determined in prior laboratory studies, were included in the model construct. The equations were solved simultaneously using fourth-order Runge-Kutta numerical integration. The batch microcosm experimental results were simulated well with parameter values determined independently in culture kinetic studies, with some minor adjustments. Having adequately defined the parameter values from laboratory studies, the biotransformation model was combined with 1-D advective-dispersive transport to simulate the results of in-situ bioremediation tests conducted at the Moffett Field Test Facility in CA. The butane-utilizing culture was injected into a 7 m subsurface test site and exposed to alternating pulses of oxygen and butane, along with TCA (150 μg/L), 1,1-DCE (50 μg/L) and 1,1-DCA (150 μg/L). The model simulated well the transient transformation of the CAHs in response to different butane and oxygen pulse cycles and injection concentrations. Model simulations correlated well with field results and indicated that better remediation

  19. Increased hepatic Na,K-ATPase activity during hepatic regeneration is associated with induction of the beta1-subunit and expression on the bile canalicular domain.

    PubMed

    Simon, F R; Fortune, J; Alexander, A; Iwahashi, M; Dahl, R; Sutherland, E

    1996-10-04

    Cellular and molecular mechanisms regulating the activity of the sodium pump or Na,K-ATPase during proliferation of hepatocytes following 70% liver resection have not been defined. Na,K-ATPase may be regulated by synthesis of its alpha- and beta-subunits, by sorting to either the sinusoidal or apical plasma membrane domains, or by increasing membrane lipid fluidity. This study investigated the time course of changes during hepatic regeneration for Na, K-ATPase activity, lipid composition and fluidity, and protein content of liver plasma membrane subfractions. As early as 4 h after hepatic resection, Na,K-ATPase activity was increased selectively in the bile canalicular fraction. It reached a new steady state at 12 h and remained elevated for 2 days. Although hepatic regeneration was associated with a reduced cholesterol/phospholipid molar ratio and increased fluidity, measured with two different probes, these changes in lipid metabolism were in the sinusoidal membrane domain. The Na,K-ATPase beta1-subunit, but not the alpha1-subunit, was increased selectively at the bile canalicular surface as shown by immunoblotting of liver plasma membrane subfractions and the morphological demonstration at both the light and electron microscopic levels. Furthermore, cycloheximide blocked the rise in beta1-subunit mRNA levels. Since the time course for beta1-subunit accumulation was similar to that for activation of Na,K-ATPase activity, this change implicated the beta1-subunit in activating sodium pump activity.

  20. The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation.

    PubMed

    Longatti, Andrea

    2015-12-17

    Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing.

  1. Active viral B hepatitis in parenteral drug abusers with acquired immune deficiency syndrome (AIDS).

    PubMed

    Leevy, C B; Nurse, H; Kapila, R

    1989-01-01

    Eighty-percent of 47 parenteral drug abusers with hepatomegaly and acquired immunodeficiency syndrome had HBV DNA in serum, although only 27% were HBsAg or "e" antigen-positive by polyclonal radioimmunoassay. Liver biopsies from each of 37 HBV DNA seropositive patients showed HBV DNA and were HBcAg-positive. The absence of positive HBsAg and "e" antigen in HBV DNA-positive patients was attributable to the presence of immune complexes; after in vitro dissociation of these complexes there was an increase in HBsAg from 24% to 86%, and of "e" antigen from 19% to 62%. These data indicate that actively replicating hepatitis B virus is common in patients with AIDS, and that precautions should be taken to prevent its dissemination. Therapy in these patients should address both human immunodeficiency and hepatitis B virus infections.

  2. Randomised controlled trial of lymphoblastoid interferon for chronic active hepatitis B.

    PubMed Central

    Anderson, M G; Harrison, T J; Alexander, G; Zuckerman, A J; Murray-Lyon, I M

    1987-01-01

    Thirty male patients (27 homosexual) with biopsy proven chronic active hepatitis B were randomised to receive lymphoblastoid interferon (Wellferon) or no treatment. All patients were HBeAg positive and had continuing viral replication. Patients receiving treatment were given a single daily intramuscular injection of interferon for 28 days at a starting dose of 2.5 MU/m2 increasing to a maximum of 7.5 MU/m2/day. Transient side effects of malaise and influenza like symptoms occurred in all patients and resolved rapidly after treatment. Hepatitis B viral replication was suppressed during interferon treatment in all patients but the effect was limited to the period of therapy. After one year there was no appreciable difference in viral markers between the two groups of patients and this treatment schedule appears less effective than the thrice weekly, three month regimes recently reported from other centres. PMID:3297940

  3. The Dual Role of Exosomes in Hepatitis A and C Virus Transmission and Viral Immune Activation

    PubMed Central

    Longatti, Andrea

    2015-01-01

    Exosomes are small nanovesicles of about 100 nm in diameter that act as intercellular messengers because they can shuttle RNA, proteins and lipids between different cells. Many studies have found that exosomes also play various roles in viral pathogenesis. Hepatitis A virus (HAV; a picornavirus) and Hepatitis C virus (HCV; a flavivirus) two single strand plus-sense RNA viruses, in particular, have been found to use exosomes for viral transmission thus evading antibody-mediated immune responses. Paradoxically, both viral exosomes can also be detected by plasmacytoid dendritic cells (pDCs) leading to innate immune activation and type I interferon production. This article will review recent findings regarding these two viruses and outline how exosomes are involved in their transmission and immune sensing. PMID:26694453

  4. Impact of sustained virus elimination on natural anticoagulant activity in patients with chronic viral hepatitis C.

    PubMed

    Saray, Aida; Mesihović, Rusmir; Vukobrat-Bijedić, Zora; Gornjaković, Srđan; Vanis, Nenad; Mehmedović, Amila; Papović, Vedad; Glavaš, Sanjin

    2013-05-01

    Previous studies have reported reduced synthesis of various hemostatic factors in patients with chronic liver disease. Whether changes in plasma levels of these proteins reflect recovered liver synthetic function following virological eradication therapy has not been approved yet. The aim of the study was to determine the impact of sustained viral suppression achieved with pegylated interferon alpha and ribavirin on hemostatic parameters including natural anticoagulants in patients with chronic hepatitis C. The following coagulation screening tests were obtained in thirty patients with chronic viral hepatitis C before and after completion of antiviral treatment: activated partial thromboplastin time, prothrombin time, plasma fibrinogen and natural anticoagulant proteins antithrombin III, protein C (PC) and total protein S (PS) activity. Only patients who achieved durable virus suppression were included. The mean PC and PS levels were significantly lower in patients with chronic viral hepatitis C before antiviral therapy than in healthy controls (79.04 ± 16.19 % vs. 109.92 ± 21.33% and 54.04 ± 16.11% vs. 87.60 ± 8.15%, respectively; (p<0.001). Mean levels of PC exhibited a significant increase by 14.69 % after the completion of antiviral treatment (93.73 ± 14.18%, p<0.001) as well as PS levels, which significantly increased by 21.46% (75.50 ± 15.43, p<0.001) when compared with pre-treatment values. No remarkable fluctuations in other hemostatic parameters were noted. Protein C and protein S are sensitive markers of hepatocyte synthetic impairment and are valuable markers in monitoring the efficacy of antiviral treatment in chronic hepatitis C patients. Larger studies are needed to confirm our results.

  5. Evaluation of behavioral problems after prenatal dexamethasone treatment in Swedish adolescents at risk of CAH.

    PubMed

    Wallensteen, Lena; Zimmermann, Marius; Sandberg, Malin Thomsen; Gezelius, Anton; Nordenström, Anna; Hirvikoski, Tatja; Lajic, Svetlana

    2016-09-01

    Prenatal dexamethasone (DEX) treatment in congenital adrenal hyperplasia (CAH) is effective in reducing virilization in affected girls, but other lasting effects are largely unknown. Here, we explore potential side effects of the treatment that will eventually help to make risk benefit analyses of the treatment. Therefore, we investigated the long-term effects of such prenatal DEX treatment on behavioral problems and temperament in children aged 7-17years. Standardized parent-completed questionnaires were used to evaluate adaptive functioning, behavioral and emotional problems (using CBCL), social anxiety (SPAI-C-P), and temperament (EAS). Self-reports were used to assess the children's own perception of social anxiety (SASC-R). The study compared 34 DEX-treated children and adolescents who were treated during the first trimester of fetal life and do not have CAH with 66 untreated controls from the Swedish population. No statistically significant differences were found between groups, suggesting that healthy children who were treated with DEX during early fetal life seem to be well adjusted without major behavioral or emotional problems as assessed by their parents. Moreover, self-reported social anxiety was not increased in DEX-exposed children and adolescents. In fact, the control group scored higher on items assessing anxiety in new, social situations. Nevertheless, for some of these comparisons, non-significant moderate to large effect sizes were observed, implying that the null findings should be interpreted with caution and require studies on larger, internationally combined cohorts.

  6. Regulation of Human Hepatic Drug Transporter Activity and Expression by Diesel Exhaust Particle Extract

    PubMed Central

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2015-01-01

    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their

  7. CaH Rydberg series, oscillator strengths and photoionization cross sections from Molecular Quantum Defect and Dyson Orbital theories

    NASA Astrophysics Data System (ADS)

    Velasco, A. M.; Lavín, C.; Díaz-Tinoco, Manuel; Ortiz, J. V.

    2017-01-01

    In this work, electron-propagator methods are applied to the calculation of the ionization potential and vertical excitation energies for several Rydberg series of the CaH molecule. The present calculations cover more highly excited states than those previously reported. In particular, excitation energies for ns (n>5), np (n>5), nd (n>4) and nf Rydberg states are given. Oscillator strengths for electronic transitions involving Rydberg states of CaH, as well as photoionization cross sections for Rydberg channels, also have been determined by using the Molecular Quantum Defect Orbital approach. Good agreement has been found with the scarce comparative data that are available for oscillator strengths. To our knowledge, predictions of photoionization cross sections from the outermost orbital of CaH are made here for the first time. A Cooper minimum and mixed atomic orbital character in some of the Dyson orbitals are among the novel features of these present calculations.

  8. Hepatitis B

    MedlinePlus

    ... Home » Hepatitis B » Hepatitis B Entire Lesson Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Enter ZIP code here Enter ZIP code here Hepatitis B Entire Lesson for Veterans and the Public ...

  9. Activation of class I major histocompatibility complex gene expression by hepatitis B virus.

    PubMed Central

    Zhou, D X; Taraboulos, A; Ou, J H; Yen, T S

    1990-01-01

    Normal hepatocytes express very few class I major histocompatibility complex (MHC I) molecules, but MHC I expression is elevated in hepatitis B virus (HBV) infection. We report here that hepatoblastoma cells with replicating HBV genomes express three- to fourfold-higher levels of MHC I protein and mRNA than do parent cells without HBV DNA. Transient transfection assays demonstrated that the HBV X protein trans activated transcription from an MHC I promoter and allowed identification of cis elements important for trans activation. Images PMID:2164611

  10. Protective benefits of AMP-activated protein kinase in hepatic ischemia-reperfusion injury

    PubMed Central

    Zhang, Min; Yang, Dan; Gong, Xianqiong; Ge, Pu; Dai, Jie; Lin, Ling; Zhang, Li

    2017-01-01

    Hepatic ischemia-reperfusion injury (HIRI) is a major cause of hepatic failure and death after liver trauma, haemorrhagic shock, resection surgery and liver transplantation. AMP-activated protein kinase (AMPK) is an energy sensitive kinase that plays crucial roles in the regulation of metabolic homeostasis. In HIRI, ischemia induces the decline of ATP and the increased ratio of AMP/ATP, which promotes the phosphorylation and activation of AMPK. Three AMPK kinases, liver kinase B1 (LKB1), Ca2+/calmodulin-depedent protein kinase kinase β (CaMKKβ) and TGF-β-activated kinase-1 (TAK1), are main upstream kinases for the phosphorylation of AMPK. In addition to the changed AMP/ATP ratio, the activated CaMKKβ by increased intracelluar Ca2+ and the overproduction of reactive oxygen species (ROS) are also involved in the activation of AMPK during HIRI. The activated AMPK might provide protective benefits in HIRI via prevention of energy decline, inhibition of inflammatory response, suppression of hepatocyte apoptosis and attenuation of oxidative stress. Thus, AMPK might become a novel target for the pharmacological intervention of HIRI. PMID:28386315

  11. Biological or pharmacological activation of protein kinase C alpha constrains hepatitis E virus replication.

    PubMed

    Wang, Wenshi; Wang, Yijin; Debing, Yannick; Zhou, Xinying; Yin, Yuebang; Xu, Lei; Herrera Carrillo, Elena; Brandsma, Johannes H; Poot, Raymond A; Berkhout, Ben; Neyts, Johan; Peppelenbosch, Maikel P; Pan, Qiuwei

    2017-04-01

    Although hepatitis E has emerged as a global health issue, there is limited knowledge of its infection biology and no FDA-approved medication is available. Aiming to investigate the role of protein kinases in hepatitis E virus (HEV) infection and to identify potential antiviral targets, we screened a library of pharmacological kinase inhibitors in a cell culture model, a subgenomic HEV replicon containing luciferase reporter. We identified protein kinase C alpha (PKCα) as an essential cell host factor restricting HEV replication. Both specific inhibitor and shRNA-mediated knockdown of PKCα enhanced HEV replication. Conversely, over-expression of the activated form of PKCα or treatment with its pharmacological activator strongly inhibited HEV replication. Interestingly, upon the stimulation by its activator, PKCα efficiently activates its downstream Activator Protein 1 (AP-1) pathway, leading to the induction of antiviral interferon-stimulated genes (ISGs). This process is independent of the JAK-STAT machinery and interferon production. However, PKCα induced HEV inhibition appears independent of the AP1 cascade. The discovery that activated PKCα restricts HEV replication reveals new insight of HEV-host interactions and provides new target for antiviral drug development.

  12. Succinate causes α-SMA production through GPR91 activation in hepatic stellate cells.

    PubMed

    Li, Ying Hui; Woo, Sung Hoon; Choi, Dae Hee; Cho, Eun-Hee

    2015-08-07

    Succinate acts as an extracellular signaling molecule as well as an intermediate in the citric acid cycle. It binds to and activates its specific G protein-coupled receptor 91 (GPR91). GPR91 is present in hepatic stellate cells (HSCs), but its role in hepatic fibrogenesis remains unclear. Cultured HSCs treated with succinate showed increased protein expression of GPR91 and α-smooth muscle actin (α-SMA), markers of fibrogenic response. Succinate also increased mRNA expression of α-SMA, transforming growth factor β (TGF-β), and collagen type I. Transfection of siRNA against GPR91 abrogated succinate-induced increases in α-SMA expression. Malonate, an inhibitor of succinate dehydrogenase (SDH), increased succinate levels in cultured HSCs and increased GPR91 and α-SMA expression. Feeding mice a methionine- and choline-deficient (MCD) diet is a widely used technique to create an animal model of nonalcoholic steatohepatitis (NASH). HSCs cultured in MCD media showed significantly decreased SDH activity and increased succinate concentration and GPR91 and α-SMA expression. Similarly, palmitate treatment significantly decreased SDH activity and increased GPR91 and α-SMA expression. Finally, C57BL6/J mice fed the MCD diet had elevated succinate levels in their plasma. The MCD diet also decreased SDH activity, increased succinate concentration, and increased GPR91 and α-SMA expression in isolated HSCs. Collectively, our results show that succinate plays an important role in HSC activation through GPR91 induction, and suggest that succinate and GPR91 may represent new therapeutic targets for modulating hepatic fibrosis.

  13. Androgen and psychosexual development: core gender identity, sexual orientation and recalled childhood gender role behavior in women and men with congenital adrenal hyperplasia (CAH).

    PubMed

    Hines, Melissa; Brook, Charles; Conway, Gerard S

    2004-02-01

    We assessed core gender identity, sexual orientation, and recalled childhood gender role behavior in 16 women and 9 men with CAH and in 15 unaffected female and 10 unaffected male relatives, all between the ages of 18 and 44 years. Women with congenital adrenal hyperplasia (CAH) recalled significantly more male-typical play behavior as children than did unaffected women, whereas men with and without CAH did not differ. Women with CAH also reported significantly less satisfaction with the female sex of assignment and less heterosexual interest than did unaffected women. Again, men with CAH did not differ significantly from unaffected men in these respects. Our results for women with CAH are consistent with numerous prior reports indicating that girls with CAH show increased male-typical play behavior. They also support the hypotheses that these women show reduced heterosexual interest and reduced satisfaction with the female sex of assignment. Our results for males are consistent with most prior reports that boys with CAH do not show a general alteration in childhood play behavior. In addition, they provide initial evidence that core gender identity and sexual orientation are unaffected in men with CAH. Finally, among women with CAH, we found that recalled male-typical play in childhood correlated with reduced satisfaction with the female gender and reduced heterosexual interest in adulthood. Although prospective studies are needed, these results suggest that those girls with CAH who show the greatest alterations in childhood play behavior may be the most likely to develop a bisexual or homosexual orientation as adults and to be dissatisfied with the female sex of assignment.

  14. The effect of cold on serum thyroid hormones and hepatic 5 prime mono-deiodinase activity

    SciTech Connect

    Hesslink, R.L. Jr.; Quesada, M.; D'Alesandro, M.; Homer, L.D.; Reed, J.L.; Christopherson, R.; Young, B.A. Univ. of Alberta, Edmonton )

    1991-03-11

    Cold exposed swine have an increases serum concentration of triiodothyronine (T{sub 3}) and increased T{sub 3} production rate. It is thought that hepatic thyroxine (T{sub 4}) deiodination (5DI) contributes to circulating T{sub 3} concentrations. The authors investigated the effects of cold exposure (14 days) on energy intake, serum free T{sub 3} (FT{sub 3}) and free T{sub 4} (FT{sub 4}) levels; and 5DI in 5-month boars. Hepatic 5DI activity was determined by measuring the {sup 125}I generated from trace amounts of {sup 125}I T{sub 4}. FT{sub 3} and FT{sub 4} were assayed by RIA. Swine were housed in either 20C (control; n = 5) or 4C (cold; n = 7) chambers and given food ad libitum. Cold exposure increased energy intake by 42%. The increase (93%) in hepatic 5DI V{sub max} after cold exposure parallels the increase in whole animal T{sub 3} production and may account for FT{sub 3} values found after cold exposure.

  15. Hepatic Microenvironment Affects Oval Cell Localization in Albumin-Urokinase-Type Plasminogen Activator Transgenic Mice

    PubMed Central

    Braun, Kristin M.; Thompson, Anne W.; Sandgren, Eric P.

    2003-01-01

    Mice carrying an albumin-urokinase type plasminogen activator transgene (AL-uPA) develop liver disease secondary to uPA expression in hepatocytes. Transgene-expressing parenchyma is replaced gradually by clones of cells that have deleted transgene DNA and therefore are not subject to uPA-mediated damage. Diseased liver displays several abnormalities, including hepatocyte vacuolation and changes in nonparenchymal tissue. The latter includes increases in laminin protein within parenchyma and the appearance of cytokeratin 19-positive bile ductule-like cells (oval cells) both in portal regions and extending into the hepatic parenchyma. In this study, we subjected AL-uPA mice to two-thirds partial hepatectomy to identify the response of these livers to additional growth stimulation. We observed several changes in hepatic morphology. First, the oval cells increased in number and often formed ductules in the parenchyma. Second, this cellular change was accompanied by a further increase in laminin associated with single or clusters of oval cells. Third, desmin-positive Ito cells increased in number and maintained close association with oval cells. Fourth, these changes were localized precisely to uPA-expressing areas of liver. Regenerating clones of uPA-deficient cells appeared to be unaffected both by stromal and cellular alterations. Thus, additional growth stimulation of diseased uPA-expressing liver induces an oval cell-like response, as observed in other models of severe hepatic injury, but the localization of this response seems to be highly regulated by the hepatic microenvironment. PMID:12507902

  16. SENESCENCE-ASSOCIATED DECLINE IN HEPATIC PEROXISOMAL ENZYME ACTIVITIES CORRESPONDS WITH DIMINISHED LEVELS OF RETINOID X RECEPTOR ALPHA, BUT NOT PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA1

    EPA Science Inventory

    Abstract

    Aging is associated with alterations in hepatic peroxisomal metabolism and susceptibility to hepatocarcinogenecity produced by agonists of peroxisome proliferator-activated receptor alpha (PPARa). Mechanisms involved in these effects are not well understood. Howev...

  17. Induction of hepatic cyclooxygenase-2 by hyperhomocysteinemia via nuclear factor-kappaB activation.

    PubMed

    Wu, Nan; Siow, Yaw L; O, Karmin

    2009-10-01

    Hyperhomocysteinemia, an elevation of blood homocysteine (Hcy), is a metabolic disorder associated with dysfunction of multiple organs. Apart from endothelial dysfunction, Hcy can cause hepatic lipid accumulation and liver injury. However, the mechanism responsible for Hcy-induced liver injury is poorly understood. The aim of this study was to investigate the regulation of cyclooxygenase-2 (COX-2), a proinflammatory factor, expression in the liver during the initial phase of hyperhomocysteinemia. Sprague-Dawley rats were fed a high-methionine diet for 1 or 4 wk. Serum and liver concentrations of Hcy were significantly elevated after 1 or 4 wk of dietary treatment. COX-2 mRNA and protein levels were significantly elevated in the liver of hyperhomocysteinemic rats. The induction of COX-2 expression was more prominent in 1-wk hyperhomocysteinemic rats than that in the 4-wk group. EMSA revealed an activation of NF-kappaB in the same liver tissue in which COX-2 was induced. Administration of a NF-kappaB inhibitor to hyperhomocysteinemic rats effectively abolished hepatic COX-2 expression, inhibited the formation of inflammatory foci, and improved liver function. Further investigation revealed that oxidative stress due to increased superoxide generation was responsible for increased phosphorylation and degradation of IkappaBalpha leading to NF-kappaB activation in the liver. Administration of 4-hydroxy-tetramethyl-piperidine-1-oxyl, an SOD mimetic, to hyperhomocysteinemic rats not only inhibited NF-kappaB activation but also prevented hepatic COX-2 induction and improved liver function. These results suggest that hyperhomocysteinemia-induced COX-2 expression is mediated via NF-kappaB activation. Increased oxidative stress and inflammatory response may contribute to liver injury associated with hyperhomocysteinemia.

  18. Activities of the enzymes of hepatic gluconeogenesis in periparturient dairy cows with induced fatty liver.

    PubMed

    Murondoti, Absolom; Jorritsma, Ruurd; Beynen, Anton C; Wensing, Theo; Geelen, Math J H

    2004-05-01

    The objective was to measure the activities of all the enzymes essential for hepatic gluconeogenesis in dairy cows with induced fatty liver. We aimed to induce severe fatty liver in ten experimental cows by overfeeding them during the dry period while seven control cows were maintained on a restricted diet. To induce a marked negative energy balance, the experimental cows were deprived of feed for 8 h immediately after parturition. In addition, the experimental cows were given a restricted amount of diet during the first 5 d of lactation. Liver samples were collected 1 week before and 1, 2 and 4 weeks after parturition. Before parturition, liver triacylglycerol concentrations did not differ between the two groups. After parturition, the experimental cows developed marked fatty liver as indicated by a higher level of triacylglycerols in the liver compared with the control cows. Before parturition, all gluconeogenic enzymes in the liver were lower in experimental cows than in control cows. Phosphoenolpyruvate carboxykinase, pyruvate carboxylase and propionyl-CoA carboxylase were significantly lower and fructose 1,6-bisphosphatase and glucose 6-phosphatase tended to be lower in the experimental cows. The activities of two crucial enzymes for gluconeogenesis in ruminants, i.e., phosphoenolpyruvate carboxykinase and propionyl-CoA carboxylase, remained low throughout the sampling period post partum. Activities of pyruvate carboxylase and glucose 6-phosphatase in the experimental cows post partum were upgraded to values similar to those of the control cows. The results showed that the capacity for hepatic gluconeogenesis before parturition was lower in cows with induced fatty liver than in control cows. After parturition, the low activities of crucial gluconeogenic enzymes indicated insufficient production of glucose. It is suggested that the low gluconeogenic capacity leads successively to low blood glucose concentrations, low insulin levels and high rates of

  19. Liver stiffness is associated with monocyte activation in HIV-infected Ugandans without viral hepatitis.

    PubMed

    Redd, Andrew D; Wendel, Sarah K; Grabowski, Mary K; Ocama, Ponsiano; Kiggundu, Valerian; Bbosa, Francis; Boaz, Iga; Balagopal, Ashwin; Reynolds, Steven J; Gray, Ronald H; Serwadda, David; Kirk, Gregory D; Quinn, Thomas C; Stabinski, Lara

    2013-07-01

    A high prevalence of liver stiffness, as determined by elevated transient elastography liver stiffness measurement, was previously found in a cohort of HIV-infected Ugandans in the absence of chronic viral hepatitis. Given the role of immune activation and microbial translocation in models of liver disease, a shared immune mechanism was hypothesized in the same cohort without other overt causes of liver disease. This study examined whether HIV-related liver stiffness was associated with markers of immune activation or microbial translocation (MT). A retrospective case-control study of subjects with evidence of liver stiffness as defined by a transient elastography stiffness measurement ≥9.3 kPa (cases=133) and normal controls (n=133) from Rakai, Uganda was performed. Cases were matched to controls by age, gender, HIV, hepatitis B virus (HBV), and highly active antiretroviral therapy (HAART) status. Lipopolysaccharide (LPS), endotoxin IgM antibody, soluble CD14 (sCD14), C-reactive protein (CRP), and D-dimer levels were measured. Conditional logistic regression was used to estimate adjusted matched odds ratios (adjMOR) and 95% confidence intervals. Higher sCD14 levels were associated with a 19% increased odds of liver stiffness (adjMOR=1.19, p=0.002). In HIV-infected individuals, higher sCD14 levels were associated with a 54% increased odds of having liver stiffness (adjMOR=1.54, p<0.001); however, the opposite was observed in HIV-negative individuals (adjMOR=0.57, p=0.001). No other biomarker was significantly associated with liver stiffness, and only one subject was found to have detectable LPS. Liver stiffness in HIV-infected Ugandans is associated with increased sCD14 indicative of monocyte activation in the absence of viral hepatitis or microbial translocation, and suggests that HIV may be directly involved in liver disease.

  20. Moderate physical activity promotes basal hepatic autophagy in diet-induced obese mice.

    PubMed

    Rosa-Caldwell, Megan E; Lee, David E; Brown, Jacob L; Brown, Lemuel A; Perry, Richard A; Greene, Elizabeth S; Carvallo Chaigneau, Francisco R; Washington, Tyrone A; Greene, Nicholas P

    2017-02-01

    Obesity is a known risk factor for the development of hepatic disease; obesity-induced fatty liver can lead to inflammation, steatosis, and cirrhosis and is associated with degeneration of the mitochondria. Lifestyle interventions such as physical activity may ameliorate this condition. The purpose of this study was to investigate regulation of mitochondrial and autophagy quality control in liver following Western diet-induced obesity and voluntary physical activity. Eight-week-old C57BL/6J mice were fed a Western diet (WD) or normal chow (NC, control) for 4 weeks; afterwards, groups were divided into voluntary wheel running (VWR) or sedentary (SED) conditions for an additional 4 weeks. WD-SED animals had a median histology score of 2, whereas WD-VWR was not different from NC groups (median score 1). There was no difference in mRNA of inflammatory markers Il6 and Tnfa in WD animals. WD animals had 50% lower mitochondrial content (COX IV and Cytochrome C proteins), 50% lower Pgc1a mRNA content, and reduced content of mitochondrial fusion and fission markers. Markers of autophagy were increased in VWR animals, regardless of obesity, as measured by 50% greater LC3-II/I ratio and 40% lower p62 protein content. BNIP3 protein content was 30% less in WD animals compared with NC animals, regardless of physical activity. Diet-induced obesity results in derangements in mitochondrial quality control that appear to occur prior to the onset of hepatic inflammation. Moderate physical activity appears to enhance basal autophagy in the liver; increased autophagy may provide protection from hepatic fat accumulation.

  1. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    SciTech Connect

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-02-15

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 {mu}g/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including {alpha}-smooth muscle actin, transforming growth factor-{beta}1, PDGF-R{beta}, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro({alpha}) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  2. [Activity of the marker liver enzymes under the conditions of toxic hepatitis and alimentary deprivation of protein].

    PubMed

    Voloshchuk, O N; Kopyl'chuk, G P; Buchkovskaia, I M

    2014-01-01

    The activity of the sorbitoldehydrogenase (SDH), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in the blood serum of rats with acetaminophen-induced hepatitis under the conditions of alimentary deprivation of protein was studied. The animals were divided into 3 groups: 1--rats with acute acetaminophen-induced hepatitis, maintained on the full ration; 2--rats with acute acetaminophen-induced hepatitis, maintained under the conditions of alimentary deprivation of protein; 3--control. The activity of the sorbitol dehydrogenase in blood serum was determined by the kinetic method, activity of the alanine aminotransferase and alkaline phosphatase - photometrically. It is shown, that in animals with the model hepatitis the activity of sorbitol dehydrogenase in blood serum increases 20-fold, wherein statistical significance between animals with hepatitis maintained under the conditions of full ration and those of low-protein diet is not established. In the group of animals with acetaminophen-induced hepatitis the preservation on the control level of the alkaline phosphatase activity on the base of the increase of alanine aminotransferase by 2.2 times and ratio ALT/ALP>5 testifies about hepatocellular liver injury. In the group of animals with drug-induced hepatitis and alimentary deprivation of protein, the increase of the alkaline phosphatase and alanine aminotransferase activity is observed, herewith the ratio ALT/ALP ranges from 2 to 5 and testifies about mixed liver injury. The conclusion was made, that alimentary deprivation of protein is the critical factor for the development of the disturbances of functional and structural liver integrity, and the therapeutic approaches to the correction of the drug-induced liver injury should be different depending on the value of protein ration in the anamnesis, taking into account the different types of liver injury.

  3. Suppression of hepatic stellate cell activation through downregulation of gremlin1 expression by the miR-23b/27b cluster

    PubMed Central

    Wang, Hu; Ni, Yi-Ran; Wang, Jie; Wu, Jiang-Feng; Liu, Chang-Bai

    2016-01-01

    The imbalance between transforming growth factor β and bone morphogenetic protein 7 signaling pathways is a critical step in promoting hepatic stellate cell activation during hepatic fibrogenesis. Gremlin1 may impair the balance. Something remains unclear about the regulatory mechanisms of gremlin1 action on hepatic stellate cell activation and hepatic fibrosis. In the current study, gremlin1 overexpression promotes activation of hepatic stellate cells. Knockdown of gremlin1 with siRNAs suppresses hepatic stellate cell activation and attenuates hepatic fibrosis in rat model. Our results also show that miR-23b/27b cluster members bind to 3′-untranslated region of gremlin1 resulting in reduction of transforming growth factor β, α-smooth muscle actin and collagenI α1/2 gene expression. Our findings suggest that gremlin1 promotes hepatic stellate cell activation and hepatic fibrogenesis through impairment of the balance between transforming growth factor β and bone morphogenetic protein 7 signaling pathways. The miR-23b/27b cluster suppresses activation of hepatic stellate cells through binding gremlin1 to rectify the imbalance. PMID:27863390

  4. Activation and Exhaustion of Adaptive Immune Cells in Hepatitis B Infection.

    PubMed

    Gogoi, Dimpu; Borkakoty, Biswajyoti; Biswas, Dipankar; Mahanta, Jagadish

    2015-09-01

    In hepatitis B virus (HBV) infection, the immune reaction is responsible for viral clearance and preventing their spread within the host. However, the immune system is dysfunctional in patients with chronic HBV infection, leading to an inadequate immune response against the virus. A major factor contributing to inefficient immune function is the phenomenon of immune exhaustion. Hence, understanding immune activation and exhaustion during HBV infection is important, as it would provide insight in developing immunotherapy to control chronic HBV infection. The aim of this review is to highlight the existing information on immune effector functions and immune exhaustion in response to HBV infection.

  5. Androgen and the development of human sex-typical behavior: rough-and-tumble play and sex of preferred playmates in children with congenital adrenal hyperplasia (CAH).

    PubMed

    Hines, M; Kaufman, F R

    1994-08-01

    We hypothesized that girls with congenital adrenal hyperplasia (CAH), who experience higher than normal levels of androgens prenatally, would show masculinization of behaviors that show sex differences. Therefore, we examined rough-and-tumble play and sex of preferred playmates in 3-8-year-old children with CAH and in unaffected 3-8-year-old male and female relatives. The hypothesized sex differences in rough-and-tumble play were seen, with unaffected boys showing more rough-and-tumble play than unaffected girls. However, CAH girls were similar to unaffected girls. Additionally, CAH boys showed reduced rough-and-tumble play. In contrast, sex of preferred playmates showed the hypothesized pattern of results. There were sex differences, with unaffected boys preferring boys and unaffected girls preferring girls. In addition, the preferences of girls with CAH were masculinized compared to those of unaffected girls. Results are discussed in terms of possible influences of social, hormonal, and illness factors.

  6. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.

    PubMed

    Bitter, Andreas; Rümmele, Petra; Klein, Kathrin; Kandel, Benjamin A; Rieger, Jessica K; Nüssler, Andreas K; Zanger, Ulrich M; Trauner, Michael; Schwab, Matthias; Burk, Oliver

    2015-11-01

    In addition to its well-characterized role in the regulation of drug metabolism and transport by xenobiotics, pregnane X receptor (PXR) critically impacts on lipid homeostasis. In mice, both ligand-dependent activation and knockout of PXR were previously shown to promote hepatic steatosis. To elucidate the respective pathways in human liver, we generated clones of human hepatoma HepG2 cells exhibiting different PXR protein levels, and analyzed effects of PXR activation and knockdown on steatosis and expression of lipogenic genes. Ligand-dependent activation as well as knockdown of PXR resulted in increased steatosis in HepG2 cells. Activation of PXR induced the sterol regulatory element-binding protein (SREBP) 1-dependent lipogenic pathway via PXR-dependent induction of SREBP1a, which was confirmed in primary human hepatocytes. Inhibiting SREBP1 activity by blocking the cleavage-dependent maturation of SREBP1 protein impaired the induction of lipogenic SREBP1 target genes and triglyceride accumulation by PXR activation. On the other hand, PXR knockdown resulted in up-regulation of aldo-keto reductase (AKR) 1B10, which enhanced the acetyl-CoA carboxylase (ACC)-catalyzed reaction step of de novo lipogenesis. In a cohort of human liver samples histologically classified for non-alcoholic fatty liver disease, AKR1B10, SREBP1a and SREBP1 lipogenic target genes proved to be up-regulated in steatohepatitis, while PXR protein was reduced. In summary, our data suggest that activation and knockdown of PXR in human hepatic cells promote de novo lipogenesis and steatosis by induction of the SREBP1 pathway and AKR1B10-mediated increase of ACC activity, respectively, thus providing mechanistic explanations for a putative dual role of PXR in the pathogenesis of steatohepatitis.

  7. Sulfatide-Mediated Activation of Type II Natural Killer T Cells Prevents Hepatic Ischemic Reperfusion Injury In Mice

    PubMed Central

    Arrenberg, Philomena; Maricic, Igor; Kumar, Vipin

    2011-01-01

    Background & Aims Hepatic ischemic reperfusion injury (IRI) is a major complication of liver transplantation and resectional hepatic surgeries. Natural killer T (NKT) cells predominate in liver, where they recognize lipid antigens bound to CD1d molecules. Type I NKT cells utilize a semi-invariant T-cell receptor and react with α-galactosylceramide; type II NKT cells use diverse T-cell receptors. Some type II NKT cells recognize the self-glycolipid sulfatide. It is not clear whether or how these distinct NKT cell subsets mediate hepatocellular damage following IRI. Methods We examined the roles of type I and type II NKT cells in mice with partial hepatic, warm ischemia and reperfusion injury. Results Mice that lack type I NKT cells (Jα18−/−) were protected from hepatic IRI, indicated by reduced hepatocellular necrosis and serum levels of alanine aminotransferase. Sulfatide-mediated activation of type II NKT cells reduced IFN-γ secretion by type I NKT cells and prevented IRI. Protection from hepatic IRI by sulfatide-mediated inactivation of type I NKT cells was associated with significant reductions in hepatic recruitment of myeloid cell subsets, especially the CD11b+Gr-1int, Gr-1−, and NK cells. Conclusion In mice, subsets of NKT cells have opposing roles in hepatic IRI: type I NKT cells promote injury whereas sulfatide-reactive type II NKT cells protect against injury. CD1d activation of NKT cells is conserved from mice to humans, so strategies to modify these processes might be developed to treat patients with hepatic reperfusion injury. PMID:20950612

  8. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells.

    PubMed

    Lin, Chih-Li; Huang, Hsiu-Chen; Lin, Jen-Kun

    2007-11-01

    Black tea is one of the world's most popular beverages, and its health-promoting effects have been intensively investigated. The antiobesity and hypolipidemic effects of black tea have attracted increasing interest, but the mechanisms underlying these phenomena remain unclear. In the present study, the black tea major component theaflavins were assessed for their hepatic lipid-lowering potential when administered in fatty acid overload conditions both in cell culture and in an animal experimental model. We found that theaflavins significantly reduced lipid accumulation, suppressed fatty acid synthesis, and stimulated fatty acid oxidation. Furthermore, theaflavins also inhibited acetyl-coenzyme A carboxylase activities by stimulating AMP-activated protein kinase (AMPK) through the LKB1 and reactive oxygen species pathways. These observations support the idea that AMPK is a critical component of decreased hepatic lipid accumulation by theaflavin treatments. Our results show that theaflavins are bioavailable both in vitro and in vivo and may be active in the prevention of fatty liver and obesity.

  9. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  10. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids.

    PubMed

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-09-24

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.

  11. Controlled trial of a thymic hormone extract (Thymostimulin) in 'autoimmune' chronic active hepatitis.

    PubMed Central

    Hegarty, J E; Nouri Aria, K T; Eddleston, A L; Williams, R

    1984-01-01

    A randomised controlled trial of thymic hormone extracts (Thymostimulin) (1 mg/kg/day for seven days; 1 mg/kg/weekly thereafter) was undertaken in 30 patients (21 women, nine men) with treated, apparently inactive 'autoimmune' chronic active hepatitis during withdrawal of maintenance corticosteroid and azathioprine therapy. Reactivation of disease occurred in 26 patients (86%) during or after treatment withdrawal and was as frequent in the Thymostimulin treated (11 of 13; 84%) and untreated (15 of 17; 88%; p greater than 0.05) groups. Reactivation of disease was accompanied by a severe defect in concanavalin A induced suppressor cell activity, the magnitude of which was similar in the Thymostimulin treated and untreated groups (mean % suppression = 16.4 and 3.2 respectively; p greater than 0.05 vs 84.4 in control subjects). Further studies assessing the optimal dose, duration of treatment, and mode of administration are required to establish a therapeutic role for thymic hormone extracts in 'autoimmune' chronic active hepatitis. PMID:6230296

  12. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation.

    PubMed

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-09-15

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation.

  13. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation

    PubMed Central

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. PMID:27627966

  14. 42 CFR 409.68 - Guarantee of payment for inpatient hospital or inpatient CAH services furnished before...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Guarantee of payment for inpatient hospital or inpatient CAH services furnished before notification of exhaustion of benefits. 409.68 Section 409.68 Public... HOSPITAL INSURANCE BENEFITS Scope of Hospital Insurance Benefits § 409.68 Guarantee of payment...

  15. 42 CFR 485.645 - Special requirements for CAH providers of long-term care services (“swing-beds”)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PARTICIPATION: SPECIALIZED PROVIDERS Conditions of Participation: Critical Access Hospitals (CAHs) § 485.645... following requirements in order to be granted an approval from CMS to provided post-hospital SNF care, as... paragraph (a) of this section. (b) Facilities participating as rural primary care hospitals (RPCHs)...

  16. 42 CFR 485.645 - Special requirements for CAH providers of long-term care services (“swing-beds”)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PARTICIPATION: SPECIALIZED PROVIDERS Conditions of Participation: Critical Access Hospitals (CAHs) § 485.645... following requirements in order to be granted an approval from CMS to provided post-hospital SNF care, as... paragraph (a) of this section. (b) Facilities participating as rural primary care hospitals (RPCHs)...

  17. NS5ATP13 Promotes Liver Fibrogenesis via Activation of Hepatic Stellate Cells.

    PubMed

    Li, Yaru; Liu, Shunai; Han, Ming; Lu, Hongping; Wang, Qi; Zhang, Yu; Tursun, Kelbinur; Li, Zhongshu; Feng, Shenghu; Cheng, Jun

    2017-01-29

    Liver fibrosis is a reversible wound-healing response to any etiology of chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) is the key event in liver fibrogenesis. Generally, persistent activation and proliferation of HSCs results in liver fibrosis progression, while primary mechanisms of liver fibrosis resolution are apoptosis and reversion to a quiescent phenotype of activated HSCs. NS5ATP13 (HCV NS5A-transactivated protein 13) is involved in nucleologenesis and tumorigenesis, but its role in liver fibrosis and HSC activation remains unclear. This study found that NS5ATP13 was upregulated in both fibrotic liver tissues and activated human HSCs induced by TGF-β1. Moreover, NS5ATP13 enhanced extracellular matrix (ECM) production and HSC activation, with or without TGF-β1 treatment, likely involving the TGF-β1/Smad3 signaling pathway. Additionally, NS5ATP13 boosted HSC proliferation by inhibiting cell apoptosis. Furthermore, HCV NS5A promoted the profibrogenic effect of NS5ATP13 partly through TGF-β1 and NF-κB p65 (RelA) upregulation. Meanwhile, NS5ATP13 was required for the pro-fibrogenic effect of NF-κB. Moreover, NS5ATP13 and NF-κB phosphorylation as well as HSC activation were reduced by CX-4945, a CK2 specific inhibitor. These findings indicated that NS5ATP13 acts as a profibrogenic factor, providing a potential target for antifibrotic therapies. This article is protected by copyright. All rights reserved.

  18. Polar bear hepatic cytochrome P450: Immunochemical quantitation, EROD/PROD activity and organochlorines

    SciTech Connect

    Letcher, R.J.; Norstrom, R.J. |

    1994-12-31

    Polar bears (Ursus maritimus) are an ubiquitous mammal atop the arctic marine food chain and bioaccumulate lipophilic environmental contaminants. Antibodies prepared against purified rat liver cytochrome P450-1 Al, -1 A2, -2Bl and -3Al enzymes have been found to cross-react with structurally-related orthologues present in the hepatic microsomes of wild polar bears, immunochemically determined levels of P450-1 A and -2B proteins in polar bear liver relative to liver of untreated rats suggested enzyme induction, probably as a result of exposure to xenobiotic contaminants. Optical density quantitation of the most immunochemically responsive isozymes P450-I Al, -IA2 and -2Bi to polygonal rabbit anti-rat P450-IA/IA2 sera and -2BI antibodies in hepatic microsomes of 13 adult male polar bars from the Resolute Bay area of the Canadian Arctic is presented. Correlations with EROD and PROD catalytic activities and levels of organochlorines, such as polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (p,p-DDE) and their methyl sulfone (MeSO2-) metabolites are made to determine if compound-specific enzyme induction linkages exist. Inter-species immunochemical quantitation of isozymic P450 cytochromes can serve as an indicator of exposure to biologically active contaminant.

  19. The influence of hepatic insufficiency due to alcoholic cirrhosis on the erythrocyte transketolase activity (ETKA).

    PubMed

    Graudal, N; Torp-Pedersen, K; Bonde, J; Hanel, H K; Kristensen, M; Milman, N; Thomsen, A C

    1987-04-01

    The erythrocyte transketolase activity (ETKA), the stimulated erythrocyte transketolase activity (ETKAS), and the thiaminepyrophosphate effect (TPPE) were measured in 21 alcoholic patients with cirrhosis and hepatic insufficiency, 13 alcoholic patients without cirrhosis and 21 non-alcoholic persons before and after oral treatment with 100 mg of thiamine daily for 2 weeks in order to investigate the influence of hepatic insufficiency on these variables. A statistically significant rise in ETKA and fall in TPPE were found in all three groups. ETKA, ETKAS and TPPE did not differ from each other in alcoholic patients with and without cirrhosis, but TPPE was significantly higher in these patients than in the non-alcoholic persons. The conclusions are that severe cirrhosis does not affect the erythrocyte transketolase apoenzyme, the ability of the tissues to convert thiamine to thiaminepyrophosphate for use in the erythrocytes or the absorption of thiamine from the gastrointestinal tract. Besides alcoholism seems to dispose to thiamine deficiency to a higher degree than cirrhosis, and the role of the liver as a thiamine store appears to be of minor importance in the development of thiamine deficiency. Finally, ETKA, ETKAS, and TPPE are considered to be usable as thiamine deficiency indicators in patients with cirrhosis as well as in patients without cirrhosis.

  20. Activation of α2 adrenoceptor attenuates lipopolysaccharide-induced hepatic injury.

    PubMed

    Chen, Jing-Hui; Yu, Gao-Feng; Jin, Shang-Yi; Zhang, Wen-Hua; Lei, Dong-Xu; Zhou, Shao-Li; Song, Xing-Rong

    2015-01-01

    Sepsis induces hepatic injury but whether alpha-2 adrenoceptor (α2-AR) modulates the severity of sepsis-induced liver damage remains unclear. The present study used lipopolysaccharide (LPS) to induce hepatic injury and applied α2-AR agonist dexmedetomidine (DEX) and/or antagonist yohimbine to investigate the contribution of α2-AR in LPS-induced liver injury. Our results showed that LPS resulted in histological and functional abnormality of liver tissue (ALT and AST transaminases, lactate), higher mortality, an increase in proinflammatory cytokines (IL-1β, IL-6 & TNF-α), as well as a change in oxidative stress (MDA, SOD). Activation of α2-AR by dexmedetomidine (DEX) attenuated LPS-induced deleterious effects on the liver and block of α2-AR by yohimbine aggravated LPS-induced liver damage. Our data suggest that α2-AR plays an important role in sepsis-induced liver damage and activation of α2-AR with DEX could be a novel therapeutic avenue to protect the liver against sepsis-induced injury.

  1. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin

    SciTech Connect

    Paeshuyse, Jan; Coelmont, Lotte; Vliegen, Inge; Hemel, Johan van; Vandenkerckhove, Jan; Peys, Eric; Sas, Benedikt; Clercq, Erik De; Neyts, Johan . E-mail: johan.neyts@rega.kuleuven.be

    2006-09-15

    We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC{sub 5}) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78 {+-} 21 {mu}M. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 {mu}M) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin.

  2. Hepatitis A

    MedlinePlus

    Hepatitis A Hepatitis A Hepatitis A is a contagious viral infection that can easily affect children and adults. It is one of the most common types of hepatitis virus. Often when you hear about hepatitis A ...

  3. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    SciTech Connect

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun

    2012-10-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  4. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    SciTech Connect

    Iyer, Soumya C; Kannan, Anbarasu; Gopal, Ashidha; Devaraj, Niranjali; Halagowder, Devaraj

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.

  5. MicroRNA-34a Promotes Hepatic Stellate Cell Activation via Targeting ACSL1

    PubMed Central

    Yan, Gangli; Li, Binbin; Xin, Xuan; Xu, Midie; Ji, Guoqing; Yu, Hongyu

    2015-01-01

    Background The incidence of liver fibrosis remains high due to the lack of effective therapies. Our previous work found that microRNA (miR)-34a expression was increased, while acy1-CoA synthetase long-chain family member1 (ACSL1) was decreased, in a dimethylnitrosamine (DNS)-induced hepatic fibrosis rat model. We hypothesized that miR-34a may play a role in the process of hepatic fibrosis by targeting ACSL1. Material/Methods From days 2 to 14, cultured primary hepatic stellate cells (HSCs) underwent cell morphology, immunocytochemical staining, and quantitative reverse transcription PCR (RT-qPCR) for alpha smooth muscle actin (α-SMA), desmin, rno-miR-34a, and ACSL1 expression. Wild-type and mutant luciferase reporter plasmids were constructed according to the predicted miR-34a binding site on the 3′-untranslated region (UTR) of the ACSL1 mRNA and then transfected into HEK293 cells. rno-miR-34a was silenced in HSCs to confirm that rno-miR-34a negatively regulates ACSL1 expression. mRNA and protein expression of α-SMA, type I collagen, and desmin were assayed in miR-34a-silenced HSCs. Results HSCs were deemed quiescent during the first 3 days and activated after 10 days. rno-miR-34a expression increased, and ACSL1 expression decreased, from day 2 to 7 to 14. rno-miR-34a was shown to specifically bind to the 3′-UTR of ACSL1. miR-34a-silenced HSCs showed higher ACSL1and lower α-SMA, type I collagen, and desmin expression than that of matching negative controls and non-transfected cells. Conclusions miR-34a appears to play an important role in the process of liver fibrosis by targeting ACSL1 and may show promise as a therapeutic molecular target for hepatic fibrosis. PMID:26437572

  6. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein

    SciTech Connect

    Zheng Yanyan; Chen Wenling; Ma, W.-L. Maverick; Chang Chawnshang; Ou, J.-H. James . E-mail: jamesou@hsc.usc.edu

    2007-07-05

    Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR.

  7. Exposure to human immunodeficiency virus/hepatitis C virus in hepatic and stellate cell lines reveals cooperative profibrotic transcriptional activation between viruses and cell types.

    PubMed

    Salloum, Shadi; Holmes, Jacinta A; Jindal, Rohit; Bale, Shyam S; Brisac, Cynthia; Alatrakchi, Nadia; Lidofsky, Anna; Kruger, Annie J; Fusco, Dahlene N; Luther, Jay; Schaefer, Esperance A; Lin, Wenyu; Yarmush, Martin L; Chung, Raymond T

    2016-12-01

    Human immunodeficiency virus (HIV)/hepatitis C virus (HCV) coinfection accelerates progressive liver fibrosis; however, the mechanisms remain poorly understood. HCV and HIV independently induce profibrogenic markers transforming growth factor beta-1 (TGFβ1) (mediated by reactive oxygen species [ROS]) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) in hepatocytes and hepatic stellate cells in monoculture; however, they do not account for cellular crosstalk that naturally occurs. We created an in vitro coculture model and investigated the contributions of HIV and HCV to hepatic fibrogenesis. Green fluorescent protein reporter cell lines driven by functional ROS (antioxidant response elements), NFκB, and mothers against decapentaplegic homolog 3 (SMAD3) promoters were created in Huh7.5.1 and LX2 cells, using a transwell to generate cocultures. Reporter cell lines were exposed to HIV, HCV, or HIV/HCV. Activation of the 3 pathways was measured and compared according to infection status. Extracellular matrix products (collagen type 1 alpha 1 (CoL1A1) and tissue inhibitor of metalloproteinase 1 (TIMP1)) were also measured. Both HCV and HIV independently activated TGFβ1 signaling through ROS (antioxidant response elements), NFκB, and SMAD3 in both cell lines in coculture. Activation of these profibrotic pathways was additive following HIV/HCV coexposure. This was confirmed when examining CoL1A1 and TIMP1, where messenger RNA and protein levels were significantly higher in LX2 cells in coculture following HIV/HCV coexposure compared with either virus alone. In addition, expression of these profibrotic genes was significantly higher in the coculture model compared to either cell type in monoculture, suggesting an interaction and feedback mechanism between Huh7.5.1 and LX2 cells.

  8. Identifying minimal hepatic encephalopathy in cirrhotic patients by measuring spontaneous brain activity.

    PubMed

    Chen, Hua-Jun; Zhang, Ling; Jiang, Long-Feng; Chen, Qiu-Feng; Li, Jun; Shi, Hai-Bin

    2016-08-01

    It has been demonstrated that minimal hepatic encephalopathy (MHE) is associated with aberrant regional intrinsic brain activity in cirrhotic patients. However, few studies have investigated whether altered intrinsic brain activity can be used as a biomarker of MHE among cirrhotic patients. In this study, 36 cirrhotic patients (with MHE, n = 16; without MHE [NHE], n = 20) underwent resting-state functional magnetic resonance imaging (fMRI). Spontaneous brain activity was measured by examining the amplitude of low-frequency fluctuations (ALFF) in the fMRI signal. MHE was diagnosed based on the Psychometric Hepatic Encephalopathy Score (PHES). A two-sample t-test was used to determine the regions of interest (ROIs) in which ALFF differed significantly between the two groups; then, ALFF values within ROIs were selected as classification features. A linear discriminative analysis was used to differentiate MHE patients from NHE patients. The leave-one-out cross-validation method was used to estimate the performance of the classifier. The classification analysis was 80.6 % accurate (81.3 % sensitivity and 80.0 % specificity) in terms of distinguishing between the two groups. Six ROIs were identified as the most discriminative features, including the bilateral medial frontal cortex/anterior cingulate cortex, posterior cingulate cortex/precuneus, left precentral and postcentral gyrus, right lingual gyrus, middle frontal gyrus, and inferior/superior parietal lobule. The ALFF values within ROIs were correlated with PHES in cirrhotic patients. Our findings suggest that altered regional brain spontaneous activity is a useful biomarker for MHE detection among cirrhotic patients.

  9. Age-Dependent Hepatic UDP-Glucuronosyltransferase Gene Expression and Activity in Children

    PubMed Central

    Neumann, Elizabeth; Mehboob, Huma; Ramírez, Jacqueline; Mirkov, Snezana; Zhang, Min; Liu, Wanqing

    2016-01-01

    UDP-glucuronosyltransferases (UGTs) are important phase II drug metabolism enzymes. The aim of this study was to explore the relationship between age and changes in mRNA expression and activity of major human hepatic UGTs, as well as to understand the potential regulatory mechanism underlying this relationship. Using previously generated data, we investigated age-dependent mRNA expression levels of 11 hepatic UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17) and 16 transcription factors (AHR, AR, CAR, ESR2, FXR, GCCR, HNF1a, HNF3a, HNF3b, HNF4a, PPARA, PPARG, PPARGC, PXR, SP1, and STAT3) in liver tissue of donors (n = 38) ranging from 0 to 25 years of age. We also examined the correlation between age and microsomal activities using 14 known UGT drug substrates in the liver samples (n = 19) of children donors. We found a statistically significant increase (nominal p < 0.05) in the expression of UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT2B7, and UGT2B17, as well as glucuronidation activities of serotonin, testosterone, and vorinostat during the first 25 years of life. Expression of estrogen receptor 1 and pregnane X receptor, two strong UGT transcriptional regulators, were significantly correlated with both age and UGT mRNA expression (p ≤ 0.05). These results suggest that both UGT expression and activity increase during childhood and adolescence, possibly driven in part by hormonal signaling. Our findings may help explain inter-patient variability in response to medications among children. PMID:27899892

  10. EGR1 regulates hepatic clock gene amplitude by activating Per1 transcription

    PubMed Central

    Tao, Weiwei; Wu, Jing; Zhang, Qian; Lai, Shan-Shan; Jiang, Shan; Jiang, Chen; Xu, Ying; Xue, Bin; Du, Jie; Li, Chao-Jun

    2015-01-01

    The mammalian clock system is composed of a master clock and peripheral clocks. At the molecular level, the rhythm-generating mechanism is controlled by a molecular clock composed of positive and negative feedback loops. However, the underlying mechanisms for molecular clock regulation that affect circadian clock function remain unclear. Here, we show that Egr1 (early growth response 1), an early growth response gene, is expressed in mouse liver in a circadian manner. Consistently, Egr1 is transactivated by the CLOCK/BMAL1 heterodimer through a conserved E-box response element. In hepatocytes, EGR1 regulates the transcription of several core clock genes, including Bmal1, Per1, Per2, Rev-erbα and Rev-erbβ, and the rhythm amplitude of their expression is dependent on EGR1’s transcriptional function. Further mechanistic studies indicated that EGR1 binds to the proximal region of the Per1 promoter to activate its transcription directly. When the peripheral clock is altered by light or feeding behavior transposition in Egr1-deficient mice, the expression phase of hepatic clock genes shifts normally, but the amplitude is also altered. Our data reveal a critical role for EGR1 in the regulation of hepatic clock circuitry, which may contribute to the rhythm stability of peripheral clock oscillators. PMID:26471974

  11. An interesting case of Lucio phenomenon triggered by activation of hepatitis C infection

    PubMed Central

    Mareen, Jacob; Madhukara, Jithendriya

    2016-01-01

    Lucio phenomenon (LP) or erythema necroticans is a rare type of reaction pattern found in untreated patients with diffuse non-nodular leprosy. It is important to distinguish this from vasculonecrotic erythema nodosum because thalidomide with high-dose steroids is the mainstay of treatment for the latter, whereas LP shows no response to thalidomide. We report a case of a 60-year-old man who presented with purpuric patches, hemorrhagic blisters, and ulcers over extremities of 15 days duration. On cutaneous examination, there were multiple stellate purpuric patches, hemorrhagic bullae, and deep necrotic ulcers, mainly over extremities. Slit-skin smear examination from six sites revealed bacteriological index 6+ with globi, and morphological index 5%. Histopathology revealed diffuse infiltration of bacilli in epidermis, dermis, and endothelial cells along with neutrophilic and lymphocytic infiltrate. Fibrinoid necrosis and thrombosis of blood vessels was also noted. The above clinicohistopathological features helped in making the diagnosis of LP. Concomitantly he was found to be infected with hepatitis C virus. Many triggering factors have been described in literature; however, activation of hepatitis C as a trigger for Lucio phenomenon has not been reported. In addition, IgM and IgG anticardiolipin antibodies were found to be positive. The patient was started on high-dose steroids along with multibacillary antileprosy therapy and improved within 2 weeks. PMID:27730040

  12. Hepatitis B virus X protein mutants exhibit distinct biological activities in hepatoma Huh7 cells

    SciTech Connect

    Liu Xiaohong; Zhang Shuhui; Lin Jing; Zhang Shunmin; Feitelson, Mark A.; Gao Hengjun; Zhu Minghua

    2008-09-05

    The role of the hepatitis B virus X protein (HBx) in hepatocarcinogenesis remains controversial. To investigate the biological impact of hepatitis B virus x gene (HBx) mutation on hepatoma cells, plasmids expressing the full-length HBx or HBx deletion mutants were constructed. The biological activities in these transfectants were analyzed by a series of assays. Results showed that HBx3'-20 and HBx3'-40 amino acid deletion mutants exhibited an increase in cellular proliferation, focus formation, tumorigenicity, and invasive growth and metastasis through promotion of the cell cycle from G0/G1 to the S phase, when compared with the full-length HBx. In contrast, HBx3'-30 amino acid deletion mutant repressed cell proliferation by blocking in G1 phase. The expression of P53, p21{sup WAF1}, p14{sup ARF}, and MDM2 proteins was regulated by expression of HBx mutants. In conclusions, HBx variants showed different effects and functions on cell proliferation and invasion by regulation of the cell cycle progression and its associated proteins expression.

  13. Activation of Hepatic Lipase Expression by Oleic Acid: Possible Involvement of USF1

    PubMed Central

    van Deursen, Diederik; van Leeuwen, Marije; Akdogan, Deniz; Adams, Hadie; Jansen, Hans; Verhoeven, Adrie J.M.

    2009-01-01

    Polyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element binding proteins (SREBPs), but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplementation has been shown to increase secretion of hepatic lipase (HL). We hypothesized that oleate affects HL gene expression at the transcriptional level. To test this, we studied the effect of oleate on HL promoter activity using HepG2 cells and the proximal HL promoter region (700 bp). Oleate increased HL expression and promoter activity 1.3–2.1 fold and reduced SREBP activity by 50%. Downregulation of SREBP activity by incubation with cholesterol+25-hydroxycholesterol had no effect on HL promoter activity. Overexpression of SREBP2, but not SREBP1, reduced HL promoter activity, which was effected mainly through the USF1 binding site at -307/-312. Oleate increased the nuclear abundance of USF1 protein 2.7 ± 0.6 fold, while USF1 levels were reduced by SREBP2 overexpression. We conclude that oleate increases HL gene expression via USF1. USF1 may be an additional fatty acid sensor in liver cells. PMID:22253973

  14. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    SciTech Connect

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  15. Chronic administration of caderofloxacin, a new fluoroquinolone, increases hepatic CYP2E1 expression and activity in rats

    PubMed Central

    Liu, Li; Miao, Ming-xing; Zhong, Ze-yu; Xu, Ping; Chen, Yang; Liu, Xiao-dong

    2016-01-01

    Aim: Caderofloxacin is a new fluoroquinolone that is under phase III clinical trials in China. Here we examined the effects of caderofloxacin on rat hepatic cytochrome P450 (CYP450) isoforms as well as the potential of caderofloxacin interacting with co-administered drugs. Methods: Male rats were treated with caderofloxacin (9 mg/kg, ig) once or twice daily for 14 consecutive days. The effects of caderofloxacin on CYP3A, 2D6, 2C19, 1A2, 2E1 and 2C9 were evaluated using a “cocktail” of 6 probes (midazolam, dextromethorphan, omeprazole, theophylline, chlorzoxazone and diclofenac) injected on d 0 (prior to caderofloxacin exposure) and d 15 (after caderofloxacin exposure). Hepatic microsomes from the caderofloxacin-treated rats were used to assess CYP2E1 activity and chlorzoxazone metabolism. The expression of CYP2E1 mRNA and protein in hepatic microsomes was analyzed with RT-PCR and Western blotting, respectively. Results: Fourteen-day administration of caderofloxacin significantly increased the activity of hepatic CYP2E1, leading to enhanced metabolism of chlorzoxazone. In vitro microsomal study confirmed that CYP2E1 was a major metabolic enzyme involved in chlorzoxazone metabolism, and the 14-d administration of caderofloxacin significantly increased the activity of CYP2E1 in hepatic microsomes, resulting in increased formation of 6-hydroxychlorzoxazone. Furthermore, the 14-d administration of caderofloxacin significantly increased the expression of CYP2E1 mRNA and protein in liver microsomes, which was consistent with the pharmacokinetic results. Conclusion: Fourteen-day administration of caderofloxacin can induce the expression and activity of hepatic CYP2E1 in rats. When caderofloxacin is administered, a potential drug-drug interaction mediated by CYP2E1 induction should be considered. PMID:26838075

  16. Hepatitis C

    MedlinePlus

    ... Châu và vùng Thái Bình Dương Hepatitis C Hepatitis C What is hepatitis C? Hepatitis C is a viral infection that ... can cure most cases of hepatitis C. Acute hepatitis C Acute hepatitis C is a short-term ...

  17. Hepatitis A

    MedlinePlus

    ... Châu và vùng Thái Bình Dương Hepatitis C Hepatitis A What is hepatitis A? Hepatitis A is a viral infection that ... spreading hepatitis A to others . How common is hepatitis A? In the United States, hepatitis A has ...

  18. Hepatitis B

    MedlinePlus

    ... Châu và vùng Thái Bình Dương Hepatitis C Hepatitis B What is hepatitis B? Hepatitis B is a viral infection that ... to prevent spreading hepatitis B to others . Acute hepatitis B Acute hepatitis B is a short-term ...

  19. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development

    PubMed Central

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.

    2016-01-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography–mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage–dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  20. TAB3 involves in hepatic insulin resistance through activation of MAPK pathway.

    PubMed

    Zhao, Yun; Tang, Zhuqi; Zhu, Xiaohui; Wang, Xueqin; Wang, Cuifang; Zhang, Wanlu; Xia, Nana; Wang, Suxin; Huang, Jieru; Cui, Shiwei

    2015-12-01

    Insulin resistance is often accompanied by chronic inflammatory responses. The mitogen-activated protein kinase (MAPK) pathway is rapidly activated in response to many inflammatory cytokines. But the functional role of MAPKs in palmitate-induced insulin resistance has yet to be clarified. In this study, we found that transforming growth factor β-activated kinase binding protein-3 (TAB3) was up-regulated in insulin resistance. Considering the relationship between transforming growth factor β-activated kinase (TAK1) and MAPK pathway, we assumed TAB3 involved in insulin resistance through activation of MAPK pathway. To certify this hypothesis, we knocked down TAB3 in palmitate treated HepG2 cells and detected subsequent biological responses. Importantly, TAB3 siRNA directly reversed insulin sensitivity by improving insulin signal transduction. Moreover, silencing of TAB3 could facilitate hepatic glucose uptake, reverse gluconeogenesis and improve ectopic fat accumulation. Meanwhile, we found that the positive effect of knocking down TAB3 was more significant when insulin resistance occurred. All these results indicate that TAB3 acts as a negative regulator in insulin resistance through activation of MAPK pathway.

  1. Hepatic alcohol dehydrogenase activity in alcoholic subjects with and without liver disease.

    PubMed Central

    Vidal, F; Perez, J; Morancho, J; Pinto, B; Richart, C

    1990-01-01

    Alcohol dehydrogenase activity was measured in samples of liver tissue from a group of alcoholic and non-alcoholic subjects to determine whether decreased liver alcohol dehydrogenase activity is a consequence of ethanol consumption or liver damage. The alcoholic patients were classified further into the following groups: control subjects with no liver disease (group 1), subjects with non-cirrhotic liver disease (group 2), and subjects with cirrhotic liver disease (group 3). The non-alcoholic subjects were also divided, using the same criteria, into groups 4, 5, and 6, respectively. The analysis of the results showed no significant differences when mean alcohol dehydrogenase activities of alcoholic and non-alcoholic patients with similar degrees of liver pathology were compared (groups 1 v 4, 2 v 5, and 3 v 6. Alcohol dehydrogenase activity was, however, severely reduced in patients with liver disease compared with control subjects. Our findings suggest that alcohol consumption does not modify hepatic alcohol dehydrogenase activity. The reduction in specific alcohol dehydrogenase activity in alcoholic liver disease is a consequence of liver damage. PMID:2379876

  2. Hepatic overexpression of a constitutively active form of liver glycogen synthase improves glucose homeostasis.

    PubMed

    Ros, Susana; Zafra, Delia; Valles-Ortega, Jordi; García-Rocha, Mar; Forrow, Stephen; Domínguez, Jorge; Calbó, Joaquim; Guinovart, Joan J

    2010-11-26

    In this study, we tested the efficacy of increasing liver glycogen synthase to improve blood glucose homeostasis. The overexpression of wild-type liver glycogen synthase in rats had no effect on blood glucose homeostasis in either the fed or the fasted state. In contrast, the expression of a constitutively active mutant form of the enzyme caused a significant lowering of blood glucose in the former but not the latter state. Moreover, it markedly enhanced the clearance of blood glucose when fasted rats were challenged with a glucose load. Hepatic glycogen stores in rats overexpressing the activated mutant form of liver glycogen synthase were enhanced in the fed state and in response to an oral glucose load but showed a net decline during fasting. In order to test whether these effects were maintained during long term activation of liver glycogen synthase, we generated liver-specific transgenic mice expressing the constitutively active LGS form. These mice also showed an enhanced capacity to store glycogen in the fed state and an improved glucose tolerance when challenged with a glucose load. Thus, we conclude that the activation of liver glycogen synthase improves glucose tolerance in the fed state without compromising glycogenolysis in the postabsorptive state. On the basis of these findings, we propose that the activation of liver glycogen synthase may provide a potential strategy for improvement of glucose tolerance in the postprandial state.

  3. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    SciTech Connect

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki . E-mail: yk-kim@korea.ac.kr

    2007-05-18

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway.

  4. The anti-hepatic fibrosis activity of ergosterol depended on upregulation of PPARgamma in HSC-T6 cells.

    PubMed

    Tai, Chen-Jei; Choong, Chen-Yen; Lin, Yu-Chun; Shi, Yeu-Ching; Tai, Cheng-Jeng

    2016-04-01

    Advanced glycation endproducts (AGEs) were shown to play an important role in metabolic syndrome and were suggested to contribute to the development of hepatic fibrosis. Evidence indicates that AGEs resulted in hepatic fibrosis coupled to the activation of the receptor for AGEs (RAGE) in hepatic stellate cells (HSCs). NADPH oxidase is downstream of the RAGE signaling pathway, resulting in an increase in reactive oxygen species (ROS), alpha-smooth muscle actin (alpha-SMA), RAGE, and matrix metalloproteinase-9 (MMP-9). This study was designed to evaluate the effects of ergosterol on RAGE signaling in HSC-T6 cells. Ergosterol suppressed the activation of HSC-T6 cells induced by AGEs, and attenuated overexpressions of alpha-SMA, MMP-9, and epithelial-mesenchymal transition (EMT) markers, including N-cadherin and vimentin. We also found that these inhibitory effects of ergosterol on the activation of HSCs were dependent on peroxisome proliferator-activated receptor-gamma (PPARgamma) confirmed by PPARgamma reporter assay and PPARgamma knockdown. In addition, ergosterol also showed an inhibitory effect on the generation of AGEs, fructosamine, and α-dicarbonyl compounds in this study. Our results show that ergosterol can be used as a protective agent against hepatic fibrosis caused by induction of AGEs.

  5. Induction of hepatic CYP1A activity as a biomarker for environmental exposure to Aroclor 1254 in feral rodents.

    PubMed

    Lubet, R A; Nims, R W; Beebe, L E; Fox, S D; Issaq, H J; McBee, K

    1992-04-01

    Specimens of the feral mouse species Reithrodontomys fulvescens trapped from a polychlorinated biphenyl (PCB)-contaminated field location had hepatic ethoxyresorufin (ETR) O-dealkylase activities and immunoreactive CYP1A protein contents which were two- to threefold higher than those measured in animals of the same species and sex collected from non PCB-contaminated reference sites. Specimens with hepatic ETR O-dealkylase activities differing by as little as 50% could readily be assigned as originating from the PCB or reference sites by the use of a specific chemical inhibitor of cytochrome P450IA (CYP1A). The relative levels of ETR O-dealkylase activity in R. fulvescens significantly correlated with hepatic PCB burdens (r = 0.819, P less than 0.01). When the magnitudes of the induced ETR O-dealkylase activities corresponding to given hepatic PCB burdens were compared between the feral animals, F344/NCr rats (Rattus norvegicus) or B6C3F1 mice (Mus musculus) exposed in the laboratory to dietary Aroclor 1254, the order of sensitivity to the inducing effects of PCBs were F344/NCr rat greater than B6C3F1 mouse greater than R. fulvescens.

  6. Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production.

    PubMed

    He, Ling; Chang, Evan; Peng, Jinghua; An, Hongying; McMillin, Sara M; Radovick, Sally; Stratakis, Constantine A; Wondisford, Fredric E

    2016-05-13

    Metformin is the most commonly prescribed oral anti-diabetic agent worldwide. Surprisingly, about 35% of diabetic patients either lack or have a delayed response to metformin treatment, and many patients become less responsive to metformin over time. It remains unknown how metformin resistance or insensitivity occurs. Recently, we found that therapeutic metformin concentrations suppressed glucose production in primary hepatocytes through AMPK; activation of the cAMP-PKA pathway negatively regulates AMPK activity by phosphorylating AMPKα subunit at Ser-485, which in turn reduces AMPK activity. In this study, we find that metformin failed to suppress glucose production in primary hepatocytes with constitutively activated PKA and did not improve hyperglycemia in mice with hyperglucagonemia. Expression of the AMPKα1(S485A) mutant, which is unable to be phosphorylated by PKA, increased both AMPKα activation and the suppression of glucose production in primary hepatocytes treated with metformin. Intriguingly, salicylate/aspirin prevents the phosphorylation of AMPKα at Ser-485, blocks cAMP-PKA negative regulation of AMPK, and improves metformin resistance. We propose that aspirin/salicylate may augment metformin's hepatic action to suppress glucose production.

  7. Suppression of hepatic stellate cell activation by microRNA-29b

    SciTech Connect

    Sekiya, Yumiko; Ogawa, Tomohiro; Yoshizato, Katsutoshi; Ikeda, Kazuo; Kawada, Norifumi

    2011-08-19

    Highlights: {yields} Expression of miR-29b was found to be down-regulated during the activation of hepatic stellate cells in primary culture. {yields} Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs. {yields} It blunted the increased expression of {alpha}-SMA, DDR2, FN1, ITGB1, and PDGFR-b mRNAs essential for stellate cell activation. {yields} miR-29b overexpression led stellate cells to remain in a quiescent state, as evidenced by their star-like morphology. {yields} miR-29b overexpression suppressed the expression of c-fos mRNA. -- Abstract: MicroRNAs (miRNAs) participate in the regulation of cellular functions including proliferation, apoptosis, and migration. It has been previously shown that the miR-29 family is involved in regulating type I collagen expression by interacting with the 3'UTR of its mRNA. Here, we investigated the roles of miR-29b in the activation of mouse primary-cultured hepatic stellate cells (HSCs), a principal collagen-producing cell in the liver. Expression of miR-29b was found to be down-regulated during HSC activation in primary culture. Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs and additionally blunted the increased expression of {alpha}-SMA, DDR2, FN1, ITGB1, and PDGFR-{beta}, which are key genes involved in the activation of HSCs. Further, overexpression of miR-29b led HSCs to remain in a quiescent state, as evidenced by their quiescent star-like cell morphology. Although phosphorylation of FAK, ERK, and Akt, and the mRNA expression of c-jun was unaffected, miR-29b overexpression suppressed the expression of c-fos mRNA. These results suggested that miR-29b is involved in the activation of HSCs and could be a candidate molecule for suppressing their activation and consequent liver fibrosis.

  8. Myricetin Increases Hepatic Peroxisome Proliferator-Activated Receptor α Protein Expression and Decreases Plasma Lipids and Adiposity in Rats

    PubMed Central

    Chang, Chia Ju; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Yuan-Shiun; Liu, I-Min

    2012-01-01

    The aim of this study was to investigate the antiobesity and antihyperlipidaemic effects of myricetin. Myricetin exhibited a significant concentration-dependent decrease in the intracellular accumulation of triglyceride in 3T3-L1 adipocytes. The high-fat diet (HFD)-fed rats were dosed orally with myricetin or fenofibrate, once daily for eight weeks. Myricetin (300 mg kg−1 per day) displayed similar characteristics to fenofibrate (100 mg kg−1 per day) in reducing lowered body weight (BW) gain, visceral fat-pad weights and plasma lipid levels of HFD-fed rats. Myricetin also reduced the hepatic triglyceride and cholesterol contents, as well as lowered hepatic lipid droplets accumulation and epididymal adipocyte size in HFD-fed rats. Myricetin and fenofibrate reversed the HFD-induced down-regulation of the hepatic peroxisome proliferator activated receptor (PPAR)α. HFD-induced decreases of the hepatic protein level of acyl-CoA oxidase and cytochrome P450 isoform 4A1 were up-regulated by myricetin and fenofibrate. The elevated expressions of hepatic sterol regulatory element binding proteins (SREBPs) of HFD-fed rats were lowered by myricetin and fenofibrate. These results suggest that myricetin suppressed BW gain and body fat accumulation by increasing the fatty acid oxidation, which was likely mediated via up-regulation of PPARα and down-regulation of SREBP expressions in the liver of HFD-fed rats. PMID:22474525

  9. Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: A possible molecular mechanism.

    PubMed

    Ding, Hui; Shi, Jinghong; Wang, Ying; Guo, Jia; Zhao, Juhui; Dong, Lei

    2011-01-10

    Neferine is a major alkaloid component of "Lian Zi Xin", embryos of the seeds of Nelumbo nucifera Gaertner, Nymphaeaceae. Previous studies have shown that neferine has an inhibitory effect on pulmonary fibrosis through its anti-inflammatory and anti-oxidative activities and inhibition of cytokines and NF-κB. However, it is unknown whether neferine also has an inhibitory effect on liver fibrosis through inhibition of TGF-β1 and collagen I and facilitation of apoptosis of hepatic stellate cells. This study examined the effects of neferine on cultured hepatic stellate (HSC-T6) cells and explored its possible action mechanisms by means of MTT assay, enzyme-linked immunosorbent assay, flow-cytometric annexin V-PI assay and Hoechst 33258 staining, as well as real-time PCR and western blotting. The results showed that neferine administration (2, 4, 6, 8 and 10μmol/l) significantly decreased the TGF-β1 and collagen I produced in HSC-T6 cells, and increased the HSC-T6 cell apoptosis in a dose-dependent manner. Neferine treatment for 48h at concentrations of 6 and 10μmol/l significantly increased Bax and caspase 3 mRNAs and proteins, and reduced Bcl2 and alpha-smooth muscle actin (α-SMA) mRNAs and proteins. Our data indicate that neferine efficiently inhibits cultured HSC-T6 cell activation and induces apoptosis by increasing Bax and caspase 3 expression via the mitochondrial pathway.

  10. Hepatic biotransformation and antioxidant enzyme activities in Mediterranean fish from different habitat depths.

    PubMed

    Ribalta, C; Sanchez-Hernandez, J C; Sole, M

    2015-11-01

    Marine fish are threatened by anthropogenic chemical discharges. However, knowledge on adverse effects on deep-sea fish or their detoxification capabilities is limited. Herein, we compared the basal activities of selected hepatic detoxification enzymes in several species (Solea solea, Dicentrarchus labrax, Trachyrhynchus scabrus, Mora moro, Cataetix laticeps and Alepocehalus rostratus) collected from the coast, middle and lower slopes of the Blanes Canyon region (Catalan continental margin, NW Mediterranean Sea). The xenobiotic-detoxifying enzymes analysed were the phase-I carboxylesterases (CbEs), and the phase-II conjugation activities uridine diphosphate glucuronyltransferase (UDPGT) and glutathione S-transferase (GST). Moreover, some antioxidant enzyme activities, i.e., catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR), were also included in this comparative study. Because CbE activity is represented by multiple isoforms, the substrates α-naphthyl acetate (αNA) and ρ-nitrophenyl acetate (ρNPA) were used in the enzyme assays, and in vitro inhibition kinetics with dichlorvos were performed to compare interspecific CbE sensitivity. Activity of xenobiotic detoxification enzymes varied among the species, following a trend with habitat depth and body size. Thus, UDPGT and some antioxidant enzyme activities decreased in fish inhabiting lower slopes of deep-sea, whereas UDPGT and αNA-CbE activities were negatively related to fish size. A trend between CbE activities and the IC50 values for dichlorvos suggested S. solea and M. moro as potentially more sensitive to anticholinesterasic pesticides, and T. scabrus as the most resistant one. A principal component analysis considering all enzyme activities clearly identified the species but this grouping was not related to habitat depth or phylogeny. Although these results can be taken as baseline levels of the main xenobiotic detoxification enzymes in Mediterranean fish, further research is

  11. Regulation of hepatic drug transporter activity and expression by organochlorine pesticides.

    PubMed

    Bucher, Simon; Le Vee, Marc; Jouan, Elodie; Fardel, Olivier

    2014-03-01

    Organochlorine (OC) pesticides constitute a major class of persistent and toxic organic pollutants, known to modulate drug-detoxifying enzymes. In the present study, OCs were demonstrated to also alter the activity and expression of human hepatic drug transporters. Activity of the sinusoidal influx transporter OCT1 (organic cation transporter 1) was thus inhibited by endosulfan, chlordane, heptachlor, lindane, and dieldrine, but not by dichlorodiphenyltrichloroethane isomers, whereas those of the canalicular efflux pumps MRP2 (multidrug resistance-associated protein 2) and BCRP (breast cancer resistance protein) were blocked by endosulfan, chlordane, heptachlor, and chlordecone; this latter OC additionally inhibited the multidrug resistance gene 1 (MDR1)/P-glycoprotein (P-gp) activity. OCs, except endosulfan, were next found to induce MDR1/P-gp and MRP2 mRNA expressions in hepatoma HepaRG cells; some of them also upregulated BCRP. By contrast, expression of sinusoidal transporters was not impaired (organic anion-transporting polypeptide (OATP) 1B1 and OATP2B1) or was downregulated (sodium taurocholate co-transporting polypeptide (NTCP) and OCT1). Such regulations of drug transporter activity and expression, depending on the respective nature of OCs and transporters, may contribute to the toxicity of OC pesticides.

  12. Antioxidant Activity of Oat Proteins Derived Peptides in Stressed Hepatic HepG2 Cells

    PubMed Central

    Du, Yichen; Esfandi, Ramak; Willmore, William G.; Tsopmo, Apollinaire

    2016-01-01

    The purpose of this study was to determine, for the first time, antioxidant activities of seven peptides (P1–P7) derived from hydrolysis of oat proteins in a cellular model. In the oxygen radical absorbance capacity (ORAC) assay, it was found that P2 had the highest radical scavenging activity (0.67 ± 0.02 µM Trolox equivalent (TE)/µM peptide) followed by P5, P3, P6, P4, P1, and P7 whose activities were between 0.14–0.61 µM TE/µM). In the hepatic HepG2 cells, none of the peptides was cytotoxic at 20–300 µM. In addition to having the highest ORAC value, P2 was also the most protective (29% increase in cell viability) against 2,2′-azobis(2-methylpropionamidine) dihydrochloride -induced oxidative stress. P1, P6, and P7 protected at a lesser extent, with an 8%–21% increase viability of cells. The protection of cells was attributed to several factors including reduced production of intracellular reactive oxygen species, increased cellular glutathione, and increased activities of three main endogenous antioxidant enzymes. PMID:27775607

  13. Alteration of the mutagenicity 3,3'-dichlorobenzidine by modifiers of rat hepatic epoxide hydrolase activity

    SciTech Connect

    Iba, M.M.

    1986-03-05

    The involvement of arene oxides in the activation of benzidines was assessed by examining the effect of (I) the epoxide hydrolase inhibitor trichloropropylene oxide (TCPO), (II) purified rat liver microsomal (P) epoxide hydrolase (EH), and (III) pretreatment of rats with phenobarbital (PB) on hepatic Sg- or P-catalyzed mutagenicity of benzidine (BZ) and 3,3'-dichlorobenzidine (DCB) to Salmonella TA 98. When catalyzed by Sg from untreated rats, the mutagenicity of DCB and BZ was 601 +/- 101 and 79 +/- 25 (His/sup +/ revertants/plate) respectively, but was 345 +/- 55 and 226 +/- 30 respectively, when catalyzed by microsomes (P) from untreated rats. PB-pretreatment enhanced the Sg-catalyzed mutagenicity of DCB and BZ (2.3-fold and 1.7-fold, respectively) and the P-catalyzed mutagenicity of DCB (1.7-fold), but totally inhibited the P-catalyzed mutagenicity of BZ. In TCPO-supplemented activating systems from PB-pretreated rats, the mutagenicity of DCB was enhanced in both Sg and P (1.9-fold and 1.6-fold, respectively), whereas that of BZ was unchanged. Added EH enhanced the P-catalyzed mutagenicity of DCB (1.4-fold) but had no effect on that of BZ, suggesting that the activity of the enzyme on DCB metabolites may not be entirely detoxifying. The data suggest that epoxidation may contribute to the activation of DCB but not BZ.

  14. Hepatitis B virus stimulates G6PD expression through HBx-mediated Nrf2 activation

    PubMed Central

    Liu, B; Fang, M; He, Z; Cui, D; Jia, S; Lin, X; Xu, X; Zhou, T; Liu, W

    2015-01-01

    Metabolic reprogramming is a hallmark of physiological changes in cancer. Cancer cells primarily apply glycolysis for cell metabolism, which enables the cells to use glycolytic intermediates for macromolecular biosynthesis in order to meet the needs of cell proliferation. Here, we show that glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is highly expressed in chronic hepatitis B virus (HBV)-infected human liver and HBV-associated liver cancer, together with an elevated activity of the transcription factor Nrf2. In hepatocytes, HBV stimulates by its X protein (HBx) the expression of G6PD in an Nrf2 activation-dependent pathway. HBx associates with the UBA and PB1 domains of the adaptor protein p62 and augments the interaction between p62 and the Nrf2 repressor Keap1 to form HBx–p62–Keap1 complex in the cytoplasm. The aggregation of HBx–p62–Keap1 complexes hijacks Keap1 from Nrf2 leading to the activation of Nrf2 and consequently G6PD transcription. Our data suggest that HBV upregulates G6PD expression by HBx-mediated activation of Nrf2. This implies a potential effect of HBV on the reprogramming of the glucose metabolism in hepatocytes, which may be of importance in the development of HBV-associated hepatocarcinoma. PMID:26583321

  15. Chronic Activation of Hepatic Nrf2 Has No Major Effect on Fatty Acid and Glucose Metabolism in Adult Mice

    PubMed Central

    Winkel, Angelika F.; Polack, James; Tang, Hui; Brachs, Maria; Margerie, Daniel; Brunner, Bodo; Jahn-Hofmann, Kerstin; Ruetten, Hartmut; Spranger, Joachim; Schmoll, Dieter

    2016-01-01

    The transcription factor NF-E2-related factor 2 (Nrf2) induces cytoprotective genes, but has also been linked to the regulation of hepatic energy metabolism. In order to assess the pharmacological potential of hepatic Nrf2 activation in metabolic disease, Nrf2 was activated over 7 weeks in mice on Western diet using two different siRNAs against kelch-like ECH-associated protein 1 (Keap1), the inhibitory protein of Nrf2. Whole genome expression analysis followed by pathway analysis demonstrated successful knock-down of Keap1 expression and induction of Nrf2-dependent genes involved in anti-oxidative stress defense and biotransformation, proving the activation of Nrf2 by the siRNAs against Keap1. Neither the expression of fatty acid- nor carbohydrate-handling proteins was regulated by Keap1 knock-down. Metabolic profiling of the animals did also not show effects on plasma and hepatic lipids, energy expenditure or glucose tolerance. The data indicate that hepatic Keap1/Nrf2 is not a major regulator of glucose or lipid metabolism in mice. PMID:27814396

  16. Interplay between SIRT1 and hepatitis B virus X protein in the activation of viral transcription.

    PubMed

    Deng, Jian-Jun; Kong, Ka-Yiu Edwin; Gao, Wei-Wei; Tang, Hei-Man Vincent; Chaudhary, Vidyanath; Cheng, Yun; Zhou, Jie; Chan, Chi-Ping; Wong, Danny Ka-Ho; Yuen, Man-Fung; Jin, Dong-Yan

    2017-04-01

    Hepatitis B virus (HBV) genome is organized into a minichromosome known as covalently closed circular DNA (cccDNA), which serves as the template for all viral transcripts. SIRT1 is an NAD(+)-dependent protein deacetylase which activates HBV transcription by promoting the activity of cellular transcription factors and coactivators. How SIRT1 and viral transactivator X protein (HBx) might affect each other remains to be clarified. In this study we show synergy and mutual dependence between SIRT1 and HBx in the activation of HBV transcription. All human sirtuins SIRT1 through SIRT7 activated HBV gene expression. The steady-state levels of SIRT1 protein were elevated in HBV-infected liver tissues and HBV-replicating hepatoma cells. SIRT1 interacted with HBx and potentiated HBx transcriptional activity on precore promoter and covalently closed circular DNA (cccDNA) likely through a deacetylase-independent mechanism, leading to more robust production of cccDNA, pregenomic RNA and surface antigen. SIRT1 and HBx proteins were more abundant when both were expressed. SIRT1 promoted the recruitment of HBx as well as cellular transcriptional factors and coactivators such as PGC-1α and FXRα to cccDNA. Depletion of SIRT1 suppressed HBx recruitment. On the other hand, SIRT1 recruitment to cccDNA was compromised when HBx was deficient. Whereas pharmaceutical agonists of SIRT1 such as resveratrol activated HBV transcription, small-molecule inhibitors of SIRT1 including sirtinol and Ex527 exhibited anti-HBV activity. Taken together, our findings revealed not only the interplay between SIRT1 and HBx in the activation of HBV transcription but also new strategies and compounds for developing antivirals against HBV.

  17. Activation of matrix metalloproteinase-2 from hepatic stellate cells requires interactions with hepatocytes.

    PubMed Central

    Théret, N.; Musso, O.; L'Helgoualc'h, A.; Clément, B.

    1997-01-01

    Activation of matrix metalloproteinase (MMP)-2, the 72-kd collagenase IV/gelatinase A, is involved in extracellular matrix remodeling. It has been suggested that a membrane-type MMP (MT-MMP-1) and the tissue inhibitor of metalloproteinase (TIMP)-2 are involved in MMP-2 processing, but the exact mechanism(s) of its activation remains unclear. We have investigated the role of cell-cell cooperation in the activation of pro-MMP-2 in the liver, using pure cultures and co-cultures of hepatocytes and hepatic stellate cells (HSCs). Northern blot analysis and in situ hybridization showed that, in both pure and co-cultures, HSCs, but not hepatocytes, expressed MMP-2, TIMP-2, and MT-MMP-1 mRNA. Zymography analyses revealed the latent form of MMP-2 in medium from 2-day-old pure HSC cultures with higher amounts in medium from hepatocyte/HSC co-cultures. When hepatocytes were added to 10-day-old HSC cultures, the activated form of MMP-2 was detected, concomitantly with the deposition of an abundant extracellular matrix. Incubation of plasma membrane-enriched fractions from hepatocytes with conditioned medium from pure HSC cultures generated the activated species of MMP-2 (62 and 59 kd). Activation of pro-MMP-2 by hepatocyte membranes was inhibited by EDTA, heat, and trypsin but not by serine proteinase inhibitors. These data show that the co-expression of TIMP-2, MMP-2, and MT-MMP-1 by HSCs does not lead to secretion of the activated form of MMP-2. Hepatocytes, which do not express MMP-2, TIMP-2, or MT-MMP-1, induce MMP-2 activation through a plasma membrane-dependent mechanism(s), thus suggesting that cell-cell interactions are involved in this process in vivo. Images Figure 1 Figure 2 Figure 3 PMID:9006321

  18. Rifampicin-Induced Hepatic Lipid Accumulation: Association with Up-Regulation of Peroxisome Proliferator-Activated Receptor γ in Mouse Liver

    PubMed Central

    Zhang, Da-Gang; Li, Lu; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous study found that rifampicin caused intrahepatic cholestasis. This study investigated the effects of rifampicin on hepatic lipid metabolism. Mice were orally administered with rifampicin (200 mg/kg) daily for different periods. Results showed that serum TG level was progressively reduced after a short elevation. By contrast, hepatic TG content was markedly increased in rifampicin-treated mice. An obvious hepatic lipid accumulation, as determined by Oil Red O staining, was observed in mice treated with rifampicin for more than one week. Moreover, mRNA levels of Fas, Acc and Scd-1, several key genes for fatty acid synthesis, were elevated in rifampicin-treated mice. In addition, the class B scavenger receptor CD36 was progressively up-regulated by rifampicin. Interestingly, hepatic SREBP-1c and LXR-α, two important transcription factors that regulate genes for hepatic fatty acid synthesis, were not activated by rifampicin. Instead, hepatic PXR was rapidly activated in rifampicin-treated mice. Hepatic PPARγ, a downstream target of PXR, was transcriptionally up-regulated. Taken together, the increased hepatic lipid synthesis and uptake of fatty acids from circulation into liver jointly contribute to rifampicin-induced hepatic lipid accumulation. The increased uptake of fatty acids from circulation into liver might be partially attributed to rifampicin-induced up-regulation of PPARγ and its target genes. PMID:27806127

  19. Viral Hepatitis

    MedlinePlus

    ... Public Home » For Veterans and the Public Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... the Public Veterans and Public Home How is Hepatitis C Treated? Find the facts about the newest ...

  20. Autoimmune Hepatitis

    MedlinePlus

    ... Cholangitis Wilson Disease Liver Disease A-Z Autoimmune Hepatitis What is autoimmune hepatitis? Autoimmune hepatitis is a chronic—or long lasting— ... bacteria, viruses, toxins, and medications. What causes autoimmune hepatitis? A combination of autoimmunity, environmental triggers, and a ...

  1. Transforming growth factor-β (TGF-β) pathway abnormalities in tenascin-X deficiency associated with CAH-X syndrome.

    PubMed

    Morissette, Rachel; Merke, Deborah P; McDonnell, Nazli B

    2014-02-01

    Patients with congenital adrenal hyperplasia (CAH) with tenascin-X deficiency (CAH-X syndrome) have both endocrine imbalances and characteristic Ehlers Danlos syndrome phenotypes. Unlike other subtypes, tenascin-X-related Ehlers Danlos syndrome is caused by an extracellular matrix protein deficiency rather than a defect in fibrillar collagen or a collagen-modifying enzyme, and the understanding of the disease mechanisms is limited. We hypothesized that transforming growth factor-β pathway dysregulation may, in part, be responsible for connective tissue phenotypes observed in CAH-X, due to this pathway's known role in connective tissue disorders. Fibroblasts and direct tissue from human skin biopsies from CAH-X probands and age- and sex-matched controls were screened for transforming growth factor-β biomarkers known to be dysregulated in other hereditary disorders of connective tissue. In CAH-X fibroblast lines and dermal tissue, pSmad1/5/8 was significantly upregulated compared to controls, suggesting involvement of the bone morphogenetic protein pathway. Additionally, CAH-X samples compared to controls exhibited significant increases in fibroblast-secreted TGF-β3, a cytokine important in secondary palatal development, and in plasma TGF-β2, a cytokine involved in cardiac function and development, as well as palatogenesis. Finally, MMP-13, a matrix metalloproteinase important in secondary palate formation and tissue remodeling, had significantly increased mRNA and protein expression in CAH-X fibroblasts and direct tissue. Collectively, these results demonstrate that patients with CAH-X syndrome exhibit increased expression of several transforming growth factor-β biomarkers and provide a novel link between this signaling pathway and the connective tissue dysplasia phenotypes associated with tenascin-X deficiency.

  2. Expression of scavenger receptor‐AI promotes alternative activation of murine macrophages to limit hepatic inflammation and fibrosis

    PubMed Central

    Labonte, Adam C.; Sung, Sun‐Sang J.; Jennelle, Lucas T.; Dandekar, Aditya P.

    2016-01-01

    The liver maintains an immunologically tolerant environment as a result of continuous exposure to food and bacterial constituents from the digestive tract. Hepatotropic pathogens can take advantage of this niche and establish lifelong chronic infections causing hepatic fibrosis and hepatocellular carcinoma. Macrophages (Mϕ) play a critical role in regulation of immune responses to hepatic infection and regeneration of tissue. However, the factors crucial for Mϕ in limiting hepatic inflammation or resolving liver damage have not been fully understood. In this report, we demonstrate that expression of C‐type lectin receptor scavenger receptor‐AI (SR‐AI) is crucial for promoting M2‐like Mϕ activation and polarization during hepatic inflammation. Liver Mϕ uniquely up‐regulated SR‐AI during hepatotropic viral infection and displayed increased expression of alternative Mϕ activation markers, such as YM‐1, arginase‐1, and interleukin‐10 by activation of mer receptor tyrosine kinase associated with inhibition of mammalian target of rapamycin. Expression of these molecules was reduced on Mϕ obtained from livers of infected mice deficient for the gene encoding SR‐AI (msr1). Furthermore, in vitro studies using an SR‐AI‐deficient Mϕ cell line revealed impeded M2 polarization and decreased phagocytic capacity. Direct stimulation with virus was sufficient to activate M2 gene expression in the wild‐type (WT) cell line, but not in the knockdown cell line. Importantly, tissue damage and fibrosis were exacerbated in SR‐AI–/– mice following hepatic infection and adoptive transfer of WT bone‐marrow–derived Mϕ conferred protection against fibrosis in these mice. Conclusion: SR‐AI expression on liver Mϕ promotes recovery from infection‐induced tissue damage by mediating a switch to a proresolving Mϕ polarization state. (Hepatology 2017;65:32‐43). PMID:27770558

  3. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis

    PubMed Central

    Gotoh, Saki; Negishi, Masahiko

    2015-01-01

    Statin therapy is known to increase blood glucose levels in humans. Statins utilize pregnane X receptor (PXR) and serum/glucocorticoid regulated kinase 2 (SGK2) to activate phosphoenolpyruvate carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase) genes, thereby increasing glucose production in human liver cells. Here, the novel statin/PXR/SGK2-mediated signaling pathway has now been characterized for hepatic gluconeogenesis. Statin-activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2 at threonine 193. Non-phosphorylated SGK2 co-activates PXR-mediated trans-activation of promoters of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis. This gluconeogenic statin-PXR-SGK2 signal is not present in mice, in which statin treatment suppresses hepatic gluconeogenesis. These findings provide the basis for statin-associated side effects such as an increased risk for Type 2 diabetes. PMID:26392083

  4. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis.

    PubMed

    Gotoh, Saki; Negishi, Masahiko

    2015-09-22

    Statin therapy is known to increase blood glucose levels in humans. Statins utilize pregnane X receptor (PXR) and serum/glucocorticoid regulated kinase 2 (SGK2) to activate phosphoenolpyruvate carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase) genes, thereby increasing glucose production in human liver cells. Here, the novel statin/PXR/SGK2-mediated signaling pathway has now been characterized for hepatic gluconeogenesis. Statin-activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2 at threonine 193. Non-phosphorylated SGK2 co-activates PXR-mediated trans-activation of promoters of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis. This gluconeogenic statin-PXR-SGK2 signal is not present in mice, in which statin treatment suppresses hepatic gluconeogenesis. These findings provide the basis for statin-associated side effects such as an increased risk for Type 2 diabetes.

  5. Detergent-induced activation of the hepatitis C virus genotype 1b RNA polymerase.

    PubMed

    Weng, Leiyun; Kohara, Michinori; Wakita, Takaji; Shimotohno, Kunitada; Toyoda, Tetsuya

    2012-04-01

    Recently, we found that sphingomyelin bound and activated hepatitis C virus (HCV) 1b RNA polymerase (RdRp), thereby recruiting the HCV replication complex into lipid raft structures. Detergents are commonly used for resolving lipids and purifying proteins, including HCV RdRp. Here, we tested the effect of detergents on HCV RdRp activity in vitro and found that non-ionic (Triton X-100, NP-40, Tween 20, Tween 80, and Brij 35) and twitterionic (CHAPS) detergents activated HCV 1b RdRps by 8-16.6 folds, but did not affect 1a or 2a RdRps. The maximum effect of these detergents was observed at around their critical micelle concentrations. On the other hand, ionic detergents (SDS and DOC) completely inactivated polymerase activity at 0.01%. In the presence of Triton X-100, HCV 1b RdRp did not form oligomers, but recruited more template RNA and increased the speed of polymerization. Comparison of polymerase and RNA-binding activity between JFH1 RdRp and Triton X-100-activated 1b RdRp indicated that monomer RdRp showed high activity because JFH1 RdRp was a monomer in physiological conditions of transcription. Besides, 502H plays a key role on oligomerization of 1b RdRp, while 2a RdRps which have the amino acid S at position 502 are monomers. This oligomer formed by 502H was disrupted both by high salt and Triton X-100. On the contrary, HCV 1b RdRp completely lost fidelity in the presence of 0.02% Triton X-100, which suggests that caution should be exercised while using Triton X-100 in anti-HCV RdRp drug screening tests.

  6. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3).

    PubMed Central

    Tai, C L; Chi, W K; Chen, D S; Hwang, L H

    1996-01-01

    To assess the RNA helicase activity of hepatitis C virus (HCV) nonstructural protein 3 (NS3), a polypeptide encompassing amino acids 1175 to 1657, which cover only the putative helicase domain, was expressed in Escherichia coli by a pET expression vector. The protein was purified to near homogeneity and assayed for RNA helicase activity in vitro with double-stranded RNA substrates prepared from a multiple cloning sequence and an HCV 5' nontranslated region (5'-NTR) or 3'-NTR. The enzyme acted successfully on substrates containing both 5' and 3' single-stranded regions (standard) or on substrates containing only the 3' single-stranded regions (3'/3') but failed to act on substrates containing only the 5' single-stranded regions (5'/5') or on substrates lacking the single-stranded regions (blunt). These results thus suggest 3' to 5' directionality for HCV RNA helicase activity. However, a 5'/5' substrate derived from the HCV 5'-NTR was also partially unwound by the enzyme, possibly because of unique properties inherent in the 5' single-stranded regions. Gel mobility shift analyses demonstrated that the HCV NS3 helicase could bind to either 5'- or 3'-tailed substrates but not to substrates lacking a single-stranded region, indicating that the polarity of the RNA strand to which the helicase bound was a more important enzymatic activity determinant. In addition to double-stranded RNA substrates, HCV NS3 helicase activity could displace both RNA and DNA oligonucleotides on a DNA template, suggesting that HCV NS3 too was disposed to DNA helicase activity. This study also demonstrated that RNA helicase activity was dramatically inhibited by the single-stranded polynucleotides. Taken altogether, our results indicate that the HCV NS3 helicase is unique among the RNA helicases characterized so far. PMID:8970970

  7. Gene expression analysis during acute hepatitis C virus infection associates dendritic cell activation with viral clearance.

    PubMed

    Zabaleta, Aintzane; Riezu-Boj, Jose-Ignacio; Larrea, Esther; Villanueva, Lorea; Lasarte, Juan Jose; Guruceaga, Elizabeth; Fisicaro, Paola; Ezzikouri, Sayeh; Missale, Gabriele; Ferrari, Carlo; Benjelloun, Soumaya; Prieto, Jesús; Sarobe, Pablo

    2016-05-01

    Viral clearance during acute hepatitis C virus (HCV) infection is associated with the induction of potent antiviral T-cell responses. Since dendritic cells (DC) are essential in the activation of primary T-cell responses, gene expression was analyzed in DC from patients during acute HCV infection. By using microarrays, gene expression was compared in resting and activated peripheral blood plasmacytoid (pDC) and myeloid (mDC) DC from acute HCV resolving patients (AR) and from patients who become chronically infected (ANR), as well as in healthy individuals (CTRL) and chronically-infected patients (CHR). For pDC, a high number of upregulated genes was found in AR patients, irrespective of DC stimulation. However, for mDC, most evident differences were detected after DC stimulation, again corresponding to upregulated genes in AR patients. Divergent behavior of ANR was also observed when analyzing DC from CTRL and CHR, with ANR patients clustering again apart from these groups. These differences corresponded to metabolism-associated genes and genes belonging to pathways relevant for DC activation and cytokine responses. Thus, upregulation of relevant genes in DC during acute HCV infection may determine viral clearance, suggesting that dysfunctional DC may be responsible for the lack of efficient T-cell responses which lead to chronic HCV infection.

  8. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation

    NASA Astrophysics Data System (ADS)

    Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.

    2016-02-01

    Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.

  9. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells

    PubMed Central

    Wong, Tsz Yan; Lin, Shu-mei; Leung, Lai K.

    2015-01-01

    High blood cholesterol has been associated with cardiovascular diseases. The enzyme HMG CoA reductase (HMGCR) is responsible for cholesterol synthesis, and inhibitors of this enzyme (statins) have been used clinically to control blood cholesterol. Sterol regulatory element binding protein (SREBP) -2 is a key transcription factor in cholesterol metabolism, and HMGCR is a target gene of SREBP-2. Attenuating SREBP-2 activity could potentially minimize the expression of HMGCR. Luteolin is a flavone that is commonly detected in plant foods. In the present study, Luteolin suppressed the expression of SREBP-2 at concentrations as low as 1 μM in the hepatic cell lines WRL and HepG2. This flavone also prevented the nuclear translocation of SREBP-2. Post-translational processing of SREBP-2 protein was required for nuclear translocation. Luteolin partially blocked this activation route through increased AMP kinase (AMPK) activation. At the transcriptional level, the mRNA and protein expression of SREBP-2 were reduced through luteolin. A reporter gene assay also verified that the transcription of SREBF2 was weakened in response to this flavone. The reduced expression and protein processing of SREBP-2 resulted in decreased nuclear translocation. Thus, the transcription of HMGCR was also decreased after luteolin treatment. In summary, the results of the present study showed that luteolin modulates HMGCR transcription by decreasing the expression and nuclear translocation of SREBP-2. PMID:26302339

  10. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion.

    PubMed

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and transfected into HSC respectively. Suppression of hedgehog signaling were detected by SYBR Green fluorescence quantitative RT-PCR. Effects of hedgehog signaling inhibition on HSC activation and collagen I secretion were analyzed. Hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 were expressed in HSC. siRNA vectors targeting Ihh, Smo and Gli2 were successfully constructed and decreased target gene expression. Suppression of hedgehog signaling significantly decreased the expression of α-SMA in HSC (P<0.01). Collagen type I secretion of HSC were also significantly decreased (P<0.01). In summary, HSC activation and collagen secretion can be regulated by hedgehog signaling. Hedgehog may play a role in the pathogenesis of liver fibrosis.

  11. Changes in the regional homogeneity of resting-state brain activity in minimal hepatic encephalopathy.

    PubMed

    Chen, Hua-Jun; Zhu, Xi-Qi; Yang, Ming; Liu, Bin; Zhang, Yi; Wang, Yu; Teng, Gao-Jun

    2012-01-17

    Resting-state functional magnetic resonance imaging (fMRI) has facilitated the study of spontaneous brain activity by measuring low-frequency oscillations in blood-oxygen-level-dependent signals. Analyses of regional homogeneity (ReHo), which reflects the local synchrony of neural activity, have been used to reveal the mechanisms underlying the brain dysfunction in various neuropsychiatric diseases. However, it is not known whether the ReHo is altered in cirrhotic patients with minimal hepatic encephalopathy (MHE). We recruited 18 healthy controls and 18 patients with MHE. The ReHo was calculated to assess the strength of the local signal synchrony. Compared with the healthy controls, the patients with MHE had significantly decreased ReHo in the cuneus and adjacent precuneus, and left inferior parietal lobe, whereas the regions showing increased ReHo in patients with MHE included the left parahippocampal gyrus, right cerebellar vermis, and bilateral anterior cerebellar lobes. We found a positive correlation between the mean ReHo in the cuneus and adjacent precuneus and the score on the digit-symbol test in the patient group. In conclusion, the analysis of the regional homogeneity of resting-state brain activity may provide additional information with respect to a clinical definition of MHE.

  12. Prevalence of active hepatitis c virus infection in district mansehra pakistan

    PubMed Central

    2010-01-01

    Prevalence of active hepatitis C virus (HCV) infection in apparently healthy inhabitants of District Mansehra, Pakistan was surveyed during September, 2009 to May, 2010. Subjects of different age and gender groups were analyzed through random blood sampling from people of three areas viz; Tehsil Mansehra, Tehsil Balakot and Tehsil Oghi. Sum of 400 individuals, 300 male and 100 females with age groups from 10 years to 50 and above were included in the study. All the individuals were screened for antibodies against HCV. The positive samples thus screened, were subjected to polymerase chain reaction (PCR) analysis for detection of HCV-RNA. The results showed that 3.5% of the people of District Mansehra are actively infected with HCV whereas 7% of the population in general, has the presence of antibodies against HCV in their blood. It was also concluded that the prevalence of active HCV infection was high 4% in males as compared to females (2%). The prevalence of HCV proportionality increases with the increase in age of the people. Its incidence was highest (7.69%) in the people of the age group of 51 years and above, whereas no sign of infection was recorded for the age group of 10-20 years. PMID:21092143

  13. Dynamics of 5-carboxylcytosine during hepatic differentiation: potential general role for active demethylation by DNA repair in lineage specification.

    PubMed

    Lewis, Lara C; Lo, Peggy Cho Kiu; Foster, Jeremy M; Dai, Nan; Corrêa, Ivan R; Durczak, Paulina M; Duncan, Gary; Ramsawhook, Ashley; Aithal, Guruprasad Padur; Denning, Chris; Hannan, Nicholas R F; Ruzov, Alexey

    2017-03-07

    Patterns of DNA methylation (5-methylcytosine, 5mC) are rearranged during differentiation contributing to the regulation of cell type-specific gene expression. TET proteins oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be recognized and excised from DNA by thymine-DNA glycosylase (TDG) followed by the subsequent incorporation of unmodified cytosine into the abasic site via the base excision repair (BER) pathway. We previously demonstrated that 5caC accumulates during lineage specification of neural stem cells (NSCs) suggesting that such active demethylation pathway is operative in this system; however, it is still unknown if TDG/BER-dependent demethylation is utilized during other types of cellular differentiation. Here we analyze dynamics of the global levels of 5hmC and 5caC during differentiation of human pluripotent stem cells towards hepatic endoderm. We show that, similar to differentiating NSCs, 5caC transiently accumulates during hepatic differentiation. The levels of 5caC increase during specification of foregut, peak at the stage of hepatic endoderm commitment, and drop in differentiating cells concurrently with the onset of expression of alpha fetoprotein, a marker of committed hepatic progenitors. Moreover, we show that 5caC accumulates at promoter regions of several genes expressed during hepatic specification at differentiation stages corresponding to the beginning of their expression. Our data indicate that transient 5caC accumulation is a common feature of two different types (neural/glial and endoderm/hepatic) of cellular differentiation. This suggests that oxidation of 5mC may represent a general mechanism of rearrangement of 5mC profiles during lineage specification of somatic cells in mammals.

  14. Serum Basal Paraoxonase 1 Activity as an Additional Liver Function Test for the Evaluation of Patients with Chronic Hepatitis

    PubMed Central

    Halappa, Chandrakanth K; Pyati, Sudharani A; Nagaraj; Wali, Vinod

    2015-01-01

    Background The diagnostic accuracy of currently available standard panel of liver function tests is not satisfactory for the reliable diagnosis of chronic liver disorders. Earlier studies have reported that serum basal paraoxonase 1 (PON1) activity measurement may add a significant contribution to the liver function tests. Aim To assess whether the measurement of serum basal paraoxonase 1 (PON1) activity would be useful as an index of liver function status in chronic hepatitis patients. Materials and Methods The study included 50 chronic hepatitis patients and 50 apparently healthy controls based on inclusion & exclusion criteria. In all the subjects, standard liver function tests were analysed by using standard methods. Basal PON1 activity was estimated using spectrophotometric method by the hydrolysis of p-nitrophenylacetate. Student t-test, Pearson’s correlation coefficient, diagnostic validity tests and ROC curve analysis were the methods used for the statistical analysis of the data. Results The serum basal PON1 activity was significantly decreased in chronic hepatitis cases when compared to controls (p< 0.001). Also basal PON1 activity was positively correlated with serum total protein and albumin, and negatively correlated with serum total bilirubin, alanine amino transferase (ALT), and alkaline phosphatase (ALP) (p< 0.001) in chronic hepatitis cases but not in healthy controls. Diagnostic validity tests showed, basal PON1 activity was a better discriminator of chronic hepatitis than total protein, albumin and ALP with sensitivity of 68%, specificity of 100%, positive predictive value of 100% and negative predictive value of 75%. ROC curve analysis demonstrated highest diagnostic accuracy for ALT (AUC = 0.999) followed by PON1 (AUC = 0.990), total bilirubin (AUC = 0.977), ALP (AUC = 0.904), total protein (AUC = 0.790) and albumin (AUC = 0.595). Conclusion Diagnostic accuracy of serum PON1 activity is better than total bilirubin, total protein, albumin and

  15. Effect of malonate and p-chlorophenoxy acetic acid on hepatic succinic dehydrogenase activity of ageing lizards.

    PubMed

    Jena, B S; Patnaik, B K

    1990-01-01

    The degree of inhibition of hepatic succinic dehydrogenase activity by malonate, a competitive inhibitor, did not differ between young and middle-aged lizards. On the other hand, the same parameter increased significantly between middle-aged and old lizards. The percent inhibition of enzyme activity by p-chlorophenoxy acetic acid was also age-dependent, being higher in middle-aged and old than in young lizards.

  16. Viral Hepatitis

    MedlinePlus

    ... with hepatitis? How does a pregnant woman pass hepatitis B virus to her baby? If I have hepatitis B, what does my baby need so that she ... Can I breastfeed my baby if I have hepatitis B? More information on viral hepatitis What is hepatitis? ...

  17. Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells.

    PubMed

    Chen, H C; Chou, C K; Lee, S D; Wang, J C; Yeh, S F

    1995-05-01

    We have examined the antiviral activity of the crude extract prepared from the root of Saussurea lappa Clarks, a Chinese medicinal herb which is widely used for many illnesses including cancer. Two active components, costunolide and dehydrocostus lactone, were identified which show strong suppressive effect on the expression of the hepatitis B surface antigen (HBsAg) in human hepatoma Hep3B cells, but have little effect on the viability of the cells. Both costunolide and dehydrocostus lactone suppress the HBsAg production by Hep3B cells in a dose-dependent manner with IC50s of 1.0 and 2.0 microM, respectively. Northern blotting analysis shows that the suppression of HBsAg gene expression by both costunolide and dehydrocostus lactone were mainly at the mRNA level. Furthermore, the suppressive effect of costunolide and dehydrocostus lactone on HBsAg and hepatitis B e antigen (HBeAg), a marker for hepatitis B viral genome replication in human liver cells, was also observed in another human hepatoma cell line HepA2 which was derived from HepG2 cells by transfecting a tandemly repeat hepatitis B virus (HBV) DNA. Similarly, the mRNA of HBsAg in HepA2 cells was also suppressed by these two compounds. Our findings suggest that costunolide and dehydrocostus lactone may have potential to develop as specific anti-HBV drugs in the future.

  18. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway.

    PubMed

    Zheng, Jianjian; Wu, Cunzao; Xu, Ziqiang; Xia, Peng; Dong, Peihong; Chen, Bicheng; Yu, Fujun

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is an essential event in the initiation and progression of liver fibrosis. MicroRNAs have been shown to play a pivotal role in regulating HSC functions such as cell proliferation, differentiation, and apoptosis. Recently, miR-181b has been reported to promote HSCs proliferation by targeting p27. But whether alpha-smooth muscle actin (α-SMA) or collagens could be promoted by miR-181b in activated HSCs is still not clear. Therefore, the understanding of the role of miR-181b in liver fibrosis remains limited. Our results showed that miR-181b expression was increased much higher than miR-181a expression in vitro in transforming growth factor-β1-induced HSC activation as well as in vivo in carbon tetrachloride-induced rat liver fibrosis. Of note, overexpression of miR-181b significantly increased the expressions level of α-SMA and type I collagen, and further promoted HSCs proliferation. Furthermore, phosphatase and tensin homologs deleted on chromosome 10 (PTEN), a negative regulator of PI3K/Akt pathway, were confirmed as a direct target of miR-181b. We demonstrated that miR-181b could suppress PTEN expression and increase Akt phosphorylation in HSCs. Interestingly, the effects of miR-181b on the activation of HSCs were blocked down by Akt inhibitor LY294002. Our results revealed a profibrotic role of miR-181b in HSC activation and demonstrated that miR-181b could activate HSCs, at least in part, via PTEN/Akt pathway.

  19. Prolyl oligopeptidase attenuates hepatic stellate cell activation through induction of Smad7 and PPAR-γ

    PubMed Central

    Zhou, Da; Wang, Jing; He, Ling-Nan; Li, Bing-Hang; Ding, Yong-Nian; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-01-01

    Prolyl oligopeptidase (POP) is a serine endopeptidase widely distributed in vivo with high activity in the liver. However, its biological functions in the liver have remained largely elusive. A previous study by our group has shown that POP produced N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) and thereby exerted an anti-fibrogenic effect on hepatic stellate cells (HSCs) in vitro. It was therefore hypothesized that POP may affect the activation state of HSCs and has an important role in liver fibrosis. The HSC-T6 immortalized rat liver stellate cell line was treated with the POP inhibitor S17092 or transfected with recombinant lentivirus to overexpress POP. Cell proliferation and apoptosis were determined using a Cell Counting Kit-8 and flow cytometry, respectively. The activation status of HSCs was determined by examination of the expression of α-smooth muscle actin (α-SMA), collagen I, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor (TGF)-β-Smad signaling and peroxisome proliferator activated receptor-γ (PPAR-γ). Inhibition by S17092 decreased, whereas lentiviral expression increased the activity of POP and cell proliferation, while neither of the treatments affected cell apoptosis. Of note, S17092 significantly increased, whereas POP overexpression decreased the expression of α-SMA and MCP-1 without affecting the expression of collagen I and TGF-β1. Furthermore, S17092 caused a reduction, whereas POP overexpression caused an upregulation of Smad7 protein and PPAR-γ, but not phosphorylated-Smad2/3 expression. In conclusion, POP attenuated the activation of HSCs through inhibition of TGF-β signaling and induction of PPAR-γ, which may have therapeutic potential in liver fibrosis. PMID:28352366

  20. Metabolic Activation of the Anti-Hepatitis C Virus Nucleotide Prodrug PSI-352938

    PubMed Central

    Niu, Congrong; Tolstykh, Tatiana; Bao, Haiying; Park, Yeojin; Babusis, Darius; Lam, Angela M.; Bansal, Shalini; Du, Jinfa; Chang, Wonsuk; Reddy, P. Ganapati; Zhang, Hai-Ren; Woolley, Joseph; Wang, Li-Quan; Chao, Piyun B.; Ray, Adrian S.; Otto, Michael J.; Sofia, Michael J.

    2012-01-01

    PSI-352938 is a novel cyclic phosphate prodrug of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine-5′-monophosphate with potent anti-HCV activity. In order to inhibit the NS5B RNA-dependent RNA polymerase, PSI-352938 must be metabolized to the active triphosphate form, PSI-352666. During in vitro incubations with PSI-352938, significantly larger amounts of PSI-352666 were formed in primary hepatocytes than in clone A hepatitis C virus (HCV) replicon cells. Metabolism and biochemical assays were performed to define the molecular mechanism of PSI-352938 activation. The first step, removal of the isopropyl group on the 3′,5′-cyclic phosphate moiety, was found to be cytochrome P450 (CYP) 3A4 dependent, with other CYP isoforms unable to catalyze the reaction. The second step, opening of the cyclic phosphate ring, was catalyzed by phosphodiesterases (PDEs) 2A1, 5A, 9A, and 11A4, all known to be expressed in the liver. The role of these enzymes in the activation of PSI-352938 was confirmed in primary human hepatocytes, where prodrug activation was reduced by inhibitors of CYP3A4 and PDEs. The third step, removal of the O6-ethyl group on the nucleobase, was shown to be catalyzed by adenosine deaminase-like protein 1. The resulting monophosphate was consecutively phosphorylated to the diphosphate and to the triphosphate PSI-352666 by guanylate kinase 1 and nucleoside diphosphate kinase, respectively. In addition, formation of nucleoside metabolites was observed in primary hepatocytes, and ecto-5′-nucleotidase was able to dephosphorylate the monophosphate metabolites. Since CYP3A4 is highly expressed in the liver, the CYP3A4-dependent metabolism of PSI-352938 makes it an effective liver-targeted prodrug, in part accounting for the potent antiviral activity observed clinically. PMID:22526308

  1. Trans-activation function of a 3 prime truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    SciTech Connect

    Takada, Shinako; Koike, Katsuro )

    1990-08-01

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3{prime} end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product.

  2. Cytotoxic T lymphocytes and natural killer cells display impaired cytotoxic functions and reduced activation in patients with alcoholic hepatitis.

    PubMed

    Støy, Sidsel; Dige, Anders; Sandahl, Thomas Damgaard; Laursen, Tea Lund; Buus, Christian; Hokland, Marianne; Vilstrup, Hendrik

    2015-02-15

    The dynamics and role of cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and NKT cells in the life-threatening inflammatory disease alcoholic hepatitis is largely unknown. These cells directly kill infected and damaged cells through, e.g., degranulation and interferon-γ (IFNγ) production, but cause tissue damage if overactivated. They also assist tissue repair via IL-22 production. We, therefore, aimed to investigate the frequency, functionality, and activation state of such cells in alcoholic hepatitis. We analyzed blood samples from 24 severe alcoholic hepatitis patients followed for 30 days after diagnosis. Ten healthy abstinent volunteers and 10 stable abstinent alcoholic cirrhosis patients were controls. Using flow cytometry we assessed cell frequencies, NK cell degranulation capacity following K562 cell stimulation, activation by natural killer group 2 D (NKG2D) expression, and IL-22 and IFNγ production. In alcoholic hepatitis we found a decreased frequency of CTLs compared with healthy controls (P < 0.001) and a similar trend for NK cells (P = 0.089). The NK cell degranulation capacity was reduced by 25% compared with healthy controls (P = 0.02) and by 50% compared with cirrhosis patients (P = 0.04). Accordingly, the NKG2D receptor expression was markedly decreased on NK cells, CTLs, and NKT cells (P < 0.05, all). The frequencies of IL-22-producing CTLs and NK cells were doubled compared with healthy controls (P < 0.05, all) but not different from cirrhosis patients. This exploratory study for the first time showed impaired cellular cytotoxicity and activation in alcoholic hepatitis. This is unlikely to cause hepatocyte death but may contribute toward the severe immune incompetence. The results warrant detailed and mechanistic studies.

  3. Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Balta, Cornel; Herman, Hildegard; Boldura, Oana Maria; Gasca, Ionela; Rosu, Marcel; Ardelean, Aurel; Hermenean, Anca

    2015-10-05

    We investigated the protective effect of chrysin on chronic liver fibrosis in mice and the potential mechanism underlying TGF-β1-mediated hepatic stellate cells (HSCs) activation on fibrogenesis. Experimental fibrosis was established by intraperitoneal injection of mice with 20% v/v, 2 ml/kg CCl4 twice a week, for 7 weeks. Mice were orally treated with 3 doses of chrysin (50, 100 and 200 mg/kg) or with vehicle as control. For the assessment of the spontaneous reversion of fibrosis, CCl4 treated animals were investigated after two weeks of recovery time. Silymarin was used as standard hepatoprotective flavonoid. Histopathological investigations showed that hepatic fibrosis grade was markedly reduced in the chrysin groups compared to the fibrotic one. Moreover, CCl4 activated HSCs induced an upregulation of smooth muscle actin (α-SMA), an increased number of TGF-β1 immunopositive cells and marked up-regulation of TGF-β1. α-SMA and TGF-β1 levels were significantly reduced in all chrysin treated groups in a dose-dependent manner, whereas the level of spontaneous reversal of fibrosis was lower compared to all flavonoid treated groups. Liver mRNA levels of Smad 2 in the 50, 100 and 200 mg/kg chrysin treated groups were significantly reduced by about 88.54%, 92.15% and 95.56% of the corresponding levels in the fibrosis mice group. The results were similar for mRNA levels of Smad 3. The protective response to silymarin was almost similar to that seen with the highest doses of chrysin. In this study, we have shown that chrysin has the efficacy to reverse CCl4-stimulated liver fibrosis by inhibition of HSCs activation and proliferation through TGF-β1/Smad pathway. These results suggest that chrysin may be useful in stopping or reversing the progression of liver fibrosis and might offer the possibility to develop a new therapeutic drug, useful in treatment of chronic liver diseases.

  4. Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis

    PubMed Central

    McKee, Chad; Sigala, Barbara; Soeda, Junpei; Mouralidarane, Angelina; Morgan, Maelle; Mazzoccoli, Gianluigi; Rappa, Francesca; Cappello, Francesco; Cabibi, Daniela; Pazienza, Valerio; Selden, Claire; Roskams, Tania; Vinciguerra, Manlio; Oben, Jude A.

    2015-01-01

    Amphiregulin (AR) involvement in liver fibrogenesis and hepatic stellate cells (HSC) regulation is under study. Non-alcoholic fatty liver disease (NAFLD) and its more severe form non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular cancer (HCC). Our aim was to investigate ex vivo the effect of AR on human primary HSC (hHSC) and verify in vivo the relevance of AR in NAFLD fibrogenesis. hHSC isolated from healthy liver segments were analyzed for expression of AR and its activator, TNF-α converting enzyme (TACE). AR induction of hHSC proliferation and matrix production was estimated in the presence of antagonists. AR involvement in fibrogenesis was also assessed in a mouse model of NASH and in humans with NASH. hHSC time dependently expressed AR and TACE. AR increased hHSC proliferation through several mitogenic signaling pathways such as EGFR, PI3K and p38. AR also induced marked upregulation of hHSC fibrogenic markers and reduced hHSC death. AR expression was enhanced in the HSC of a murine model of NASH and of severe human NASH. In conclusion, AR induces hHSC fibrogenic activity via multiple mitogenic signaling pathways, and is upregulated in murine and human NASH, suggesting that AR antagonists may be clinically useful anti-fibrotics in NAFLD. PMID:25744849

  5. Delivery of methoxymorpholinyl doxorubicin by interleukin 2-activated NK cells: effect in mice bearing hepatic metastases

    PubMed Central

    Quintieri, L; Rosato, A; Amboldi, N; Vizler, C; Ballinari, D; Zanovello, P; Collavo, D

    1999-01-01

    The possibility of using interleukin 2 (IL-2)-activated natural killer cells (A-NK) to carry methoxymorpholinyl doxorubicin (MMDX; PNU 152243) to liver-infiltrating tumours was explored in mice bearing 2-day established M5076 reticulum cell sarcoma hepatic metastases. In vitro, MMDX was 5.5-fold more potent than doxorubicin against M5076 tumour cells. MMDX uptake by A-NK cells correlated linearly with drug concentration in the incubation medium [correlation coefficient (r) = 0.999]; furthermore, as MMDX incorporation was readily reproducible in different experiments, the amount of drug delivered by A-NK cells could be modulated. In vivo experiments showed that intravenous (i.v.) injection of MMDX-loaded A-NK cells exerted a greater therapeutic effect than equivalent or even higher doses of free drug. The increase in lifespan (ILS) following A-NK cell delivery of 53 μg kg−1 MMDX, a dosage that is ineffective when administered in free form, was similar to that observed in response to 92 μg kg−1 free drug, a dosage close to the 10% lethal dose (ILS 42% vs. 38% respectively). These results correlated with pharmacokinetic studies showing that MMDX encapsulation in A-NK cells strongly modifies its organ distribution and targets it to tissues in which IL-2 activated lymphocytes are preferentially entrapped after i.v. injection. © 1999 Cancer Research Campaign PMID:10098738

  6. Transforming growth factor β-activated kinase 1 transcriptionally suppresses hepatitis B virus replication

    PubMed Central

    Pang, Jinke; Zhang, Geng; Lin, Yong; Xie, Zhanglian; Liu, Hongyan; Tang, Libo; Lu, Mengji; Yan, Ran; Guo, Haitao; Sun, Jian; Hou, Jinlin; Zhang, Xiaoyong

    2017-01-01

    Hepatitis B Virus (HBV) replication in hepatocytes is restricted by the host innate immune system and related intracellular signaling pathways. Transforming growth factor β-activated kinase 1 (TAK1) is a key mediator of toll-like receptors and pro-inflammatory cytokine signaling pathways. Here, we report that silencing or inhibition of endogenous TAK1 in hepatoma cell lines leads to an upregulation of HBV replication, transcription, and antigen expression. In contrast, overexpression of TAK1 significantly suppresses HBV replication, while an enzymatically inactive form of TAK1 exerts no effect. By screening TAK1-associated signaling pathways with inhibitors and siRNAs, we found that the MAPK-JNK pathway was involved in TAK1-mediated HBV suppression. Moreover, TAK1 knockdown or JNK pathway inhibition induced the expression of farnesoid X receptor α, a transcription factor that upregulates HBV transcription. Finally, ectopic expression of TAK1 in a HBV hydrodynamic injection mouse model resulted in lower levels of HBV DNA and antigens in both liver and serum. In conclusion, our data suggest that TAK1 inhibits HBV primarily at viral transcription level through activation of MAPK-JNK pathway, thus TAK1 represents an intrinsic host restriction factor for HBV replication in hepatocytes. PMID:28045080

  7. Efficient neutralizing activity of cocktailed recombinant human antibodies against hepatitis A virus infection in vitro and in vivo.

    PubMed

    Cao, Jingyuan; Meng, Shufang; Li, Chuan; Ji, Yan; Meng, Qingling; Zhang, Quanfu; Liu, Feng; Li, Jiandong; Bi, Shengli; Li, Dexin; Liang, Mifang

    2008-07-01

    Hepatitis A virus (HAV) is the major pathogen responsible for acute infectious hepatitis A, a disease that is prevalent worldwide. Although HAV immunization effectively prevents infection, primary immunizations must be administered at least 2 weeks prior to HAV exposure. In contrast, passive immunization with pooled human immunoglobulin (Ig) can provide immediate and rapid protection from HAV infection. Because the use of human sera-derived Igs carries the risk of contamination, we sought to develop recombinant HAV-neutralizing human antibodies. We prepared a combinatorial phage display library of recombinant human anti-HAV antibodies from RNA extracted from the blood lymphocytes of a convalescent hepatitis A patient. Two recombinant human IgG antibodies, HAIgG16 and HAIgG78, were screened from the antibody library by their ability to bind with high affinity to purified, inactivated HAV virions. These antibodies recognized different epitopes of the HAV virion capsid, and competed with both patient sera and well-characterized neutralizing mouse monoclonal antibodies. A cocktailed mixture of HAIgG16 and HAIgG78 at a 3:1 ratio was prepared to compare its combined biological activity with that conferred by each antibody individually. The cocktailed antibodies displayed a stronger neutralizing activity in vitro than that observed with either HAIgG16 and HAIgG78 alone. To determine the in vivo neutralizing abilities of these antibodies, rhesus monkeys were inoculated with cocktailed antibodies and challenged with HAV. Whereas control animals developed hepatitis A and seroconverted to the HAV antibody, animals receiving cocktailed antibodies were protected either from viral infection or from developing clinical hepatitis. These results demonstrate that recombinant human antibody preparations could be used to prevent or treat early-stage HAV infection.

  8. Hepatic triacylglycerol hydrolysis regulates peroxisome proliferator-activated receptor alpha activity.

    PubMed

    Sapiro, Jessica M; Mashek, Mara T; Greenberg, Andrew S; Mashek, Douglas G

    2009-08-01

    Recent evidence suggests that fatty acids generated from intracellular triacylglycerol (TAG) hydrolysis may have important roles in intracellular signaling. This study was conducted to determine if fatty acids liberated from TAG hydrolysis regulate peroxisome proliferator-activated receptor alpha (PPARalpha). Primary rat hepatocyte cultures were treated with adenoviruses overexpressing adipose differentiation-related protein (ADRP) or adipose triacylglycerol lipase (ATGL) or treated with short interfering RNA (siRNA) targeted against ADRP. Subsequent effects on TAG metabolism and PPARalpha activity and target gene expression were determined. Overexpressing ADRP attenuated TAG hydrolysis, whereas siRNA-mediated knockdown of ADRP or ATGL overexpression resulted in enhanced TAG hydrolysis. Results from PPARalpha reporter activity assays demonstrated that decreasing TAG hydrolysis by ADRP overexpression resulted in a 35-60% reduction in reporter activity under basal conditions or in the presence of fatty acids. As expected, PPARalpha target genes were also decreased in response to ADRP overexpression. However, the PPARalpha ligand, WY-14643, was able to restore PPARalpha activity following ADRP overexpression. Despite its effects on PPARalpha, overexpressing ADRP did not affect PPARgamma activity. Enhancing TAG hydrolysis through ADRP knockdown or ATGL overexpression increased PPARalpha activity. These results indicate that TAG hydrolysis and the consequential release of fatty acids regulate PPARalpha activity.

  9. High fat diet-induced changes of mouse hepatic transcription and enhancer activity can be reversed by subsequent weight loss.

    PubMed

    Siersbæk, Majken; Varticovski, Lyuba; Yang, Shutong; Baek, Songjoon; Nielsen, Ronni; Mandrup, Susanne; Hager, Gordon L; Chung, Jay H; Grøntved, Lars

    2017-01-10

    Epigenetic factors have been suggested to play an important role in metabolic memory by trapping and maintaining initial metabolic changes within the transcriptional regulatory machinery. In this study we fed mice a high fat diet (HFD) for seven weeks followed by additional five weeks of chow, to identify HFD-mediated changes to the hepatic transcriptional program that may persist after weight loss. Mice fed a HFD displayed increased fasting insulin levels, hepatosteatosis and major changes in hepatic gene transcription associated with modulation of H3K27Ac at enhancers, but no significant changes in chromatin accessibility, indicating that HFD-regulated gene transcription is primarily controlled by modulating the activity of pre-established enhancers. After return to the same body weight as chow fed control mice, the fasting insulin, glucose, and hepatic triglyceride levels were fully restored to normal levels. Moreover, HFD-regulated H3K27Ac and mRNA levels returned to similar levels as control mice. These data demonstrates that the transcription regulatory landscape in the liver induced by HFD is highly dynamic and can be reversed by weight loss. This provides hope for efficient treatment of early obesity-associated changes to hepatic complications by simple weight loss intervention without persistent reprograming of the liver transcriptome.

  10. High fat diet-induced changes of mouse hepatic transcription and enhancer activity can be reversed by subsequent weight loss

    PubMed Central

    Siersbæk, Majken; Varticovski, Lyuba; Yang, Shutong; Baek, Songjoon; Nielsen, Ronni; Mandrup, Susanne; Hager, Gordon L.; Chung, Jay H.; Grøntved, Lars

    2017-01-01

    Epigenetic factors have been suggested to play an important role in metabolic memory by trapping and maintaining initial metabolic changes within the transcriptional regulatory machinery. In this study we fed mice a high fat diet (HFD) for seven weeks followed by additional five weeks of chow, to identify HFD-mediated changes to the hepatic transcriptional program that may persist after weight loss. Mice fed a HFD displayed increased fasting insulin levels, hepatosteatosis and major changes in hepatic gene transcription associated with modulation of H3K27Ac at enhancers, but no significant changes in chromatin accessibility, indicating that HFD-regulated gene transcription is primarily controlled by modulating the activity of pre-established enhancers. After return to the same body weight as chow fed control mice, the fasting insulin, glucose, and hepatic triglyceride levels were fully restored to normal levels. Moreover, HFD-regulated H3K27Ac and mRNA levels returned to similar levels as control mice. These data demonstrates that the transcription regulatory landscape in the liver induced by HFD is highly dynamic and can be reversed by weight loss. This provides hope for efficient treatment of early obesity-associated changes to hepatic complications by simple weight loss intervention without persistent reprograming of the liver transcriptome. PMID:28071704

  11. Attenuated viral hepatitis in Trem1−/− mice is associated with reduced inflammatory activity of neutrophils

    PubMed Central

    Kozik, Jan-Hendrik; Trautmann, Tanja; Carambia, Antonella; Preti, Max; Lütgehetmann, Marc; Krech, Till; Wiegard, Christiane; Heeren, Joerg; Herkel, Johannes

    2016-01-01

    TREM1 (Triggering Receptor Expressed on Myeloid Cells 1) is a pro-inflammatory receptor expressed by phagocytes, which can also be released as a soluble molecule (sTREM1). The roles of TREM1 and sTREM1 in liver infection and inflammation are not clear. Here we show that patients with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection manifest elevated serum levels of sTREM1. In mice, experimental viral hepatitis induced by infection with Lymphocytic Choriomeningitis Virus (LCMV)-WE was likewise associated with increased sTREM1 in serum and urine, and with increased TREM1 and its associated adapter molecule DAP12 in the liver. Trem1−/− mice showed accelerated clearance of LCMV-WE and manifested attenuated liver inflammation and injury. TREM1 expression in the liver of wild-type mice was mostly confined to infiltrating neutrophils, which responded to LCMV by secretion of CCL2 and TNF-α, and release of sTREM1. Accordingly, the production of CCL2 and TNF-α was decreased in the livers of LCMV-infected Trem1−/− mice, as compared to LCMV-infected wildtype mice. These findings indicate that TREM1 plays a role in viral hepatitis, in which it seems to aggravate the immunopathology associated with viral clearance, mainly by increasing the inflammatory activity of neutrophils. PMID:27328755

  12. Phosphorylated heat shock protein 27 promotes lipid clearance in hepatic cells through interacting with STAT3 and activating autophagy.

    PubMed

    Shen, Lei; Qi, Zhilin; Zhu, Yanyan; Song, Xiaomeng; Xuan, Chunxia; Ben, Peiling; Lan, Lei; Luo, Lan; Yin, Zhimin

    2016-08-01

    Nonalcoholic fatty liver disease (NAFLD) has become the major liver disease worldwide. Recently, several studies have identified that the activation of autophagy attenuates hepatic steatosis. Heat shock protein 27 (Hsp27) is involved in autophagy in response to various stimuli. In this study, we demonstrate that phosphorylated Hsp27 stimulates autophagy and lipid droplet clearance and interacts with STAT3. In vivo study showed that high fat diet (HFD) feeding increased Hsp25 (mouse orthology of Hsp27) phosphorylation and autophagy in mouse livers. Inhibition of Hsp25 phosphorylation exacerbated HFD-induced hepatic steatosis in mice. In vitro study showed that palmitate-induced lipid overload in hepatic cells was enhanced by Hsp27 knockdown, KRIBB3 treatment and Hsp27-3A (non-phosphorylatable) overexpression but was prevented by Hsp27-WT (wild type) and Hsp27-3D (phosphomimetic) overexpression. Mechanism analysis demonstrated that palmitate could induce Hsp27 phosphorylation which promoted palmitate-induced autophagy. Phosphorylated Hsp27 interacted with STAT3 in response to palmitate treatment, and disrupted the STAT3/PKR complexes, facilitated PKR-dependent eIF2α phosphorylation, and thus stimulated autophagy. To conclude, our study provides a novel mechanism by which the phosphorylated Hsp27 promotes hepatic lipid clearance and suggests a new insight for therapy of steatotic diseases such as nonalcoholic fatty liver disease (NAFLD).

  13. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    SciTech Connect

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying; Wu, Jianguo

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  14. Sertraline, an antidepressant, induces apoptosis in hepatic cells through the mitogen-activated protein kinase pathway.

    PubMed

    Chen, Si; Xuan, Jiekun; Wan, Liqing; Lin, Haixia; Couch, Letha; Mei, Nan; Dobrovolsky, Vasily N; Guo, Lei

    2014-02-01

    Sertraline is generally used for the treatment of depression and is also approved for the treatment of panic, obsessive-compulsive, and posttraumatic stress disorders. Previously, using rat primary hepatocytes and isolated mitochondria, we demonstrated that sertraline caused hepatic cytotoxicity and mitochondrial impairment. In the current study, we investigated and characterized molecular mechanisms of sertraline toxicity in human hepatoma HepG2 cells. Sertraline decreased cell viability and induced apoptosis in a dose- and time-dependent manner. Sertraline activated the intrinsic checkpoint protein caspase-9 and caused the release of cytochrome c from mitochondria to cytosol; this process was Bcl-2 family dependent because antiapoptotic Bcl-2 family proteins were decreased. Pretreatment of the HepG2 cells with caspase-3, caspase-8, and caspase-9 inhibitors partially but significantly reduced the release of lactate dehydrogenase, indicating that sertraline-induced apoptosis is mediated by both intrinsic and extrinsic apoptotic pathways. Moreover, sertraline markedly increased the expression of tumor necrosis factor (TNF) and the phosphorylation of JNK, extracellular signal-regulated kinase (ERK1/2), and p38. In sertraline-treated cells, the induction of apoptosis and cell death was shown to be the result of activation of JNK, but not ERK1/2 or p38 in the mitogen-activated protein kinase (MAPK) pathway. Furthermore, silencing MAP4K4, the upstream kinase of JNK, attenuated both apoptosis and cell death caused by sertraline. Taken together, our findings suggest that sertraline induced apoptosis in HepG2 cells at least partially via activation of the TNF-MAP4K4-JNK cascade signaling pathway.

  15. Effects of Chinese, Japanese and Western tea on hepatic P450 enzyme activities in rats.

    PubMed

    Niwattisaiwong, N; Luo, X X; Coville, P F; Wanwimolruk, S

    2004-01-01

    Previous studies have reported that green tea effectively protects against cancers caused by various dietary carcinogens. As P450 enzymes are the major system responsible for the metabolism of many carcinogens, we hypothesise that tea consumption may alter the catalytic activities of P450 enzymes. We conducted this study to screen the effects of four different teas on the activities of P450 enzymes. Tea solutions (2.5%) were prepared by adding boiling water to tea leaves and filtering. Female Wistar rats were divided into five groups (n = 4 each); each had free access to tea solutions while the control group was supplied with water for 4 weeks. Animals were sacrificed and livers were removed for preparation of microsomes. Enzyme activities were determined by incubation of liver microsomes with the appropriate CYP substrate. The activity of CYP1A1 in livers from rats receiving Oolong (Chinese) tea (185 +/- 63 pmol/mg/min), Japanese green tea (197 +/- 22 pmol/mg/min) and Earl Grey tea (228 +/- 40 pmol/mg/min) was significantly higher (p < 0.05) than in the control group (94 +/- 34 pmol/mg/min), whereas no change was observed in the activity of CYP1A2 in any of tested animals. The hepatic activity of CYP2D6 was greater only in rats drinking Earl Grey tea compared to the controls (235 +/- 37 vs 161 +/- 41 pmol/mg/min, p < 0.05). There were also significant increases (p < 0.05) in the activity of CYP3A in livers of animals given Oolong tea (653 +/- 174 vs 382 +/- 114 pmol/mg/min) and Earl Grey tea (751 +/- 202 pmol/mg/min), while Jasmine and Japanese green tea had no significant effect. These results indicate that not all types of tea cause alterations in liver CYP enzymes as some elevated activities and some did not. Further studies are needed to determine whether there is a relationship between the effect of tea on CYP activities and anti-carcinogenesis.

  16. Autophagy Releases Lipid That Promotes Fibrogenesis by Activated Hepatic Stellate Cells in Mice and in Human Tissues

    PubMed Central

    HERNÁNDEZ–GEA, VIRGINIA; GHIASSI–NEJAD, ZAHRA; ROZENFELD, RAPHAEL; GORDON, RONALD; FIEL, MARIA ISABEL; YUE, ZHENYU; CZAJA, MARK J.; FRIEDMAN, SCOTT L.

    2012-01-01

    BACKGROUND & AIMS The pathogenesis of liver fibrosis involves activation of hepatic stellate cells, which is associated with depletion of intracellular lipid droplets. When hepatocytes undergo autophagy, intracellular lipids are degraded in lysosomes. We investigated whether autophagy also promotes loss of lipids in hepatic stellate cells to provide energy for their activation and extended these findings to other fibrogenic cells. METHODS We analyzed hepatic stellate cells from C57BL/6 wild-type, Atg7F/F, and Atg7F/F-GFAP-Cre mice, as well as the mouse stellate cell line JS1. Fibrosis was induced in mice using CCl4 or thioacetamide (TAA); liver tissues and stellate cells were analyzed. Autophagy was blocked in fibrogenic cells from liver and other tissues using small interfering RNAs against Atg5 or Atg7 and chemical antagonists. Human pulmonary fibroblasts were isolated from samples of lung tissue from patients with idiopathic pulmonary fibrosis or from healthy donors. RESULTS In mice, induction of liver injury with CCl4 or TAA increased levels of autophagy. We also observed features of autophagy in activated stellate cells within injured human liver tissue. Loss of autophagic function in cultured mouse stellate cells and in mice following injury reduced fibrogenesis and matrix accumulation; this effect was partially overcome by providing oleic acid as an energy substrate. Autophagy also regulated expression of fibrogenic genes in embryonic, lung, and renal fibroblasts. CONCLUSIONS Autophagy of activated stellate cells is required for hepatic fibrogenesis in mice. Selective reduction of autophagic activity in fibrogenic cells in liver and other tissues might be used to treat patients with fibrotic diseases. PMID:22240484

  17. Minimal hepatic glucose-6-phosphatase-α activity required to sustain survival and prevent hepatocellular adenoma formation in murine glycogen storage disease type Ia.

    PubMed

    Lee, Young Mok; Kim, Goo-Young; Pan, Chi-Jiunn; Mansfield, Brian C; Chou, Janice Y

    2015-06-01

    Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. In a previous 70-90 week-study, we showed that a recombinant adeno-associated virus (rAAV) vector-mediated gene transfer that restores more than 3% of wild-type hepatic G6Pase-α activity in G6pc (-/-) mice corrects hepatic G6Pase-α deficiency with no evidence of HCA. We now examine the minimal hepatic G6Pase-α activity required to confer therapeutic efficacy. We show that rAAV-treated G6pc (-/-) mice expressing 0.2% of wild-type hepatic G6Pase-α activity suffered from frequent hypoglycemic seizures at age 63-65 weeks but mice expressing 0.5-1.3% of wild-type hepatic G6Pase-α activity (AAV-LL mice) sustain 4-6 h of fast and grow normally to age 75-90 weeks. Despite marked increases in hepatic glycogen accumulation, the AAV-LL mice display no evidence of hepatic abnormalities, hepatic steatosis, or HCA. Interprandial glucose homeostasis is maintained by the G6Pase-α/glucose-6-phosphate transporter (G6PT) complex, and G6PT-mediated microsomal G6P uptake is the rate-limiting step in endogenous glucose production. We show that hepatic G6PT activity is increased in AAV-LL mice. These findings are encouraging for clinical studies of G6Pase-α gene-based therapy for GSD-Ia.

  18. Berberine reverts hepatic mitochondrial dysfunction in high-fat fed rats: a possible role for SirT3 activation.

    PubMed

    Teodoro, João Soeiro; Duarte, Filipe Valente; Gomes, Ana Patrícia; Varela, Ana Teresa; Peixoto, Francisco Manuel; Rolo, Anabela Pinto; Palmeira, Carlos Marques

    2013-11-01

    Berberine is an isoquinoline alkaloid with anti-diabetic properties. Despite the central role of liver and thus hepatic mitochondria in whole-body metabolism, berberine effects on hepatic mitochondrial function in an obesity model are still unknown. Here, we demonstrate that berberine treatment recovers mitochondrial efficiency when altered by a high-fat feeding. Mitochondria isolated from the liver of high-fat fed rats exhibited decreased capacity to accumulate calcium and impaired oxidative phosphorylation (OXPHOS) capacity, as shown by impaired mitochondrial membrane potential, oxygen consumption and cellular ATP levels. Interestingly, the recovery of mitochondrial function by berberine was associated with an increased activity of the mitochondrial sirtuin 3 (SirT3). In conclusion, berberine potent protective effects against metabolic syndrome may rely on increasing mitochondrial SirT3 activity, normalizing mitochondrial function and preventing a state of energetic deficit caused by impaired OXPHOS.

  19. Immune Activation Response in Chronic HIV-Infected Patients: Influence of Hepatitis C Virus Coinfection

    PubMed Central

    Márquez, Mercedes; Romero-Cores, Paula; Montes-Oca, Monserrat; Martín-Aspas, Andrés; Soto-Cárdenas, María-José; Guerrero, Francisca; Fernández-Gutiérrez, Clotilde; Girón-González, José-Antonio

    2015-01-01

    Objectives We have analyzed the parameters (bacterial translocation, immune activation and regulation, presence of HCV coinfection) which could be implicated in an inappropriate immune response from individuals with chronic HIV infection. The influence of them on the evolution of CD4+ T cell count has been investigated. Patients and methods Seventy HIV-infected patients [monoinfected by HIV (n = 20), HCV-coinfected (with (n = 25) and without (n = 25) liver cirrhosis)] and 25 healthy controls were included. Median duration of HIV infection was 20 years. HIV- and HCV-related parameters, as well as markers relative to bacterial translocation, monocyte and lymphocyte activation and regulation were considered as independent variables. Dependent variables were the increase of CD4+ T cell count during the follow-up (12 months). Results Increased values of bacterial translocation, measured by lipopolysaccharide-binding protein, monocyte and lymphocyte activation markers and T regulatory lymphocytes were detected in HIV-monoinfected and HIV/HCV coinfected patients. Serum sCD14 and IL-6 were increased in HIV/HCV-coinfected patients with liver cirrhosis in comparison with those with chronic hepatitis or HIV-monoinfected individuals. Time with undetectable HIV load was not related with these parameters. The presence of cirrhosis was negatively associated with a CD4+ T cell count increase. Conclusion In patients with a chronic HIV infection, a persistent increase of lipopolysaccharide-binding protein and monocyte and lymphocyte modifications are present. HCV-related cirrhosis is associated with more elevated serum concentrations of monocyte-derived markers. Cirrhosis influences the continued immune reconstitution of these patients. PMID:25775475

  20. A sexual dimorphism influences bicyclol-induced hepatic heat shock factor 1 activation and hepatoprotection.

    PubMed

    Chen, Xiaosong; Zhang, Jianjian; Han, Conghui; Dai, Huijuan; Kong, Xianming; Xu, Longmei; Xia, Qiang; Zhang, Ming; Zhang, Jianjun

    2015-07-01

    Bicyclol [4,4'-dimethoxy-5,6,5',6'-bis(methylenedioxy)-2-hydroxy-methyl-2'-methoxycarbonyl biphenyl] is a synthetic hepatoprotectant widely used in clinical practice, but resistance to this treatment is often observed. We found that the hepatoprotective effect of bicyclol was greatly compromised in female and castrated male mice. This study was to dissect the molecular basis behind the sex difference, which might underlie the clinical uncertainty. We compared bicyclol-induced hepatoprotection between male and female mice using acute liver damage models. Inducible knockout by the Cre/loxp system was used to decipher the role of heat shock transcription factor 1 (HSF1). Functional experiments, western blot, and histopathological analysis were used to determine the key causative factors which might antagonize bicyclol in female livers. HSF1 activation and heat shock protein 70 (Hsp70) expression, which were responsible for bicyclol-induced hepatoprotection, were compromised in female and castrated male livers. Compromised HSF1 activation was a result of HSF1 phosphorylation at serine 303, which was catalyzed by glycogen synthase kinase 3β (GSK3β). Testosterone was necessary for bicyclol to inhibit hepatic GSK3β activity. Administration of testosterone or GSK3β inhibitors restored bicyclol-induced protection in females. Bicyclol induces sex-specific hepatoprotection based on a sex-specific HSF1/Hsp70 response, in which testosterone and GSK3β play key roles. Because a lot of patients suffering from liver diseases have very low testosterone levels, our results give a possible explanation for the clinical variation in bicyclol-induced hepatoprotection, as well as practicable solutions to improve the effect of bicyclol.

  1. Comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides.

    PubMed

    Wang, Yixuan; Chen, Yun; Du, Hongxu; Yang, Jingjing; Ming, Ke; Song, Meiyun; Liu, Jiaguo

    2017-02-01

    Duck hepatitis A virus (DHAV) (Picornaviridae) causes an infectious disease in ducks which results in severe losses in duck industry. However, the proper antiviral supportive drugs for this disease have not been discovered. Polysaccharide is the main ingredient of Astragalus that has been demonstrated to directly and indirectly inhibit RNA of viruses replication. In this study, the antiviral activities of Astragalus polysaccharide (APS) and its derivatives against DHAV were evaluated and compared. APS was modified via the sodium trimetaphosphate and sodium tripolyphosphate (STMP-STPP) method and chlorosulfonic acid-pyridine method to obtain its phosphate (pAPS) and sulfate (sAPS), respectively. The infrared structures of APS, pAPS, and sAPS were analyzed with the potassium bromide disc method. Additionally, the antiviral activities were evaluated with the MTT ((4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) method in vitro and the artificial inoculation method in vivo. The clinical therapy effects were evaluated by mortality rate, liver function-related biochemical indicators, and visual changes in pathological anatomy. The anti-DHAV proliferation effects of APS, pAPS, and sAPS on the viral multiplication process in cell and blood were observed with the reverse transcription-polymerase chain reaction method. The results revealed that pAPS inhibited DHAV proliferation more efficiently in the entire process of viral multiplication than APS and sAPS. Moreover, only pAPS significantly improved the survival rate to 33.5% and reduced the DHAV particle titer in the blood as well as liver lesions in clinical trials. The results indicated that pAPS exhibited greater anti-DHAV activity than APS and sAPS both in vitro and in vivo.

  2. The biphasic nature of hypoxia-induced directional migration of activated human hepatic stellate cells.

    PubMed

    Novo, Erica; Povero, Davide; Busletta, Chiara; Paternostro, Claudia; di Bonzo, Lorenzo Valfrè; Cannito, Stefania; Compagnone, Alessandra; Bandino, Andrea; Marra, Fabio; Colombatto, Sebastiano; David, Ezio; Pinzani, Massimo; Parola, Maurizio

    2012-03-01

    Liver fibrogenesis is sustained by pro-fibrogenic myofibroblast-like cells (MFs), mainly originating from activated hepatic stellate cells (HSC/MFs) or portal (myo)fibroblasts, and is favoured by hypoxia-dependent angiogenesis. Human HSC/MFs were reported to express vascular-endothelial growth factor (VEGF) and VEGF-receptor type 2 and to migrate under hypoxic conditions. This study was designed to investigate early and delayed signalling mechanisms involved in hypoxia-induced migration of human HSC/MFs. Signal transduction pathways and intracellular generation of reactive oxygen species (ROS) were evaluated by integrating morphological, cell, and molecular biology techniques. Non-oriented and oriented migration were evaluated by using wound healing assay and the modified Boyden's chamber assay, respectively. The data indicate that hypoxia-induced migration of HSC/MFs is a biphasic process characterized by the following sequence of events: (a) an early (15 min) and mitochondria-related increased generation of intracellular ROS which (b) was sufficient to switch on activation of ERK1/2 and JNK1/2 that were responsible for the early phase of oriented migration; (c) a delayed and HIF-1α-dependent increase in VEGF expression (facilitated by ROS) and its progressive, time-dependent release in the extracellular medium that (d) was mainly responsible for sustained migration of HSC/MFs. Finally, immunohistochemistry performed on HCV-related fibrotic/cirrhotic livers revealed HIF-2α and haem-oxygenase-1 positivity in hepatocytes and α-SMA-positive MFs, indicating that MFs were likely to be exposed in vivo to both hypoxia and oxidative stress. In conclusion, hypoxia-induced migration of HSC/MFs involves an early, mitochondrial-dependent ROS-mediated activation of ERK and JNK, followed by a delayed- and HIF-1α-dependent up-regulation and release of VEGF.

  3. Peroxisome proliferator-activated receptor alpha controls hepatic heme biosynthesis through ALAS1.

    PubMed

    Degenhardt, Tatjana; Väisänen, Sami; Rakhshandehroo, Maryam; Kersten, Sander; Carlberg, Carsten

    2009-05-01

    Heme is an essential prosthetic group of proteins involved in oxygen transport, energy metabolism and nitric oxide production. ALAS1 (5-aminolevulinate synthase) is the rate-limiting enzyme in heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target for the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). In primary human hepatocytes and in HepG2 cells, PPARalpha agonists induced an increase in ALAS1 mRNA levels, which was abolished by PPARalpha silencing. These effects are mediated by two functional PPAR binding sites at positions -9 and -2.3 kb relative to the ALAS1 transcription start site. PPARalpha ligand treatment also up-regulated the mRNA levels of the genes ALAD (5-aminolevulinate dehydratase), UROS (uroporphyrinogen III synthase), UROD (uroporphyrinogen decarboxylase), CPOX (coproporphyrinogen oxidase) and PPOX (protoporphyrinogen oxidase) encoding for enzymes controlling further steps in heme biosynthesis. In HepG2 cells treated with PPARalpha agonists and in mouse liver upon fasting, the association of PPARalpha, its partner retinoid X receptor, PPARgamma co-activator 1alpha and activated RNA polymerase II with the transcription start site region of all six genes was increased, leading to higher levels of the metabolite heme. In conclusion, these data strongly support a role of PPARalpha in the regulation of human ALAS1 and of five additional genes of the pathway, consequently leading to increased heme synthesis.

  4. Activity of purified hepatitis C virus protease NS3 on peptide substrates.

    PubMed Central

    Steinkühler, C; Urbani, A; Tomei, L; Biasiol, G; Sardana, M; Bianchi, E; Pessi, A; De Francesco, R

    1996-01-01

    The protease domain of the hepatitis C virus (HCV) protein NS3 was expressed in Escherichia coli, purified to homogeneity, and shown to be active on peptides derived from the sequence of the NS4A-NS4B junction. Experiments were carried out to optimize protease activity. Buffer requirements included the presence of detergent, glycerol, and dithiothreitol, pH between 7.5 and 8.5, and low ionic strength. C- and N-terminal deletion experiments defined a peptide spanning from the P6 to the P4' residue as a suitable substrate. Cleavage kinetics were subsequently measured by using decamer P6-P4' peptides corresponding to all intermolecular cleavage sites of the HCV polyprotein. The following order of cleavage efficiency, in terms of kcat/Km, was determined: NS5A-NS5B > NS4A-NS4B >> NS4B-NS5A. A 14-mer peptide containing residues 21 to 34 of the protease cofactor NS4A (Pep4A 21-34), when added in stoichiometric amounts, was shown to increase cleavage rates of all peptides, the largest effect (100-fold) being observed on the hydrolysis of the NS4B-NS5A decamer. From the kinetic analysis of cleavage data, we conclude that (i) primary structure is an important determinant of the efficiency with which each site is cleaved during polyprotein processing, (ii) slow cleavage of the NS4B-NS5A site in the absence of NS4A is due to low binding affinity of the enzyme for this site, and (iii) formation of a 1:1 complex between the protease and Pep4A 21-34 is sufficient and required for maximum activation. PMID:8794305

  5. Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis

    PubMed Central

    Hiramitsu, Masanori; Shimada, Yasuhito; Kuroyanagi, Junya; Inoue, Takashi; Katagiri, Takao; Zang, Liqing; Nishimura, Yuhei; Nishimura, Norihiro; Tanaka, Toshio

    2014-01-01

    Lemon (Citrus limon) contains various bioactive flavonoids, and prevents obesity and obesity-associated metabolic diseases. We focused on eriocitrin (eriodictyol 7-rutinoside), a powerful antioxidative flavonoid in lemon with lipid-lowering effects in a rat model of high-fat diet. To investigate the mechanism of action of eriocitrin, we conducted feeding experiments on zebrafish with diet-induced obesity. Oral administration of eriocitrin (32 mg/kg/day for 28 days) improved dyslipidaemia and decreased lipid droplets in the liver. DNA microarray analysis revealed that eriocitrin increased mRNA of mitochondrial biogenesis genes, such as mitochondria transcription factor, nuclear respiratory factor 1, cytochrome c oxidase subunit 4, and ATP synthase. In HepG2 cells, eriocitrin also induced the corresponding orthologues, and reduced lipid accumulation under conditions of lipid loading. Eriocitrin increased mitochondrial size and mtDNA content, which resulted in ATP production in HepG2 cells and zebrafish. In summary, dietary eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. PMID:24424211

  6. Tuning a cellular lipid kinase activity adapts hepatitis C virus to replication in cell culture.

    PubMed

    Harak, Christian; Meyrath, Max; Romero-Brey, Inés; Schenk, Christian; Gondeau, Claire; Schult, Philipp; Esser-Nobis, Katharina; Saeed, Mohsan; Neddermann, Petra; Schnitzler, Paul; Gotthardt, Daniel; Perez-Del-Pulgar, Sofia; Neumann-Haefelin, Christoph; Thimme, Robert; Meuleman, Philip; Vondran, Florian W R; Francesco, Raffaele De; Rice, Charles M; Bartenschlager, Ralf; Lohmann, Volker

    2016-12-19

    With a single exception, all isolates of hepatitis C virus (HCV) require adaptive mutations to replicate efficiently in cell culture. Here, we show that a major class of adaptive mutations regulates the activity of a cellular lipid kinase, phosphatidylinositol 4-kinase IIIα (PI4KA). HCV needs to stimulate PI4KA to create a permissive phosphatidylinositol 4-phosphate-enriched membrane microenvironment in the liver and in primary human hepatocytes (PHHs). In contrast, in Huh7 hepatoma cells, the virus must acquire loss-of-function mutations that prevent PI4KA overactivation. This adaptive mechanism is necessitated by increased PI4KA levels in Huh7 cells compared with PHHs, and is conserved across HCV genotypes. PI4KA-specific inhibitors promote replication of unadapted viral isolates and allow efficient replication of patient-derived virus in cell culture. In summary, this study has uncovered a long-sought mechanism of HCV cell-culture adaptation and demonstrates how a virus can adapt to changes in a cellular environment associated with tumorigenesis.

  7. [Acquired partial lipodystrophy. Insulin resistance, hepatic lipase activity and small and dense LDL particles].

    PubMed

    Paglione, A M; Ferrari, N; Berg, G; Frechtel, G; Taverna, M; Fasulo, V; Lopez, G I; Gomez, R M; Bruno, O; Ruiz, M; Wikinski, R L

    2001-01-01

    Partial lipodystrophy (PLD) is an infrequent condition characterized by symmetric loss of subcutaneous adipose tissue in the upper or lower part of the body, although occasionally it affects only the extremities. In all cases it appears along with acantosis nigricans (AN), insulin resistance and impairment in the metabolism of lipids and carbohydrates. The case depicted pertains to a 49 year old female with no family history involving loss of adipose tissue in face and upper body. No fat in lower part of body was observed. The patient showed facial thinning at age 8, AN at 11 and gestational diabetes during her fourth pregnancy at 33. At present, the patient presents severe hyperglycemia and hyperinsulinemia with a marked insulin resistance. Type IV hyperlipoproteinemia (OMS), declined C-HDL and Apo A1 and low C-LDL but with a high proportion of small and dense LDL particles were present. Non esterified fatty acids were high. Lipoprotein lipase and hepatic lipase activities are in the lower limit and increased respectively. Fraction C3 of the complement was diminished. No mutations were observed either in codons 170, 809 and 972 of the IRS-1 receptor or in codon 276 of the adrenergic beta 2 gene.

  8. In-vitro antiviral activity of Solanum nigrum against Hepatitis C Virus

    PubMed Central

    2011-01-01

    Background Hepatitis C is a major health problem causes liver cirrhosis, hepatocellular carcinoma and death. The current treatment of standard interferon in combination with ribavirin, has limited benefits due to emergence of resistant mutations during long-term treatment, adverse side effects and high cost. Hence, there is a need for the development of more effective, less toxic antiviral agents. Results The present study was designed to search anti-HCV plants from different areas of Pakistan. Ten medicinal plants were collected and tested for anti-HCV activity by infecting the liver cells with HCV 3a innoculum. Methanol and chloroform extracts of Solanum nigrum (SN) seeds exhibited 37% and more than 50% inhibition of HCV respectively at non toxic concentration. Moreover, antiviral effect of SN seeds extract was also analyzed against HCV NS3 protease by transfecting HCV NS3 protease plasmid into liver cells. The results demonstrated that chloroform extract of SN decreased the expression or function of HCV NS3 protease in a dose- dependent manner and GAPDH remained constant. Conclusion These results suggest that SN extract contains potential antiviral agents against HCV and combination of SN extract with interferon will be better option to treat chronic HCV. PMID:21247464

  9. Insulin Clearance Is Associated with Hepatic Lipase Activity and Lipid and Adiposity Traits in Mexican Americans

    PubMed Central

    Labadzhyan, Artak; Cui, Jinrui; Péterfy, Miklós; Guo, Xiuqing; Chen, Yii-Der I.; Hsueh, Willa A.; Rotter, Jerome I.; Goodarzi, Mark O.

    2016-01-01

    Reduction in insulin clearance plays an important role in the compensatory response to insulin resistance. Given the importance of this trait to the pathogenesis of diabetes, a deeper understanding of its regulation is warranted. Our goal was to identify metabolic and cardiovascular traits that are independently associated with metabolic clearance rate of insulin (MCRI). We conducted a cross-sectional analysis of metabolic and cardiovascular traits in 765 participants from the Mexican-American Coronary Artery Disease (MACAD) project who had undergone blood sampling, oral glucose tolerance test, euglycemic-hyperinsulinemic clamp, dual-energy X-ray absorptiometry, and carotid ultrasound. We assessed correlations of MCRI with traits from seven domains, including anthropometry, biomarkers, cardiovascular, glucose homeostasis, lipase activity, lipid profile, and liver function tests. We found inverse independent correlations between MCRI and hepatic lipase (P = 0.0004), insulin secretion (P = 0.0002), alanine aminotransferase (P = 0.0045), total fat mass (P = 0.014), and diabetes (P = 0.03). MCRI and apolipoprotein A-I exhibited a positive independent correlation (P = 0.035). These results generate a hypothesis that lipid and adiposity associated traits related to liver function may play a role in insulin clearance. PMID:27846285

  10. Anti-hepatitis B virus activities and absolute configurations of sesquiterpenoid glycosides from Phyllanthus emblica.

    PubMed

    Lv, Jun-Jiang; Wang, Ya-Feng; Zhang, Jing-Min; Yu, Shan; Wang, Dong; Zhu, Hong-Tao; Cheng, Rong-Rong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2014-11-21

    During the process exploring anti-viral compounds from Phyllanthus species, eight new highly oxygenated bisabolane sesquiterpenoid glycoside phyllaemblicins G1–G8 (1–8) were isolated from Phyllanthus emblica, along with three known compounds, phyllaemblicin F (9), phyllaemblic acid (10) and glochicoccin D (11). Phyllaemblicin G2 (2), bearing a tricyclo [3.1.1.1] oxygen bridge ring system, is an unusual sesquiterpenoid glycoside, while phyllaemblicins G6–G8 (6–8) are dimeric sesquiterpenoid glycosides with two norbisabolane units connecting through a disaccharide. All the structures were elucidated by the extensive analysis of HRMS and NMR data. The relative configuration of phyllaemblicin G2 was constructed based on heteronuclear coupling constants measurement, and the absolute configurations for all new compounds were established by calculated electronic circular dichroism (ECD) using time dependent density functional theory. The sesquiterpenoid glycoside dimers 6–9 displayed potential anti-hepatitis B virus (HBV) activities, especially for the new compound 6 with IC50 of 8.53 ± 0.97 and 5.68 ± 1.75 μM towards the HBV surface antigen (HBsAg) and HBV excreted antigen (HBeAg) secretion, respectively.

  11. Fish oil at low dietary levels enhances physiological activity of sesamin to increase hepatic fatty acid oxidation in rats.

    PubMed

    Ide, Takashi

    2012-11-01

    We previously demonstrated that a diet containing fish oil at a level of 80 g/kg strongly stimulated the physiological activity of a sesame sesamin preparation containing sesamin and episesamin at equal amounts to increase hepatic fatty acid oxidation. This study was conducted to clarify whether fish oil at lower dietary levels enhances the physiological activity of sesamin to increase hepatic fatty acid oxidation. Rats were fed experimental diets supplemented with 0 or 2 g sesamin/kg, and containing 0, 15 or 30 g fish oil/kg for 15 days. Among rats fed sesamin-free diets, diets containing 15 and 30 g fish oil/kg slightly increased the activity of enzymes involved in hepatic fatty acid oxidation. Sesamin increased these values irrespective of the presence or absence of fish oil in diets; however, the extent of the increase of many parameters was much greater in rats given fish oil-containing diets than in those fed a fish oil-free diet. Diets simultaneously containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes in a synergistic manner; but they were ineffective in causing a synergistic increase in mRNA levels of mitochondrial fatty acid oxidation enzymes. The extent of the synergistic increase in the activity of hepatic fatty acid oxidation enzymes and mRNA levels of the peroxisomal enzymes was indistinguishable between diets containing 15 and 30 g fish oil/kg and appeared comparable to that observed previously with a diet containing 80 g fish oil/kg.

  12. Celecoxib derivative OSU-03012 inhibits the proliferation and activation of hepatic stellate cells by inducing cell senescence.

    PubMed

    Zhang, Jun; Wang, Miao; Zhang, Zuowei; Luo, Zhongguang; Liu, Fei; Liu, Jie

    2015-04-01

    Liver fibrosis may lead to portal hypertension, liver failure or hepatocellular carcinoma, and predominantly results from the proliferation and activation of hepatic stellate cells. OSU‑03012, a non‑cyclooxygenase‑inhibiting celecoxib derivative, has been previously demonstrated to promote apoptosis in certain cell types, however, its function in hepatic fibrosis remains unclear. In the current study, the inhibitory effect of OSU‑03012 on the proliferation of the LX2 human hepatic stellate cell line was evaluated by cell counting kit‑8 assay. Reverse transcription‑quantitative polymerase chain reaction was performed in order to examine the expression of α‑smooth muscle actin and type I collagen, which are representative of LX2 cell activation. The senescence of LX2 cells was measured by senescence‑associated β‑galactosidase staining, and the cell cycle and apoptosis levels were assessed by flow cytometry. The impact of senescence‑associated signaling on protein expression was assessed by western blot analysis. OSU‑03012 was observed to inhibit cell proliferation and prevent the secretion of profibrotic factors in LX2 cells in a dose‑dependent manner. Furthermore, the results demonstrated that OSU‑03012 inhibited the proliferation and activation of LX2 via the induction of cell senescence at the G1 phase, rather than via cell apoptosis. The induction of senescence may be via the upregulation of p16, p21 and p27. In conclusion, the current study provided insight into the pharmacological mechanisms of OSU‑03012 in preventing the proliferation and activation of hepatic stellate cells through cell senescence. The current study supports the theory that OSU‑03012 is a novel agent for potential use against liver fibrosis.

  13. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression

    PubMed Central

    Hyun, Jeongeun; Wang, Sihyung; Kim, Jieun; Rao, Kummara Madhusudana; Park, Soo Yong; Chung, Ildoo; Ha, Chang-Sik; Kim, Sang-Woo; Yun, Yang H.; Jung, Youngmi

    2016-01-01

    Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl4)-treated compared with corn-oil-treated mice. Overexpression of miR-378a-3p, directly targeting Gli3 in activated hepatic stellate cells (HSCs), reduces expression of Gli3 and profibrotic genes but induces gfap, the inactivation marker of HSCs, in CCl4-treated liver. Smo blocks transcriptional expression of miR-378a-3p by activating the p65 subunit of nuclear factor-κB (NF-κB). The hepatic level of miR-378a-3p is inversely correlated with the expression of Gli3 in tumour and non-tumour tissues in human hepatocellular carcinoma. Our results demonstrate that miR-378a-3p suppresses activation of HSCs by targeting Gli3 and its expression is regulated by Smo-dependent NF-κB signalling, suggesting miR-378a-3p has therapeutic potential for liver fibrosis. PMID:27001906

  14. Activity and mRNA Levels of Enzymes Involved in Hepatic Fatty Acid Synthesis in Rats Fed Naringenin.

    PubMed

    Hashimoto, Toru; Ide, Takashi

    2015-11-04

    We investigated the physiological activity of naringenin in affecting hepatic lipogenesis and serum and liver lipid levels in rats. Rats were fed diets containing 0, 1, or 2.5 g/kg naringenin for 15 d. Naringenin at a dietary level of 2.5 g/kg significantly decreased the activities and the mRNA levels of various lipogenic enzymes and sterol regulatory element binding protein-1c (SREBP-1c) mRNA level. The activities and the mRNA levels were also 9-22% and 12-38% lower, respectively, in rats fed a 1 g/kg naringenin diet than in the animals fed a naringenin-free diet, although the differences were not significant in many cases. Naringenin at 2.5 g/kg significantly lowered serum triacylglycerol, cholesterol, and phospholipid and hepatic triacylglycerol and cholesterol. This flavonoid at 1.0 g/kg also significantly lowered these parameters except for serum triacylglycerol. Naringenin levels in serum and liver dose-dependently increased, and hepatic concentrations reached levels that can affect various signaling pathways.

  15. Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes

    PubMed Central

    Ye, Hanfeng; Ha, Mei; Yang, Min; Yue, Ping; Xie, Zhengyuan; Liu, Changjiang

    2017-01-01

    Di(2-ethylhexyl) phthalate (DEHP), as a widespread environmental pollutant and an endocrine disruptor, can disturb the homeostasis of thyroid hormones (THs). In order to elucidate roles of the MAPK and PI3K/Akt pathways and hepatic enzymes in thyroid-disrupting effects of DEHP, Sprague-Dawley rats were dosed with DEHP by gavage for 30 consecutive days; Nthy-ori 3-1 cells were treated with DEHP with NAC, k-Ras siRNA or inhibitors (U0126 and wortmannin). Results showed that DEHP led to histopathologic changes in rat thyroid and liver, such as the decrease in thyroid follicular cavity diameter, hepatocyte edema. Triiodothyronine (T3), thyroxine (T4) and thyrotropin releasing hormone (TRH) were reduced. DEHP caused ROS production, oxidative stress and k-Ras upregulation, thereby activating the ERK and Akt pathways in vivo and in vitro. Moreover, TRH receptor (TRHr) level was elevated after the activation of the Akt pathway and was downregulated after the inhibition of the Akt pathway. However, TRHr was not modulated by the ERK pathway. Additionally, hepatic enzymes, including Ugt1a1, CYP2b1, Sult1e1, and Sult2b1, were significantly induced after DEHP exposure. Taken together, DEHP can perturb TH homeostasis and reduce TH levels. The activated Ras/Akt/TRHr pathway and induced hepatic enzymes play vital roles in thyroid-disrupting effects of DEHP. PMID:28065941

  16. Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes.

    PubMed

    Ye, Hanfeng; Ha, Mei; Yang, Min; Yue, Ping; Xie, Zhengyuan; Liu, Changjiang

    2017-01-09

    Di(2-ethylhexyl) phthalate (DEHP), as a widespread environmental pollutant and an endocrine disruptor, can disturb the homeostasis of thyroid hormones (THs). In order to elucidate roles of the MAPK and PI3K/Akt pathways and hepatic enzymes in thyroid-disrupting effects of DEHP, Sprague-Dawley rats were dosed with DEHP by gavage for 30 consecutive days; Nthy-ori 3-1 cells were treated with DEHP with NAC, k-Ras siRNA or inhibitors (U0126 and wortmannin). Results showed that DEHP led to histopathologic changes in rat thyroid and liver, such as the decrease in thyroid follicular cavity diameter, hepatocyte edema. Triiodothyronine (T3), thyroxine (T4) and thyrotropin releasing hormone (TRH) were reduced. DEHP caused ROS production, oxidative stress and k-Ras upregulation, thereby activating the ERK and Akt pathways in vivo and in vitro. Moreover, TRH receptor (TRHr) level was elevated after the activation of the Akt pathway and was downregulated after the inhibition of the Akt pathway. However, TRHr was not modulated by the ERK pathway. Additionally, hepatic enzymes, including Ugt1a1, CYP2b1, Sult1e1, and Sult2b1, were significantly induced after DEHP exposure. Taken together, DEHP can perturb TH homeostasis and reduce TH levels. The activated Ras/Akt/TRHr pathway and induced hepatic enzymes play vital roles in thyroid-disrupting effects of DEHP.

  17. Hepatitis C

    MedlinePlus

    ... your doctor may want you to get the hepatitis B vaccine (and maybe the hepatitis A vaccine, too), if you don't already have these viruses. If you have hepatitis C, you are more likely to catch hepatitis A or hepatitis B, which would cause more damage to your liver. ...

  18. Laser Spectroscopic Study of CaH in the B^2σ^+ and D^2σ^+ States

    NASA Astrophysics Data System (ADS)

    Watanabe, Kyohei; Uchida, Kanako; Kobayashi, Kaori; Matsushima, Fusakazu; Moriwaki, Yoshiki

    2015-06-01

    Calcium hydride is one of the abundant molecules in the stellar environment, and is considered as a probe of stellar analysis. Ab initio calculations have shown that the electronic excited states of CaH have complex potential curves. It is suggested that the B^2σ^+ state has an interesting double minimum potential due to the avoided crossing. Such a potential leads to drastic change of the rotational constants when the vibrational energy level goes across the potential barrier. Spectroscopic studies on CaH began in the 1920's, and many studies have been carried out since then. Bell et al. extensively assigned the D^2σ^+-X^2σ^+ bands in the UV region. Bernath's group has observed transitions in the IR and visible regions and identified their upper states as the A^2σ^+, B^2σ^+ and E^2σ^+ states. We have carried out a laser induced fluorescence (LIF) study in the UV region between 360 and 430 nm. We have produced CaH by using laser ablation of a calcium target in a hydrogen gas environment, then molecules have been excited by a second harmonic pulse of dye laser and the fluorescence from molecules have been detected through a monochromator. Detection of the D^2σ^+-X^2σ^+ bands already identified by Bell et al. indicates the production of CaH. In addition, many other bands have been also found and a few bands have been assigned by using the combination differences, the lower state of these bands have been confirmed to the vibrational ground state of X^2σ^+ state. We have tentatively assigned these bands as the B^2σ^+ -X^2σ^+ transition. We will discuss the assignment of these bands, together with the rotational constants comparing with those calculated from the ab initio potential. B. Barbuy, R. P. Schiavon, J. Gregorio-Hetem, P. D. Singh C. Batalha , Astron. Astrophys. Sippl. Ser. 101, 409 (1993). P. F. Weck and P. C .Stabcil, J. Chem. Phys. {118}, 9997 (2003). R. S. Mulliken, Phys. Rev. {25}, 509 (1925). G. D. Bell, M, Herman, J. W. C. Johns, and E. R

  19. Effect of Antiviral Therapy on Serum Activity of Angiotensin Converting Enzyme in Patients with Chronic Hepatitis C

    PubMed Central

    Husic-Selimovic, Azra; Sofic, Amela; Huskic, Jasminko; Bulja, Deniz

    2016-01-01

    Introduction: Renin-angiotenzin system (RAS) is frequently activated in patients with chronic liver disease. Angiotenzin - II (AT-II), produced by angiotenzin converting enzyme (ACE), has many physiological effects, including an important role in liver fibrogenesis. Combined antiviral therapy with PEG-IFN and ribavirin besides its antiviral effect also leads to a reduction in liver parenchyma fibrosis. Aim of the study: Determining the value of ACE in serum of patients with chronic hepatitis C before and after combined antiviral therapy, as well as the value of ACE activities in sera of the control group. Materials and methods: We studied 50 patients treated at Gastroenterohepatology Department, in the time-period of four years. Value of ACE in serum was determined by Olympus AU 400 device, with application of kit “Infinity TN ACE Liquid Stable Reagent”. HCV RNA levels in sera were measured by real time PCR. HCV RNA test was performed with modular analysis of AMPLICOR and COBAS AMPLICOR HCV MONITOR test v2.0, which has proved infection and was used for quantification of the viruses and monitoring of the patients’ response to therapy. Liver histology was evaluated in accordance with the level of necroinflammation activity and stage of fibrosis. Results: Serum activities of ACE in chronic hepatitis C patients is statistically higher than the values in the control group (p=0.02). Antiviral therapy in chronic hepatitis C patients statistically decreases serum activities of ACE (p= 0.02) and indirectly affects fibrogenesis of the liver parenchyma. Correlation between ACE and ALT activity after the therapy was proved (0.3934). Conclusion: Our findings suggest that the activity of ACE in serum is a good indirect parameter of the liver damage, and could be used as an indirect prognostic factor of the level of liver parenchyma damage. Serum activity of ACE can be used as a parameter for non-invasive assessment of intensity of liver damage. PMID:27147779

  20. Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD) Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway

    PubMed Central

    Renzi, Anastasia; De Stefanis, Cristiano; Stronati, Laura; Franchitto, Antonio; Alisi, Anna; Onori, Paolo; De Vito, Rita; Alpini, Gianfranco; Gaudio, Eugenio

    2016-01-01

    Non-alcoholic fatty liver disease is one of the most important causes of liver-related morbidity in children. In non-alcoholic fatty liver disease, the activation of liver resident macrophage pool is a central event in the progression of liver injury. The aims of the present study were to evaluate the polarization of liver macrophages and the possible role of Wnt3a production by macrophages in hepatic progenitor cell response in the progression of pediatric non-alcoholic fatty liver disease. 32 children with biopsy-proven non-alcoholic fatty liver disease were included. 20 out of 32 patients were treated with docosahexaenoic acid for 18 months and biopsies at the baseline and after 18 months were included. Hepatic progenitor cell activation, macrophage subsets and Wnt/β-catenin pathway were evaluated by immunohistochemistry and immunofluorescence. Our results indicated that in pediatric non-alcoholic fatty liver disease, pro-inflammatory macrophages were the predominant subset. Macrophage polarization was correlated with Non-alcoholic fatty liver disease Activity Score, ductular reaction, and portal fibrosis; docosahexaenoic acid treatment determined a macrophage polarization towards an anti-inflammatory phenotype in correlation with the reduction of serum inflammatory cytokines, with increased macrophage apoptosis, and with the up-regulation of macrophage Wnt3a expression; macrophage Wnt3a expression was correlated with β-catenin phosphorylation in hepatic progenitor cells and signs of commitment towards hepatocyte fate. In conclusion, macrophage polarization seems to have a key role in the progression of pediatric non-alcoholic fatty liver disease; the modulation of macrophage polarization could drive hepatic progenitor cell response by Wnt3a production. PMID:27310371

  1. Antiviral activities of Indonesian medicinal plants in the East Java region against hepatitis C virus

    PubMed Central

    2013-01-01

    Background Hepatitis C virus (HCV) is a major cause of liver disease and a potential cause of substantial morbidity and mortality worldwide. The overall prevalence of HCV infection is 2%, representing 120 million people worldwide. Current standard treatment using pegylated interferon and ribavirin is effective in only 50% of the patients infected with HCV genotype 1, and is associated with significant side effects. Therefore, it is still of importance to develop new drugs for treatment of HCV. Antiviral substances obtained from natural products, including medicinal plants, are potentially good targets to study. In this study, we evaluated Indonesian medicinal plants for their anti-HCV activities. Methods Ethanol extracts of 21 samples derived from 17 species of medicinal plants explored in the East Java region were tested. Anti-HCV activities were determined by a cell culture method using Huh7.5 cells and HCV strains of 9 different genotypes (1a to 7a, 1b and 2b). Results Four of the 21 samples tested showed antiviral activities against HCV: Toona sureni leaves (TSL) with 50% inhibitory concentrations (IC50) of 13.9 and 2.0 μg/ml against the HCV J6/JFH1-P47 and -P1 strains, respectively, Melicope latifolia leaves (MLL) with IC50 of 3.5 and 2.1 μg/ml, respectively, Melanolepis multiglandulosa stem (MMS) with IC50 of 17.1 and 6.2 μg/ml, respectively, and Ficus fistulosa leaves (FFL) with IC50 of 15.0 and 5.7 μg/ml, respectively. Time-of-addition experiments revealed that TSL and MLL inhibited both at the entry and post-entry steps while MMS and FFL principally at the entry step. TSL and MLL inhibited all of 11 HCV strains of all the genotypes tested to the same extent. On the other hand, FFL showed significantly weaker inhibitory activities against the HCV genotype 1a strain, and MMS against the HCV strains of genotypes 2b and 7a to a lesser extent, compared to the other HCV genotypes. Conclusions Ethanol extracts of TSL, MLL, MMS and FFL showed antiviral

  2. Chronic hepatitis B. Impact of hepatitis D virus superinfection and the hepatitis B e-system on histological outcome, and correlation of the hepatitis B e-system to HBV-DNA in serum.

    PubMed

    Lindh, G

    1986-01-01

    Chronic evolution after acute hepatitis B virus infection. During a 13 months period 1977-1978 a total of 129 cases of acute viral hepatitis type B occurred among patients who were admitted with hepatitis to Roslagstull, Hospital, Stockholm, Sweden. Less than 1% progressed to chronicity. Prevalence of Delta superinfection was studied among 60 patients with chronic hepatitis B. Nineteen (32%) were anti-delta positive. The majority of the positive patients were either non-European immigrants or addicts, both 9/19 (47%). Infections with the delta agent was found to have occurred in Stockholm already in the early 1970s. Rate of HBeAg clearance during chronic HBV was studied among 36 HBeAg positive patients. Seroconversion to anti-HBe was noted in 17 patients (47%), whereas HBeAg persisted in 19 during a mean follow-up period of 53 months. The spontaneous annual HBeAg seroconversion rate was 11%. HBeAg clearance occurred as frequently among homosexual men as among patients in other categories. However, 12/14 homosexual men were HBeAg positive after 2 years follow-up, compared with 1/13 drug addicts. Thus, homosexual men seemed to require a longer time for HBeAg seroconversion than i.v. drug addicts. HBV-DNA in serum, a strong indicator of viral particles and infectivity was analysed among patients with HBeAg seroconversion, initial HBeAg negativity and/or delta superinfection. HBV-DNA was found in 75-80% of our HBeAg positive patients. A correlation between chronic liver disease and presence of HBV-DNA in serum was also found. Thus, HBV DNA was found in 63% of patients with CAH or CAH/CI as compared with only 39% of patients with CPH. Delta infected patients had HBV-DNA more often than those without hepatitis D infection. Seven delta infected, anti-HBe positive, patients were still HBV-DNA positive five to eight years later. Therefore delta infected anti-HBe positive patients can be infectious for prolonged periods. Histological outcome. 63% (12/19) anti-delta positive

  3. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin

    SciTech Connect

    Ness, Gene C.; Edelman, Jeffrey L.; Brooks, Patricia A.

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer siRNAs to tristetraprolin blocks transcription of HMGR in vivo in rat liver. Black-Right-Pointing-Pointer siRNAs to tristetraprolin inhibits insulin activation of HMGR transcription. Black-Right-Pointing-Pointer Insulin acts to rapidly increase tristetraprolin in liver nuclear extracts. -- Abstract: Several AU-rich RNA binding element (ARE) proteins were investigated for their possible effects on transcription of hepatic 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR) in normal rats. Using in vivo electroporation, four different siRNAs to each ARE protein were introduced together with HMGR promoter (-325 to +20) luciferase construct and compared to saline controls. All four siRNAs to tristetraprolin (TTP) completely eliminated transcription from the HMGR promoter construct. Since insulin acts to rapidly increase hepatic HMGR transcription, the effect of TTP siRNA on induction by insulin was tested. The 3-fold stimulation by insulin was eliminated by this treatment. In comparison, siRNA to AU RNA binding protein/enoyl coenzyme A hydratase (AUH) had no effect. These findings indicate a role for TTP in the insulin-mediated activation of hepatic HMGR transcription.

  4. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-{gamma} ligand, rosiglitazone

    SciTech Connect

    Wakui, Yuta; Inoue, Jun; Ueno, Yoshiyuki; Fukushima, Koji; Kondo, Yasuteru; Kakazu, Eiji; Obara, Noriyuki; Kimura, Osamu; Shimosegawa, Tooru

    2010-05-28

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced the amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.

  5. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    PubMed

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver.

  6. Hepatitis C

    MedlinePlus

    Hepatitis C Overview By Mayo Clinic Staff Hepatitis C is a viral infection that causes liver inflammation, sometimes leading to serious liver damage. The hepatitis C virus (HCV) spreads through contaminated ...

  7. Toxic Hepatitis

    MedlinePlus

    Toxic hepatitis Overview By Mayo Clinic Staff Toxic hepatitis is an inflammation of your liver in reaction to certain substances to which you're exposed. Toxic hepatitis can be caused by alcohol, chemicals, drugs or ...

  8. Epigallocatechin-3-gallate, a polyphenol component of green tea, suppresses both collagen production and collagenase activity in hepatic stellate cells.

    PubMed

    Nakamuta, Makoto; Higashi, Nobuhiko; Kohjima, Motoyuki; Fukushima, Marie; Ohta, Satoshi; Kotoh, Kazuhiro; Kobayashi, Naoya; Enjoji, Munechika

    2005-10-01

    Catechins such as epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG), and epigallocatechin (EGC) are polyphenol components of green tea. EGCG is the major component and has been reported to possess a wide range of biological properties including anti-fibrogenic activity. In hepatic fibrosis, activated hepatic stellate cells (HSCs) play a central role. In this study, we investigated the effect of catechins, including EGCG, on collagen production and collagenase activity in rat primary HSCs and activated human HSC-derived TWNT-4 cells. EGCG (50 microM) suppressed type I collagen production in rat HSCs more than ECG (50 microM) did; however, EGC (50 microM) did not show suppressive effects. EGCG also inhibited both collagen production and collagenase activity (active matrix metalloproteinase-1 [MMP-1]) in a dose-dependent manner, but did not affect the tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) production in TWNT-4 cells. Real-time PCR unexpectedly revealed that EGCG enhanced the transcription of type I collagen and TIMP-1, but did not affect the transcription of alpha-smooth muscle actin (alpha-SMA), and reduced the transcription MMP-1 in TWNT-4 cells. These findings demonstrated that EGCG inhibited collagen production regardless of enhanced collagen transcription and suppressed collagenase activity, and suggested that EGCG might have therapeutic potential for liver fibrosis.

  9. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.

    PubMed Central

    Benn, J; Schneider, R J

    1994-01-01

    Hepatitis B virus produces a small (154-amino acid) transcriptional transactivating protein, HBx, which is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the molecular mechanism for HBx activity and its possible influence on cell proliferation have remained obscure. A number of studies suggest that HBx may stimulate transcription by indirectly activating transcription factors, possibly by influencing cell signaling pathways. We now present biochemical evidence that HBx activates Ras and rapidly induces a cytoplasmic signaling cascade linking Ras, Raf, and mitogen-activated protein kinase (MAP kinase), leading to transcriptional transactivation. HBx strongly elevates levels of GTP-bound Ras, activated and phosphorylated Raf, and tyrosine-phosphorylated and activated MAP kinase. Transactivation of transcription factor AP-1 by HBx is blocked by inhibition of Ras or Raf activities but not by inhibition of Ca(2+)- and diacylglycerol-dependent protein kinase C. HBx was also found to stimulate DNA synthesis in serum-starved cells. The hepatitis B virus HBx protein therefore stimulates Ras-GTP complex formation and promotes downstream signaling through Raf and MAP kinases, and may influence cell proliferation. Images PMID:7937954

  10. Apoptosis in chronic viral hepatitis parallels histological activity: An immunohistochemical investigation using anti-activated caspase-3 and M30 Cytodeath antibody

    PubMed Central

    McPartland, Jo L; Guzail, Muna Ali; Kendall, Charles H; Pringle, James Howard

    2005-01-01

    Apoptosis is implicated as a major pathogenic mechanism in chronic hepatitis B and C. Previous studies of the relationship between apoptotic rates and histological necroinflammatory activity have produced conflicting results. Hepatocyte apoptosis was assessed in liver tissue from 32 cases of chronic viral hepatitis, seven cases of hepatocellular carcinoma (HCC) and six cases of steatohepatitis as non-viral disease controls and eight cases of control liver. Apoptotic rates were measured using H&E morphological assessment and immunohistochemical staining with antibodies to activated caspase-3 and M30. Histological necroinflammatory activity of viral hepatitis cases was scored using the Knodell scoring system, and the cases were divided according to their score into group 1 (mean 2.43 ± 0.48) and group 2 (mean 7.80 ± 0.49). Apoptotic indices were significantly higher in group 2 than group 1 using H&E (11.53 ± 2.70 vs. 0 ± 0, P = 0.015) and activated caspase-3 (22.01 ± 5.27 vs. 1.79 ± 1.79, P = 0.03) methods but were not significantly higher with M30 (3.80 ± 1.74 vs. 0 ± 0, P = 0.207). Apoptotic scores using an antibody to activated caspase-3 are significantly higher in cases of chronic viral hepatitis with greater histological necroinflammatory scores, supporting a central role for apoptosis in disease pathogenesis. This method offers an alternative to routine histological assessment for measuring disease activity. PMID:15676029

  11. Hepatic falciform ligament Tc-99m-macroaggregated albumin activity on SPECT/CT prior to Yttrium-90 microsphere radioembolization: prophylactic measures to prevent non-target microsphere localization via patent hepatic falciform arteries.

    PubMed

    Kao, Yung Hsiang; Tan, Andrew E H; Khoo, Li Ser; Lo, Richard H G; Chow, Pierce K H; Goh, Anthony S W

    2011-06-01

    Yttrium-90 (Y-90) selective internal radiation therapy (SIRT) is increasingly used to treat inoperable hepatocellular carcinoma. We describe two patients where hepatic falciform ligament Technetium-99m-macroaggregated albumin (Tc-99m-MAA) activity was identified on single photon emission computed tomography with integrated low-dose CT (SPECT/CT) scan during pre-therapy planning, and the steps taken to prevent radiation dermatitis. The first patient underwent prophylactic coil embolization of the patent hepatic falciform artery; the second patient underwent super-selective infusion of Y-90 resin microspheres to avoid the patent hepatic falciform artery. The incidence of falciform ligament Tc-99m-MAA activity detected on SPECT/CT at our institution is 10%. Tc-99m-MAA SPECT/CT scan provides valuable diagnostic information for treatment planning prior to Y-90 SIRT.

  12. Serum hepatic biochemical activity in two populations of workers exposed to styrene

    PubMed Central

    Brodkin, C; Moon, J; Camp, J; Echeverria, D; Redlich, C; Willson, R; Checkoway, H

    2001-01-01

    OBJECTIVE—To determine whether hepatic biochemical changes, as measured by routinely available tests indicative of hepatocellular necrosis, cholestasis, or altered hepatic clearance of bilirubin, occur in association with low to moderate exposure to styrene commonly experienced in industrial production.
METHODS—Two independent cross sectional studies were performed comparing serum hepatic transaminases (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)), cholestatic enzymes (alkaline phosphatase (AP) and γ glutamyl transpeptidase (GGT)), and bilirubin in (a) 47 workers of fibreglass reinforced plastics who were exposed to styrene and (b) 21 boat and tank fabricators, with separate referent groups of unexposed workers. Exposure to styrene was assessed in air by dosimetry, and in venous blood by headspace analysis. Hepatic biochemical variables were assessed across strata of exposure to styrene defined as 25 ppm in air, or 0.275 mg/l in blood, adjusting for age, sex, body mass index, and ethanol consumption.
RESULTS—A consistent and significant linear trend for increasing direct bilirubin and direct/total bilirubin ratio was found in association with increasing exposure to styrene, by both air and blood monitoring, in both studies. Mean direct bilirubin concentrations increased from 0.05-0.08 mg% in referents to 0.12-0.19 in workers exposed above 25 ppm, with a significant exposure-response trend (p<0.005). Significantly increased direct/total bilirubin ratios, ranging from 0.22 to 0.35 were associated with exposure to styrene (p<0.001), indicating diminished hepatic clearance of conjugated bilirubin. Also, a significant linear association between the hepatic transaminases ALT and AST and exposure to styrene was found in pooled regression analyses, with an increase in AP of about 10 IU/ml in workers exposed above 25 ppm air or 0.275 mg/l blood styrene in pooled analyses from both studies.
CONCLUSIONS—The consistent finding

  13. Induction of rat hepatic cytochromes P450 by toxic ingredients in plants: lack of correlation between toxicity and inductive activity.

    PubMed

    Yamada, H; Nakamura, T; Oguri, K

    1998-12-01

    "Animal-Plant Warfare" is one of the hypotheses for the evolution of drug-metabolizing P450s. To address the validity of this hypothesis, we examined the induction of xenobiotic-metabolizing P450s by 12 plant toxins in rats, using hepatic activity for testosterone metabolism as the index. The compounds tested were aconitine, morphine, tubocurarine, physostigmine, pilocarpine, muscarine, cocaine, atropine, amygdalin, digitonin, nicotine and solanine. Drinking water containing a test compound was given to rats for 4 days, and the hepatic activity of testosterone metabolism was determined together with monitoring body weight gain and liver weight as the indices of toxicity. The results showed that while cocaine and nicotine have a minor ability to increase testosterone 16 beta-hydroxylase activity, a marker activity for the CYP2B1 and 2, all other compounds did not have any such effect. No correlation was observed between a change in 16 beta-hydroxylase and toxicity caused by toxins. Therefore, these results did not support the idea that the inducibility of the CYP2B subfamily in animals is acquired through "Animal-Plant Warfare". Several compounds examined here increased or decreased hepatic activities of testosterone 2 alpha-, 6 beta-, 7 alpha- and 16 alpha-hydroxylation and 17-oxidation, indicating a possible effect on the CYP2A, 2C and 3A subfamily. Of these effects, a moderate correlation (r < 0.49) was observed in the changes in the activities of 2 alpha-/16 alpha-hydroxylation and 17-oxidation vs. that in toxicity. It is therefore suggested that inhibition or suppression of the expression of CYP2C11 is one of the mechanisms in the toxicity of plant toxins for rats, although it comes from an examination using limited numbers of compounds.

  14. Adiabatic channel capture theory applied to cold atom-molecule reactions: Li + CaH \\to LiH + Ca at 1K

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Buchachenko, Alexei A.

    2015-03-01

    We use quantum and classical adiabatic capture theories to study the chemical reaction Li + CaH \\to LiH + Ca. Using a recently developed ab initio potential energy surface, which provides an accurate representation of long-range interactions in the entrance reaction channel, we calculate the adiabatic channel potentials by diagonalizing the Li-CaH Hamiltonian as a function of the atom-molecule separation. The resulting adiabatic channel potentials are used to calculate both the classical and quantum capture probabilities as a function of collision energy, as well as the temperature dependencies of the partial and total reaction rates. The calculated reaction rate agrees well with the measured value at 1 K (V Singh et al 2012 Phys. Rev. Lett. 108 203201), suggesting that the title reaction proceeds without an activation barrier. The calculated classical adiabatic capture rate agrees well with the quantum result in the multiple-partial-wave regime of relevance to the experiment. Significant differences are found only in the ultracold limit (T\\lt 1 mK), demonstrating that adiabatic capture theories can predict the reaction rates with nearly quantitative accuracy in the multiple-partial-wave regime.

  15. Fcgamma receptor-like activity of hepatitis C virus core protein.

    PubMed

    Maillard, Patrick; Lavergne, Jean-Pierre; Sibéril, Sophie; Faure, Grazyna; Roohvand, Farzin; Petres, Stephane; Teillaud, Jean Luc; Budkowska, Agata

    2004-01-23

    We have previously demonstrated that viral particles with the properties of nonenveloped hepatitis C virus (HCV) nucleocapsids occur in the serum of HCV-infected individuals (1). We show here that nucleocapsids purified directly from serum or isolated from HCV virions have FcgammaR-like activity and bind "nonimmune" IgG via its Fcgamma domain. HCV core proteins produced in Escherichia coli and in the baculovirus expression system also bound "nonimmune" IgG and their Fcgamma fragments. Folded conformation was required for IgG binding because the FcgammaR-like site of the core protein was inactive in denaturing conditions. Studies with synthetic core peptides showed that the region spanning amino acids 3-75 was essential for formation of the IgG-binding site. The interaction between the HCV core and human IgG is more efficient in acidic (pH 6.0) than in neutral conditions. The core protein-binding site on the IgG molecule differs from those for C1q, FcgammaRII (CD32), and FcgammaRIII (CD16) but overlaps with that for soluble protein A from Staphylococcus aureus (SpA), which is located in the CH2-CH3 interface of IgG. These characteristics of the core-IgG interaction are very similar to those of the neonatal FcRn. Surface plasmon resonance studies suggested that the binding of an anti-core antibody to HCV core protein might be "bipolar" through its paratope to the corresponding epitope and by its Fcgamma region to the FcgammaR-like motif on this protein. These features of HCV nucleocapsids and HCV core protein may confer an advantage for HCV in terms of survival by interfering with host defense mechanisms mediated by the Fcgamma part of IgG.

  16. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation

    PubMed Central

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms “oxidative phosphorylation”, “ribosome”, “gap junction”, “PPAR signaling pathway”, and “focal adhesion” were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein. PMID:28257428

  17. Verapamil hepatic clearance in four preclinical rat models: towards activity-based scaling.

    PubMed

    Nicolaï, J; De Bruyn, T; Van Veldhoven, P P; Keemink, J; Augustijns, P; Annaert, P

    2015-10-01

    The current study was designed to cross-validate rat liver microsomes (RLM), suspended rat hepatocytes (SRH) and the isolated perfused rat liver (IPRL) model against in vivo pharmacokinetic data, using verapamil as a model drug. Michaelis-Menten constants (Km), for the metabolic disappearance kinetics of verapamil in RLM and SRH (freshly isolated and cryopreserved), were determined and corrected for non-specific binding. The 'unbound' Km determined with RLM (2.8 µM) was divided by the 'unbound' Km determined with fresh and cryopreserved SRH (3.9 µM and 2.1 µM, respectively) to calculate the ratio of intracellular to extracellular unbound concentration (Kpu,u). Kpu,u was significantly different between freshly isolated (0.71) and cryopreserved (1.31) SRH, but intracellular capacity for verapamil metabolism was maintained after cryopreservation (200 vs. 191 µl/min/million cells). Direct comparison of intrinsic clearance values (Clint) in RLM versus SRH, yielded an activity-based scaling factor (SF) of 0.28-0.30 mg microsomal protein/million cells (MPPMC). Merging the IPRL-derived Clint with the MPPMC and SRH data, resulted in scaling factors for MPPGL (80 and 43 mg microsomal protein/g liver) and HPGL (269 and 153 million cells/g liver), respectively. Likewise, the hepatic blood flow (61 ml/min/kg b.wt) was calculated using IPRL Clint and the in vivo Cl. The scaling factors determined here are consistent with previously reported CYP450-content based scaling factors. Overall, the results show that integrated interpretation of data obtained with multiple preclinical tools (i.e. RLM, SRH, IPRL) can contribute to more reliable estimates for scaling factors and ultimately to improved in vivo clearance predictions based on in vitro experimentation.

  18. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    PubMed

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  19. Cyclooxygenase activity is important for efficient replication of mouse hepatitis virus at an early stage of infection.

    PubMed

    Raaben, Matthijs; Einerhand, Alexandra W C; Taminiau, Lucas J A; van Houdt, Michel; Bouma, Janneke; Raatgeep, Rolien H; Büller, Hans A; de Haan, Cornelis A M; Rossen, John W A

    2007-06-07

    Cyclooxygenases (COXs) play a significant role in many different viral infections with respect to replication and pathogenesis. Here we investigated the role of COXs in the mouse hepatitis coronavirus (MHV) infection cycle. Blocking COX activity by different inhibitors or by RNA interference affected MHV infection in different cells. The COX inhibitors reduced MHV infection at a post-binding step, but early in the replication cycle. Both viral RNA and viral protein synthesis were affected with subsequent loss of progeny virus production. Thus, COX activity appears to be required for efficient MHV replication, providing a potential target for anti-coronaviral therapy.

  20. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B

    PubMed Central

    Johanns, M.; Lai, Y.-C.; Hsu, M.-F.; Jacobs, R.; Vertommen, D.; Van Sande, J.; Dumont, J. E.; Woods, A.; Carling, D.; Hue, L.; Viollet, B.; Foretz, M; Rider, M H

    2016-01-01

    Biguanides such as metformin have previously been shown to antagonize hepatic glucagon-stimulated cyclic AMP (cAMP) signalling independently of AMP-activated protein kinase (AMPK) via direct inhibition of adenylate cyclase by AMP. Here we show that incubation of hepatocytes with the small-molecule AMPK activator 991 decreases glucagon-stimulated cAMP accumulation, cAMP-dependent protein kinase (PKA) activity and downstream PKA target phosphorylation. Moreover, incubation of hepatocytes with 991 increases the Vmax of cyclic nucleotide phosphodiesterase 4B (PDE4B) without affecting intracellular adenine nucleotide concentrations. The effects of 991 to decrease glucagon-stimulated cAMP concentrations and activate PDE4B are lost in hepatocytes deleted for both catalytic subunits of AMPK. PDE4B is phosphorylated by AMPK at three sites, and by site-directed mutagenesis, Ser304 phosphorylation is important for activation. In conclusion, we provide a new mechanism by which AMPK antagonizes hepatic glucagon signalling via phosphorylation-induced PDE4B activation. PMID:26952277

  1. Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity.

    PubMed

    El-Mansy, A A; Mazroa, S A; Hamed, W S; Yaseen, A H; El-Mohandes, E A

    2016-01-01

    The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats.

  2. Cyanidin-3-O-β-glucoside Purified from Black Rice Protects Mice against Hepatic Fibrosis Induced by Carbon Tetrachloride via Inhibiting Hepatic Stellate Cell Activation.

    PubMed

    Jiang, Xinwei; Guo, Honghui; Shen, Tianran; Tang, Xilan; Yang, Yan; Ling, Wenhua

    2015-07-15

    This study investigated whether cyanidin-3-O-β-glucoside (Cy-3-G), a predominant anthocyanin, could exert a protective role on liver injury and its further mechanisms of the anti-fibrosis actions in mice. The results demonstrated that the treatment of Cy-3-G (800 mg/kg diet) for 8 weeks significantly attenuated hepatotoxicity and fibrosis in carbon tetrachloride (CCl4) administered mice. Cy-3-G strongly down-regulated the expression of α-smooth muscle actin (α-SMA), desmin, and matrix metalloproteinase (MMPs), which showed its suppression effect on the activation of hepatic stellate cells (HSCs). In addition, Cy-3-G favorably regulated oxidative stress and apoptosis in liver. Furthermore, Cy-3-G ameliorated the infiltration of inflammatory cells such as neutrophils and leukocytes and meanwhile suppressed the production of pro-inflammatory cytokines and growth factors. In conclusion, daily intake of Cy-3-G could prevent liver fibrosis progression in mice induced by CCl4 through inhibiting HSC activation, which provides a basis for clinical practice of liver fibrosis prevention.

  3. A theoretical study of calcium monohydride, CaH: low-lying states and their permanent electric dipole moments.

    PubMed

    Kerkines, Ioannis S K; Mavridis, Aristides

    2007-01-18

    Potential energy curves, energy parameters, and spectroscopic values for the X (2)Sigma(+), A (2)Pi, B (2)Sigma(+), a (4)Pi, and b (4)Sigma(+), states of CaH have been calculated using the multireference configuration interaction and coupled cluster levels of theory, while employing quantitative basis sets (of augmented quintuple-zeta quality) and taking also into account core/valence correlation and one-electron relativistic effects. For the ground (X (2)Sigma(+)) and the first two following excited states (A (2)Pi, B (2)Sigma(+)) of CaH, the permanent electric dipole moments have been calculated. Our best finite field dipole moment of the A (2)Pi state of 2.425 D (upsilon = 0) is in very good agreement with the experimental literature value of 2.372(12) D. However, a discrepancy is observed in the dipole moment of the X (2)Sigma(+) state. Our most extensive calculation gives mu = 2.623 D (upsilon = 0), which is considerably smaller than the experimental value of mu = 2.94(16) D (upsilon = 0). Small van der Waals minima were found for both "repulsive" quartet states. Spectroscopic constants and energy parameters for all states are in remarkable agreement with available experimental values.

  4. Characteristics of the active oxygen in covalent binding of the pesticide methoxychlor to hepatic microsomal proteins.

    PubMed

    Kupfer, D; Bulger, W H; Nanni, F J

    1986-08-15

    This study examined the characteristics of the active oxygen species involved in generation of the reactive intermediate of methoxychlor which covalently binds to liver microsomal proteins. The possibility that the active oxygen participating in the above reaction is the superoxide anion (O2-) or a species generated from O2- was examined with the help of superoxide dismutase (SOD) and with an SOD-mimetic agent, CuDIPS [Cu2+(3,5-diisopropylsalicylic acid)2]. It was observed that, whereas CuDIPS inhibited covalent binding of methoxychlor metabolite(s), SOD did not. However, ZnDIPS [Zn2+(3,5-diisopropylsalicylic acid)2], which exhibits no SOD-mimetic activity, did not inhibit covalent binding. Furthermore, both CuDIPS and ZnDIPS had little or no effect on the formation of demethylated (polar) metabolites of methoxychlor, demonstrating that the inhibition of covalent binding by CuDIPS was not merely due to a general inhibition of the hepatic monooxygenase system. These findings suggested that O2- was involved in covalent binding, but was not accessible to SOD. Additional support for O2- involvement stems from the observation that alpha-tocopheryl acid succinate markedly inhibited covalent binding of methoxychlor. The possibility that hydrogen peroxide (H2O2) was involved in covalent binding of methoxychlor appears unlikely. Catalase had no effect on covalent binding when NADPH was the cofactor, and the use of H2O2 in place of NADPH did not yield covalent binding. Certain scavengers of hydroxyl radical (ethanol, t-butanol and benzoate) inhibited, and other known scavengers (DMSO and mannitol) did not inhibit, covalent binding. EDTA stimulated binding, desferal (desferrioxamine) exhibited no effect on binding, and diethylenetriaminepentaacetic acid (DETAPAC) inhibited binding. A possible explanation for this observation is that the Fe2+ needed for generation of X OH is much more easily obtained from Fe3+-EDTA than from Fe3+-desferal, which resists reduction. The

  5. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    SciTech Connect

    Kim, Young C. Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-08-15

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards.

  6. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-{alpha}

    SciTech Connect

    Hsun-Wei Huang, Tom; Peng Gang; Qian Li, George; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2006-02-01

    Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-{alpha}, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-{alpha} mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-{alpha} luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-{alpha} antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-{alpha} activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity.

  7. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence

    PubMed Central

    Jin, H; Lian, N; Zhang, F; Chen, L; Chen, Q; Lu, C; Bian, M; Shao, J; Wu, L; Zheng, S

    2016-01-01

    Activation of quiescent hepatic stellate cells (HSCs) is the major event in hepatic fibrogenesis, along with enhancement of cell proliferation and overproduction of extracellular matrix. Although inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSCs, a better understanding of the senescence of activated HSCs can provide a new therapeutic strategy for prevention and treatment of liver fibrosis. The antioxidant curcumin, a phytochemical from turmeric, has been shown to suppress HSC activation in vitro and in vivo. The current work was aimed to evaluate the effect of curcumin on senescence of activated HSCs and to elucidate the underlying mechanisms. In this study, curcumin promoted the expression of senescence marker Hmga1 in rat fibrotic liver. In addition, curcumin increased the number of senescence-associated β-galactosidase-positive HSCs in vitro. At the same time, curcumin induced HSC senescence by elevating the expression of senescence markers P16, P21 and Hmga1, concomitant with reduced abundance of HSC activation markers α-smooth muscle actin and α1(I)-procollagen in cultured HSCs. Moreover, curcumin affected the cell cycle and telomerase activity. We further demonstrated that P53 pharmacological inhibitor pifithrin-α (PFT-α) or transfection with P53 siRNA abrogated the curcumin-induced HSC senescence in vitro. Meanwhile, curcumin disruption of P53 leading to increased senescence of activated HSCs was further verified in vivo. Further studies indicated that curcumin promoted the expression of P53 through a PPARγ activation-dependent mechanism. Moreover, promoting PPARγ transactivating activity by a PPARγ agonist 15d-PGJ2 markedly enhanced curcumin induction of senescence of activated HSCs. However, the PPARγ antagonist PD68235 eliminated curcumin induction of HSC senescence. Taken together, our results provided a novel insight into the mechanisms underlying curcumin inhibition of HSC

  8. Effects of dietary tannic acid on the growth, hepatic gene expression, and antioxidant enzyme activity in Brandt's voles (Microtus brandti).

    PubMed

    Ye, Man-Hong; Nan, Yan-Lei; Ding, Meng-Meng; Hu, Jun-Bang; Liu, Qian; Wei, Wan-Hong; Yang, Sheng-Mei

    2016-01-01

    This study was designed to investigate the physiological and biochemical responses of Brandt's voles to the persistent presence of dietary tannic acid. The diet for animals in the experimental group was supplemented with 3% dietary tannic acid for 5weeks. The control group received a commercial lab chow. No significant differences were detected in body weight, organ (heart, kidney, and liver) weights, and organ parameters between animals from two groups. However, voles in the experimental group had significantly higher daily food intake, increased contents of proline and histidine in saliva and feces after protein hydrolysis, and elevated hepatic expression of transferrin than the control. Our results suggested the existence of adaptive strategies developed in Brandt's voles to overcome the adverse effects of dietary tannic acid. (1) Food consumption was increased to satisfy their nutritional demands. (2) The secretion of tannic-acid-binding salivary proteins was promoted. (3) The absorption of iron was enhanced. These alterations contributed to neutralize the negative effects of tannic acid and maintain body mass in animals supplemented with tannic acid. As the result of the consumption of tannic acid, hepatic expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased, while the overall potential of the antioxidant system, characterized by increased hepatic enzymatic activities of catalase and glutathione peroxidase, was enhanced. Our results also implied the involvement of tannic acid in the regulation of lipid metabolism and oxidative stress in voles.

  9. A Recipe Composed of Chinese Herbal Active Components Regulates Hepatic Lipid Metabolism of NAFLD In Vivo and In Vitro

    PubMed Central

    Meng, Sheng-xi; Liu, Qian; Tang, Ya-jun; Wang, Wen-jing; Zheng, Qing-shan; Tian, Hua-jie; Yao, Dong-sheng; Liu, Lin; Peng, Jing-hua; Zhao, Yu; Hu, Yi-yang; Feng, Qin

    2016-01-01

    This study is to investigate the therapeutic effects of the recipe composed of Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide (named ACG) on experimental nonalcoholic fatty liver (NAFL). The research was divided into two parts as screening experiment and verification experiment. In the screening experiment, we used high-fat diet (HFD) induced NAFL rat model and uniform design to get the recipe from five Chinese herbal active components. In the verification experiment, HFD induced fatty liver rat and mouse NAFL models and free fatty acid (FFA) induced HepG2 cell model were used to verify the effects of ACG. According to the multiple regression equation of the hepatic triglyceride (TG) contents of each group in the screening experiment, the recipe ACG was obtained and the doses of Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide for rats were 266.67, 3.33, and 45 mg/kg, respectively. The results of verification experiment verified that ACG could significantly reduce hepatic TG contents of NAFL rats and mice, as well as the cellular TG content of FFA-induced HepG2 cells. ACG could also improve HOMA-IR and hepatic mitochondrial ultrastructure of NAFL mice. Our study verified that ACG recipe could regulate lipid metabolism of NAFL in vivo and in vitro. PMID:27069915

  10. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury.

    PubMed

    Sevelsted Møller, Linda; Fialla, Annette Dam; Schierwagen, Robert; Biagini, Matteo; Liedtke, Christian; Laleman, Wim; Klein, Sabine; Reul, Winfried; Koch Hansen, Lars; Rabjerg, Maj; Singh, Vikrant; Surra, Joaquin; Osada, Jesus; Reinehr, Roland; de Muckadell, Ove B Schaffalitzky; Köhler, Ralf; Trebicka, Jonel

    2016-06-29

    The calcium-activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Effect of genetic depletion and pharmacological inhibition of KCa3.1 was evaluated in mice during carbon tetrachloride induced hepatic fibrogenesis. Transcription, protein expression and localisation of KCa3.1 was analysed by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Hemodynamic effects of KCa3.1 inhibition were investigated in bile duct-ligated and carbon tetrachloride intoxicated rats. In vitro experiments were performed in rat hepatic stellate cells and hepatocytes. KCa3.1 expression was increased in rodent and human liver fibrosis and was predominantly observed in the hepatocytes. Inhibition of KCa3.1 aggravated liver fibrosis during carbon tetrachloride challenge but did not change hemodynamic parameters in portal hypertensive rats. In vitro, KCa3.1 inhibition leads to increased hepatocyte apoptosis and DNA damage, whereas proliferation of hepatic stellate cells was stimulated by KCa3.1 inhibition. Our data identifies KCa3.1 channels as important modulators in hepatocellular homeostasis. In contrast to previous studies in vitro and other tissues this channel appears to be anti-fibrotic and protective during liver injury.

  11. Long-term fructose consumption prolongs hepatic stearoyl-CoA desaturase 1 activity independent of upstream regulation in rats.

    PubMed

    Liu, Li; Wang, Shang; Yao, Ling; Li, Jin-Xiu; Ma, Peng; Jiang, Li-Rong; Ke, Da-Zhi; Pan, Yong-Quan; Wang, Jian-Wei

    2016-10-28

    Dietary fructose is considered a risk factor for metabolic disorders, such as fatty liver disease. However, the mechanism underlying the effects of fructose is not well characterized. We investigated the hepatic expression of key regulatory genes related to lipid metabolism following fructose feeding under well-defined conditions. Rats were fed standard chow supplemented with 10% w/v fructose solution for 5 weeks, and killed after chow-fasting and fructose withdrawal (fasting) or chow-fasting and continued fructose (fructose alone) for 14 h. Hepatic deposition of triglycerides was found in rats from both groups. As expected, fructose alone increased mRNA levels of lipogenesis-related genes and correspondingly decreased mRNA levels of lipid oxidative genes in the liver. Interesting, hepatic levels of stearoyl-CoA desaturase (SCD)1 mRNA remained elevated under fructose withdrawn conditions, although expression levels of other genes, including two key transcription factors (carbohydrate response element binding protein (ChREBP) and sterol regulatory element-binding protein (SREBP)-1c) fell to normal levels, indicating that long-term fructose intake increased SCD1 activity, independent of upstream regulatory genes, such as ChREBP and SREBP-1c. In conclusion, SCD1 overexpression in fatty liver disease is not affected by fasting after long-term fructose consumption in rats. Regulation of SCD1 plays an important role in fructose-induced hepatic steatosis.

  12. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury

    PubMed Central

    Sevelsted Møller, Linda; Fialla, Annette Dam; Schierwagen, Robert; Biagini, Matteo; Liedtke, Christian; Laleman, Wim; Klein, Sabine; Reul, Winfried; Koch Hansen, Lars; Rabjerg, Maj; Singh, Vikrant; Surra, Joaquin; Osada, Jesus; Reinehr, Roland; de Muckadell, Ove B. Schaffalitzky; Köhler, Ralf; Trebicka, Jonel

    2016-01-01

    The calcium-activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Effect of genetic depletion and pharmacological inhibition of KCa3.1 was evaluated in mice during carbon tetrachloride induced hepatic fibrogenesis. Transcription, protein expression and localisation of KCa3.1 was analysed by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Hemodynamic effects of KCa3.1 inhibition were investigated in bile duct-ligated and carbon tetrachloride intoxicated rats. In vitro experiments were performed in rat hepatic stellate cells and hepatocytes. KCa3.1 expression was increased in rodent and human liver fibrosis and was predominantly observed in the hepatocytes. Inhibition of KCa3.1 aggravated liver fibrosis during carbon tetrachloride challenge but did not change hemodynamic parameters in portal hypertensive rats. In vitro, KCa3.1 inhibition leads to increased hepatocyte apoptosis and DNA damage, whereas proliferation of hepatic stellate cells was stimulated by KCa3.1 inhibition. Our data identifies KCa3.1 channels as important modulators in hepatocellular homeostasis. In contrast to previous studies in vitro and other tissues this channel appears to be anti-fibrotic and protective during liver injury. PMID:27354175

  13. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylationa

    PubMed Central

    Chow, Jenny D.Y.; Lawrence, Robert T.; Healy, Marin E.; Dominy, John E.; Liao, Jason A.; Breen, David S.; Byrne, Frances L.; Kenwood, Brandon M.; Lackner, Carolin; Okutsu, Saeko; Mas, Valeria R.; Caldwell, Stephen H.; Tomsig, Jose L.; Cooney, Gregory J.; Puigserver, Pere B.; Turner, Nigel; James, David E.; Villén, Judit; Hoehn, Kyle L.

    2014-01-01

    Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how the loss of ACC activity affects liver fat metabolism and whole-body physiology. Characterization of LDKO mice revealed unexpected phenotypes of increased hepatic triglyceride and decreased fat oxidation. We also observed that chronic ACC inhibition led to hyper-acetylation of proteins in the extra-mitochondrial space. In sum, these data reveal the existence of a compensatory pathway that protects hepatic fat stores when ACC enzymes are inhibited. Furthermore, we identified an important role for ACC enzymes in the regulation of protein acetylation in the extra-mitochondrial space. PMID:24944901

  14. Autophagy in hepatic fibrosis.

    PubMed

    Song, Yang; Zhao, Yingying; Wang, Fei; Tao, Lichan; Xiao, Junjie; Yang, Changqing

    2014-01-01

    Hepatic fibrosis is a leading cause of morbidity and mortality worldwide. Hepatic fibrosis is usually associated with chronic liver diseases caused by infection, drugs, metabolic disorders, or autoimmune imbalances. Effective clinical therapies are still lacking. Autophagy is a cellular process that degrades damaged organelles or protein aggregation, which participates in many pathological processes including liver diseases. Autophagy participates in hepatic fibrosis by activating hepatic stellate cells and may participate as well through influencing other fibrogenic cells. Besides that, autophagy can induce some liver diseases to develop while it may play a protective role in hepatocellular abnormal aggregates related liver diseases and reduces fibrosis. With a better understanding of the potential effects of autophagy on hepatic fibrosis, targeting autophagy might be a novel therapeutic strategy for hepatic fibrosis in the near future.

  15. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis

    PubMed Central

    Cao, Xi; Yang, Fangyuan; Shi, Tingting; Yuan, Mingxia; Xin, Zhong; Xie, Rongrong; Li, Sen; Li, Hongbing; Yang, Jin-Kui

    2016-01-01

    The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2−/y) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2−/y mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1–7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what’s more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1–7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1–7)/Mas axis in prevention and treatment of hepatic lipid metabolism. PMID:26883384

  16. CCN1 induces hepatic ductular reaction through integrin αvβ₅-mediated activation of NF-κB.

    PubMed

    Kim, Ki-Hyun; Chen, Chih-Chiun; Alpini, Gianfranco; Lau, Lester F

    2015-05-01

    Liver cholestatic diseases, which stem from diverse etiologies, result in liver toxicity and fibrosis and may progress to cirrhosis and liver failure. We show that CCN1 (also known as CYR61), a matricellular protein that dampens and resolves liver fibrosis, also mediates cholangiocyte proliferation and ductular reaction, which are repair responses to cholestatic injury. In cholangiocytes, CCN1 activated NF-κB through integrin αvβ5/αvβ3, leading to Jag1 expression, JAG1/NOTCH signaling, and cholangiocyte proliferation. CCN1 also induced Jag1 expression in hepatic stellate cells, whereupon they interacted with hepatic progenitor cells to promote their differentiation into cholangiocytes. Administration of CCN1 protein or soluble JAG1 induced cholangiocyte proliferation in mice, which was blocked by inhibitors of NF-κB or NOTCH signaling. Knock-in mice expressing a CCN1 mutant that is unable to bind αvβ5/αvβ3 were impaired in ductular reaction, leading to massive hepatic necrosis and mortality after bile duct ligation (BDL), whereas treatment of these mice with soluble JAG1 rescued ductular reaction and reduced hepatic necrosis and mortality. Blockade of integrin αvβ5/αvβ3, NF-κB, or NOTCH signaling in WT mice also resulted in defective ductular reaction after BDL. These findings demonstrate that CCN1 induces cholangiocyte proliferation and ductular reaction and identify CCN1/αvβ5/NF-κB/JAG1 as a critical axis for biliary injury repair.

  17. Aucubin and its hydrolytic derivative attenuate activation of hepatic stellate cells via modulation of TGF-β stimulation.

    PubMed

    Lv, Pei-Yu; Feng, Han; Huang, Wei-Hua; Tian, Ying-Ying; Wang, Ya-Qin; Qin, Yu-Hua; Li, Xiao-Hui; Hu, Kai; Zhou, Hong-Hao; Ouyang, Dong-Sheng

    2017-03-01

    Eucommia ulmoides is an important traditional Chinese medicine and has been used as a tonic with a long history. Aucubin is an active component extracted from Eucommia ulmoides, which has liver-protection effects. However the mechanisms are still unclear. To investigate the inhibitory effects and the underlying mechanisms of aucubin on TGF-β1-induced activation of hepatic stellate cells and ECM deposition, Human hepatic stellate cells (LX-2 cells) were incubated with TGF-β1 to evaluate the anti-fibrotic effect of aucubin. Western blot was used to investigate the expression of α-SMA, Col I, Col III, MMP-2 and TIMP-1. ROS production was monitored using DCFH-DA probe, and NOX4 expression was detected by Real-time PCR. Results indicated that TGF-β1 stimulated the activation and ECM deposition of LX-2 cells. Compared with the control group, aucubin and aucubigenin both reduced the protein expression of α-SMA, Col I, Col III and MMP-2 in LX-2 cells. Aucubin and aucubigenin also suppressed the generation of ROS and down-regulated the NOX4 mRNA expression. Taken together, aucubin and aucubigenin both inhibit the activation and ECM deposition of LX-2 cells activated by TGF-β1. Aucubin and aucubigenin are potential therapeutic candidate drugs for liver fibrosis.

  18. Hepatitis C virus non-structural protein-2 activates CXCL-8 transcription through NF-kappaB.

    PubMed

    Oem, J-K; Jackel-Cram, C; Li, Y-P; Kang, H-N; Zhou, Y; Babiuk, L A; Liu, Q

    2008-01-01

    Hepatitis C is a devastating disease worldwide. Proteins encoded by the etiologic agent, hepatitis C virus (HCV), are believed to play important roles in HCV-associated pathogenesis. However, the biological functions of the non-structural protein-2 (NS2) encoded by HCV are not well characterized. Here, we show that HCV NS2 protein activates CXCL-8 (interleukin-8, IL-8) transcription in HepG2 cells as measured by reverse transcription-polymerase chain reaction and IL-8 promoter-luciferase reporter assays. Furthermore, when the kappaB site on the IL-8 promoter was eliminated by mutagenesis or when intracellular NF-kappaB activity was suppressed by an inhibitor, NS2 did not activate the IL-8 promoter, suggesting a role of NF-kappaB in this process. These results prompted us to hypothesize that HCV NS2 might be able to activate NF-kappaB. This hypothesis was tested by determination of NF-kappaB-driven reporter gene expression and NF-kappaB p65 subunit subcellular localization after HCV NS2 expression. Indeed, NS2 could up-regulate NF-kappaB-driven luciferase activity and was associated with p65 nuclear localization. These results demonstrate that HCV NS2 up-regulates IL-8 transcription through NF-kappaB. This newly identified function increases our understanding of the role of HCV NS2 protein in virus-host interactions.

  19. The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis.

    PubMed

    Cheng, Yahui; Tian, Yuanyao; Xia, Jialu; Wu, Xiaoqin; Yang, Yang; Li, Xiaofeng; Huang, Cheng; Meng, Xiaoming; Ma, Taotao; Li, Jun

    2017-02-15

    Activation of Kupffer cells (KCs) plays a pivotal role in the pathogenesis of liver fibrosis. The progression and reversal of CCl4-induced mouse liver fibrosis showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in modulating myeloid cell activation has recently been identified, its function in macrophage activation during hepatic fibrosis remains to be fully appreciated. In our study, PTEN expression of KCs was remarkably decreased in CCl4-induced mice but increased to a near-normal level in reversed mice. Moreover, PTEN was significantly decreased in IL4-induced RAW 264.7 cells in vitro and lower expression of PTEN was observed in M2 macrophages in vivo. In addition, loss- and gain-of-function studies suggested that PTEN regulates M2 macrophages polarization via activation of PI3K/Akt/STAT6 signaling, but had a limited effect on M1 macrophages polarization in vitro. Additionally, Ly294002, a chemical inhibitor of PI3K/Akt, could dramatically down-regulate the hallmarks of M2 macrophages. In conclusion, PTEN mediates macrophages activation by PI3K/Akt/STAT6 signaling pathway, which provides novel compelling evidences on the potential of PTEN in liver injury and opens new cellular target for the pharmacological therapy of liver fibrosis.

  20. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro

    PubMed Central

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Dong, Bin; Shende, Vikram Ravindra; Liu, Jingwen

    2017-01-01

    The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARδ but not PPARα in HCHFD fed hamsters. To explore a role of PPARδ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARδ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARδ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARδ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARδ-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells. PMID:25645621

  1. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro.

    PubMed

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Dong, Bin; Shende, Vikram Ravindra; Liu, Jingwen

    2015-05-01

    The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARδ but not PPARα in HCHFD fed hamsters. To explore a role of PPARδ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARδ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARδ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARδ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARδ-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells.

  2. Hepatic messenger ribonucleic acid activity profiles in experimental azotemia in the rat. Relationship to food intake and thyroid function.

    PubMed Central

    Kinlaw, W B; Schwartz, H L; Mariash, C N; Bingham, C; Carr, F E; Oppenheimer, J H

    1984-01-01

    We have studied the hepatic messenger RNA (mRNA) activity profile in chronically azotemic rats and sought to determine whether the observed changes could be mediated either by reduced food intake or diminished thyroid function at the tissue level. mRNA activity profiles were produced by two-dimensional gel electrophoretic separation of radioactively labeled products of an in vitro reticulocyte lysate system which had been programmed by hepatic RNA. Of the approximately 240 translational products identified in this system, seven sequences were consistently altered in azotemia. In pair-fed animals six of these also decreased, but the alterations in three were depressed to a significantly lesser extent in the pair-fed group. Moreover, analysis of covariance suggested that food intake could account for the differences in only one sequence. The possibility that the mRNA activity profile in azotemia could represent the effects of diminished thyroid function was minimized by the finding that the reductions in plasma thyroxine (T4) and triiodothyronine (T3) levels observed were due largely to reduced plasma protein binding, with maintenance of the mean free T4 and free T3 concentrations within the normal range. The changes in only one mRNA sequence could be related to free T3 levels alone. Our findings, therefore, indicate that although diminished food intake and reduced thyroid function may contribute to some of the observed changes in the mRNA activity profiles, the bulk of alterations in azotemia appear to be mediated by other mechanisms. The striking overlap between the sequences affected by azotemia and pair-feeding raises the speculation that altered gene expression in azotemia may reflect an impaired hepatic response at the pretranslational level to metabolic signals associated with food intake. Images PMID:6511910

  3. Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection

    SciTech Connect

    Koizumi, Yoshiki; Nakajim, Syo; Ohash, Hirofumi; Tanaka, Yasuhito; Wakita, Takaji; Perelson, Alan S.; Iwami, Shingo; Watashi, Koichi

    2016-03-21

    Cell culture study combing a mathematical model and computer simulation quantifies the anti-hepatitis C virus drug efficacy at any concentrations and any combinations in preclinical settings, and can obtain rich basic evidences for selecting optimal treatments prior to costly clinical trials.

  4. Absence of Active Hepatitis C Virus Infection in Human Immunodeficiency Virus Clinics in Zambia and Mozambique

    PubMed Central

    Wandeler, Gilles; Mulenga, Lloyd; Hobbins, Michael; Joao, Candido; Sinkala, Edford; Hector, Jonas; Aly, Musa; Chi, Benjamin H.; Egger, Matthias; Vinikoor, Michael J.

    2016-01-01

    Few studies have evaluated the prevalence of replicating hepatitis C virus (HCV) infection in sub-Saharan Africa. Among 1812 individuals infected with human immunodeficiency virus, no patient in rural Mozambique and 4 patients in urban Zambia were positive for anti-HCV antibodies. Of these, none had confirmed HCV replication. PMID:27047986

  5. Hepatitis B and HIV

    MedlinePlus

    ... Problems : Hepatitis B Subscribe Translate Text Size Print Hepatitis B What is Hepatitis? Hepatitis means inflammation of the liver. This condition ... our related pages, Hepatitis A and Hepatitis C . Hepatitis B and HIV About 10% of people living ...

  6. Activation of AMPK/MnSOD signaling mediates anti-apoptotic effect of hepatitis B virus in hepatoma cells

    PubMed Central

    Li, Lei; Hong, Hong-Hai; Chen, Shi-Ping; Ma, Cai-Qi; Liu, Han-Yan; Yao, Ya-Chao

    2016-01-01

    AIM: To investigate the anti-apoptotic capability of the hepatitis B virus (HBV) in the HepG2 hepatoma cell line and the underlying mechanisms. METHODS: Cell viability and apoptosis were measured by MTT assay and flow cytometry, respectively. Targeted knockdown of manganese superoxide dismutase (MnSOD), AMP-activated protein kinase (AMPK) and hepatitis B virus X protein (HBx) genes as well as AMPK agonist AICAR and antagonist compound C were employed to determine the correlations of expression of these genes. RESULTS: HBV markedly protected the hepatoma cells from growth suppression and cell death in the condition of serum deprivation. A decrease of superoxide anion production accompanied with an increase of MnSOD expression and activity was found in HepG2.215 cells. Moreover, AMPK activation contributed to the up-regulation of MnSOD. HBx protein was identified to induce the expression of AMPK and MnSOD. CONCLUSION: Our results suggest that HBV suppresses mitochondrial superoxide level and exerts an anti-apoptotic effect by activating AMPK/MnSOD signaling pathway, which may provide a novel pharmacological strategy to prevent HCC. PMID:27158203

  7. Suberoylanilide hydroxamic acid suppresses hepatic stellate cells activation by HMGB1 dependent reduction of NF-κB1

    PubMed Central

    Wang, Wenwen; Yan, Min; Ji, Qiuhong; Lu, Jinbiao; Ji, Yuhua

    2015-01-01

    Hepatic stellate cells (HSCs) activation is essential to the pathogenesis of liver fibrosis. Exploring drugs targeting HSC activation is a promising anti-fibrotic strategy. In the present study, we found suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, prominently suppressed the activation phenotype of a human hepatic stellate cell line—LX2. The production of collagen type I and α-smooth muscle actin (α-SMA) as well as the proliferation and migration of LX2 cells were significantly reduced by SAHA treatment. To determine the molecular mechanisms underlying this suppression, genome wild gene regulation by SAHA was determined by Affymetrix 1.0 human cDNA array. Upon SAHA treatment, the abundance of 331 genes was up-regulated and 173 genes was down-regulated in LX2 cells. Bioinformatic analyses of these altered genes highlighted the high mobility group box 1 (HMGB1) pathway was one of the most relevant pathways that contributed to SAHA induced suppression of HSCs activation. Further studies demonstrated the increased acetylation of intracellular HMGB1 in SAHA treated HSCs, and this increasing is most likely to be responsible for SAHA induced down-regulation of nuclear factor kappa B1 (NF-κB1) and is one of the main underlying mechanisms for the therapeutic effect of SAHA for liver fibrosis. PMID:26557438

  8. Protein-induced alterations in murine hepatic alpha-aminoadipate delta-semialdehyde synthase activity are mediated posttranslationally.

    PubMed

    Kiess, Aaron S; Cleveland, Beth M; Wilson, Matthew E; Klandorf, Hillar; Blemings, Kenneth P

    2008-12-01

    The molecular mechanisms responsible for alterations in lysine alpha-ketoglutarate reductase (LKR) activity are unknown. Therefore, the aim of these studies was to discern the mechanism(s) responsible for induction of hepatic LKR activity in rodents fed excess dietary protein. Four studies were conducted that used 84 mice. Mice were fed either a high-protein (50% casein) or adequate-protein (20% casein) diet in powder form in study 1 and a high-protein (46% casein) or adequate-protein (21% casein) diet in pellet form in the remaining studies. No significant differences in weight gain between the mice fed the different diets were detected. As expected, mice fed high-protein diets had a greater (P< .05) LKR activity in all 4 experiments. Mice fed high- and adequate-protein diets for 8 days showed no difference (P> .1) in alpha-aminoadipate delta-semialdehyde synthase (AASS) mRNA in experiment 1. However, after pooling the data from the remaining 3 experiments, mice receiving the high-protein diet had greater (P< .05) AASS mRNA compared to mice fed the adequate protein diet. In this investigation, no differences (P> .1) in AASS protein abundance were detected. The results are consistent with a mechanism in which posttranslational regulation is responsible for hepatic induction of LKR activity in mice fed high-protein diets.

  9. MircoRNA-145 promotes activation of hepatic stellate cells via targeting krüppel-like factor 4

    PubMed Central

    Men, Ruoting; Wen, Maoyao; Zhao, Mingyue; Dan, Xuelian; Yang, Zongze; Wu, Wenchao; Wang, Maggie Haitian; Liu, Xiaojing; Yang, Li

    2017-01-01

    Krüppel-like Factor 4 (KLF4), a target gene of miR-145, can negatively regulate lung fibrosis. However, the potential role of KLF4 and miR-145 in hepatic stellate cells (HSCs) activation or in hepatic fibrosis keeps unclear. This study aims to characterize miR-145 and KLF4 in activated HSCs and liver cirrhotic, and the underlying molecular basis. miR-145 was significantly up-regulated, while KLF4 was dramatically down-regulated during the activation of rat primary HSCs and TGF-βtreated HSCs. Furthermore, miR-145 mimics induced and inhibition of miR-145 reduced α-SMA and COL-I expression in primary HSCs. Additionally, the mRNA and protein levels of KLF4 in the liver of cirrhotic patients and rats were significantly down-regulated. α-SMA and COL-I were increased after inhibition of KLF4 by specific shRNA in primary HSCs. Forced KLF4 expression led to a reduction of α-SMA and COL-I expression in HSCs. miR-145 promotes HSC activation and liver fibrosis by targeting KLF4. PMID:28091538

  10. Interferon regulatory factor-1 activates autophagy to aggravate hepatic ischemia-reperfusion injury via the P38/P62 pathway in mice

    PubMed Central

    Yu, Yao; Li, Shipeng; Wang, Zhen; He, Jindan; Ding, Yijie; Zhang, Haiming; Yu, Wenli; Shi, Yiwei; Cui, Zilin; Wang, Ximo; Wang, Zhiliang; Sun, Liying; Zhang, Rongxin; Du, Hongyin; Zhu, Zhijun

    2017-01-01

    Increasing evidence has linked autophagy to a detrimental role in hepatic ischemia- reperfusion (IR) injury (IRI). Here we focus on the role of interferon regulatory factor-1 (IRF-1) in regulating autophagy to aggravate hepatic IRI. We found that IRF-1 was up-regulated during hepatic IRI and was associated with an activation of the autophagic signaling. This increased IRF-1 expression, which was allied with high autophagic activity, amplified liver damage to IR, an effect which was abrogated by IRF-1 depletion. Moreover, IRF-1 contributed to P38 induced autophagic and apoptotic cell death, that can play a key role in liver dysfunction. The levels of P62 mRNA and protein were increased when P38 was activated and decreased when P38 was inhibited by SB203580. We conclude that IRF-1 functioned as a trigger to activate autophagy via P38 activation and that P62 was required for this P38-mediated autophagy. IRF-1 appears to exert a pivotal role in hepatic IRI, by predisposing hepatocytes to activate an autophagic pathway. Such an effect promotes autophagic cell death through the P38/P62 pathway. The identification of this novel pathway, that links expression levels of IRF-1 with autophagy, may provide new insights for the generation of novel protective therapies directed against hepatic IRI. PMID:28266555

  11. Hepatitis A

    MedlinePlus

    ... transaminase enzyme levels Treatment There is no specific treatment for hepatitis A. You should rest when the symptoms are ... and have not had hepatitis A or the hepatitis A vaccine. Common reasons for getting one or both of these treatments include: You live with someone who has hepatitis ...

  12. CD4(+) T-cell activation and induction of autoimmune hepatitis following trichloroethylene treatment in MRL+/+ mice.

    PubMed

    Griffin, J M; Gilbert, K M; Lamps, L W; Pumford, N R

    2000-10-01

    Exposure to relatively high levels of trichloroethylene has recently been shown to accelerate the development of an autoimmune response in the autoimmune prone MRL+/+ mice. The trichloroethylene-induced autoimmune response was associated with an increase in activated CD4(+) T cells, producing Th(1)-like cytokines. The present study was conducted to determine whether lower, more occupationally relevant doses of trichloroethylene could also promote autoimmunity, in MRL+/+ mice, and if so, to investigate the mechanism of this accelerated autoimmune response. In addition, histological studies were performed to determine if trichloroethylene was capable of producing pathological markers consistent with an autoimmune disease. Trichloroethylene was administered to mice in the drinking water at 0, 0.1, 0.5, and 2.5 mg/ml for 4 and 32 weeks. There was a significant increase above controls in serum antinuclear antibody (ANA) levels following 4 weeks of both 0.1 and 0.5 mg/kg/day of trichloroethylene. After 32 weeks of treatment, ANA levels were elevated and equal in all groups. The kinetics of the ANA response indicated that trichloroethylene accelerated the innate autoimmune response in the MRL+/+ mice. There was a dose-related increase in the percentage of activated CD4(+) T cells in both the spleens and lymph nodes of mice treated for 32 weeks with trichloroethylene when compared to controls. CD4(+) T cells isolated from MRL+/+ mice after either 4 or 32 weeks of treatment with trichloroethylene secreted inflammatory or Th(1)-like cytokines. Following 32 weeks of trichloroethylene treatment, there was a significant increase in hepatic mononuclear infiltration localized to the portal region, a type of hepatic infiltration consistent with autoimmune hepatitis. Taken collectively, these data suggest that exposure to occupationally relevant concentrations of trichloroethylene can accelerate an autoimmune response and can lead to autoimmune disease. The mechanism of this

  13. Helenalin attenuates alcohol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and suppressing HSC activation.

    PubMed

    Lin, Xing; Zhang, Shijun; Huang, Renbin; Wei, Ling; Tan, Shimei; Liang, Shuang; Tian, Yuanchun; Wu, Xiaoyan; Lu, Zhongpeng; Huang, Quanfang

    2014-06-01

    A compound was isolated from Centipeda minima using bioassay-guided screening. The structure of this compound was elucidated based on its spectral data, and it was identified as helenalin. The hepatoprotective effect of helenalin was evaluated using a liver fibrosis model induced by intragastric administration with alcohol within 24 weeks in rats. The results revealed that helenalin significantly prevented alcohol-induced hepatic injury and fibrogenesis, as evidenced by the decrease in serum aminotransferase, the attenuation of histopathological changes, and the inhibition of the hepatic fibrosis indicators, such as hyaluronic acid, type III precollagen, laminin, hydroxyproline and collagen α type I. Mechanistically, studies showed that helenalin expedited ethanol metabolism by enhancing the alcohol and aldehyde dehydrogenase activities. Furthermore, helenalin alleviated lipid peroxidation, recruited the antioxidative defense system, inhibited CYP2E1 activity, and reduced the inflammatory mediators, including TGF-β1, TNF-α, IL-6 and IL-1β and myeloperoxidase, via down-regulation of NF-κB. Helenalin significantly decreased collagen deposition by reducing the profibrotic cytokines like transforming growth factor-β, platelet-derived growth factor-β and connective tissue growth factor, and promoted extracellular matrix degradation by modulating the levels of tissue inhibitor of matrix metalloproteinase-1 and matrix metalloproteinase-9. In addition, helenalin inhibited HSC activation as evidenced by the down-regulation of α-SMA and TGF-β levels. In conclusion, helenalin had a significant protective effect on chronic ethanol-induced hepatic fibrosis and may be a major bioactive ingredient of C. minima.

  14. Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines

    PubMed Central

    Lu, Dong-Hong; Guo, Xiao-Yun; Qin, Shan-Yu; Luo, Wei; Huang, Xiao-Li; Chen, Mei; Wang, Jia-Xu; Ma, Shi-Jia; Yang, Xian-Wen; Jiang, Hai-Xing

    2015-01-01

    AIM: To investigate the effect of interleukin (IL)-22 on hepatic fibrosis in mice and the possible mechanism involved. METHODS: Liver fibrosis was induced in male BALB/c mice by CCl4. Recombinant IL-22 (rmIL-22) was administered intraperitoneally in CCl4-treated mice. Fibrosis was assessed by histology and Masson staining. The activation of hepatic stellate cells (HSCs) was investigated by analysis of α-smooth muscle actin expression. The frequencies of T helper (Th) 22 cells, Th17 cells and Th1 cells, the expression of inflammatory cytokines [IL-22, IL-17A, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-1β] and transcription factors [aryl hydrocarbon receptor (AHR), RAR-related orphan receptor (RORγt), T-bet] mRNA in the liver were investigated. In addition, the plasma levels of IL-22, IL-17A, IFN-γ, TNF-α, IL-6 and IL-1β were evaluated. RESULTS: Significant elevations in circulating Th22 cells, Th17 cells, Th1 cells, IL-22, IL-17A, and IFN-γ were observed in the hepatic fibrosis group compared with the control group (P < 0.01). Treatment with rmIL-22 in mice with hepatic fibrosis ameliorated the severity of hepatic fibrosis, which was confirmed by lower hepatic fibrosis pathological scores (P < 0.01). RmIL-22 decreased the frequencies of Th22 cells (6.71% ± 0.97% vs 8.09% ± 0.74%, P < 0.01), Th17 cells (4.34% ± 0.37% vs 5.71% ± 0.24%, P < 0.01), Th1 cells (3.09% ± 0.49% vs 4.91% ± 0.73%, P < 0.01), and the levels of IL-22 (56.23 ± 3.08 vs 70.29 ± 3.01, P < 0.01), IL-17A (30.74 ± 2.77 vs 45.68 ± 2.71, P < 0.01), and IFN-γ (74.78 ± 2.61 vs 124.89 ± 2.82, P < 0.01). Down-regulation of IL-22, IL-17A, IFN-γ, TNF-α, IL-6, IL-1β, AHR RORγt, and T-bet gene expression in the liver was observed in the rmIL-22 group (P < 0.01). CONCLUSION: The frequencies of Th22, Th17 and Th1 cells are elevated in hepatic fibrosis. RmIL-22 can attenuate HSC activation and down-regulate the levels of inflammatory cytokines, thereby ameliorating

  15. Pre-acute hepadnaviral infection is associated with activation-induced apoptotic death of lymphocytes in the woodchuck (Marmota monax) model of hepatitis B.

    PubMed

    Gujar, Shashi A; Jenkins, Adam K M; Macparland, Sonya A; Michalak, Tomasz I

    2010-09-01

    Woodchucks (Marmota monax) infected with woodchuck hepatitis virus (WHV) represent a highly valuable immunopathogenic model of hepatitis B virus (HBV) infection. Both WHV and HBV are noncytopathic hepadnaviruses which induce a strong but delayed virus-specific cellular immune response believed to be a cause of hepatitis. The reason behind this postponement is not well understood and its dissection in the woodchuck model has been hampered by the lack of appropriate research tools. In this study, we applied an assay for the simultaneous detection of cell apoptosis and proliferation to determine the fate of T lymphocytes after WHV infection leading to acute hepatitis. The results revealed that pre-acute WHV infection is associated with the significantly heightened susceptibility of T lymphocytes to activation-induced apoptotic death. This suggests that T lymphocyte function is compromised very early in the course of hepadnaviral infection and this may directly contribute to the postponement of virus-specific T cell response.

  16. [Changes in the oxidant-antioxidant system activity in patients with hepatic failure treated with hyperbaric oxygenation and actoprotectors].

    PubMed

    Lakhin, R E; Belozerova, L A; Maksimets, V A; Romanov, D M

    1999-01-01

    Effects of hyperbaric oxygenation, bemitil, and solcoseryl used in preoperative treatment of patients with hepatic failure on the oxidant-antioxidant system are studied. Lipid peroxidation (LPO) was assessed from changes in the levels of malonic dialdehyde and diene conjugate and the antioxidant system from the number of SH-groups. Hyperbaric oxygenation led to activation of LPO processes. Bemitil decreased the intensity of LPO by extending the potentialities of the antioxidant system. Antioxidant properties of solcoseryl were not realized through the thiol buffer of the antioxidant system. Only a course of treatment with this drug brings about a stable effect.

  17. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis.

    PubMed

    He, Xing; Tang, Rui; Sun, Yue; Wang, Yan-Ge; Zhen, Kui-Yang; Zhang, Dong-Mei; Pan, Wei-Qing

    2016-11-01

    Schistosomiasis is a chronic disease caused by the parasite of the Schistosoma genus and is characterized by egg-induced hepatic granulomas and fibrosis. Macrophages play a central role in schistosomiasis with several studies highlighting their differentiation into M2 cells involved in the survival of infected mice through limitation of immunopathology. However, little is known regarding the mechanisms of regulating macrophage differentiation. Here, we showed that the early stage of infection by Schistosoma japonicum induced expression of type 1T-helper-cell (Th1) cytokine, interferon-γ (IFN-γ), leading to increase in M1 cells. However, the presence of liver-trapped eggs induced the expression of Th2 cytokines including interleukin-4 (IL-4), IL-10, and IL-13 that upregulated the transcription of miR-146b by activating signal transducer and activator of transcription 3/6 (STAT3/6) that bind to the promoter of the pre-miR-146b gene. We found that the miR-146a/b was significantly upregulated in macrophages during the progression of hepatic schistosomiasis. The elevated miR-146a/b inhibited the IFN-γ-induced differentiation of macrophages to M1 cells through targeting STAT1. Our data indicate the protective roles of miR-146a/b in hepatic schistosomiasis through regulating the differentiation of macrophages into M2 cells.

  18. A quantitative structure-activity relationship study on a few series of anti-hepatitis C virus agents.

    PubMed

    Varshney, Jonish; Sharma, Anjana; Gupta, Satya P

    2012-05-01

    A 2-Dimensional Quantitative Structure-Activity Relationship study has been performed on 2 series of hepatitis C virus (HCV) inhibitors, i.e., Isothiazoles and Thiazolones. In each case significant correlations are found between the anti-HCV potencies and some physicochemical, electronic and steric properties of the compounds, indicating that for the first series the activity is controlled by density and two indicator parameters (one for halogen and other for methyl), while for the second series density, Hammett constant and Kier's first order valence molecular connectivity index are important for anti-HCV activity. The validity of the correlation has been judged by leave-one-out jackknife procedure and predicting the activity of some test compounds. Using the correlations obtained, some new compounds of high potency have been predicted in each series.

  19. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish.

    PubMed

    Lin, Chun-Hung; Chou, Pei-Hsin; Chen, Pei-Jen

    2014-07-30

    Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish populations in the aquatic environment.

  20. Synthesis, characterization and biological activity of a niobium-substituted-heteropolytungstate on hepatitis B virus.

    PubMed

    Zhang, Hong; Qi, Yanfei; Ding, Yanhua; Wang, Juan; Li, Qingmei; Zhang, Jingzhou; Jiang, Yanfang; Chi, Xiumei; Li, Juan; Niu, Junqi

    2012-02-15

    To synthesise and characterize the polyoxometalate Cs(2)K(4)Na[SiW(9)Nb(3)O(40)]·H(2)O 1 for its anti-hepatitis B virus (HBV) properties by using the HepG2.2.15 cell. The methylthiazol tetrazolium assay was used to evaluate the growth inhibitory effect of Compound 1 on HepG2.2.15 cell. By using ELISA and real-time PCR, respectively, the presence of extracellular hepatitis B surface antigen (HBsAg), e antigen (HBeAg), and HBV DNA were measured. The levels of intracellular HBV DNA and mRNA were determined by using Southern blot or reverse-transcription-PCR, respectively. Intracellular distribution of antigen were measured by Western blot. A 1995 μmol/L concentration of the commercially-available hepatitis B drug, adefovir dipivoxil (ADV), was required to achieve 50% cytotoxicity against cultured cells (CC(50)) by day nine; in contrast, only 1747 μmol/L of Compound 1 was required for the same result. Treatment of HepG2.2.15 cells with Compound 1 effectively suppress the secretion of HBV antigens and HBV DNA in a dose-dependent and time-dependent manner. IC(50) values were determined to be 80 μmol/L for HBsAg, 75 μmol/L for HBeAg and 3.72 μmol/L for supernatant HBV DNA at day nine post-exposure, as opposed to 266, 296, 30.09 μmol/L, respectively, for ADV. Intracellular HBV DNA, mRNA and antigen were also found to be decreased by Compound 1. The same dose of ADV yielded a significantly less robust inhibitory effect. Compound 1 can clear HBV from hepatic cells and may represent a therapeutic agent to treat HBV infection.

  1. Preventive activity of banana peel polyphenols on CCl4-induced experimental hepatic injury in Kunming mice

    PubMed Central

    WANG, RUI; FENG, XIA; ZHU, KAI; ZHAO, XIN; SUO, HUAYI

    2016-01-01

    The aim of the present study was to evaluate the preventive effects of banana peel polyphenols (BPPs) against hepatic injury. Mice were divide into normal, control, 100 mg/kg and 200 mg/kg banana peel polyphenol and silymarin groups. All the mice except normal mice were induced with hepatic damage using CCl4. The serum and tissue levels of mice were determined by a kit and the tissues were further examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. BPPs reduced the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase in a CCl4-induced mouse model of hepatic injury. Furthermore, BPPs reduced the levels of malondialdehyde and triglyceride, while increasing glutathione levels in the serum and liver tissues of mice. In addition, the effects of 200 mg/kg treatment were more evident, and these effects were comparable to those of the drug silymarin. Serum levels of the cytokines, interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and interferon-γ, were reduced in the mice treated with BPPs compared with injury control group mice, and these levels were comparable to those of the normal and silymarin-treated groups. Histopathological examination indicated that BPPs were able to reduce the extent of CCl4-induced liver tissue injury and protect the liver cells. Furthermore, the mRNA and protein expression levels of the inflammation-associated factors cyclooxygenase-2, nitric oxide synthase, TNF-α and IL-1β were reduced in mice treated with BPPs compared with the control group mice. Mice that received 200 mg/kg BPP exhibited reduced expression levels of these factors compared with mice that received 100 mg/kg BPP. In conclusion, the results of the present study suggested that BPPs exert a good preventive effect against hepatic injury. PMID:27168833

  2. Proline-Based Macrocyclic Inhibitors of the Hepatitis C Virus: Stereoselective Synthesis and Biological Activity

    SciTech Connect

    Chen, Kevin X.; Njoroge, F. George; Vibulbhan, Bancha; Prongay, Andrew; Pichardo, John; Madison, Vincent; Buevich, Alexei; Chan, Tze-Ming

    2008-06-30

    Macrocyclization through a Mitsunobu reaction was used to synthesize a 17-membered macrocycle. The bicyclic acetal core was prepared completely diastereoselectively. The macrocyclic peptidomimetic surrogate of the P2-P3 dipeptide moiety was designed to function as a hepatitis C virus (HCV) NS3 serine protease inhibitor, and the pentapeptide {alpha}-ketoamides derived from the macrocycle were shown to be potent HCV inhibitors.

  3. Time dependency and topography of hepatic nuclear factor κB activation after hemorrhagic shock and resuscitation in mice.

    PubMed

    Korff, Sebastian; Falsafi, Reza; Czerny, Christoph; Jobin, Christian; Nau, Christoph; Jakob, Heike; Marzi, Ingo; Lehnert, Mark

    2012-11-01

    The leading causes of death in people aged 1 to 44 years are unintentional injuries with associated hemorrhagic shock. Hemorrhagic shock followed by resuscitation (H/R) activates the nuclear factor κB (NF-κB) pathway. To further address the association between liver damage and NF-κB activation, we analyzed the H/R-induced activation of NF-κB using cis-NF-κB reporter gene mice. In these mice, the expression of green fluorescent protein (GFP) is linked to the activation of NF-κB, and therefore tracing of GFP colocalizes NF-κB activation. Mice were hemorrhaged to a mean arterial blood pressure of 30mmHg for 90 min, followed by resuscitation. Six, 14, or 24 h after resuscitation, mice were killed. Compared with sham-operated mice, H/R led to a profound hepatic and cellular damage as measured by aspartate aminotransferase, creatine kinase, and lactate dehydrogenase levels, which was accompanied by an elevation in interleukin 6 levels and hepatic leukocyte infiltration. Interleukin 10 levels in plasma were elevated 6 h after H/R. Using serial liver sections, we found an association between necrotic areas, oxidative stress, and enhanced GFP-positive cells. Furthermore, enhanced GFP-positive cells surrounded areas of necrotic liver tissue, predominantly in a penumbra-like-shape pericentrally. These results elucidate spatial relationship between oxidative stress, liver necrosis, and NF-κB activation, using an in vivo approach and therefore might help to further analyze mechanisms of NF-κB activation after resuscitated blood loss.

  4. 8-Hydroxyeicosapentaenoic Acid Decreases Plasma and Hepatic Triglycerides via Activation of Peroxisome Proliferator-Activated Receptor Alpha in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Yamada, Hidetoshi; Kikuchi, Sayaka; Hakozaki, Mayuka; Motodate, Kaori; Nagahora, Nozomi; Hirose, Masamichi

    2016-01-01

    PPARs regulate the expression of genes involved in lipid homeostasis. PPARs serve as molecular sensors of fatty acids, and their activation can act against obesity and metabolic syndromes. 8-Hydroxyeicosapentaenoic acid (8-HEPE) acts as a PPAR ligand and has higher activity than EPA. However, to date, the PPAR ligand activity of 8-HEPE has only been demonstrated in vitro. Here, we investigated its ligand activity in vivo by examining the effect of 8-HEPE treatment on high fat diet-induced obesity in mice. After the 4-week treatment period, the levels of plasma and hepatic triglycerides in the 8-HEPE-fed mice were significantly lower than those in the HFD-fed mice. The expression of genes regulated by PPARα was significantly increased in 8-HEPE-fed mice compared to those that received only HFD. Additionally, the level of hepatic palmitic acid in 8-HEPE-fed mice was significantly lower than in HFD-fed mice. These results suggested that intake of 8-HEPE induced PPARα activation and increased catabolism of lipids in the liver. We found no significant differences between EPA-fed mice and HFD-fed mice. We demonstrated that 8-HEPE has a larger positive effect on metabolic syndrome than EPA and that 8-HEPE acts by inducing PPARα activation in the liver. PMID:27239345

  5. Activated hepatic stellate cells impair NK cell anti-fibrosis capacity through a TGF-β-dependent emperipolesis in HBV cirrhotic patients.

    PubMed

    Shi, Jijing; Zhao, Juanjuan; Zhang, Xin; Cheng, Yongqian; Hu, Jinhua; Li, Yuanyuan; Zhao, Xin; Shang, Qinghua; Sun, Yanling; Tu, Bo; Shi, Lei; Gao, Bin; Wang, Fu-Sheng; Zhang, Zheng

    2017-03-14

    Natural killer (NK) cells can induce liver fibrosis remission by killing hepatic stellate cells (HSCs) and producing interferon (IFN)-γ in a mouse model; however, their anti-fibrotic immune-characteristics and regulatory mechanisms by HSCs remain to be determined, especially in livers from HBV-infected liver cirrhosis (LC) patients. We analyzed frequency, phenotype and anti-fibrotic function of hepatic and peripheral NK subsets in 43 HBV-LC patients. We found that hepatic NK subsets from LC patients displayed a decreased frequency, activation status and anti-fibrotic activity compared with those from chronic hepatitis B patients, which were mainly mediated by increased intrahepatic tumour-growth factor (TGF)-β because blockade of TGF-β significantly reversed NK anti-fibrotic function in vitro. In vivo, hepatic NK cells were enriched in proximity to the α-smooth muscle actin (α-SMA+) area within mild fibrosis regions; while in severe fibrotic areas, they were either directly attached to or separated from the α-SMA+ region. NK cells from LC patients could enter HSCs to form emperipolesis (a cell-in-cell structure) and become apoptotic; anti-TGF-β treatment ameliorated this emperipolesis. This finding suggested a novel mechanism by which activated HSCs impair NK cells' anti-fibrosis capacity through a TGF-β-dependent emperipolesis in LC patients, providing an anti-fibrotic rational by enhancing NK cell activity.

  6. Activated hepatic stellate cells impair NK cell anti-fibrosis capacity through a TGF-β-dependent emperipolesis in HBV cirrhotic patients

    PubMed Central

    Shi, Jijing; Zhao, Juanjuan; Zhang, Xin; Cheng, Yongqian; Hu, Jinhua; Li, Yuanyuan; Zhao, Xin; Shang, Qinghua; Sun, Yanling; Tu, Bo; Shi, Lei; Gao, Bin; Wang, Fu-Sheng; Zhang, Zheng

    2017-01-01

    Natural killer (NK) cells can induce liver fibrosis remission by killing hepatic stellate cells (HSCs) and producing interferon (IFN)-γ in a mouse model; however, their anti-fibrotic immune-characteristics and regulatory mechanisms by HSCs remain to be determined, especially in livers from HBV-infected liver cirrhosis (LC) patients. We analyzed frequency, phenotype and anti-fibrotic function of hepatic and peripheral NK subsets in 43 HBV-LC patients. We found that hepatic NK subsets from LC patients displayed a decreased frequency, activation status and anti-fibrotic activity compared with those from chronic hepatitis B patients, which were mainly mediated by increased intrahepatic tumour-growth factor (TGF)-β because blockade of TGF-β significantly reversed NK anti-fibrotic function in vitro. In vivo, hepatic NK cells were enriched in proximity to the α-smooth muscle actin (α-SMA+) area within mild fibrosis regions; while in severe fibrotic areas, they were either directly attached to or separated from the α-SMA+ region. NK cells from LC patients could enter HSCs to form emperipolesis (a cell-in-cell structure) and become apoptotic; anti-TGF-β treatment ameliorated this emperipolesis. This finding suggested a novel mechanism by which activated HSCs impair NK cells’ anti-fibrosis capacity through a TGF-β-dependent emperipolesis in LC patients, providing an anti-fibrotic rational by enhancing NK cell activity. PMID:28291251

  7. DECHLORINATION OF PCBS, CAHS, HERBICIDES AND PESTICIDES NEAT AND IN SOILS AT 25&DEG;C USING NA/NH3. (R829421E01)

    EPA Science Inventory

    Na/NH3 reductions have been used to dehalogenate polychlorinated biphenyls (PCBs), chlorinated aliphatic hydrocarbons (CAHs) and pesticides at diffusion controlled rates at room temperature in model compound studies in both dry NH3 and when water was adde...

  8. FT-Raman and high-pressure FT-infrared spectroscopic investigation of monocalcium phosphate monohydrate, Ca(H 2PO 4) 2·H 2O

    NASA Astrophysics Data System (ADS)

    Xu, Jingwei; Gilson, Denis F. R.; Butler, Ian S.

    1998-10-01

    The FT-infrared spectra of monocalcium monohydrate, Ca(H 2PO 4) 2·H 2O, have been measured as a function of pressure up to 50 kbar. A phase transition occurs at 18 kbar. The Lippincott-Schroeder model for the hydrogen bond has been used to explain the pressure dependence of the vibrational frequencies.

  9. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice.

    PubMed

    Dong, Ruixia; Wang, Dongxu; Wang, Xiaoxiao; Zhang, Ke; Chen, Pingping; Yang, Chung S; Zhang, Jinsong

    2016-12-01

    Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system.

  10. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases human hepatic stellate cell activation.

    PubMed

    Harvey, Wendy A; Jurgensen, Kimberly; Pu, Xinzhu; Lamb, Cheri L; Cornell, Kenneth A; Clark, Reilly J; Klocke, Carolyn; Mitchell, Kristen A

    2016-02-17

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a halogenated aromatic hydrocarbon that elicits toxicity through the aryl hydrocarbon receptor (AhR). In the liver, gross markers of TCDD toxicity are attributed to AhR activation in parenchymal hepatocytes. However, less is known regarding the consequences of TCDD treatment on non-parenchymal cells in the liver. Hepatic stellate cells (HSCs) are non-parenchymal cells that store vitamin A when quiescent. Upon liver injury, activated HSCs lose this storage ability and instead function in the development and maintenance of inflammation and fibrosis through the production of pro-inflammatory mediators and collagen type I. Reports that TCDD exposure disrupts hepatic retinoid homeostasis and dysregulates extracellular matrix remodeling in the liver led us to speculate that TCDD treatment may disrupt HSC activity. The human HSC line LX-2 was used to test the hypothesis that TCDD treatment directly activates HSCs. Results indicate that exposure to 10nM TCDD almost completely inhibited lipid droplet storage in LX-2 cells cultured with retinol and palmitic acid. TCDD treatment also increased LX-2 cell proliferation, expression of α-smooth muscle actin, and production of monocyte chemoattractant protein-1 (MCP-1), all of which are characteristics of activated HSCs. However, TCDD treatment had no effect on Col1a1 mRNA levels in LX-2 cells stimulated with the potent profibrogenic mediator, transforming growth factor-β. The TCDD-mediated increase in LX-2 cell proliferation, but not MCP-1 production, was abolished when phosphoinositide 3-kinase was inhibited. These results indicate that HSCs are susceptible to direct modulation by TCDD and that TCDD likely increases HSC activation through a multi-faceted mechanism.

  11. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases human hepatic stellate cell activation

    PubMed Central

    Harvey, Wendy A.; Jurgensen, Kimberly; Pu, Xinzhu; Lamb, Cheri L.; Cornell, Kenneth A.; Clark, Reilly J.; Klocke, Carolyn; Mitchell, Kristen A.

    2016-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a halogenated aromatic hydrocarbon that elicits toxicity through the aryl hydrocarbon receptor (AhR). In the liver, gross markers of TCDD toxicity are attributed to AhR activation in parenchymal hepatocytes. However, less is known regarding the consequences of TCDD treatment on non-parenchymal cells in the liver. Hepatic stellate cells (HSCs) are non-parenchymal cells that store vitamin A when quiescent. Upon liver injury, activated HSCs lose this storage ability and instead function in the development and maintenance of inflammation and fibrosis through the production of pro-inflammatory mediators and collagen type I. Reports that TCDD exposure disrupts hepatic retinoid homeostasis and dysregulates extracellular matrix remodeling in the liver led us to speculate that TCDD treatment may disrupt HSC activity. The human HSC line LX-2 was used to test the hypothesis that TCDD treatment directly activates HSCs. Results indicate that exposure to 10 nM TCDD almost completely inhibited lipid droplet storage in LX-2 cells cultured with retinol and palmitic acid. TCDD treatment also increased LX-2 cell proliferation, expression of α-smooth muscle actin, and production of monocyte chemoattractant protein-1 (MCP-1), all of which are characteristics of activated HSCs. However, TCDD treatment had no effect on Col1a1 mRNA levels in LX-2 cells stimulated with the potent profibrogenic mediator, transforming growth factor-β. The TCDD-mediated increase in LX-2 cell proliferation, but not MCP-1 production, was abolished when phosphoinositide 3-kinase was inhibited. These results indicate that HSCs are susceptible to direct modulation by TCDD and that TCDD likely increases HSC activation through a multifaceted mechanism. PMID:26860701

  12. Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation

    PubMed Central

    Bárcena, Cristina; Stefanovic, Milica; Tutusaus, Anna; Joannas, Leonel; Menéndez, Anghara; García-Ruiz, Carmen; Sancho-Bru, Pau; Marí, Montserrat; Caballeria, Joan; Rothlin, Carla V.; Fernández-Checa, José C.; de Frutos, Pablo García; Morales, Albert

    2015-01-01

    Background & Aims Liver fibrosis, an important health concern associated to chronic liver injury that provides a permissive environment for cancer development, is characterized by accumulation of extracellular matrix components mainly derived from activated hepatic stellate cells (HSCs). Axl, a receptor tyrosine kinase, and its ligand Gas6 are involved in cell differentiation, immune response and carcinogenesis. Methods HSCs were obtained from wild type and Axl−/− mice, treated with recombinant Gas6 protein (rGas6), Axl siRNAs or the Axl inhibitor BGB324, and analyzed by western blot and real-time PCR. Experimental fibrosis was studied in CCl4-treated wild type and Axl−/− mice, and in combination with Axl inhibitor. Gas6 and Axl serum levels were measured in alcoholic liver disease (ALD) and hepatitis C virus (HCV) patients. Results In primary mouse HSCs, Gas6 and Axl levels paralleled HSC activation. rGas6 phosphorylated Axl and AKT prior to HSC phenotypic changes, while Axl siRNA silencing reduced HSC activation. Moreover, BGB324 blocked Axl/AKT phosphorylation and diminished HSC activation. In addition, Axl KO mice displayed decreased HSC activation in vitro and liver fibrogenesis after chronic damage by CCl4 administration. Similarly, BGB324 reduced collagen deposition and CCl4-induced liver fibrosis in mice. Importantly, Gas6 and Axl serum levels increased in ALD and HCV patients, inversely correlating with liver functionality. Conclusions: The Gas6/Axl axis is required for full HSC activation. Gas6 and Axl serum levels increase in parallel to chronic liver disease progression. Axl targeting may be a therapeutic strategy for liver fibrosis management. PMID:25908269

  13. The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels.

    PubMed

    Weiskirchen, Ralf; Mahli, Abdo; Weiskirchen, Sabine; Hellerbrand, Claus

    2015-01-01

    Xanthohumol is the principal prenylated flavonoid of the female inflorescences of the hop plant. In recent years, various beneficial xanthohumol effects including anti-inflammatory, antioxidant, hypoglycemic activities, and anticancer effects have been revealed. This review summarizes present studies indicating that xanthohumol also inhibits several critical pathophysiological steps during the development and course of chronic liver disease, including the activation and pro-fibrogenic genotype of hepatic stellate cells. Also the various mechanism of action and molecular targets of the beneficial xanthohumol effects will be described. Furthermore, the potential use of xanthohumol or a xanthohumol-enriched hop extract as therapeutic agent to combat the progression of chronic liver disease will be discussed. It is notable that in addition to its hepatoprotective effects, xanthohumol also holds promise as a therapeutic agent for treating obesity, dysregulation of glucose metabolism and other components of the metabolic syndrome including hepatic steatosis. Thus, therapeutic xanthohumol application appears as a promising strategy, particularly in obese patients, to inhibit the development as well as the progression of non-alcoholic fatty liver disease.

  14. The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels

    PubMed Central

    Weiskirchen, Ralf; Mahli, Abdo; Weiskirchen, Sabine; Hellerbrand, Claus

    2015-01-01

    Xanthohumol is the principal prenylated flavonoid of the female inflorescences of the hop plant. In recent years, various beneficial xanthohumol effects including anti-inflammatory, antioxidant, hypoglycemic activities, and anticancer effects have been revealed. This review summarizes present studies indicating that xanthohumol also inhibits several critical pathophysiological steps during the development and course of chronic liver disease, including the activation and pro-fibrogenic genotype of hepatic stellate cells. Also the various mechanism of action and molecular targets of the beneficial xanthohumol effects will be described. Furthermore, the potential use of xanthohumol or a xanthohumol-enriched hop extract as therapeutic agent to combat the progression of chronic liver disease will be discussed. It is notable that in addition to its hepatoprotective effects, xanthohumol also holds promise as a therapeutic agent for treating obesity, dysregulation of glucose metabolism and other components of the metabolic syndrome including hepatic steatosis. Thus, therapeutic xanthohumol application appears as a promising strategy, particularly in obese patients, to inhibit the development as well as the progression of non-alcoholic fatty liver disease. PMID:25999863

  15. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    NASA Astrophysics Data System (ADS)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  16. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    PubMed

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  17. The protective effects of shikonin on hepatic ischemia/reperfusion injury are mediated by the activation of the PI3K/Akt pathway

    PubMed Central

    Liu, Tong; Zhang, QingHui; Mo, Wenhui; Yu, Qiang; Xu, Shizan; Li, Jingjing; Li, Sainan; Feng, Jiao; Wu, Liwei; Lu, Xiya; Zhang, Rong; Li, Linqiang; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Kong, Rui; Wang, Fan; Dai, Weiqi; Chen, Kan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Zhao, Yan; Guo, Chuanyong

    2017-01-01

    Hepatic ischemia/reperfusion (I/R) injury, which can result in severe liver injury and dysfunction, occurs in a variety of conditions such as liver transplantation, shock, and trauma. Cell death in hepatic I/R injury has been linked to apoptosis and autophagy. Shikonin plays a significant protective role in ischemia/reperfusion injury. The purpose of the present study was to investigate the protective effect of shikonin on hepatic I/R injury and explore the underlying mechanism. Mice were subjected to segmental (70%) hepatic warm ischemia to induce hepatic I/R injury. Two doses of shikonin (7.5 and 12.5 mg/kg) were administered 2 h before surgery. Balb/c mice were randomly divided into four groups: normal control, I/R, and shikonin preconditioning at two doses (7.5 and 12.5 mg/kg). The serum and liver tissues were collected at three time points (3, 6, and 24 h). Shikonin significantly reduced serum AST and ALT levels and improved pathological features. Shikonin affected the expression of Bcl-2, Bax, caspase 3, caspase 9, Beclin-1, and LC3, and upregulated PI3K and p-Akt compared with the levels in the I/R group. Shikonin attenuated hepatic I/R injury by inhibiting apoptosis and autophagy through a mechanism involving the activation of PI3K/Akt signaling. PMID:28322249

  18. NF-κB activation induced by hepatitis A virus and Newcastle disease virus occurs by different pathways depending on the structural pattern of viral nucleic acids.

    PubMed

    Paulmann, Dajana; Bortmann, Simone; Grimm, Florian; Berk, Iris; Kraemer, Leena; Vallbracht, Angelika; Dotzauer, Andreas

    2014-07-01

    NF-κB is activated by hepatitis B virus and hepatitis C virus and is assumed to contribute to viral persistence, leading to the development of hepatocellular cancer by inhibition of apoptosis mediated by cytotoxic T cells. Whether hepatitis A virus (HAV), which does not cause chronic infection, activates NF-κB is a topic of controversy. Here, we confirm that HAV activates NF-κB and show that HAV enhances the activation of NF-κB by poly(I-C), but it inhibits the activation of NF-κB by Newcastle disease virus (NDV), a paramyxovirus. In addition, HAV inhibits NF-κB activation induced by overexpressed MAVS (mitochondrial antiviral signaling protein). We conclude from these findings that NF-κB induction occurs in cells infected with HAV by dsRNA, independently of mitochondrial-transduced RIG-I/MDA-5 signaling, whereas the induction of NF-κB in cells infected by NDV is mediated by RIG-I signaling, independenly of viral dsRNA. This is supported by experiments in which the different RNA inducers of RIG-I and MDA-5 are sequestered and which also show that poly(I-C) and HAV, but not NDV, are functionally equivalent in inducing NF-κB activity. Furthermore, we demonstrate that HAV interferes with the protein kinase R (PKR) activity and PKR activation induced by dsRNA, and that HAV-induced activation of NF-κB therefore does not take place via the PKR-induced pathway. As assumed for hepatitis B and C virus infections, NF-κB activation could attenuate the effects of cytotoxic T cells and may contribute to prolonged as well as relapsing courses of hepatitis A.

  19. Impact of Oxidative Stress and Peroxisome Proliferator–Activated Receptor γ Coactivator-1α in Hepatic Insulin Resistance

    PubMed Central

    Kumashiro, Naoki; Tamura, Yoshifumi; Uchida, Toyoyoshi; Ogihara, Takeshi; Fujitani, Yoshio; Hirose, Takahisa; Mochizuki, Hideki; Kawamori, Ryuzo; Watada, Hirotaka

    2008-01-01

    OBJECTIVE—Recent studies identified accumulation of reactive oxygen species (ROS) as a common pathway causing insulin resistance. However, whether and how the reduction of ROS levels improves insulin resistance remains to be elucidated. The present study was designed to define this mechanism. RESEARCH DESIGN AND METHODS—We investigated the effect of overexpression of superoxide dismutase (SOD)1 in liver of obese diabetic model (db/db) mice by adenoviral injection. RESULTS—db/db mice had high ROS levels in liver. Overexpression of SOD1 in liver of db/db mice reduced hepatic ROS and blood glucose level. These changes were accompanied by improvement in insulin resistance and reduction of hepatic gene expression of phosphoenol-pyruvate carboxykinase and peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), which is the main regulator of gluconeogenic genes. The inhibition of hepatic insulin resistance was accompanied by attenuation of phosphorylation of cAMP-responsive element-binding protein (CREB), which is a main regulator of PGC-1α expression, and attenuation of Jun NH2-terminal kinase (JNK) phosphorylation. Simultaneously, overexpression of SOD1 in db/db mice enhanced the inactivation of forkhead box class O1, another regulator of PGC-1α expression, without the changes of insulin-induced Akt phosphorylation in liver. In hepatocyte cell lines, ROS induced phosphorylation of JNK and CREB, and the latter, together with PGC-1α expression, was inhibited by a JNK inhibitor. CONCLUSIONS—Our results indicate that the reduction of ROS is a potential therapeutic target of liver insulin resistance, at least partly by the reduced expression of PGC-1α. PMID:18487450

  20. Aggressive hepatitis (image)

    MedlinePlus

    Chronic active hepatitis is a liver disease caused by infection, drug ingestion, metabolic or autoimmune disorders. Necrosis (death) of liver cells, inflammation and fibrosis may lead to liver failure. Death within 5 years of onset occurs in ...

  1. [Low density lipoprotein rich in triglycerides and hepatic lipase activity in insulin-dependent diabetic patients].

    PubMed

    Rosental, S B; Schreier, L E; Halperin, H; Berg, G; Paglione, A M; Ruiz, M; Wikinski, R L

    1995-01-01

    Genetic hepatic lipase (HL) deficiency is associated with low density lipoprotein (LDL) rich in triglycerides (TG), whose affinity for B:E receptors is decreased. In rats, experimental hypoinsulinemia produces HL deficiency. However, the relation between human insulin-dependent Diabetes Mellitus (IDDM), HL activity and the characteristics of LDL have not been studied. The objective of our study is to evaluate the relation between HL activity and the chemical composition of LDL in treated IDDM patients. Subjects were 15 IDDM patients and 15 controls (C), matched for sex and body mass index (BMI). The IDDM patients were classified by the WHO criteria, were free of nephropathy and hypothyroidism, and received no medication except insulin. Controls were clinically healthy and normolipidemic with no family history of diabetes. The IDDM group was divided into two subgroups: subgroup IDDM-A (n = 9) with HL values > or = 4.3 and IDDM-B (n = 6) with HL < or = than 4.2 mumoles glycerol/ml h. the HL in IDDM was lower than in C (p < 0.001). Table 1 shows clinical data. Blood samples were drawn after 12 h fasting. Percentage of HbA1c and plasma concentrations of glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol and TG were assayed. LDL was separated by sequential ultracentrifugation at densities of 1.019-1.063 g/ml and its chemical composition was analyzed. The most relevant results were: plasma TG concentration was higher in IDDM than in C (p < 0.05) (Table 2), although average values DMID not exceed the reference values of 200 mg/dl. The TG-LDL were higher in IDDM than in C: 24.8 +/- 2.7 vs 17.5 +/- 1.1 mg/dl plasma, media +/- SE, (p < 0.02). This difference reflected the values of IDDM-B, whose plasma concentrations of TG-LDL were higher than in C: 32.3 +/- 3.6 vs 17.5 +/- 1.1 mg/dl (p < 0.001), and also higher than in IDDM-A (p < 0.02). (Table 3). The chemical composition of LDL in IDDM-B contained a higher percentage of TG than C: 8.5 +/- 0.7 vs 6.8 +/- 0.3% (p

  2. Update on Alcoholic Hepatitis.

    PubMed

    Torok, Natalie J

    2015-11-02

    Alcoholic liver disease is one of the most prevalent liver diseases worldwide, and a major cause of morbidity and mortality. Alcoholic hepatitis is a severe form of liver injury in patients with alcohol abuse, can present as an acute on chronic liver failure associated with a rapid decline in liver synthetic function, and consequent increase in mortality. Despite therapy, about 30%-50% of patients with severe alcoholic hepatitis eventually die. The pathogenic pathways that lead to the development of alcoholic hepatitis are complex and involve oxidative stress, gut dysbiosis, and dysregulation of the innate and adaptive immune system with injury to the parenchymal cells and activation of hepatic stellate cells. As accepted treatment approaches are currently limited, a better understanding of the pathophysiology would be required to generate new approaches that improve outcomes. This review focuses on recent advances in the diagnosis, pathogenesis of alcoholic hepatitis and novel treatment strategies.

  3. Developmental changes in hepatic fructose 2,6-bisphosphate content and phosphofructokinase-1 activity in the transition of chicks from embryonic to neonatal nutritional environment.

    PubMed Central

    Hamer, M J; Dickson, A J

    1987-01-01

    Within 2 days of hatching in chicks, there are parallel increases in hepatic fructose 2,6-bisphosphate content and phosphofructokinase-1 activity. The changes observed are a consequence of feeding on the carbohydrate-rich diet of neonatal life: lack of access to food after hatching prevents changes for either parameter. The results are discussed in relation to changes in the activities of hepatic lipogenic enzymes during the embryonic/neonatal transition of chicks and the role of insulin in co-ordination of developmental processes. PMID:2959273

  4. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice.

    PubMed

    Liangpunsakul, Suthat; Rahmini, Yasmeen; Ross, Ruth A; Zhao, Zhenwen; Xu, Yan; Crabb, David W

    2012-03-01

    Our previous data showed the inhibitory effect of ethanol on AMP-activated protein kinase phosphorylation, which appears to be mediated, in part, through increased levels of hepatic ceramide and activation of protein phosphatase 2A (Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW. Am J Physiol Gastrointest Liver Physiol 298: G1004-G1012, 2010). The effect of ethanol on AMP-activated protein kinase phosphorylation was reversed by imipramine, suggesting that the generation of ceramide via acid sphingomyelinase (ASMase) is stimulated by ethanol. In this study, we determined the effects of imipramine on the development of hepatic steatosis, the generation of ceramide, and downstream effects of ceramide on inflammatory, insulin, and apoptotic signaling pathways, in ethanol-fed mice. The effect of ethanol and imipramine (10 μg/g body wt ip) on ceramide levels, as well as inflammatory, insulin, and apoptotic signaling pathways, was studied in C57BL/6J mice fed the Lieber-DeCarli diet. Ethanol-fed mice developed the expected steatosis, and cotreatment with imipramine for the last 2 wk of ethanol feeding resulted in improvement in hepatic steatosis. Ethanol feeding for 4 wk induced impaired glucose tolerance compared with controls, and this was modestly improved with imipramine treatment. There was a significant decrease in total ceramide concentrations in response to imipramine in ethanol-fed mice treated with and without imipramine (287 ± 11 vs. 348 ± 12 pmol/mg tissue). The magnitude and specificity of inhibition on each ceramide species differed. A significant decrease was observed for C16 (28 ± 3 vs. 33 ± 2 pmol/mg tissue) and C24 (164 ± 9 vs. 201 ± 4 pmol/mg tissue) ceramide. Ethanol feeding increased the levels of the phosphorylated forms of ERK slightly and increased phospho-p38 and phospho-JNK substantially. The levels of phospho-p38 and phospho-JNK were reduced by treatment with imipramine. The activation of ASMase and generation

  5. Angelica gigas Ameliorates Hyperglycemia and Hepatic Steatosis in C57BL/KsJ-db/db Mice via Activation of AMP-Activated Protein Kinase Signaling Pathway.

    PubMed

    Bae, Ui-Jin; Choi, Eun-Kyung; Oh, Mi-Ra; Jung, Su-Jin; Park, Joon; Jung, Tae-Sung; Park, Tae-Sun; Chae, Soo-Wan; Park, Byung-Hyun

    2016-01-01

    The prevention and management of type 2 diabetes mellitus has become a major global public health challenge. Decursin, an active compound of Angelica gigas Nakai roots, was recently reported to have a glucose-lowering activity. However, the antidiabetic effect of Angelica gigas Nakai extract (AGNE) has not yet been investigated. We evaluated the effects of AGNE on glucose homeostasis in type 2 diabetic mice and investigated the underlying mechanism by which AGNE acts. Male C57BL/KsJ-db/db mice were treated with either AGNE (10 mg/kg, 20 mg/kg, and 40 mg/kg) or metformin (100 mg/kg) for 8 weeks. AGNE supplementation (20 and 40 mg/kg) significantly decreased fasting glucose and insulin levels, decreased the areas under the curve of glucose in oral glucose tolerance and insulin tolerance tests, and improved homeostatic model assessment-insulin resistant (HOMA-IR) scores. AGNE also ameliorated hepatic steatosis, hyperlipidemia, and hypercholesterolemia. Mechanistic studies suggested that the glucose-lowering effect of AGNE was mediated by the activation of AMP activated protein kinase, Akt, and glycogen synthase kinase-3[Formula: see text]. AGNE can potentially improve hyperglycemia and hepatic steatosis in patients with type 2 diabetes.

  6. Capsaicin Inhibits Dimethylnitrosamine-Induced Hepatic Fibrosis by Inhibiting the TGF-β1/Smad Pathway via Peroxisome Proliferator-Activated Receptor Gamma Activation.

    PubMed

    Choi, Jae Ho; Jin, Sun Woo; Choi, Chul Yung; Kim, Hyung Gyun; Lee, Gi Ho; Kim, Yong An; Chung, Young Chul; Jeong, Hye Gwang

    2017-01-18

    Capsaicin (CPS) exerts many pharmacological effects, but any possible influence on liver fibrosis remains unclear. Therefore, we evaluated the inhibitory effects of CPS on dimethylnitrosamine (DMN) and TGF-β1-induced liver fibrosis in rats and hepatic stellate cells (HSCs). CPS inhibited DMN-induced hepatotoxicity, NF-κB activation, and collagen accumulation. CPS also suppressed the DMN-induced increases in α-SMA, collagen type I, MMP-2, and TNF-α. In addition, CPS inhibited DMN-induced TGF-β1 expression (from 2.3 ± 0.1 to 1.0 ± 0.1) and Smad2/3 phosphorylation (from 1.5 ± 0.1 to 1.1 ± 0.1 and from 1.6 ± 0.1 to 1.1 ± 0.1, respectively) by activating Smad7 expression (from 0.1 ± 0.0 to 0.9 ± 0.1) via PPAR-γ induction (from 0.2 ± 0.0 to 0.8 ± 0.0) (p < 0.05). Furthermore, in HSCs, CPS inhibited the TGF-β1-induced increases in α-SMA and collagen type I expression, via PPAR-γ activation. These results indicate that CPS can ameliorate hepatic fibrosis by inhibiting the TGF-β1/Smad pathway via PPAR-γ activation.

  7. Pattern of disease after murine hepatitis virus strain 3 infection correlates with macrophage activation and not viral replication.

    PubMed Central

    Pope, M; Rotstein, O; Cole, E; Sinclair, S; Parr, R; Cruz, B; Fingerote, R; Chung, S; Gorczynski, R; Fung, L

    1995-01-01

    Murine hepatitis virus strain (MHV-3) produces a strain-dependent pattern of disease which has been used as a model for fulminant viral hepatitis. This study was undertaken to examine whether there was a correlation between macrophage activation and susceptibility or resistance to MHV-3 infection. Peritoneal macrophages were isolated from resistant A/J and susceptible BALB/cJ mice and, following stimulation with MHV-3 or lipopolysaccharide (LPS), analyzed for transcription of mRNA and production of interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-alpha), transforming growth factor beta (TGF-beta), mouse fibrinogen-like protein (musfiblp), tissue factor (TF), leukotriene B4, and prostaglandin E2 (PGE2). Macrophages from BALB/cJ mice produced greater amounts of IL-1, TNF-alpha, TGF-beta, leukotriene B4, and musfiblp following MHV-3 infection than macrophages from resistant A/J mice, whereas in response to LPS, equivalent amounts of IL-1, TNF-alpha, TGF-beta, and TF were produced by macrophages from both strains of mice. Levels of mRNA of IL-1, TNF-alpha, and musfiblp were greater and more persistent in BALB/cJ than in A/J macrophages, whereas the levels and kinetics of IL-1, TNF-alpha, and TF mRNA following LPS stimulation were identical in macrophages from both strains of mice. Levels of production of PGE2 by MHV-3-stimulated macrophages from resistant and susceptible mice were equivalent; however, the time course for induction of PGE2, differed, but the total quantity of PGE2 produced was insufficient to inhibit induction of musfiblp, a procoagulant known to correlate with development of fulminant hepatic necrosis in susceptible mice. These results demonstrate marked differences in production of inflammatory mediators to MHV-3 infection in macrophages from resistant A/J and susceptible BALB/cJ mice, which may explain the marked hepatic necrosis and fibrin deposition and account for the lethality of MHV-3 in susceptible mice. PMID:7636967

  8. Physical properties, lipid composition and enzyme activities of hepatic subcellular membranes from chick embryo after ethanol treatment

    SciTech Connect

    Sanchez-Amate, M.C.; Marco, C.; Segovia, J.L. )

    1992-01-01

    Exposure of chick embryos to ethanol resulted in significant alterations to the lipid composition of various different hepatic subcellular membranes. A marked decrease in cholesterol levels and an increase in the phospholipid content of microsomes and mitochondria was observed. Ethanol also affected the fatty acid profiles, mainly by decreasing the percentage of oleic acid in phosphatidylcholine and phosphatidylethanolamine in the mitochondria and phosphatidylethanolamine in the microsomes. In spite of these changes ethanol only induced alterations in the fluidity of the mitochondrial membranes, which showed a more rigid core, in contrast to the phospholipid-head region, which was not affected. In accordance with the changes observed in the physical state of the membrane, the enzymes involved in the microsomal electron-transport systems were not modified by ethanol, while cytochrome oxidase activity decreased by 50% compared to the activity in the mitochondria from control chick embryos.

  9. [The morphologic basis for the mechanism of increased serum acid phosphatase activity in patients with viral hepatitis].

    PubMed

    Drozd, T N; Luchshev, V I; Zaĭtsev, V V; Berezina, T A

    1975-01-01

    The activity of acid phosphotase in the blood serum and punctates of the liver was studied in 49 patients with acute cyclic form of viral hepatitis of slight and medium-grave course with the use of histological and histochemical methods. The degree of manifestation of necrotic changes in the punctate tissue was determined with the help of the stereometric method. As a result of the studies conducted, it was established that the degree of hyperfermentemia was the highest at the period when the disease was in full swing, and that it did not depend on the form of its course and extent of necrotic changes observed in the liver punctates. The authors consider a morphological evidence of high activity of acid phosphotase in the blood serum aggregations of large hepatocytes, cytoplasm of which was loaded with mature lipofuscin, the topographic identity of the latter with acid phosphotase at present being proved.

  10. Hepatitis C: Treatment

    MedlinePlus

    ... Public Home » Hepatitis C » Hepatitis C Treatment Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Enter ZIP code here Enter ZIP code here Hepatitis C Treatment for Veterans and the Public Treatment ...

  11. Hepatitis A

    MedlinePlus

    ... an inflammation of the liver. One type, hepatitis A, is caused by the hepatitis A virus (HAV). The disease spreads through contact with ... washed in untreated water Putting into your mouth a finger or object that came into contact with ...

  12. Hepatitis B

    MedlinePlus

    ... commonly used with viral hepatitis and related conditions. Web Resources American Liver Foundation A national nonprofit organization ... other liver diseases through research, education, and advocacy. Web site features a database directory of hepatitis clinical ...

  13. Hepatitis B

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000279.htm Hepatitis B To use the sharing features on this page, please enable JavaScript. Hepatitis B is irritation and swelling (inflammation) of the ...

  14. Autoimmune hepatitis

    MedlinePlus

    Lupoid hepatitis; Chronic acute liver disease ... This form of hepatitis is an autoimmune disease . The body's immune system cannot tell the difference between healthy body tissue and harmful, outside ...

  15. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.

    PubMed Central

    Wang, X W; Forrester, K; Yeh, H; Feitelson, M A; Gu, J R; Harris, C C

    1994-01-01

    Chronic active hepatitis caused by infection with hepatitis B virus, a DNA virus, is a major risk factor for human hepatocellular carcinoma. Since the oncogenicity of several DNA viruses is dependent on the interaction of their viral oncoproteins with cellular tumor-suppressor gene products, we investigated the interaction between hepatitis B virus X protein (HBX) and human wild-type p53 protein. HBX complexes with the wild-type p53 protein and inhibits its sequence-specific DNA binding in vitro. HBX expression also inhibits p53-mediated transcriptional activation in vivo and the in vitro association of p53 and ERCC3, a general transcription factor involved in nucleotide excision repair. Therefore, HBX may affect a wide range of p53 functions and contribute to the molecular pathogenesis of human hepatocellular carcinoma. Images PMID:8134379

  16. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases.

    PubMed

    Chen, Jieliang; Zhang, Wen; Lin, Junyu; Wang, Fan; Wu, Min; Chen, Cuncun; Zheng, Ye; Peng, Xiuhua; Li, Jianhua; Yuan, Zhenghong

    2014-02-01

    The hepatitis B virus (HBV) is a DNA virus that can cause chronic hepatitis B (CHB) in humans. Current therapies for CHB infection are limited in efficacy and do not target the pre-existing viral genomic DNA, which are present in the nucleus as a covalently closed circular DNA (cccDNA) form. The transcription activator-like (TAL) effector nucleases (TALENs) are newly developed enzymes that can cleave sequence-specific DNA targets. Here, TALENs targeting the conserved regions of the viral genomic DNA among different HBV genotypes were constructed. The expression of TALENs in Huh7 cells transfected with monomeric linear full-length HBV DNA significantly reduced the viral production of HBeAg, HBsAg, HBcAg, and pgRNA, resulted in a decreased cccDNA level and misrepaired cccDNAs without apparent cytotoxic effects. The anti-HBV effect of TALENs was further demonstrated in a hydrodynamic injection-based mouse model. In addition, an enhanced antiviral effect with combinations of TALENs and interferon-α (IFN-α) treatment was observed and expression of TALENs restored HBV suppressed IFN-stimulated response element-directed transcription. Taken together, these data indicate that TALENs can specifically target and successfully inactivate the HBV genome and are potently synergistic with IFN-α, thus providing a potential therapeutic strategy for treating CHB infection.

  17. Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor {gamma}, controls hepatitis B virus replication

    SciTech Connect

    Yoon, Sarah; Jung, Jaesung; Kim, Taeyeung; Park, Sun; Chwae, Yong-Joon; Shin, Ho-Joon; Kim, Kyongmin

    2011-01-20

    In this study, HepG2-hepatitis B virus (HBV)-stable cells that did not overexpress HBx and HBx-deficient mutant-transfected cells were analyzed for their expression of HBV-induced, upregulated adipogenic and lipogenic genes. The mRNAs of CCAAT enhancer binding protein {alpha} (C/EBP{alpha}), peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), adiponectin, liver X receptor {alpha} (LXR{alpha}), sterol regulatory element binding protein 1c (SREBP1c), and fatty acid synthase (FAS) were expressed at higher levels in HepG2-HBV and lamivudine-treated stable cells and HBx-deficient mutant-transfected cells than in the HepG2 cells. Lamivudine treatment reduced the mRNA levels of PPAR{gamma} and C/EBP{alpha}. Conversely, HBV replication was upregulated by adiponectin and PPAR{gamma} agonist rosiglitazone treatments and was downregulated by adiponectin siRNAs. Collectively, our results demonstrate that HBV replication and/or protein expression, even in the absence of HBx, upregulated adipogenic or lipogenic genes, and that the control of adiponectin might prove useful as a therapeutic modality for the treatment of chronic hepatitis B.

  18. Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats.

    PubMed

    Faria, Juliana A; Kinote, Andrezza; Ignacio-Souza, Letícia M; de Araújo, Thiago M; Razolli, Daniela S; Doneda, Diego L; Paschoal, Lívia B; Lellis-Santos, Camilo; Bertolini, Gisele L; Velloso, Lício A; Bordin, Silvana; Anhê, Gabriel F

    2013-07-15

    Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

  19. Hepatic protection and anticancer activity of curcuma: a potential chemopreventive strategy against hepatocellular carcinoma.

    PubMed

    Li, Yan; Shi, Xue; Zhang, Jingwen; Zhang, Xiang; Martin, Robert C G

    2014-02-01

    Malignant transformation of hepatocellular carcinoma (HCC) occurs through repetitive liver injury in a context of inflammation and oxidative DNA damage. A spectrum of natural sesquiterpenoids from curcuma oil has displayed antioxidant, anti-inflammatory and anti-carcinogenic properties. The aim of the study was to investigate the hepatoprotective and anti-HCC effects of curcuma oil in vivo and in vitro. Mice were pretreated with curcuma oil (100 mg/kg) for 3 days, then treated with Concanavalin A (30 mg/kg). The hepatic tissue was evaluated for histology, CD4+ cell, interferon-γ, apoptosis, lipid peroxidation, 8-hydroxy-deoxyguanosine and MnSOD. C57L/J mice were treated with curcuma oil and 107 Hepa1-6 cells directly inoculated into liver lobes. The effects of curcuma oil on cell growth and cell death were evaluated. In addition, MnSOD, HSP60, catalase, NF-κB and caspase-3 were also investigated in the Hepa1-6 cells treated with curcuma oil. Pretreatment with curcuma oil significantly attenuates inflammation and oxidative damage by Concanavalin A. Treatment with curcuma oil can decrease the incidence of HCC. Curcuma oil inhibits cell growth and induces cell death in Hepa1-6 cells. Curcuma protected mice with hepatic injury from inflammatory and oxidative stress. Curcuma oil can inhibit hepatoma cell growth in vivo and in vitro.

  20. Sedum mexicanum Britt. Induces Apoptosis of Primary Rat Activated Hepatic Stellate Cells.

    PubMed

    Lee, Shou-Lun; Chin, Ting-Yu; Lai, Ching-Long; Wang, Wen-Han

    2015-01-01

    Background. Liver fibrosis is a significant liver disease in Asian countries. Sedum mexicanum Britt. (SM) has been claimed to have antihepatitis efficacy. In traditional folk medicine, a solution of boiling water-extracted SM (SME) is consumed to prevent and treat hepatitis. However, its efficacy has not yet been verified. The purpose of this study was to investigate the in vitro effect of SME on hepatoprotection. Methods. Hepatic stellate cells (HSCs) and hepatocytes (HCs) were isolated from the livers of the rats by enzymatic digestion and density gradient centrifugation. Results. Treating the HCs and aHSCs with SME caused a dose-dependent decrease in the viability of aHSCs but not that of HCs. In addition, treatment with SME resulted in apoptosis of aHSCs, as determined by DAPI analysis and flow cytometry. SME also increased the amount of cleaved caspase-3, cleaved caspase-9, and cleaved poly ADP-ribose polymerase (PARP) in aHSCs. Furthermore, SME treatment induced a dose-dependent reduction in Bcl-2 expression and increased the expression of Bax in aHSCs. Conclusions. SME did not cause cytotoxicity in HCs, but it induced apoptosis in aHSCs through the mitochondria-dependent caspase-3 pathway. Therefore, SME may possess therapeutic potential for liver fibrosis.

  1. Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis.

    PubMed

    Song, Zhenyuan; Deaciuc, Ion; Zhou, Zhanxiang; Song, Ming; Chen, Theresa; Hill, Daniell; McClain, Craig J

    2007-10-01

    Although simple steatosis was originally thought to be a pathologically inert histological change, fat accumulation in the liver may play a critical role not only in disease initiation, but also in the progression to nonalcoholic steatohepatitis and cirrhosis. Therefore, prevention of fat accumulation in the liver may be an effective therapy for multiple stages of nonalcoholic fatty liver disease (NAFLD). Promising beneficial effects of betaine supplementation on human NAFLD have been reported in some pilot clinical studies; however, data related to betaine therapy in NAFLD are limited. In this study, we examined the effects of betaine on fat accumulation in the liver induced by high-sucrose diet and evaluated mechanisms by which betaine could attenuate or prevent hepatic steatosis in this model. Male C57BL/6 mice weighing 20 +/- 0.5 g (means +/- SE) were divided into four groups (8 mice per group) and started on one of four treatments: standard diet (SD), SD+betaine, high-sucrose diet (HS), and HS + betaine. Betaine was supplemented in the drinking water at a concentration of 1% (wt/vol) (anhydrous). Long-term feeding of high-sucrose diet to mice caused significant hepatic steatosis accompanied by markedly increased lipogenic activity. Betaine significantly attenuated hepatic steatosis in this animal model, and this change was associated with increased activation of hepatic AMP-activated protein kinase (AMPK) and attenuated lipogenic capability (enzyme activities and gene expression) in the liver. Our findings are the first to suggest that betaine might serve as a therapeutic tool to attenuate hepatic steatosis by targeting the hepatic AMPK system.

  2. Cultured Mycelium Cordyceps sinensis allevi¬ates CCl4-induced liver inflammation and fibrosis in mice by activating hepatic natural killer cells

    PubMed Central

    Peng, Yuan; Huang, Kai; Shen, Li; Tao, Yan-yan; Liu, Cheng-hai

    2016-01-01

    Aim: Recent evidence shows that cultured mycelium Cordyceps sinensis (CMCS) effectively protects against liver fibrosis in mice. Here, we investigated whether the anti-fibrotic action of CMCS was related to its regulation of the activity of hepatic natural killer (NK) cells in CCl4-treated mice. Methods: C57BL/6 mice were injected with 10% CCl4 (2 mL/kg, ip) 3 times per week for 4 weeks, and received CMCS (120 mg·kg−1·d−1, ig) during this period. In another part of experiments, the mice were also injected with an NK cell-deleting antibody ASGM-1 (20 μg, ip) 5 times in the first 3 weeks. After the mice were sacrificed, serum liver function, and liver inflammation, hydroxyproline content and collagen deposition were assessed. The numbers of hepatic NK cells and expression of NKG2D (activation receptor of NK cells) on isolated liver lymphocytes were analyzed using flow cytometry. Desmin expression and cell apoptosis in liver tissues were studied using desmin staining and TUNEL assay, respectively. The levels of α-SMA, TGF-β, RAE-1δ and RAE-1ε in liver tissues were determined by RT-qPCR. Results: In CCl4-treated mice, CMCS administration significantly improved liver function, attenuated liver inflammation and fibrosis, and increased the numbers of hepatic NK cells and expression level of NKG2D on hepatic NK cells. Furthermore, CMCS administration significantly decreased desmin expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Injection with NK cell-deleting ASGM-1 not only diminished the numbers of hepatic NK cells, but also greatly accelerated liver inflammation and fibrosis in CCl4-treated mice. In CCl4-treated mice with NK cell depletion, CMCS administration decelerated the rate of liver fibrosis development, and mildly upregulated the numbers of hepatic NK cells but without changing NKG2D expression. Conclusion: CMCS allevi¬ates CCl4-induced liver inflammation and fibrosis via promoting activation of hepatic

  3. Hepatitis C

    MedlinePlus

    ... an inflammation of the liver. One type, hepatitis C, is caused by the hepatitis C virus (HCV). It usually spreads through contact with ... childbirth. Most people who are infected with hepatitis C don't have any symptoms for years. If ...

  4. Differential effects of fenofibrate or simvastatin treatment of rats on hepatic microsomal overt and latent diacylglycerol acyltransferase activities.

    PubMed

    Waterman, Ian J; Zammit, Victor A

    2002-06-01

    Hepatic triacylglycerol secretion is elevated in insulin-resistant states. Microsomal diacylglycerol acyltransferase (DGAT) catalyzes the final reaction in the synthesis of triacylglycerol (TAG). We have previously described two DGAT activities in rat liver microsomes, one overt (cytosol-facing) and one latent (endoplasmic reticulum lumen-facing) (Owen MR, Corstorphine CG, Zammit VA: Overt and latent activities of diacylglycerol acytransferase in rat liver microsomes: possible roles in very-low-density lipoprotein triacylglycerol secretion. Biochem J 323:17-21, 1977). It was suggested that they are involved in the synthesis of TAG for the cytosolic droplet and VLDL lipidation, respectively. In the present study, we measured the overt and latent DGAT activities in rats fed diets containing one of two hypolipidemic drugs: fenofibrate (a peroxisome proliferator-activated receptor alpha [PPARalpha] agonist) and simvastatin (a 3-hydroxy-3-methylglutaryl [HMG]-CoA reductase inhibitor). We found that the activities of the two DGATs could be varied independently by these treatments. Fenofibrate raised overt DGAT activity but lowered that of latent DGAT. In contrast, simvastatin markedly lowered overt DGAT activity without affecting that of latent DGAT. The increase in overt DGAT activity induced by fenofibrate could not be mimicked by feeding a diet enriched in n-3 polyunsaturated fatty acids (PUFA), which lowered overt DGAT activity but did not affect latent DGAT, suggesting that n-3 PUFA act through a mechanism independent of PPARalpha activation. The fibrate-induced increase in overt DGAT activity and the inhibition of latent DGAT may provide a mechanism through which acyl moieties are retained within the liver for oxidation through the pathways concomitantly upregulated by PPARalpha activation.

  5. Resveratrol Regulates Activated Hepatic Stellate Cells by Modulating NF-κB and the PI3K/Akt Signaling Pathway.

    PubMed

    Zhang, De-Quan; Sun, Peng; Jin, Quan; Li, Xia; Zhang, Yu; Zhang, Yu-Jing; Wu, Yan-Ling; Nan, Ji-Xing; Lian, Li-Hua

    2016-01-01

    In the present study, we investigated whether resveratrol could suppress the hepatic fibrogenesis in activated hepatic stellate cells. The immortalized rat hepatic stellate cells, t-HSC/Cl-6, were treated with resveratrol 1 h prior to lipopolysaccharide (LPS, 1 μg/mL). Resveratrol decreased t-HSC/Cl-6 cell viability at much lower concentrations within 24 h. Resveratrol pretreatment also decreased the LPS-induced protein expression of α-SMA and collagen I. In addition, resveratrol significantly reduced the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88), and the expression of phosphorylated phosphatidylinositol 3-kinase (PI3K) and phosphorylated serine/threonine kinase B (Akt). Moreover, resveratrol markedly blocked the translocation of nuclear factor (NF)-κB in LPS-activated HSCs. Furthermore, resveratrol inhibited HSCs activation through stimulating LXRβ, but did not influence LXRα. Overall, we conclude that the antifibrotic effect of resveratrol is the result of blocking NF-κB activation and PI3K/Akt phosphorylation, which inhibits HSC activation to obstruct liver fibrosis. Thus, resveratrol may be a natural agent for preventing hepatic fibrosis.

  6. Role of hypoxia-inducible factor-{alpha} in hepatitis-B-virus X protein-mediated MDR1 activation

    SciTech Connect

    Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa; Lee, Jaewon; Kang, Keon Wook . E-mail: kwkang@chosun.ac.kr

    2007-06-01

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) and induced the nuclear translocation of C/EBP{beta}. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1{alpha} siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1{alpha} activation, and suggest HIF-1{alpha} for the therapeutic target of HBV-mediated chemoresistance.

  7. [Serological tests of functional activity of the digestive system (gastrin, pepsinogen-I, trypsin), general IgE and serum cortisol levels in children with hepatitis A and B].

    PubMed

    Kalagina, L S; Pavlov, Ch S; Fomin, Iu A

    2013-01-01

    The mild form of hepatitis A and B with children is attended by a functional activity of pancreatic gland (tripsin), mucous coats of stomach and duodenum (gastrin) which permits to consider them as a factor of the risk of digestive organs combined pathology starting with the disease acuity. Differences in gastrin levels with children depending on hepatitis etiology were specified. Highest levels of gastrin were observed with persons suffering from hepatitis B.

  8. Bioactive Lysophospholipids Generated by Hepatic Lipase Degradation of Lipoproteins Lead to Complement Activation via the Classical Pathway

    PubMed Central

    Ma, Wanchao; Paik, David C.; Barile, Gaetano R.

    2014-01-01

    Purpose. We determined bioactivity of lysophospholipids generated by degradation of the low-density (LDL), very low-density (VLDL), and high-density (HDL) lipoproteins with hepatic lipase (HL), cholesterol esterase (CE), and lipoprotein-associated phospholipase A2 (Lp-PLA2). Methods. The LDL, VLDL, and HDL were treated with HL, CE, and Lp-PLA2 after immobilization on plates, and complement activation studies were performed with diluted human serum. Complement component 3 (C3) fixation, a marker for complement activation, was determined with a monoclonal anti-human C3d antibody. Enzymatic properties of HL and CE were assayed with triglyceride and phosphatidylcholine substrates for triglyceride hydrolase and phospholipase A activities. The ARPE-19 cells were used for viability studies. Results. The HL degradation of human lipoproteins LDL, VLDL, or HDL results in the formation of modified lipoproteins that can activate the complement pathway. Complement activation is dose- and time-dependent upon HL and occurs via the classical pathway. Enzymatic studies suggest that the phospholipase A1 activity of HL generates complement-activating lysophospholipids. C-reactive protein (CRP), known to simultaneously interact with complement C1 and complement factor H (CFH), further enhances HL-induced complement activation. The lysophospholipids, 1-Palmitoyl-sn-glycero-3-phosphocholine and 1-Oleoyl-sn-glycero-3-phosphocholine, can be directly cytotoxic to ARPE-19 cells. Conclusions. The HL degradation of lipoproteins, known to accumulate in the outer retina and in drusen, can lead to the formation of bioactive lysophospholipids that can trigger complement activation and induce RPE cellular dysfunction. Given the known risk associations for age-related macular degeneration (AMD) with HL, CRP, and CFH, this study elucidates a possible damage pathway for age-related macular degeneration (AMD) in genetically predisposed individuals, that HL activity may lead to accumulation of

  9. Lipopolysaccharide, immune activation, and liver abnormalities in HIV/hepatitis B virus (HBV)-coinfected individuals receiving HBV-active combination antiretroviral therapy.

    PubMed

    Crane, Megan; Avihingsanon, Anchalee; Rajasuriar, Reena; Velayudham, Pushparaj; Iser, David; Solomon, Ajantha; Sebolao, Baotuti; Tran, Andrew; Spelman, Tim; Matthews, Gail; Cameron, Paul; Tangkijvanich, Pisit; Dore, Gregory J; Ruxrungtham, Kiat; Lewin, Sharon R

    2014-09-01

    We investigated the relationship between microbial translocation, immune activation, and liver disease in human immunodeficiency virus (HIV)/hepatitis B virus (HBV) coinfection. Lipopolysaccharide (LPS), soluble CD14, CXCL10, and CCL-2 levels were elevated in patients with HIV/HBV coinfection. Levels of LPS, soluble CD14, and CCL-2 declined following receipt of HBV-active combination antiretroviral therapy (cART), but the CXCL10 level remained elevated. No markers were associated with liver disease severity on liver biopsy (n = 96), but CXCL10, interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor α, and interferon γ (IFN-γ) were all associated with elevated liver enzyme levels during receipt of HBV-active cART. Stimulation of hepatocyte cell lines in vitro with IFN-γ and LPS induced a profound synergistic increase in the production of CXCL10. LPS may contribute to liver disease via stimulating persistent production of CXCL10.

  10. Hepatic expression of inflammatory genes and microRNAs in pigs with high "cholesteryl ester transfer protein" (CETP) activity.

    PubMed

    Cirera, Susanna; Tørsleff, Benedicte C Juul; Ritz, Christian; Fredholm, Merete; Heegaard, Peter M H; Skovgaard, Kerstin

    2016-10-01

    Human obesity and obesity-related diseases (ORD) are growing health problems worldwide and represent a major public health challenge. Most of these diseases are complex conditions, influenced by many genes (including microRNAs) and environmental factors. Many metabolic perturbations are associated with obesity; e.g., low levels of high-density lipoproteins (HDL) are high risk factors of cardiovascular events. A number of genetic, lifestyle, and environmental factors have been shown to contribute to the lowering of HDL-cholesterol. One of these factors is cholesteryl ester transfer protein (CETP) promoting the redistribution of cholesteryl esters, triglycerides, and phospholipids between plasma proteins. Moreover, obesity and ORD are often linked with chronic low-grade inflammation leading to insulin resistance and endothelial and microvascular dysfunctions. The aim of this study was to detect differences in the hepatic expression of genes involved in low-grade inflammation and of obesity- and cholesterol-related microRNAs in two mixed breed populations of pigs (Yorkshire-Göttingen minipig, YM and Duroc-Göttingen minipig, DM) including males and females, with extreme phenotypes for CETP activity levels (designated as CETP-high and CETP-low, respectively). Furthermore, breed and gender differences were also investigated. We found significant difference (P < 0.05) in hepatic expression levels of several mRNAs and microRNAs between the CETP-high and -low groups (C5, IL1RN, IL18, and miR-223-5p); between the two mixed breeds (IL1RAP and miR-140-5p); and between gender (APOA1, IL1RN, and FBLN1). Furthermore, when taking breed into account we show that the transcriptional levels of TNF, miR20a, miR33b, and miR130a differed between the two CETP groups. We conclude that increased CETP activity is accompanied by a modest differential hepatic expression of several microRNAs and inflammatory-related genes. Furthermore, our study demonstrates that when modeling the analysis

  11. Isolation and anti-hepatitis B virus activity of dibenzocyclooctadiene lignans from the fruits of Schisandra chinensis.

    PubMed

    Xue, Yongbo; Li, Xifeng; Du, Xue; Li, Xiaonian; Wang, Weiguang; Yang, Jianhong; Chen, Jijun; Pu, Jianxin; Sun, Handong

    2015-08-01

    Seven lignans with a dibenzocyclooctadiene skeleton, termed schinlignans A-G, and a 6,7-seco-homolignan, schischinone, together with seven known lignans, were isolated from the fruits of Schisandra chinensis (Turcz.) Baill. Their structures were elucidated by extensive spectroscopic methods, including HRESIMS, IR, UV, and 2D NMR (COSY, HMQC, COSY, and HMBC experiments). The stereochemistry at the chiral centers and the biphenyl moiety, were determined using ROESY, as well as via interpretation of their ECD spectra. Schinlignan G and methylgomisin O exhibited potent anti-hepatitis B virus activity against HBV DNA replication with IC50 values of 5.13 and 5.49μgmL(-1), respectively.

  12. The XBP1 Arm of the Unfolded Protein Response Induces Fibrogenic Activity in Hepatic Stellate Cells Through Autophagy

    PubMed Central

    Kim, Rosa S.; Hasegawa, Daisuke; Goossens, Nicolas; Tsuchida, Takuma; Athwal, Varinder; Sun, Xiaochen; Robinson, Christopher L.; Bhattacharya, Dipankar; Chou, Hsin-I; Zhang, David Y.; Fuchs, Bryan C.; Lee, Youngmin; Hoshida, Yujin; Friedman, Scott L.

    2016-01-01

    Autophagy and the unfolded protein response (UPR) both promote activation of hepatic stellate cells (HSC), however the link between the two stimuli remains unclear. Here we have explored the role of X-box binding protein 1 (XBP1), one of three UPR effector pathways and sought to establish the interdependence between autophagy and the UPR during HSC activation. XBP1 induction accompanied both culture-based HSC activation and ER stress induced by tunicamycin. Ectopic overexpression of XBP1 induced collagen 1-alpha expression in HSCs, which was inhibited by knockdown of ATG7, a critical autophagy mediator. Genome-wide transcriptomic profiling indicated an upregulation of collagen synthesis pathways, but not of the transforming growth factor (TGF)-b pathway, a canonical fibrogenic driver, suggesting that XBP1 activates a specific subset of fibrogenesis pathways independent of TGF-β1. XBP1 target gene signatures were significantly induced in rodent liver fibrosis models (n = 3–5) and in human samples of non-alcoholic fatty liver disease (NAFLD) (n = 72–135). Thus, XBP1-mediated UPR contributes to fibrogenic HSC activation and is functionally linked to cellular autophagy. PMID:27996033

  13. Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152

    PubMed Central

    Zheng, Jianjian; Yu, Fujun; Dong, Peihong; Wu, Limei; Zhang, Yuan; Hu, Yanwei; Zheng, Lei

    2016-01-01

    Epithelial-mesenchymal transition (EMT) process is considered as a key event in the activation of hepatic stellate cells (HSCs). Hedgehog (Hh) pathway is known to be required for EMT process. Long non-coding RNAs (lncRNAs) have been reported to be involved in a wide range of biological processes. Plasmacytoma variant translocation 1 (PVT1), a novel lncRNA, is often up-regulated in various human cancers. However, the role of PVT1 in liver fibrosis remains undefined. In this study, PVT1 was increased in fibrotic liver tissues and activated HSCs. Depletion of PVT1 attenuated collagen deposits in vivo. In vitro, PVT1 down-regulation inhibited HSC activation including the reduction of HSC proliferation, α-SMA and type I collagen. Further studies showed that PVT1 knockdown suppressed HSC activation was through inhibiting EMT process and Hh pathway. Patched1 (PTCH1), a negative regulator factor of Hh pathway, was enhanced by PVT1 knockdown. PTCH1 demethylation caused by miR-152 was responsible for the effects of PVT1 knockdown on PTCH1 expression. Notably, miR-152 inhibitor reversed the effects of PVT1 knockdown on HSC activation. Luciferase reporter assays and pull-down assays showed a direct interaction between miR-152 and PVT1. Collectively, we demonstrate that PVT1 epigenetically down-regulates PTCH1 expression via competitively binding miR-152, contributing to EMT process in liver fibrosis. PMID:27588491

  14. meso-Dihydroguaiaretic acid inhibits hepatic lipid accumulation by activating AMP-activated protein kinase in human HepG2 cells.

    PubMed

    Lee, Myoung-Su; Kim, Kyung Jin; Kim, Daeyoung; Lee, Kyung-Eun; Hwang, Jae-Kwan

    2011-01-01

    Hepatic lipid accumulation is a major risk factor for dyslipidemia, nonalcoholic fatty liver disease, and insulin resistance. The present study was conducted to evaluate hypolipidemic effects of meso-dihydroguaiaretic acid (MDA), anti-oxidative and anti-inflammatory compound isolated from the Myristica fragrans HOUTT., by oil red O staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot. MDA significantly inhibited insulin-induced hepatic lipid accumulation in a dose-dependent manner. The lipid-lowering effect of MDA was accompanied by increased expression of proteins involved in fatty acid oxidation and decreased expression of lipid synthetic proteins. In addition, MDA activated AMP-activated protein kinase (AMPK) as determined by phosphorylation of acetyl-CoA carboxylase (ACC), a downstream target of AMPK. The effects of MDA on lipogenic protein expression were suppressed by pretreatment with compound C, an AMPK inhibitor. Taken together, these findings show that MDA inhibits insulin-induced lipid accumulation in human HepG2 cells by suppressing expression of lipogenic proteins through AMPK signaling, suggesting a potent lipid-lowering agent.

  15. Mice expressing reduced levels of hepatic glucose-6-phosphatase-α activity do not develop age-related insulin resistance or obesity.

    PubMed

    Kim, Goo-Young; Lee, Young Mok; Cho, Jun-Ho; Pan, Chi-Jiunn; Jun, Hyun Sik; Springer, Danielle A; Mansfield, Brian C; Chou, Janice Y

    2015-09-15

    Glycogen storage disease type-Ia (GSD-Ia) is caused by a lack of glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. We have shown that gene therapy mediated by a recombinant adeno-associated virus (rAAV) vector expressing human G6Pase-α normalizes blood glucose homeostasis in the global G6pc knockout (G6pc(-/-)) mice for 70-90 weeks. The treated G6pc(-/-) mice expressing 3-63% of normal hepatic G6Pase-α activity (AAV mice) produce endogenous hepatic glucose levels 61-68% of wild-type littermates, have a leaner phenotype and exhibit fasting blood insulin levels more typical of young adult mice. We now show that unlike wild-type mice, the lean AAV mice have increased caloric intake and do not develop age-related obesity or insulin resistance. Pathway analysis shows that signaling by hepatic carbohydrate response element binding protein that improves glucose tolerance and insulin signaling is activated in AAV mice. In addition, several longevity factors in the calorie restriction pathway, including the NADH shuttle systems, NAD(+) concentrations and the AMP-activated protein kinase/sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway are upregulated in the livers of AAV mice. The finding that partial restoration of hepatic G6Pase-α activity in GSD-Ia mice not only attenuates the phenotype of hepatic G6Pase-α deficiency but also prevents the development of age-related obesity and insulin resistance seen in wild-type mice may suggest relevance of the G6Pase-α enzyme to obesity and diabetes.

  16. Ellagic acid improves hepatic steatosis and serum lipid composition through reduction of serum resistin levels and transcriptional activation of hepatic ppara in obese, diabetic KK-A(y) mice.

    PubMed

    Yoshimura, Yukihiro; Nishii, Saori; Zaima, Nobuhiro; Moriyama, Tatsuya; Kawamura, Yukio

    2013-05-10

    Ellagic acid (EA) is a polyphenol found in a wide variety of plant foods that not only exhibits free radical-scavenging activity, but also confers protective effects against liver injury. Previously, we reported that pomegranate fruit extract (PFE) had an inhibitory effect on resistin secretion from differentiated murine 3T3-L1 adipocytes and identified EA contained in PFE as a potent suppressor of resistin secretion. Resistin, an adipocytokine, is considered the link between obesity and type 2 diabetes. In this study, we explored whether EA supplementation reduces serum resistin and improves hepatic steatosis and serum lipid profile by using KK-A(y) mice fed high-fat diet as a model for obese type 2 diabetes. We found that EA supplementation improved serum lipid profile and hepatic steatosis, and reduced serum resistin levels without altering mRNA expression levels in adipose tissue. Moreover, EA supplementation upregulated mRNA expression of apoa1, ldlr, cpt1a, and ppara genes in the liver. In conclusion, our findings indicate that EA is a potent suppressor of resistin secretion in vivo and a transcriptional activator of ppara in the liver, suggesting a possibility for improving obesity-induced dyslipidemia and hepatic steatosis in KK-A(y) mice.

  17. Niemann-Pick Type C2 Protein Mediates Hepatic Stellate Cells Activation by Regulating Free Cholesterol Accumulation.

    PubMed

    Twu, Yuh-Ching; Lee, Tzong-Shyuan; Lin, Yun-Lian; Hsu, Shih-Ming; Wang, Yuan-Hsi; Liao, Chia-Yu; Wang, Chung-Kwe; Liang, Yu-Chih; Liao, Yi-Jen

    2016-07-13

    In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs) are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2) protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-β1 (TGF-β1)-induced collagen type 1 α1 (Col1a1), α-smooth muscle actin (α-SMA) expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-β1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-β1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis.

  18. Niemann-Pick Type C2 Protein Mediates Hepatic Stellate Cells Activation by Regulating Free Cholesterol Accumulation

    PubMed Central

    Twu, Yuh-Ching; Lee, Tzong-Shyuan; Lin, Yun-Lian; Hsu, Shih-Ming; Wang, Yuan-Hsi; Liao, Chia-Yu; Wang, Chung-Kwe; Liang, Yu-Chih; Liao, Yi-Jen

    2016-01-01

    In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs) are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2) protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-β1 (TGF-β1)-induced collagen type 1 α1 (Col1a1), α-smooth muscle actin (α-SMA) expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-β1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-β1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis. PMID:27420058

  19. Protective Immunity to Hepatitis B and Streptococcus Pneumoniae in Active Duty Women Versus Men: Prevalence and Responses to Preventive Immunization

    DTIC Science & Technology

    1996-04-01

    difference between groups. After the initial enrollment of personnel with a history of a primary series of hepatitis B vaccine , 30 (14.2%) subjects...presented with additional records demonstrating the fact that only 1 or 2 hepatitis B vaccine doses had been given rather than the primary series as...may be merited to address the issue of 2 to 5 mcgs of hepatitis B vaccine IM as a booster strategy compared to 2 mcg ID. For military and travel

  20. Pentoxifylline aggravates fatty liver in obese and diabetic ob/ob mice by increasing intestinal glucose absorption and activating hepatic lipogenesis

    PubMed Central

    Massart, J; Robin, MA; Noury, F; Fautrel, A; Lettéron, P; Bado, A; Eliat, PA; Fromenty, B

    2012-01-01

    BACKGROUND AND PURPOSE Pentoxifylline is in clinical trials for non-alcoholic fatty liver disease and diabetic nephropathy. Metabolic and hepatic effects of pentoxifylline were assessed in a murine model of obesity and type 2 diabetes. EXPERIMENTAL APPROACH Pentoxifylline (100 mg·kg−1·day−1) was administered for 4 days or 3 weeks in lean and obese/diabetic ob/ob mice. Plasma lipids, glucose, other metabolites and relevant enzymes were measured by standard assays. Hepatic lipids in vivo were assessed with magnetic resonance spectroscopy and by histology. Hepatic extracts were also analysed with RT-PCR and Western blotting. KEY RESULTS Four days of pentoxifylline treatment slightly increased liver lipids in ob/ob mice. After 3 weeks, pentoxifylline exacerbated fatty liver and plasma transaminases in ob/ob mice but did not induce liver steatosis in lean mice. Plasma glucose was highest in fed, but not fasted, ob/ob mice treated with pentoxifylline. During the first 10 min of an oral glucose tolerance test, blood glucose increased more rapidly in pentoxifylline-treated mice. Jejunal expression of glucose transporter 2 isoform was increased in pentoxifylline-treated obese mice. Hepatic activity of carbohydrate response element binding protein (ChREBP) increased after pentoxifylline in ob/ob, but not lean, mice. Hepatic expression of lipogenic enzymes was highest in pentoxifylline-treated ob/ob mice. However, pentoxifylline reduced markers of oxidative stress and inflammation in ob/ob liver. CONCLUSION AND IMPLICATIONS Pentoxifylline exacerbated fatty liver in ob/ob mice through enhanced intestinal glucose absorption, increased postprandial glycaemia and activation of hepatic lipogenesis. Long-term treatment with pentoxifylline could worsen fatty liver in some patients with pre-existing hyperglycaemia. PMID:21740407

  1. Characterization of E-NTPDase (EC 3.6.1.5) activity in hepatic lymphocytes: A different activity profile from peripheral lymphocytes.

    PubMed

    Doleski, Pedro H; Adefegha, Stephen A; Cabral, Fernanda L; Leal, Daniela B R

    2017-03-01

    The activity of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5) was characterized in hepatic lymphocytes (HL) of rats. For this purpose, a specific method for the isolation of lymphocytes from hepatic tissue was developed. Subsequently, E-NTPDase activity of rat HL was compared with that of rat peripheral lymphocytes. The HL showed high cell count and viability. Also, the characterization test revealed that the optimal E-NTPDase activities were attained at 37°C and pH 8.0 in the presence of Ca(2+) . In addition, in the presence of specific E-NTPDase inhibitors (20mM sodium azide and 0.3mM suramin), there were significant inhibitions in nucleotide hydrolysis. However, there was no significant change in adenosine triphosphate (ATP) or adenosine diphosphate (ADP) hydrolysis in the presence of inhibitors of other E-ATPase (0.1mM Ouabain, 0.5mM orthovanadate, and 1mM, 5mM, and 10mM sodium azide). Furthermore, the kinetic behavior of the enzyme in HL showed apparent Km of 134.90 ± 0.03μM and 214.40 ± 0.06μM as well as Vmax of 345.0 ± 28.32 and 242.0 ± 27.55 ƞmol Pi/min/mg of protein for ATP and ADP, respectively. The Chevillard plot revealed that ATP and ADP were hydrolyzed at the same active site of the enzyme. Our results suggest that the degradation of extracellular nucleotides in HL may have been primarily accomplished by E-NTPDase. The higher E-NTPDase activity observed in HL may be attributed to the important physiological functions of ATP and ADP in HL.

  2. Trace element analysis by PIXE in liver samples from dogs with chronic active hepatitis and liver cirrhosis

    NASA Astrophysics Data System (ADS)

    Andersson, Marianne; Ekholm, Ann-Kristin; Sevelius, Ewa

    1990-04-01

    Trace element levels of liver samples obtained from necropsied dogs suffering from hepatitis and/or liver cirrhosis were determined by PIXE. Two different techniques for preparation of the samples were compared: the pellet press method and wet digestion. Both methods gave similar results, but the pellet press method was chosen for the subsequent routine analyses because of its simplicity due to few preparation steps and little risk of contamination. Preliminary results indicate elevated levels of Cu in chronic hepatitis and cirrhosis. In hereditary copper-induced hepatitis (Bedlington hepatitis) Fe and Br levels were increased as well.

  3. According theory and experiment in CaH: Laser-induced fluorescence study of new B/B‧-X bands in the UV region

    NASA Astrophysics Data System (ADS)

    Watanabe, Kyohei; Yoneyama, Naoya; Uchida, Kanako; Kobayashi, Kaori; Matsushima, Fusakazu; Moriwaki, Yoshiki; Ross, Stephen C.

    2016-07-01

    Despite the astrophysical importance of calcium monohydride (CaH), a long-standing discrepancy exists between the experimental and theoretical analysis of its first two excited 2Σ+ states. In a bid to resolve this discrepancy, we observed the rotationally-resolved laser-induced fluorescence spectrum of CaH in the 23,300-27,800 cm-1 region. We assigned all newly observed vibrational levels, and five levels previously assigned to the D state, to the B/B‧ state. The level properties alternate strongly with vibrational excitation and this new assignment brings the experimental vibronic structure into remarkably good agreement with the predictions of Carlsund-Levin et al. (2002).

  4. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    PubMed

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-08

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade.

  5. Effect of feeding and of DDT on the activity of hepatic glucose 6- phosphate dehydrogenase in two salmonids

    USGS Publications Warehouse

    Buhler, Donald R.; Benville, P.

    1969-01-01

    The specific activity of liver glucose 6-phosphate dehydrogenase in yearling rainbow trout remained unchanged when the fish were starved for periods as long as 8 weeks and when starved animals were fed diets of various compositions. Injection of insulin concurrently with refeeding also failed to alter the specific activity of the enzyme in trout. The absence of a dietary or insulin influence on the teleost enzyme system is to be contrasted with studies in mammals in which the activity of hepatic glucose 6-P dehydrogenase was markedly stimulated after refeeding starved animals or injection of insulin.Ingestion of the pesticide DDT by juvenile coho salmon or adult rainbow trout also had no effect on the specific activity of liver glucose 6-P dehydrogenase and DDT failed to inhibit the rainbow trout enzyme in vitro. These results also differ considerably from those found in higher animals.These results suggest that the glucose 6-P dehydrogenase enzyme in teleosts may be under a different type of regulatory control from that found in mammals.

  6. On the Origins of Hepatitis C Virus NS5B Polymerase Inhibitory Activity Using Machine Learning Approaches.

    PubMed

    Worachartcheewan, Apilak; Prachayasittikul, Veda; Anuwongcharoen, Nuttapat; Shoombuatong, Watshara; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    Inhibition of non-structural protein 5B (NS5B) represents an attractive strategy for the therapeutic treatment of hepatitis C virus (HCV). In this study, machine learning classifiers such as artificial neural network (ANN), support vector machine (SVM), random forest (RF) and decision tree (DT) analyses were used to classify 970 compounds based on their physicochemical properties, including quantum chemical descriptors, constitutional descriptors, functional groups and molecular properties. Good predictive performance was obtained from all classifiers, providing accuracies ranging from 82.47-89.61% for external validation set. SVM was noted as the best classifier, indicated by its highest accuracy of 89.61%. The analyses were performed on data sets stratified by structural scaffolds (nucleoside and non-nucleoside) and bioactivities (active and inactive properties). In addition, a molecular fragment analysis was performed to investigate molecular substructures corresponding to biological activities. Furthermore, common substructures and potential functional groups governing the activities of active and inactive inhibitors were noted for the benefit of rational design and high-throughput screening towards potential HCV NS5B inhibitors.

  7. Antioxidant activities of ginsenoside Rg1 against cisplatin-induced hepatic injury through Nrf2 signaling pathway in mice.

    PubMed

    Gao, Yan; Chu, Shifeng; Shao, Qianhang; Zhang, Meijin; Xia, Congyuan; Wang, Yingying; Li, Yueting; Lou, Yuxia; Huang, Huiyong; Chen, Naihong

    2017-01-01

    Oxidative stress is mainly caused by reactive oxygen species (ROS). The damage causes a net stress on normal organs, leading to a gradual loss of vital physiological function. ROS, such as free radicals, represent a class of molecules which are derived from the metabolism of oxygen and exist inherently. However, excessive produced ROS can damage all aerobic organisms. Ginseng is one of the most commonly used alternative herbal medicines, also as a traditional Chinese medicine. The aim of this study is to investigate the antioxidant potential function of ginsenoside Rg1 against cisplatin-caused hepatic damage. Male mice were treated with cisplatin to induce oxidative stress to mimic the side effect of anti-cancer drug cisplatin. Ginsenoside Rg1 effectively prevented against cisplatin-induced hepatotoxicity, alleviating histological lesions. Antioxidant functions of Rg1 were restrained by the activation of p62-Keap1-Nrf2 signaling pathway, simultaneously accompanied with expression of protein products. Accumulative p62 and increased activation of JNK in hepatocytes promoted the activation of Nrf2. For the other, degradation of Nrf2 was guided by tyrosine phosphorylation, ubiquitin, and Keap1. In summary, Rg1 prevents hepatotoxicity mainly by inhibiting the binding of Keap1 and Nrf2, partly by p62 accumulation, and more importantly by increasing the production of antioxidative proteins associated to Nrf2. Pharmacological activation of Nrf2 is an effective way in combating against liver injury.

  8. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis

    SciTech Connect

    Yu, Fujun; Zheng, Jianjian; Mao, Yuqing; Dong, Peihong; Li, Guojun; Lu, Zhongqiu; Guo, Chuanyong; Liu, Zhanju; Fan, Xiaoming

    2015-08-07

    In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β{sub 1}-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposed for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21.

  9. Angiogenin Secretion From Hepatoma Cells Activates Hepatic Stellate Cells To Amplify A Self-Sustained Cycle Promoting Liver Cancer

    PubMed Central

    Bárcena, Cristina; Stefanovic, Milica; Tutusaus, Anna; Martinez-Nieto, Guillermo A.; Martinez, Laura; García-Ruiz, Carmen; de Mingo, Alvaro; Caballeria, Juan; Fernandez-Checa, José C.; Marí, Montserrat; Morales, Albert

    2015-01-01

    Hepatocellular carcinoma (HCC) frequently develops in a pro-inflammatory and pro-fibrogenic environment with hepatic stellate cells (HSCs) remodeling the extracellular matrix composition. Molecules secreted by liver tumors contributing to HSC activation and peritumoral stromal transformation remain to be fully identified. Here we show that conditioned medium from HCC cell lines, Hep3B and HepG2, induced primary mouse HSCs transdifferentiation, characterized by profibrotic properties and collagen modification, with similar results seen in the human HSC cell line LX2. Moreover, tumor growth was enhanced by coinjection of HepG2/LX2 cells in a xenograft murine model, supporting a HCC-HSC crosstalk in liver tumor progression. Protein microarray secretome analyses revealed angiogenin as the most robust and selective protein released by HCC compared to LX2 secreted molecules. In fact, recombinant angiogenin induced in vitro HSC activation requiring its nuclear translocation and rRNA transcriptional stimulation. Moreover, angiogenin antagonism by blocking antibodies or angiogenin inhibitor neomycin decreased in vitro HSC activation by conditioned media or recombinant angiogenin. Finally, neomycin administration reduced tumor growth of HepG2-LX2 cells coinjected in mice. In conclusion, angiogenin secretion by HCCs favors tumor development by inducing HSC activation and ECM remodeling. These findings indicate that targeting angiogenin signaling may be of potential relevance in HCC management. PMID:25604905

  10. Activating nuclear xenobiotic receptors and triggering ER stress and hepatic cytochromes P450 systems in quails (Coturnix C. coturnix) during atrazine exposure.

    PubMed

    Du, Zheng-Hai; Qin, Lei; Lin, Jia; Sun, Yan-Chun; Xia, Jun; Zhang, Cong; Li, Xue-Nan; Li, Jin-Long

    2017-02-10

    Atrazine (ATR) is one of the most widely detected contaminant in the ecosystem. Nuclear xenobiotic receptors are activated by herbicides and induce the transcription of CYP450 isoforms involved in xenobiotic metabolism and transport. However, little is known about hepatic nuclear xenobiotic receptors in birds are responsible for ATR-induced hepatotoxicity via regulating the cytochrome P450 enzyme systems (CYP450s). The objective of this study was to investigate the mechanism of ATR hepatotoxicity in quails. For this purpose, male quails were dosed by oral gavage from sexual immaturity to maturity with 0, 50, 250, and 500 mg/kg/day ATR for 45 days. The results showed that ATR exposure caused the hepatotoxicity damage and endoplasmic reticulum (ER) degeneration. It suggested that ER is a target organelle of ATR toxicity in hepatocytes. ATR exposure disrupted the hepatic CYP450s homeostasis. This study also demonstrated that ATR triggered the CYP450 isoforms transcription via activating the hepatic CAR/PXR pathway. The present study provides new insights regarding the mechanism of the ATR-induced hepatotoxicity through activating nuclear xenobiotic receptors and triggering ER stress and hepatic CYP450s in quails.

  11. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice.

    PubMed

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-12-08

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis.

  12. Açai (Euterpe oleracea Mart.) Upregulates Paraoxonase 1 Gene Expression and Activity with Concomitant Reduction of Hepatic Steatosis in High-Fat Diet-Fed Rats

    PubMed Central

    Lage, Nara Nunes; Lopes, Juliana Márcia Macedo; de Lima, Wanderson Geraldo

    2016-01-01

    Açai (Euterpe oleracea Mart.), a fruit from the Amazon region, has emerged as a promising source of polyphenols. Açai consumption has been increasing owing to ascribed health benefits and antioxidant properties; however, its effects on hepatic injury are limited. In this study, we evaluated the antioxidant effect of filtered açai pulp on the expression of paraoxonase (PON) isoforms and PON1 activity in rats with nonalcoholic fatty liver disease (NAFLD). The rats were fed a standard AIN-93M (control) diet or a high-fat (HF) diet containing 25% soy oil and 1% cholesterol with or without açai pulp (2 g/day) for 6 weeks. Our results show that açai pulp prevented low-density lipoprotein (LDL) oxidation, increased serum and hepatic PON1 activity, and upregulated the expression of PON1 and ApoA-I in the liver. In HF diet-fed rats, treatment with açai pulp attenuated liver damage, reducing fat infiltration and triglyceride (TG) content. In rats receiving açai, increased serum PON1 activity was correlated with a reduction in hepatic steatosis and hepatic injury. These findings suggest the use of açai as a potential therapy for liver injuries, supporting the idea that dietary antioxidants are a promising approach to enhance the defensive systems against oxidative stress. PMID:27642496

  13. Açai (Euterpe oleracea Mart.) Upregulates Paraoxonase 1 Gene Expression and Activity with Concomitant Reduction of Hepatic Steatosis in High-Fat Diet-Fed Rats.

    PubMed

    Pereira, Renata Rebeca; de Abreu, Isabel Cristina Mallosto Emerich; Guerra, Joyce Ferreira da Costa; Lage, Nara Nunes; Lopes, Juliana Márcia Macedo; Silva, Maísa; de Lima, Wanderson Geraldo; Silva, Marcelo Eustáquio; Pedrosa, Maria Lucia

    2016-01-01

    Açai (Euterpe oleracea Mart.), a fruit from the Amazon region, has emerged as a promising source of polyphenols. Açai consumption has been increasing owing to ascribed health benefits and antioxidant properties; however, its effects on hepatic injury are limited. In this study, we evaluated the antioxidant effect of filtered açai pulp on the expression of paraoxonase (PON) isoforms and PON1 activity in rats with nonalcoholic fatty liver disease (NAFLD). The rats were fed a standard AIN-93M (control) diet or a high-fat (HF) diet containing 25% soy oil and 1% cholesterol with or without açai pulp (2 g/day) for 6 weeks. Our results show that açai pulp prevented low-density lipoprotein (LDL) oxidation, increased serum and hepatic PON1 activity, and upregulated the expression of PON1 and ApoA-I in the liver. In HF diet-fed rats, treatment with açai pulp attenuated liver damage, reducing fat infiltration and triglyceride (TG) content. In rats receiving açai, increased serum PON1 activity was correlated with a reduction in hepatic steatosis and hepatic injury. These findings suggest the use of açai as a potential therapy for liver injuries, supporting the idea that dietary antioxidants are a promising approach to enhance the defensive systems against oxidative stress.

  14. Comparative toxicology of tetrachlorobiphenyls in mink and rats. I. Changes in hepatic enzyme activity and smooth endoplasmic reticulum volume

    SciTech Connect

    Gillette, D.M.; Corey, R.D.; Helferich, W.G.; McFarland, J.M.; Lowenstine, L.J.; Moody, D.E.; Hammock, B.D.; Shull, L.R.

    1987-01-01

    Mink have been shown previously to be extraordinarily sensitive to polychlorinated biphenyls (PCBs) and related classes of halogenated hydrocarbons. This study explored several aspects of the acute response of mink to two purified tetrachlorobiphenyl (TCB) congeners and compared their response with that of the rat, a less sensitive and more thoroughly studied species. Young female pastel mink and young female Sprague-Dawley rats received three daily intraperitoneal injections with equimolar doses of either 2,4,2',4'-TCB or 3,4,3',4'-TCB, and were sacrificed after 7 days. Two control groups were used for each species; one was allowed free access to food and the other was pair-fed to the 3,4,3',4'-TCB treatment group. Rats remained clinically normal, while mink treated with 3,4,3',4'-TCB developed severe anorexia, diarrhea, and melena. Both species had significant increases in hepatic cytochrome P-450 content and the characteristic shift in the spectral maxima from 450 to 448 nm in the 3,4,3',4'-TCB- but not in the 2,4,2',4'-TCB-treated animals. Rats but not mink had increased activities of several hepatic monooxygenases in response to both congeners while microsomal epoxide hydrolase was increased in rats after 2,4,2',4'-TCB and in mink after 3,4,3',4'-TCB. Significant increases in the relative volume of smooth endoplasmic reticulum within hepatocytes of 2,4,2',4'-TCB-treated rats but not mink were confirmed by ultrastructural morphometry. Accumulation of both congeners was greater in adipose tissue than in the liver of either species. In both species, concentrations in adipose tissue were much greater for 2,4,2',4'-TCB than for 3,4,3',4'-TCB. PCB toxicosis in mink, as in other species, appeared to be dependent on isomeric arrangement of chlorine substituents. However, unlike other species, the toxicosis was not associated with biochemical or morphological evidence of hepatic enzyme induction.

  15. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis.

    PubMed

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-11-12

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF-β1) initiates HBV-associated fibrogenesis. The mechanism of TGF-β1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-β1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-β1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-β1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-β1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-β1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF-β1 synthesis. These findings indicate that TGF-β1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis.

  16. Alteration of N-glycoproteins/N-glycosites in human hepatic stellate cells activated with transforming growth factor-β1.

    PubMed

    Qin, Y; Wang, Q; Zhong, Y; Zhao, F; Wu, F; Wang, Y; Ma, T; Liu, C; Bian, H; Li, Z

    2016-03-20

    Proteins N-glycosylation is significantly increased in the activated human hepatic stellate cells (HSCs) stimulated by transforming growth factor-β1 (TGF-β1) compared to the quiescent HSCs according to our previous study. However, little is known about the alteration of N-glycoprotein profiles in the activated HSCs. Profiles of N-glycopeptides / N-glycoproteins / N-glycosites in LX-2 cells, with and without activation by TGF-β1, were identified and compared using hydrazide chemistry enrichment coupled with liquid chromatography - mass spectrometry analysis. Western blot and immunohistochemistry were further used for validation. A total of 103 non-redundant N-glycopeptides, with 107 glycosylation sites from 86 N-glycoproteins, were identified in activated and quiescent LX-2 cells respectively. Among these, 23 proteins were known N-glycoproteins, and 58 were newly identified N-glycoproteins. In addition, 43 proteins (e.g., pigment epithelium-derived factor and clathrin heavy chain 1) were solely identified or up-regulated in the activated LX-2 cells, which participated in focal adhesion and glycosaminoglycan degradation pathways and were involved in interaction clusters of cytoskeletal proteins (e.g., myosin light chains and keratins). The increased expression of glucosamine (N-acetyl)-6-sulfatase and phospholipase C beta 2 and the decreased expression of zinc finger and BTB domain-containing protein 1 were validated in the activated compared to the quiescent LX-2 cells. In conclusion, increased expression of N-glycoproteins and N-glycosites play important roles in cellular contractility, signal transduction, and responses to stimuli in the activated HSCs, which might provide useful information for discovering novel molecular mechanism of HSC activation and therapeutic targets in liver fibrosis.

  17. Hepatitis Vaccines

    PubMed Central

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  18. Lack of anti-tumor activity by anti-VEGF treatments in hepatic hemangiomas.

    PubMed

    Lee, Minsu; Choi, Jin-Young; Lim, Joon Seok; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Honsoul

    2016-04-01

    Recently, anti-vascular endothelial growth factor (anti-VEGF) agents have been described in the literature as a valid treatment option for symptomatic liver hemangiomas, but only limited evidence supports this notion. The purpose of this study was to elucidate whether or not the administration of anti-VEGF agents can reliably achieve a size reduction in liver hemangiomas. We examined patients with incidental hemangiomas who received anti-angiogenic agents for the treatment of other malignancies. Our study population consisted of 17 colorectal cancer patients and one lung cancer patient carrying 21 hemangiomas who received bevacizumab, and seven renal cell carcinoma patients carrying nine hepatic hemangiomas who received sunitinib. We have measured the liver hemangioma volume on both the pre-treatment and post-treatment computed tomography images and then calculated the volume alteration rates. No statistically significant difference (P = 0.365) in the volume of the liver hemangiomas was observed before (1.1-168.8 cm(3); mean ± SD 19.8 ± 39.7 cm(3)) or after (1.2-163.6 cm(3); 19.3 ± 38.0 cm(3)) bevacizumab treatment. The volume reduction rate ranged from -35.0 to 11.2 % (mean ± SD -1.3 ± 10.8 %). The sunitinib treatment group also showed no statistically significant difference (P = 0.889) in hemangioma volume before (1.2-6.5 cm(3); 3.0 ± 1.8 cm(3)) or after (1.2-6.0 cm(3); 3.0-1.7 cm(3)) treatment. The volume reduction rate ranged from -13.3 to 7.7 % (median: mean ± SD -2.5 ± 6.6 %). We did not observe liver hemangioma shrinkage after bevacizumab or sunitinib treatment. Our data do not support the application of anti-VEGF agents for the treatment of hepatic hemangiomas.

  19. Hepatitis C virus infection inhibits a Src-kinase regulatory phosphatase and reduces T cell activation in vivo.

    PubMed

    Bhattarai, Nirjal; McLinden, James H; Xiang, Jinhua; Mathahs, M Meleah; Schmidt, Warren N; Kaufman, Thomas M; Stapleton, Jack T

    2017-02-24

    Among human RNA viruses, hepatitis C virus (HCV) is unusual in that it causes persistent infection in the majority of infected people. To establish persistence, HCV evades host innate and adaptive immune responses by multiple mechanisms. Recent studies identified virus genome-derived small RNAs (vsRNAs) in HCV-infected cells; however, their biological significance during human HCV infection is unknown. One such vsRNA arising from the hepatitis C virus (HCV) E2 coding region impairs T cell receptor (TCR) signaling by reducing expression of a Src-kinase regulatory phosphatase (PTPRE) in vitro. Since TCR signaling is a critical first step in T cell activation, differentiation, and effector function, its inhibition may contribute towards HCV persistence in vivo. The effect of HCV infection on PTPRE expression in vivo has not been examined. Here, we found that PTPRE levels were significantly reduced in liver tissue and peripheral blood mononuclear cells (PBMCs) obtained from HCV-infected humans compared to uninfected controls. Loss of PTPRE expression impaired antigen-specific TCR signaling, and curative HCV therapy restored PTPRE expression in PBMCs; restoring antigen-specific TCR signaling defects. The extent of PTPRE expression correlated with the amount of sequence complementarity between the HCV E2 vsRNA and the PTPRE 3' UTR target sites. Transfection of a hepatocyte cell line with full-length HCV RNA or with synthetic HCV vsRNA duplexes inhibited PTPRE expression, recapitulating the in vivo observation. Together, these data demonstrate that HCV infection reduces PTPRE expression in the liver and PBMCs of infected humans, and suggest that the HCV E2 vsRNA is a novel viral factor that may contribute towards viral persistence.

  20. Hepatitis C virus infection inhibits a Src-kinase regulatory phosphatase and reduces T cell activation in vivo

    PubMed Central

    Bhattarai, Nirjal; McLinden, James H.; Xiang, Jinhua; Mathahs, M. Meleah; Schmidt, Warren N.; Kaufman, Thomas M.

    2017-01-01

    Among human RNA viruses, hepatitis C virus (HCV) is unusual in that it causes persistent infection in the majority of infected people. To establish persistence, HCV evades host innate and adaptive immune responses by multiple mechanisms. Recent studies identified virus genome-derived small RNAs (vsRNAs) in HCV-infected cells; however, their biological significance during human HCV infection is unknown. One such vsRNA arising from the hepatitis C virus (HCV) E2 coding region impairs T cell receptor (TCR) signaling by reducing expression of a Src-kinase regulatory phosphatase (PTPRE) in vitro. Since TCR signaling is a critical first step in T cell activation, differentiation, and effector function, its inhibition may contribute towards HCV persistence in vivo. The effect of HCV infection on PTPRE expression in vivo has not been examined. Here, we found that PTPRE levels were significantly reduced in liver tissue and peripheral blood mononuclear cells (PBMCs) obtained from HCV-infected humans compared to uninfected controls. Loss of PTPRE expression impaired antigen-specific TCR signaling, and curative HCV therapy restored PTPRE expression in PBMCs; restoring antigen-specific TCR signaling defects. The extent of PTPRE expression correlated with the amount of sequence complementarity between the HCV E2 vsRNA and the PTPRE 3’ UTR target sites. Transfection of a hepatocyte cell line with full-length HCV RNA or with synthetic HCV vsRNA duplexes inhibited PTPRE expression, recapitulating the in vivo observation. Together, these data demonstrate that HCV infection reduces PTPRE expression in the liver and PBMCs of infected humans, and suggest that the HCV E2 vsRNA is a novel viral factor that may contribute towards viral persistence. PMID:28235043

  1. Glutathione peroxidase 1 deficiency attenuates concanavalin A-induced hepatic injury by modulation of T-cell activation

    PubMed Central

    Lee, D H; Son, D J; Park, M H; Yoon, D Y; Han, S B; Hong, J T

    2016-01-01

    Concanavalin A (Con A)-induced hepatitis model is well-established experimental T cell-mediated liver disease. Reactive oxygen species (ROS) is associated with T-cell activation and proliferation, but continued ROS exposure induces T-cell hyporesponsiveness. Because glutathione peroxidase 1 (Gpx1) is an antioxidant enzyme and is involved in T-cell development, we investigated the role of Gpx1 during Con A-induced liver injury in Gpx1 knockout (KO) mice. Male wild-type (WT) mice and Gpx1 KO mice were intravenously injected with Con A (10 mg/kg), and then killed after 8 h after Con A injection. Serum levels of aspartate transaminase and alanine transaminase were measured to assess hepatic injury. To identify that Gpx1 affects T cell-mediated inflammation, we pretreated Gpx1 inhibitor to Human Jurkat T cells then treated Con A. Con A-induced massive liver damage in WT mice but its damage was attenuated in Gpx1 KO mice. Con A-induced Th1 cytokines such as tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin (IL)-2 were also decreased in the liver and spleen of Gpx1 KO mice compared with WT mice. In Jurkat T cells, Con A-induced mRNA levels of IL-2, IFN-γ and TNF-α were downregulated by pretreatment of Gpx inhibitor, mercaptosuccinic acid. We also observed that Gpx1 KO mice showed increasing oxidative stress in the liver and spleen compared with WT mice. These results suggest that Gpx1 deficiency attenuates Con A-induced liver injury by induction of T-cell hyporesponsiveness through chronic ROS exposure. PMID:27124582

  2. Effects of thyroid hormone (thyroxine) and testosterone on hepatic 11beta-hydroxysteroid dehydrogenase mRNA and activity in pubertal hypothyroid male rats.

    PubMed

    Liu, Y J; Nakagawa, Y; Toya, K; Saegusa, H; Nasuda, K; Endoh, A; Ohzeki, T

    1998-04-01

    To investigate the effects of thyroid hormone and testosterone on 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), we measured changes in hepatic 11beta-dehydrogenase activity and its mRNA levels in pubertal methimazole (MMI)-induced hypothyroid male rats following treatment with thyroxine ([T4] 50 microg/kg/d) or testosterone (250 microg/d) for 14 days. Hypothyroidism in male rats markedly reduced hepatic 11beta-HSD1 mRNA levels and serum testosterone concentrations (P < .01). Subcutaneous injection of T4 in the hypothyroid rats significantly (P < .01) increased hepatic 11beta-HSD1 mRNA to approximately normal levels and simultaneously increased serum testosterone levels. However, the same daily dose of T4 administered to castrated male hypothyroid rats for 14 days did not elevate hepatic 11beta-HSD1 activity. Treatment with testosterone for 14 days in castrated hypothyroid male rats and rats without gonadectomy significantly (P < .01) increased the enzyme activity without administration of T4. Variations in hepatic 11beta-HSD1 activity were demonstrated to be accompanied by changes in serum testosterone levels in the rats following alteration of the thyroid hormone state. These results suggest that the effect of T4 in increasing the subnormal 11beta-HSD1 gene expression in hypothyroid male rats is mediated by its ability to increase testosterone production in these rats, because in castrated hypothyroid rats, T4 does not elevate 11beta-HSD1 gene expression.

  3. The effect of the P1 side chain on the binding of optimized carboxylate and activated carbonyl inhibitors of the hepatitis C virus NS3 protease.

    PubMed

    Kawai, Stephen H; LaPlante, Steven R; Llinàs-Brunet, Montse; Hucke, Oliver

    2010-07-01

    Peptidyl inhibitors of the hepatitis C virus NS3 protease hold much promise as direct-acting antiviral agents against hepatitis C infection. The optimization of N-terminal cleavage products, found to exhibit activity (product inhibition) against the enzyme, has led to potent tripeptide inhibitors that bear free C-terminal carboxylate groups. An analogous activated carbonyl compound (pentafluoroethyl ketone) bearing a P1 norvaline (Nva) was found to possess comparable activity against hepatitis C virus protease. However, an analogue bearing an aminocyclopropylcarboxylic acid (Acca) P1 residue exhibited very poor activity. (19)F-NMR studies indicate that the propensity of the Acca-derived activated carbonyl to form hemiketals is only slightly reduced compared with that of a P1 Nva equivalent. These results, as well as molecular modeling studies, argue against steric hindrance of the nucleophilic attack of Ser-139 accounting for the poor mechanism-based inhibition by the former. We hypothesize that the conformational properties of the respective C-termini in the context of an adaptable active site account for the divergent P1 structure-activity relationships.

  4. Dietary freshwater clam (Corbicula fluminea) extract suppresses accumulation of hepatic lipids and increases in serum cholesterol and aminotransferase activities induced by dietary chloretone in rats.

    PubMed

    Chijimatsu, Takeshi; Umeki, Miki; Kobayashi, Satoru; Kataoka, Yutaro; Yamada, Koji; Oda, Hiroaki; Mochizuki, Satoshi

    2015-01-01

    We investigated the ameliorative effect of freshwater clam extract (FCE) on fatty liver, hypercholesterolemia, and liver injury in rats exposed to chloretone. Furthermore, we examined the effects of major FCE components (fat and protein fractions) to determine the active components in FCE. Chloretone increased serum aminotransferase activities and led to hepatic lipid accumulation. Serum aminotransferase activities and hepatic lipid content were lower in rats fed total FCE or fat/protein fractions of FCE. Expression of fatty acid synthase and fatty acid desaturase genes was upregulated by chloretone. Total FCE and fat/protein fractions of FCE suppressed the increase in gene expression involved in fatty acid synthesis. Serum cholesterol levels increased twofold upon chloretone exposure. Total FCE or fat/protein fractions of FCE showed hypocholesterolemic effects in rats with hypercholesterolemia induced by chloretone. These suggest that FCE contains at least two active components against fatty liver, hypercholesterolemia, and liver injury in rats exposed to chloretone.

  5. Variation in hepatic aryl hydrocarbon hydroxylase activity in flounder, Platichthys flesus: A baseline study

    NASA Astrophysics Data System (ADS)

    Tarlebø, J.; Solbakken, J. E.; Palmork, K. H.

    1985-06-01

    This investigation is concerned with the natural variations in aryl hydrocarbon hydroxylase (AHH) activity of flounder ( Platichthys flesus L.) throughout the year. A general trend towards higher activity in males was observed. It became significant during gonadal maturation, a period during which the activity in females was inhibited. Addition of α-naphthoflavone inhibited AHH activity except in females with maturing gonads. Enzyme activity measured at the optimal temperature for incubation showed highest activity during spring followed by a significant decrease during summer. Activity increased again during autumn, followed by a second decrease in the winter season. When activity was calculated based on ambient water temperature at time of sampling, smaller fluctuations between different seasons were observed; the only significant variation was high activity in June. The results obtained indicate that AHH activity is affected by both exogenous and endogenous factors, which should be taken into consideration if AHH activity is used as a biological indicator of marine pollution effects.

  6. Effect of copper chloride in vitro and in vivo on the hepatic EROD activity in the fish Dicentrarchus labrax

    SciTech Connect

    Stien, X.; Risso, C.; Gnassia-Barelli, M.; Romeo, M.; LaFaurie, M.

    1997-02-01

    The effect of copper chloride was studied on the hepatic microsomal 7-ethoxyresorufin-O-deethylase (EROD) activity of the fish Dicentrarchus labrax intraperitoneally injected with benzo[a]pyrene (BaP). In vitro experiments showed that copper significantly decreased EROD activity, and IC50 was estimated at 50 {micro}g Cu/L. The apparent Michaelis constant (K{sub m}) of cytochrome P4501A was constant, whereas maximum velocity (V{sub max}) decreased as a function of copper added to the incubation medium. (K{sub m}) of nicotinamide adenine dinucleotide phosphate [NADPH]-cytochrome P450 reductase increased as a function of copper concentration, whereas V{sub max} remained constant. Absorption spectra showed that the amount of cytochrome P420s increased as a function of copper concentrations added to the medium at the expense of cytochrome P450s. The injection of copper and BaP to fish decreased EROD activity compared with the injection of BaP alone. An increase of immunoquantified CYP1A content measured by Western blotting was noted in microsomes of fish injected with BaP compared with controls. In the case of fish treated with copper and BaP, the band was less intense and accompanied by another band of lower molecular weight. The destruction of the native P450s spectrophotometrically measured in the presence of copper implied that the catalytic activity would be diminished. This was confirmed by decreased EROD activity after either in vitro additions or in vivo treatment with copper. Moreover, immunodetection experiments suggested that the decrease of the catalytic activity resulted more from cytochrome P450s loss than from direct inhibition of EROD activity by copper.

  7. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    PubMed

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  8. Evaluation on anti-hepatitis viral activity of Vitis vinifer L.

    PubMed

    Liu, Tao; Zhao, Jun; Li, Haibo; Ma, Long

    2010-10-22

    Suosuo grape (Vitis vinifer L) is traditionally used as a therapeutic agent for measles and hepatitis by the ethnic Uighurs. This work aimed to investigate the anti-HBV effect of total triterpene (VTT), total flavonoids (VTF) and total polysaccharides (VTP) from Suosuo grape, and their synergistic effects were also tested. The viral antigens of cellular secretion, HBsAg and HBeAg, were determined by enzyme linked immunosorbent assay (ELISA).The quantity of HBV-DNA released in the supernatant was assayed by real-time PCR. It was found that it effectively suppressed the secretion of HBsAg and HBeAg from HepG2.2.15 cells in a dose-dependent manner, as well as the HBV DNA. The results of orthogonal design experiment showed that the combination of VTT 20 μg/mL, VTF 50 μg/mL and VTP 50 μg/mL had the best optimistic inhibitory effects on HBeAg secretion.

  9. Detailed computational study of the active site of the hepatitis C viral RNA polymerase to aid novel drug design.

    PubMed

    Barakat, Khaled H; Law, John; Prunotto, Alessio; Magee, Wendy C; Evans, David H; Tyrrell, D Lorne; Tuszynski, Jack; Houghton, Michael

    2013-11-25

    The hepatitis C virus (HCV) RNA polymerase, NS5B, is a leading target for novel and selective HCV drug design. The enzyme has been the subject of intensive drug discovery aimed at developing direct acting antiviral (DAA) agents that inhibit its activity and hence prevent the virus from replicating its genome. In this study, we focus on one class of NS5B inhibitors, namely nucleos(t)ide mimetics. Forty-one distinct nucleotide structures have been modeled within the active site of NS5B for the six major HCV genotypes. Our comprehensive modeling protocol employed 287 different molecular dynamics simulations combined with the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) methodology to rank and analyze these structures for all genotypes. The binding interactions of the individual compounds have been investigated and reduced to the atomic level. The present study significantly refines our understanding of the mode of action of NS5B-nucleotide-inhibitors, identifies the key structural elements necessary for their activity, and implements the tools for ranking the potential of additional much needed novel inhibitors of NS5B.

  10. LUC7L3/CROP inhibits replication of hepatitis B virus via suppressing enhancer II/basal core promoter activity

    PubMed Central

    Li, Yuan; Ito, Masahiko; Sun, Suofeng; Chida, Takeshi; Nakashima, Kenji; Suzuki, Tetsuro

    2016-01-01

    The core promoter of hepatitis B virus (HBV) genome is a critical region for transcriptional initiation of 3.5 kb, pregenome and precore RNAs and for the viral replication. Although a number of host-cell factors that potentially regulate the viral promoter activities have been identified, the molecular mechanisms of the viral gene expression, in particular, regulatory mechanisms of the transcriptional repression remain elusive. In this study, we identified LUC7 like 3 pre-mRNA splicing factor (LUC7L3, also known as hLuc7A or CROP) as a novel interacting partner of HBV enhancer II and basal core promoter (ENII/BCP), key elements within the core promoter, through the proteomic screening and found that LUC7L3 functions as a negative regulator of ENII/BCP. Gene silencing of LUC7L3 significantly increased expression of the viral genes and antigens as well as the activities of ENII/BCP and core promoter. In contrast, overexpression of LUC7L3 inhibited their activities and HBV replication. In addition, LUC7L3 possibly contributes to promotion of the splicing of 3.5 kb RNA, which may also be involved in negative regulation of the pregenome RNA level. This is the first to demonstrate the involvement of LUC7L3 in regulation of gene transcription and in viral replication. PMID:27857158

  11. Hepatitis B Virus Induces Expression of Antioxidant Response Element-regulated Genes by Activation of Nrf2*

    PubMed Central

    Schaedler, Stephanie; Krause, Janis; Himmelsbach, Kiyoshi; Carvajal-Yepes, Monica; Lieder, Franziska; Klingel, Karin; Nassal, Michael; Weiss, Thomas S.; Werner, Sabine; Hildt, Eberhard

    2010-01-01

    The expression of a variety of cytoprotective genes is regulated by short cis-acting elements in their promoters, called antioxidant response elements (AREs). A central regulator of ARE-mediated gene expression is the NF-E2-related factor 2 (Nrf2). Human hepatitis B virus (HBV) induces a strong activation of Nrf2/ARE-regulated genes in vitro and in vivo. This is triggered by the HBV-regulatory proteins (HBx and LHBs) via c-Raf and MEK. The Nrf2/ARE-mediated induction of cytoprotective genes by HBV results in a better protection of HBV-positive cells against oxidative damage as compared with control cells. Furthermore, there is a significantly increased expression of the Nrf2/ARE-regulated proteasomal subunit PSMB5 in HBV-positive cells that is associated with a decreased level of the immunoproteasome subunit PSMB5i. In accordance with this finding, HBV-positive cells display a higher constitutive proteasome activity and a decreased activity of the immunoproteasome as compared with control cells even after interferon α/γ treatment. The HBV-dependent induction of Nrf2/ARE-regulated genes might ensure survival of the infected cell, shape the immune response to HBV, and thereby promote establishment of the infection. PMID:20956535

  12. Hepatoprotective Activity of Methanolic Extract of Bauhinia purpurea Leaves against Paracetamol-Induced Hepatic Damage in Rats

    PubMed Central

    Yahya, F.; Mamat, S. S.; Kamarolzaman, M. F. F.; Seyedan, A. A.; Jakius, K. F.; Mahmood, N. D.; Shahril, M. S.; Suhaili, Z.; Mohtarrudin, N.; Susanti, D.; Somchit, M. N.; Teh, L. K.; Salleh, M. Z.; Zakaria, Z. A.

    2013-01-01

    In an attempt to further establish the pharmacological properties of Bauhinia purpurea (Fabaceae), hepatoprotective potential of methanol extract of B. purpurea leaves (MEBP) was investigated using the paracetamol- (PCM-) induced liver toxicity in rats. Five groups of rats (n = 6) were used and administered orally once daily with 10% DMSO (negative control), 200 mg/kg silymarin (positive control), or MEBP (50, 250, and 500 mg/kg) for 7 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay with the total phenolic content (TPC) also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of the normal hepatic structural was observed in group pretreated with silymarin and MEBP. Hepatotoxic rats pretreated with silymarin or MEBP exhibited significant decrease (P < 0.05) in ALT and AST enzyme level. Moreover, the extract also exhibited antioxidant activity and contained high TPC. In conclusion, MEBP exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and high phenolic content and thus warrants further investigation. PMID:23853662

  13. Hepatic ethoxyresorufin-O-deethylase activity and inducibility in wild populations of double-crested cormorants (Phalacrocorax auritus)

    SciTech Connect

    Davis, J.A.; Fry, D.M.; Wilson, B.W.

    1997-07-01

    Microplate fluorometric techniques were used to measure ethoxyresorufin O-deethylase (EROD) activity in hepatic microsomes and primary hepatocyte cultures from individual wild double-crested cormorant (Phalacrocorax auritus) embryos. Embryos were collected in 1993 and 1994 from Humboldt Bay and San Francisco Bay (CA, USA) and a reference site in coastal Oregon (USA). Median microsomal EROD activities in embryos collected from San Francisco Bay (in both 1993 and 1994) and from Humboldt Bay (1994) were four- to eightfold higher than the reference site median. This degree of induction suggests that cormorant embryos in the two California locations were exposed to concentrations of dioxin-like compounds that are at the threshold for toxic effects in this species. Substantial variation in the EROD response in cultured hepatocytes was observed between individuals, populations, and the two bird species tested (cormorants and chickens [Gallus gallus]). Although most of the cormorant individuals displayed a consistent dose-response profile, a few individuals were uninducible, showing no appreciable increase over basal activity with increasing dose of inducer. Composite dose-response curves for two cormorant colonies appeared to be divergent in spite of small sample sizes, indicating that inducibility can also vary at the population level. These observations suggest that considerable variability in pollutant metabolism and sensitivity associated with single enzyme systems may exist within wild populations and species.

  14. Feature Hepatitis: Hepatitis Can Strike Anyone

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Feature Hepatitis Hepatitis Can Strike Anyone Past Issues / Spring 2009 Table ... from all walks of life are affected by hepatitis, especially hepatitis C, the most common form of ...

  15. Hepatitis A through E (Viral Hepatitis)

    MedlinePlus

    ... travelers How can hepatitis B be prevented? The hepatitis B vaccine offers the best protection. All infants and unvaccinated ... should receive hepatitis B immune globulin and the hepatitis B vaccine within 12 hours of birth to help prevent ...

  16. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice

    PubMed Central

    Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin

    2016-01-01

    Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect. PMID:28029143

  17. Active-target T1-weighted MR Imaging of Tiny Hepatic Tumor via RGD Modified Ultra-small Fe3O4 Nanoprobes

    PubMed Central

    Jia, Zhengyang; Song, Lina; Zang, Fengchao; Song, Jiacheng; Zhang, Wei; Yan, Changzhi; Xie, Jun; Ma, Zhanlong; Ma, Ming; Teng, Gaojun; Gu, Ning; Zhang, Yu

    2016-01-01

    Developing ultrasensitive contrast agents for the early detection of malignant tumors in liver is highly demanded. Constructing hepatic tumors specific targeting probes could provide more sensitive imaging information but still faces great challenges. Here we report a novel approach for the synthesis of ultra-small Fe3O4 nanoparticles conjugated with c(RGDyK) and their applications as active-target T1-weighted magnetic resonance imaging (MRI) contrast agent (T1-Fe3O4) for imaging tiny hepatic tumors in vivo. RGD-modified T1-Fe3O4 nanoprobes exhibited high r1 of 7.74 mM-1s-1 and ultralow r2/r1 of 2.8 at 3 T, reflecting their excellent T1 contrast effect at clinically relevant magnetic field. High targeting specificity together with favorable biocompatibility and strong ability to resist against non-specific uptake were evaluated through in vitro studies. Owing to the outstanding properties of tumor angiogenesis targeting with little phagocytosis in liver parenchyma, hepatic tumor as small as 2.2 mm was successfully detected via the T1 contrast enhancement of RGD-modified T1-Fe3O4. It is emphasized that this is the first report on active-target T1 imaging of hepatic tumors, which could not only significantly improve diagnostic sensitivity, but also provide post therapeutic assessments for patients with liver cancer. PMID:27570550

  18. Mechanisms of Hepatic Fibrogenesis

    PubMed Central

    Friedman, Scott L.

    2010-01-01

    Substantial improvements in the treatment of chronic liver disease have accelerated interest in uncovering the mechanisms underlying hepatic fibrosis and its resolution. Activation of resident hepatic stellate cells into proliferative, contractile, and fibrogenic cells in liver injury remains a dominant theme driving the field. However, several new areas of rapid progress in the past 5–10 years also have taken root, including: (1) identification of different fibrogenic populations apart from resident stellate cells, for example, portal fibroblasts, fibrocytes, and bone-marrow– derived cells, as well as cells derived from epithelial mesenchymal transition; (2) emergence of stellate cells as finely regulated determinants of hepatic inflammation and immunity; (3) elucidation of multiple pathways controlling gene expression during stellate cell activation including transcriptional, post-transcriptional, and epigenetic mechanisms; (4) recognition of disease-specific pathways of fibrogenesis; (5) re-emergence of hepatic macrophages as determinants of matrix degradation in fibrosis resolution and the importance of matrix cross-linking and scar maturation in determining reversibility; and (6) hints that hepatic stellate cells may contribute to hepatic stem cell behavior, cancer, and regeneration. Clinical and translational implications of these advances have become clear, and have begun to impact significantly on the management and outlook of patients with chronic liver disease. PMID:18471545

  19. Hepatitis C Test

    MedlinePlus

    ... Hepatitis C Antibody; Anti-HCV; HCV-PCR; HCV-RNA; Hepatitis C Viral Load Formal name: Viral Hepatitis C Antibody Screen; Viral Hepatitis C RNA by PCR; Hepatitis C Virus Genotype Related tests: ...

  20. Alcohol and Hepatitis

    MedlinePlus

    ... Home » Living with Hepatitis » Daily Living: Alcohol Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one of the ...

  1. Hepatitis C: Clinical Trials

    MedlinePlus

    ... and Public Home » Hepatitis C » Treatment Decisions Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... can I find out about participating in a hepatitis C clinical trial? Many trials are being conducted ...

  2. Hepatitis (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Hepatitis KidsHealth > For Parents > Hepatitis Print A A A ... to Call the Doctor en español Hepatitis About Hepatitis The word hepatitis simply means an inflammation of ...

  3. Travelers' Health: Hepatitis B

    MedlinePlus

    ... Chapter 3 - Hepatitis A Chapter 3 - Hepatitis C Hepatitis B Francisco Averhoff INFECTIOUS AGENT Hepatitis B is ... their exposures. Map 3-04. Prevalence of chronic hepatitis B virus infection among adults PDF Version (printable) ...

  4. Hypoxia-Inducible Factor-1alpha and MAPK Co-Regulate Activation of Hepatic Stellate Cells upon Hypoxia Stimulation

    PubMed Central

    Guan, Fei; Xiao, Yan; Deng, Jing; Chen, Huoying; Chen, Xiaolin; Li, Jianrong; Huang, Hanju; Shi, Chunwei

    2013-01-01

    Background Hepatic stellate cell (HSC) plays a key role in pathogenesis of liver fibrosis. During liver injury, hypoxia in local micro-environment is inevitable. Hif-1α is the key transcriptional regulation factor that induces cell’s adaptive responses to hypoxia. Recently, it was reported that MAPK is involved in regulation of Hif-1α activity. Aims To explore whether Hif-1α regulates HSC activation upon hypoxia, and whether MAPK affects Hif-1α-regulated signaling cascades, thus providing new targets for preventing liver fibrosis. Methods Hif-1α expression in livers of Schistosomajaponicum infected BALB/c mice was detected with western blot and immunohistochemistry. A rat cell line of HSC, HSC-T6, was cultured in 1% oxygen. HSC activation, including F-actin reorganization, increase of vimentin and α-SMA, was detected with western blot or immunocytochemistry. Cells were transfected with specific siRNA to Hif-1α, expression of activation markers, transcription of fibrosis-promoting cytokines, secretion of collagen I were detected with western blot, Real Time PCR and ELISA. Lysate from HSC-T6 cells pretreated with PD98059, a specific MEK1 pharmacological inhibitor, was subjected to detect Hif-1α ubiquitination and nuclear translocation with western blot and immunoprecipitation. Results and Conclusions Hif-1α apparently increased in liver tissues of Schistosomajaponicum infected mice. 1% O2 induced F-actin reorganization, increase of Hif-1α, vimentin and α-SMA in HSC-T6 cells. Hif-1α Knockdown inhibited HSC-T6 activation, transcription of IL-6, TGF-β and CTGF and secretion of collagen I from HSC-T6 cells upon hypoxia. Inhibition of MAPK phosphorylation enhanced Hif-1α ubiquitination, and inhibited Hif-1α translocation into nucleus. Conclusively, Hif-1α and MAPK participate in HSC activation upon hypoxia. PMID:24040163

  5. The hepatitis B virus X protein activates nuclear factor of activated T cells (NF-AT) by a cyclosporin A-sensitive pathway.

    PubMed Central

    Lara-Pezzi, E; Armesilla, A L; Majano, P L; Redondo, J M; López-Cabrera, M

    1998-01-01

    The X gene product of the human hepatitis B virus (HBx) is a transcriptional activator of various viral and cellular genes. We recently have determined that the production of tumor necrosis factor-alpha (TNF-alpha) by HBV-infected hepatocytes is transcriptionally up-regulated by HBx, involving nuclear factor of activated T cells (NF-AT)-dependent activation of the TNF-alpha gene promoter. Here we show that HBx activates NF-AT by a cyclosporin A-sensitive mechanism involving dephosphorylation and nuclear translocation of the transcription factor. Luciferase gene expression assays demonstrated that HBx transactivates transcription through NF-AT-binding sites and activates a Gal4-NF-AT chimeric protein. DNA-protein interaction assays revealed that HBx induces the formation of NF-AT-containing DNA-binding complexes. Immunofluorescence analysis demonstrated that HBx induces the nuclear translocation of NF-AT, which can be blocked by the immunosuppressive drug cyclosporin A. Furthermore, immunoblot analysis showed that the HBx-induced activation and translocation of NF-AT are associated with its dephosphorylation. Thus, HBx may play a relevant role in the intrahepatic inflammatory processes by inducing locally the expression of cytokines that are regulated by NF-AT. PMID:9843511

  6. Regulatory and activated effector T cells in chronic hepatitis C virus: Relation to autoimmunity

    PubMed Central

    Fouad, Hanan; El Raziky, Maissa; Hassan, Eman Medhat; Aziz, Ghada Mahmoud Abdel; Darweesh, Samar K; Sayed, Ahmed Reda

    2016-01-01

    AIM To investigate how Tregs are regulated in chronic hepatitis C virus (HCV) patients via assessment of Tregs markers (granzyme 2, CD69 and FoxP3), Teffs markers [TNFRSF4 (OX40), INFG] and CD4, CD25 genes. METHODS A prospective study was conducted on 120 subjects divided into 4 groups: Group I (n = 30) treatment naïve chronic HCV patients; Group II (n = 30) chronic HCV treated with Peg/Riba; Group III (n = 30) chronic HCV associated with non-organ specific autoantibody and Group IV (n = 30) healthy persons as a control group. Tregs and Teffs markers were assessed in peripheral blood mononuclear cells by quantitative real time reverse transcriptase-polymerase chain reaction. RESULTS Chronic HCV patients exhibited significant higher levels of both Teffs and Tregs in comparison to healthy control group. Tregs markers were significantly decreased in Peg/Riba treated HCV patients in comparison to treatment naïve HCV group. In HCV patients with antinuclear antibody (ANA) +ve, Tregs markers were significantly decreased in comparison to all other studied groups. Teffs markers were significantly elevated in all HCV groups in comparison to control and in HCV group with ANA +ve in comparison to treatment naïve HCV group. CONCLUSION Elevated Tregs cells in chronic HCV patients dampen both CD4+ and CD8+ autologous T cell immune response. Interferon-α and ribavirin therapy suppress proliferation of Tregs. More significant suppression of Tregs was observed in HCV patients with autoantibodies favoring pathological autoimmune response. PMID:27843539

  7. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    PubMed

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  8. Exercise-Induced Release of Pharmacologically Active Substances and Their Relevance for Therapy of Hepatic Injury

    PubMed Central

    Schon, Hans-Theo; Weiskirchen, Ralf

    2016-01-01

    Chronic liver disease (CLD) features constant parenchymal injury and repair together with an increasing hepatic impairment, finally leading to fibrosis and cirrhosis and a heightened risk of hepatocellular carcinoma (HCC). Closely related to the rise in obesity, the worldwide prevalence of nonalcoholic fatty liver disease, the most common form of CLD, has reached an epidemic dimension and is estimated to afflict up to 46% of the general population, including more than one out of three U.S. citizens. Up to now there is no effective drug treatment available, which is why recommendations encompass both exercise programs and changes in dietary habits. Exercise is well-known for unleashing potent anti-inflammatory effects, which can principally counteract liver inflammation and chronic low-grade inflammation. This review article summarizes the underlying mechanisms responsible for the exercise-mediated anti-inflammatory effects, illustrates the application in animal models as well as in humans, and highlights the therapeutic value when possible. Based on the available results there is no doubt that exercise can even be beneficial in an advanced stage of liver disease and it is the goal of this review article to provide evidence for the therapeutic impact on fibrosis, cirrhosis, and HCC and to assess whether exercise might be of value as adjuvant therapy in the treatment of CLD. In principle, all exercise programs carried out in these high-risk patients should be guided and observed by qualified healthcare professionals to guarantee the patients’ safety. Nevertheless, it is also necessary to additionally determine the optimal amount and intensity of exercise to maximize its value, which is why further studies are essential. PMID:27625607

  9. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B sub 1

    SciTech Connect

    Aoyama, Toshifumi; Yamano, Shigeru; Gelboin, H.V.; Gonzalez, F.J. ); Guzelian, P.S. )

    1990-06-01

    Twelve forms of human hepatic cytochrome P450 were expressed in hepatoma cells by means of recombinant vaccinia viruses. The expressed P450s were analyzed for their abilities to activate the potent hepatocarcinogen aflatoxin B{sub 1} to metabolites having mutagenic or DNA-binding properties. Five forms, P450s IA2, IIA3, IIB7, IIIA3, and IIIA4, activated aflatoxin B{sub 1} to mutagenic metabolites as assessed by the production of His revertants of Salmonella typhimurium in the Ames test. The same P450s catalyzed conversion of aflatoxin B{sub 1} to DNA-bound derivatives as judged by an in situ assay in which the radiolabeled carcinogen was incubated with cells expressing the individual P450 forms. Seven other human P450s, IIC8, IIC9, IID6, IIE1, IIF1, and IIIA5, and IVB1, did not significantly activate aflatoxin B{sub 1} as measured by both the Ames test and the DNA-binding assay. Moreover, polyclonal anti-rat liver P450 antibodies that crossreact with individual human P450s IA2, IIA3, IIIA3, and IIIA4 each inhibited aflatoxin B{sub 1} activation catalyzed by human liver S-9 extracts. Inhibition ranged from as low as 10% with antibody against IIA3 to as high as 65% with antibody against IIIA3 and IIIA4. These results establish that metabolic activation of aflatoxin B{sub 1} in human liver involves the contribution of multiple forms of P450.

  10. Hepatic cells' mitotic and peritoneal macrophage phagocytic activities during Trypanosoma musculi infection in zinc-deficient mice.

    PubMed Central

    Humphrey, P. A.; Ashraf, M.; Lee, C. M.

    1997-01-01

    The effects of zinc deficiency on hepatic cell mitotic and peritoneal macrophage phagocytic activities were examined in mice infected with Trypanosoma musculi or immunized with parasitic products. On a full-complement or pair-fed diet, infected and homogenate-inoculated mice showed mitotic activity gains of 7.9% to 80.3% and 6.5% to 99.0%, respectively. Infected and homogenate-inoculated mice on a zinc-deficient diet showed 21.8% to 95.7% and 17.2% to 65.2%, respectively, more dividing liver cells compared with controls. In comparison to controls, macrophages isolated from infected and homogenate-immunized mice on full-complement or pair-fed diets had phagocytized 13.4% to 31.4% more latex particles from day 50 to 80. In the zinc-deficient group, macrophages isolated from infected mice had significant numbers of phagocytized latex particles (1.8% to 38.5%) from day 20 to day 80 compared with controls. The homogenate-immunized mice also had increased numbers (18.6 to 30.8%) of phagocytized latex particles. PMID:9145631

  11. Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids

    PubMed Central

    Song, Yeonhwa; Kim, Se-hyuk; Kim, Kang Mo; Choi, Eun Kyung; Kim, Joon; Seo, Haeng Ran

    2016-01-01

    Most Hepatocellular carcinoma (HCC) are resistant to conventional chemotherapeutic agents and remain an unmet medical need. Recently, multiple studies on the crosstalk between HCC and their tumor microenvironment have been conducted to overcome chemoresistance in HCC. In this study, we formed multicellular tumor spheroids (MCTS) to elucidate the mechanisms of environment-mediated chemoresistance in HCC. We observed that hepatic stellate cells (HSCs) in MCTS significantly increased the compactness of spheroids and exhibited strong resistance to sorafenib and cisplatin relative to other types of stromal cells. Increased collagen 1A1 (COL1A1) expression was apparent in activated HSCs but not in fibroblasts or vascular endothelial cells in MCTS. Additionally, COL1A1 deficiency, which was increased by co-culture with HSCs, decreased the cell-cell interactions and thereby increased the therapeutic efficacy of anticancer therapies in MCTS. Furthermore, losartan, which can inhibit collagen I synthesis, attenuated the compactness of spheroids and increased the therapeutic efficacy of anticancer therapies in MCTS. Meanwhile, activated HSCs facilitated HCC migration by upregulating matrix metallopeptidase 9 (MMP9) in MCTS. Collectively, crosstalk between HCC cells and HSCs promoted HCC chemoresistance and migration by increasing the expression of COL1A1 and MMP9 in MCTS. Hence, targeting HSCs might represent a promising therapeutic strategy for liver cancer therapy. PMID:27853186

  12. Antrodia cinnamomea profoundly exalted the reversion of activated hepatic stellate cells by the alteration of cellular proteins.

    PubMed

    Chen, Yi-Ren; Chang, Kai-Ting; Tsai, May-Jywan; Lee, Chia-Hung; Huang, Kao-Jean; Cheng, Henrich; Ho, Yen-Peng; Chen, Jian-Chyi; Yang, Hsueh-Hui; Weng, Ching-Feng

    2014-07-01

    The direct modulation of Antrodia cinnamomea (AC) on the prominent role of liver fibrosis-hepatic stellate cells (HSCs) in situ remains unclear. Firstly, the administration of A. cinnamomea mycelial extract (ACME) could improve liver morphology and histological changes including collagen formation and GPT activity in the liver of thioacetamide (TAA)-injured rats. The morphology and fatty acid restore of TAA-induced HSCs (THSCs) returned to the non-chemical induced HSCs (NHSCs) type as measured by immunofluorescence and Oil Red O staining. PPARγ was upregulated associated with the lowering of α-SMA protein in NHSC-ACME. ACME inhibited the MMP-2 activity in NHSCs by gelatin Zymography. After LC-MS/MS, the cytoskeleton (tubulin, lamin A) and heat shock protein 8 in NHSC-ACME, and guanylate kinase, brain-specific kinase, SG-II and p55 proteins were downregulated in THSC-ACME. Whereas MHC class II, SMC6 protein, and phospholipase D were upregulated in NHSC-ACME. Furthermore, PKG-1 was downregulated in NHSC-ACME and upregulated in THSC-ACME. SG-II and p55 proteins were downregulated in NHSC-ACME and THSC-ACME by Western blotting. Taken together, the beneficial effect of A. cinnamomea on the induction of HSC cellular proteins is potentially applied as an alternative and complementary medicine for the prevention and amelioration of a liver injury.

  13. Members of the Cyr61/CTGF/NOV Protein Family: Emerging Players in Hepatic Progenitor Cell Activation and Intrahepatic Cholangiocarcinoma

    PubMed Central

    Jorgensen, Marda; Song, Joanna; Zhou, Junmei; Liu, Chen

    2016-01-01

    Hepatic stem/progenitor cells (HPC) reside quiescently in normal biliary trees and are activated in the form of ductular reactions during severe liver damage when the replicative ability of hepatocytes is inhibited. HPC niches are full of profibrotic stimuli favoring scarring and hepatocarcinogenesis. The Cyr61/CTGF/NOV (CCN) protein family consists of six members, CCN1/CYR61, CCN2/CTGF, CCN3/NOV, CCN4/WISP1, CCN5/WISP2, and CCN6/WISP3, which function as extracellular signaling modulators to mediate cell-matrix interaction during angiogenesis, wound healing, fibrosis, and tumorigenesis. This study investigated expression patterns of CCN proteins in HPC and cholangiocarcinoma (CCA). Mouse HPC were induced by the biliary toxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Differential expression patterns of CCN proteins were found in HPC from DDC damaged mice and in human CCA tumors. In addition, we utilized reporter mice that carried Ccn2/Ctgf promoter driven GFP and detected strong Ccn2/Ctgf expression in epithelial cell adhesion molecule (EpCAM)+ HPC under normal conditions and in DDC-induced liver damage. Abundant CCN2/CTGF protein was also found in cytokeratin 19 (CK19)+ human HPC that were surrounded by α-smooth muscle actin (α-SMA)+ myofibroblast cells in intrahepatic CCA tumors. These results suggest that CCN proteins, particularly CCN2/CTGF, function in HPC activation and CCA development. PMID:27829832

  14. Blocking Notch signal in myeloid cells alleviates hepatic ischemia reperfusion injury by repressing the activation of NF-κB through CYLD

    PubMed Central

    Yu, Heng-Chao; Bai, Lu; Yang, Zhao-Xu; Qin, Hong-Yan; Tao, Kai-Shan; Han, Hua; Dou, Ke-Feng

    2016-01-01

    Ischemia-reperfusion (I/R) is a major reason of hepatocyte injury during liver surgery and transplantation. Myeloid cells including macrophages and neutrophils play important roles in sustained tissue inflammation and damage, but the mechanisms regulating myeloid cells activity have been elusive. In this study, we investigate the role of Notch signaling in myeloid cells during hepatic I/R injury by using a mouse model of myeloid specific conditional knockout of RBP-J. Myeloid-specific RBP-J deletion alleviated hepatic I/R injury. RBP-J deletion in myeloid cells decreased hepatocytes apoptosis after hepatic I/R injury. Furthermore, myeloid-specific RBP-J deletion led to attenuated inflammation response in liver after I/R injury. Consistently, Notch blockade reduced the production of inflammatory cytokines by macrophages in vitro. We also found that blocking Notch signaling reduced NF-κB activation and increased cylindromatosis (CYLD) expression and knockdown of CYLD rescued reduction of inflammatory cytokines induced by Notch blockade in macrophages during I/R injury in vitro. On the other hand, activation of Notch signaling in macrophages led to increased inflammatory cytokine production and NF-κB activation and decreased CYLD expression in vitro. These data suggest that activation of Notch signaling in myeloid cells aggravates I/R injury, by enhancing the inflammation response by NF-κB through down regulation of CYLD. PMID:27680285

  15. The Effect of Dietary Glycine on the Hepatic Tumor Promoting Activity of Polychlorinated Biphenyls (PCBs) in Rats

    PubMed Central

    Bunaciu, Rodica Petruta; Tharappel, Job C.; Lehmler, Hans-Joachim; Korwel, Izabela; Robertson, Larry W.; Srinivasan, Cidambi; Spear, Brett T.; Glauert, Howard P.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitious lipophilic environmental pollutants. Some of the PCB congeners and mixtures of congeners have tumor promoting activity in rat liver. The mechanism of their activity is not fully understood and is likely to be multifactorial. The aim of this study was to investigate if the resident liver macrophages, Kupffer cells, are important in the promoting activity of PCBs. The hypothesis of this study was that the inhibition of Kupffer cell activity would inhibit hepatic tumor promotion by PCBs in rats. To test our hypothesis, we studied the effects of Kupffer cell inhibition by dietary glycine (an inhibitor of Kupffer cell secretory activity) in a rat two-stage hepatocarcinogenesis model using 2,2’,4,4’,5,5’-hexachlorobiphenyl (PCB-153, a non-dioxin-like PCB) or 3,3’,4,4’-tetrachlorobiphenyl (PCB-77, a dioxin-like PCB) as promoters. Diethylnitrosamine (DEN, 150 mg/kg) was administered to female Sprague Dawley rats, which were then placed on an unrefined diet containing 5% glycine (or casein as nitrogen control) starting two weeks after DEN administration. On the third day after starting the diets, rats received PCB-77 (300 μmol/kg), PCB-153 (300 μmol/kg), or corn oil by i.p. injection. The rats received a total of 4 PCB injections, administered every 14 days. The rats were euthanized on the 10th day after the last PCB injection, and the formation of altered hepatic foci expressing placental glutathione S-transferase (PGST) and the rate of DNA synthesis in these foci and in the normal liver tissue were determined. Glycine did not significantly affect foci number or volume. PCB-153 did not significantly increase the focal volume, but increased the number of foci per liver, but only in the rats not fed glycine; PCB-77 increased both the foci number and their volume in both glycine-fed and control rats. Glycine did not alter the PCB content of the liver, but did increase the activity of 7-benzyloxyresorufin O

  16. Soluble egg antigens of Schistosoma japonicum induce senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway

    PubMed Central

    Chen, Jinling; Pan, Jing; Wang, Jianxin; Song, Ke; Zhu, Dandan; Huang, Caiqun; Duan, Yinong

    2016-01-01

    Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Recent findings suggest that senescence of activated HSCs might limit the development of liver fibrosis. Based on previously observed anti-fibrotic effects of soluble egg antigens from Schistosoma japonicum in vitro, we hypothesized that SEA might play a crucial role in alleviating liver fibrosis through promoting senescence of activated HSCs. We show here that SEA inhibited expression of α-SMA and pro-collagen I and promoted senescence of activated HSCs in vitro. In addition, SEA induced an increased expression of P-p53 and p21. Knockdown of p53 inhibited the expression of p21 and failed to induce senescence of activated-HSCs. Phosphorylated STAT3 was elevated upon SEA stimulation, while loss of STAT3 decreased the level of p53 and senescence of HSCs. Results from immunoprecipitation analysis demonstrated that SOCS3 might be involved in the SEA-induced senescence in HSCs through its interaction with p53. This study demonstrates the potential capacity of SEA in restricting liver fibrosis through promoting senescence in HSCs. Furthermore, a novel STAT3-p53-p21 pathway might participate in the observed SEA-mediated senescence of HSCs. Our results suggest that SEA might carry potential therapeutic effects of restraining liver fibrosis through promoting senescence. PMID:27489164

  17. Soluble Egg Antigens of Schistosoma japonicum Induce Senescence of Activated Hepatic Stellate Cells by Activation of the FoxO3a/SKP2/P27 Pathway

    PubMed Central

    Chen, Jinling; Zhu, Dandan; Wang, Jianxin; Sun, Xiaolei; Chen, Liuting; Wu, Liting

    2016-01-01

    Background Liver fibrosis was viewed as a reversible process. The activation of hepatic stellate cells (HSCs) is a key event in the process of liver fibrosis. The induction of senescence of HSCs would accelerate the clearance of the activated HSCs. Previously, we demonstrated that soluble egg antigens (SEA) of Schistosoma japonicum promoted the senescence of HSCs via STAT3/P53/P21 pathway. In this paper, our study was aimed to explore whether there are other signaling pathways in the process of SEA-induced HSCs aging and the underlying effect of SKP2/P27 signal on senescent HSCs. Methodology/Principal findings Human hepatic stellate cell line, LX-2 cells, were cultured and stimulated with SEA. Western blot and cellular immunofluorescence analysis were performed to determine the expression of senescence-associated protein, such as P27, SKP2 and FoxO3a. Besides, RNA interfering was applied to knockdown the expression of related protein. The senescence of HSCs was determined by senescence-associated β-gal staining. We found that SEA increased the expression of P27 protein, whereas it inhibited the expression of SKP2 and FoxO3a. Knockdown of P27 as well as overexpression of SKP2 both suppressed the SEA-induced senescence of HSCs. In addition, the nuclear translocation of FoxO3a from the nucleus to the cytoplasm was induced by SEA stimulation. Conclusions/Significance The present study demonstrates that SEA promotes HSCs senescence through the FoxO3a/SKP2/P27 pathway. PMID:28036393

  18. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    SciTech Connect

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.; Wright, Aaron T.

    2016-07-01

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomic analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.

  19. The herbal compound Songyou Yin (SYY) inhibits hepatocellular carcinoma growth and improves survival in models of chronic fibrosis via paracrine inhibition of activated hepatic stellate cells

    PubMed Central

    Xue, Tong-Chun; Zhang, Quan-Bao; Zhang, Ke-Zhi; Zhang, Qiang-Bo; You, Yang; Tian, Hui; Qin, Lun-Xiu; Tang, Zhao-You

    2015-01-01

    Chronic fibrosis is a major risk factor for the development of hepatocellular carcinoma (HCC). The pathological progression of hepatic fibrosis has been linked to cellular processes that promote tumor growth and metastasis. Several recent studies have highlighted the cross-talk between tumor cells and activated hepatic stellate cells (aHSCs) in HCC. The herbal compound Songyou Yin (SYY) is known to attenuate hepatoma cell invasion and metastasis via down-regulation of cytokine secretion by aHSCs. However the underlying mechanism of SYY treatment in reversal of hepatic fibrosis and metastasis of liver cancers is not known. In the current study, a nude mouse model with liver fibrosis bearing orthotopic xenograft was established and we found that SYY could reduce associated fibrosis, inhibit tumor growth and improve survival. In the subcutaneous tumor model with fibrosis, we found that SYY could inhibit liver cancer. In vitro, hepatoma cells incubated with conditioned media (CM) from SYY treated aHSCs showed reduced proliferation, decrease in colony formation and invasive potential. SYY treated group showed altered gene expression, with 1205 genes up-regulated and 1323 genes down-regulated. Gene cluster analysis indicated that phosphatidylinositol-3-kinase (PI3K) was one of the key genes altered in the expression profiles. PI3K related markers were all significantly down-regulated. ELISA also indicated decreased secretion of cytokines which were regulated by PI3K/AKT signaling after SYY treatment in the hepatic stellate cell line, LX2. These data clearly demonstrate that SYY therapy inhibits HCC invasive and metastatic potential and improves survival in nude mice models with chronic fibrosis background via inhibition of cytokine secretion by activated hepatic stellate cells. PMID:26517671

  20. Hepatitis A

    MedlinePlus

    ... inflammation of the liver.” This inflammation can be caused by a wide variety of toxins, drugs, and metabolic diseases, as well as infection. There are at least 5 hepatitis viruses. Hepatitis A is contracted when a child eats food or drinks water that is contaminated with the virus or has ...

  1. Hepatitis B

    MedlinePlus

    ... B to come back?Should I get the hepatitis B vaccine?What are the side effects of antiviral medicines?Will my liver ever be normal again? Last Updated: October 1996 This article ... B, hepatitis virus, Interferon alpha-2b, jaundice, Lamivudine, liver ...

  2. Pharmacokinetics of 5-fluorouracil and increased hepatic dihydropyrimidine dehydrogenase activity levels in 1,2-dimethylhydrazine-induced colorectal cancer model rats.

    PubMed

    Kobuchi, Shinji; Ito, Yukako; Okada, Kae; Imoto, Kazuki; Takada, Kanji

    2013-09-01

    To investigate the hepatic dihydropyrimidine dehydrogenase (DPD) activity in colorectal cancer (CRC), which is critically important to create a patient-specific dosing regimen, we performed 5-FU pharmacokinetic studies in 1,2-dimethylhydrazine-induced CRC model rats (CRC rats). After rats received 5-FU intravenous (IV) bolus injections, the area under the plasma concentration-time curve (AUC) and elimination half-life (t 1/2) in CRC rats (10.02 ± 0.37 μg h mL(-1), 0.30 ± 0.02 h, respectively) were significantly lower than that in control rats (13.46 ± 1.20 μg h mL(-1), 0.52 ± 0.05 h, respectively), whereas total plasma clearance (CLtot) in CRC rats (2.01 ± 0.07 L h(-1) kg(-1)) was significantly increased compared with that in control rats (1.54 ± 0.14 L h(-1) kg(-1)). Conversely, the avoidance ratio of the hepatic first-pass effect was approximately 20 % lower than that in control rats. Of interest is that hepatic DPD activity levels and the dihydrouracil-uracil ratio (UH2/Ura ratio) in plasma, which may act as a potential biomarker to evaluate hepatic DPD activity levels, were significantly increased in CRC rats. These results suggest that the decrease of hepatic availability in CRC rats is brought about by the increase in intrinsic clearance induced by the increase in DPD activity, resulting in a decrease in AUC and t 1/2 and an increase in CLtot after 5-FU IV bolus injection. Along with a proper dosing regimen for patients with CRC, a hepatic DPD activity monitoring system, such as the determination of UH2/Ura ratio in plasma, is desirable.

  3. Intrauterine growth restriction combined with a maternal high-fat diet increases hepatic cholesterol and low-density lipoprotein receptor activity in rats.

    PubMed

    Zinkhan, Erin K; Zalla, Jennifer M; Carpenter, Jeanette R; Yu, Baifeng; Yu, Xing; Chan, Gary; Joss-Moore, Lisa; Lane, Robert H

    2016-07-01

    Intrauterine growth restriction (IUGR) and maternal consumption of a high-saturated-fat diet (HFD) increase the risk of hypercholesterolemia, a leading cause of morbidity and mortality. Many pregnant women eat a HFD, thus exposing the fetus to a HFD in utero. The cumulative effect of in utero exposure to IUGR and a HFD on offspring cholesterol levels remains unknown. Furthermore, little is known about the mechanism through which IUGR and maternal HFD consumption increase cholesterol. We hypothesize that IUGR combined with a maternal HFD would increase offspring serum and hepatic cholesterol accumulation via alteration in levels of key proteins involved in cholesterol metabolism. To test our hypothesis we used a rat model of surgically induced IUGR and fed the dams a regular diet or a HFD HFD-fed dams consumed the same kilocalories as regular diet-fed dams, with no difference between surgical intervention groups. In the offspring, IUGR combined with a maternal HFD increased hepatic cholesterol levels, low-density lipoprotein (LDL) receptor protein levels, and Ldlr activity in female rat offspring at birth and both sexes at postnatal day 14 relative to non-IUGR offspring both from regular diet- and HFD-fed dams. These findings suggest that IUGR combined with a maternal HFD increases hepatic cholesterol accumulation