Sample records for active histone modifications

  1. Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory preservation.

    PubMed

    Ding, Xinlu; Liu, Sanxiong; Tian, Miaomiao; Zhang, Wenhao; Zhu, Tao; Li, Dongdong; Wu, Jiawei; Deng, HaiTeng; Jia, Yichang; Xie, Wei; Xie, Hong; Guan, Ji-Song

    2017-05-01

    Epigenetic mechanisms regulate the formation, consolidation and reconsolidation of memories. However, the signaling path from neuronal activation to epigenetic modifications within the memory-related brain circuit remains unknown. We report that learning induces long-lasting histone modifications in hippocampal memory-activated neurons to regulate memory stability. Neuronal activity triggers a late-onset shift in Nrxn1 splice isoform choice at splicing site 4 by accumulating a repressive histone marker, H3K9me3, to modulate the splicing process. Activity-dependent phosphorylation of p66α via AMP-activated protein kinase recruits HDAC2 and Suv39h1 to establish repressive histone markers and changes the connectivity of the activated neurons. Removal of Suv39h1 abolished the activity-dependent shift in Nrxn1 splice isoform choice and reduced the stability of established memories. We uncover a cell-autonomous process for memory preservation in which memory-related neurons initiate a late-onset reduction of their rewiring capacities through activity-induced histone modifications.

  2. The histone modifications governing TFF1 transcription mediated by estrogen receptor.

    PubMed

    Li, Yanyan; Sun, Luyang; Zhang, Yu; Wang, Dandan; Wang, Feng; Liang, Jing; Gui, Bin; Shang, Yongfeng

    2011-04-22

    Transcription regulation by histone modifications is a major contributing factor to the structural and functional diversity in biology. These modifications are encrypted as histone codes or histone languages and function to establish and maintain heritable epigenetic codes that define the identity and the fate of the cell. Despite recent advances revealing numerous histone modifications associated with transcription regulation, how such modifications dictate the process of transcription is not fully understood. Here we describe spatial and temporal analyses of the histone modifications that are introduced during estrogen receptor α (ERα)-activated transcription. We demonstrated that aborting RNA polymerase II caused a disruption of the histone modifications that are associated with transcription elongation but had a minimal effect on modifications deposited during transcription initiation. We also found that the histone H3S10 phosphorylation mark is catalyzed by mitogen- and stress-activated protein kinase 1 (MSK1) and is recognized by a 14-3-3ζ/14-3-3ε heterodimer through its interaction with H3K4 trimethyltransferase SMYD3 and the p52 subunit of TFIIH. We showed that H3S10 phosphorylation is a prerequisite for H3K4 trimethylation. In addition, we demonstrated that SET8/PR-Set7/KMT5A is required for ERα-regulated transcription and its catalyzed H4K20 monomethylation is implicated in both transcription initiation and elongation. Our experiments provide a relatively comprehensive analysis of histone modifications associated with ERα-regulated transcription and define the biological meaning of several key components of the histone code that governs ERα-regulated transcription.

  3. Detection of histone modifications in plant leaves.

    PubMed

    Jaskiewicz, Michal; Peterhansel, Christoph; Conrath, Uwe

    2011-09-23

    Chromatin structure is important for the regulation of gene expression in eukaryotes. In this process, chromatin remodeling, DNA methylation, and covalent modifications on the amino-terminal tails of histones H3 and H4 play essential roles(1-2). H3 and H4 histone modifications include methylation of lysine and arginine, acetylation of lysine, and phosphorylation of serine residues(1-2). These modifications are associated either with gene activation, repression, or a primed state of gene that supports more rapid and robust activation of expression after perception of appropriate signals (microbe-associated molecular patterns, light, hormones, etc.)(3-7). Here, we present a method for the reliable and sensitive detection of specific chromatin modifications on selected plant genes. The technique is based on the crosslinking of (modified) histones and DNA with formaldehyde(8,9), extraction and sonication of chromatin, chromatin immunoprecipitation (ChIP) with modification-specific antibodies(9,10), de-crosslinking of histone-DNA complexes, and gene-specific real-time quantitative PCR. The approach has proven useful for detecting specific histone modifications associated with C(4;) photosynthesis in maize(5,11) and systemic immunity in Arabidopsis(3).

  4. Histone modifications in the male germ line of Drosophila.

    PubMed

    Hennig, Wolfgang; Weyrich, Alexandra

    2013-02-22

    In the male germ line of Drosophila chromatin remains decondensed and highly transcribed during meiotic prophase until it is rapidly compacted. A large proportion of the cell cycle-regulated histone H3.1 is replaced by H3.3, a histone variant encoded outside the histone repeat cluster and not subject to cell cycle controlled expression. We investigated histone modification patterns in testes of D. melanogaster and D. hydei. In somatic cells of the testis envelope and in germ cells these modification patterns differ from those typically seen in eu- and heterochromatin of other somatic cells. During the meiotic prophase some modifications expected in active chromatin are not found or are found at low level. The absence of H4K16ac suggests that dosage compensation does not take place. Certain histone modifications correspond to either the cell cycle-regulated histone H3.1 or to the testis-specific variant H3.3. In spermatogonia we found H3K9 methylation in cytoplasmic histones, most likely corresponding to the H3.3 histone variant. Most histone modifications persist throughout the meiotic divisions. The majority of modifications persist until the early spermatid nuclei, and only a minority further persist until the final chromatin compaction stages before individualization of the spermatozoa. Histone modification patterns in the male germ line differ from expected patterns. They are consistent with an absence of dosage compensation of the X chromosome during the male meiotic prophase. The cell cycle-regulated histone variant H3.1 and H3.3, expressed throughout the cell cycle, also vary in their modification patterns. Postmeiotically, we observed a highly complex pattern of the histone modifications until late spermatid nuclear elongation stages. This may be in part due to postmeiotic transcription and in part to differential histone replacement during chromatin condensation.

  5. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity.

    PubMed

    Lillico, Ryan; Stesco, Nicholas; Khorshid Amhad, Tina; Cortes, Claudia; Namaka, Mike P; Lakowski, Ted M

    2016-05-01

    Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.

  6. Dynamics of gene expression with positive feedback to histone modifications at bivalent domains

    NASA Astrophysics Data System (ADS)

    Huang, Rongsheng; Lei, Jinzhi

    2018-03-01

    Experiments have shown that in embryonic stem cells, the promoters of many lineage-control genes contain “bivalent domains”, within which the nucleosomes possess both active (H3K4me3) and repressive (H3K27me3) marks. Such bivalent modifications play important roles in maintaining pluripotency in embryonic stem cells. Here, to investigate gene expression dynamics when there are regulations in bivalent histone modifications and random partition in cell divisions, we study how positive feedback to histone methylation/demethylation controls the transition dynamics of the histone modification patterns along with cell cycles. We constructed a computational model that includes dynamics of histone marks, three-stage chromatin state transitions, transcription and translation, feedbacks from protein product to enzymes to regulate the addition and removal of histone marks, and the inheritance of nucleosome state between cell cycles. The model reveals how dynamics of both nucleosome state transition and gene expression are dependent on the enzyme activities and feedback regulations. Results show that the combination of stochastic histone modification at each cell division and the deterministic feedback regulation work together to adjust the dynamics of chromatin state transition in stem cell regenerations.

  7. Glutathione-S-transferase pi 1(GSTP1) gene silencing in prostate cancer cells is reversed by the histone deacetylase inhibitor depsipeptide.

    PubMed

    Hauptstock, Vera; Kuriakose, Sapuna; Schmidt, Doris; Düster, Robert; Müller, Stefan C; von Ruecker, Alexander; Ellinger, Jörg

    2011-09-09

    Gene silencing by epigenetic mechanisms is frequent in prostate cancer (PCA). The link between DNA hypermethylation and histone modifications is not completely understood. We chose the GSTP1 gene which is silenced by hypermethylation to analyze the effect of the histone deacetylase inhibitor depsipeptide on DNA methylation and histone modifications at the GSTP1 promoter site. Prostate cell lines (PC-3, LNCaP, and BPH-1) were treated with depsipeptide; apoptosis (FACS analysis), GSTP1 mRNA levels (quantitative real-time PCR), DNA hypermethylation (methylation-specific PCR), and histone modifications (chromatin immunoprecipitation) were studied. Depsipeptide induced apoptosis in PCA cells, but not a cell cycle arrest. Depispeptide reversed DNA hypermethylation and repressive histone modifications (reduction of H3K9me2/3 and H3K27me2/3; increase of H3K18Ac), thereby inducing GSTP1 mRNA re-expression. Successful therapy requires both, DNA demethylation and activating histone modifications, to induce complete gene expression of epigenetically silenced genes and depsipeptide fulfils both criteria. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Cot, a novel kinase of histone H3, induces cellular transformation through up-regulation of c-fos transcriptional activity.

    PubMed

    Choi, Hong Seok; Kang, Bong Seok; Shim, Jung-Hyun; Cho, Yong-Yeon; Choi, Bu Young; Bode, Ann M; Dong, Zigang

    2008-01-01

    Post-translational modification of histones is critical for gene expression, mitosis, cell growth, apoptosis, and cancer development. Thus, finding protein kinases that are responsible for the phosphorylation of histones at critical sites is considered an important step in understanding the process of histone modification. The serine/threonine kinase Cot is a member of the mitogen-activated protein kinase (MAPK) kinase kinase family. We show here that Cot can phosphorylate histone H3 at Ser-10 in vivo and in vitro, and that the phosphorylation of histone H3 at Ser-10 is required for Cot-induced cell transformation. We found that activated Cot is recruited to the c-fos promoter resulting in increased activator protein-1 (AP-1) transactivation. The formation of the Cot-c-fos promoter complex was also apparent when histone H3 was phosphorylated at Ser-10. Furthermore, the use of dominant negative mutants of histone H3 revealed that Cot was required for phosphorylation of histone H3 at Ser-10 to induce neoplastic cell transformation. These results revealed an important function of Cot as a newly discovered histone H3 kinase. Moreover, the transforming ability of Cot results from the coordinated activation of histone H3, which ultimately converges on the regulation of the transcriptional activity of the c-fos promoter, followed by AP-1 transactivation activity.

  9. Sophora subprosrate polysaccharide inhibited cytokine/chemokine secretion via suppression of histone acetylation modification and NF-κb activation in PCV2 infected swine alveolar macrophage.

    PubMed

    Yang, Jian; Tan, Hong-Lian; Gu, Li-Yuan; Song, Man-Ling; Wu, Yuan-Ying; Peng, Jian-Bo; Lan, Zong-Bao; Wei, Ying-Yi; Hu, Ting-Jun

    2017-11-01

    In the present study, effect of Sophora subprosrate polysaccharide on PCV2 infection-induced inflammation and histone acetylation modification in swine alveolar macrophage 3D4/2 cells was described for the first time. The relationship between histone acetylation modifications and inflammation response was investigated. The results showed that PCV2 infection induced inflammation by promoting the secretion of TNF-α, IL-1β, IL-6 and IL-10 in 3D4/2 cells. The production of TNF-α, IL-1β and IL-6 and their mRNA expression levels markedly decreased while the level and mRNA expression of IL-10 were elevated when the cells were treated with Sophora subprosrate polysaccharide. The SSP also decreased the activity of HATs, histone H3 acetylation (Ac-H3) and histone H4 acetylation (Ac-H4), p65 phosphorylation (P-p65) in the cells infected with PCV2 while HDACs activity was down-regulated, which involved in the inhibitory effect of SSP on histone acetylation and NF-κB signaling pathways activation. Down-regulation of HAT1 mRNA expression and up-regulation of HDAC1 mRNA expression further support the inhibitory effect of SSP on histone acetylation. In conclusion, Sophora subprosrate polysaccharide antagonized inflammatory responses induced by PCV2, via mechanisms involved in histone acetylation and NF-κB signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Structural and Functional Coordination of DNA and Histone Methylation

    PubMed Central

    Cheng, Xiaodong

    2014-01-01

    One of the most fundamental questions in the control of gene expression in mammals is how epigenetic methylation patterns of DNA and histones are established, erased, and recognized. This central process in controlling gene expression includes coordinated covalent modifications of DNA and its associated histones. This article focuses on structural aspects of enzymatic activities of histone (arginine and lysine) methylation and demethylation and functional links between the methylation status of the DNA and histones. An interconnected network of methyltransferases, demethylases, and accessory proteins is responsible for changing or maintaining the modification status of specific regions of chromatin. PMID:25085914

  11. Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae

    PubMed Central

    Kim, Minkyu; Buratowski, Stephen; Schreiber, Stuart L; Friedman, Nir

    2005-01-01

    Covalent modification of histone proteins plays a role in virtually every process on eukaryotic DNA, from transcription to DNA repair. Many different residues can be covalently modified, and it has been suggested that these modifications occur in a great number of independent, meaningful combinations. Published low-resolution microarray studies on the combinatorial complexity of histone modification patterns suffer from confounding effects caused by the averaging of modification levels over multiple nucleosomes. To overcome this problem, we used a high-resolution tiled microarray with single-nucleosome resolution to investigate the occurrence of combinations of 12 histone modifications on thousands of nucleosomes in actively growing S. cerevisiae. We found that histone modifications do not occur independently; there are roughly two groups of co-occurring modifications. One group of lysine acetylations shows a sharply defined domain of two hypo-acetylated nucleosomes, adjacent to the transcriptional start site, whose occurrence does not correlate with transcription levels. The other group consists of modifications occurring in gradients through the coding regions of genes in a pattern associated with transcription. We found no evidence for a deterministic code of many discrete states, but instead we saw blended, continuous patterns that distinguish nucleosomes at one location (e.g., promoter nucleosomes) from those at another location (e.g., over the 3′ ends of coding regions). These results are consistent with the idea of a simple, redundant histone code, in which multiple modifications share the same role. PMID:16122352

  12. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    PubMed

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Histones: Controlling Tumor Signaling Circuitry

    PubMed Central

    Martins, Manoela D.; Castilho, Rogerio M.

    2014-01-01

    Epigenetic modifications constitute the next frontier in tumor biology research. Post-translation modification of histones dynamically influences gene expression independent of alterations to the DNA sequence. These mechanisms are often mediated by histone linkers or by proteins associated with the recruitment of DNA-binding proteins, HDAC I and II interacting proteins and transcriptional activators, coactivators or corepressors. Early evidence suggested that histones and their modifiers are involved in sophisticated processes that modulate tumor behavior and cellular phenotype. In this review, we discuss how recent discoveries about chromatin modifications, particularly histone acetylation, are shaping our knowledge of cell biology and our understanding of the molecular circuitry governing tumor progression and consider whether recent insights may extend to novel therapeutic approaches. Furthermore, we discuss the latest oncogenomic findings in Head and Neck Squamous Cell Carcinoma (HNSCC) from studies using Next Generation Sequencing (NGS) technology and highlight the impact of mutations identified in histones and their modifiers. PMID:25177526

  14. Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants.

    PubMed

    Wojcik, Felix; Dann, Geoffrey P; Beh, Leslie Y; Debelouchina, Galia T; Hofmann, Raphael; Muir, Tom W

    2018-04-11

    Ubiquitylation of histone H2B at lysine residue 120 (H2BK120ub) is a prominent histone posttranslational modification (PTM) associated with the actively transcribed genome. Although H2BK120ub triggers several critical downstream histone modification pathways and changes in chromatin structure, less is known about the regulation of the ubiquitylation reaction itself, in particular with respect to the modification status of the chromatin substrate. Here we employ an unbiased library screening approach to profile the impact of pre-existing chromatin modifications on de novo ubiquitylation of H2BK120 by the cognate human E2:E3 ligase pair, UBE2A:RNF20/40. Deposition of H2BK120ub is found to be highly sensitive to PTMs on the N-terminal tail of histone H2A, a crosstalk that extends to the common histone variant H2A.Z. Based on a series of biochemical and cell-based studies, we propose that this crosstalk contributes to the spatial organization of H2BK120ub on gene bodies, and is thus important for transcriptional regulation.

  15. Transcriptional regulation by the Set7 lysine methyltransferase

    PubMed Central

    Keating, Samuel; El-Osta, Assam

    2013-01-01

    Posttranslational histone modifications define chromatin structure and function. In recent years, a number of studies have characterized many of the enzymatic activities and diverse regulatory components required for monomethylation of histone H3 lysine 4 (H3K4me1) and the expression of specific genes. The challenge now is to understand how this specific chemical modification is written and the Set7 methyltransferase has emerged as a key regulatory enzyme mediating methylation of lysine residues of histone and non-histone proteins. In this review, we comprehensively explore the regulatory proteins modified by Set7 and highlight mechanisms of specific co-recruitment of the enzyme to activating promoters. With a focus on signaling and transcriptional control in disease we discuss recent experimental data emphasizing specific components of diverse regulatory complexes that mediate chromatin modification and reinterpretation of Set7-mediated gene expression. PMID:23478572

  16. ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons

    PubMed Central

    Noh, Kyung-Min; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W.; Shen, Li; Li, Haitao; Allis, C. David

    2015-01-01

    ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of “repressive” histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX’s ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this “methyl/phos” switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction. PMID:25538301

  17. ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons.

    PubMed

    Noh, Kyung-Min; Maze, Ian; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W; Shen, Li; Li, Haitao; Allis, C David

    2015-06-02

    ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of "repressive" histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX's ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this "methyl/phos" switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction.

  18. Butyrate induced IGF2 activation correlated with distinct chromatin landscapes due to histone modification

    USDA-ARS?s Scientific Manuscript database

    Histone modification has emerged as a very important mechanism regulating the transcriptional status of the genome. Insulin-like growth factor 2 (IGF2) is a peptide hormone controlling various cellular processes such as proliferation and apoptosis. IGF2 and H19 are reciprocally regulated imprinted ...

  19. Epigenomic landscape modified by histone modification correlated with activation of IGF2 gene

    USDA-ARS?s Scientific Manuscript database

    The links of histone post-translational modifications and chromatin structure to cell cycle progression, DNA replication, and overall chromosome functions are very clear. The modulation of genome expression as a consequence of chromatin structural changes is most likely a basic mechanism. The epige...

  20. Chronic Δ⁸-THC Exposure Differently Affects Histone Modifications in the Adolescent and Adult Rat Brain.

    PubMed

    Prini, Pamela; Penna, Federica; Sciuccati, Emanuele; Alberio, Tiziana; Rubino, Tiziana

    2017-10-04

    Adolescence represents a vulnerable period for the psychiatric consequences of delta9-tetrahydrocannabinol (Δ⁸-THC) exposure, however, the molecular underpinnings of this vulnerability remain to be established. Histone modifications are emerging as important epigenetic mechanisms involved in the etiopathogenesis of psychiatric diseases, thus, we investigated the impact of chronic Δ⁸-THC exposure on histone modifications in different brain areas of female rats. We checked histone modifications associated to both transcriptional repression (H3K9 di- and tri-methylation, H3K27 tri-methylation) and activation (H3K9 and H3K14 acetylation) after adolescent and adult chronic Δ⁸-THC exposure in the hippocampus, nucleus accumbens, and amygdala. Chronic exposure to increasing doses of Δ⁸-THC for 11 days affected histone modifications in a region- and age-specific manner. The primary effect in the adolescent brain was represented by changes leading to transcriptional repression, whereas the one observed after adult treatment led to transcriptional activation. Moreover, only in the adolescent brain, the primary effect was followed by a homeostatic response to counterbalance the Δ⁸-THC-induced repressive effect, except in the amygdala. The presence of a more complex response in the adolescent brain may be part of the mechanisms that make the adolescent brain vulnerable to Δ⁸-THC adverse effects.

  1. Human linker histones: interplay between phosphorylation and O-β-GlcNAc to mediate chromatin structural modifications

    PubMed Central

    2011-01-01

    Eukaryotic chromatin is a combination of DNA and histone proteins. It is established fact that epigenetic mechanisms are associated with DNA and histones. Initial studies emphasize on core histones association with DNA, however later studies prove the importance of linker histone H1 epigenetic. There are many types of linker histone H1 found in mammals. These subtypes are cell specific and their amount in different types of cells varies as the cell functions. Many types of post-translational modifications which occur on different residues in each subtype of linker histone H1 induce conformational changes and allow the different subtypes of linker histone H1 to interact with chromatin at different stages during cell cycle which results in the regulation of transcription and gene expression. Proposed O-glycosylation of linker histone H1 promotes condensation of chromatin while phosphorylation of linker histone H1 is known to activate transcription and gene regulation by decondensation of chromatin. Interplay between phosphorylation and O-β-GlcNAc modification on Ser and Thr residues in each subtype of linker histone H1 in Homo sapiens during cell cycle may result in diverse functional regulation of proteins. This in silico study describes the potential phosphorylation, o-glycosylation and their possible interplay sites on conserved Ser/Thr residues in various subtypes of linker histone H1 in Homo sapiens. PMID:21749719

  2. Epigenetic control of plant immunity.

    PubMed

    Alvarez, María E; Nota, Florencia; Cambiagno, Damián A

    2010-07-01

    In eukaryotic genomes, gene expression and DNA recombination are affected by structural chromatin traits. Chromatin structure is shaped by the activity of enzymes that either introduce covalent modifications in DNA and histone proteins or use energy from ATP to disrupt histone-DNA interactions. The genomic 'marks' that are generated by covalent modifications of histones and DNA, or by the deposition of histone variants, are susceptible to being altered in response to stress. Recent evidence has suggested that proteins generating these epigenetic marks play crucial roles in the defence against pathogens. Histone deacetylases are involved in the activation of jasmonic acid- and ethylene-sensitive defence mechanisms. ATP-dependent chromatin remodellers mediate the constitutive repression of the salicylic acid-dependent pathway, whereas histone methylation at the WRKY70 gene promoter affects the activation of this pathway. Interestingly, bacterial-infected tissues show a net reduction in DNA methylation, which may affect the disease resistance genes responsible for the surveillance against pathogens. As some epigenetic marks can be erased or maintained and transmitted to offspring, epigenetic mechanisms may provide plasticity for the dynamic control of emerging pathogens without the generation of genomic lesions.

  3. ChIPnorm: a statistical method for normalizing and identifying differential regions in histone modification ChIP-seq libraries.

    PubMed

    Nair, Nishanth Ulhas; Sahu, Avinash Das; Bucher, Philipp; Moret, Bernard M E

    2012-01-01

    The advent of high-throughput technologies such as ChIP-seq has made possible the study of histone modifications. A problem of particular interest is the identification of regions of the genome where different cell types from the same organism exhibit different patterns of histone enrichment. This problem turns out to be surprisingly difficult, even in simple pairwise comparisons, because of the significant level of noise in ChIP-seq data. In this paper we propose a two-stage statistical method, called ChIPnorm, to normalize ChIP-seq data, and to find differential regions in the genome, given two libraries of histone modifications of different cell types. We show that the ChIPnorm method removes most of the noise and bias in the data and outperforms other normalization methods. We correlate the histone marks with gene expression data and confirm that histone modifications H3K27me3 and H3K4me3 act as respectively a repressor and an activator of genes. Compared to what was previously reported in the literature, we find that a substantially higher fraction of bivalent marks in ES cells for H3K27me3 and H3K4me3 move into a K27-only state. We find that most of the promoter regions in protein-coding genes have differential histone-modification sites. The software for this work can be downloaded from http://lcbb.epfl.ch/software.html.

  4. Identification of histone modifications in biomedical text for supporting epigenomic research

    PubMed Central

    Kolářik, Corinna; Klinger, Roman; Hofmann-Apitius, Martin

    2009-01-01

    Background Posttranslational modifications of histones influence the structure of chromatine and in such a way take part in the regulation of gene expression. Certain histone modification patterns, distributed over the genome, are connected to cell as well as tissue differentiation and to the adaption of organisms to their environment. Abnormal changes instead influence the development of disease states like cancer. The regulation mechanisms for modifying histones and its functionalities are the subject of epigenomics investigation and are still not completely understood. Text provides a rich resource of knowledge on epigenomics and modifications of histones in particular. It contains information about experimental studies, the conditions used, and results. To our knowledge, no approach has been published so far for identifying histone modifications in text. Results We have developed an approach for identifying histone modifications in biomedical literature with Conditional Random Fields (CRF) and for resolving the recognized histone modification term variants by term standardization. For the term identification F1 measures of 0.84 by 10-fold cross-validation on the training corpus and 0.81 on an independent test corpus have been obtained. The standardization enabled the correct transformation of 96% of the terms from training and 98% from test the corpus. Due to the lack of terminologies exhaustively covering specific histone modification types, we developed a histone modification term hierarchy for use in a semantic text retrieval system. Conclusion The developed approach highly improves the retrieval of articles describing histone modifications. Since text contains context information about performed studies and experiments, the identification of histone modifications is the basis for supporting literature-based knowledge discovery and hypothesis generation to accelerate epigenomic research. PMID:19208128

  5. Identification of histone modifications in biomedical text for supporting epigenomic research.

    PubMed

    Kolárik, Corinna; Klinger, Roman; Hofmann-Apitius, Martin

    2009-01-30

    Posttranslational modifications of histones influence the structure of chromatine and in such a way take part in the regulation of gene expression. Certain histone modification patterns, distributed over the genome, are connected to cell as well as tissue differentiation and to the adaption of organisms to their environment. Abnormal changes instead influence the development of disease states like cancer. The regulation mechanisms for modifying histones and its functionalities are the subject of epigenomics investigation and are still not completely understood. Text provides a rich resource of knowledge on epigenomics and modifications of histones in particular. It contains information about experimental studies, the conditions used, and results. To our knowledge, no approach has been published so far for identifying histone modifications in text. We have developed an approach for identifying histone modifications in biomedical literature with Conditional Random Fields (CRF) and for resolving the recognized histone modification term variants by term standardization. For the term identification F1 measures of 0.84 by 10-fold cross-validation on the training corpus and 0.81 on an independent test corpus have been obtained. The standardization enabled the correct transformation of 96% of the terms from training and 98% from test the corpus. Due to the lack of terminologies exhaustively covering specific histone modification types, we developed a histone modification term hierarchy for use in a semantic text retrieval system. The developed approach highly improves the retrieval of articles describing histone modifications. Since text contains context information about performed studies and experiments, the identification of histone modifications is the basis for supporting literature-based knowledge discovery and hypothesis generation to accelerate epigenomic research.

  6. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome

    PubMed Central

    Pauler, Florian M.; Sloane, Mathew A.; Huang, Ru; Regha, Kakkad; Koerner, Martha V.; Tamir, Ido; Sommer, Andreas; Aszodi, Andras; Jenuwein, Thomas; Barlow, Denise P.

    2009-01-01

    In mammals, genome-wide chromatin maps and immunofluorescence studies show that broad domains of repressive histone modifications are present on pericentromeric and telomeric repeats and on the inactive X chromosome. However, only a few autosomal loci such as silent Hox gene clusters have been shown to lie in broad domains of repressive histone modifications. Here we present a ChIP-chip analysis of the repressive H3K27me3 histone modification along chr 17 in mouse embryonic fibroblast cells using an algorithm named broad local enrichments (BLOCs), which allows the identification of broad regions of histone modifications. Our results, confirmed by BLOC analysis of a whole genome ChIP-seq data set, show that the majority of H3K27me3 modifications form BLOCs rather than focal peaks. H3K27me3 BLOCs modify silent genes of all types, plus flanking intergenic regions and their distribution indicates a negative correlation between H3K27me3 and transcription. However, we also found that some nontranscribed gene-poor regions lack H3K27me3. We therefore performed a low-resolution analysis of whole mouse chr 17, which revealed that H3K27me3 is enriched in mega-base-pair-sized domains that are also enriched for genes, short interspersed elements (SINEs) and active histone modifications. These genic H3K27me3 domains alternate with similar-sized gene-poor domains. These are deficient in active histone modifications, as well as H3K27me3, but are enriched for long interspersed elements (LINEs) and long-terminal repeat (LTR) transposons and H3K9me3 and H4K20me3. Thus, an autosome can be seen to contain alternating chromatin bands that predominantly separate genes from one retrotransposon class, which could offer unique domains for the specific regulation of genes or the silencing of autonomous retrotransposons. PMID:19047520

  7. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection

    PubMed Central

    Funata, Sayaka; Matsusaka, Keisuke; Yamanaka, Ryota; Yamamoto, Shogo; Okabe, Atsushi; Fukuyo, Masaki; Aburatani, Hiroyuki; Fukayama, Masashi; Kaneda, Atsushi

    2017-01-01

    Aberrant DNA hypermethylation is a major epigenetic mechanism to inactivate tumor suppressor genes in cancer. Epstein-Barr virus positive gastric cancer is the most frequently hypermethylated tumor among human malignancies. Herein, we performed comprehensive analysis of epigenomic alteration during EBV infection, by Infinium HumanMethylation 450K BeadChip for DNA methylation and ChIP-sequencing for histone modification alteration during EBV infection into gastric cancer cell line MKN7. Among 7,775 genes with increased DNA methylation in promoter regions, roughly half were “DNA methylation-sensitive” genes, which acquired DNA methylation in the whole promoter regions and thus were repressed. These included anti-oncogenic genes, e.g. CDKN2A. The other half were “DNA methylation-resistant” genes, where DNA methylation is acquired in the surrounding of promoter regions, but unmethylated status is protected in the vicinity of transcription start site. These genes thereby retained gene expression, and included DNA repair genes. Histone modification was altered dynamically and coordinately with DNA methylation alteration. DNA methylation-sensitive genes significantly correlated with loss of H3K27me3 pre-marks or decrease of active histone marks, H3K4me3 and H3K27ac. Apoptosis-related genes were significantly enriched in these epigenetically repressed genes. Gain of active histone marks significantly correlated with DNA methylation-resistant genes. Genes related to mitotic cell cycle and DNA repair were significantly enriched in these epigenetically activated genes. Our data show that orchestrated epigenetic alterations are important in gene regulation during EBV infection, and histone modification status in promoter regions significantly associated with acquisition of de novo DNA methylation or protection of unmethylated status at transcription start site. PMID:28903418

  8. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection.

    PubMed

    Funata, Sayaka; Matsusaka, Keisuke; Yamanaka, Ryota; Yamamoto, Shogo; Okabe, Atsushi; Fukuyo, Masaki; Aburatani, Hiroyuki; Fukayama, Masashi; Kaneda, Atsushi

    2017-08-15

    Aberrant DNA hypermethylation is a major epigenetic mechanism to inactivate tumor suppressor genes in cancer. Epstein-Barr virus positive gastric cancer is the most frequently hypermethylated tumor among human malignancies. Herein, we performed comprehensive analysis of epigenomic alteration during EBV infection, by Infinium HumanMethylation 450K BeadChip for DNA methylation and ChIP-sequencing for histone modification alteration during EBV infection into gastric cancer cell line MKN7. Among 7,775 genes with increased DNA methylation in promoter regions, roughly half were "DNA methylation-sensitive" genes, which acquired DNA methylation in the whole promoter regions and thus were repressed. These included anti-oncogenic genes, e.g. CDKN2A . The other half were "DNA methylation-resistant" genes, where DNA methylation is acquired in the surrounding of promoter regions, but unmethylated status is protected in the vicinity of transcription start site. These genes thereby retained gene expression, and included DNA repair genes. Histone modification was altered dynamically and coordinately with DNA methylation alteration. DNA methylation-sensitive genes significantly correlated with loss of H3K27me3 pre-marks or decrease of active histone marks, H3K4me3 and H3K27ac. Apoptosis-related genes were significantly enriched in these epigenetically repressed genes. Gain of active histone marks significantly correlated with DNA methylation-resistant genes. Genes related to mitotic cell cycle and DNA repair were significantly enriched in these epigenetically activated genes. Our data show that orchestrated epigenetic alterations are important in gene regulation during EBV infection, and histone modification status in promoter regions significantly associated with acquisition of de novo DNA methylation or protection of unmethylated status at transcription start site.

  9. Global regulation of post-translational modifications on core histones.

    PubMed

    Galasinski, Scott C; Louie, Donna F; Gloor, Kristen K; Resing, Katheryn A; Ahn, Natalie G

    2002-01-25

    Full-length masses of histones were analyzed by mass spectrometry to characterize post-translational modifications of bulk histones and their changes induced by cell stimulation. By matching masses of unique peptides with full-length masses, H4 and the variants H2A.1, H2B.1, and H3.1 were identified as the main histone forms in K562 cells. Mass changes caused by covalent modifications were measured in a dose- and time-dependent manner following inhibition of phosphatases by okadaic acid. Histones H2A, H3, and H4 underwent changes in mass consistent with altered acetylation and phosphorylation, whereas H2B mass was largely unchanged. Unexpectedly, histone H4 became almost completely deacetylated in a dose-dependent manner that occurred independently of phosphorylation. Okadaic acid also partially blocked H4 hyperacetylation induced by trichostatin-A, suggesting that the mechanism of deacetylation involves inhibition of H4 acetyltransferase activity, following perturbation of cellular phosphatases. In addition, mass changes in H3 in response to okadaic acid were consistent with phosphorylation of methylated, acetylated, and phosphorylated forms. Finally, kinetic differences were observed with respect to the rate of phosphorylation of H2A versus H4, suggesting differential regulation of phosphorylation at sites on these proteins, which are highly related by sequence. These results provide novel evidence that global covalent modifications of chromatin-bound histones are regulated through phosphorylation-dependent mechanisms.

  10. Biochemical systems approaches for the analysis of histone modification readout.

    PubMed

    Soldi, Monica; Bremang, Michael; Bonaldi, Tiziana

    2014-08-01

    Chromatin is the macromolecular nucleoprotein complex that governs the organization of genetic material in the nucleus of eukaryotic cells. In chromatin, DNA is packed with histone proteins into nucleosomes. Core histones are prototypes of hyper-modified proteins, being decorated by a large number of site-specific reversible and irreversible post-translational modifications (PTMs), which contribute to the maintenance and modulation of chromatin plasticity, gene activation, and a variety of other biological processes and disease states. The observations of the variety, frequency and co-occurrence of histone modifications in distinct patterns at specific genomic loci have led to the idea that hPTMs can create a molecular barcode, read by effector proteins that translate it into a specific transcriptional state, or process, on the underlying DNA. However, despite the fact that this histone-code hypothesis was proposed more than 10 years ago, the molecular details of its working mechanisms are only partially characterized. In particular, two questions deserve specific investigation: how the different modifications associate and synergize into patterns and how these PTM configurations are read and translated by multi-protein complexes into a specific functional outcome on the genome. Mass spectrometry (MS) has emerged as a versatile tool to investigate chromatin biology, useful for both identifying and validating hPTMs, and to dissect the molecular determinants of histone modification readout systems. We review here the MS techniques and the proteomics methods that have been developed to address these fundamental questions in epigenetics research, emphasizing approaches based on the proteomic dissection of distinct native chromatin regions, with a critical evaluation of their present challenges and future potential. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1.

    PubMed

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-09-06

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance.

  12. Epigenetic hierarchy governing Nestin expression.

    PubMed

    Han, Dong Wook; Do, Jeong Tae; Araúzo-Bravo, Marcos J; Lee, Sung Ho; Meissner, Alexander; Lee, Hoon Taek; Jaenisch, Rudolf; Schöler, Hans R

    2009-05-01

    Nestin is an intermediate filament protein expressed specifically in neural stem cells and progenitor cells of the central nervous system. DNA demethylation and histone modifications are two types of epigenetic modifications working in a coordinate or synergistic manner to regulate the expression of various genes. This study investigated and elucidated the epigenetic regulation of Nestin gene expression during embryonic differentiation along the neural cell lineage. Nestin exhibits differential DNA methylation and histone acetylation patterns in Nestin-expressing and nonexpressing cells. In P19 embryonic carcinoma cells, activation of Nestin expression is mediated by both trichostatin A and 5-aza-2'-deoxycytidine treatment, concomitant with histone acetylation, but not with DNA demethylation. Nestin transcription is also mediated by treatment with retinoic acid, again in the absence of DNA demethylation. Thus, histone acetylation is sufficient to mediate the activation of Nestin transcription. This study proposed that the regulation of Nestin gene expression can be used as a model to study the epigenetic regulation of gene expression mediated by histone acetylation, but not by DNA demethylation.

  13. Epigenetic Control of Cytokine Gene Expression: Regulation of the TNF/LT Locus and T Helper Cell Differentiation

    PubMed Central

    Falvo, James V.; Jasenosky, Luke D.; Kruidenier, Laurens; Goldfeld, Anne E.

    2014-01-01

    Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal “tails” of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The “histone code” defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages. PMID:23683942

  14. Chromatin Proteomics Reveals Variable Histone Modifications during the Life Cycle of Trypanosoma cruzi.

    PubMed

    de Jesus, Teresa Cristina Leandro; Nunes, Vinícius Santana; Lopes, Mariana de Camargo; Martil, Daiana Evelin; Iwai, Leo Kei; Moretti, Nilmar Silvio; Machado, Fabrício Castro; de Lima-Stein, Mariana L; Thiemann, Otavio Henrique; Elias, Maria Carolina; Janzen, Christian; Schenkman, Sergio; da Cunha, Julia Pinheiro Chagas

    2016-06-03

    Histones are well-conserved proteins that form the basic structure of chromatin in eukaryotes and undergo several post-translational modifications, which are important for the control of transcription, replication, DNA damage repair, and chromosome condensation. In early branched organisms, histones are less conserved and appear to contain alternative sites for modifications, which could reveal evolutionary unique functions of histone modifications in gene expression and other chromatin-based processes. Here, by using high-resolution mass spectrometry, we identified and quantified histone post-translational modifications in two life cycle stages of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. We detected 44 new modifications, namely: 18 acetylations, seven monomethylations, seven dimethylations, seven trimethylations, and four phosphorylations. We found that replicative (epimastigote stage) contains more histone modifications than nonreplicative and infective parasites (trypomastigote stage). Acetylations of lysines at the C-terminus of histone H2A and methylations of lysine 23 of histone H3 were found to be enriched in trypomastigotes. In contrast, phosphorylation in serine 23 of H2B and methylations of lysine 76 of histone H3 predominates in proliferative states. The presence of one or two methylations in the lysine 76 was found in cells undergoing mitosis and cytokinesis, typical of proliferating parasites. Our findings provide new insights into the role of histone modifications related to the control of gene expression and cell-cycle regulation in an early divergent organism.

  15. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    USDA-ARS?s Scientific Manuscript database

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  16. Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets – “Sand out and Gold Stays”

    PubMed Central

    Shao, Ying; Chernaya, Valeria; Johnson, Candice; Yang, William Y.; Cueto, Ramon; Sha, Xiaojin; Zhang, Yi; Qin, Xuebin; Sun, Jianxin; Choi, Eric T.; Wang, Hong; Yang, Xiao-feng

    2016-01-01

    To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: 1) Histone enzymes are differentially expressed in cardiovascular, immune and other tissues; 2) Our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, histone methylation/demethylation are in the highest varieties; and 3) Histone enzymes are more downregulated than upregulated in metabolic diseases and Treg polarization/differentiation, but not in tumors. These results have demonstrated a new working model of “sand out and gold stays,” where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity. PMID:26746407

  17. Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets--"Sand Out and Gold Stays".

    PubMed

    Shao, Ying; Chernaya, Valeria; Johnson, Candice; Yang, William Y; Cueto, Ramon; Sha, Xiaojin; Zhang, Yi; Qin, Xuebin; Sun, Jianxin; Choi, Eric T; Wang, Hong; Yang, Xiao-feng

    2016-02-01

    To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: (1) Histone enzymes are differentially expressed in cardiovascular, immune, and other tissues; (2) our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, and histone methylation/demethylation are in the highest varieties; and (3) histone enzymes are more downregulated than upregulated in metabolic diseases and regulatory T cell (Treg) polarization/ differentiation, but not in tumors. These results have demonstrated a new working model of "Sand out and Gold stays," where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity.

  18. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    PubMed Central

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  19. Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy.

    PubMed

    Colussi, Claudia; Gurtner, Aymone; Rosati, Jessica; Illi, Barbara; Ragone, Gianluca; Piaggio, Giulia; Moggio, Maurizio; Lamperti, Costanza; D'Angelo, Grazia; Clementi, Emilio; Minetti, Giulia; Mozzetta, Chiara; Antonini, Annalisa; Capogrossi, Maurizio C; Puri, Pier Lorenzo; Gaetano, Carlo

    2009-07-01

    The present study provides evidence that abnormal patterns of global histone modification are present in the skeletal muscle nuclei of mdx mice and Duchenne muscular dystrophy (DMD) patients. A combination of specific histone H3 modifications, including Ser-10 phosphorylation, acetylation of Lys 9 and 14, and Lys 79 methylation, were found enriched in muscle biopsies from human patients affected by DMD and in late-term fetuses, early postnatal pups, or adult mdx mice. In this context, chromatin immunoprecipitation experiments showed an enrichment of these modifications at the loci of genes involved in proliferation or inflammation, suggesting a regulatory effect on gene expression. Remarkably, the reexpression of dystrophin induced by gentamicin treatment or the administration of nitric oxide (NO) donors reversed the abnormal pattern of H3 histone modifications. These findings suggest an unanticipated link between the dystrophin-activated NO signaling and the remodeling of chromatin. In this context, the regulation of class IIa histone deacetylases (HDACs) 4 and 5 was found altered as a consequence of the reduced NO-dependent protein phosphatase 2A activity, indicating that both NO and class IIa HDACs are important for satellite cell differentiation and gene expression in mdx mice. In conclusion, this work provides the first evidence of a role for NO as an epigenetic regulator in DMD.

  20. The elusive structural role of ubiquitinated histones.

    PubMed

    Moore, Susan C; Jason, Laure; Ausió, Juan

    2002-01-01

    It is increasingly apparent that histone posttranslational modifications are important in chromatin structure and dynamics. However, histone ubiquitination has received little attention. Histones H1, H3, H2A, and H2B can be ubiquitinated in vivo, but the most prevalent are uH2A and uH2B. The size of this modification suggests some sort of structural impact. Physiological observations suggest that ubiquitinated histones may have multiple functions and structural effects. Ubiquitinated histones have been correlated with transcriptionally active DNA, implying that it may prevent chromatin folding or help maintain an open conformation. Also, in some organisms during spermiogenesis, a process involving extensive chromatin remodeling, uH2A levels increase just prior to histone replacement by protamines. Determination of chromatin's structural changes resulting from histone ubiquitination is therefore important. Recent work using reconstituted nucleosomes and chromatin fibers containing uH2A indicate that in the absence of linker histones, ubiquitination has little structural impact. DNase I digests and analytical ultracentrifugation of reconstituted ubiquitinated nucleosomes show no structural differences. Solubility assays using reconstituted chromatin fibers in the presence of divalent ions demonstrate that uH2A fibers are slightly more prone to aggregation than controls, and analytical ultracentrifugation results with different MgCl2 and NaCl concentrations determined that chromatin folding is not affected by this modification. Additional work to assess possible synergistic affects with histone acetylation also precludes any structural implications. Protamine displacement experiments concluded that the presence of uH2A does not significantly affect the ability of the protamines to displace histones. In addition, uH2A does not interfere with histone H1 binding to the nucleosome. While work with uH2B remains insufficient to come to any definitive conclusions about its structural impact, current work with uH-2A indicates that, contrary to predictions, this histone modification does not affect either nucleosome or chromatin structure. Consequently, the search for a structural role for ubiquitinated histones continues and their effect on and importance in chromatin dynamics remains elusive.

  1. Evaluation of Proteomic Search Engines for the Analysis of Histone Modifications

    PubMed Central

    2015-01-01

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118. PMID:25167464

  2. Evaluation of proteomic search engines for the analysis of histone modifications.

    PubMed

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C; Garcia, Benjamin A

    2014-10-03

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118.

  3. Genome-wide analyses of four major histone modifications in Arabidopsis hybrids at the germinating seed stage.

    PubMed

    Zhu, Anyu; Greaves, Ian K; Dennis, Elizabeth S; Peacock, W James

    2017-02-07

    Hybrid vigour (heterosis) has been used for decades in cropping agriculture, especially in the production of maize and rice, because hybrid varieties exceed their parents in plant biomass and seed yield. The molecular basis of hybrid vigour is not fully understood. Previous studies have suggested that epigenetic systems could play a role in heterosis. In this project, we investigated genome-wide patterns of four histone modifications in Arabidopsis hybrids in germinating seeds. We found that although hybrids have similar histone modification patterns to the parents in most regions of the genome, they have altered patterns at specific loci. A small subset of genes show changes in histone modifications in the hybrids that correlate with changes in gene expression. Our results also show that genome-wide patterns of histone modifications in geminating seeds parallel those at later developmental stages of seedlings. Ler/C24 hybrids showed similar genome-wide patterns of histone modifications as the parents at an early germination stage. However, a small subset of genes, such as FLC, showed correlated changes in histone modification and in gene expression in the hybrids. The altered patterns of histone modifications for those genes in hybrids could be related to some heterotic traits in Arabidopsis, such as flowering time, and could play a role in hybrid vigour establishment.

  4. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    USDA-ARS?s Scientific Manuscript database

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  5. HIstome--a relational knowledgebase of human histone proteins and histone modifying enzymes.

    PubMed

    Khare, Satyajeet P; Habib, Farhat; Sharma, Rahul; Gadewal, Nikhil; Gupta, Sanjay; Galande, Sanjeev

    2012-01-01

    Histones are abundant nuclear proteins that are essential for the packaging of eukaryotic DNA into chromosomes. Different histone variants, in combination with their modification 'code', control regulation of gene expression in diverse cellular processes. Several enzymes that catalyze the addition and removal of multiple histone modifications have been discovered in the past decade, enabling investigations of their role(s) in normal cellular processes and diverse pathological conditions. This sudden influx of data, however, has resulted in need of an updated knowledgebase that compiles, organizes and presents curated scientific information to the user in an easily accessible format. Here, we present HIstome, a browsable, manually curated, relational database that provides information about human histone proteins, their sites of modifications, variants and modifying enzymes. HIstome is a knowledgebase of 55 human histone proteins, 106 distinct sites of their post-translational modifications (PTMs) and 152 histone-modifying enzymes. Entries have been grouped into 5 types of histones, 8 types of post-translational modifications and 14 types of enzymes that catalyze addition and removal of these modifications. The resource will be useful for epigeneticists, pharmacologists and clinicians. HIstome: The Histone Infobase is available online at http://www.iiserpune.ac.in/∼coee/histome/ and http://www.actrec.gov.in/histome/.

  6. Post-translational modifications of linker histone H1 variants in mammals

    NASA Astrophysics Data System (ADS)

    Starkova, T. Yu; Polyanichko, A. M.; Artamonova, T. O.; Khodorkovskii, M. A.; Kostyleva, E. I.; Chikhirzhina, E. V.; Tomilin, A. N.

    2017-02-01

    The covalent modifications of the linker histone H1 and the core histones are thought to play an important role in the control of chromatin functioning. Histone H1 variants from K562 cell line (hH1), mouse (mH1) and calf (cH1) thymi were studied by matrix-activated laser desorption/ionization fourier transform ion cyclotron resonance mass-spectroscopy (MALDI-FT-ICR-MS). The proteomics analysis revealed novel post-translational modifications of the histone H1, such as meK34-mH1.4, meK35-cH1.1, meK35-mH1.1, meK75-hH1.2, meK75-hH1.3, acK26-hH1.4, acK26-hH1.3 and acK17-hH1.1. The comparison of the hH1, mH1 and cH1 proteins has demonstrated that the types and positions of the post-translational modifications of the globular domains of the H1.2-H1.4 variants are very conservative. However, the post-translational modifications of the N- and C-terminal tails of H1.2, H1.3 and H1.4 are different. The differences of post-translational modifications in the N- and C-terminal tails of H1.2, H1.3 and H1.4 likely lead to the differences in DNA-H1 and H1-protein interactions.

  7. Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-04-01

    Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition.

  8. Histone modification: cause or cog?

    PubMed

    Henikoff, Steven; Shilatifard, Ali

    2011-10-01

    Histone modifications are key components of chromatin packaging but whether they constitute a 'code' has been contested. We believe that the central issue is causality: are histone modifications responsible for differences between chromatin states, or are differences in modifications mostly consequences of dynamic processes, such as transcription and nucleosome remodeling? We find that inferences of causality are often based on correlation and that patterns of some key histone modifications are more easily explained as consequences of nucleosome disruption in the presence of histone modifying enzymes. We suggest that the 35-year-old DNA accessibility paradigm provides a mechanistically sound basis for understanding the role of nucleosomes in gene regulation and epigenetic inheritance. Based on this view, histone modifications and variants contribute to diversification of a chromatin landscape shaped by dynamic processes that are driven primarily by transcription and nucleosome remodeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Histone lysine methylation: critical regulator of memory and behavior.

    PubMed

    Jarome, Timothy J; Lubin, Farah D

    2013-01-01

    Histone lysine methylation is a well-established transcriptional mechanism for the regulation of gene expression changes in eukaryotic cells and is now believed to function in neurons of the central nervous system to mediate the process of memory formation and behavior. In mature neurons, methylation of histone proteins can serve to both activate and repress gene transcription. This is in stark contrast to other epigenetic modifications, including histone acetylation and DNA methylation, which have largely been associated with one transcriptional state in the brain. In this review, we discuss the evidence for histone methylation mechanisms in the coordination of complex cognitive processes such as long-term memory formation and storage. In addition, we address the current literature highlighting the role of histone methylation in intellectual disability, addiction, schizophrenia, autism, depression, and neurodegeneration. Further, we discuss histone methylation within the context of other epigenetic modifications and the potential advantages of exploring this newly identified mechanism of cognition, emphasizing the possibility that this molecular process may provide an alternative locus for intervention in long-term psychopathologies that cannot be clearly linked to genes or environment alone.

  10. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms

    PubMed Central

    Zhou, Hua-Lin; Luo, Guangbin; Wise, Jo Ann; Lou, Hua

    2014-01-01

    The molecular mechanisms through which alternative splicing and histone modifications regulate gene expression are now understood in considerable detail. Here, we discuss recent studies that connect these two previously separate avenues of investigation, beginning with the unexpected discoveries that nucleosomes are preferentially positioned over exons and DNA methylation and certain histone modifications also show exonic enrichment. These findings have profound implications linking chromatin structure, histone modification and splicing regulation. Complementary single gene studies provided insight into the mechanisms through which DNA methylation and histones modifications modulate alternative splicing patterns. Here, we review an emerging theme resulting from these studies: RNA-guided mechanisms integrating chromatin modification and splicing. Several groundbreaking papers reported that small noncoding RNAs affect alternative exon usage by targeting histone methyltransferase complexes to form localized facultative heterochromatin. More recent studies provided evidence that pre-messenger RNA itself can serve as a guide to enable precise alternative splicing regulation via local recruitment of histone-modifying enzymes, and emerging evidence points to a similar role for long noncoding RNAs. An exciting challenge for the future is to understand the impact of local modulation of transcription elongation rates on the dynamic interplay between histone modifications, alternative splicing and other processes occurring on chromatin. PMID:24081581

  11. Hippocampal Focal Knockout of CBP Affects Specific Histone Modifications, Long-Term Potentiation, and Long-Term Memory

    PubMed Central

    Barrett, Ruth M; Malvaez, Melissa; Kramar, Eniko; Matheos, Dina P; Arrizon, Abraham; Cabrera, Sara M; Lynch, Gary; Greene, Robert W; Wood, Marcelo A

    2011-01-01

    To identify the role of the histone acetyltransferase (HAT) CREB-binding protein (CBP) in neurons of the CA1 region of the hippocampus during memory formation, we examine the effects of a focal homozygous knockout of CBP on histone modifications, gene expression, synaptic plasticity, and long-term memory. We show that CBP is critical for the in vivo acetylation of lysines on histones H2B, H3, and H4. CBP's homolog p300 was unable to compensate for the loss of CBP. Neurons lacking CBP maintained phosphorylation of the transcription factor CREB, yet failed to activate CREB:CBP-mediated gene expression. Loss of CBP in dorsal CA1 of the hippocampus resulted in selective impairments to long-term potentiation and long-term memory for contextual fear and object recognition. Together, these results suggest a necessary role for specific chromatin modifications, selectively mediated by CBP in the consolidation of memories. PMID:21508930

  12. Partial purification of histone H3 proteolytic activity from the budding yeast Saccharomyces cerevisiae.

    PubMed

    Azad, Gajendra Kumar; Tomar, Raghuvir Singh

    2016-06-01

    The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Revealing the protein propionylation activity of the histone acetyltransferase MOF (males absent on the first).

    PubMed

    Han, Zhen; Wu, Hong; Kim, Sunjoo; Yang, Xiangkun; Li, Qianjin; Huang, He; Cai, Houjian; Bartlett, Michael G; Dong, Aiping; Zeng, Hong; Brown, Peter J; Yang, Xiang-Jiao; Arrowsmith, Cheryl H; Zhao, Yingming; Zheng, Y George

    2018-03-02

    Short-chain acylation of lysine residues has recently emerged as a group of reversible posttranslational modifications in mammalian cells. The diversity of acylation further broadens the landscape and complexity of the proteome. Identification of regulatory enzymes and effector proteins for lysine acylation is critical to understand functions of these novel modifications at the molecular level. Here, we report that the MYST family of lysine acetyltransferases (KATs) possesses strong propionyltransferase activity both in vitro and in cellulo Particularly, the propionyltransferase activity of MOF, MOZ, and HBO1 is as strong as their acetyltransferase activity. Overexpression of MOF in human embryonic kidney 293T cells induced significantly increased propionylation in multiple histone and non-histone proteins, which shows that the function of MOF goes far beyond its canonical histone H4 lysine 16 acetylation. We also resolved the X-ray co-crystal structure of MOF bound with propionyl-coenzyme A, which provides a direct structural basis for the propionyltransferase activity of the MYST KATs. Our data together define a novel function for the MYST KATs as lysine propionyltransferases and suggest much broader physiological impacts for this family of enzymes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Repressive Chromatin in Caenorhabditis elegans: Establishment, Composition, and Function

    PubMed Central

    Ahringer, Julie; Gasser, Susan M.

    2018-01-01

    Chromatin is organized and compacted in the nucleus through the association of histones and other proteins, which together control genomic activity. Two broad types of chromatin can be distinguished: euchromatin, which is generally transcriptionally active, and heterochromatin, which is repressed. Here we examine the current state of our understanding of repressed chromatin in Caenorhabditis elegans, focusing on roles of histone modifications associated with repression, such as methylation of histone H3 lysine 9 (H3K9me2/3) or the Polycomb Repressive Complex 2 (MES-2/3/6)-deposited modification H3K27me3, and on proteins that recognize these modifications. Proteins involved in chromatin repression are important for development, and have demonstrated roles in nuclear organization, repetitive element silencing, genome integrity, and the regulation of euchromatin. Additionally, chromatin factors participate in repression with small RNA pathways. Recent findings shed light on heterochromatin function and regulation in C. elegans, and should inform our understanding of repressed chromatin in other animals. PMID:29378810

  15. Mitogen- and Stress-Activated Kinase 1 (MSK1) Regulates Cigarette Smoke-Induced Histone Modifications on NF-κB-dependent Genes

    PubMed Central

    Sundar, Isaac K.; Chung, Sangwoon; Hwang, Jae-woong; Lapek, John D.; Bulger, Michael; Friedman, Alan E.; Yao, Hongwei; Davie, James R.; Rahman, Irfan

    2012-01-01

    Cigarette smoke (CS) causes sustained lung inflammation, which is an important event in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have previously reported that IKKα (I kappaB kinase alpha) plays a key role in CS-induced pro-inflammatory gene transcription by chromatin modifications; however, the underlying role of downstream signaling kinase is not known. Mitogen- and stress-activated kinase 1 (MSK1) serves as a specific downstream NF-κB RelA/p65 kinase, mediating transcriptional activation of NF-κB-dependent pro-inflammatory genes. The role of MSK1 in nuclear signaling and chromatin modifications is not known, particularly in response to environmental stimuli. We hypothesized that MSK1 regulates chromatin modifications of pro-inflammatory gene promoters in response to CS. Here, we report that CS extract activates MSK1 in human lung epithelial (H292 and BEAS-2B) cell lines, human primary small airway epithelial cells (SAEC), and in mouse lung, resulting in phosphorylation of nuclear MSK1 (Thr581), phospho-acetylation of RelA/p65 at Ser276 and Lys310 respectively. This event was associated with phospho-acetylation of histone H3 (Ser10/Lys9) and acetylation of histone H4 (Lys12). MSK1 N- and C-terminal kinase-dead mutants, MSK1 siRNA-mediated knock-down in transiently transfected H292 cells, and MSK1 stable knock-down mouse embryonic fibroblasts significantly reduced CS extract-induced MSK1, NF-κB RelA/p65 activation, and posttranslational modifications of histones. CS extract/CS promotes the direct interaction of MSK1 with RelA/p65 and p300 in epithelial cells and in mouse lung. Furthermore, CS-mediated recruitment of MSK1 and its substrates to the promoters of NF-κB-dependent pro-inflammatory genes leads to transcriptional activation, as determined by chromatin immunoprecipitation. Thus, MSK1 is an important downstream kinase involved in CS-induced NF-κB activation and chromatin modifications, which have implications in pathogenesis of COPD. PMID:22312446

  16. Histone modifications influence mediator interactions with chromatin

    PubMed Central

    Zhu, Xuefeng; Zhang, Yongqiang; Bjornsdottir, Gudrun; Liu, Zhongle; Quan, Amy; Costanzo, Michael; Dávila López, Marcela; Westholm, Jakub Orzechowski; Ronne, Hans; Boone, Charles; Gustafsson, Claes M.; Myers, Lawrence C.

    2011-01-01

    The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild-type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator—histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. PMID:21742760

  17. Evidence for the implication of the histone code in building the genome structure.

    PubMed

    Prakash, Kirti; Fournier, David

    2018-02-01

    Histones are punctuated with small chemical modifications that alter their interaction with DNA. One attractive hypothesis stipulates that certain combinations of these histone modifications may function, alone or together, as a part of a predictive histone code to provide ground rules for chromatin folding. We consider four features that relate histone modifications to chromatin folding: charge neutralisation, molecular specificity, robustness and evolvability. Next, we present evidence for the association among different histone modifications at various levels of chromatin organisation and show how these relationships relate to function such as transcription, replication and cell division. Finally, we propose a model where the histone code can set critical checkpoints for chromatin to fold reversibly between different orders of the organisation in response to a biological stimulus. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response

    PubMed Central

    Zan, Hong; Casali, Paolo

    2015-01-01

    Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM), as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens, such as those on microbial pathogens, and generation of pathogenic autoantibodies, IgE in allergic reactions, as well as B cell neoplasia. Epigenetic marks would be attractive targets for new therapeutics for autoimmune and allergic diseases, and B cell malignancies. PMID:26697022

  19. Repressive but not activating epigenetic modifications are aberrant on the inactive X chromosome in live cloned cattle.

    PubMed

    Geng-Sheng, Cao; Yu, Gao; Kun, Wang; Fang-Rong, Ding; Ning, Li

    2009-08-01

    X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements. © 2009 The Authors. Journal compilation © 2009 Japanese Society of Developmental Biologists.

  20. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.

    PubMed

    Ng, Marlee K; Cheung, Peter

    2016-02-01

    It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.

  1. MARCC (Matrix-Assisted Reader Chromatin Capture): an antibody-free method to enrich and analyze combinatorial nucleosome modifications

    PubMed Central

    Su, Zhangli

    2016-01-01

    Combinatorial patterns of histone modifications are key indicators of different chromatin states. Most of the current approaches rely on the usage of antibodies to analyze combinatorial histone modifications. Here we detail an antibody-free method named MARCC (Matrix-Assisted Reader Chromatin Capture) to enrich combinatorial histone modifications. The combinatorial patterns are enriched on native nucleosomes extracted from cultured mammalian cells and prepared by micrococcal nuclease digestion. Such enrichment is achieved by recombinant chromatin-interacting protein modules, or so-called reader domains, which can bind in a combinatorial modification-dependent manner. The enriched chromatin can be quantified by western blotting or mass spectrometry for the co-existence of histone modifications, while the associated DNA content can be analyzed by qPCR or next-generation sequencing. Altogether, MARCC provides a reproducible, efficient and customizable solution to enrich and analyze combinatorial histone modifications. PMID:26131849

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dandan; Perkins, Jordan T.; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536

    Epigenetic modifications of DNA and histones alter cellular phenotypes without changing genetic codes. Alterations of epigenetic marks can be induced by exposure to environmental pollutants and may contribute to associated disease risks. Here we test the hypothesis that endothelial cell dysfunction induced by exposure to polychlorinated biphenyls (PCBs) is mediated in part though histone modifications. In this study, human vascular endothelial cells were exposed to physiologically relevant concentrations of several PCBs congeners (e.g., PCBs 77, 118, 126 and 153) followed by quantification of inflammatory gene expression and changes of histone methylation. Only exposure to coplanar PCBs 77 and 126 inducedmore » the expression of histone H3K9 trimethyl demethylase jumonji domain-containing protein 2B (JMJD2B) and nuclear factor-kappa B (NF-κB) subunit p65, activated NF-κB signaling as evidenced by nuclear translocation of p65, and up-regulated p65 target inflammatory genes, such as interleukin (IL)-6, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-1α/β. The increased accumulation of JMJD2B in the p65 promoter led to a depletion of H3K9me3 repression mark, which accounts for the observed up-regulation of p65 and associated inflammatory genes. JMJD2B gene knockdown confirmed a critical role for this histone demethylase in mediating PCB-induced inflammation of the vascular endothelium. Finally, it was determined, via chemical inhibition, that PCB-induced up-regulation of JMJD2B was estrogen receptor-alpha (ER-α) dependent. These data suggest that coplanar PCBs may exert endothelial cell toxicity through changes in histone modifications. - Highlights: • Coplanar PCBs significantly induced histone demethylase JMJD2B expression. • Coplanar PCBs activated NF-κB through p65 up-regulation and nuclear translocation. • Histone H3K4 and K9 modifications were mediated by ER-α/JMJD2B/MLL2 complex. • ER-α may be involved in the regulation of PCB-induced JMJD2B expression.« less

  3. Specific Modifications of Histone Tails, but Not DNA Methylation, Mirror the Temporal Variation of Mammalian Recombination Hotspots

    PubMed Central

    Zeng, Jia; Yi, Soojin V.

    2014-01-01

    Recombination clusters nonuniformly across mammalian genomes at discrete genomic loci referred to as recombination hotspots. Despite their ubiquitous presence, individual hotspots rapidly lose their activities, and the molecular and evolutionary mechanisms underlying such frequent hotspot turnovers (the so-called “recombination hotspot paradox”) remain unresolved. Even though some sequence motifs are significantly associated with hotspots, multiple lines of evidence indicate that factors other than underlying sequences, such as epigenetic modifications, may affect the evolution of recombination hotspots. Thus, identifying epigenetic factors that covary with recombination at fine-scale is a promising step for this important research area. It was previously reported that recombination rates correlate with indirect measures of DNA methylation in the human genome. Here, we analyze experimentally determined DNA methylation and histone modification of human sperms, and show that the correlation between DNA methylation and recombination in long-range windows does not hold with respect to the spatial and temporal variation of recombination at hotspots. On the other hand, two histone modifications (H3K4me3 and H3K27me3) overlap extensively with recombination hotspots. Similar trends were observed in mice. These results indicate that specific histone modifications rather than DNA methylation are associated with the rapid evolution of recombination hotspots. Furthermore, many human recombination hotspots occupy “bivalent” chromatin regions that harbor both active (H3K4me3) and repressive (H3K27me3) marks. This may explain why human recombination hotspots tend to occur in nongenic regions, in contrast to yeast and Arabidopsis hotspots that are characterized by generally active chromatins. Our results highlight the dynamic epigenetic underpinnings of recombination hotspot evolution. PMID:25326136

  4. Specific modifications of histone tails, but not DNA methylation, mirror the temporal variation of mammalian recombination hotspots.

    PubMed

    Zeng, Jia; Yi, Soojin V

    2014-10-16

    Recombination clusters nonuniformly across mammalian genomes at discrete genomic loci referred to as recombination hotspots. Despite their ubiquitous presence, individual hotspots rapidly lose their activities, and the molecular and evolutionary mechanisms underlying such frequent hotspot turnovers (the so-called "recombination hotspot paradox") remain unresolved. Even though some sequence motifs are significantly associated with hotspots, multiple lines of evidence indicate that factors other than underlying sequences, such as epigenetic modifications, may affect the evolution of recombination hotspots. Thus, identifying epigenetic factors that covary with recombination at fine-scale is a promising step for this important research area. It was previously reported that recombination rates correlate with indirect measures of DNA methylation in the human genome. Here, we analyze experimentally determined DNA methylation and histone modification of human sperms, and show that the correlation between DNA methylation and recombination in long-range windows does not hold with respect to the spatial and temporal variation of recombination at hotspots. On the other hand, two histone modifications (H3K4me3 and H3K27me3) overlap extensively with recombination hotspots. Similar trends were observed in mice. These results indicate that specific histone modifications rather than DNA methylation are associated with the rapid evolution of recombination hotspots. Furthermore, many human recombination hotspots occupy "bivalent" chromatin regions that harbor both active (H3K4me3) and repressive (H3K27me3) marks. This may explain why human recombination hotspots tend to occur in nongenic regions, in contrast to yeast and Arabidopsis hotspots that are characterized by generally active chromatins. Our results highlight the dynamic epigenetic underpinnings of recombination hotspot evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung, E-mail: jjungii@kaist.ac.kr

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNAmore » production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.« less

  6. Intricate Effects of α-Amino and Lysine Modifications on Arginine Methylation of the N-Terminal Tail of Histone H4.

    PubMed

    Fulton, Melody D; Zhang, Jing; He, Maomao; Ho, Meng-Chiao; Zheng, Y George

    2017-07-18

    Chemical modifications of the DNA and nucleosomal histones tightly control the gene transcription program in eukaryotic cells. The "histone code" hypothesis proposes that the frequency, combination, and location of post-translational modifications (PTMs) of the core histones compose a complex network of epigenetic regulation. Currently, there are at least 23 different types and >450 histone PTMs that have been discovered, and the PTMs of lysine and arginine residues account for a crucial part of the histone code. Although significant progress has been achieved in recent years, the molecular basis for the histone code is far from being fully understood. In this study, we investigated how naturally occurring N-terminal acetylation and PTMs of histone H4 lysine-5 (H4K5) affect arginine-3 methylation catalyzed by both type I and type II PRMTs at the biochemical level. Our studies found that acylations of H4K5 resulted in decreased levels of arginine methylation by PRMT1, PRMT3, and PRMT8. In contrast, PRMT5 exhibits an increased rate of arginine methylation upon H4K5 acetylation, propionylation, and crotonylation, but not upon H4K5 methylation, butyrylation, or 2-hydroxyisobutyrylation. Methylation of H4K5 did not affect arginine methylation by PRMT1 or PRMT5. There was a small increase in the rate of arginine methylation by PRMT8. Strikingly, a marked increase in the rate of arginine methylation was observed for PRMT3. Finally, N-terminal acetylation reduced the rate of arginine methylation by PRMT3 but had little influence on PRMT1, -5, and -8 activity. These results together highlight the underlying mechanistic differences in substrate recognition among different PRMTs and pave the way for the elucidation of the complex interplay of histone modifications.

  7. Profiling post-translational modifications of histones in human monocyte-derived macrophages.

    PubMed

    Olszowy, Pawel; Donnelly, Maire Rose; Lee, Chanho; Ciborowski, Pawel

    2015-01-01

    Histones and their post-translational modifications impact cellular function by acting as key regulators in the maintenance and remodeling of chromatin, thus affecting transcription regulation either positively (activation) or negatively (repression). In this study we describe a comprehensive, bottom-up proteomics approach to profiling post-translational modifications (acetylation, mono-, di- and tri-methylation, phosphorylation, biotinylation, ubiquitination, citrullination and ADP-ribosylation) in human macrophages, which are primary cells of the innate immune system. As our knowledge expands, it becomes more evident that macrophages are a heterogeneous population with potentially subtle differences in their responses to various stimuli driven by highly complex epigenetic regulatory mechanisms. To profile post-translational modifications (PTMs) of histones in macrophages we used two platforms of liquid chromatography and mass spectrometry. One platform was based on Sciex5600 TripleTof and the second one was based on VelosPro Orbitrap Elite ETD mass spectrometers. We provide side-by-side comparison of profiling using two mass spectrometric platforms, ion trap and qTOF, coupled with the application of collisional induced and electron transfer dissociation. We show for the first time methylation of a His residue in macrophages and demonstrate differences in histone PTMs between those currently reported for macrophage cell lines and what we identified in primary cells. We have found a relatively low level of histone PTMs in differentiated but resting human primary monocyte derived macrophages. This study is the first comprehensive profiling of histone PTMs in primary human MDM. Our study implies that epigenetic regulatory mechanisms operative in transformed cell lines and primary cells are overlapping to a limited extent. Our mass spectrometric approach provides groundwork for the investigation of how histone PTMs contribute to epigenetic regulation in primary human macrophages.

  8. ChIP-Seq Analysis for Identifying Genome-Wide Histone Modifications Associated with Stress-Responsive Genes in Plants.

    PubMed

    Li, Guosheng; Jagadeeswaran, Guru; Mort, Andrew; Sunkar, Ramanjulu

    2017-01-01

    Histone modifications represent the crux of epigenetic gene regulation essential for most biological processes including abiotic stress responses in plants. Thus, identification of histone modifications at the genome-scale can provide clues for how some genes are 'turned-on' while some others are "turned-off" in response to stress. This chapter details a step-by-step protocol for identifying genome-wide histone modifications associated with stress-responsive gene regulation using chromatin immunoprecipitation (ChIP) followed by sequencing of the DNA (ChIP-seq).

  9. Histones and their modifications in ovarian cancer - drivers of disease and therapeutic targets.

    PubMed

    Marsh, Deborah J; Shah, Jaynish S; Cole, Alexander J

    2014-01-01

    Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC) is the most common subtype, with the majority of women presenting with advanced disease where 5-year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation, and monoubiquitination, with involvement of enzymes including histone methyltransferases, histone acetyltransferases/deacetylases, and ubiquitin ligases/deubiquitinases, respectively. Complexes such as the Polycomb repressive complex also play roles in the control of histone modifications and more recently roles for long non-coding RNA and microRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here, we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for women with ovarian cancer.

  10. Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation

    PubMed Central

    Basnet, Harihar; Bessie Su, Xue; Tan, Yuliang; Meisenhelder, Jill; Merkurjev, Daria; Ohgi, Kenneth A.; Hunter, Tony; Pillus, Lorraine; Rosenfeld, Michael G.

    2014-01-01

    Post-translational histone modifications play critical roles in regulating transcription, the cell cycle, DNA replication and DNA damage repair1. The identification of new histone modifications critical for transcriptional regulation at initiation, elongation, or termination is of particular interest. Here, we report a new layer of regulation in transcriptional elongation that is conserved from yeast to mammals, based on a phosphorylation of a highly-conserved tyrosine residue, Y57, in histone H2A that is mediated by an unsuspected tyrosine kinase activity of casein kinase 2 (CK2). Mutation of H2A-Y57 in yeast or inhibition of CK2 activity impairs transcriptional elongation in yeast as well as in mammalian cells. Genome-wide binding analysis reveals that CK2α, the catalytic subunit of CK2, binds across RNA polymerase II-transcribed coding genes and active enhancers. Mutation of Y57 causes a loss of H2B mono-ubiquitylation as well as H3K4me3 and H3K79me3, histone marks associated with active transcription. Mechanistically, both CK2 inhibition and H2A-Y57F mutation enhance the H2B deubiquitylation activity of the SAGA complex, suggesting a critical role of this phosphorylation in coordinating the activity of the SAGA during transcription. Together, these results identify a new component of regulation in transcriptional elongation based on CK2-dependent tyrosine phosphorylation of the globular domain of H2A. PMID:25252977

  11. Towards Breaking the Histone Code – Bayesian Graphical Models for Histone Modifications

    PubMed Central

    Mitra, Riten; Müller, Peter; Liang, Shoudan; Xu, Yanxun; Ji, Yuan

    2013-01-01

    Background Histones are proteins that wrap DNA around in small spherical structures called nucleosomes. Histone modifications (HMs) refer to the post-translational modifications to the histone tails. At a particular genomic locus, each of these HMs can either be present or absent, and the combinatory patterns of the presence or absence of multiple HMs, or the ‘histone codes,’ are believed to co-regulate important biological processes. We aim to use raw data on HM markers at different genomic loci to (1) decode the complex biological network of HMs in a single region and (2) demonstrate how the HM networks differ in different regulatory regions. We suggest that these differences in network attributes form a significant link between histones and genomic functions. Methods and Results We develop a powerful graphical model under Bayesian paradigm. Posterior inference is fully probabilistic, allowing us to compute the probabilities of distinct dependence patterns of the HMs using graphs. Furthermore, our model-based framework allows for easy but important extensions for inference on differential networks under various conditions, such as the different annotations of the genomic locations (e.g., promoters versus insulators). We applied these models to ChIP-Seq data based on CD4+ T lymphocytes. The results confirmed many existing findings and provided a unified tool to generate various promising hypotheses. Differential network analyses revealed new insights on co-regulation of HMs of transcriptional activities in different genomic regions. Conclusions The use of Bayesian graphical models and borrowing strength across different conditions provide high power to infer histone networks and their differences. PMID:23748248

  12. Histone variant innovation in a rapidly evolving chordate lineage.

    PubMed

    Moosmann, Alexandra; Campsteijn, Coen; Jansen, Pascal Wtc; Nasrallah, Carole; Raasholm, Martina; Stunnenberg, Henk G; Thompson, Eric M

    2011-07-15

    Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.

  13. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process.

    PubMed

    Xu, Jidi; Xu, Haidan; Liu, Yuanlong; Wang, Xia; Xu, Qiang; Deng, Xiuxin

    2015-01-01

    In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses.

  14. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    DOE PAGES

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; ...

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the resultsmore » of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.« less

  15. A multiplexed system for quantitative comparisons of chromatin landscapes

    PubMed Central

    van Galen, Peter; Viny, Aaron D.; Ram, Oren; Ryan, Russell J.H.; Cotton, Matthew J.; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Carroll, Kaitlin M.; Cross, Michael B.; Levine, Ross L.; Bernstein, Bradley E.

    2015-01-01

    Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of P300, EZH2 or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions and drug treatments. PMID:26687680

  16. Gene Expression and Chromatin Modifications Associated with Maize Centromeres.

    PubMed

    Zhao, Hainan; Zhu, Xiaobiao; Wang, Kai; Gent, Jonathan I; Zhang, Wenli; Dawe, R Kelly; Jiang, Jiming

    2015-11-12

    Centromeres are defined by the presence of CENH3, a variant of histone H3. Centromeres in most plant species contain exclusively highly repetitive DNA sequences, which has hindered research on structure and function of centromeric chromatin. Several maize centromeres have been nearly completely sequenced, providing a sequence-based platform for genomic and epigenomic research of plant centromeres. Here we report a high resolution map of CENH3 nucleosomes in the maize genome. Although CENH3 nucleosomes are spaced ∼190 bp on average, CENH3 nucleosomes that occupied CentC, a 156-bp centromeric satellite repeat, showed clear positioning aligning with CentC monomers. Maize centromeres contain alternating CENH3-enriched and CENH3-depleted subdomains, which account for 87% and 13% of the centromeres, respectively. A number of annotated genes were identified in the centromeres, including 11 active genes that were located exclusively in CENH3-depleted subdomains. The euchromatic histone modification marks, including H3K4me3, H3K36me3 and H3K9ac, detected in maize centromeres were associated mainly with the active genes. Interestingly, maize centromeres also have lower levels of the heterochromatin histone modification mark H3K27me2 relative to pericentromeric regions. We conclude that neither H3K27me2 nor the three euchromatic histone modifications are likely to serve as functionally important epigenetic marks of centromere identity in maize. Copyright © 2016 Zhao et al.

  17. Gene Expression and Chromatin Modifications Associated with Maize Centromeres

    PubMed Central

    Zhao, Hainan; Zhu, Xiaobiao; Wang, Kai; Gent, Jonathan I.; Zhang, Wenli; Dawe, R. Kelly; Jiang, Jiming

    2015-01-01

    Centromeres are defined by the presence of CENH3, a variant of histone H3. Centromeres in most plant species contain exclusively highly repetitive DNA sequences, which has hindered research on structure and function of centromeric chromatin. Several maize centromeres have been nearly completely sequenced, providing a sequence-based platform for genomic and epigenomic research of plant centromeres. Here we report a high resolution map of CENH3 nucleosomes in the maize genome. Although CENH3 nucleosomes are spaced ∼190 bp on average, CENH3 nucleosomes that occupied CentC, a 156-bp centromeric satellite repeat, showed clear positioning aligning with CentC monomers. Maize centromeres contain alternating CENH3-enriched and CENH3-depleted subdomains, which account for 87% and 13% of the centromeres, respectively. A number of annotated genes were identified in the centromeres, including 11 active genes that were located exclusively in CENH3-depleted subdomains. The euchromatic histone modification marks, including H3K4me3, H3K36me3 and H3K9ac, detected in maize centromeres were associated mainly with the active genes. Interestingly, maize centromeres also have lower levels of the heterochromatin histone modification mark H3K27me2 relative to pericentromeric regions. We conclude that neither H3K27me2 nor the three euchromatic histone modifications are likely to serve as functionally important epigenetic marks of centromere identity in maize. PMID:26564952

  18. Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription.

    PubMed

    Clancy, Kathleen W; Russell, Anna-Maria; Subramanian, Venkataraman; Nguyen, Hannah; Qian, Yuewei; Campbell, Robert M; Thompson, Paul R

    2017-06-16

    Posttranslational modifications of histone tails are a key contributor to epigenetic regulation. Histone H3 Arg26 and Lys27 are both modified by multiple enzymes, and their modifications have profound effects on gene expression. Citrullination of H3R26 by PAD2 and methylation of H3K27 by PRC2 have opposing downstream impacts on gene regulation; H3R26 citrullination activates gene expression, and H3K27 methylation represses gene expression. Both of these modifications are drivers of a variety of cancers, and their writer enzymes, PAD2 and EZH2, are the targets of drug therapies. After biochemical and cell-based analysis of these modifications, a negative crosstalk interaction is observed. Methylation of H3K27 slows citrullination of H3R26 30-fold, whereas citrullination of H3R26 slows methylation 30,000-fold. Examination of the mechanism of this crosstalk interaction uncovered a change in structure of the histone tail upon citrullination which prevents methylation by the PRC2 complex. This mechanism of crosstalk is reiterated in cell lines using knockdowns and inhibitors of both enzymes. Based our data, we propose a model in which, after H3 Cit26 formation, H3K27 demethylases are recruited to the chromatin to activate transcription. In total, our studies support the existence of crosstalk between citrullination of H3R26 and methylation of H3K27.

  19. Clipping of arginine-methylated histone tails by JMJD5 and JMJD7

    PubMed Central

    Liu, Haolin; Wang, Chao; Lee, Schuyler; Deng, Yu; Wither, Matthew; Oh, Sangphil; Ning, Fangkun; Dege, Carissa; Zhang, Qianqian; Liu, Xinjian; Johnson, Aaron M.; Zang, Jianye; Janknecht, Ralf; Hansen, Kirk; Marrack, Philippa; Li, Chuan-Yuan; Kappler, John W.; Hagman, James; Zhang, Gongyi

    2017-01-01

    Two of the unsolved, important questions about epigenetics are: do histone arginine demethylases exist, and is the removal of histone tails by proteolysis a major epigenetic modification process? Here, we report that two orphan Jumonji C domain (JmjC)-containing proteins, JMJD5 and JMJD7, have divalent cation-dependent protease activities that preferentially cleave the tails of histones 2, 3, or 4 containing methylated arginines. After the initial specific cleavage, JMJD5 and JMJD7, acting as aminopeptidases, progressively digest the C-terminal products. JMJD5-deficient fibroblasts exhibit dramatically increased levels of methylated arginines and histones. Furthermore, depletion of JMJD7 in breast cancer cells greatly decreases cell proliferation. The protease activities of JMJD5 and JMJD7 represent a mechanism for removal of histone tails bearing methylated arginine residues and define a potential mechanism of transcription regulation. PMID:28847961

  20. Application of histone modification-specific interaction domains as an alternative to antibodies.

    PubMed

    Kungulovski, Goran; Kycia, Ina; Tamas, Raluca; Jurkowska, Renata Z; Kudithipudi, Srikanth; Henry, Chisato; Reinhardt, Richard; Labhart, Paul; Jeltsch, Albert

    2014-11-01

    Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies. © 2014 Kungulovski et al.; Published by Cold Spring Harbor Laboratory Press.

  1. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes

    PubMed Central

    Rose, Nathan R; King, Hamish W; Blackledge, Neil P; Fursova, Nadezda A; Ember, Katherine JI; Fischer, Roman; Kessler, Benedikt M; Klose, Robert J

    2016-01-01

    Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3). Without normal histone modification-dependent communication between PRC1 and PRC2, repressive Polycomb chromatin domains can erode, rendering target genes susceptible to inappropriate gene expression signals. This suggests that activity-based communication and histone modification-dependent thresholds create a localized form of epigenetic memory required for normal PcG chromatin domain function in gene regulation. DOI: http://dx.doi.org/10.7554/eLife.18591.001 PMID:27705745

  2. Cancer Chemoprotection Through Nutrient-mediated Histone Modifications

    PubMed Central

    Gao, Yifeng; Tollefsbol, Trygve O.

    2016-01-01

    Epigenetics, the study of heritable changes in gene expression without modifying the nucleotide sequence, is among the most important topics in medicinal chemistry and cancer chemoprotection. Among those changes, DNA methylation and histone modification have been shown to be associated with various types of cancers in a number of ways, many of which are regulated by dietary components that are mostly found in plants. Although, mechanisms of nutrient components affecting histone acetylation/deacetylation in cancer are widely studied, how those natural compounds affect cancer through other histone modifications, such as methylation, phosphorylation and ubiquitylation, is rarely reviewed. Thus, this review article discusses impacts recently studied on histone acetylation as well as other histone modifications by dietary components, such as genistein, resveratrol, curcumin, epigallocatechin-3-gallate (EGCG), 3,3′-diindolylmethane (DIM), diallyl disulfide, garcinol, procyanidin B3, quercetin, sulforaphane and other isothiocyanates, in various types of cancer. PMID:25891109

  3. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin.

    PubMed

    Delporte, Annelies; De Zaeytijd, Jeroen; De Storme, Nico; Azmi, Abdelkrim; Geelen, Danny; Smagghe, Guy; Guisez, Yves; Van Damme, Els J M

    2014-10-01

    The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Inhalable Metal-Rich Air Particles and Histone H3K4 Dimethylation and H3K9 Acetylation in a Cross-sectional Study of Steel Workers

    PubMed Central

    Cantone, Laura; Nordio, Francesco; Hou, Lifang; Apostoli, Pietro; Bonzini, Matteo; Tarantini, Letizia; Angelici, Laura; Bollati, Valentina; Zanobetti, Antonella; Schwartz, Joel; Bertazzi, Pier A.

    2011-01-01

    Background: Epidemiology investigations have linked exposure to ambient and occupational air particulate matter (PM) with increased risk of lung cancer. PM contains carcinogenic and toxic metals, including arsenic and nickel, which have been shown in in vitro studies to induce histone modifications that activate gene expression by inducing open-chromatin states. Whether inhalation of metal components of PM induces histone modifications in human subjects is undetermined. Objectives: We investigated whether the metal components of PM determined activating histone modifications in 63 steel workers with well-characterized exposure to metal-rich PM. Methods: We determined histone 3 lysine 4 dimethylation (H3K4me2) and histone 3 lysine 9 acetylation (H3K9ac) on histones from blood leukocytes. Exposure to inhalable metal components (aluminum, manganese, nickel, zinc, arsenic, lead, iron) and to total PM was estimated for each study subject. Results: Both H3K4me2 and H3K9ac increased in association with years of employment in the plant (p-trend = 0.04 and 0.006, respectively). H3K4me2 increased in association with air levels of nickel [β = 0.16; 95% confidence interval (CI), 0.03–0.3], arsenic (β = 0.16; 95% CI, 0.02–0.3), and iron (β = 0.14; 95% CI, 0.01–0.26). H3K9ac showed nonsignificant positive associations with air levels of nickel (β = 0.24; 95% CI, –0.02 to 0.51), arsenic (β = 0.21; 95% CI, –0.06 to 0.48), and iron (β = 0.22; 95% CI, –0.03 to 0.47). Cumulative exposures to nickel and arsenic, defined as the product of years of employment by metal air levels, were positively correlated with both H3K4me2 (nickel: β = 0.16; 95% CI, 0.01–0.3; arsenic: β = 0.16; 95% CI, 0.03–0.29) and H3K9ac (nickel: β = 0.27; 95% CI, 0.01–0.54; arsenic: β = 0.28; 95% CI, 0.04–0.51). Conclusions: Our results indicate histone modifications as a novel epigenetic mechanism induced in human subjects by long-term exposure to inhalable nickel and arsenic. PMID:21385672

  5. Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle.

    PubMed

    Chaal, Balbir K; Gupta, Archna P; Wastuwidyaningtyas, Brigitta D; Luah, Yen-Hoon; Bozdech, Zbynek

    2010-01-22

    The apparent paucity of molecular factors of transcriptional control in the genomes of Plasmodium parasites raises many questions about the mechanisms of life cycle regulation in these malaria parasites. Epigenetic regulation has been suggested to play a major role in the stage specific gene expression during the Plasmodium life cycle. To address some of these questions, we analyzed global transcriptional responses of Plasmodium falciparum to a potent inhibitor of histone deacetylase activities (HDAC). The inhibitor apicidin induced profound transcriptional changes in multiple stages of the P. falciparum intraerythrocytic developmental cycle (IDC) that were characterized by rapid activation and repression of a large percentage of the genome. A major component of this response was induction of genes that are otherwise suppressed during that particular stage of the IDC or specific for the exo-erythrocytic stages. In the schizont stage, apicidin induced hyperacetylation of histone lysine residues H3K9, H4K8 and the tetra-acetyl H4 (H4Ac4) and demethylation of H3K4me3. Interestingly, we observed overlapping patterns of chromosomal distributions between H4K8Ac and H3K4me3 and between H3K9Ac and H4Ac4. There was a significant but partial association between the apicidin-induced gene expression and histone modifications, which included a number of stage specific transcription factors. Taken together, inhibition of HDAC activities leads to dramatic de-regulation of the IDC transcriptional cascade, which is a result of both disruption of histone modifications and up-regulation of stage specific transcription factors. These findings suggest an important role of histone modification and chromatin remodeling in transcriptional regulation of the Plasmodium life cycle. This also emphasizes the potential of P. falciparum HDACs as drug targets for malaria chemotherapy.

  6. Multifunctional Ebselen drug functions through the activation of DNA damage response and alterations in nuclear proteins.

    PubMed

    Azad, Gajendra K; Balkrishna, Shah Jaimin; Sathish, Narayanan; Kumar, Sangit; Tomar, Raghuvir S

    2012-01-15

    Several studies have demonstrated that Ebselen is an anti-inflammatory and anti-oxidative agent. Contrary to this, studies have also shown a high degree of cellular toxicity associated with Ebselen usage, the underlying mechanism of which remains less understood. In this study we have attempted to identify a possible molecular mechanism behind the above by investigating the effects of Ebselen on Saccharomyces cerevisiae. Significant growth arrest was documented in yeast cells exposed to Ebselen similar to that seen in presence of DNA damaging agents (including methyl methane sulfonate [MMS] and hydroxy urea [HU]). Furthermore, mutations in specific lysine residues in the histone H3 tail (H3 K56R) resulted in increased sensitivity of yeast cells to Ebselen presumably due to alterations in post-translational modifications of histone proteins towards regulating replication and DNA damage repair. Our findings suggest that Ebselen functions through activation of DNA damage response, alterations in histone modifications, activation of checkpoint kinase pathway and derepression of ribonucleotide reductases (DNA repair genes) which to the best of our knowledge is being reported for the first time. Interestingly subsequent to Ebselen exposure there were changes in global yeast protein expression and specific histone modifications, identification of which is expected to reveal a fundamental cellular mechanism underlying the action of Ebselen. Taken together these observations will help to redesign Ebselen-based therapy in clinical trials. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Histone phosphorylation: its role during cell cycle and centromere identity in plants.

    PubMed

    Zhang, B; Dong, Q; Su, H; Birchler, J A; Han, F

    2014-01-01

    As the main protein components of chromatin, histones can alter the structural/functional capabilities of chromatin by undergoing extensive post-translational modifications (PTMs) such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, and so on. These PTMs are thought to transmit signals from the chromatin to the cell machinery to regulate various processes. Histone phosphorylation is associated with chromosome condensation/segregation, activation of transcription, and DNA damage repair. In this review, we focus on how different histone phosphorylations mark for chromatin change during the cell cycle, the relationship between histone phosphorylation and functional centromeres, and the candidate kinases that trigger and the phosphatase or kinase inhibitors that alter histone phosphorylation. Finally, we review the crosstalk between different PTMs. © 2014 S. Karger AG, Basel.

  8. The relationship between gene transcription and combinations of histone modifications

    NASA Astrophysics Data System (ADS)

    Cui, Xiangjun; Li, Hong; Luo, Liaofu

    2012-09-01

    Histone modification is an important subject of epigenetics which plays an intrinsic role in transcriptional regulation. It is known that multiple histone modifications act in a combinatorial fashion. In this study, we demonstrated that the pathways within constructed Bayesian networks can give an indication for the combinations among 12 histone modifications which have been studied in the TSS+1kb region in S. cerevisiae. After Bayesian networks for the genes with high transcript levels (H-network) and low transcript levels (L-network) were constructed, the combinations of modifications within the two networks were analyzed from the view of transcript level. The results showed that different combinations played dissimilar roles in the regulation of gene transcription when there exist differences for gene expression at transcription level.

  9. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells

    PubMed Central

    Brancaccio, Mariarita; Coretti, Lorena; Florio, Ermanno; Pezone, Antonio; Calabrò, Viola; Falco, Geppino; Keller, Simona; Lembo, Francesca; Avvedimento, Vittorio Enrico; Chiariotti, Lorenzo

    2016-01-01

    Bacterial lipopolysaccharide (LPS) induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3), methylation (H3K4, H3K9, H3K27) and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene. PMID:27253528

  10. Optimized methods of chromatin immunoprecipitation for profiling histone modifications in industrial microalgae Nannochloropsis spp.

    PubMed

    Wei, Li; Xu, Jian

    2018-06-01

    Epigenetic factors such as histone modifications play integral roles in plant development and stress response, yet their implications in algae remain poorly understood. In the industrial oleaginous microalgae Nannochloropsis spp., the lack of an efficient methodology for chromatin immunoprecipitation (ChIP), which determines the specific genomic location of various histone modifications, has hindered probing the epigenetic basis of their photosynthetic carbon conversion and storage as oil. Here, a detailed ChIP protocol was developed for Nannochloropsis oceanica, which represents a reliable approach for the analysis of histone modifications, chromatin state, and transcription factor-binding sites at the epigenetic level. Using ChIP-qPCR, genes related to photosynthetic carbon fixation in this microalga were systematically assessed. Furthermore, a ChIP-Seq protocol was established and optimized, which generated a genome-wide profile of histone modification events, using histone mark H3K9Ac as an example. These results are the first step for appreciation of the chromatin landscape in industrial oleaginous microalgae and for epigenetics-based microalgal feedstock development. © 2018 Phycological Society of America.

  11. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process

    PubMed Central

    Xu, Jidi; Xu, Haidan; Liu, Yuanlong; Wang, Xia; Xu, Qiang; Deng, Xiuxin

    2015-01-01

    In eukaryotes, histone acetylation and methylation have been known to be involved in regulating diverse developmental processes and plant defense. These histone modification events are controlled by a series of histone modification gene families. To date, there is no study regarding genome-wide characterization of histone modification related genes in citrus species. Based on the two recent sequenced sweet orange genome databases, a total of 136 CsHMs (Citrus sinensis histone modification genes), including 47 CsHMTs (histone methyltransferase genes), 23 CsHDMs (histone demethylase genes), 50 CsHATs (histone acetyltransferase genes), and 16 CsHDACs (histone deacetylase genes) were identified. These genes were categorized to 11 gene families. A comprehensive analysis of these 11 gene families was performed with chromosome locations, phylogenetic comparison, gene structures, and conserved domain compositions of proteins. In order to gain an insight into the potential roles of these genes in citrus fruit development, 42 CsHMs with high mRNA abundance in fruit tissues were selected to further analyze their expression profiles at six stages of fruit development. Interestingly, a numbers of genes were expressed highly in flesh of ripening fruit and some of them showed the increasing expression levels along with the fruit development. Furthermore, we analyzed the expression patterns of all 136 CsHMs response to the infection of blue mold (Penicillium digitatum), which is the most devastating pathogen in citrus post-harvest process. The results indicated that 20 of them showed the strong alterations of their expression levels during the fruit-pathogen infection. In conclusion, this study presents a comprehensive analysis of the histone modification gene families in sweet orange and further elucidates their behaviors during the fruit development and the blue mold infection responses. PMID:26300904

  12. A Common histone modification code on C4 genes in maize and its conservation in Sorghum and Setaria italica.

    PubMed

    Heimann, Louisa; Horst, Ina; Perduns, Renke; Dreesen, Björn; Offermann, Sascha; Peterhansel, Christoph

    2013-05-01

    C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism.

  13. Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior.

    PubMed

    Matsuda, Ken Ichi; Mori, Hiroko; Nugent, Bridget M; Pfaff, Donald W; McCarthy, Margaret M; Kawata, Mitsuhiro

    2011-07-01

    Epigenetic histone modifications are emerging as important mechanisms for conveyance of and maintenance of effects of the hormonal milieu to the developing brain. We hypothesized that alteration of histone acetylation status early in development by sex steroid hormones is important for sexual differentiation of the brain. It was found that during the critical period for sexual differentiation, histones associated with promoters of essential genes in masculinization of the brain (estrogen receptor α and aromatase) in the medial preoptic area, an area necessary for male sexual behavior, were differentially acetylated between the sexes. Consistent with these findings, binding of histone deacetylase (HDAC) 2 and 4 to the promoters was higher in males than in females. To examine the involvement of histone deacetylation on masculinization of the brain at the behavioral level, we inhibited HDAC in vivo by intracerebroventricular infusion of the HDAC inhibitor trichostatin A or antisense oligodeoxynucleotide directed against the mRNA for HDAC2 and -4 in newborn male rats. Aspects of male sexual behavior in adulthood were significantly reduced by administration of either trichostatin A or antisense oligodeoxynucleotide. These results demonstrate that HDAC activity during the early postnatal period plays a crucial role in the masculinization of the brain via modifications of histone acetylation status.

  14. A signaling role of histone-binding proteins and INHAT subunits pp32 and Set/TAF-Ibeta in integrating chromatin hypoacetylation and transcriptional repression.

    PubMed

    Kutney, Sara N; Hong, Rui; Macfarlan, Todd; Chakravarti, Debabrata

    2004-07-16

    Various post-translational modifications of histones significantly influence gene transcription. Although un- or hypoacetylated histones are tightly linked to transcriptional repression, the mechanisms and identities of chromatin signal transducer proteins integrating histone hypoacetylation into repression in humans have remained largely unknown. Here we show that the mammalian histone-binding proteins and inhibitor of acetyltransferases (INHAT) complex subunits, Set/template-activating factor-Ibeta (TAF-Ibeta) and pp32, specifically bind to unacetylated, hypoacetylated, and repressively marked histones but not to hyperacetylated histones. Additionally, Set/TAF-Ibeta and pp32 associate with histone deacetylases in vitro and in vivo and repress transcription from a chromatin-integrated template in vivo. Finally, Set/TAF-Ibeta and pp32 associate with an endogenous estrogen receptor-regulated gene, EB1, in the hypoacetylated transcriptionally inactive state but not with the hyperacetylated transcriptionally active form. Together, these data define a novel in vivo mechanistic role for the mammalian Set/TAF-Ibeta and pp32 proteins as transducers of chromatin signaling by integrating chromatin hypoacetylation and transcriptional repression.

  15. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry.

    PubMed

    Sidoli, Simone; Cheng, Lei; Jensen, Ole N

    2012-06-27

    Histone proteins contribute to the maintenance and regulation of the dynamic chromatin structure, to gene activation, DNA repair and many other processes in the cell nucleus. Site-specific reversible and irreversible post-translational modifications of histone proteins mediate biological functions, including recruitment of transcription factors to specific DNA regions, assembly of epigenetic reader/writer/eraser complexes onto DNA, and modulation of DNA-protein interactions. Histones thereby regulate chromatin structure and function, propagate inheritance and provide memory functions in the cell. Dysfunctional chromatin structures and misregulation may lead to pathogenic states, including diabetes and cancer, and the mapping and quantification of multivalent post-translational modifications has therefore attracted significant interest. Mass spectrometry has quickly been accepted as a versatile tool to achieve insights into chromatin biology and epigenetics. High sensitivity and high mass accuracy and the ability to sequence post-translationally modified peptides and perform large-scale analyses make this technique very well suited for histone protein characterization. In this review we discuss a range of analytical methods and various mass spectrometry-based approaches for histone analysis, from sample preparation to data interpretation. Mass spectrometry-based proteomics is already an integrated and indispensable tool in modern chromatin biology, providing insights into the mechanisms and dynamics of nuclear and epigenetic processes. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Chemical and Biological Tools for the Preparation of Modified Histone Proteins

    PubMed Central

    Howard, Cecil J.; Yu, Ruixuan R.; Gardner, Miranda L.; Shimko, John C.; Ottesen, Jennifer J.

    2016-01-01

    Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through, a large network of dynamic post-translational modifications (PTMs) exists to ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to better understand the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools that have been developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. Additionally, we will cover the chemical ligation techniques that have been invaluable in the generation of complex modified histones that are indistinguishable from the natural counterparts. Finally, we will end with a prospectus on future directions of synthetic chromatin in living systems. PMID:25863817

  17. Inferring nucleosome positions with their histone mark annotation from ChIP data

    PubMed Central

    Mammana, Alessandro; Vingron, Martin; Chung, Ho-Ryun

    2013-01-01

    Motivation: The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. Results: We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. Availability: The software is available at http://epigen.molgen.mpg.de/nuchunter/. Contact: chung@molgen.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23981350

  18. DNA and histone methylation in gastric carcinogenesis

    PubMed Central

    Calcagno, Danielle Queiroz; Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Burbano, Rommel Rodriguez; Smith, Marília de Arruda Cardoso

    2013-01-01

    Epigenetic alterations contribute significantly to the development and progression of gastric cancer, one of the leading causes of cancer death worldwide. Epigenetics refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches that target DNA methylation and histone modifications have emerged. A greater understanding of epigenetics and the therapeutic potential of manipulating these processes is necessary for gastric cancer treatment. Here, we review recent research on the effects of aberrant DNA and histone methylation on the onset and progression of gastric tumors and the development of compounds that target enzymes that regulate the epigenome. PMID:23482412

  19. Engineering of a Histone-Recognition Domain in Dnmt3a Alters the Epigenetic Landscape and Phenotypic Features of Mouse ESCs.

    PubMed

    Noh, Kyung-Min; Wang, Haibo; Kim, Hyunjae R; Wenderski, Wendy; Fang, Fang; Li, Charles H; Dewell, Scott; Hughes, Stephen H; Melnick, Ari M; Patel, Dinshaw J; Li, Haitao; Allis, C David

    2015-07-02

    Histone modification and DNA methylation are associated with varying epigenetic "landscapes," but detailed mechanistic and functional links between the two remain unclear. Using the ATRX-DNMT3-DNMT3L (ADD) domain of the DNA methyltransferase Dnmt3a as a paradigm, we apply protein engineering to dissect the molecular interactions underlying the recruitment of this enzyme to specific regions of chromatin in mouse embryonic stem cells (ESCs). By rendering the ADD domain insensitive to histone modification, specifically H3K4 methylation or H3T3 phosphorylation, we demonstrate the consequence of dysregulated Dnmt3a binding and activity. Targeting of a Dnmt3a mutant to H3K4me3 promoters decreases gene expression in a subset of developmental genes and alters ESC differentiation, whereas aberrant binding of another mutant to H3T3ph during mitosis promotes chromosome instability. Our studies support the general view that histone modification "reading" and DNA methylation are closely coupled in mammalian cells, and suggest an avenue for the functional assessment of chromatin-associated proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Changes to histone modifications following prenatal alcohol exposure: An emerging picture.

    PubMed

    Chater-Diehl, Eric J; Laufer, Benjamin I; Singh, Shiva M

    2017-05-01

    Epigenetic mechanisms are important for facilitating gene-environment interactions in many disease etiologies, including Fetal Alcohol Spectrum Disorders (FASD). Extensive research into the role of DNA methylation and miRNAs in animal models has illuminated the complex role of these mechanisms in FASD. In contrast, histone modifications have not been as well researched, due in part to being less stable than DNA methylation and less well-characterized in disease. It is now apparent that even changes in transient marks can have profound effects if they alter developmental trajectories. In addition, many histone methylations are now known to be relatively stable and can propagate themselves. As technologies and knowledge have advanced, a small group has investigated the role of histone modifications in FASD. Here, we synthesize the data on the effects of prenatal alcohol exposure (PAE) on histone modifications. Several key points are evident. AS with most alcohol-induced outcomes, timing and dosage differences yield variable effects. Nevertheless, these studies consistently find enrichment of H3K9ac, H3K27me2,3, and H3K9me2, and increased expression of histone acetyltransferases and methyltransferases. The consistency of these alterations may implicate them as key mechanisms underlying FASD. Histone modification changes do not often correlate with gene expression changes, though some important examples exist. Encouragingly, attempts to reproduce specific histone modification changes are very often successful. We comment on possible directions for future studies, focusing on further exploration of current trends, expansion of time-point and dosage regimes, and evaluation of biomarker potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Germline mutations affecting the histone H4 core cause a developmental syndrome by altering DNA damage response and cell cycle control.

    PubMed

    Tessadori, Federico; Giltay, Jacques C; Hurst, Jane A; Massink, Maarten P; Duran, Karen; Vos, Harmjan R; van Es, Robert M; Scott, Richard H; van Gassen, Koen L I; Bakkers, Jeroen; van Haaften, Gijs

    2017-11-01

    Covalent modifications of histones have an established role as chromatin effectors, as they control processes such as DNA replication and transcription, and repair or regulate nucleosomal structure. Loss of modifications on histone N tails, whether due to mutations in genes belonging to histone-modifying complexes or mutations directly affecting the histone tails, causes developmental disorders or has a role in tumorigenesis. More recently, modifications affecting the globular histone core have been uncovered as being crucial for DNA repair, pluripotency and oncogenesis. Here we report monoallelic missense mutations affecting lysine 91 in the histone H4 core (H4K91) in three individuals with a syndrome of growth delay, microcephaly and intellectual disability. Expression of the histone H4 mutants in zebrafish embryos recapitulates the developmental anomalies seen in the patients. We show that the histone H4 alterations cause genomic instability, resulting in increased apoptosis and cell cycle progression anomalies during early development. Mechanistically, our findings indicate an important role for the ubiquitination of H4K91 in genomic stability during embryonic development.

  2. 10th NTES Conference: Nickel and arsenic compounds alter the epigenome of peripheral blood mononuclear cells

    PubMed Central

    Brocato, Jason; Costa, Max

    2014-01-01

    The mechanisms that underlie metal carcinogenesis are the subject of intense investigation ; however, data from in vitro and in vivo studies are starting to piece together a story that implicates epigenetics as a key player. Data from our lab has shown that nickel compounds inhibit dioxygenase enzymes by displacing iron in the active site. Arsenic is hypothesized to inhibit these enzymes by diminishing ascorbate levels- an important co-factor for dioxygenases. Inhibition of histone demethylase dioxygenases can increase histone methylation levels, which also may affect gene expression. Recently, our lab conducted a series of investigations in human subjects exposed to high levels of nickel or arsenic compounds. Global levels of histone modifications in peripheral blood mononuclear cells (PBMCs) from exposed subjects were compared to low environmentally exposed controls. Results showed that nickel increased H3K4me3 and decreased H3K9me2 globally. Arsenic increased H3K9me2 and decreased H3K9ac globally. Other histone modifications affected by arsenic were sex-dependent. Nickel affected the expression of 2,756 genes in human PBMCs and many of the genes were involved in immune and carcinogenic pathways. This review will describe data from our lab that demonstrates for the first time that nickel and arsenic compounds affect global levels of histone modifications and gene expression in exposed human populations. PMID:24837610

  3. Histone ubiquitination: a tagging tail unfolds?

    PubMed

    Jason, Laure J M; Moore, Susan C; Lewis, John D; Lindsey, George; Ausió, Juan

    2002-02-01

    Despite the fact that histone H2A ubiquitination affects about 10-15% of this histone in most eukaryotic cells, histone ubiquitination is among one of the less-well-characterized post-translational histone modifications. Nevertheless, some important observations have been made in recent years. Whilst several enzymes had been known to ubiquitinate histones in vitro, recent studies in yeast have led to the unequivocal identification of the enzyme responsible for this post-translational modification in this organism. A strong functional co-relation to meiosis and spermiogenesis has also now been well documented, although its participation in other functional aspects of chromatin metabolism, such as transcription or DNA repair, still remains rather speculative and controversial. Because of its nature, histone ubiquitination represents the most bulky structural change to histones and as such it would be expected to exert an important effect on chromatin structure. Past and recent structural studies, however, indicate a surprising lack of effect of (H2A/H2B) ubiquitination on nucleosome architecture and of uH2A on chromatin folding. These results suggest that this modification may serve as a signal for recognition by functionally relevant trans-acting factors and/or operate synergistically in conjunction with other post-translational modifications such as for instance acetylation. Copyright 2002 Wiley Periodicals, Inc.

  4. Recent Achievements in Characterizing the Histone Code and Approaches to Integrating Epigenomics and Systems Biology.

    PubMed

    Janssen, K A; Sidoli, S; Garcia, B A

    2017-01-01

    Functional epigenetic regulation occurs by dynamic modification of chromatin, including genetic material (i.e., DNA methylation), histone proteins, and other nuclear proteins. Due to the highly complex nature of the histone code, mass spectrometry (MS) has become the leading technique in identification of single and combinatorial histone modifications. MS has now overcome antibody-based strategies due to its automation, high resolution, and accurate quantitation. Moreover, multiple approaches to analysis have been developed for global quantitation of posttranslational modifications (PTMs), including large-scale characterization of modification coexistence (middle-down and top-down proteomics), which is not currently possible with any other biochemical strategy. Recently, our group and others have simplified and increased the effectiveness of analyzing histone PTMs by improving multiple MS methods and data analysis tools. This review provides an overview of the major achievements in the analysis of histone PTMs using MS with a focus on the most recent improvements. We speculate that the workflow for histone analysis at its state of the art is highly reliable in terms of identification and quantitation accuracy, and it has the potential to become a routine method for systems biology thanks to the possibility of integrating histone MS results with genomics and proteomics datasets. © 2017 Elsevier Inc. All rights reserved.

  5. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry.

    PubMed

    Zhou, Mowei; Wu, Si; Stenoien, David L; Zhang, Zhaorui; Connolly, Lanelle; Freitag, Michael; Paša-Tolić, Ljiljana

    2017-01-01

    Top-down mass spectrometry is a valuable tool for understanding gene expression through characterization of combinatorial histone post-translational modifications (i.e., histone code). In this protocol, we describe a top-down workflow that employs liquid chromatography (LC) coupled to mass spectrometry (MS), for fast global profiling of changes in histone proteoforms, and apply LCMS top-down approach for comparative analysis of a wild-type and a mutant fungal species. The proteoforms exhibiting differential abundances can be subjected to further targeted studies by other MS or orthogonal (e.g., biochemical) assays. This method can be generally adapted for screening of changes in histone modifications between samples such as wild type vs. mutant or healthy vs. diseased.

  6. Characterizing HSF1 Binding and Post-Translational Modifications of hsp70 Promoter in Cultured Cortical Neurons: Implications in the Heat-Shock Response

    PubMed Central

    Gómez, Andrea V.; Córdova, Gonzalo; Munita, Roberto; Parada, Guillermo E.; Barrios, Álvaro P.; Cancino, Gonzalo I.; Álvarez, Alejandra R.; Andrés, María E.

    2015-01-01

    Causes of lower induction of Hsp70 in neurons during heat shock are still a matter of debate. To further inquire into the mechanisms regulating Hsp70 expression in neurons, we studied the activity of Heat Shock Factor 1 (HSF1) and histone posttranslational modifications (PTMs) at the hsp70 promoter in rat cortical neurons. Heat shock induced a transient and efficient translocation of HSF1 to neuronal nuclei. However, no binding of HSF1 at the hsp70 promoter was detected while it bound to the hsp25 promoter in cortical neurons during heat shock. Histone PTMs analysis showed that the hsp70 promoter harbors lower levels of histone H3 and H4 acetylation in cortical neurons compared to PC12 cells under basal conditions. Transcriptomic profiling data analysis showed a predominant usage of cryptic transcriptional start sites at hsp70 gene in the rat cerebral cortex, compared with the whole brain. These data support a weaker activation of hsp70 canonical promoter. Heat shock increased H3Ac at the hsp70 promoter in PC12 cells, which correlated with increased Hsp70 expression while no modifications occurred at the hsp70 promoter in cortical neurons. Increased histone H3 acetylation by Trichostatin A led to hsp70 mRNA and protein induction in cortical neurons. In conclusion, we found that two independent mechanisms maintain a lower induction of Hsp70 in cortical neurons. First, HSF1 fails to bind specifically to the hsp70 promoter in cortical neurons during heat shock and, second, the hsp70 promoter is less accessible in neurons compared to non-neuronal cells due to histone deacetylases repression. PMID:26053851

  7. A ruthenium anticancer compound interacts with histones and impacts differently on epigenetic and death pathways compared to cisplatin

    PubMed Central

    Capuozzo, Antonelle; Ali, Moussa; Santamaria, Rita; Armant, Olivier; Delalande, Francois; Dorsselaer, Alain Van; Cianferani, Sarah; Spencer, John; Pfeffer, Michel; Mellitzer, Georg; Gaiddon, Christian

    2017-01-01

    Ruthenium complexes are considered as potential replacements for platinum compounds in oncotherapy. Their clinical development is handicapped by a lack of consensus on their mode of action. In this study, we identify three histones (H3.1, H2A, H2B) as possible targets for an anticancer redox organoruthenium compound (RDC11). Using purified histones, we confirmed an interaction between the ruthenium complex and histones that impacted on histone complex formation. A comparative study of the ruthenium complex versus cisplatin showed differential epigenetic modifications on histone H3 that correlated with differential expression of histone deacetylase (HDAC) genes. We then characterized the impact of these epigenetic modifications on signaling pathways employing a transcriptomic approach. Clustering analyses showed gene expression signatures specific for cisplatin (42%) and for the ruthenium complex (30%). Signaling pathway analyses pointed to specificities distinguishing the ruthenium complex from cisplatin. For instance, cisplatin triggered preferentially p53 and folate biosynthesis while the ruthenium complex induced endoplasmic reticulum stress and trans-sulfuration pathways. To further understand the role of HDACs in these regulations, we used suberanilohydroxamic acid (SAHA) and showed that it synergized with cisplatin cytotoxicity while antagonizing the ruthenium complex activity. This study provides critical information for the characterization of signaling pathways differentiating both compounds, in particular, by the identification of a non-DNA direct target for an organoruthenium complex. PMID:27935863

  8. A Common Histone Modification Code on C4 Genes in Maize and Its Conservation in Sorghum and Setaria italica1[W][OA

    PubMed Central

    Heimann, Louisa; Horst, Ina; Perduns, Renke; Dreesen, Björn; Offermann, Sascha; Peterhansel, Christoph

    2013-01-01

    C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism. PMID:23564230

  9. Nucleosome displacement in transcription.

    PubMed

    Workman, Jerry L

    2006-08-01

    Recent reports reinforce the notion that nucleosomes are highly dynamic in response to the process of transcription. Nucleosomes are displaced at promoters during gene activation in a process that involves histone modification, ATP-dependent nucleosome remodeling complexes, histone chaperones and perhaps histone variants. During transcription elongation nucleosomes are acetylated and transferred behind RNA polymerase II where they are required to suppress spurious transcription initiation within the body of the gene. It is becoming increasingly clear that the eukaryotic transcriptional machinery is adapted to exploit the presence of nucleosomes in very sophisticated ways.

  10. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation

    PubMed Central

    Leus, Niek G.J.; Zwinderman, Martijn R.H.; Dekker, Frank J.

    2016-01-01

    Activation of inflammatory gene expression is regulated, among other factors, by post-translational modifications of histone proteins. The most investigated type of histone modifications are lysine acetylations. Histone deacetylases (HDACs) remove acetylations from lysines, thereby influencing (inflammatory) gene expression. Intriguingly, apart from histones, HDACs also target non-histone proteins. The nuclear factor κB (NF-κB) pathway is an important regulator in the expression of numerous inflammatory genes, and acetylation plays a crucial role in regulating its responses. Several studies have shed more light on the role of HDAC 1-3 in inflammation with a particular pro-inflammatory role for HDAC 3. Nevertheless, the HDAC-NF-κB interactions in inflammatory signalling have not been fully understood. An important challenge in targeting the regulatory role of HDACs in the NF-κB pathway is the development of highly potent small molecules that selectively target HDAC iso-enzymes. This review focuses on the role of HDAC 3 in (NF-κB-mediated) inflammation and NF-κB lysine acetylation. In addition, we address the application of frequently used small molecule HDAC inhibitors as an approach to attenuate inflammatory responses, and their potential as novel therapeutics. Finally, recent progress and future directions in medicinal chemistry efforts aimed at HDAC 3-selective inhibitors are discussed. PMID:27371876

  11. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    PubMed

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  12. Deacetylases and NF-κB in Redox Regulation of Cigarette Smoke induced Lung Inflammation: Implications in Pathogenesis of COPD

    PubMed Central

    Rajendrasozhan, Saravanan; Yang, Se-Ran; Edirisinghe, Indika; Yao, Hongwei; Adenuga, David; Rahman, Irfan

    2009-01-01

    Oxidative stress has been implicated in the pathogenesis of several inflammatory lung disorders including chronic obstructive pulmonary disease (COPD) due to its effect on pro-inflammatory gene transcription. Cigarette smoke-mediated oxidative stress activates NF-κB-dependent transcription of pro-inflammatory mediators either through activation of inhibitor κB-α kinase (IKK) and/or the enhanced recruitment and activation of transcriptional co-activators. Enhanced NF-κB-co-activator complex formation results in targeted increase in chromatin modifications, such as histone acetylation leading to inflammatory gene transcription. NF-κB-dependent gene expression, at least in part, is regulated by changes in deacetylases such as histone deacetylases (HDACs) and sirtuins. Cigarette smoke and oxidants also alter the levels/activity of HDAC by post-translational modifications and in doing so further induces gene expression of pro-inflammatory mediators. In addition, cigarette smoke/oxidants can reduce glucocorticoid sensitivity by attenuating HDAC2 activity and expression, which may account for the glucocorticoid insensitivity in patients with COPD. Understanding the mechanisms of NF-κB regulation, and the balance between histone acetylation and deacetylation may lead to the development of novel therapies based on the pharmacological manipulation of IKK and deacetylases in lung inflammation and injury. PMID:18220485

  13. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mowei; Wu, Si; Stenoien, David L.

    Top-down mass spectrometry is a valuable tool for charactering post-translational modifications on histones for understanding of gene control and expression. In this protocol, we describe a top-down workflow using liquid chromatography coupled to mass spectrometry for fast global profiling of changes in histone proteoforms between a wild-type and a mutant of a fungal species. The proteoforms exhibiting different abundances can be subjected to further targeted studies by other mass spectrometric or biochemical assays. This method can be generally adapted for preliminary screening for changes in histone modifications between samples such as wild-type vs. mutant, and control vs. disease.

  14. The tomato UV-damaged DNA binding protein 1 (DDB1) plays a role in organ size control via an epigenetic manner

    USDA-ARS?s Scientific Manuscript database

    Epigenetic regulation, including various covalent modifications of histone proteins and methylation of cytosine bases in DNA, participates broadly in many fundamentally physiological and developmental processes. The repressed or active states of transcription resulted from epigenetic modifications a...

  15. Chromatin signaling to kinetochores: Trans-regulation of Dam1 methylation by histone H2B ubiquitination

    PubMed Central

    Latham, John A.; Chosed, Renée J.; Wang, Shanzhi; Dent, Sharon Y.R.

    2011-01-01

    Summary Histone H3K4 trimethylation by the Set1/MLL family of proteins provides a hallmark for transcriptional activity from yeast to humans. In S. cerevisiae, H3K4 methylation is mediated by the Set1-containing COMPASS complex and is regulated in trans by prior ubiquitination of histone H2BK123. All of the events that regulate H2BK123ub and H3K4me are thought to occur at gene promoters. Here we report that this pathway is indispensable for methylation of the only other known substrate of Set1, K233 in Dam1, at kinetochores. Deletion of RAD6, BRE1, or Paf1 complex members abolishes Dam1 methylation, as does mutation of H2BK123. Our results demonstrate that Set1-mediated methylation is regulated by a general pathway regardless of substrate that is composed of transcriptional regulatory factors functioning independently of transcription. Moreover, our data identify a node of regulatory cross-talk in trans between a histone modification and modification on a non-histone protein, demonstrating that changing chromatin states can signal functional changes in other essential cellular proteins and machineries. PMID:21884933

  16. Role of novel histone modifications in cancer

    PubMed Central

    Shanmugam, Muthu K.; Arfuso, Frank; Arumugam, Surendar; Chinnathambi, Arunachalam; Jinsong, Bian; Warrier, Sudha; Wang, Ling Zhi; Kumar, Alan Prem; Ahn, Kwang Seok; Sethi, Gautam; Lakshmanan, Manikandan

    2018-01-01

    Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy. PMID:29541423

  17. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors

    PubMed Central

    Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela

    2017-01-01

    Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles. PMID:29270186

  18. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors.

    PubMed

    Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela

    2017-01-01

    Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.

  19. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    PubMed

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  20. Trichostatin A Selectively Suppresses the Cold-Induced Transcription of the ZmDREB1 Gene in Maize

    PubMed Central

    Hu, Yong; Zhang, Lu; Zhao, Lin; Li, Jun; He, Shibin; Zhou, Kun; Yang, Fei; Huang, Min; Jiang, Li; Li, Lijia

    2011-01-01

    Post-translational modifications of histone proteins play a crucial role in responding to environmental stresses. Histone deacetylases (HDACs) catalyze the removal of an acetyl group from histones and are generally believed to be a transcriptional repressor. In this paper, we report that cold treatment highly induces the up-regulation of HDACs, leading to global deacetylation of histones H3 and H4. Treatment of maize with the HDAC inhibitor trichostatin A (TSA) under cold stress conditions strongly inhibits induction of the maize cold-responsive genes ZmDREB1 and ZmCOR413. However, up-regulation of the ZmICE1 gene in response to cold stress is less affected. The expression of drought and salt induced genes, ZmDBF1 and rab17, is almost unaffected by TSA treatment. Thus, these observations show that HDACs may selectively activate transcription. The time course of TSA effects on the expression of ZmDREB1 and ZmCOR413 genes indicates that HDACs appear to directly activate the ZmDREB1 gene, which in turn modulates ZmCOR413 expression. After cold treatment, histone hyperacetylation and DNA demethylation occurs in the ICE1 binding region, accompanied by an increase in accessibility to micrococcal nuclease (MNase). The two regions adjacent to the ICE1 binding site remain hypoacetylated and methylated. However, during cold acclimation, TSA treatment increases the acetylation status and accessibility of MNase and decreases DNA methylation at these two regions. However, TSA treatment does not affect histone hyperacetylation and DNA methylation levels at the ICE1 binding regions of the ZmDREB1 gene. Altogether, our findings indicate that HDACs positively regulate the expression of the cold-induced ZmDREB1 gene through histone modification and chromatin conformational changes and that this activation is both gene and site selective. PMID:21811564

  1. Generalized nucleation and looping model for epigenetic memory of histone modifications

    PubMed Central

    Erdel, Fabian; Greene, Eric C.

    2016-01-01

    Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species. PMID:27382173

  2. Inhibition of histone acetylation by curcumin reduces alcohol-induced fetal cardiac apoptosis.

    PubMed

    Yan, Xiaochen; Pan, Bo; Lv, Tiewei; Liu, Lingjuan; Zhu, Jing; Shen, Wen; Huang, Xupei; Tian, Jie

    2017-01-05

    Prenatal alcohol exposure may cause cardiac development defects, however, the underlying mechanisms are not yet clear. In the present study we have investigated the roles of histone modification by curcumin on alcohol induced fetal cardiac abnormalities during the development. Q-PCR and Western blot results showed that alcohol exposure increased gene and active forms of caspase-3 and caspase-8, while decreased gene and protein of bcl-2. ChIP assay results showed that, alcohol exposure increased the acetylation of histone H3K9 near the promoter region of caspase-3 and caspase-8, and decreased the acetylation of histone H3K9 near the promoter region of bcl-2. TUNEL assay data revealed that alcohol exposure increased the apoptosis levels in the embryonic hearts. In vitro experiments demonstrated that curcumin treatment could reverse the up-regulation of active forms of caspase-3 and caspase-8, and down-regulation of bcl-2 induced by alcohol treatment. In addition, curcumin also corrected the high level of histone H3K9 acetylation induced by alcohol. Moreover, the high apoptosis level induced by alcohol was reversed after curcumin treatment in cardiac cells. These findings indicate that histone modification may play an important role in mediating alcohol induced fetal cardiac apoptosis, possibly through the up-regulation of H3K9 acetylation near the promoter regions of apoptotic genes. Curcumin treatment may correct alcohol-mediated fetal cardiac apoptosis, suggesting that curcumin may play a protective role against alcohol abuse caused cardiac damage during pregnancy.

  3. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology.

    PubMed

    Belle, Jad I; Nijnik, Anastasia

    2014-05-01

    Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Metabolic control of the epigenome in systemic Lupus erythematosus

    PubMed Central

    Oaks, Zachary; Perl, Andras

    2014-01-01

    Epigenetic mechanisms are proposed to underlie aberrant gene expression in systemic lupus erythematosus (SLE) that results in dysregulation of the immune system and loss of tolerance. Modifications of DNA and histones require substrates derived from diet and intermediary metabolism. DNA and histone methyltransferases depend on S-adenosylmethionine (SAM) as a methyl donor. SAM is generated from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase (MAT), a redox-sensitive enzyme in the SAM cycle. The availability of B vitamins and methionine regulate SAM generation. The DNA of SLE patients is hypomethylated, indicating dysfunction in the SAM cycle and methyltransferase activity. Acetyl-CoA, which is necessary for histone acetylation, is generated from citrate produced in mitochondria. Mitochondria are also responsible for de novo synthesis of flavin adenine dinucleotide (FAD) for histone demethylation. Mitochondrial oxidative phosphorylation is the dominant source of ATP. The depletion of ATP in lupus T cells may affect MAT activity as well as adenosine monophosphate (AMP) activated protein kinase (AMPK), which phosphorylates histones and inhibits mechanistic target of rapamycin (mTOR). In turn, mTOR can modify epigenetic pathways including methylation, demethylation, and histone phosphorylation and mediates enhanced T-cell activation in SLE. Beyond their role in metabolism, mitochondria are the main source of reactive oxygen intermediates (ROI), which activate mTOR and regulate the activity of histone and DNA modifying enzymes. In this review we will focus on the sources of metabolites required for epigenetic regulation and how the flux of the underlying metabolic pathways affects gene expression. PMID:24128087

  5. Emerging roles of lysine methylation on non-histone proteins.

    PubMed

    Zhang, Xi; Huang, Yaling; Shi, Xiaobing

    2015-11-01

    Lysine methylation is a common posttranslational modification (PTM) of histones that is important for the epigenetic regulation of transcription and chromatin in eukaryotes. Increasing evidence demonstrates that in addition to histones, lysine methylation also occurs on various non-histone proteins, especially transcription- and chromatin-regulating proteins. In this review, we will briefly describe the histone lysine methyltransferases (KMTs) that have a broad spectrum of non-histone substrates. We will use p53 and nuclear receptors, especially estrogen receptor alpha, as examples to discuss the dynamic nature of non-histone protein lysine methylation, the writers, erasers, and readers of these modifications, and the crosstalk between lysine methylation and other PTMs in regulating the functions of the modified proteins. Understanding the roles of lysine methylation in normal cells and during development will shed light on the complex biology of diseases associated with the dysregulation of lysine methylation on both histones and non-histone proteins.

  6. Effects of Low-Level Laser Therapy on M1-Related Cytokine Expression in Monocytes via Histone Modification

    PubMed Central

    Chen, Chia-Hsin; Wang, Chau-Zen; Wang, Yan-Hsiung; Liao, Wei-Ting; Chen, Yi-Jen; Kuo, Hsuan-Fu; Hung, Chih-Hsing

    2014-01-01

    Low-level laser therapy (LLLT) has been used in the treatment of radiotherapy-induced oral mucositis and allergic rhinitis. However, the effects of LLLT on human monocyte polarization into M1 macrophages are unknown. To evaluate the effects of LLLT on M1-related cytokine and chemokine production and elucidate the mechanism, the human monocyte cell line THP-1 was treated with different doses of LLLT. The expression of M1-related cytokines and chemokines (CCL2, CXCL10, and TNF-α) was determined by ELISA and real-time PCR. LLLT-associated histone modifications were examined by chromatin immunoprecipitation (ChIP) assays. Mitochondrial involvement in the LLLT-induced M1-related cytokine expression was evaluated by quantitative real-time PCR. Flow cytometry was used to detect the cell surface markers for monocyte polarization. The results showed that LLLT (660 nm) significantly enhanced M1-related cytokine and chemokine expression in mRNA and protein levels. Mitochondrial copy number and mRNA levels of complex I-V protein were increased by LLLT (1 J/cm2). Activation of M1 polarization was concomitant with histone modification at TNF-α gene locus and IP-10 gene promoter area. This study indicates that LLLT (660 nm) enhanced M1-related cytokine and chemokine expression via mitochondrial biogenesis and histone modification, which may be a potent immune-enhancing agent for the treatment of allergic diseases. PMID:24692853

  7. Strategies to re-express epigenetically silenced p15(INK4b) and p21(WAF1) genes in acute myeloid leukemia.

    PubMed

    Geyer, C Ronald

    2010-01-01

    p15(INK4B) and p21(WAF1) are TGF-β targets that are silenced in leukemia by epigenetic mechanisms involving DNA methylation and/or histone modifications. Mechanisms for establishing and maintaining epigenetic silencing of p15(INK4B) and p21(WAF1) are not well established. The reversible nature of epigenetic modifications has lead to the development of drugs that target DNA methyltransferases, histone deacetylases, and histone methyltransferases, which have been used to re-express aberrantly silenced genes in leukemia. Recently, non-coding RNA, referred to as natural antisense transcripts (NATs), have been implicated in the regulation of epigenetic modifications. Here, we review epigenetic mechanisms for silencing p15(INK4B) and p21(WAF1) and the role of NATs in this process. We also review epigenetic drugs and drug combinations used to re-express p15(INK4B) and p21(WAF1). Lastly, we discuss the potential use of NATs to target the activity of epigenetic drugs to specific genes and to permanently re-express epigenetically silenced genes.

  8. Profiling of Histone Post-Translational Modifications in Mouse Brain with High-Resolution Top-Down Mass Spectrometry.

    PubMed

    Zhou, Mowei; Paša-Tolić, Ljiljana; Stenoien, David L

    2017-02-03

    As histones play central roles in most chromosomal functions including regulation of DNA replication, DNA damage repair, and gene transcription, both their basic biology and their roles in disease development have been the subject of intense study. Because multiple post-translational modifications (PTMs) along the entire protein sequence are potential regulators of histones, a top-down approach, where intact proteins are analyzed, is ultimately required for complete characterization of proteoforms. However, significant challenges remain for top-down histone analysis primarily because of deficiencies in separation/resolving power and effective identification algorithms. Here we used state-of-the-art mass spectrometry and a bioinformatics workflow for targeted data analysis and visualization. The workflow uses ProMex for intact mass deconvolution, MSPathFinder as a search engine, and LcMsSpectator as a data visualization tool. When complemented with the open-modification tool TopPIC, this workflow enabled identification of novel histone PTMs including tyrosine bromination on histone H4 and H2A, H3 glutathionylation, and mapping of conventional PTMs along the entire protein for many histone subunits.

  9. “Curcumin, the King of Spices”: Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Inflammatory Diseases

    PubMed Central

    Boyanapalli, Sarandeep S. S.

    2015-01-01

    Curcumin (diferuloylmethane), a polyphenolic compound, is a component of Curcuma longa, commonly known as turmeric. It is a well-known anti-inflammatory, anti-oxidative, and anti-lipidemic agent and has recently been shown to modulate several diseases via epigenetic regulation. Many recent studies have demonstrated the role of epigenetic inactivation of pivotal genes that regulate human pathologies, such as neurocognitive disorders, inflammation, obesity, and cancers. Epigenetic changes involve changes in DNA methylation, histone modifications, or altered microRNA expression patterns which are known to be interconnected and play a key role in tumor progression and failure of conventional chemotherapy. The majority of epigenetic changes are influenced by lifestyle and diets. In this regard, dietary phytochemicals as dietary supplements have emerged as a promising source that are able to reverse these epigenetic alterations, to actively regulate gene expression and molecular targets that are known to promote tumorigenesis, and also to prevent age-related diseases through epigenetic modifications. There have been several studies which reported the role of curcumin as an epigenetic regulator in neurological disorders, inflammation, and in diabetes apart from cancers. The epigenetic regulatory roles of curcumin include (1) inhibition of DNA methyltransferases (DNMTs), which has been well defined from the recent studies on its function as a DNA hypomethylating agent; (2) regulation of histone modifications via regulation of histone acetyltransferases (HATs) and histone deacetylases (HDACs); and (3) regulation of micro RNAs (miRNA). This review summarizes the current knowledge on the effect of curcumin in the treatment and/or prevention of inflammation, neurodegenerative diseases, and cancers by regulating histone deacetylases, histone acetyltransferases, and DNA methyltransferases. PMID:26457241

  10. EpiProfile Quantifies Histone Peptides With Modifications by Extracting Retention Time and Intensity in High-resolution Mass Spectra*

    PubMed Central

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C.; Cao, Xing-Jun; Bhanu, Natarajan V.; Wang, Xiaoshi; Sidoli, Simone; Liu, Shichong; Garcia, Benjamin A.

    2015-01-01

    Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples. PMID:25805797

  11. Partners in crime: The role of tandem modules in gene transcription.

    PubMed

    Sharma, Rajal; Zhou, Ming-Ming

    2015-09-01

    Histones and their modifications play an important role in the regulation of gene transcription. Numerous modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation, have been described. These modifications almost always co-occur and thereby increase the combinatorial complexity of post-translational modification detection. The domains that recognize these histone modifications often occur in tandem in the context of larger proteins and complexes. The presence of multiple modifications can positively or negatively regulate the binding of these tandem domains, influencing downstream cellular function. Alternatively, these tandem domains can have novel functions from their independent parts. Here we summarize structural and functional information known about major tandem domains and their histone binding properties. An understanding of these interactions is key for the development of epigenetic therapy. © 2015 The Protein Society.

  12. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    ERIC Educational Resources Information Center

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  13. Coordinated action of histone modification and microRNA regulations in human genome.

    PubMed

    Wang, Xuan; Zheng, Guantao; Dong, Dong

    2015-10-10

    Both histone modifications and microRNAs (miRNAs) play pivotal role in gene expression regulation. Although numerous studies have been devoted to explore the gene regulation by miRNA and epigenetic regulations, their coordinated actions have not been comprehensively examined. In this work, we systematically investigated the combinatorial relationship between miRNA and epigenetic regulation by taking advantage of recently published whole genome-wide histone modification data and high quality miRNA targeting data. The results showed that miRNA targets have distinct histone modification patterns compared with non-targets in their promoter regions. Based on this finding, we proposed a machine learning approach to fit predictive models on the task to discern whether a gene is targeted by a specific miRNA. We found a considerable advantage in both sensitivity and specificity in diverse human cell lines. Finally, we found that our predicted miRNA targets are consistently annotated with Gene Ontology terms. Our work is the first genome-wide investigation of the coordinated action of miRNA and histone modification regulations, which provide a guide to deeply understand the complexity of transcriptional regulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Development of Multiple Cell-Based Assays for the Detection of Histone H3 Lys27 Trimethylation (H3K27me3)

    PubMed Central

    Lu, Lihui; Wu, Jianghong

    2013-01-01

    Abstract Posttranslational modification of histone proteins in eukaryotes plays an important role in gene transcription and chromatin structure. Dysregulation of the enzymes involved in histone modification has been linked to many cancer forms, making this target class a potential new area for therapeutics. A reliable assay to monitor small-molecule inhibition of various epigenetic enzymes should play a critical role in drug discovery to fight cancer. However, it has been challenging to develop cell-based assays for high-throughput screening (HTS) and compound profiling. Recently, two homogeneous cell-based assay kits using the AlphaLISA® and LanthaScreen® technologies to detect trimethyl histone H3 Lysine 27 have become commercially available, and a heterogeneous cell assay with modified dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA®) format has been reported. To compare their pros and cons, we evaluated, optimized, and validated these three assay formats in three different cell lines and compared their activities with traditional Western blot detection of histone methylation inhibition by using commercial and in-house small-molecule inhibitors. Our data indicate that, although all four formats produced acceptable results, the homogeneous AlphaLISA assay was best suited for HTS and compound profiling due to its wider window and ease of automation. The DELFIA and Western blot assays were useful as validation tools to confirm the cell activities and eliminate potential false-positive compounds. PMID:23992119

  15. Maternal Betaine Supplementation throughout Gestation and Lactation Modifies Hepatic Cholesterol Metabolic Genes in Weaning Piglets via AMPK/LXR-Mediated Pathway and Histone Modification.

    PubMed

    Cai, Demin; Yuan, Mengjie; Liu, Haoyu; Pan, Shifeng; Ma, Wenqiang; Hong, Jian; Zhao, Ruqian

    2016-10-18

    Betaine serves as an animal and human nutrient which has been heavily investigated in glucose and lipid metabolic regulation, yet the underlying mechanisms are still elusive. In this study, feeding sows with betaine-supplemented diets during pregnancy and lactation increased cholesterol content and low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI) gene expression, but decreasing bile acids content and cholesterol-7a-hydroxylase (CYP7a1) expression in the liver of weaning piglets. This was associated with the significantly elevated serum betaine and methionine levels and hepatic S -adenosylmethionine (SAM) and S -adenosylhomocysteine (SAH) content. Concurrently, the hepatic nuclear transcription factor liver X receptor LXR was downregulated along with activated signal protein AMP-activated protein kinase (AMPK). Moreover, a chromatin immunoprecipitation assay showed lower LXR binding on CYP7a1 gene promoter and more enriched activation histone marker H3K4me3 on LDLR and SR-BI promoters. These results suggest that gestational and lactational betaine supplementation modulates hepatic gene expression involved in cholesterol metabolism via an AMPK/LXR pathway and histone modification in the weaning offspring.

  16. Maternal Betaine Supplementation throughout Gestation and Lactation Modifies Hepatic Cholesterol Metabolic Genes in Weaning Piglets via AMPK/LXR-Mediated Pathway and Histone Modification

    PubMed Central

    Cai, Demin; Yuan, Mengjie; Liu, Haoyu; Pan, Shifeng; Ma, Wenqiang; Hong, Jian; Zhao, Ruqian

    2016-01-01

    Betaine serves as an animal and human nutrient which has been heavily investigated in glucose and lipid metabolic regulation, yet the underlying mechanisms are still elusive. In this study, feeding sows with betaine-supplemented diets during pregnancy and lactation increased cholesterol content and low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI) gene expression, but decreasing bile acids content and cholesterol-7a-hydroxylase (CYP7a1) expression in the liver of weaning piglets. This was associated with the significantly elevated serum betaine and methionine levels and hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) content. Concurrently, the hepatic nuclear transcription factor liver X receptor LXR was downregulated along with activated signal protein AMP-activated protein kinase (AMPK). Moreover, a chromatin immunoprecipitation assay showed lower LXR binding on CYP7a1 gene promoter and more enriched activation histone marker H3K4me3 on LDLR and SR-BI promoters. These results suggest that gestational and lactational betaine supplementation modulates hepatic gene expression involved in cholesterol metabolism via an AMPK/LXR pathway and histone modification in the weaning offspring. PMID:27763549

  17. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes

    PubMed Central

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S.; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation. PMID:26918332

  18. Stable-isotope-labeled Histone Peptide Library for Histone Post-translational Modification and Variant Quantification by Mass Spectrometry *

    PubMed Central

    Lin, Shu; Wein, Samuel; Gonzales-Cope, Michelle; Otte, Gabriel L.; Yuan, Zuo-Fei; Afjehi-Sadat, Leila; Maile, Tobias; Berger, Shelley L.; Rush, John; Lill, Jennie R.; Arnott, David; Garcia, Benjamin A.

    2014-01-01

    To facilitate accurate histone variant and post-translational modification (PTM) quantification via mass spectrometry, we present a library of 93 synthetic peptides using Protein-Aqua™ technology. The library contains 55 peptides representing different modified forms from histone H3 peptides, 23 peptides representing H4 peptides, 5 peptides representing canonical H2A peptides, 8 peptides representing H2A.Z peptides, and peptides for both macroH2A and H2A.X. The PTMs on these peptides include lysine mono- (me1), di- (me2), and tri-methylation (me3); lysine acetylation; arginine me1; serine/threonine phosphorylation; and N-terminal acetylation. The library was subjected to chemical derivatization with propionic anhydride, a widely employed protocol for histone peptide quantification. Subsequently, the detection efficiencies were quantified using mass spectrometry extracted ion chromatograms. The library yields a wide spectrum of detection efficiencies, with more than 1700-fold difference between the peptides with the lowest and highest efficiencies. In this paper, we describe the impact of different modifications on peptide detection efficiencies and provide a resource to correct for detection biases among the 93 histone peptides. In brief, there is no correlation between detection efficiency and molecular weight, hydrophobicity, basicity, or modification type. The same types of modifications may have very different effects on detection efficiencies depending on their positions within a peptide. We also observed antagonistic effects between modifications. In a study of mouse trophoblast stem cells, we utilized the detection efficiencies of the peptide library to correct for histone PTM/variant quantification. For most histone peptides examined, the corrected data did not change the biological conclusions but did alter the relative abundance of these peptides. For a low-abundant histone H2A variant, macroH2A, the corrected data led to a different conclusion than the uncorrected data. The peptide library and detection efficiencies presented here may serve as a resource to facilitate studies in the epigenetics and proteomics fields. PMID:25000943

  19. Trithorax complex component Menin controls differentiation and maintenance of T helper 17 cells

    PubMed Central

    Watanabe, Yukiko; Onodera, Atsushi; Kanai, Urara; Ichikawa, Tomomi; Obata-Ninomiya, Kazushige; Wada, Tomoko; Kiuchi, Masahiro; Iwamura, Chiaki; Tumes, Damon J.; Shinoda, Kenta; Yagi, Ryoji; Motohashi, Shinichiro; Hirahara, Kiyoshi; Nakayama, Toshinori

    2014-01-01

    Epigenetic modifications, such as posttranslational modifications of histones, play an important role in gene expression and regulation. These modifications are in part mediated by the Trithorax group (TrxG) complex and the Polycomb group (PcG) complex, which activate and repress transcription, respectively. We herein investigate the role of Menin, a component of the TrxG complex in T helper (Th) cell differentiation and show a critical role for Menin in differentiation and maintenance of Th17 cells. Menin−/− T cells do not efficiently differentiate into Th17 cells, leaving Th1 and Th2 cell differentiation intact in in vitro cultures. Menin deficiency resulted in the attenuation of Th17-induced airway inflammation. In differentiating Th17 cells, Menin directly bound to the Il17a gene locus and was required for the deposition of permissive histone modifications and recruitment of the RNA polymerase II transcriptional complex. Interestingly, although Menin bound to the Rorc locus, Menin was dispensable for the induction of Rorc expression and permissive histone modifications in differentiating Th17 cells. In contrast, Menin was required to maintain expression of Rorc in differentiated Th17 cells, indicating that Menin is essential to stabilize expression of the Rorc gene. Thus, Menin orchestrates Th17 cell differentiation and function by regulating both the induction and maintenance of target gene expression. PMID:25136117

  20. Acetyllysine-binding and function of bromodomain-containing proteins in chromatin.

    PubMed

    Dyson, M H; Rose, S; Mahadevan, L C

    2001-08-01

    Acetylated histones are generally associated with active chromatin. The bromodomain has recently been identified as a protein module capable of binding to acetylated lysine residues, and hence is able to mediate the recruitment of factors to acetylated chromatin. Functional studies of bromodomain-containing proteins indicate how this domain contributes to the activity of a number of nuclear factors including histone acetyltransferases and chromatin remodelling complexes. Here, we review the characteristics of acetyllysine-binding by bromodomains, discuss associated domains found in these proteins, and address the function of the bromodomain in the context of chromatin. Finally, the modulation of bromodomain binding by neighbouring post-translational modifications within histone tails might provide a mechanism through which combinations of covalent marks could exert control on chromatin function.

  1. A Combinatorial H4 Tail Library to Explore the Histone Code

    PubMed Central

    Garske, Adam L.; Craciun, Gheorghe; Denu, John M.

    2008-01-01

    Histone modifications modulate chromatin structure and function. A posttranslational modification-randomized, combinatorial library based on the first twenty-one residues of histone H4 was designed for systematic examination of proteins that interpret a histone code. The 800-member library represented all permutations of most known modifications within the N-terminal tail of histone H4. To determine its utility in a protein-binding assay, the on-bead library was screened with an antibody directed against phosphoserine 1 of H4. Among the hits, 59/60 sequences were phosphorylated at S1, while 30/30 of those selected from the non-hits were unphosphorylated. A 512-member version of the library was then used to determine the binding specificity of the double tudor domain of hJMJD2A, a histone demethylase involved in transcriptional repression. Global linear least squares fitting of modifications from the identified peptides (40 hits and 34 non-hits) indicated that methylation of K20 was the primary determinant for binding, but that phosphorylation/acetylation on neighboring sites attenuated the interaction. To validate the on-bead screen, isothermal titration calorimetry was performed with thirteen H4 peptides. Dissociation constants ranged from 1 mM - 1μM and corroborated the screening results. The general approach should be useful for probing the specificity of any histone-binding protein. PMID:18616348

  2. Procollagen Lysyl Hydroxylase 2 Expression Is Regulated by an Alternative Downstream Transforming Growth Factor β-1 Activation Mechanism*

    PubMed Central

    Gjaltema, Rutger A. F.; de Rond, Saskia; Rots, Marianne G.; Bank, Ruud A.

    2015-01-01

    PLOD2 (procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2) hydroxylates lysine residues in collagen telopeptides and is essential for collagen pyridinoline cross-link formation. PLOD2 expression and subsequent pyridinoline cross-links are increased in fibrotic pathologies by transforming growth factor β-1 (TGFβ1). In this report we examined the molecular processes underlying TGFβ1-induced PLOD2 expression. We found that binding of the TGFβ1 pathway related transcription factors SMAD3 and SP1-mediated TGFβ1 enhanced PLOD2 expression and could be correlated to an increase of acetylated histone H3 and H4 at the PLOD2 promoter. Interestingly, the classical co-activators of SMAD3 complexes, p300 and CBP, were not responsible for the enhanced H3 and H4 acetylation. Depletion of SMAD3 reduced PLOD2 acetylated H3 and H4, indicating that another as of yet unidentified histone acetyltransferase binds to SMAD3 at PLOD2. Assessing histone methylation marks at the PLOD2 promoter depicted an increase of the active histone mark H3K79me2, a decrease of the repressive H4K20me3 mark, but no role for the generally strong transcription-related modifications: H3K4me3, H3K9me3 and H3K27me3. Collectively, our findings reveal that TGFβ1 induces a SP1- and SMAD3-dependent recruitment of histone modifying enzymes to the PLOD2 promoter other than the currently known TGFβ1 downstream co-activators and epigenetic modifications. This also suggests that additional activation strategies are used downstream of the TGFβ1 pathway, and hence their unraveling could be of great importance to fully understand TGFβ1 activation of genes. PMID:26432637

  3. Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation*

    PubMed Central

    Schwämmle, Veit; Sidoli, Simone; Ruminowicz, Chrystian; Wu, Xudong; Lee, Chung-Fan; Helin, Kristian; Jensen, Ole N.

    2016-01-01

    Histones are abundant chromatin constituents carrying numerous post-translational modifications (PTMs). Such PTMs mediate a variety of biological functions, including recruitment of enzymatic readers, writers and erasers that modulate DNA replication, transcription and repair. Individual histone molecules contain multiple coexisting PTMs, some of which exhibit crosstalk, i.e. coordinated or mutually exclusive activities. Here, we present an integrated experimental and computational systems level molecular characterization of histone PTMs and PTM crosstalk. Using wild type and engineered mouse embryonic stem cells (mESCs) knocked out in components of the Polycomb Repressive Complex 2 (PRC2, Suz12−/−), PRC1 (Ring1A/B−/−) and (Dnmt1/3a/3b−/−) we performed comprehensive PTM analysis of histone H3 tails (50 aa) by utilizing quantitative middle-down proteome analysis by tandem mass spectrometry. We characterized combinatorial PTM features across the four mESC lines and then applied statistical data analysis to predict crosstalk between histone H3 PTMs. We detected an overrepresentation of positive crosstalk (codependent marks) between adjacent mono-methylated and acetylated marks, and negative crosstalk (mutually exclusive marks) among most of the seven characterized di- and tri-methylated lysine residues in the H3 tails. We report novel features of PTM interplay involving hitherto poorly characterized arginine methylation and lysine methylation sites, including H3R2me, H3R8me and H3K37me. Integration of the H3 data with RNAseq data by coabundance clustering analysis of histone PTMs and histone modifying enzymes revealed correlations between PTM and enzyme levels. We conclude that middle-down proteomics is a powerful tool to determine conserved or dynamic interdependencies between histone marks, which paves the way for detailed investigations of the histone code. Histone H3 PTM data is publicly available in the CrossTalkDB repository at http://crosstalkdb.bmb.sdu.dk. PMID:27302890

  4. Beyond histones - the expanding roles of protein lysine methylation.

    PubMed

    Wu, Zhouran; Connolly, Justin; Biggar, Kyle K

    2017-09-01

    A robust signaling network is essential for cell survival. At the molecular level, this is often mediated by as many as 200 different types of post-translational modifications (PTMs) that are made to proteins. These include well-documented examples such as phosphorylation, ubiquitination, acetylation and methylation. Of these modifications, non-histone protein lysine methylation has only recently emerged as a prevalent modification occurring on numerous proteins, thus extending its role well beyond the histone code. To date, this modification has been found to regulate protein activity, protein-protein interactions and interplay with other PTMs. As a result, lysine methylation is now known to be a coordinator of protein function and is a key driver in several cellular signaling events. Recent advances in mass spectrometry have also allowed the characterization of a growing number of lysine methylation events on an increasing number of proteins. As a result, we are now beginning to recognize lysine methylation as a dynamic event that is involved in a number of biological processes, including DNA damage repair, cell growth, metabolism and signal transduction among others. In light of current research advances, the stage is now set to study the extent of lysine methylation that exists within the entire proteome, its dynamics, and its association with physiological and pathological processes. © 2017 Federation of European Biochemical Societies.

  5. A computational model for histone mark propagation reproduces the distribution of heterochromatin in different human cell types.

    PubMed

    Schwämmle, Veit; Jensen, Ole Nørregaard

    2013-01-01

    Chromatin is a highly compact and dynamic nuclear structure that consists of DNA and associated proteins. The main organizational unit is the nucleosome, which consists of a histone octamer with DNA wrapped around it. Histone proteins are implicated in the regulation of eukaryote genes and they carry numerous reversible post-translational modifications that control DNA-protein interactions and the recruitment of chromatin binding proteins. Heterochromatin, the transcriptionally inactive part of the genome, is densely packed and contains histone H3 that is methylated at Lys 9 (H3K9me). The propagation of H3K9me in nucleosomes along the DNA in chromatin is antagonizing by methylation of H3 Lysine 4 (H3K4me) and acetylations of several lysines, which is related to euchromatin and active genes. We show that the related histone modifications form antagonized domains on a coarse scale. These histone marks are assumed to be initiated within distinct nucleation sites in the DNA and to propagate bi-directionally. We propose a simple computer model that simulates the distribution of heterochromatin in human chromosomes. The simulations are in agreement with previously reported experimental observations from two different human cell lines. We reproduced different types of barriers between heterochromatin and euchromatin providing a unified model for their function. The effect of changes in the nucleation site distribution and of propagation rates were studied. The former occurs mainly with the aim of (de-)activation of single genes or gene groups and the latter has the power of controlling the transcriptional programs of entire chromosomes. Generally, the regulatory program of gene transcription is controlled by the distribution of nucleation sites along the DNA string.

  6. Post-Translational Modifications of Nucleosomal Histones in Oligodendrocyte Lineage Cells in Development and Disease

    PubMed Central

    Shen, Siming; Casaccia-Bonnefil, Patrizia

    2008-01-01

    The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed. PMID:17999198

  7. Histone modifications associated with both A and B chromosomes of maize.

    PubMed

    Jin, Weiwei; Lamb, Jonathan C; Zhang, Wenli; Kolano, Bozena; Birchler, James A; Jiang, Jiming

    2008-01-01

    We report the distribution of several histone modifications along the arms and in centromeric regions of somatic chromosomes of maize, including the supernumerary B chromosome. Acetylated H3 and H4 as well as H3K4me2, modifications associated with euchromatin, were enriched in the distal parts of the A chromosomes, but were progressively depleted toward the centromeres of the A chromosomes and were depleted in the heterochromatic portions of the B chromosome. Classical histone modifications associated with heterochromatin, including H3K9me2, H3K27me1 and H3K27me2, were distributed throughout both A and B chromosomes. However, H3K27me2 showed a reduced level on the B chromosome compared with the A chromosomes and was not associated with some classes of constitutive heterochromatin. We monitored the presence of each histone modification in the centromeric regions using a YFP-tagged centromere-specific histone, CENH3. We observed the presence of H3K9me2 and absence of H3K4me2 in the centromeric regions of both A and B chromosomes of maize, which is in contrast to the presence of H3K4me2 and absence of H3K9me2 in animal centromeres. These results show a diversity of epigenetic modifications associated with centromeric chromatin in different eukaryotes.

  8. Protein arginine methylation: a prominent modification and its demethylation.

    PubMed

    Wesche, Juste; Kühn, Sarah; Kessler, Benedikt M; Salton, Maayan; Wolf, Alexander

    2017-09-01

    Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.

  9. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification

    NASA Astrophysics Data System (ADS)

    Tessarz, Peter; Santos-Rosa, Helena; Robson, Sam C.; Sylvestersen, Kathrine B.; Nelson, Christopher J.; Nielsen, Michael L.; Kouzarides, Tony

    2014-01-01

    Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (facilitator of chromatin transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 shows reduced histone incorporation and increased transcription at the ribosomal DNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.

  10. Histone deacetylases regulate multicellular development in the social amoeba Dictyostelium discoideum.

    PubMed

    Sawarkar, Ritwick; Visweswariah, Sandhya S; Nellen, Wolfgang; Nanjundiah, Vidyanand

    2009-09-04

    Epigenetic modifications of histones regulate gene expression and lead to the establishment and maintenance of cellular phenotypes during development. Histone acetylation depends on a balance between the activities of histone acetyltransferases and histone deacetylases (HDACs) and influences transcriptional regulation. In this study, we analyse the roles of HDACs during growth and development of one of the cellular slime moulds, the social amoeba Dictyostelium discoideum. The inhibition of HDAC activity by trichostatin A results in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations are normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes is delayed. Bioinformatic analysis indicates that there are four genes encoding putative HDACs in D. discoideum. Using biochemical, genetic and developmental approaches, we demonstrate that one of these four genes, hdaB, is dispensable for growth and development under laboratory conditions. A knockout of the hdaB gene results in a social context-dependent phenotype: hdaB(-) cells develop normally but sporulate less efficiently than the wild type in chimeras. We infer that HDAC activity is important for regulating the timing of gene expression during the development of D. discoideum and for defining aspects of the phenotype that mediate social behaviour in genetically heterogeneous groups.

  11. Immunofluorescent staining reveals hypermethylation of microchromosomes in the central bearded dragon, Pogona vitticeps.

    PubMed

    Domaschenz, Renae; Livernois, Alexandra M; Rao, Sudha; Ezaz, Tariq; Deakin, Janine E

    2015-01-01

    Studies of model organisms have demonstrated that DNA cytosine methylation and histone modifications are key regulators of gene expression in biological processes. Comparatively little is known about the presence and distribution of epigenetic marks in non-model amniotes such as non-avian reptiles whose genomes are typically packaged into chromosomes of distinct size classes. Studies of chicken karyotypes have associated the gene-richness and high GC content of microchromosomes with a distinct epigenetic landscape. To determine whether this is likely to be a common feature of amniote microchromosomes, we have analysed the distribution of epigenetic marks using immunofluorescence on metaphase chromosomes of the central bearded dragon (Pogona vitticeps). This study is the first to study the distribution of epigenetic marks on non-avian reptile chromosomes. We observed an enrichment of DNA cytosine methylation, active modifications H3K4me2 and H3K4me3, as well as the repressive mark H3K27me3 in telomeric regions on macro and microchromosomes. Microchromosomes were hypermethylated compared to macrochromosomes, as they are in chicken. However, differences between macro- and microchromosomes for histone modifications associated with actively transcribed or repressed DNA were either less distinct or not detectable. Hypermethylation of microchromosomes compared to macrochromosomes is a shared feature between P. vitticeps and avian species. The lack of the clear distinction between macro- and microchromosome staining patterns for active and repressive histone modifications makes it difficult to determine at this stage whether microchrosome hypermethylation is correlated with greater gene density as it is in aves, or associated with the greater GC content of P. vitticeps microchromosomes compared to macrochromosomes.

  12. Broad chromosomal domains of histone modification patterns in C. elegans

    PubMed Central

    Liu, Tao; Rechtsteiner, Andreas; Egelhofer, Thea A.; Vielle, Anne; Latorre, Isabel; Cheung, Ming-Sin; Ercan, Sevinc; Ikegami, Kohta; Jensen, Morten; Kolasinska-Zwierz, Paulina; Rosenbaum, Heidi; Shin, Hyunjin; Taing, Scott; Takasaki, Teruaki; Iniguez, A. Leonardo; Desai, Arshad; Dernburg, Abby F.; Kimura, Hiroshi; Lieb, Jason D.; Ahringer, Julie; Strome, Susan; Liu, X. Shirley

    2011-01-01

    Chromatin immunoprecipitation identifies specific interactions between genomic DNA and proteins, advancing our understanding of gene-level and chromosome-level regulation. Based on chromatin immunoprecipitation experiments using validated antibodies, we define the genome-wide distributions of 19 histone modifications, one histone variant, and eight chromatin-associated proteins in Caenorhabditis elegans embryos and L3 larvae. Cluster analysis identified five groups of chromatin marks with shared features: Two groups correlate with gene repression, two with gene activation, and one with the X chromosome. The X chromosome displays numerous unique properties, including enrichment of monomethylated H4K20 and H3K27, which correlate with the different repressive mechanisms that operate in somatic tissues and germ cells, respectively. The data also revealed striking differences in chromatin composition between the autosomes and between chromosome arms and centers. Chromosomes I and III are globally enriched for marks of active genes, consistent with containing more highly expressed genes, compared to chromosomes II, IV, and especially V. Consistent with the absence of cytological heterochromatin and the holocentric nature of C. elegans chromosomes, markers of heterochromatin such as H3K9 methylation are not concentrated at a single region on each chromosome. Instead, H3K9 methylation is enriched on chromosome arms, coincident with zones of elevated meiotic recombination. Active genes in chromosome arms and centers have very similar histone mark distributions, suggesting that active domains in the arms are interspersed with heterochromatin-like structure. These data, which confirm and extend previous studies, allow for in-depth analysis of the organization and deployment of the C. elegans genome during development. PMID:21177964

  13. Total chemical synthesis of modified histones

    NASA Astrophysics Data System (ADS)

    Qi, Yun-Kun; Ai, Hua-Song; Li, Yi-Ming; Yan, Baihui

    2018-02-01

    In the post-genome era, epigenetics has received increasing attentions in recent years. The post-translational modifications (PTMs) of four core histones play central roles in epigenetic regulation of eukaryotic genome by either directly altering the biophysical properties of nucleosomes or by recruiting other effector proteins. In order to study the biological functions and structural mechanisms of these histone PTMs, an obligatory step is to prepare a sufficient amount of homogeneously modified histones. This task cannot be fully accomplished either by recombinant technology or enzymatic modification. In this context, synthetic chemists have developed novel protein synthetic tools and state-of-the-art chemical ligation strategies for the preparation of homologous modified histones. In this review, we summarize the recent advances in the preparation of modified histones, focusing on the total chemical synthesis strategies. The importance and potential of synthetic chemistry for the study of histone code will be also discussed.

  14. Protein mass analysis of histones.

    PubMed

    Galasinski, Scott C; Resing, Katheryn A; Ahn, Natalie G

    2003-09-01

    Posttranslational modification of chromatin-associated proteins, including histones and high-mobility-group (HMG) proteins, provides an important mechanism to control gene expression, genome integrity, and epigenetic inheritance. Protein mass analysis provides a rapid and unbiased approach to monitor multiple chemical modifications on individual molecules. This review describes methods for acid extraction of histones and HMG proteins, followed by separation by reverse-phase chromatography coupled to electrospray ionization mass spectrometry (LC/ESI-MS). Posttranslational modifications are detected by analysis of full-length protein masses. Confirmation of protein identity and modification state is obtained through enzymatic digestion and peptide sequencing by MS/MS. For differentially modified forms of each protein, the measured intensities are semiquantitative and allow determination of relative abundance and stoichiometry. The method simultaneously detects covalent modifications on multiple proteins and provides a facile assay for comparing chromatin modification states between different cell types and/or cellular responses.

  15. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy.

    PubMed

    Wang, Wenjun; Wang, Qing; Wan, Danyang; Sun, Yue; Wang, Lin; Chen, Hong; Liu, Chengyu; Petersen, Robert B; Li, Jianshuang; Xue, Weili; Zheng, Ling; Huang, Kun

    2017-05-04

    Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.

  16. The Histone Modification Domain of Paf1 Complex Subunit Rtf1 Directly Stimulates H2B Ubiquitylation through an Interaction with Rad6

    DOE PAGES

    Van Oss, S. Branden; Shirra, Margaret K.; Bataille, Alain R.; ...

    2016-11-10

    The five-subunit yeast Paf1 Complex (Paf1C) regulates all stages of transcription and is critical for the monoubiquitylation of histone H2B (H2Bub), a modification that broadly influences chromatin structure and eukaryotic transcription. Here we show that the histone modification domain (HMD) of Paf1C subunit Rtf1 directly interacts with the ubiquitin conjugase Rad6 and stimulates H2Bub independently of transcription. We present the crystal structure of the Rtf1 HMD and use site-specific, in vivo crosslinking to identify a conserved Rad6 interaction surface. Utilizing ChIP-exo analysis, we define the localization patterns of the H2Bub machinery at high resolution and demonstrate the importance of Paf1Cmore » in targeting the Rtf1 HMD, and thereby H2Bub, to its appropriate genomic locations. Finally, we observe HMD-dependent stimulation of H2Bub in a transcription-free, reconstituted in vitro system. Taken together, our results argue for an active role for Paf1C in promoting H2Bub and ensuring its proper localization in vivo.« less

  17. Dynamics of post-translationally modified histones during barley pollen embryogenesis in the presence or absence of the epi-drug trichostatin A.

    PubMed

    Pandey, Pooja; Daghma, Diaa S; Houben, Andreas; Kumlehn, Jochen; Melzer, Michael; Rutten, Twan

    2017-06-01

    Improving pollen embryogenesis. Despite the agro-economic importance of pollen embryogenesis, the mechanisms underlying this process are still poorly understood. We describe the dynamics of chromatin modifications (histones H3K4me2, H3K9ac, H3K9me2, and H3K27me3) and chromatin marks (RNA polymerase II CDC phospho-Ser5, and CENH3) during barley pollen embryogenesis. Immunolabeling results show that, in reaction to stress, immature pollen rapidly starts reorganizing several important chromatin modifications indicative of a change in cell fate. This new chromatin modification pattern was accomplished within 24 h from whereon it remained unaltered during subsequent mitotic activity. This indicates that cell fate transition, the central element of pollen embryogenesis, is completed early on during the induction process. Application of the histone deacetylase inhibitor trichostatin A stimulated pollen embryogenesis when used on pollen with a gametophytic style chromatin pattern. However, when this drug was administered to embryogenic pollen, the chromatin markers reversed toward a gametophytic profile, embryogenesis was halted and all pollen invariably died.

  18. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation

    PubMed Central

    Kaufman-Szymczyk, Agnieszka; Majewski, Grzegorz; Lubecka-Pietruszewska, Katarzyna; Fabianowska-Majewska, Krystyna

    2015-01-01

    Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i) post-translation histone modification (i.e., deacetylation and methylation); (ii) DNA global hypomethylation; (iii) promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv) posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review. PMID:26703571

  19. Chemical and structural biology of protein lysine deacetylases

    PubMed Central

    YOSHIDA, Minoru; KUDO, Norio; KOSONO, Saori; ITO, Akihiro

    2017-01-01

    Histone acetylation is a reversible posttranslational modification that plays a fundamental role in regulating eukaryotic gene expression and chromatin structure/function. Key enzymes for removing acetyl groups from histones are metal (zinc)-dependent and NAD+-dependent histone deacetylases (HDACs). The molecular function of HDACs have been extensively characterized by various approaches including chemical, molecular, and structural biology, which demonstrated that HDACs regulate cell proliferation, differentiation, and metabolic homeostasis, and that their alterations are deeply involved in various human disorders including cancer. Notably, drug discovery efforts have achieved success in developing HDAC-targeting therapeutics for treatment of several cancers. However, recent advancements in proteomics technology have revealed much broader aspects of HDACs beyond gene expression control. Not only histones but also a large number of cellular proteins are subject to acetylation by histone acetyltransferases (HATs) and deacetylation by HDACs. Furthermore, some of their structures can flexibly accept and hydrolyze other acyl groups on protein lysine residues. This review mainly focuses on structural aspects of HDAC enzymatic activity regulated by interaction with substrates, co-factors, small molecule inhibitors, and activators. PMID:28496053

  20. Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines.

    PubMed

    Abbas, Ata; Hall, J Adam; Patterson, William L; Ho, Emily; Hsu, Anna; Al-Mulla, Fahd; Georgel, Philippe T

    2016-02-01

    Epidemiologic studies have revealed that diets rich in sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables, are associated with a marked decrease in prostate cancer incidence. The chemo-preventive role of SFN is associated with its histone de-acetylase inhibitor activity. However, the effect of SFN on chromatin composition and dynamic folding, especially in relation to HDAC inhibitor activity, remains poorly understood. In this study, we found that SFN can inhibit the expression and activity of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, in 2 prostate cancer cell lines. This decrease in gene expression is correlated with SFN-induced changes in chromatin structure and composition. The SFN-mediated changes in levels of histone post-translational modifications, more specifically acetylation of histone H3 lysine 18 and di-methylation of histone H3 lysine 4, 2 modifications linked with high risk of prostate cancer recurrence, were associated with regulatory elements within the hTERT promoter region. Chromatin condensation may also play a role in SFN-mediated hTERT repression, since expression and recruitment of MeCP2, a known chromatin compactor, were altered in SFN treated prostate cancer cells. Chromatin immuno-precipitation (ChIP) of MeCP2 showed enrichment over regions of the hTERT promoter with increased nucleosome density. These combined results strongly support a role for SFN in the mediation of epigenetic events leading to the repression of hTERT in prostate cancer cells. This ability of SFN to modify chromatin composition and structure associated with target gene expression provides a new model by which dietary phytochemicals may exert their chemoprevention activity.

  1. Asymmetric histone modifications between the original and derived loci of human segmental duplications

    PubMed Central

    Zheng, Deyou

    2008-01-01

    Background Sequencing and annotation of several mammalian genomes have revealed that segmental duplications are a common architectural feature of primate genomes; in fact, about 5% of the human genome is composed of large blocks of interspersed segmental duplications. These segmental duplications have been implicated in genomic copy-number variation, gene novelty, and various genomic disorders. However, the molecular processes involved in the evolution and regulation of duplicated sequences remain largely unexplored. Results In this study, the profile of about 20 histone modifications within human segmental duplications was characterized using high-resolution, genome-wide data derived from a ChIP-Seq study. The analysis demonstrates that derivative loci of segmental duplications often differ significantly from the original with respect to many histone methylations. Further investigation showed that genes are present three times more frequently in the original than in the derivative, whereas pseudogenes exhibit the opposite trend. These asymmetries tend to increase with the age of segmental duplications. The uneven distribution of genes and pseudogenes does not, however, fully account for the asymmetry in the profile of histone modifications. Conclusion The first systematic analysis of histone modifications between segmental duplications demonstrates that two seemingly 'identical' genomic copies are distinct in their epigenomic properties. Results here suggest that local chromatin environments may be implicated in the discrimination of derived copies of segmental duplications from their originals, leading to a biased pseudogenization of the new duplicates. The data also indicate that further exploration of the interactions between histone modification and sequence degeneration is necessary in order to understand the divergence of duplicated sequences. PMID:18598352

  2. Epidrug mediated re-expression of miRNA targeting the HMGA transcripts in pituitary cells.

    PubMed

    Kitchen, Mark O; Yacqub-Usman, Kiren; Emes, Richard D; Richardson, Alan; Clayton, Richard N; Farrell, William E

    2015-10-01

    Transgenic mice overexpressing the high mobility group A (HMGA) genes, Hmga1 or Hmga2 develop pituitary tumours and their overexpression is also a frequent finding in human pituitary adenomas. In some cases, increased expression of HMGA2 but not that of HMGA1 is consequent to genetic perturbations. However, recent studies show that down-regulation of microRNA (miRNA), that contemporaneously target the HMGA1 and HMGA2 transcripts, are associated with their overexpression. In a cohort of primary pituitary adenoma we determine the impact of epigenetic modifications on the expression of HMGA-targeting miRNA. For these miRNAs, chromatin immunoprecipitations showed that transcript down-regulation is correlated with histone tail modifications associated with condensed silenced genes. The functional impact of epigenetic modification on miRNA expression was determined in the rodent pituitary cell line, GH3. In these cells, histone tail, miRNA-associated, modifications were similar to those apparent in human adenoma and likely account for their repression. Indeed, challenge of GH3 cells with the epidrugs, zebularine and TSA, led to enrichment of the histone modification, H3K9Ac, associated with active genes, and depletion of the modification, H3K27me3, associated with silent genes and re-expression of HMGA-targeting miRNA. Moreover, epidrugs challenges were also associated with a concomitant decrease in hmga1 transcript and protein levels and concurrent increase in bmp-4 expression. These findings show that the inverse relationship between HMGA expression and targeting miRNA is reversible through epidrug interventions. In addition to showing a mechanistic link between epigenetic modifications and miRNA expression these findings underscore their potential as therapeutic targets in this and other diseases.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). Wemore » found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin cancer cells. ►Grape seed proanthocyanidins can prevent skin cancer through epigenetic modulation.« less

  4. Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters.

    PubMed

    Barr, Fiona D; Krohmer, Lori J; Hamilton, Joshua W; Sheldon, Lynn A

    2009-08-26

    Chronic exposure to inorganic arsenic (iAs) found in the environment is one of the most significant and widespread environmental health risks in the U.S. and throughout the world. It is associated with a broad range of health effects from cancer to diabetes as well as reproductive and developmental anomalies. This diversity of diseases can also result from disruption of metabolic and other cellular processes regulated by steroid hormone receptors via aberrant transcriptional regulation. Significantly, exposure to iAs inhibits steroid hormone-mediated gene activation. iAs exposure is associated with disease, but is also used therapeutically to treat specific cancers complicating an understanding of iAs action. Transcriptional activation by steroid hormone receptors is accompanied by changes in histone and non-histone protein post-translational modification (PTM) that result from the enzymatic activity of coactivator and corepressor proteins such as GRIP1 and CARM1. This study addresses how iAs represses steroid receptor-regulated gene transcription. PTMs on histones H3 and H4 at the glucocorticoid receptor (GR)-activated mouse mammary tumor virus (MMTV) promoter were identified by chromatin immunoprecipitation analysis following exposure to steroid hormone+/-iAs. Histone H3K18 and H3R17 amino acid residues had significantly different patterns of PTMs after treatment with iAs. Promoter interaction of the coactivator CARM1 was disrupted, but the interaction of GRIP1, a p160 coactivator through which CARM1 interacts with a promoter, was intact. Over-expression of CARM1 was able to fully restore and GRIP1 partially restored iAs-repressed transcription indicating that these coactivators are functionally associated with iAs-mediated transcriptional repression. Both are essential for robust transcription at steroid hormone regulated genes and both are associated with disease when inappropriately expressed. We postulate that iAs effects on CARM1 and GRIP1 may underlie some of its therapeutic effects and as well be associated with its toxic effects.

  5. Insulation of the Chicken β-Globin Chromosomal Domain from a Chromatin-Condensing Protein, MENT

    PubMed Central

    Istomina, Natalia E.; Shushanov, Sain S.; Springhetti, Evelyn M.; Karpov, Vadim L.; A. Krasheninnikov, Igor; Stevens, Kimberly; Zaret, Kenneth S.; Singh, Prim B.; Grigoryev, Sergei A.

    2003-01-01

    Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken β-globin domain. We observed two sharp transitions of MENT concentration coinciding with the β-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation. PMID:12944473

  6. nAChRs-ERK1/2-Egr-1 signaling participates in the developmental toxicity of nicotine by epigenetically down-regulating placental 11β-HSD2.

    PubMed

    Zhou, Jin; Liu, Fulin; Yu, Luting; Xu, Dan; Li, Bin; Zhang, Guohui; Huang, Wen; Li, Lu; Zhang, Yuanzhen; Zhang, Wei; Wang, Hui

    2018-04-01

    Impaired placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) activity which inactivates maternal glucocorticoids is associated with poor fetal growth and a higher risk of chronic diseases in adulthood. This study aimed to elucidate the epigenetically regulatory mechanism of nicotine on placental 11β-HSD2 expression. Pregnant Wistar rats were administered 1.0 mg/kg nicotine subcutaneously twice a day from gestational day 9 to 20. The results showed that prenatal nicotine exposure increased corticosterone levels in the placenta and fetal serum, disrupted placental morphology and endocrine function, and reduced fetal bodyweight. Meanwhile, histone modification abnormalities (decreased acetylation and increased di-methylation of histone 3 Lysine 9) on the HSD11B2 promoter and lower-expression of 11β-HSD2 were observed. Furthermore, the expression of nicotinic acetylcholine receptor (nAChR) α4/β2, the phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) and Ets-like protein-1 (Elk-1), and the expression of early growth response-1 (Egr-1) were increased in the nicotine groups. In human BeWo cells, nicotine decreased 11β-HSD2 expression, increased nAChRα9 expression, and activated ERK1/2/Elk-1/Egr-1 signaling in the concentration (0.1-10 μM)-dependent manner. Antagonism of nAChRs, inhibition of ERK1/2 and Egr-1 knockdown by siRNA were able to block/abrogate the effects of nicotine on histone modification and expression of 11β-HSD2. Taken together, nicotine can impair placental structure and function, and induce fetal developmental toxicity. The underlying mechanism involves histone modifications and down-regulation of 11β-HSD2 through nAChRs/ERK1/2/Elk-1/Egr-1 signaling, which increases active glucocorticoids levels in the placenta and fetus, and eventually inhibits the fetal development. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Heterogeneous Antibody-Based Activity Assay for Lysine Specific Demethylase 1 (LSD1) on a Histone Peptide Substrate.

    PubMed

    Schmitt, Martin L; Ladwein, Kathrin I; Carlino, Luca; Schulz-Fincke, Johannes; Willmann, Dominica; Metzger, Eric; Schilcher, Pierre; Imhof, Axel; Schüle, Roland; Sippl, Wolfgang; Jung, Manfred

    2014-07-01

    Posttranslational modifications of histone tails are very important for epigenetic gene regulation. The lysine-specific demethylase LSD1 (KDM1A/AOF2) demethylates in vitro predominantly mono- and dimethylated lysine 4 on histone 3 (H3K4) and is a promising target for drug discovery. We report a heterogeneous antibody-based assay, using dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) for the detection of LSD1 activity. We used a biotinylated histone 3 peptide (amino acids 1-21) with monomethylated lysine 4 (H3K4me) as the substrate for the detection of LSD1 activity with antibody-mediated quantitation of the demethylated product. We have successfully used the assay to measure the potency of reference inhibitors. The advantage of the heterogeneous format is shown with cumarin-based LSD1 inhibitor candidates that we have identified using virtual screening. They had shown good potency in an established LSD1 screening assay. The new heterogeneous assay identified them as false positives, which was verified using mass spectrometry. © 2014 Society for Laboratory Automation and Screening.

  8. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins

    PubMed Central

    Stephens, Andrew D.; Liu, Patrick Z.; Banigan, Edward J.; Almassalha, Luay M.; Backman, Vadim; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.

    2018-01-01

    Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed “blebs” are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson–Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity. PMID:29142071

  9. Epigenomics, Pharmacoepigenomics, and Personalized Medicine in Cervical Cancer.

    PubMed

    Kabekkodu, Shama Prasada; Chakrabarty, Sanjiban; Ghosh, Supriti; Brand, Angela; Satyamoorthy, Kapaettu

    2017-01-01

    Epigenomics encompasses the study of genome-wide changes in DNA methylation, histone modifications and noncoding RNAs leading to altered transcription, chromatin structure, and posttranscription RNA processing, respectively, resulting in an altered rate of gene expression. The role of epigenetic modifications facilitating human diseases is well established. Previous studies have identified histone and cytosine code during normal and pathological conditions with special emphasis on how these modifications regulate transcriptional events. Recent studies have also mapped these epigenetic modification and pathways leading to carcinogenesis. Discovery of drugs that target proteins/enzymes in the epigenetic pathways may provide better therapeutic opportunities, and identification of such modulators for DNA methylation, histone modifications, and expression of noncoding RNAs for several cancer types is underway. In this review, we provide a detailed description of recent developments in the field of epigenetics and its impact on personalized medicine to manage cervical cancer. © 2017 S. Karger AG, Basel.

  10. Using Chromatin Immunoprecipitation in Toxicology: A Step-by-Step Guide to Increasing Efficiency, Reducing Variability, and Expanding Applications

    EPA Science Inventory

    Histone modifications work in concert with DNA methylation to regulate cellular structure, function, and the response to environmental stimuli. More than 130 unique histone modifications have been described to date and chromatin immunoprecipitation (ChIP) allows for the explorat...

  11. DNA Replication Origin Function Is Promoted by H3K4 Di-methylation in Saccharomyces cerevisiae

    PubMed Central

    Rizzardi, Lindsay F.; Dorn, Elizabeth S.; Strahl, Brian D.; Cook, Jeanette Gowen

    2012-01-01

    DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication. PMID:22851644

  12. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae.

    PubMed

    Rizzardi, Lindsay F; Dorn, Elizabeth S; Strahl, Brian D; Cook, Jeanette Gowen

    2012-10-01

    DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.

  13. Trichostatin A effects on gene expression in the protozoan parasite Entamoeba histolytica

    PubMed Central

    Ehrenkaufer, Gretchen M; Eichinger, Daniel J; Singh, Upinder

    2007-01-01

    Background Histone modification regulates chromatin structure and influences gene expression associated with diverse biological functions including cellular differentiation, cancer, maintenance of genome architecture, and pathogen virulence. In Entamoeba, a deep-branching eukaryote, short chain fatty acids (SCFA) affect histone acetylation and parasite development. Additionally, a number of active histone modifying enzymes have been identified in the parasite genome. However, the overall extent of gene regulation tied to histone acetylation is not known. Results In order to identify the genome-wide effects of histone acetylation in regulating E. histolytica gene expression, we used whole-genome expression profiling of parasites treated with SCFA and Trichostatin A (TSA). Despite significant changes in histone acetylation patterns, exposure of parasites to SCFA resulted in minimal transcriptional changes (11 out of 9,435 genes transcriptionally regulated). In contrast, exposure to TSA, a more specific inhibitor of histone deacetylases, significantly affected transcription of 163 genes (122 genes upregulated and 41 genes downregulated). Genes modulated by TSA were not regulated by treatment with 5-Azacytidine, an inhibitor of DNA-methyltransferase, indicating that in E. histolytica the crosstalk between DNA methylation and histone modification is not substantial. However, the set of genes regulated by TSA overlapped substantially with genes regulated during parasite development: 73/122 genes upregulated by TSA exposure were upregulated in E. histolytica cysts (p-value = 6 × 10-53) and 15/41 genes downregulated by TSA exposure were downregulated in E. histolytica cysts (p-value = 3 × 10-7). Conclusion This work represents the first genome-wide analysis of histone acetylation and its effects on gene expression in E. histolytica. The data indicate that SCFAs, despite their ability to influence histone acetylation, have minimal effects on gene transcription in cultured parasites. In contrast, the effect of TSA on E. histolytica gene expression is more substantial and includes genes involved in the encystation pathway. These observations will allow further dissection of the effects of histone acetylation and the genetic pathways regulating stage conversion in this pathogenic parasite. PMID:17612405

  14. The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome

    PubMed Central

    Morrison, Emma A; Bowerman, Samuel; Sylvers, Kelli L

    2018-01-01

    Histone tails harbor a plethora of post-translational modifications that direct the function of chromatin regulators, which recognize them through effector domains. Effector domain/histone interactions have been broadly studied, but largely using peptide fragments of histone tails. Here, we extend these studies into the nucleosome context and find that the conformation adopted by the histone H3 tails is inhibitory to BPTF PHD finger binding. Using NMR spectroscopy and MD simulations, we show that the H3 tails interact robustly but dynamically with nucleosomal DNA, substantially reducing PHD finger association. Altering the electrostatics of the H3 tail via modification or mutation increases accessibility to the PHD finger, indicating that PTM crosstalk can regulate effector domain binding by altering nucleosome conformation. Together, our results demonstrate that the nucleosome context has a dramatic impact on signaling events at the histone tails, and highlights the importance of studying histone binding in the context of the nucleosome. PMID:29648537

  15. Brg1 modulates enhancer activation in mesoderm lineage commitment

    DOE PAGES

    Alexander, Jeffrey M.; Hota, Swetansu K.; He, Daniel; ...

    2015-03-26

    The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also requiredmore » to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. In conclusion, these findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.« less

  16. A Phosphorylation Switch Regulates the Transcriptional Activation of Cell Cycle Regulator p21 by Histone Deacetylase Inhibitors*

    PubMed Central

    Simboeck, Elisabeth; Sawicka, Anna; Zupkovitz, Gordin; Senese, Silvia; Winter, Stefan; Dequiedt, Franck; Ogris, Egon; Di Croce, Luciano; Chiocca, Susanna; Seiser, Christian

    2010-01-01

    Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are, therefore, promising anti-cancer drugs. The cyclin-dependent kinase inhibitor p21 is activated in histone deacetylase (HDAC) inhibitor-treated tumor cells, and its growth-inhibitory function contributes to the anti-tumorigenic effect of HDAC inhibitors. We show here that induction of p21 by trichostatin A involves MAP kinase signaling. Activation of the MAP kinase signaling pathway by growth factors or stress signals results in histone H3 serine 10 phosphorylation at the p21 promoter and is crucial for acetylation of the neighboring lysine 14 and recruitment of activated RNA polymerase II in response to trichostatin A treatment. In non-induced cells, the protein phosphatase PP2A is associated with the p21 gene and counteracts its activation. Induction of p21 is linked to simultaneous acetylation and phosphorylation of histone H3. The dual modification mark H3S10phK14ac at the activated p21 promoter is recognized by the phospho-binding protein 14-3-3ζ, which protects the phosphoacetylation mark from being processed by PP2A. Taken together we have revealed a cross-talk of reversible phosphorylation and acetylation signals that controls the activation of p21 by HDAC inhibitors and identify the phosphatase PP2A as chromatin-associated transcriptional repressor in mammalian cells. PMID:20952396

  17. Histone H3 Lysine Methylation in Cognition and Intellectual Disability Disorders

    ERIC Educational Resources Information Center

    Parkel, Sven; Lopez-Atalaya, Jose P.; Barco, Angel

    2013-01-01

    Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive…

  18. Histone H3 Lysine 36 Methyltransferase Whsc1 Promotes the Association of Runx2 and p300 in the Activation of Bone-Related Genes

    PubMed Central

    Lee, Yu Fei; Nimura, Keisuke; Lo, Wan Ning; Saga, Kotaro; Kaneda, Yasufumi

    2014-01-01

    The orchestration of histone modifiers is required to establish the epigenomic status that regulates gene expression during development. Whsc1 (Wolf-Hirschhorn Syndrome candidate 1), a histone H3 lysine 36 (H3K36) trimethyltransferase, is one of the major genes associated with Wolf-Hirshhorn syndrome, which is characterized by skeletal abnormalities. However, the role of Whsc1 in skeletal development remains unclear. Here, we show that Whsc1 regulates gene expression through Runt-related transcription factor (Runx) 2, a transcription factor central to bone development, and p300, a histone acetyltransferase, to promote bone differentiation. Whsc1 −/− embryos exhibited defects in ossification in the occipital bone and sternum. Whsc1 knockdown in pre-osteoblast cells perturbed histone modification patterns in bone-related genes and led to defects in bone differentiation. Whsc1 increased the association of p300 with Runx2, activating the bone-related genes Osteopontin (Opn) and Collagen type Ia (Col1a1), and Whsc1 suppressed the overactivation of these genes via H3K36 trimethylation. Our results suggest that Whsc1 fine-tunes the expression of bone-related genes by acting as a modulator in balancing H3K36 trimethylation and histone acetylation. Our results provide novel insight into the mechanisms by which this histone methyltransferase regulates gene expression. PMID:25188294

  19. Epigenetic modifications: An important mechanism in diabetic disturbances.

    PubMed

    Rorbach-Dolata, Anna; Kubis, Adriana; Piwowar, Agnieszka

    2017-11-29

    In the search for explanations of diabetes pathomechanisms, especially the development of its vascular complications (micro- and macrovascular ), although current, good metabolic control of diabetes, attention was drawn to the role of epigenetic inheritance associated with epigenetic modifications of histone proteins and DNA in hyperglycemia conditions. This study showed the significant role of DNA methylation and histone epigenetic modifications (a different nature and a different degree) in the transmission of information that is not connected with gene inheritance but concerns the persistent changes induced by hyperglycemia..Attention was paid to the role of DNA methylation of pancreatic cells in the pathogenesis of type 1 diabetes, but also type 2. The important role of DNA methylation changes in a so-called intrauterine growth restriction (IUGR) as reason of subsequent development of diabetes was particularly emphasized. In the pathogenesis of type 2 diabetes and its complications, especially microvascular complications, the greatest share and importance of epigenetic modifications on mitochondrial DNA metylation are the most important. The multidirectionality Complicaand complexity of epigenetic modifications of histone proteins indicate their importance in the development of diabetic disturbances. An especially important role is attributed to methylation and acetylation of histone proteins, in particular on arginine and lysine, whose changes occur most frequently. Moreover, epigenetic modifications of the enzymes, especially methylases, responsible for these processes are the underlying. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may be a useful prognostic biomarker of susceptibility to the disease development in the future. Moreover, they may become a potential target for future therapeutic interventions for clinical disorders in diabetes.

  20. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea

    PubMed Central

    Su, Liang-Chen; Deng, Bin; Liu, Shuai; Li, Li-Mei; Hu, Bo; Zhong, Yu-Ting; Li, Ling

    2015-01-01

    Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunoblotting experiments. Using RNA-seq data for peanut, we found a RPD3/HDA1-like superfamily histone deacetylase (HDAC), termed AhHDA1, whose gene is up-regulated by PEG-induced water limitation and ABA signaling. We isolated and characterized AhHDA1 from A. hypogaea, showing that AhHDA1 is very similar to an Arabidopsis HDAC (AtHDA6) and, in recombinant form, possesses HDAC activity. To understand whether and how osmotic stress and ABA mediate the peanut stress response by epigenetics, the expression of AhHDA1 and stress-responsive genes following treatment with PEG, ABA, and the specific HDAC inhibitor trichostatin A (TSA) were analyzed. AhHDA1 transcript levels were enhanced by all three treatments, as was expression of peanut transcription factor genes, indicating that AhHDA1 might be involved in the epigenetic regulation of stress resistance genes that comprise the responses to osmotic stress and ABA. PMID:26217363

  1. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation.

    PubMed

    Almeida, Luciana O; Neto, Marinaldo P C; Sousa, Lucas O; Tannous, Maryna A; Curti, Carlos; Leopoldino, Andreia M

    2017-04-18

    Epigenetic modifications are essential in the control of normal cellular processes and cancer development. DNA methylation and histone acetylation are major epigenetic modifications involved in gene transcription and abnormal events driving the oncogenic process. SET protein accumulates in many cancer types, including head and neck squamous cell carcinoma (HNSCC); SET is a member of the INHAT complex that inhibits gene transcription associating with histones and preventing their acetylation. We explored how SET protein accumulation impacts on the regulation of gene expression, focusing on DNA methylation and histone acetylation. DNA methylation profile of 24 tumour suppressors evidenced that SET accumulation decreased DNA methylation in association with loss of 5-methylcytidine, formation of 5-hydroxymethylcytosine and increased TET1 levels, indicating an active DNA demethylation mechanism. However, the expression of some suppressor genes was lowered in cells with high SET levels, suggesting that loss of methylation is not the main mechanism modulating gene expression. SET accumulation also downregulated the expression of 32 genes of a panel of 84 transcription factors, and SET directly interacted with chromatin at the promoter of the downregulated genes, decreasing histone acetylation. Gene expression analysis after cell treatment with 5-aza-2'-deoxycytidine (5-AZA) and Trichostatin A (TSA) revealed that histone acetylation reversed transcription repression promoted by SET. These results suggest a new function for SET in the regulation of chromatin dynamics. In addition, TSA diminished both SET protein levels and SET capability to bind to gene promoter, suggesting that administration of epigenetic modifier agents could be efficient to reverse SET phenotype in cancer.

  2. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.

    PubMed

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian

    2013-04-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.

  3. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philbrook, Nicola A.; Winn, Louise M., E-mail: winnl@queensu.ca; School of Environmental Studies, Queen's University, Kingston, ON K7L3N6

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as wellmore » as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. - Highlights: • Benzene exposure in pregnant mice decreased global DNA methylation in maternal bone marrow. • Benzene exposure in pregnant mice had no effect on global DNA methylation in fetal livers. • No effect of benzene exposure was observed on p15 promoter methylation. • No effect of benzene on measured histone modifications in both maternal bone marrow and fetal livers was observed.« less

  5. Profiling of Histone Post-Translational Modifications in Mouse Brain with High-Resolution Top-Down Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mowei; Paša-Tolić, Ljiljana; Stenoien, David L.

    Histones play central roles in most chromosomal functions and both their basic biology and roles in disease have been the subject of intense study. Since multiple PTMs along the entire protein sequence are potential regulators of histones, a top-down approach, where intact proteins are analyzed, is ultimately required for complete characterization of proteoforms. However, significant challenges remain for top-down histone analysis primarily because of deficiencies in separation/resolving power and effective identification algorithms. Here, we used state of the art mass spectrometry and a bioinformatics workflow for targeted data analysis and visualization. The workflow uses ProMex for intact mass deconvolution, MSPathFindermore » as search engine, and LcMsSpectator as a data visualization tool. ProMex sums across retention time to maximize sensitivity and accuracy for low abundance species in MS1deconvolution. MSPathFinder searches the MS2 data against protein sequence databases with user-defined modifications. LcMsSpectator presents the results from ProMex and MSPathFinder in a format that allows quick manual evaluation of critical attributes for high-confidence identifications. When complemented with the open-modification tool TopPIC, this workflow enabled identification of novel histone PTMs including tyrosine bromination on histone H4 and H2A, H3 glutathionylation, and mapping of conventional PTMs along the entire protein for many histone subunits.« less

  6. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions

    PubMed Central

    Ramirez-Prado, Juan S.; Piquerez, Sophie J. M.; Bendahmane, Abdelhafid; Hirt, Heribert; Raynaud, Cécile; Benhamed, Moussa

    2018-01-01

    Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant–pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence. PMID:29616066

  7. REDOX REGULATION OF SIRT1 IN INFLAMMATION AND CELLULAR SENESCENCE

    PubMed Central

    Hwang, Jae-woong; Yao, Hongwei; Caito, Samuel; Sundar, Isaac K.; Rahman, Irfan

    2013-01-01

    Sirtuin1 (SIRT1) regulates inflammation, aging (lifespan and healthspan), calorie restriction/energetics, mitochondrial biogenesis, stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian rhythms through deacetylation of transcription factors and histones. SIRT1 level and activity are decreased in chronic inflammatory conditions and aging where oxidative stress occurs. SIRT1 is regulated by a NAD+-dependent DNA repair enzyme poly(ADP-ribose)-polymerase-1 (PARP-1), and subsequent NAD+ depletion by oxidative stresses may have consequent effects on inflammatory and stress responses as well as cellular senescence. SIRT1 has been shown to undergo covalent oxidative modifications by cigarette smoke-derived oxidants/aldehydes, leading to post-translational modifications, inactivation, and protein degradation. Furthermore, oxidant/carbonyl stress-mediated reduction of SIRT1 leads to the loss of its control on acetylation of target proteins including p53, RelA/p65 and FOXO3, thereby enhancing the inflammatory, pro-senescent and apoptotic responses, as well as endothelial dysfunction. In this review, the mechanisms of cigarette smoke/oxidant-mediated redox post-translational modifications of SIRT1 and its role in PARP1, NF-κB activation, FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging are discussed. Furthermore, we also discussed various novel ways to activate SIRT1 either directly or indirectly, which may have therapeutic potential in attenuating inflammation and premature senescence involved in chronic lung diseases. PMID:23542362

  8. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response

    PubMed Central

    Fann, Monchou; Godlove, Jason M.; Catalfamo, Marta; Wood, William H.; Chrest, Francis J.; Chun, Nicholas; Granger, Larry; Wersto, Robert; Madara, Karen; Becker, Kevin; Henkart, Pierre A.; Weng, Nan-ping

    2006-01-01

    To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response. PMID:16868257

  9. Chromatin replication: TRANSmitting the histone code

    PubMed Central

    Chang, Han-Wen; Studitsky, Vasily M.

    2017-01-01

    Efficient overcoming of the nucleosomal barrier and accurate maintenance of associated histone marks during chromatin replication are essential for normal functioning of the cell. Recent studies revealed new protein factors and histone modifications contributing to overcoming the nucleosomal barrier, and suggested an important role for DNA looping in survival of the original histones during replication. These studies suggest new possible mechanisms for transmitting the histone code to next generations of cells. PMID:28393112

  10. Spatial and temporal plasticity of chromatin during programmed DNA-reorganization in Stylonychia macronuclear development

    PubMed Central

    Postberg, Jan; Heyse, Katharina; Cremer, Marion; Cremer, Thomas; Lipps, Hans J

    2008-01-01

    Background: In this study we exploit the unique genome organization of ciliates to characterize the biological function of histone modification patterns and chromatin plasticity for the processing of specific DNA sequences during a nuclear differentiation process. Ciliates are single-cell eukaryotes containing two morphologically and functionally specialized types of nuclei, the somatic macronucleus and the germline micronucleus. In the course of sexual reproduction a new macronucleus develops from a micronuclear derivative. During this process specific DNA sequences are eliminated from the genome, while sequences that will be transcribed in the mature macronucleus are retained. Results: We show by immunofluorescence microscopy, Western analyses and chromatin immunoprecipitation (ChIP) experiments that each nuclear type establishes its specific histone modification signature. Our analyses reveal that the early macronuclear anlage adopts a permissive chromatin state immediately after the fusion of two heterochromatic germline micronuclei. As macronuclear development progresses, repressive histone modifications that specify sequences to be eliminated are introduced de novo. ChIP analyses demonstrate that permissive histone modifications are associated with sequences that will be retained in the new macronucleus. Furthermore, our data support the hypothesis that a PIWI-family protein is involved in a transnuclear cross-talk and in the RNAi-dependent control of developmental chromatin reorganization. Conclusion: Based on these data we present a comprehensive analysis of the spatial and temporal pattern of histone modifications during this nuclear differentiation process. Results obtained in this study may also be relevant for our understanding of chromatin plasticity during metazoan embryogenesis. PMID:19014664

  11. Investigating the effects of in utero benzene exposure on epigenetic modifications in maternal and fetal CD-1 mice.

    PubMed

    Philbrook, Nicola A; Winn, Louise M

    2015-11-15

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as well as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Mechanism of histone survival during transcription by RNA polymerase II

    PubMed Central

    Kulaeva, Olga I

    2010-01-01

    Transcription of eukaryotic genes by RNA polymerase II is typically accompanied by minimal exchange of histones H3/H4 carrying various covalent modifications. In vitro studies suggest that histone survival is accompanied by the formation of a small transient DNA loop on the surface of the histone octamer including a molecule of transcribing enzyme. PMID:21326897

  13. Aberrant histone deacetylase2-mediated histone modifications and synaptic plasticity in the amygdala predisposes to anxiety and alcoholism.

    PubMed

    Moonat, Sachin; Sakharkar, Amul J; Zhang, Huaibo; Tang, Lei; Pandey, Subhash C

    2013-04-15

    Epigenetic mechanisms have been implicated in psychiatric disorders, including alcohol dependence. However, the epigenetic basis and role of specific histone deacetylase (HDAC) isoforms in the genetic predisposition to anxiety and alcoholism is unknown. We measured amygdaloid HDAC activity, levels of HDAC isoforms, and histone H3 acetylation in selectively bred alcohol-preferring (P) and -nonpreferring (NP) rats. We employed HDAC2 small interfering RNA infusion into the central nucleus of amygdala (CeA) of P rats to determine the causal role of HDAC2 in anxiety-like and alcohol-drinking behaviors. Chromatin immunoprecipitation analysis was performed to examine the histone acetylation status of brain-derived neurotrophic factor (Bdnf) and activity-regulated cytoskeleton associated protein (Arc) genes. Golgi-Cox staining was performed to measure dendritic spine density. We found that P rats innately display higher nuclear HDAC activity and HDAC2 but not HDAC 1, 3, 4, 5, and 6 protein levels and lower acetylation of H3-K9 but not H3-K14, in the CeA and medial nucleus of amygdala compared with NP rats. Acute ethanol exposure decreased amygdaloid HDAC activity and HDAC2 protein levels, increased global and gene (Bdnf and Arc)-specific histone acetylation, and attenuated anxiety-like behaviors in P rats but had no effects in NP rats. The HDAC2 knockdown in the CeA attenuated anxiety-like behaviors and voluntary alcohol but not sucrose consumption in P rats and increased histone acetylation of Bdnf and Arc with a resultant increase in protein levels that correlated with increased dendritic spine density. These novel data demonstrate the role of HDAC2-mediated epigenetic mechanisms in anxiety and alcoholism. Published by Elsevier Inc.

  14. Nonhistone protein acetylation as cancer therapy targets

    PubMed Central

    Singh, Brahma N; Zhang, Guanghua; Hwa, Yi L; Li, Jinping; Dowdy, Sean C; Jiang, Shi-Wen

    2012-01-01

    Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein–protein and protein–DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed. PMID:20553216

  15. Epigenetic stability in the adult mouse cortex under conditions of pharmacologically induced histone acetylation.

    PubMed

    Benoit, Jamie; Ayoub, Albert; Rakic, Pasko

    2016-11-01

    Histone acetylation is considered a major epigenetic process that affects brain development and synaptic plasticity, as well as learning and memory. The transcriptional effectors and morphological changes responsible for plasticity as a result of long-term modifications to histone acetylation are not fully understood. To this end, we pharmacologically inhibited histone deacetylation using Trichostatin A in adult (6-month-old) mice and found significant increases in the levels of the acetylated histone marks H3Lys9, H3Lys14 and H4Lys12. High-resolution transcriptome analysis of diverse brain regions uncovered few differences in gene expression between treated and control animals, none of which were plasticity related. Instead, after increased histone acetylation, we detected a large number of novel transcriptionally active regions, which correspond to long non-coding RNAs (lncRNAs). We also surprisingly found no significant changes in dendritic spine plasticity in layers 1 and 2/3 of the visual cortex using long-term in vivo two-photon imaging. Our results indicate that chronic pharmacologically induced histone acetylation can be decoupled from gene expression and instead, may potentially exert a post-transcriptional effect through the differential production of lncRNAs.

  16. Epigenetics and the Developmental Origins of Health and ...

    EPA Pesticide Factsheets

    Epigenetic programming is likely to be an important mechanism underlying the lasting influence of the developmental environment on lifelong health, a concept known as the Developmental Origins of Health and Disease (DOHaD). DNA methylation, posttranslational histone protei n modifications, noncoding RNAs and recruited protein complexes are elements of the epigenetic regulation of gene transcription. These heritable but reversible changes in gene function are dynamic and labile during specific stages of the reproductive cycle and development. Epigenetic marks may be maintained throughout an individual's lifespan and can alter the life-long risk of disease; the nature of these epigenetic marks and their potential alteration by environmental factors is an area of active research. This chapter provides an overview of epigenetic regulation, particularly as it occurs as an essential component of embryo-fetal development. In this chapter we will present key features of DNA methylation and histone protein modifications, including the enzymes involved and the effects of these modifications on gene transcription. We will discuss the interplay of these dynamic modifications and the emerging role of noncoding RNAs in epigenetic gene regulation.

  17. Genome-wide histone acetylation is altered in a transgenic mouse model of Huntington's disease.

    PubMed

    McFarland, Karen N; Das, Sudeshna; Sun, Ting Ting; Leyfer, Dmitri; Xia, Eva; Sangrey, Gavin R; Kuhn, Alexandre; Luthi-Carter, Ruth; Clark, Timothy W; Sadri-Vakili, Ghazaleh; Cha, Jang-Ho J

    2012-01-01

    In Huntington's disease (HD; MIM ID #143100), a fatal neurodegenerative disorder, transcriptional dysregulation is a key pathogenic feature. Histone modifications are altered in multiple cellular and animal models of HD suggesting a potential mechanism for the observed changes in transcriptional levels. In particular, previous work has suggested an important link between decreased histone acetylation, particularly acetylated histone H3 (AcH3; H3K9K14ac), and downregulated gene expression. However, the question remains whether changes in histone modifications correlate with transcriptional abnormalities across the entire transcriptome. Using chromatin immunoprecipitation paired with microarray hybridization (ChIP-chip), we interrogated AcH3-gene interactions genome-wide in striata of 12-week old wild-type (WT) and transgenic (TG) R6/2 mice, an HD mouse model, and correlated these interactions with gene expression levels. At the level of the individual gene, we found decreases in the number of sites occupied by AcH3 in the TG striatum. In addition, the total number of genes bound by AcH3 was decreased. Surprisingly, the loss of AcH3 binding sites occurred within the coding regions of the genes rather than at the promoter region. We also found that the presence of AcH3 at any location within a gene strongly correlated with the presence of its transcript in both WT and TG striatum. In the TG striatum, treatment with histone deacetylase (HDAC) inhibitors increased global AcH3 levels with concomitant increases in transcript levels; however, AcH3 binding at select gene loci increased only slightly. This study demonstrates that histone H3 acetylation at lysine residues 9 and 14 and active gene expression are intimately tied in the rodent brain, and that this fundamental relationship remains unchanged in an HD mouse model despite genome-wide decreases in histone H3 acetylation.

  18. Active and Repressive Chromatin-Associated Proteome after MPA Treatment and the Role of Midkine in Epithelial Monolayer Permeability

    PubMed Central

    Khan, Niamat; Lenz, Christof; Binder, Lutz; Pantakani, Dasaradha Venkata Krishna; Asif, Abdul R.

    2016-01-01

    Mycophenolic acid (MPA) is prescribed to maintain allografts in organ-transplanted patients. However, gastrointestinal (GI) complications, particularly diarrhea, are frequently observed as a side effect following MPA therapy. We recently reported that MPA altered the tight junction (TJ)-mediated barrier function in a Caco-2 cell monolayer model system. This study investigates whether MPA induces epigenetic changes which lead to GI complications, especially diarrhea. Methods: We employed a Chromatin Immunoprecipitation-O-Proteomics (ChIP-O-Proteomics) approach to identify proteins associated with active (H3K4me3) as well as repressive (H3K27me3) chromatin histone modifications in MPA-treated cells, and further characterized the role of midkine, a H3K4me3-associated protein, in the context of epithelial monolayer permeability. Results: We identified a total of 333 and 306 proteins associated with active and repressive histone modification marks, respectively. Among them, 241 proteins were common both in active and repressive chromatin, 92 proteins were associated exclusively with the active histone modification mark, while 65 proteins remained specific to repressive chromatin. Our results show that 45 proteins which bind to the active and seven proteins which bind to the repressive chromatin region exhibited significantly altered abundance in MPA-treated cells as compared to DMSO control cells. A number of novel proteins whose function is not known in bowel barrier regulation were among the identified proteins, including midkine. Our functional integrity assays on the Caco-2 cell monolayer showed that the inhibition of midkine expression prior to MPA treatment could completely block the MPA-mediated increase in barrier permeability. Conclusions: The ChIP-O-Proteomics approach delivered a number of novel proteins with potential implications in MPA toxicity. Consequently, it can be proposed that midkine inhibition could be a potent therapeutic approach to prevent the MPA-mediated increase in TJ permeability and leak flux diarrhea in organ transplant patients. PMID:27104530

  19. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation.

    PubMed

    Grandy, Rodrigo A; Whitfield, Troy W; Wu, Hai; Fitzgerald, Mark P; VanOudenhove, Jennifer J; Zaidi, Sayyed K; Montecino, Martin A; Lian, Jane B; van Wijnen, André J; Stein, Janet L; Stein, Gary S

    2016-02-15

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation

    PubMed Central

    Grandy, Rodrigo A.; Whitfield, Troy W.; Wu, Hai; Fitzgerald, Mark P.; VanOudenhove, Jennifer J.; Zaidi, Sayyed K.; Montecino, Martin A.; Lian, Jane B.; van Wijnen, André J.; Stein, Janet L.

    2015-01-01

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. PMID:26644406

  1. Computational Micromodel for Epigenetic Mechanisms

    PubMed Central

    Raghavan, Karthika; Ruskin, Heather J.; Perrin, Dimitri; Goasmat, Francois; Burns, John

    2010-01-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach. PMID:21152421

  2. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance

    PubMed Central

    Novakovic, Boris; Habibi, Ehsan; Wang, Shuang-Yin; Arts, Rob J.W.; Davar, Robab; Megchelenbrink, Wout; Kim, Bowon; Kuznetsova, Tatyana; Kox, Matthijs; Zwaag, Jelle; Matarese, Filomena; van Heeringen, Simon J.; Janssen-Megens, Eva M.; Sharifi, Nilofar; Wang, Cheng; Keramati, Farid; Schoonenberg, Vivien; Flicek, Paul; Clarke, Laura; Pickkers, Peter; Heath, Simon; Gut, Ivo; Netea, Mihai G.; Martens, Joost H.A.; Logie, Colin; Stunnenberg, Hendrik G.

    2018-01-01

    Summary Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, β-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo β-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. PMID:27863248

  3. Comparison of the Deacylase and Deacetylase Activity of Zinc-Dependent HDACs.

    PubMed

    McClure, Jesse J; Inks, Elizabeth S; Zhang, Cheng; Peterson, Yuri K; Li, Jiaying; Chundru, Kalyan; Lee, Bradley; Buchanan, Ashley; Miao, Shiqin; Chou, C James

    2017-06-16

    The acetylation status of lysine residues on histone proteins has long been attributed to a balance struck between the catalytic activity of histone acetyl transferases and histone deacetylases (HDAC). HDACs were identified as the sole removers of acetyl post-translational modifications (PTM) of histone lysine residues. Studies into the biological role of HDACs have also elucidated their role as removers of acetyl PTMs from lysine residues of nonhistone proteins. These findings, coupled with high-resolution mass spectrometry studies that revealed the presence of acyl-group PTMs on lysine residues of nonhistone proteins, brought forth the possibility of HDACs acting as removers of both acyl- and acetyl-based PTMs. We posited that HDACs fulfill this dual role and sought to investigate their specificity. Utilizing a fluorescence-based assay and biologically relevant acyl-substrates, the selectivities of zinc-dependent HDACs toward these acyl-based PTMs were identified. These findings were further validated using cellular models and molecular biology techniques. As a proof of principal, an HDAC3 selective inhibitor was designed using HDAC3's substrate preference. This resulting inhibitor demonstrates nanomolar activity and >30 fold selectivity toward HDAC3 compared to the other class I HDACs. This inhibitor is capable of increasing p65 acetylation, attenuating NF-κB activation, and thereby preventing downstream nitric oxide signaling. Additionally, this selective HDAC3 inhibition allows for control of HMGB-1 secretion from activated macrophages without altering the acetylation status of histones or tubulin.

  4. The Role of Dietary Extra Virgin Olive Oil and Corn Oil on the Alteration of Epigenetic Patterns in the Rat DMBA-Induced Breast Cancer Model.

    PubMed

    Rodríguez-Miguel, Cristina; Moral, Raquel; Escrich, Raquel; Vela, Elena; Solanas, Montserrat; Escrich, Eduard

    2015-01-01

    Disruption of epigenetic patterns is a major change occurring in all types of cancers. Such alterations are characterized by global DNA hypomethylation, gene-promoter hypermethylation and aberrant histone modifications, and may be modified by environment. Nutritional factors, and especially dietary lipids, have a role in the etiology of breast cancer. Thus, we aimed to analyze the influence of different high fat diets on DNA methylation and histone modifications in the rat dimethylbenz(a)anthracene (DMBA)-induced breast cancer model. Female Sprague-Dawley rats were fed a low-fat, a high corn-oil or a high extra-virgin olive oil (EVOO) diet from weaning or from induction with DMBA. In mammary glands and tumors we analyzed global and gene specific (RASSF1A, TIMP3) DNA methylation by LUMA and bisulfite pyrosequencing assays, respectively. We also determined gene expression and enzymatic activity of DNA methyltransferases (DNMT1, DNMT3a and DNMT3b) and evaluated changes in histone modifications (H3K4me2, H3K27me3, H4K20me3 and H4K16ac) by western-blot. Our results showed variations along time in the global DNA methylation of the mammary gland displaying decreases at puberty and with aging. The olive oil-enriched diet, on the one hand, increased the levels of global DNA methylation in mammary gland and tumor, and on the other, changed histone modifications patterns. The corn oil-enriched diet increased DNA methyltransferase activity in both tissues, resulting in an increase in the promoter methylation of the tumor suppressor genes RASSF1A and TIMP3. These results suggest a differential effect of the high fat diets on epigenetic patterns with a relevant role in the neoplastic transformation, which could be one of the mechanisms of their differential promoter effect, clearly stimulating for the high corn-oil diet and with a weaker influence for the high EVOO diet, on breast cancer progression.

  5. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.

    PubMed

    Fraga, Mario F; Ballestar, Esteban; Villar-Garea, Ana; Boix-Chornet, Manuel; Espada, Jesus; Schotta, Gunnar; Bonaldi, Tiziana; Haydon, Claire; Ropero, Santiago; Petrie, Kevin; Iyer, N Gopalakrishna; Pérez-Rosado, Alberto; Calvo, Enrique; Lopez, Juan A; Cano, Amparo; Calasanz, Maria J; Colomer, Dolors; Piris, Miguel Angel; Ahn, Natalie; Imhof, Axel; Caldas, Carlos; Jenuwein, Thomas; Esteller, Manel

    2005-04-01

    CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.

  6. Promoting gene expression in plants by permissive histone lysine methylation

    PubMed Central

    Millar, Tony; Finnegan, E Jean

    2009-01-01

    Plants utilize sophisticated epigenetic regulatory mechanisms to coordinate changes in gene expression during development and in response to environmental stimuli. Epigenetics refers to the modification of DNA and chromatin associated proteins, which affect gene expression and cell function, without changing the DNA sequence. Such modifications are inherited through mitosis, and in rare instances through meiosis, although it can be reversible and thus regulatory. Epigenetic modifications are controlled by groups of proteins, such as the family of histone lysine methytransferases (HKMTs). The catalytic core known as the SET domain encodes HKMT activity and either promotes or represses gene expression. A large family of SET domain proteins is present in Arabidopsis where there is growing evidence that two classes of these genes are involved in promoting gene expression in a diverse range of developmental processes. This review will focus on the function of these two classes and the processes that they control, highlighting the huge potential this regulatory mechanism has in plants. PMID:19816124

  7. Evolution of a Histone H4-K16 Acetyl-Specific DNA Aptamer

    PubMed Central

    Williams, Berea A. R.; Lin, Liyun; Lindsay, Stuart M.; Chaput, John C.

    2009-01-01

    We report the in vitro selection of DNA aptamers that bind to histone H4 proteins acetylated at lysine 16. The best aptamer identified in this selection binds to the target protein with a Kd of 21 nM, and discriminates against both the non-acetylated protein and histone H4 proteins acetylated at lysine 8. Comparative binding assays performed with a chip-quality antibody reveal that this aptamer binds to the acetylated histone target with similar affinity to a commercial antibody, but shows significantly greater specificity (15-fold versus 2,400-fold) for the target molecule. This result demonstrates that aptamers that are both modification and location specific can be generated to bind specific protein post-translational modifications. PMID:19385619

  8. Histone chaperone APLF regulates induction of pluripotency in murine fibroblasts.

    PubMed

    Syed, Khaja Mohieddin; Joseph, Sunu; Mukherjee, Ananda; Majumder, Aditi; Teixeira, Jose M; Dutta, Debasree; Pillai, Madhavan Radhakrishna

    2016-12-15

    Induction of pluripotency in differentiated cells through the exogenous expression of the transcription factors Oct4, Sox2, Klf4 and cellular Myc involves reprogramming at the epigenetic level. Histones and their metabolism governed by histone chaperones constitute an important regulator of epigenetic control. We hypothesized that histone chaperones facilitate or inhibit the course of reprogramming. For the first time, we report here that the downregulation of histone chaperone Aprataxin PNK-like factor (APLF) promotes reprogramming by augmenting the expression of E-cadherin (Cdh1), which is implicated in the mesenchymal-to-epithelial transition (MET) involved in the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Downregulation of APLF in MEFs expedites the loss of the repressive MacroH2A.1 (encoded by H2afy) histone variant from the Cdh1 promoter and enhances the incorporation of active histone H3me2K4 marks at the promoters of the pluripotency genes Nanog and Klf4, thereby accelerating the process of cellular reprogramming and increasing the efficiency of iPSC generation. We demonstrate a new histone chaperone (APLF)-MET-histone modification cohort that functions in the induction of pluripotency in fibroblasts. This regulatory axis might provide new mechanistic insights into perspectives of epigenetic regulation involved in cancer metastasis. © 2016. Published by The Company of Biologists Ltd.

  9. Transcriptional changes in epigenetic modifiers associated with gene silencing in the intestine of the sea cucumber, Apostichopus japonicus (Selenka), during aestivation

    NASA Astrophysics Data System (ADS)

    Wang, Tianming; Yang, Hongsheng; Zhao, Huan; Chen, Muyan; Wang, Bing

    2011-11-01

    The sea cucumber, Apostichopus japonicus, undergoes aestivation to improve survival during periods of high-temperature. During aestivation, the metabolic rate is depressed to reduce the consumption of reserved energy. We evaluated the role of epigenetic modification on global gene silencing during metabolic rate depression in the sea cucumber. We compared the expression of epigenetic modifiers in active and aestivating sea cucumbers. The expression of three genes involved in DNA methylation and chromatin remodeling (DNA (cytosine-5)-methyltransferase 1, Methyl-CpG-binding domain protein 2), and Chromodomain-helicase-DNA-binding protein 5) was significantly higher during aestivation (Days 20 and 40). Similarly, we observed an increase in the expression of genes involved in histone acetylation (Histone deacetylase 3) and Histone-binding protein RBBP4) during the early (Days 5 and 10) and late phases (Days 20 and 40) of aestivation. There was no change in the expression of KAT2B, a histone acetyltransferase. However, the expression of histone methylation associated modifiers (Histone-arginine methyltransferase CARMER and Histone-lysine N-methyltransferase MLL5) was significantly higher after 5 d in the aestivating group. The results suggest that the expression of epigenetic modifiers involved in DNA methylation, chromatin remodeling, histone acetylation, and histone methylation is upregulated during aestivation. We hypothesize that these changes regulate global gene silencing during aestivation in A. japonicus.

  10. H3K27 methylation and H3S28 phosphorylation-dependent transcriptional regulation by INHAT subunit SET/TAF-Iβ.

    PubMed

    Kim, Ji-Young; Kim, Kee-Beom; Son, Hye-Ju; Chae, Yun-Cheol; Oh, Si-Taek; Kim, Dong-Wook; Pak, Jhang Ho; Seo, Sang-Beom

    2012-09-21

    Significant progress has been made in understanding the relationship between histone modifications and 'reader' molecules and their effects on transcriptional regulation. A previously identified INHAT complex subunit, SET/TAF-Iβ, binds to histones and inhibits histone acetylation. To investigate the binding specificities of SET/TAF-Iβ to various histone modifications, we employed modified histone tail peptide array analyses. SET/TAF-Iβ strongly recognized PRC2-mediated H3K27me1/2/3; however, the bindings were completely disrupted by H3S28 phosphorylation. We have demonstrated that SET/TAF-Iβ is sequentially recruited to the target gene promoter ATF3 after the PRC2 complex via H3K27me recognition and may offer additive effects in the repression of the target gene. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    PubMed

    Samson, Mark; Jow, Margaret M; Wong, Catherine C L; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R; Chu, Diana S

    2014-10-01

    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  12. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells.

    PubMed

    Xiong, Hua; Du, Wan; Zhang, Yan-Jie; Hong, Jie; Su, Wen-Yu; Tang, Jie-Ting; Wang, Ying-Chao; Lu, Rong; Fang, Jing-Yuan

    2012-02-01

    Aberrant janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is involved in the oncogenesis of several cancers. Suppressors of cytokine signaling (SOCS) genes and SH2-containing protein tyrosine phosphatase 1 (SHP1) proteins, which are negative regulators of JAK/STAT signaling, have been reported to have tumor suppressor functions. However, in colorectal cancer (CRC) cells, the mechanisms that regulate SOCS and SHP1 genes, and the cause of abnormalities in the JAK/STAT signaling pathway, remain largely unknown. The present study shows that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, leads to the hyperacetylation of histones associated with the SOCS1 and SOCS3 promoters, but not the SHP1 promoter in CRC cells. This indicates that histone modifications are involved in the regulation of SOCS1 and SOCS3. Moreover, upregulation of SOCS1 and SOCS3 expression was achieved using TSA, which also significantly downregulated JAK2/STAT3 signaling in CRC cells. We also demonstrate that TSA suppresses the growth of CRC cells, and induces G1 cell cycle arrest and apoptosis through the regulation of downstream targets of JAK2/STAT3 signaling, including Bcl-2, survivin and p16(ink4a) . Therefore, our data demonstrate that TSA may induce SOCS1 and SOCS3 expression by inducing histone modifications and consequently inhibits JAK2/STAT3 signaling in CRC cells. These results also establish a mechanistic link between the inhibition of JAK2/STAT3 signaling and the anticancer action of TSA in CRC cells. Copyright © 2011 Wiley Periodicals, Inc.

  13. Histone Acetylation in Microglia Contributes to Exercise-Induced Hypoalgesia in Neuropathic Pain Model Mice.

    PubMed

    Kami, Katsuya; Taguchi, Satoru; Tajima, Fumihiro; Senba, Emiko

    2016-05-01

    Physical exercise can attenuate neuropathic pain (NPP), but the exact mechanism underlying exercise-induced hypoalgesia (EIH) remains unclear. Recent studies have shown that histone hyperacetylation via pharmacological inhibition of histone deacetylases in the spinal cord attenuates NPP, and that histone acetylation may lead to the production of analgesic factors including interleukin 10. We intended to clarify whether histone acetylation in microglia in the spinal dorsal horn contributes to EIH in NPP model mice. C57BL/6J mice underwent partial sciatic nerve ligation (PSL) and PSL- and sham-runner mice ran on a treadmill at a speed of 7 m/min for 60 min/d, 5 days per week, from 2 days after the surgery. PSL-sedentary mice developed mechanical allodynia and heat hyperalgesia, but such behaviors were significantly attenuated in PSL-runner mice. In immunofluorescence analysis, PSL surgery markedly increased the number of histone deacetylase 1-positive/CD11b-positive microglia in the ipsilateral superficial dorsal horn, and they were significantly decreased by treadmill-running. Moreover, the number of microglia with nuclear expression of acetylated H3K9 in the ipsilateral superficial dorsal horn was maintained at low levels in PSL-sedentary mice, but running exercise significantly increased them. Therefore, we conclude that the epigenetic modification that causes hyperacetylation of H3K9 in activated microglia may play a role in producing EIH. This article presents the importance of epigenetic modification in microglia in producing EIH. The current research is not only helpful for developing novel nonpharmacological therapy for NPP, but will also enhance our understanding of the mechanisms and availability of exercise in our daily life. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Tunicate cytostatic factor TC14-3 induces a polycomb group gene and histone modification through Ca2+ binding and protein dimerization

    PubMed Central

    2012-01-01

    Background As many invertebrate species have multipotent cells that undergo cell growth and differentiation during regeneration and budding, many unique and interesting homeostatic factors are expected to exist in those animals. However, our understanding of such factors and global mechanisms remains very poor. Single zooids of the tunicate, Polyandrocarpa misakiensis, can give off as many as 40 buds during the life span. Bud development proceeds by means of transdifferentiation of very limited number of cells and tissues. TC14-3 is one of several different but closely related polypeptides isolated from P. misakiensis. It acts as a cytostatic factor that regulates proliferation, adhesion, and differentiation of multipotent cells, although the molecular mechanism remains uncertain. The Polycomb group (PcG) genes are involved in epigenetic control of genomic activity in mammals. In invertebrates except Drosophila, PcG and histone methylation have not been studied so extensively, and genome-wide gene regulation is poorly understood. Results When Phe65 of TC14-3 was mutated to an acidic amino acid, the resultant mutant protein failed to dimerize. The replacement of Thr69 with Arg69 made dimers unstable. When Glu106 was changed to Gly106, the resultant mutant protein completely lost Ca2+ binding. All these mutant proteins lacked cytostatic activity, indicating the requirement of protein dimerization and calcium for the activity. Polyandrocarpa Eed, a component of PcG, is highly expressed during budding, like TC14-3. When wild-type and mutant TC14-3s were applied in vivo and in vitro to Polyandrocarpa cells, only wild-type TC14-3 could induce Eed without affecting histone methyltransferase gene expression. Eed-expressing cells underwent trimethylation of histone H3 lysine27. PmEed knockdown by RNA interference rescued cultured cells from the growth-inhibitory effects of TC14-3. Conclusion These results show that in P. misakiensis, the cytostatic activity of TC14-3 is mediated by PmEed and resultant histone modification, and that the gene expression requires both the protein dimerization and Ca2+-binding of TC14-3. This system consisting of a humoral factor, PcG, and histone methylation would contribute to the homeostatic regulation of cell growth and terminal differentiation of invertebrate multipotent cells. PMID:22296827

  15. Epigenetics and colorectal cancer pathogenesis.

    PubMed

    Bardhan, Kankana; Liu, Kebin

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  16. Epigenetics and Colorectal Cancer Pathogenesis

    PubMed Central

    Bardhan, Kankana; Liu, Kebin

    2013-01-01

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy. PMID:24216997

  17. Endometriosis Is Characterized by a Distinct Pattern of Histone 3 and Histone 4 Lysine Modifications

    PubMed Central

    Monteiro, Janice B.; Colón-Díaz, Maricarmen; García, Miosotis; Gutierrez, Sylvia; Colón, Mariano; Seto, Edward; Laboy, Joaquín

    2014-01-01

    Background: The histone modification patterns in endometriosis have not been fully characterized. This gap in knowledge results in a poor understanding of the epigenetic mechanisms (and potential therapeutic targets) at play. We aimed to (1) assess global acetylation status of histone 3 (H3) and histone 4 (H4), (2) measure levels of H3 and H4 lysine (K) acetylation and methylation, and (3) to identify histone acetylation patterns in promoter regions of candidate genes in tissues from patients and controls. Methods: Global and K-specific acetylation/methylation levels of histones were measured in 24 lesions, 15 endometrium from patients, and 26 endometrium from controls. Chromatin immunoprecipitation (ChIP)–polymerase chain reaction was used to determine the histone acetylation status of the promoter regions of candidate genes in tissues. Results: The lesions were globally hypoacetylated at H3 (but not H4) compared to eutopic endometrium from controls. Lesions had significantly lower levels of H3K9ac and H4K16ac compared to eutopic endometrium from patients and controls. Tissues from patients were hypermethylated at H3K4, H3K9, and H3K27 compared to endometrium from controls. The ChIP analysis showed hypoacetylation of H3/H4 within promoter regions of candidate genes known to be downregulated in endometriosis (e.g., HOXA10, ESR1, CDH1, and p21WAF1/Cip1) in lesions versus control endometrium. The stereoidogenic factor 1 (SF1) promoter region was enriched for acetylated H3 and H4 in lesions versus control tissues, correlating with its reported high expression in lesions. Conclusions: This study describes the histone code of lesions and endometrium from patients with endometriosis and provides support for a possible role of histone modification in modulation of gene expression in endometriosis. PMID:23899551

  18. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia.

    PubMed

    Müller-Tidow, Carsten; Klein, Hans-Ulrich; Hascher, Antje; Isken, Fabienne; Tickenbrock, Lara; Thoennissen, Nils; Agrawal-Singh, Shuchi; Tschanter, Petra; Disselhoff, Christine; Wang, Yipeng; Becker, Anke; Thiede, Christian; Ehninger, Gerhard; zur Stadt, Udo; Koschmieder, Steffen; Seidl, Matthias; Müller, Frank U; Schmitz, Wilhelm; Schlenke, Peter; McClelland, Michael; Berdel, Wolfgang E; Dugas, Martin; Serve, Hubert

    2010-11-04

    Acute myeloid leukemia (AML) is commonly associated with alterations in transcription factors because of altered expression or gene mutations. These changes might induce leukemia-specific patterns of histone modifications. We used chromatin-immunoprecipitation on microarray to analyze histone 3 lysine 9 trimethylation (H3K9me3) patterns in primary AML (n = 108), acute lymphoid leukemia (n = 28), CD34(+) cells (n = 21) and white blood cells (n = 15) specimens. Hundreds of promoter regions in AML showed significant alterations in H3K9me3 levels. H3K9me3 deregulation in AML occurred preferentially as a decrease in H3K9me3 levels at core promoter regions. The altered genomic regions showed an overrepresentation of cis-binding sites for ETS and cyclic adenosine monophosphate response elements (CREs) for transcription factors of the CREB/CREM/ATF1 family. The decrease in H3K9me3 levels at CREs was associated with increased CRE-driven promoter activity in AML blasts in vivo. AML-specific H3K9me3 patterns were not associated with known cytogenetic abnormalities. But a signature derived from H3K9me3 patterns predicted event-free survival in AML patients. When the H3K9me3 signature was combined with established clinical prognostic markers, it outperformed prognosis prediction based on clinical parameters alone. These findings demonstrate widespread changes of H3K9me3 levels at gene promoters in AML. Signatures of histone modification patterns are associated with patient prognosis in AML.

  19. ERK/MAPK Regulates Hippocampal Histone Phosphorylation Following Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Levenson, Jonathan M.; Sweatt, J. David; Chwang, Wilson B.; O'Riordan, Kenneth J.

    2006-01-01

    Long-term memory formation is regulated by many distinct molecular mechanisms that control gene expression. An emerging model for effecting a stable, coordinated pattern of gene transcription involves epigenetic tagging through modifications of histones or DNA. In this study, we investigated the regulation of histone phosphorylation in the…

  20. Histone Methylation in Nickel-Smelting Industrial Workers

    PubMed Central

    Ma, Li; Bai, Yana; Pu, Hongquan; Gou, Faxiang; Dai, Min; Wang, Hui; He, Jie; Zheng, Tongzhang; Cheng, Ning

    2015-01-01

    Background Nickel is an essential trace metal naturally found in the environment. It is also common in occupational settings, where it associates with various levels of both occupational and nonoccupational exposure In vitro studies have shown that nickel exposure can lead to intracellular accumulation of Ni2+, which has been associated with global decreases in DNA methylation, increases in chromatin condensation, reductions in H3K9me2, and elevated levels of H3K4me3. Histone modifications play an important role in modulating chromatin structure and gene expression. For example, tri-methylation of histone H3k4 has been found to be associated with transcriptional activation, and tri-methylation of H3k27 has been found to be associated with transcriptional repression. Aberrant histone modifications have been found to be associated with various human diseases, including cancer. The purpose of this work was to identify biomarkers for populations with occupational nickel exposure and to examine the relationship between histone methylation and nickel exposure. This may provide a scientific indicator of early health impairment and facilitate exploration of the molecular mechanism underlying cancer pathogenesis. Methods One hundred and forty subjects with occupational exposure to Ni and 140 referents were recruited. H3K4 and H3K27 trimethylation levels were measured in subjects’ blood cells. Results H3K4me3 levels were found to be higher in nickel smelting workers (47.24±20.85) than in office workers (22.65±8.81; P = 0.000), while the opposite was found for levels of H3K27me3(nickel smelting workers, 13.88± 4.23; office workers, 20.67± 5.96; P = 0.000). H3K4me3 was positively (r = 0.267, P = 0.001) and H3K27 was negatively (r = -0.684, P = 0.000) associated with age and length of service in smelting workers. Conclusion This study indicated that occupational exposure to Ni is associated with alterations in levels of histone modification. PMID:26474320

  1. Myocardin-Related Transcription Factor A Epigenetically Regulates Renal Fibrosis in Diabetic Nephropathy

    PubMed Central

    Xu, Huihui; Wu, Xiaoyan; Qin, Hao; Tian, Wenfang; Chen, Junliang; Sun, Lina; Fang, Mingming

    2015-01-01

    Diabetic nephropathy (DN) is one of the most common complications associated with diabetes and characterized by renal microvascular injury along with accelerated synthesis of extracellular matrix proteins causing tubulointerstitial fibrosis. Production of type I collagen, the major component of extracellular matrix, is augmented during renal fibrosis after chronic exposure to hyperglycemia. However, the transcriptional modulator responsible for the epigenetic manipulation leading to induction of type I collagen genes is not clearly defined. We show here that tubulointerstitial fibrosis as a result of DN was diminished in myocardin-related transcription factor A (MRTF-A) -deficient mice. In cultured renal tubular epithelial cells and the kidneys of mice with DN, MRTF-A was induced by glucose and synergized with glucose to activate collagen transcription. Notably, MRTF-A silencing led to the disappearance of prominent histone modifications indicative of transcriptional activation, including acetylated histone H3K18/K27 and trimethylated histone H3K4. Detailed analysis revealed that MRTF-A recruited p300, a histone acetyltransferase, and WD repeat-containing protein 5 (WDR5), a key component of the histone H3K4 methyltransferase complex, to the collagen promoters and engaged these proteins in transcriptional activation. Estradiol suppressed collagen production by dampening the expression and binding activity of MRTF-A and interfering with the interaction between p300 and WDR5 in renal epithelial cells. Therefore, targeting the MRTF-A–associated epigenetic machinery might yield interventional strategies against DN-associated renal fibrosis. PMID:25349198

  2. Epigenetics and lifestyle

    PubMed Central

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2013-01-01

    The concept of “lifestyle” includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and microRNA expression. Several lifestyle factors have been identified that might modify epigenetic patterns, such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress, and working on night shifts. Most studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. Here, we review current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms. PMID:22122337

  3. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy.

    PubMed

    Gong, Chao-Jun; Gao, An-Hui; Zhang, Yang-Ming; Su, Ming-Bo; Chen, Fei; Sheng, Li; Zhou, Yu-Bo; Li, Jing-Ya; Li, Jia; Nan, Fa-Jun

    2016-04-13

    Histone deacetylases (HDACs) are a class of epigenetic modulators with complex functions in histone post-translational modifications and are well known targets for antineoplastic drugs. We have previously developed a series of bisthiazole-based hydroxamic acids as novel potent HDAC inhibitors. In the present work, a new series of bisthiazole-based compounds with different zinc binding groups (ZBGs) have been designed and synthesized. Among them is compound 7, containing a trifluoromethyl ketone as the ZBG, which displays potent inhibitory activity towards human HDACs and improved antiproliferative activity in several cancer cell lines. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Epigenetics and lifestyle.

    PubMed

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2011-06-01

    The concept of 'lifestyle' includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and miRNA expression. It has been identified that several lifestyle factors such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress and working on night shifts might modify epigenetic patterns. Most of the studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. This article reviews current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms.

  5. Cis-existence of H3K27me3 and H3K36me2 in mouse embryonic stem cells revealed by specific ions of isobaric modification chromatogram.

    PubMed

    Mao, Hailei; Han, Gang; Xu, Longyong; Zhu, Duming; Lin, Hanqing; Cao, Xiongwen; Yu, Yi; Chen, Charlie Degui

    2015-07-21

    Histone H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 36 trimethylation (H3K36me3) are important epigenetic modifications correlated with transcription repression and activation, respectively. These two opposing modifications rarely co-exist in the same H3 polypeptide. However, a small but significant amount of H3 tails are modified with 5 methyl groups on K27 and K36 in mouse embryonic stem cells (mESCs) and it is unclear how the trimethylation is distributed on K27 or K36. A label-free, bottom-up mass spectrum method, named specific ions of isobaric modification chromatogram (SIMC), was established to quantify the relative abundance of K27me2-K36me3 and K27me3-K36me2 in the same histone H3 tail. By using this method, we demonstrated that the H3K27me3-K36me2 comprises about 85 % of the penta-methylated H3 tails at K27 and K36 in mESCs. Upon mESC differentiation, the abundance of H3K27me3-K36me2 significantly decreased, while the level of H3K27me2-K36me3 remains unchanged. Our study not only revealed the cis-existence of H3K27me3-K36me2 in mESCs, but also suggested that this combinatorial histone modification may assume a specific regulatory function during differentiation.

  6. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  7. Middle-Down and Chemical Proteomic Approaches to Reveal Histone H4 Modification Dynamics in Cell Cycle: Label-Free Semi-Quantification of Histone Tail Peptide Modifications Including Phosphorylation and Highly Sensitive Capture of Histone PTM Binding Proteins Using Photo-Reactive Crosslinkers

    PubMed Central

    Yamamoto, Kazuki; Chikaoka, Yoko; Hayashi, Gosuke; Sakamoto, Ryosuke; Yamamoto, Ryuji; Sugiyama, Akira; Kodama, Tatsuhiko; Okamoto, Akimitsu; Kawamura, Takeshi

    2015-01-01

    Mass spectrometric proteomics is an effective approach for identifying and quantifying histone post-translational modifications (PTMs) and their binding proteins, especially in the cases of methylation and acetylation. However, another vital PTM, phosphorylation, tends to be poorly quantified because it is easily lost and inefficiently ionized. In addition, PTM binding proteins for phosphorylation are sometimes resistant to identification because of their variable binding affinities. Here, we present our efforts to improve the sensitivity of detection of histone H4 tail peptide phosphorylated at serine 1 (H4S1ph) and our successful identification of an H4S1ph binder candidate by means of a chemical proteomics approach. Our nanoLC-MS/MS system permitted semi-quantitative label-free analysis of histone H4 PTM dynamics of cell cycle-synchronized HeLa S3 cells, including phosphorylation, methylation, and acetylation. We show that H4S1ph abundance on nascent histone H4 unmethylated at lysine 20 (H4K20me0) peaks from late S-phase to M-phase. We also attempted to characterize effects of phosphorylation at H4S1 on protein–protein interactions. Specially synthesized photoaffinity bait peptides specifically captured 14-3-3 proteins as novel H4S1ph binding partners, whose interaction was otherwise undetectable by conventional peptide pull-down experiments. This is the first report that analyzes dynamics of PTM pattern on the whole histone H4 tail during cell cycle and enables the identification of PTM binders with low affinities using high-resolution mass spectrometry and photo-affinity bait peptides. PMID:26819910

  8. cChIP-seq: a robust small-scale method for investigation of histone modifications.

    PubMed

    Valensisi, Cristina; Liao, Jo Ling; Andrus, Colin; Battle, Stephanie L; Hawkins, R David

    2015-12-21

    ChIP-seq is highly utilized for mapping histone modifications that are informative about gene regulation and genome annotations. For example, applying ChIP-seq to histone modifications such as H3K4me1 has facilitated generating epigenomic maps of putative enhancers. This powerful technology, however, is limited in its application by the large number of cells required. ChIP-seq involves extensive manipulation of sample material and multiple reactions with limited quality control at each step, therefore, scaling down the number of cells required has proven challenging. Recently, several methods have been proposed to overcome this limit but most of these methods require extensive optimization to tailor the protocol to the specific antibody used or number of cells being profiled. Here we describe a robust, yet facile method, which we named carrier ChIP-seq (cChIP-seq), for use on limited cell amounts. cChIP-seq employs a DNA-free histone carrier in order to maintain the working ChIP reaction scale, removing the need to tailor reactions to specific amounts of cells or histone modifications to be assayed. We have applied our method to three different histone modifications, H3K4me3, H3K4me1 and H3K27me3 in the K562 cell line, and H3K4me1 in H1 hESCs. We successfully obtained epigenomic maps for these histone modifications starting with as few as 10,000 cells. We compared cChIP-seq data to data generated as part of the ENCODE project. ENCODE data are the reference standard in the field and have been generated starting from tens of million of cells. Our results show that cChIP-seq successfully recapitulates bulk data. Furthermore, we showed that the differences observed between small-scale ChIP-seq data and ENCODE data are largely to be due to lab-to-lab variability rather than operating on a reduced scale. Data generated using cChIP-seq are equivalent to reference epigenomic maps from three orders of magnitude more cells. Our method offers a robust and straightforward approach to scale down ChIP-seq to as low as 10,000 cells. The underlying principle of our strategy makes it suitable for being applied to a vast range of chromatin modifications without requiring expensive optimization. Furthermore, our strategy of a DNA-free carrier can be adapted to most ChIP-seq protocols.

  9. Epigenetics and Breast Cancers

    PubMed Central

    Vo, An T.; Millis, Richard M.

    2012-01-01

    Several of the active compounds in foods, poisons, drugs, and industrial chemicals may, by epigenetic mechanisms, increase or decrease the risk of breast cancers. Enzymes that are involved in DNA methylation and histone modifications have been shown to be altered in several types of breast and other cancers resulting in abnormal patterns of methylation and/or acetylation. Hypermethylation at the CpG islands found in estrogen response element (ERE) promoters occurs in conjunction with ligand-bonded alpha subunit estrogen receptor (Erα) dimers wherein the ligand ERα dimer complex acts as a transcription factor and binds to the ERE promoter. Ligands could be 17-β-estradiol (E2), phytoestrogens, heterocyclic amines, and many other identified food additives and heavy metals. The dimer recruits DNA methyltransferases which catalyze the transfer of methyl groups from S-adenosyl-L-methionine (SAM) to 5′-cytosine on CpG islands. Other enzymes are recruited to the region by ligand-ERα dimers which activate DNA demethylases to act simultaneously to increase gene expression of protooncogenes and growth-promoting genes. Ligand-ERα dimers also recruit histone acetyltransferase to the ERE promoter region. Histone demethylases such as JMJD2B and histone methyltransferases are enzymes which demethylate lysine residues on histones H3 and/or H4. This makes the chromatin accessible for transcription factors and enzymes. PMID:22567014

  10. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum.

    PubMed

    Gupta, Archna P; Chin, Wai Hoe; Zhu, Lei; Mok, Sachel; Luah, Yen-Hoon; Lim, Eng-How; Bozdech, Zbynek

    2013-02-01

    Epigenetic mechanisms are emerging as one of the major factors of the dynamics of gene expression in the human malaria parasite, Plasmodium falciparum. To elucidate the role of chromatin remodeling in transcriptional regulation associated with the progression of the P. falciparum intraerythrocytic development cycle (IDC), we mapped the temporal pattern of chromosomal association with histone H3 and H4 modifications using ChIP-on-chip. Here, we have generated a broad integrative epigenomic map of twelve histone modifications during the P. falciparum IDC including H4K5ac, H4K8ac, H4K12ac, H4K16ac, H3K9ac, H3K14ac, H3K56ac, H4K20me1, H4K20me3, H3K4me3, H3K79me3 and H4R3me2. While some modifications were found to be associated with the vast majority of the genome and their occupancy was constant, others showed more specific and highly dynamic distribution. Importantly, eight modifications displaying tight correlations with transcript levels showed differential affinity to distinct genomic regions with H4K8ac occupying predominantly promoter regions while others occurred at the 5' ends of coding sequences. The promoter occupancy of H4K8ac remained unchanged when ectopically inserted at a different locus, indicating the presence of specific DNA elements that recruit histone modifying enzymes regardless of their broad chromatin environment. In addition, we showed the presence of multivalent domains on the genome carrying more than one histone mark, highlighting the importance of combinatorial effects on transcription. Overall, our work portrays a substantial association between chromosomal locations of various epigenetic markers, transcriptional activity and global stage-specific transitions in the epigenome.

  11. Epigenetic mechanisms and memory strength: a comparative study.

    PubMed

    Federman, Noel; Zalcman, Gisela; de la Fuente, Verónica; Fustiñana, Maria Sol; Romano, Arturo

    2014-01-01

    Memory consolidation requires de novo mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones. Acetylation is the most studied epigenetic mechanism of histones modifications related to gene expression. This process is regulated by histone acetylases (HATs) and histone deacetylases (HDACs). More than 5 years ago, we began a line of research about the role of histone acetylation during memory consolidation. Here we review our work, presenting evidence about the critical role of this epigenetic mechanism during consolidation of context-signal memory in the crab Neohelice granulata, as well as during consolidation of novel object recognition memory in the mouse Mus musculus. Our evidence demonstrates that histone acetylation is a key mechanism in memory consolidation, functioning as a distinctive molecular feature of strong memories. Furthermore, we found that the strength of a memory can be characterized by its persistence or its resistance to extinction. Besides, we found that the role of this epigenetic mechanism regulating gene expression only in the formation of strongest memories is evolutionarily conserved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene

    PubMed Central

    Barkess, Gráinne; Postnikov, Yuri; Campos, Chrisanne D.; Mishra, Shivam; Mohan, Gokula; Verma, Sakshi; Bustin, Michael; West, Katherine L.

    2013-01-01

    HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production. PMID:22150271

  13. Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing.

    PubMed

    Kim, Yong-Eun; Park, Chungoo; Kim, Kyoon Eon; Kim, Kee K

    2018-04-30

    Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Influence of Arsenic on Global Levels of Histone Posttranslational Modifications: a Review of the Literature and Challenges in the Field.

    PubMed

    Howe, Caitlin G; Gamble, Mary V

    2016-09-01

    Arsenic is a human carcinogen and also increases the risk for non-cancer outcomes. Arsenic-induced epigenetic dysregulation may contribute to arsenic toxicity. Although there are several reviews on arsenic and epigenetics, these have largely focused on DNA methylation. Here, we review investigations of the effects of arsenic on global levels of histone posttranslational modifications (PTMs). Multiple studies have observed that arsenic induces higher levels of H3 lysine 9 dimethylation (H3K9me2) and also higher levels of H3 serine 10 phosphorylation (H3S10ph), which regulate chromosome segregation. In contrast, arsenic causes a global loss of H4K16ac, a histone PTM that is a hallmark of human cancers. Although the findings for other histone PTMs have not been entirely consistent across studies, we discuss biological factors which may contribute to these inconsistencies, including differences in the dose, duration, and type of arsenic species examined; the tissue or cell line evaluated; differences by sex; and exposure timing. We also discuss two important considerations for the measurement of histone PTMs: proteolytic cleavage of histones and arsenic-induced alterations in histone expression.

  15. Chromatin immunoprecipitation in microfluidic droplets: towards fast and cheap analyses.

    PubMed

    Teste, Bruno; Champ, Jerome; Londono-Vallejo, Arturo; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis; Draskovic, Irena; Mottet, Guillaume

    2017-01-31

    Genetic organization is governed by the interaction of DNA with histone proteins, and differential modifications of these proteins is a fundamental mechanism of gene regulation. Histone modifications are primarily studied through chromatin immunoprecipitation (ChIP) assays, however conventional ChIP procedures are time consuming, laborious and require a large number of cells. Here we report for the first time the development of ChIP in droplets based on a microfluidic platform combining nanoliter droplets, magnetic beads (MB) and magnetic tweezers (MT). The droplet approach enabled compartmentalization and improved mixing, while reducing the consumption of samples and reagents in an integrated workflow. Anti-histone antibodies grafted to MB were used as a solid support to capture and transfer the target chromatin from droplets to droplets in order to perform chromatin immunoprecipitation, washing, elution and purification of DNA. We designed a new ChIP protocol to investigate four different types of modified histones with known roles in gene activation or repression. We evaluated the performances of this new ChIP in droplet assay in comparison with conventional methods. The proposed technology dramatically reduces analytical time from a few days to 7 hours, simplifies the ChIP protocol and decreases the number of cells required by 100 fold while maintaining a high degree of sensitivity and specificity. Therefore this droplet-based ChIP assay represents a new, highly advantageous and convenient approach to epigenetic analyses.

  16. Epigenetic modification in neurons of the mollusc Pomacea canaliculata after immune challenge.

    PubMed

    Ottaviani, Enzo; Accorsi, Alice; Rigillo, Giovanna; Malagoli, Davide; Blom, Joan M C; Tascedda, Fabio

    2013-11-06

    In human and rodents, the transcriptional response of neurons to stress is related to epigenetic modifications of both DNA and histone proteins. To assess the suitability of simple invertebrate models in studying the basic mechanisms of stress-related epigenetic modifications, we analyzed epigenetic modifications in neurons of the freshwater snail Pomacea canaliculata after the injection of Escherichia coli-derived lipopolysaccharide (LPS). The phospho-acetylation of histone H3, together with the induction of stress-related factors, c-Fos and HSP70, were evaluated in large and small neurons of the pedal ganglia of sham- and LPS-injected snails. Immunocytochemical investigations showed that after LPS injection, the immunopositivity towards phospho (Ser10)-acetyl (Lys14)-histone H3 and c-Fos increases in the nuclei of small gangliar neurons. Western blot analysis confirmed a significant increase of phospho (Ser10)-acetyl (Lys14)-histone H3 in nuclear extracts from 2h LPS-injected animals. c-Fos protein levels were significantly augmented 6h after LPS injection. Immunocytochemistry and western blot indicated that no changes occurred in HSP70 distribution and protein levels. To our knowledge this is the first demonstration of epigenetic changes in molluscan neurons after an immune challenge and indicate the gastropod P. canaliculata as a suitable model for evolutionary and translational studies on stress-related epigenetic modifications. © 2013 Published by Elsevier B.V.

  17. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-05

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cross Talk Mechanism among EMT, ROS, and Histone Acetylation in Phorbol Ester-Treated Human Breast Cancer MCF-7 Cells.

    PubMed

    Kamiya, Tetsuro; Goto, Aki; Kurokawa, Eri; Hara, Hirokazu; Adachi, Tetsuo

    2016-01-01

    Epithelial-mesenchymal transition (EMT) plays a pivotal role in the progression of cancer, and some transcription factors including Slug and Snail are known to be involved in EMT processes. It has been well established that the excess production of reactive oxygen species (ROS) and epigenetics such as DNA methylation and histone modifications participate in carcinogenesis; however, the cross talk mechanism among EMT, ROS, and epigenetics remains unclear. In the present study, we demonstrated that the treatment of human breast cancer MCF-7 cells with phorbol ester (TPA), a protein kinase C activator, significantly induced cell proliferation and migration, and these were accompanied by the significant induction of Slug expression. Moreover, the TPA-elicited induction of Slug expression was regulated by histone H3 acetylation and NADPH oxidase (NOX) 2-derived ROS signaling, indicating that ROS and histone acetylation are involved in TPA-elicited EMT processes. We herein determined the cross talk mechanism among EMT, ROS, and histone acetylation, and our results provide an insight into the progression of cancer metastasis.

  19. The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation.

    PubMed

    Jelinic, Petar; Stehle, Jean-Christophe; Shaw, Phillip

    2006-10-01

    Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation-DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation.

  20. The Testis-Specific Factor CTCFL Cooperates with the Protein Methyltransferase PRMT7 in H19 Imprinting Control Region Methylation

    PubMed Central

    Jelinic, Petar; Stehle, Jean-Christophe; Shaw, Phillip

    2006-01-01

    Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation—DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation. PMID:17048991

  1. Re-evaluating the Localization of Sperm-Retained Histones Revealed the Modification-Dependent Accumulation in Specific Genome Regions.

    PubMed

    Yamaguchi, Kosuke; Hada, Masashi; Fukuda, Yuko; Inoue, Erina; Makino, Yoshinori; Katou, Yuki; Shirahige, Katsuhiko; Okada, Yuki

    2018-06-26

    The question of whether retained histones in the sperm genome localize to gene-coding regions or gene deserts has been debated for years. Previous contradictory observations are likely caused by the non-uniform sensitivity of sperm chromatin to micrococcal nuclease (MNase) digestion. Sperm chromatin has a highly condensed but heterogeneous structure and is composed of 90%∼99% protamines and 1%∼10% histones. In this study, we utilized nucleoplasmin (NPM) to improve the solubility of sperm chromatin by removing protamines in vitro. NPM treatment efficiently solubilized histones while maintaining quality and quantity. Chromatin immunoprecipitation sequencing (ChIP-seq) analyses using NPM-treated sperm demonstrated the predominant localization of H4 to distal intergenic regions, whereas modified histones exhibited a modification-dependent preferential enrichment in specific genomic elements, such as H3K4me3 at CpG-rich promoters and H3K9me3 in satellite repeats, respectively, implying the existence of machinery protecting modified histones from eviction. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Wada, Takuma Tsuzuki; Araki, Yasuto; Sato, Kojiro; Aizaki, Yoshimi; Yokota, Kazuhiro; Kim, Yoon Taek; Oda, Hiromi; Kurokawa, Riki; Mimura, Toshihide

    2014-02-21

    Accumulating evidence indicates that epigenetic aberrations have a role in the pathogenesis of rheumatoid arthritis (RA). However, reports on histone modifications are as yet quite limited in RA. Interleukin (IL)-6 is an inflammatory cytokine which is known to be involved in the pathogenesis of RA. Here we report the role of histone modifications in elevated IL-6 production in RA synovial fibroblasts (SFs). The level of histone H3 acetylation (H3ac) in the IL-6 promoter was significantly higher in RASFs than osteoarthritis (OA) SFs. This suggests that chromatin structure is in an open or loose state in the IL-6 promoter in RASFs. Furthermore, curcumin, a histone acetyltransferase (HAT) inhibitor, significantly reduced the level of H3ac in the IL-6 promoter, as well as IL-6 mRNA expression and IL-6 protein secretion by RASFs. Taken together, it is suggested that hyperacetylation of histone H3 in the IL-6 promoter induces the increase in IL-6 production by RASFs and thereby participates in the pathogenesis of RA. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. HDAC3 and the Molecular Brake Pad Hypothesis

    PubMed Central

    McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Successful transcription of specific genes required for long-term memory processes involves the orchestrated effort of not only transcription factors, but also very specific enzymatic protein complexes that modify chromatin structure. Chromatin modification has been identified as a pivotal molecular mechanism underlying certain forms of synaptic plasticity and memory. The best-studied form of chromatin modification in the learning and memory field is histone acetylation, which is regulated by histone acetyltransferases and histone deacetylases (HDACs). HDAC inhibitors have been shown to strongly enhance long-term memory processes, and recent work has aimed to identify contributions of individual HDACs. In this review, we focus on HDAC3 and discuss its recently defined role as a negative regulator of long-term memory formation. HDAC3 is part of a corepressor complex and has direct interactions with class II HDACs that may be important for its molecular and behavioral consequences. And last, we propose the “molecular brake pad” hypothesis of HDAC function. The HDACs and associated corepressor complexes may function in neurons, in part, as “molecular brake pads.” HDACs are localized to promoters of active genes and act as a persistent clamp that requires strong activity-dependent signaling to temporarily release these complexes (or brake pads) to activate gene expression required for long-term memory formation. Thus, HDAC inhibition removes the “molecular brake pads” constraining the processes necessary for long-term memory and results in strong, persistent memory formation. PMID:21521655

  4. Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention

    PubMed Central

    Stefanska, B; Karlic, H; Varga, F; Fabianowska-Majewska, K; Haslberger, AG

    2012-01-01

    The hallmarks of carcinogenesis are aberrations in gene expression and protein function caused by both genetic and epigenetic modifications. Epigenetics refers to the changes in gene expression programming that alter the phenotype in the absence of a change in DNA sequence. Epigenetic modifications, which include amongst others DNA methylation, covalent modifications of histone tails and regulation by non-coding RNAs, play a significant role in normal development and genome stability. The changes are dynamic and serve as an adaptation mechanism to a wide variety of environmental and social factors including diet. A number of studies have provided evidence that some natural bioactive compounds found in food and herbs can modulate gene expression by targeting different elements of the epigenetic machinery. Nutrients that are components of one-carbon metabolism, such as folate, riboflavin, pyridoxine, cobalamin, choline, betaine and methionine, affect DNA methylation by regulating the levels of S-adenosyl-L-methionine, a methyl group donor, and S-adenosyl-L-homocysteine, which is an inhibitor of enzymes catalyzing the DNA methylation reaction. Other natural compounds target histone modifications and levels of non-coding RNAs such as vitamin D, which recruits histone acetylases, or resveratrol, which activates the deacetylase sirtuin and regulates oncogenic and tumour suppressor micro-RNAs. As epigenetic abnormalities have been shown to be both causative and contributing factors in different health conditions including cancer, natural compounds that are direct or indirect regulators of the epigenome constitute an excellent approach in cancer prevention and potentially in anti-cancer therapy. PMID:22536923

  5. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    PubMed

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  6. Transgenerational epigenetic effects on animal behaviour.

    PubMed

    Jensen, Per

    2013-12-01

    Over the last decade a shift in paradigm has occurred with respect to the interaction between environment and genes. It is now clear that animal genomes are regulated to a large extent as a result of input from environmental events and experiences, which cause short- and long-term modifications in epigenetic markings of DNA and histones. In this review, the evidence that such epigenetic modifications can affect the behaviour of animals is explored, and whether such acquired behaviour alterations can transfer across generation borders. First, the mechanisms by which experiences cause epigenetic modifications are examined. This includes, for example, methylation of cytosine in CpG positions and acetylation of histones, and studies showing that this can be modified by early experiences. Secondly, the evidence that specific modifications in the epigenome can be the cause of behaviour variation is reviewed. Thirdly, the extent to which this phenotypically active epigenetic variants can be inherited either through the germline or through reoccurring environmental conditions is examined. A particularly interesting observation is that epigenetic modifications are often linked to stress, and may possibly be mediated by steroid effects. Finally, the idea that transgenerationally stable epigenetic variants may serve as substrates for natural selection is explored, and it is speculated that they may even predispose for directed, non-random mutations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis

    PubMed Central

    Song, Ning; Liu, Jie; An, Shucai; Nishino, Tomoya; Hishikawa, Yoshitaka; Koji, Takehiko

    2011-01-01

    Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). As a result, we found that there was a significant fluctuation in the modifications; in spermatogonia, the stainings for H3K9ac, H3K18ac, and H3K23ac were strong while that for H3K4me3 was weak. In spermatocytes, the stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were reduced in the preleptotene to pachytene stage, but in diplotene stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed to become intense again. The staining for H3K27me3 was nearly constant throughout these stages. In the ensuing spermiogenesis, a dramatic acetylation and methylation of histone H3 was found in the early elongated spermatids and then almost all signals disappeared in the late elongated spermatids, in parallel with the replacement from histones to protamines. In addition, we confirmed that the staining of histone H3S10phos was exclusively associated with mitotic and meiotic cell division. Based upon the above results, we indicated that the modification pattern of histone H3 is subject to dynamic change and specific to a certain stage of germ cell differentiation during mouse spermatogenesis. PMID:21927517

  8. Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis.

    PubMed

    Song, Ning; Liu, Jie; An, Shucai; Nishino, Tomoya; Hishikawa, Yoshitaka; Koji, Takehiko

    2011-08-27

    Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). As a result, we found that there was a significant fluctuation in the modifications; in spermatogonia, the stainings for H3K9ac, H3K18ac, and H3K23ac were strong while that for H3K4me3 was weak. In spermatocytes, the stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were reduced in the preleptotene to pachytene stage, but in diplotene stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed to become intense again. The staining for H3K27me3 was nearly constant throughout these stages. In the ensuing spermiogenesis, a dramatic acetylation and methylation of histone H3 was found in the early elongated spermatids and then almost all signals disappeared in the late elongated spermatids, in parallel with the replacement from histones to protamines. In addition, we confirmed that the staining of histone H3S10phos was exclusively associated with mitotic and meiotic cell division. Based upon the above results, we indicated that the modification pattern of histone H3 is subject to dynamic change and specific to a certain stage of germ cell differentiation during mouse spermatogenesis.

  9. Epigenetic modifications in prostate cancer.

    PubMed

    Ngollo, Marjolaine; Dagdemir, Aslihan; Karsli-Ceppioglu, Seher; Judes, Gaelle; Pajon, Amaury; Penault-Llorca, Frederique; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique J

    2014-01-01

    Prostate cancer is the most common cancer in men and the second leading cause of cancer deaths in men in France. Apart from the genetic alterations in prostate cancer, epigenetics modifications are involved in the development and progression of this disease. Epigenetic events are the main cause in gene regulation and the three most epigenetic mechanisms studied include DNA methylation, histone modifications and microRNA expression. In this review, we summarized epigenetic mechanisms in prostate cancer. Epigenetic drugs that inhibit DNA methylation, histone methylation and histone acetylation might be able to reactivate silenced gene expression in prostate cancer. However, further understanding of interactions of these enzymes and their effects on transcription regulation in prostate cancer is needed and has become a priority in biomedical research. In this study, we summed up epigenetic changes with emphasis on pharmacologic epigenetic target agents.

  10. Epigenetics and maternal nutrition: nature v. nurture.

    PubMed

    Simmons, Rebecca

    2011-02-01

    Under- and over-nutrition during pregnancy has been linked to the later development of diseases such as diabetes and obesity. Epigenetic modifications may be one mechanism by which exposure to an altered intrauterine milieu or metabolic perturbation may influence the phenotype of the organism much later in life. Epigenetic modifications of the genome provide a mechanism that allows the stable propagation of gene expression from one generation of cells to the next. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodelling and histone modifications play key roles in adipogenesis and the development of obesity. Epigenetic modifications affecting processes important to glucose regulation and insulin secretion have been described in the pancreatic β-cells and muscle of the intrauterine growth-retarded offspring, characteristics essential to the pathophysiology of type-2 diabetes. Epigenetic regulation of gene expression contributes to both adipocyte determination and differentiation in in vitro models. The contributions of histone acetylation, histone methylation and DNA methylation to the process of adipogenesis in vivo remain to be evaluated.

  11. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  12. Epigenetic mechanisms: critical contributors to long-term memory formation.

    PubMed

    Lubin, Farah D; Gupta, Swati; Parrish, R Ryley; Grissom, Nicola M; Davis, Robin L

    2011-12-01

    Recent advances in chromatin biology have identified a role for epigenetic mechanisms in the regulation of neuronal gene expression changes, a necessary process for proper synaptic plasticity and memory formation. Experimental evidence for dynamic chromatin remodeling influencing gene transcription in postmitotic neurons grew from initial reports describing posttranslational modifications of histones, including phosphorylation and acetylation occurring in various brain regions during memory consolidation. An accumulation of recent studies, however, has also highlighted the importance of other epigenetic modifications, such as DNA methylation and histone methylation, as playing a role in memory formation. This present review examines learning-induced gene transcription by chromatin remodeling underlying long-lasting changes in neurons, with direct implications for the study of epigenetic mechanisms in long-term memory formation and behavior. Furthermore, the study of epigenetic gene regulation, in conjunction with transcription factor activation, can provide complementary lines of evidence to further understanding transcriptional mechanisms subserving memory storage.

  13. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less

  14. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    DOE PAGES

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.; ...

    2017-02-13

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less

  15. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, Jenna; Ekwall, Karl, E-mail: karl.ekwall@ki.se; School of Life Sciences, University College Sodertorn, NOVUM, Huddinge

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that canmore » arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.« less

  16. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time.

    PubMed

    Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh

    2017-09-01

    Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. The histone acetyltransferase component TRRAP is targeted for destruction during the cell cycle.

    PubMed

    Ichim, G; Mola, M; Finkbeiner, M G; Cros, M-P; Herceg, Z; Hernandez-Vargas, H

    2014-01-09

    Chromosomes are dynamic structures that must be reversibly condensed and unfolded to accommodate mitotic division and chromosome segregation. Histone modifications are involved in the striking chromatin reconfiguration taking place during mitosis. However, the mechanisms that regulate activity and function of histone-modifying factors as cells enter and exit mitosis are poorly understood. Here, we show that the anaphase-promoting complex or cyclosome (APC/C) is involved in the mitotic turnover of TRRAP (TRansformation/tRanscription domain-Associated Protein), a common component of histone acetyltransferase (HAT) complexes, and that the pre-mitotic degradation of TRRAP is mediated by the APC/C ubiquitin ligase activators Cdc20 and Cdh1. Ectopic expression of both Cdh1 and Cdc20 reduced the levels of coexpressed TRRAP protein and induced its ubiquitination. TRRAP overexpression or stabilization induces multiple mitotic defects, including lagging chromosomes, chromosome bridges and multipolar spindles. In addition, lack of sister chromatid cohesion and impaired chromosome condensation were found after TRRAP overexpression or stabilization. By using a truncated form of TRRAP, we show that mitotic delay is associated with a global histone H4 hyperacetylation induced by TRRAP overexpression. These results demonstrate that the chromatin modifier TRRAP is targeted for destruction in a cell cycle-dependent fashion. They also suggest that degradation of TRRAP by the APC/C is necessary for a proper condensation of chromatin and proper chromosome segregation. Chromatin compaction mediated by histone modifiers may represent a fundamental arm for APC/C orchestration of the mitotic machinery.

  18. Arabidopsis Histone Reader EMSY-LIKE 1 Binds H3K36 and Suppresses Geminivirus Infection.

    PubMed

    Coursey, Tami; Milutinovic, Milica; Regedanz, Elizabeth; Brkljacic, Jelena; Bisaro, David M

    2018-06-06

    Histone post-translational modifications (PTMs) impart information that regulates chromatin structure and activity. Their effects are mediated by histone reader proteins that bind specific PTMs to modify chromatin and/or recruit appropriate effectors to alter the chromatin landscape. Despite their crucial juxtaposition between information and functional outcome, relatively few plant histone readers have been identified, and nothing is known about their impact on viral chromatin and pathogenesis. We used the geminivirus Cabbage leaf curl virus (CaLCuV) as a model to functionally characterize two recently identified reader proteins, EMSY-LIKE 1 and 3 (EML1 and EML3), which contain Tudor-like Agenet domains predictive of histone PTM binding function. Here, we show that mutant Arabidopsis plants exhibit contrasting hypersusceptible ( eml1 ) and tolerant ( eml3 ) responses to CaLCuV infection, and that EML1 deficiency correlates with RNA polymerase II (Pol II) enrichment on viral chromatin and upregulated viral gene expression. Consistent with reader activity, EML1 and EML3 associate with nucleosomes and with CaLCuV chromatin, suggesting a direct impact on pathogenesis. We also demonstrate that EML1 and EML3 bind peptides containing histone H3 lysine 36 (H3K36), a PTM usually associated with active gene expression. The interaction encompasses multiple H3K36 PTMs, including methylation and acetylation, suggesting nuanced regulation. Further, EML1 and EML3 associate with similar regions of viral chromatin, implying possible competition between the two readers. Regions of EML1 and EML3 association correlate with sites of trimethylated H3K36 (H3K36me3) enrichment, consistent with regulation of geminivirus chromatin by direct EML targeting. IMPORTANCE Histone PTMs convey information that regulates chromatin compaction and DNA accessibility. Histone reader proteins bind specific PTMs and translate their effects by modifying chromatin and/or by recruiting effectors that alter chromatin structure or activity. In this study, CaLCuV was used to characterize the activities of two Arabidopsis Agenet domain histone readers, EML1 and EML3. We show that eml1 mutants are hypersusceptible to CaLCuV, whereas eml3 plants are more tolerant of infection than wild type plants. We also demonstrate that EML1 and EML3 associate with histones and viral chromatin in planta , and that both proteins bind peptides containing H3K36, a PTM associated with active gene expression. Consistent with antiviral activity, EML1 suppresses CaLCuV gene expression and reduces Pol II access to viral chromatin. By linking EML1 and EML3 to pathogenesis, these studies have expanded our knowledge of histone reader proteins and uncovered an additional level of viral chromatin regulation. Copyright © 2018 American Society for Microbiology.

  19. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing.

    PubMed

    Ivanov, Alexey V; Peng, Hongzhuang; Yurchenko, Vyacheslav; Yap, Kyoko L; Negorev, Dmitri G; Schultz, David C; Psulkowski, Elyse; Fredericks, William J; White, David E; Maul, Gerd G; Sadofsky, Moshe J; Zhou, Ming-Ming; Rauscher, Frank J

    2007-12-14

    Tandem PHD and bromodomains are often found in chromatin-associated proteins and have been shown to cooperate in gene silencing. Each domain can bind specifically modified histones: the mechanisms of cooperation between these domains are unknown. We show that the PHD domain of the KAP1 corepressor functions as an intramolecular E3 ligase for sumoylation of the adjacent bromodomain. The RING finger-like structure of the PHD domain is required for both Ubc9 binding and sumoylation and directs modification to specific lysine residues in the bromodomain. Sumoylation is required for KAP1-mediated gene silencing and functions by directly recruiting the SETDB1 histone methyltransferase and the CHD3/Mi2 component of the NuRD complex via SUMO-interacting motifs. Sumoylated KAP1 stimulates the histone methyltransferase activity of SETDB1. These data provide a mechanistic explanation for the cooperation of PHD and bromodomains in gene regulation and describe a function of the PHD domain as an intramolecular E3 SUMO ligase.

  20. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4.

    PubMed

    Herz, Hans-Martin; Mohan, Man; Garruss, Alexander S; Liang, Kaiwei; Takahashi, Yoh-Hei; Mickey, Kristen; Voets, Olaf; Verrijzer, C Peter; Shilatifard, Ali

    2012-12-01

    Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.

  1. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4

    PubMed Central

    Herz, Hans-Martin; Mohan, Man; Garruss, Alexander S.; Liang, Kaiwei; Takahashi, Yoh-hei; Mickey, Kristen; Voets, Olaf; Verrijzer, C. Peter; Shilatifard, Ali

    2012-01-01

    Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers. PMID:23166019

  2. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia

    PubMed Central

    Klein, Hans-Ulrich; Hascher, Antje; Isken, Fabienne; Tickenbrock, Lara; Thoennissen, Nils; Agrawal-Singh, Shuchi; Tschanter, Petra; Disselhoff, Christine; Wang, Yipeng; Becker, Anke; Thiede, Christian; Ehninger, Gerhard; zur Stadt, Udo; Koschmieder, Steffen; Seidl, Matthias; Müller, Frank U.; Schmitz, Wilhelm; Schlenke, Peter; McClelland, Michael; Berdel, Wolfgang E.; Dugas, Martin; Serve, Hubert

    2010-01-01

    Acute myeloid leukemia (AML) is commonly associated with alterations in transcription factors because of altered expression or gene mutations. These changes might induce leukemia-specific patterns of histone modifications. We used chromatin-immunoprecipitation on microarray to analyze histone 3 lysine 9 trimethylation (H3K9me3) patterns in primary AML (n = 108), acute lymphoid leukemia (n = 28), CD34+ cells (n = 21) and white blood cells (n = 15) specimens. Hundreds of promoter regions in AML showed significant alterations in H3K9me3 levels. H3K9me3 deregulation in AML occurred preferentially as a decrease in H3K9me3 levels at core promoter regions. The altered genomic regions showed an overrepresentation of cis-binding sites for ETS and cyclic adenosine monophosphate response elements (CREs) for transcription factors of the CREB/CREM/ATF1 family. The decrease in H3K9me3 levels at CREs was associated with increased CRE-driven promoter activity in AML blasts in vivo. AML-specific H3K9me3 patterns were not associated with known cytogenetic abnormalities. But a signature derived from H3K9me3 patterns predicted event-free survival in AML patients. When the H3K9me3 signature was combined with established clinical prognostic markers, it outperformed prognosis prediction based on clinical parameters alone. These findings demonstrate widespread changes of H3K9me3 levels at gene promoters in AML. Signatures of histone modification patterns are associated with patient prognosis in AML. PMID:20498303

  3. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications.

    PubMed

    Khan, Aliyya; Eikani, Carlo K; Khan, Hana; Iavarone, Anthony T; Pesavento, James J

    2018-01-05

    The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.

  4. Differences in the epigenetic regulation of MT-3 gene expression between parental and Cd+2 or As+3 transformed human urothelial cells

    PubMed Central

    2011-01-01

    Background Studies have shown that metallothionein 3 (MT-3) is not expressed in normal urothelium or in the UROtsa cell line, but is expressed in urothelial cancer and in tumors generated from the UROtsa cells that have been transformed by cadmium (Cd+2) or arsenite (As+3).The present study had two major goals. One, to determine if epigenetic modifications control urothelial MT-3 gene expression and if regulation is altered by malignant transformation by Cd+2 or As+3. Two, to determine if MT-3 expression might translate clinically as a biomarker for malignant urothelial cells released into the urine. Results The histone deacetylase inhibitor MS-275 induced MT-3 mRNA expression in both parental UROtsa cells and their transformed counterparts. The demethylating agent, 5-Aza-2'-deoxycytidine (5-AZC) had no effect on MT-3 mRNA expression. ChIP analysis showed that metal-responsive transformation factor-1 (MTF-1) binding to metal response elements (MRE) elements of the MT-3 promoter was restricted in parental UROtsa cells, but MTF-1 binding to the MREs was unrestricted in the transformed cell lines. Histone modifications at acetyl H4, trimethyl H3K4, trimethyl H3K27, and trimethyl H3K9 were compared between the parental and transformed cell lines in the presence and absence of MS-275. The pattern of histone modifications suggested that the MT-3 promoter in the Cd+2 and As+3 transformed cells has gained bivalent chromatin structure, having elements of being "transcriptionally repressed" and "transcription ready", when compared to parental cells. An analysis of MT-3 staining in urinary cytologies showed that a subset of both active and non-active patients with urothelial cancer shed positive cells in their urine, but that control patients only rarely shed MT-3 positive cells. Conclusion The MT-3 gene is silenced in non-transformed urothelial cells by a mechanism involving histone modification of the MT-3 promoter. In contrast, transformation of the urothelial cells with either Cd+2 or As+3 modified the chromatin of the MT-3 promoter to a bivalent state of promoter readiness. Urinary cytology for MT-3 positive cells would not improve the diagnosis of urothelial cancer, but might have potential as a biomarker for tumor progression. PMID:21303554

  5. Dynamics of H3K27me3 methylation and demethylation in plant development

    PubMed Central

    Gan, Eng-Seng; Xu, Yifeng; Ito, Toshiro

    2015-01-01

    Epigenetic regulation controls multiple aspects of the plant development. The N-terminal tail of histone can be differently modified to regulate various chromatin activities. One of them, the trimethylation of histone H3 lysine 27 (H3K27me3) confers a repressive chromatin state with gene silencing. H3K27me3 is dynamically deposited and removed throughout development. While components of the H3K27me3 writer, Polycomb repressive complex 2 (PRC2), have been reported for almost 2 decades, it is only recently that JUMONJI (JMJ) proteins are reported as H3K27me3 demethylases, affirming the dynamic nature of histone modifications. This review highlights recent progress in plant epigenetic research, focusing on the H3K27me3 demethylases. PMID:26313233

  6. Combinatorial Histone Acetylation Patterns Are Generated by Motif-Specific Reactions.

    PubMed

    Blasi, Thomas; Feller, Christian; Feigelman, Justin; Hasenauer, Jan; Imhof, Axel; Theis, Fabian J; Becker, Peter B; Marr, Carsten

    2016-01-27

    Post-translational modifications (PTMs) are pivotal to cellular information processing, but how combinatorial PTM patterns ("motifs") are set remains elusive. We develop a computational framework, which we provide as open source code, to investigate the design principles generating the combinatorial acetylation patterns on histone H4 in Drosophila melanogaster. We find that models assuming purely unspecific or lysine site-specific acetylation rates were insufficient to explain the experimentally determined motif abundances. Rather, these abundances were best described by an ensemble of models with acetylation rates that were specific to motifs. The model ensemble converged upon four acetylation pathways; we validated three of these using independent data from a systematic enzyme depletion study. Our findings suggest that histone acetylation patterns originate through specific pathways involving motif-specific acetylation activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Interplay between the miRNome and the epigenetic machinery: Implications in health and disease.

    PubMed

    Poddar, Shagun; Kesharwani, Devesh; Datta, Malabika

    2017-11-01

    Epigenetics refers to functionally relevant genomic changes that do not involve changes in the basic nucleotide sequence. Majorly, these are of two types: DNA methylation and histone modifications. Small RNA molecules called miRNAs are often thought to mediate post-transcriptional epigenetic changes by mRNA degradation or translational attenuation. While DNA methylation and histone modifications have their own independent effects on various cellular events, several reports are suggestive of an obvious interplay between these phenomena and the miRNA regulatory program within the cell. Several miRNAs like miR-375, members of miR-29 family, miR-34, miR-200, and others are regulated by DNA methylation and histone modifications in various types of cancers and metabolic diseases. On the other hand, miRNAs like miR-449a, miR-148, miR-101, miR-214, and miR-128 target members of the epigenetic machinery and their dysregulation leads to diverse cellular aberrations. In spite of being independent cellular events, emergence of such reports that suggest a connection between DNA methylation, histone modification, and miRNA function in several diseases indicate that this connecting axis offers a valuable target with great therapeutic potential that might be exploited for disease management. We review the current status of crosstalk between the major epigenetic modifications and the miRNA machinery and discuss this in the context of health and disease. © 2017 Wiley Periodicals, Inc.

  8. An efficient immunodetection method for histone modifications in plants.

    PubMed

    Nic-Can, Geovanny; Hernández-Castellano, Sara; Kú-González, Angela; Loyola-Vargas, Víctor M; De-la-Peña, Clelia

    2013-12-16

    Epigenetic mechanisms can be highly dynamic, but the cross-talk among them and with the genome is still poorly understood. Many of these mechanisms work at different places in the cell and at different times of organism development. Covalent histone modifications are one of the most complex and studied epigenetic mechanisms involved in cellular reprogramming and development in plants. Therefore, the knowledge of the spatial distribution of histone methylation in different tissues is important to understand their behavior on specific cells. Based on the importance of epigenetic marks for biology, we present a simplified, inexpensive and efficient protocol for in situ immunolocalization on different tissues such as flowers, buds, callus, somatic embryo and meristematic tissue from several plants of agronomical and biological importance. Here, we fully describe all the steps to perform the localization of histone modifications. Using this method, we were able to visualize the distribution of H3K4me3 and H3K9me2 without loss of histological integrity of tissues from several plants, including Agave tequilana, Capsicum chinense, Coffea canephora and Cedrela odorata, as well as Arabidopsis thaliana. There are many protocols to study chromatin modifications; however, most of them are expensive, difficult and require sophisticated equipment. Here, we provide an efficient protocol for in situ localization of histone methylation that dispenses with the use of expensive and sensitive enzymes. The present method can be used to investigate the cellular distribution and localization of a wide array of proteins, which could help to clarify the biological role that they play at specific times and places in different tissues of various plant species.

  9. The epigenome as a therapeutic target in prostate cancer.

    PubMed

    Perry, Antoinette S; Watson, R William G; Lawler, Mark; Hollywood, Donal

    2010-12-01

    During cancer development and progression, tumor cells undergo abnormal epigenetic modifications, including DNA methylation, histone deacetylation and nucleosome remodeling. Collectively, these aberrations promote genomic instability and lead to silencing of tumor-suppressor genes and reactivation of oncogenic retroviruses. Epigenetic modifications, therefore, provide exciting new avenues for prostate cancer research. Promoter hypermethylation is widespread during neoplastic transformation of prostate cells, which suggests that restoration of a 'normal' epigenome through treatment with inhibitors of the enzymes involved could be clinically beneficial. Global patterns of histone modifications are also being defined and have been associated with clinical and pathologic predictors of prostate cancer outcome. Although treatment for localized prostate cancer can be curative, the development of successful therapies for the management of castration-resistant metastatic disease is urgently needed. Reactivation of tumor-suppressor genes by demethylating agents and histone deacetylase inhibitors could be a potential treatment option for patients with advanced disease.

  10. Protein Arginine Methylation and Citrullination in Epigenetic Regulation

    PubMed Central

    2015-01-01

    The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states. PMID:26686581

  11. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis

    PubMed Central

    Tachibana, Makoto; Sugimoto, Kenji; Nozaki, Masami; Ueda, Jun; Ohta, Tsutomu; Ohki, Misao; Fukuda, Mikiko; Takeda, Naoki; Niida, Hiroyuki; Kato, Hiroyuki; Shinkai, Yoichi

    2002-01-01

    Covalent modification of histone tails is crucial for transcriptional regulation, mitotic chromosomal condensation, and heterochromatin formation. Histone H3 lysine 9 (H3-K9) methylation catalyzed by the Suv39h family proteins is essential for establishing the architecture of pericentric heterochromatin. We recently identified a mammalian histone methyltransferase (HMTase), G9a, which has strong HMTase activity towards H3-K9 in vitro. To investigate the in vivo functions of G9a, we generated G9a-deficient mice and embryonic stem (ES) cells. We found that H3-K9 methylation was drastically decreased in G9a-deficient embryos, which displayed severe growth retardation and early lethality. G9a-deficient ES cells also exhibited reduced H3-K9 methylation compared to wild-type cells, indicating that G9a is a dominant H3-K9 HMTase in vivo. Importantly, the loss of G9a abolished methylated H3-K9 mostly in euchromatic regions. Finally, G9a exerted a transcriptionally suppressive function that depended on its HMTase activity. Our results indicate that euchromatic H3-K9 methylation regulated by G9a is essential for early embryogenesis and is involved in the transcriptional repression of developmental genes. PMID:12130538

  12. Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin

    PubMed Central

    Bochyńska, Agnieszka; Lüscher-Firzlaff, Juliane

    2018-01-01

    Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation. PMID:29498679

  13. The C. elegans histone deacetylase HDA-1 is required for cell migration and axon pathfinding.

    PubMed

    Zinovyeva, Anna Y; Graham, Serena M; Cloud, Veronica J; Forrester, Wayne C

    2006-01-01

    Histone proteins play integral roles in chromatin structure and function. Histones are subject to several types of posttranslational modifications, including acetylation, which can produce transcriptional activation. The converse, histone deacetylation, is mediated by histone deacetylases (HDACs) and often is associated with transcriptional silencing. We identified a new mutation, cw2, in the Caenorhabditis elegans hda-1 gene, which encodes a histone deacetylase. Previous studies showed that a mutation in hda-1, e1795, or reduction of hda-1 RNA by RNAi causes defective vulval and gonadal development leading to sterility. The hda-1(cw2) mutation causes defective vulval development and reduced fertility, like hda-1(e1795), albeit with reduced severity. Unlike the previously reported hda-1 mutation, hda-1(cw2) mutants are viable as homozygotes, although many die as embryos or larvae, and are severely uncoordinated. Strikingly, in hda-1(cw2) mutants, axon pathfinding is defective; specific axons often appear to wander randomly or migrate in the wrong direction. In addition, the long range migrations of three neuron types and fasciculation of the ventral nerve cord are defective. Together, our studies define a new role for HDA-1 in nervous system development, and provide the first evidence for HDAC function in regulating neuronal axon guidance.

  14. H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements

    PubMed Central

    Zink, Lisa-Maria; Delbarre, Erwan; Eberl, H. Christian; Keilhauer, Eva C.; Bönisch, Clemens; Pünzeler, Sebastian; Bartkuhn, Marek; Collas, Philippe; Mann, Matthias

    2017-01-01

    Abstract Histone chaperones prevent promiscuous histone interactions before chromatin assembly. They guarantee faithful deposition of canonical histones and functionally specialized histone variants into chromatin in a spatial- and temporally-restricted manner. Here, we identify the binding partners of the primate-specific and H3.3-related histone variant H3.Y using several quantitative mass spectrometry approaches, and biochemical and cell biological assays. We find the HIRA, but not the DAXX/ATRX, complex to recognize H3.Y, explaining its presence in transcriptionally active euchromatic regions. Accordingly, H3.Y nucleosomes are enriched in the transcription-promoting FACT complex and depleted of repressive post-translational histone modifications. H3.Y mutational gain-of-function screens reveal an unexpected combinatorial amino acid sequence requirement for histone H3.3 interaction with DAXX but not HIRA, and for H3.3 recruitment to PML nuclear bodies. We demonstrate the importance and necessity of specific H3.3 core and C-terminal amino acids in discriminating between distinct chaperone complexes. Further, chromatin immunoprecipitation sequencing experiments reveal that in contrast to euchromatic HIRA-dependent deposition sites, human DAXX/ATRX-dependent regions of histone H3 variant incorporation are enriched in heterochromatic H3K9me3 and simple repeat sequences. These data demonstrate that H3.Y's unique amino acids allow a functional distinction between HIRA and DAXX binding and its consequent deposition into open chromatin. PMID:28334823

  15. Epigenetics regulates transcription and pathogenesis in the parasite Trichomonas vaginalis.

    PubMed

    Pachano, Tomas; Nievas, Yesica R; Lizarraga, Ayelen; Johnson, Patricia J; Strobl-Mazzulla, Pablo H; de Miguel, Natalia

    2017-06-01

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Different T. vaginalis strains vary greatly in their adherence and cytolytic capacities. These phenotypic differences might be attributed to differentially expressed genes as a consequence of extra-genetic variation, such as epigenetic modifications. In this study, we explored the role of histone acetylation in regulating gene transcription and pathogenesis in T. vaginalis. Here, we show that histone 3 lysine acetylation (H3KAc) is enriched in nucleosomes positioned around the transcription start site of active genes (BAP1 and BAP2) in a highly adherent parasite strain; compared with the low acetylation abundance in contrast to that observed in a less-adherent strain that expresses these genes at low levels. Additionally, exposition of less-adherent strain with a specific histone deacetylases inhibitor, trichostatin A, upregulated the transcription of BAP1 and BAP2 genes in concomitance with an increase in H3KAc abundance and chromatin accessibility around their transcription start sites. Moreover, we demonstrated that the binding of initiator binding protein, the transcription factor responsible for the initiation of transcription of ~75% of known T. vaginalis genes, depends on the histone acetylation state around the metazoan-like initiator to which initiator binding protein binds. Finally, we found that trichostatin A treatment increased parasite aggregation and adherence to host cells. Our data demonstrated for the first time that H3KAc is a permissive histone modification that functions to mediate both transcription and pathogenesis of the parasite T. vaginalis. © 2017 John Wiley & Sons Ltd.

  16. Dietary fat and fiber interact to uniquely modify global histone post-translational epigenetic programming in a rat colon cancer progression model.

    PubMed

    Triff, Karen; McLean, Mathew W; Callaway, Evelyn; Goldsby, Jennifer; Ivanov, Ivan; Chapkin, Robert S

    2018-04-16

    Dietary fermentable fiber generates short-chain fatty acids (SCFA), e.g., butyrate, in the colonic lumen which serves as a chemoprotective histone deacetylase inhibitor and/or as an acetylation substrate for histone acetylases. In addition, n-3 polyunsaturated fatty acids (n-3 PUFA) in fish oil can affect the chromatin landscape by acting as ligands for tumor suppressive nuclear receptors. In an effort to gain insight into the global dimension of post-translational modification of histones (including H3K4me3 and H3K9ac) and clarify the chemoprotective impact of dietary bioactive compounds on transcriptional control in a preclinical model of colon cancer, we generated high-resolution genome-wide RNA (RNA-Seq) and "chromatin-state" (H3K4me3-seq and H3K9ac-seq) maps for intestinal (epithelial colonocytes) crypts in rats treated with a colon carcinogen and fed diets containing bioactive (i) fish oil, (ii) fermentable fiber (a rich source of SCFA), (iii) a combination of fish oil plus pectin or (iv) control, devoid of fish oil or pectin. In general, poor correlation was observed between differentially transcribed (DE) and enriched genes (DERs) at multiple epigenetic levels. The combinatorial diet (fish oil + pectin) uniquely affected transcriptional profiles in the intestinal epithelium, e.g., upregulating lipid catabolism and beta-oxidation associated genes. These genes were linked to activated ligand-dependent nuclear receptors associated with n-3 PUFA and were also correlated with the mitochondrial L-carnitine shuttle and the inhibition of lipogenesis. These findings demonstrate that the chemoprotective fish oil + pectin combination diet uniquely induces global histone state modifications linked to the expression of chemoprotective genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  17. Histone H3 Lysine 36 Trimethylation Is Established over the Xist Promoter by Antisense Tsix Transcription and Contributes to Repressing Xist Expression

    PubMed Central

    Ohhata, Tatsuya; Matsumoto, Mika; Leeb, Martin; Shibata, Shinwa; Sakai, Satoshi; Kitagawa, Kyoko; Niida, Hiroyuki

    2015-01-01

    One of the two X chromosomes in female mammals is inactivated by the noncoding Xist RNA. In mice, X chromosome inactivation (XCI) is regulated by the antisense RNA Tsix, which represses Xist on the active X chromosome. In the absence of Tsix, PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) is established over the Xist promoter. Simultaneous disruption of Tsix and PRC2 leads to derepression of Xist and in turn silencing of the single X chromosome in male embryonic stem cells. Here, we identified histone H3 lysine 36 trimethylation (H3K36me3) as a modification that is recruited by Tsix cotranscriptionally and extends over the Xist promoter. Reduction of H3K36me3 by expression of a mutated histone H3.3 with a substitution of methionine for lysine at position 36 causes a significant derepression of Xist. Moreover, depletion of the H3K36 methylase Setd2 leads to upregulation of Xist, suggesting H3K36me3 as a modification that contributes to the mechanism of Tsix function in regulating XCI. Furthermore, we found that reduction of H3K36me3 does not facilitate an increase in H3K27me3 over the Xist promoter, indicating that additional mechanisms exist by which Tsix blocks PRC2 recruitment to the Xist promoter. PMID:26370508

  18. Quantitative Histone Mass Spectrometry Identifies Elevated Histone H3 Lysine 27 (Lys27) Trimethylation in Melanoma*

    PubMed Central

    Sengupta, Deepanwita; Byrum, Stephanie D.; Avaritt, Nathan L.; Davis, Lauren; Shields, Bradley; Mahmoud, Fade; Reynolds, Matthew; Orr, Lisa M.; Mackintosh, Samuel G.; Shalin, Sara C.; Tackett, Alan J.

    2016-01-01

    Normal cell growth is characterized by a regulated epigenetic program that drives cellular activities such as gene transcription, DNA replication, and DNA damage repair. Perturbation of this epigenetic program can lead to events such as mis-regulation of gene transcription and diseases such as cancer. To begin to understand the epigenetic program correlated to the development of melanoma, we performed a novel quantitative mass spectrometric analysis of histone post-translational modifications mis-regulated in melanoma cell culture as well as patient tumors. Aggressive melanoma cell lines as well as metastatic melanoma were found to have elevated histone H3 Lys27 trimethylation (H3K27me3) accompanied by overexpressed methyltransferase EZH2 that adds the specific modification. The altered epigenetic program that led to elevated H3K27me3 in melanoma cell culture was found to directly silence transcription of the tumor suppressor genes RUNX3 and E-cadherin. The EZH2-mediated silencing of RUNX3 and E-cadherin transcription was also validated in advanced stage human melanoma tissues. This is the first study focusing on the detailed epigenetic mechanisms leading to EZH2-mediated silencing of RUNX3 and E-cadherin tumor suppressors in melanoma. This study underscores the utility of using high resolution mass spectrometry to identify mis-regulated epigenetic programs in diseases such as cancer, which could ultimately lead to the identification of biological markers for diagnostic and prognostic applications. PMID:26621846

  19. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer.

    PubMed

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O'Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Mulderrig, Lee; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2009-05-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.

  20. Identifying chromatin readers using a SILAC-based histone peptide pull-down approach.

    PubMed

    Vermeulen, Michiel

    2012-01-01

    Posttranslational modifications (PTMs) on core histones regulate essential processes inside the nucleus such as transcription, replication, and DNA repair. An important function of histone PTMs is the recruitment or stabilization of chromatin-modifying proteins, which are also called chromatin "readers." We have developed a generic SILAC-based peptide pull-down approach to identify such readers for histone PTMs in an unbiased manner. In this chapter, the workflow behind this method will be presented in detail. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    PubMed Central

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  2. Different Patterns of Acetylation and Dimethylation of Histone H3 between Young and Aged Cases with Chronic Tonsillitis: Influences of Inflammation and Aging.

    PubMed

    Saito, Akihiko; Watanabe, Ken-Ichi; Egawa, Seiko; Okubo, Kimihiro

    2016-01-01

    Epigenetics is now considered to be crucially involved in normal genetics and differentiation and in pathological conditions, such as cancer, aging, and inflammation. Epigenetic mechanisms involve DNA methylation and histone modifications. The purpose of this study was to investigate the effects of inflammation on epigenetics in young subjects and the effect of aging. The palatine tonsils were extracted from child and adult patients with chronic tonsillitis. Hematoxylin-eosin staining was performed to examine the morphology of the palatine tonsils. A fluorescence immunological examination was also performed to detect acetyl-histone H3 or dimethyl-histone H3. Confocal scanning microscopy was used for observations. Acetylated histone H3 was detected in tonsils from child patients but not from adult patients. Dimethylated histone H3 was not detected in tonsils from either group of patients. Degeneration of the tonsillar structures was apparent in tonsils from adult patients. The differential expression of acetylated histone H3 Lys9 may reflect immunological differences between young and aged tonsils. The decrease observed in the activity of histone methyltransferase induced the down-regulated expression of methylated histone H3. Our results suggest that epigenetic changes participate in chronic inflammation and aging in the palatine tonsils. Although the results do not lead to a direct treatment, the epigenetic pathogenesis of chronic inflammation, such as immunoglobulin A nephropathy, by focal infections will be described in greater detail in future studies, which will lead to new treatments being developed.

  3. Histone Arginine Methylation

    PubMed Central

    Lorenzo, Alessandra Di; Bedford, Mark T.

    2012-01-01

    Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527

  4. Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300

    PubMed Central

    Wolf, Louise; Harrison, Wilbur; Huang, Jie; Xie, Qing; Xiao, Ningna; Sun, Jian; Kong, Lingkun; Lachke, Salil A.; Kuracha, Murali R.; Govindarajan, Venkatesh; Brindle, Paul K.; Ashery-Padan, Ruth; Beebe, David C.; Overbeek, Paul A.; Cvekl, Ales

    2013-01-01

    Lens induction is a classical embryologic model to study cell fate determination. It has been proposed earlier that specific changes in core histone modifications accompany the process of cell fate specification and determination. The lysine acetyltransferases CBP and p300 function as principal enzymes that modify core histones to facilitate specific gene expression. Herein, we performed conditional inactivation of both CBP and p300 in the ectodermal cells that give rise to the lens placode. Inactivation of both CBP and p300 resulted in the dramatic discontinuation of all aspects of lens specification and organogenesis, resulting in aphakia. The CBP/p300−/− ectodermal cells are viable and not prone to apoptosis. These cells showed reduced expression of Six3 and Sox2, while expression of Pax6 was not upregulated, indicating discontinuation of lens induction. Consequently, expression of αB- and αA-crystallins was not initiated. Mutant ectoderm exhibited markedly reduced levels of histone H3 K18 and K27 acetylation, subtly increased H3 K27me3 and unaltered overall levels of H3 K9ac and H3 K4me3. Our data demonstrate that CBP and p300 are required to establish lens cell-type identity during lens induction, and suggest that posttranslational histone modifications are integral to normal cell fate determination in the mammalian lens. PMID:24038357

  5. Sulfur mustard-induced epigenetic modifications over time - a pilot study.

    PubMed

    Simons, Thilo; Steinritz, Dirk; Bölck, Birgit; Schmidt, Annette; Popp, Tanja; Thiermann, Horst; Gudermann, Thomas; Bloch, Wilhelm; Kehe, Kai

    2018-09-01

    The chemical warfare agent sulfur mustard (SM) can cause long-term health effects that may occur even years after a single exposure. The underlying pathophysiology is unknown, but epigenetic mechanisms are discussed as feasible explanation. "Epigenetics" depicts regulation of gene function without affecting the DNA sequence itself. DNA-methylation and covalent histone modifications (methylation or acetylation) are regarded as important processes. In the present in vitro study using early endothelial cells (EEC), we analyzed SM-induced DNA methylation over time and compared results to an in vivo skin sample that was obtained approx. one year after an accidental SM exposure. EEC were exposed to low SM concentrations (0.5 and 1.0μM). DNA methylation and histone acetylation (H3-K9, H3-K27, H4-K8) or histone di-methylation (H3-K9, H3-K27, H3-K36) were investigated 24h after exposure, and after 2 or 4 additional cell passages. The human skin sample was assessed in parallel. SM had only some minor effects on histone modifications. However, a significant and pronounced increase of DNA methylation was detected in the late cell passages as well as in the skin sample. Our results indicate that SM does indeed cause epigenetic modifications that appear to persist over time. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity.

    PubMed

    Parseghian, Missag H; Luhrs, Keith A

    2006-08-01

    Although they are one of the oldest family of proteins known (first described in 1884 by Kossel), histones continue to surprise researchers with their ever expanding roles in biology. In the past 25 years, the view of core histone octamers as a simple spool around which DNA in the nucleus is wound and linker histones as mere fasteners clipping it all together has transformed into the realization that histones play a vital role in transcriptional regulation. Through post-translational modifications, histones control the accessibility of transcription factors and a host of other proteins to multiple, conceivably thousands of, genes at once. While researchers have spent decades deciphering the role of histones in the overall structure of chromatin, it might surprise some to find that an entirely separate faction of scientists have focused on the role of histones beyond the confines of the nuclear envelope. In the past decade, there has been an accumulation of observations that suggest that histones can be found at the mitochondrion during the onset of apoptotic signaling and even at the cell surface, acting as a receptor for bacterial and viral proteins. More provocatively, immunologists are becoming convinced that they can also be found in the lumen of several tissues, acting as antimicrobial agents--critical components of an ancient innate immune system. Perhaps nowhere is this observation as dramatic as in the ability of neutrophils to entrap bacterial pathogens by casting out "nets" of DNA and histones that not only act as a physical barrier, but also display bactericidal activity. As our views regarding the role of histones inside and outside the cell evolve, some have begun to develop therapies that either utilize or target histones in the fight against cancer, microbial infection, and autoimmune disease. It is our goal here to begin the process of merging the dichotomous lives of histones both within and without the nuclear membrane.

  7. Quantitative Proteomics Reveals Fundamental Regulatory Differences in Oncogenic HRAS and Isocitrate Dehydrogenase (IDH1) Driven Astrocytoma.

    PubMed

    Doll, Sophia; Urisman, Anatoly; Oses-Prieto, Juan A; Arnott, David; Burlingame, Alma L

    2017-01-01

    Glioblastoma multiformes (GBMs) are high-grade astrocytomas and the most common brain malignancies. Primary GBMs are often associated with disturbed RAS signaling, and expression of oncogenic HRAS results in a malignant phenotype in glioma cell lines. Secondary GBMs arise from lower-grade astrocytomas, have slower progression than primary tumors, and contain IDH1 mutations in over 70% of cases. Despite significant amount of accumulating genomic and transcriptomic data, the fundamental mechanistic differences of gliomagenesis in these two types of high-grade astrocytoma remain poorly understood. Only a few studies have attempted to investigate the proteome, phosphorylation signaling, and epigenetic regulation in astrocytoma. In the present study, we applied quantitative phosphoproteomics to identify the main signaling differences between oncogenic HRAS and mutant IDH1-driven glioma cells as models of primary and secondary GBM, respectively. Our analysis confirms the driving roles of the MAPK and PI3K/mTOR signaling pathways in HRAS driven cells and additionally uncovers dysregulation of other signaling pathways. Although a subset of the signaling changes mediated by HRAS could be reversed by a MEK inhibitor, dual inhibition of MEK and PI3K resulted in more complete reversal of the phosphorylation patterns produced by HRAS expression. In contrast, cells expressing mutant IDH1 did not show significant activation of MAPK or PI3K/mTOR pathways. Instead, global downregulation of protein expression was observed. Targeted proteomic analysis of histone modifications identified significant histone methylation, acetylation, and butyrylation changes in the mutant IDH1 expressing cells, consistent with a global transcriptional repressive state. Our findings offer novel mechanistic insight linking mutant IDH1 associated inhibition of histone demethylases with specific histone modification changes to produce global transcriptional repression in secondary glioblastoma. Our proteomic datasets are available for download and provide a comprehensive catalogue of alterations in protein abundance, phosphorylation, and histone modifications in oncogenic HRAS and IDH1 driven astrocytoma cells beyond the transcriptomic level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. HDAC inhibitors and immunotherapy; a double edged sword?

    PubMed Central

    Kroesen, Michiel; Armandari, Inna; Hoogerbrugge, Peter M.; Adema, Gosse J.

    2014-01-01

    Epigenetic modifications, like histone acetylation, are essential for regulating gene expression within cells. Cancer cells acquire pathological epigenetic modifications resulting in gene expression patterns that facilitate and sustain tumorigenesis. Epigenetic manipulation therefore is emerging as a novel targeted therapy for cancer. Histone Acetylases (HATs) and Histone Deacetylases (HDACs) regulate histone acetylation and hence gene expression. Histone deacetylase (HDAC) inhibitors are well known to affect cancer cell viability and biology and are already in use for the treatment of cancer patients. Immunotherapy can lead to clinical benefit in selected cancer patients, especially in patients with limited disease after tumor debulking. HDAC inhibitors can potentially synergize with immunotherapy by elimination of tumor cells. The direct effects of HDAC inhibitors on immune cell function, however, remain largely unexplored. Initial data have suggested HDAC inhibitors to be predominantly immunosuppressive, but more recent reports have challenged this view. In this review we will discuss the effects of HDAC inhibitors on tumor cells and different immune cell subsets, synergistic interactions and possible mechanisms. Finally, we will address future challenges and potential application of HDAC inhibitors in immunocombination therapy of cancer. PMID:25115382

  9. Histone proteolysis: A proposal for categorization into ‘clipping’ and ‘degradation’

    PubMed Central

    Dhaenens, Maarten; Glibert, Pieter; Meert, Paulien; Vossaert, Liesbeth; Deforce, Dieter

    2015-01-01

    We propose for the first time to divide histone proteolysis into “histone degradation” and the epigenetically connoted “histone clipping”. Our initial observation is that these two different classes are very hard to distinguish both experimentally and biologically, because they can both be mediated by the same enzymes. Since the first report decades ago, proteolysis has been found in a broad spectrum of eukaryotic organisms. However, the authors often not clearly distinguish or determine whether degradation or clipping was studied. Given the importance of histone modifications in epigenetic regulation we further elaborate on the different ways in which histone proteolysis could play a role in epigenetics. Finally, unanticipated histone proteolysis has probably left a mark on many studies of histones in the past. In conclusion, we emphasize the significance of reviving the study of histone proteolysis both from a biological and an experimental perspective. PMID:25350939

  10. KDM5A demethylase: Erasing histone modifications to promote repair of DNA breaks

    PubMed Central

    2017-01-01

    Repairing DNA breaks within the complexity of the cell chromatin is challenging. In this issue, Gong et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201611135) identify the histone demethylase KDM5A as a critical editor of the cells’ “histone code” that is required to recruit DNA repair complexes to DNA breaks. PMID:28572116

  11. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α

    PubMed Central

    Zhu, Τao; Liang, Chen; Li, Dongdong; Tian, Miaomiao; Liu, Sanxiong; Gao, Guanjun; Guan, Ji-Song

    2016-01-01

    Activity-dependent transcription is critical for the regulation of long-term synaptic plasticity and plastic rewiring in the brain. Here, we report that the transcription of neurexin1α (nrxn1α), a presynaptic adhesion molecule for synaptic formation, is regulated by transient neuronal activation. We showed that 10 minutes of firing at 50 Hz in neurons repressed the expression of nrxn1α for 24 hours in a primary cortical neuron culture through a transcriptional repression mechanism. By performing a screening assay using a synthetic zinc finger protein (ZFP) to pull down the proteins enriched near the nrxn1α promoter region in vivo, we identified that Ash1L, a histone methyltransferase, is enriched in the nrxn1α promoter. Neuronal activity triggered binding of Ash1L to the promoter and enriched the histone marker H3K36me2 at the nrxn1α promoter region. Knockout of Ash1L in mice completely abolished the activity-dependent repression of nrxn1α. Taken together, our results reveal that a novel process of activity-dependent transcriptional repression exists in neurons and that Ash1L mediates the long-term repression of nrxn1α, thus implicating an important role for epigenetic modification in brain functioning. PMID:27229316

  12. Epigenetics of proteasome inhibition in the liver of rats fed ethanol chronically

    PubMed Central

    Oliva, Joan; Dedes, Jennifer; Li, Jun; French, Samuel W; Bardag-Gorce, Fawzia

    2009-01-01

    AIM: To examine the effects of ethanol-induced proteasome inhibition, and the effects of proteasome inhibition in the regulation of epigenetic mechanisms. METHODS: Rats were fed ethanol for 1 mo using the Tsukamoto-French model and were compared to rats given the proteasome inhibitor PS-341 (Bortezomib, Velcade™) by intraperitoneal injection. Microarray analysis and real time PCR were performed and proteasome activity assays and Western blot analysis were performed using isolated nuclei. RESULTS: Chronic ethanol feeding caused a significant inhibition of the ubiquitin proteasome pathway in the nucleus, which led to changes in the turnover of transcriptional factors, histone-modifying enzymes, and, therefore, affected epigenetic mechanisms. Chronic ethanol feeding was related to an increase in histone acetylation, and it is hypothesized that the proteasome proteolytic activity regulated histone modifications by controlling the stability of histone modifying enzymes, and, therefore, regulated the chromatin structure, allowing easy access to chromatin by RNA polymerase, and, thus, proper gene expression. Proteasome inhibition by PS-341 increased histone acetylation similar to chronic ethanol feeding. In addition, proteasome inhibition caused dramatic changes in hepatic remethylation reactions as there was a significant decrease in the enzymes responsible for the regeneration of S-adenosylmethionine, and, in particular, a significant decrease in the betaine-homocysteine methyltransferase enzyme. This suggested that hypomethylation was associated with proteasome inhibition, as indicated by the decrease in histone methylation. CONCLUSION: The role of proteasome inhibition in regulating epigenetic mechanisms, and its link to liver injury in alcoholic liver disease, is thus a promising approach to study liver injury due to chronic ethanol consumption. PMID:19222094

  13. Higher organization and histone modification of the plant nucleus and chromosome.

    PubMed

    Wako, T; Fukui, K

    2010-07-01

    Plants have a wide range of genome sizes. The length of each DNA molecule is usually much longer than the diameter of the cell and the length of each metaphase chromosome is effectively shortened to progress through mitosis. Thus some questions arise, such as: How is genomic DNA folded and shortened into chromosomes? What kind of proteins and/or their modifications contribute to chromosome structure? Are there any upper limits for the ratio of DNA volume to nuclear volume? This review attempts to answer these questions based on recent advances in chromosome research. Genomic DNA is first folded into nucleosomal fibers and then superfolded into metaphase chromosomes to sufficiently shorten its length to less than the upper limit for normal progression of cell division. Nucleosomes play structural roles, not only for DNA folding, but also for determination of euchromatin, heterochromatin, and centromeres, together with post-translational modifications and replacement of core histones with histone variants, and for the regulation of their structure and transcriptional status. More than 200 proteins of human metaphase chromosomes have been identified, including 5 types of nucleosome histones. They are categorized into 4 groups, and a 4-layer model of the human metaphase chromosome has been developed. There are upper limits for DNA volume. In all plants examined to date the DNA volume does not exceed 3% of the nuclear volume. Histone modification also has an impact on the spatial distribution of chromosomes within a nucleus, which seems to be related to the plant genome size. These points are discussed as well, as they are essential to maintain proper nuclear functions. Copyright 2010 S. Karger AG, Basel.

  14. Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene

    PubMed Central

    2014-01-01

    Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines. PMID:24484454

  15. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain.more » As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult brain due to aberrant expression of epigenetic machinery based on region and sex. - Highlights: • Brain tissue from adult mice with developmental arsenic exposure (DAE) was used. • DAE impacted histone methylation and associated methyltransferases based on sex. • DAE differentially altered histone acetylation based on brain region. • DAE altered HATs in males and HDACs in females. • Epigenetic modifier expression correlated with the associated histone modification.« less

  16. p300/CBP Histone Acetyltransferase Activity Is Required for Newly Acquired and Reactivated Fear Memories in the Lateral Amygdala

    ERIC Educational Resources Information Center

    Maddox, Stephanie A.; Watts, Casey S.; Schafe, Glenn E.

    2013-01-01

    Modifications in chromatin structure have been widely implicated in memory and cognition, most notably using hippocampal-dependent memory paradigms including object recognition, spatial memory, and contextual fear memory. Relatively little is known, however, about the role of chromatin-modifying enzymes in amygdala-dependent memory formation.…

  17. Dimerization of a Viral SET Protein Endows its Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H Wei; M Zhou

    Histone modifications are regarded as the most indispensible phenomena in epigenetics. Of these modifications, lysine methylation is of the greatest complexity and importance as site- and state-specific lysine methylation exerts a plethora of effects on chromatin structure and gene transcription. Notably, paramecium bursaria chlorella viruses encode a conserved SET domain methyltransferase, termed vSET, that functions to suppress host transcription by methylating histone H3 at lysine 27 (H3K27), a mark for eukaryotic gene silencing. Unlike mammalian lysine methyltransferases (KMTs), vSET functions only as a dimer, but the underlying mechanism has remained elusive. In this study, we demonstrate that dimeric vSET operatesmore » with negative cooperativity between the two active sites and engages in H3K27 methylation one site at a time. New atomic structures of vSET in the free form and a ternary complex with S-adenosyl homocysteine and a histone H3 peptide and biochemical analyses reveal the molecular origin for the negative cooperativity and explain the substrate specificity of H3K27 methyltransferases. Our study suggests a 'walking' mechanism, by which vSET acts all by itself to globally methylate host H3K27, which is accomplished by the mammalian EZH2 KMT only in the context of the Polycomb repressive complex.« less

  18. Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*

    PubMed Central

    Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela

    2009-01-01

    Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686

  19. Antibodies to H1 histone from the sera of HIV-infected patients recognize and catalyze site-specific degradation of this histone.

    PubMed

    Baranova, Svetlana V; Dmitrienok, Pavel S; Ivanisenko, Nikita V; Buneva, Valentina N; Nevinsky, Georgy A

    2017-03-01

    Histones and their posttranslational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecules when they are released into the extracellular space. Administration of histones to animals leads to systemic inflammatory and toxic responses. Autoantibodies with enzymatic activities (abzymes) are distinctive feature of some autoimmune and viral diseases. Electrophoretically and immunologically homogeneous IgGs containing no canonical enzymes were isolated from sera of human immunodeficiency virus-infected patients by chromatography on several affinity sorbents. In contrast to canonical proteases (trypsin, chymotrypsin, and proteinase K), IgGs from human immunodeficiency virus-infected patients purified by affinity chromatography on Sepharose containing immobilized histones specifically recognized and hydrolyzed only histones but not many other tested globular proteins. Using matrix-assisted laser desorption/ionization mass spectrometry, the sites of H1 histone (193 amino acids [AAs]) cleavage by anti-H1 histone IgGs were determined for the first time. It was shown that 1 cluster of 2 major and 4 moderate sites of cleavage is located at the beginning (106-112 AAs) of the known antigenic determinants disposed at the long C-terminal sequence of H1. Two clusters of minor and very weak sites of the protein cleavage correspond to middle (8 sites, 138-158 AAs) and terminal (5 sites, 166-176 AAs) parts of the antigenic determinants. It was shown that in contrast to canonical proteases, N-terminal part of H1 histone (1-136 AAs) containing no antigenic determinants is an unpredictably very resistant against hydrolysis by abzymes, while it can be easily cleavage by canonical proteases. Because histones act as damage-associated molecules, abzymes against H1 and other histones can play important role in pathogenesis of acquired immune deficiency syndrome and probably other different diseases. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Immunohistochemical analysis of histone H3 acetylation and methylation—Evidence for altered epigenetic signaling following traumatic brain injury in immature rats☆

    PubMed Central

    Gao, Wei-Min; Chadha, Mandeep S.; Kline, Anthony E.; Clark, Robert S.B.; Kochanek, Patrick M.; Dixon, C. Edward; Jenkins, Larry W.

    2009-01-01

    Posttranslational modifications (PTMs) of histone proteins may result in altered epigenetic signaling after pediatric traumatic brain injury (TBI). Hippocampal histone H3 acetylation and methylation in immature rats after moderate TBI were measured and decreased only in CA3 at 6 h and 24 h with persistent methylation decreases up to 72 h after injury. Decreased histone H3 acetylation and methylation suggest altered hippocampal CA3 epigenetic signaling during the first hours to days after TBI. PMID:16406269

  1. The Histone Database: an integrated resource for histones and histone fold-containing proteins

    PubMed Central

    Mariño-Ramírez, Leonardo; Levine, Kevin M.; Morales, Mario; Zhang, Suiyuan; Moreland, R. Travis; Baxevanis, Andreas D.; Landsman, David

    2011-01-01

    Eukaryotic chromatin is composed of DNA and protein components—core histones—that act to compactly pack the DNA into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleosomes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifications and incorporation of diverse histone variants, can serve as epigenetic marks to control processes such as gene expression and recombination. The Histone Sequence Database is a curated collection of sequences and structures of histones and non-histone proteins containing histone folds, assembled from major public databases. Here, we report a substantial increase in the number of sequences and taxonomic coverage for histone and histone fold-containing proteins available in the database. Additionally, the database now contains an expanded dataset that includes archaeal histone sequences. The database also provides comprehensive multiple sequence alignments for each of the four core histones (H2A, H2B, H3 and H4), the linker histones (H1/H5) and the archaeal histones. The database also includes current information on solved histone fold-containing structures. The Histone Sequence Database is an inclusive resource for the analysis of chromatin structure and function focused on histones and histone fold-containing proteins. Database URL: The Histone Sequence Database is freely available and can be accessed at http://research.nhgri.nih.gov/histones/. PMID:22025671

  2. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscape alteration in bovine cells

    USDA-ARS?s Scientific Manuscript database

    Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...

  3. 4-Hydroxy-2-nonenal modified histone-H2A: a possible antigenic stimulus for systemic lupus erythematosus autoantibodies.

    PubMed

    Alzolibani, Abdullateef A; Al Robaee, Ahmad A; Al-Shobaili, Hani A; Rasheed, Zafar

    2013-01-01

    Protein modifications by 4-hydroxy-2-nonenals (HNE) are involved in various diseases. Histones are DNA protective nucleoprotein, which adopt different structures under oxidative stress. This study was undertaken to test the role of HNE-modified-histone-H2A (HNE-H2A) in systemic lupus erythematosus (SLE). Our data revealed that HNE-mediated-lipid peroxidation in histone-H2A caused alteration in histidine, lysine and cystein residues. In addition, protein carbonyl contents were also high in HNE-H2A. HNE-specific quencher, L-carnosine further reiterates HNE-modifications. Specificity of autoantibodies from SLE patients (n=48) were analyzed towards HNE-H2A and their results were compared with sex- and age-matched controls (n=36). SLE autoantibodies show preferential binding to HNE-H2A in comparison with histone-H2A (p<0.0001). Furthermore, HNE-H2A was also detected in SLE peripheral blood mononuclear cells. In conclusion, this is the first study to demonstrate the role of HNE-modified-histone in SLE. Preferential binding of HNE-H2A by affinity purified SLE-IgG pointed out the likely role of HNE-H2A in the initiation/progression of SLE. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Nutrition, Epigenetics, and Metabolic Syndrome

    PubMed Central

    Wang, Junjun; Wu, Zhenlong; Li, Defa; Li, Ning; Dindot, Scott V.; Satterfield, M. Carey; Bazer, Fuller W.

    2012-01-01

    Significance: Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones. Recent Advances: DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases. Methylation, demethylation, acetylation, and deacetylation of histone proteins are performed by histone methyltransferase, histone demethylase, histone acetyltransferase, and histone deacetyltransferase, respectively. Histone activities are also influenced by phosphorylation, ubiquitination, ADP-ribosylation, sumoylation, and glycosylation. Metabolism of amino acids (glycine, histidine, methionine, and serine) and vitamins (B6, B12, and folate) plays a key role in provision of methyl donors for DNA and protein methylation. Critical Issues: Disruption of epigenetic mechanisms can result in oxidative stress, obesity, insulin resistance, diabetes, and vascular dysfunction in animals and humans. Despite a recognized role for epigenetics in fetal programming of metabolic syndrome, research on therapies is still in its infancy. Possible interventions include: 1) inhibition of DNA methylation, histone deacetylation, and microRNA expression; 2) targeting epigenetically disturbed metabolic pathways; and 3) dietary supplementation with functional amino acids, vitamins, and phytochemicals. Future Directions: Much work is needed with animal models to understand the basic mechanisms responsible for the roles of specific nutrients in fetal and neonatal programming. Such new knowledge is crucial to design effective therapeutic strategies for preventing and treating metabolic abnormalities in offspring born to mothers with a previous experience of malnutrition. Antioxid. Redox Signal. 17, 282–301. PMID:22044276

  5. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    PubMed Central

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.; Nery, Joseph R.; Castanon, Rosa G.; Lee, Ah Young; Shen, Yin; Visel, Axel; Pennacchio, Len A.; Ren, Bing; Ecker, Joseph R.

    2017-01-01

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared with existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types. REPTILE is available at https://github.com/yupenghe/REPTILE/. PMID:28193886

  6. Meta-Analysis of DNA Tumor-Viral Integration Site Selection Indicates a Role for Repeats, Gene Expression and Epigenetics

    PubMed Central

    Doolittle-Hall, Janet M.; Cunningham Glasspoole, Danielle L.; Seaman, William T.; Webster-Cyriaque, Jennifer

    2015-01-01

    Oncoviruses cause tremendous global cancer burden. For several DNA tumor viruses, human genome integration is consistently associated with cancer development. However, genomic features associated with tumor viral integration are poorly understood. We sought to define genomic determinants for 1897 loci prone to hosting human papillomavirus (HPV), hepatitis B virus (HBV) or Merkel cell polyomavirus (MCPyV). These were compared to HIV, whose enzyme-mediated integration is well understood. A comprehensive catalog of integration sites was constructed from the literature and experimentally-determined HPV integration sites. Features were scored in eight categories (genes, expression, open chromatin, histone modifications, methylation, protein binding, chromatin segmentation and repeats) and compared to random loci. Random forest models determined loci classification and feature selection. HPV and HBV integrants were not fragile site associated. MCPyV preferred integration near sensory perception genes. Unique signatures of integration-associated predictive genomic features were detected. Importantly, repeats, actively-transcribed regions and histone modifications were common tumor viral integration signatures. PMID:26569308

  7. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine.

    PubMed

    Lee, Jin-Hyung; Cook, Jeffry R; Yang, Zhi-Hong; Mirochnitchenko, Olga; Gunderson, Samuel I; Felix, Arthur M; Herth, Nicole; Hoffmann, Ralf; Pestka, Sidney

    2005-02-04

    The cDNA for PRMT7, a recently discovered human protein-arginine methyltransferase (PRMT), was cloned and expressed in Escherichia coli and mammalian cells. Immunopurified PRMT7 actively methylated histones, myelin basic protein, a fragment of human fibrillarin (GAR) and spliceosomal protein SmB. Amino acid analysis showed that the modifications produced were predominantly monomethylarginine and symmetric dimethylarginine (SDMA). Examination of PRMT7 expressed in E. coli demonstrated that peptides corresponding to sequences contained in histone H4, myelin basic protein, and SmD3 were methylated. Furthermore, analysis of the methylated proteins showed that symmetric dimethylarginine and relatively small amounts of monomethylarginine and asymmetric dimethylarginine were produced. SDMA was also formed when a GRG tripeptide was methylated by PRMT7, indicating that a GRG motif is by itself sufficient for symmetric dimethylation to occur. Symmetric dimethylation is reduced dramatically compared with monomethylation as the concentration of the substrate is increased. The data demonstrate that PRMT7 (like PRMT5) is a Type II methyltransferase capable of producing SDMA modifications in proteins.

  8. [Epigenetic alterations in acute lymphoblastic leukemia].

    PubMed

    Navarrete-Meneses, María Del Pilar; Pérez-Vera, Patricia

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. It is well-known that genetic alterations constitute the basis for the etiology of ALL. However, genetic abnormalities are not enough for the complete development of the disease, and additional alterations such as epigenetic modifications are required. Such alterations, like DNA methylation, histone modifications, and noncoding RNA regulation have been identified in ALL. DNA hypermethylation in promoter regions is one of the most frequent epigenetic modifications observed in ALL. This modification frequently leads to gene silencing in tumor suppressor genes, and in consequence, contributes to leukemogenesis. Alterations in histone remodeling proteins have also been detected in ALL, such as the overexpression of histone deacetylases enzymes, and alteration of acetyltransferases and methyltransferases. ALL also shows alteration in the expression of miRNAs, and in consequence, the modification in the expression of their target genes. All of these epigenetic modifications are key events in the malignant transformation since they lead to the deregulation of oncogenes as BLK, WNT5B and WISP1, and tumor suppressors such as FHIT, CDKN2A, CDKN2B, and TP53, which alter fundamental cellular processes and potentially lead to the development of ALL. Both genetic and epigenetic alterations contribute to the development and evolution of ALL. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Cancer chemoprevention by targeting the epigenome.

    PubMed

    Huang, Joseph; Plass, Christoph; Gerhauser, Clarissa

    2011-12-01

    The term "epigenetics" refers to modifications in gene expression caused by heritable, but potentially reversible, changes in DNA methylation and chromatin structure. Given the fact that epigenetic modifications occur early in carcinogenesis and represent potentially initiating events in cancer development, they have been identified as promising new targets for prevention strategies. The present review will give a comprehensive overview of the current literature on chemopreventive agents and their influence on major epigenetic mechanisms, that is DNA methylation, histone acetylation and methylation, and microRNAs, both in vitro and in rodent and human studies, taking into consideration specific mechanisms of action, target sites, concentrations, methods used for analysis, and outcome. Chemopreventive agents with reported mechanisms targeting the epigenome include micronutrients (folate, selenium, retinoic acid, Vit. E), butyrate, polyphenols (from green tea, apples, coffee, and other dietary sources), genistein and soy isoflavones, parthenolide, curcumin, ellagitannin, indol-3-carbinol (I3C) and diindolylmethane (DIM), mahanine, nordihydroguaiaretic acid (NDGA), lycopene, sulfur-containing compounds from Allium and cruciferous vegetables (sulforaphane, phenylethyl isothiocyanate (PEITC), phenylhexyl isothiocyanate (PHI), diallyldisulfide (DADS), allyl mercaptan (AM)), antibiotics (mithramycin A, apicidin), pharmacological agents (celecoxib, DFMO, 5-aza-2'-deoxycytidine and zebularine), compounds affecting sirtuin activity (resveratrol, dihydrocoumarin, cambinol), inhibitors of histone acetyl transferases (anacardic acid, garcinol, ursodeoxycholic acid), and relatively unexplored modulators of histone lysine methylation (chaetocin, polyamine analogues, n-3 polyunsaturated fatty acids). Their effects on global DNA methylation, tumor suppressor genes silenced by promoter methylation, histone modifications, and miRNAs deregulated during carcinogenesis have potential impact on multiple mechanisms relevant for chemoprevention, including signal transduction mediated by nuclear receptors and transcription factors such as NF-κB, cell cycle progression, cellular differentiation, apoptosis induction, senescence and others. In vivo studies that demonstrate the functional relevance of epigenetic mechanisms for chemopreventive efficacy are still limited. Future research will need to identify best strategies for chemopreventive intervention, taking into account the importance of epigenetic mechanisms for gene regulation.

  10. Reader interactome of epigenetic histone marks in birds.

    PubMed

    Bluhm, Alina; Casas-Vila, Nuria; Scheibe, Marion; Butter, Falk

    2016-02-01

    Lysine methylation is part of the posttranscriptional histone code employed to recruit modification specific readers to chromatin. Unbiased, quantitative mass spectrometry approaches combined with peptide pull-downs have been used to study histone methylation-dependent binders in mammalian cells. Here, we extend the study to birds by investigating the interaction partners for H3K4me3, H3K9me3, H3K27me3 and H3K36me3 in chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) using label-free quantitative proteomics. In general, we find very strong overlap in interaction partners for the trimethyl marks in birds compared to mammals, underscoring the known conserved function of these modifications. In agreement with their epigenetic role, we find binding of PHF2 and members of the TFIID, SAGA, SET1 and NURF complex to the activation mark H3K4me3. Our data furthermore supports the existence of a LID complex in vertebrates recruited to the H3K4me3 mark. The repressive marks are bound by the HP1 proteins and the EED subunit of the PRC2 complex as well as by WIZ. Like reported in the previous mammalian screens, we found ZNF462, ZNF828 and POGZ enriched at H3K9me3. However, we noted some unexpected differences. N-PAC (also known as GLYR1), an H3K36me3 interactor in mammals, is reproducible not enriched at this modification in our screen in birds. This initial finding suggests that despite strong conservation of the histone tail sequence, a few species-specific differences in epigenetic readers may have evolved between birds and mammals. All MS data have been deposited in the ProteomeXchange with identifier PXD002282 (http://proteomecentral.proteomexchange.org/dataset/PXD002282). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    PubMed

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.

  12. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization.

    PubMed

    Pascali, Chiara; Teichmann, Martin

    2013-01-01

    RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.

  13. Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity

    PubMed Central

    Gaiti, Federico; Jindrich, Katia; Fernandez-Valverde, Selene L; Roper, Kathrein E; Degnan, Bernard M; Tanurdžić, Miloš

    2017-01-01

    Combinatorial patterns of histone modifications regulate developmental and cell type-specific gene expression and underpin animal complexity, but it is unclear when this regulatory system evolved. By analysing histone modifications in a morphologically-simple, early branching animal, the sponge Amphimedonqueenslandica, we show that the regulatory landscape used by complex bilaterians was already in place at the dawn of animal multicellularity. This includes distal enhancers, repressive chromatin and transcriptional units marked by H3K4me3 that vary with levels of developmental regulation. Strikingly, Amphimedon enhancers are enriched in metazoan-specific microsyntenic units, suggesting that their genomic location is extremely ancient and likely to place constraints on the evolution of surrounding genes. These results suggest that the regulatory foundation for spatiotemporal gene expression evolved prior to the divergence of sponges and eumetazoans, and was necessary for the evolution of animal multicellularity. DOI: http://dx.doi.org/10.7554/eLife.22194.001 PMID:28395144

  14. BPA-Induced Deregulation Of Epigenetic Patterns: Effects On Female Zebrafish Reproduction.

    PubMed

    Santangeli, Stefania; Maradonna, Francesca; Gioacchini, Giorgia; Cobellis, Gilda; Piccinetti, Chiara Carla; Dalla Valle, Luisa; Carnevali, Oliana

    2016-02-25

    Bisphenol A (BPA) is one of the commonest Endocrine Disruptor Compounds worldwide. It interferes with vertebrate reproduction, possibly by inducing deregulation of epigenetic mechanisms. To determine its effects on female reproductive physiology and investigate whether changes in the expression levels of genes related to reproduction are caused by histone modifications, BPA concentrations consistent with environmental exposure were administered to zebrafish for three weeks. Effects on oocyte growth and maturation, autophagy and apoptosis processes, histone modifications, and DNA methylation were assessed by Real-Time PCR (qPCR), histology, and chromatin immunoprecipitation combined with qPCR analysis (ChIP-qPCR). The results showed that 5 μg/L BPA down-regulated oocyte maturation-promoting signals, likely through changes in the chromatin structure mediated by histone modifications, and promoted apoptosis in mature follicles. These data indicate that the negative effects of BPA on the female reproductive system may be due to its upstream ability to deregulate epigenetic mechanism.

  15. Regulation of Chromatin Assembly and Cell Transformation by Formaldehyde Exposure in Human Cells

    PubMed Central

    Chen, Danqi; Fang, Lei; Mei, Shenglin; Li, Hongjie; Xu, Xia; Des Marais, Thomas L.; Lu, Kun; Liu, X. Shirley

    2017-01-01

    Background: Formaldehyde (FA) is an environmental and occupational chemical carcinogen. Recent studies have shown that exogenous FA causes only a modest increase in DNA adduct formation compared with the amount of adducts formed by endogenous FA, raising the possibility that epigenetic mechanisms may contribute to FA-mediated carcinogenicity. Objectives: We investigated the effects of FA exposure on histone modifications and chromatin assembly. We also examined the role of defective chromatin assembly in FA-mediated transcription and cell transformation. Methods: Cellular fractionation and Western blot analysis were used to measure the levels of histone modifications in human bronchial epithelial BEAS-2B cells and human nasal RPMI2650 cells in the presence of FA. Chromatin immunoprecipitation (ChIP) and micrococcal nuclease (MNase) digest assays were performed to examine the changes in chromatin assembly and accessibility after FA exposure. RNA sequencing (RNA-seq) and real-time polymerase chain reaction (PCR) were used to examine transcriptional dysregulation. Finally, anchorage-independent cell growth ability was tested by soft agar assay following FA exposure. Results: Exposure to FA dramatically decreased the acetylation of the N-terminal tails of cytosolic histones. These modifications are important for histone nuclear import and subsequent chromatin assembly. Histone proteins were depleted in both the chromatin fraction and at most of the genomic loci tested following FA exposure, suggesting that FA compromises chromatin assembly. Moreover, FA increased chromatin accessibility and altered the expression of hundreds of cancer-related genes. Knockdown of the histone H3.3 gene (an H3 variant), which mimics inhibition of chromatin assembly, facilitated FA-mediated anchorage-independent cell growth. Conclusions: We propose that the inhibition of chromatin assembly represents a novel mechanism of cell transformation induced by the environmental and occupational chemical carcinogen FA. https://doi.org/10.1289/EHP1275 PMID:28937961

  16. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism.

    PubMed

    Liu, Lian; Wang, Jian-Fei; Fan, Jie; Rao, Yi-Song; Liu, Fang; Yan, You-E; Wang, Hui

    2016-09-03

    Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression.

  17. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism

    PubMed Central

    Liu, Lian; Wang, Jian-Fei; Fan, Jie; Rao, Yi-Song; Liu, Fang; Yan, You-E; Wang, Hui

    2016-01-01

    Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression. PMID:27598153

  18. Enhancer Activation by Pharmacologic Displacement of LSD1 from GFI1 Induces Differentiation in Acute Myeloid Leukemia.

    PubMed

    Maiques-Diaz, Alba; Spencer, Gary J; Lynch, James T; Ciceri, Filippo; Williams, Emma L; Amaral, Fabio M R; Wiseman, Daniel H; Harris, William J; Li, Yaoyong; Sahoo, Sudhakar; Hitchin, James R; Mould, Daniel P; Fairweather, Emma E; Waszkowycz, Bohdan; Jordan, Allan M; Smith, Duncan L; Somervaille, Tim C P

    2018-03-27

    Pharmacologic inhibition of LSD1 promotes blast cell differentiation in acute myeloid leukemia (AML) with MLL translocations. The assumption has been that differentiation is induced through blockade of LSD1's histone demethylase activity. However, we observed that rapid, extensive, drug-induced changes in transcription occurred without genome-wide accumulation of the histone modifications targeted for demethylation by LSD1 at sites of LSD1 binding and that a demethylase-defective mutant rescued LSD1 knockdown AML cells as efficiently as wild-type protein. Rather, LSD1 inhibitors disrupt the interaction of LSD1 and RCOR1 with the SNAG-domain transcription repressor GFI1, which is bound to a discrete set of enhancers located close to transcription factor genes that regulate myeloid differentiation. Physical separation of LSD1/RCOR1 from GFI1 is required for drug-induced differentiation. The consequent inactivation of GFI1 leads to increased enhancer histone acetylation within hours, which directly correlates with the upregulation of nearby subordinate genes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. PHD Domain-Mediated E3 Ligase Activity Directs Intramolecular Sumoylation of an Adjacent Bromodomain which is Required for Gene Silencing

    PubMed Central

    Ivanov, Alexey V.; Peng, Hongzhuang; Yurchenko, Vyacheslav; Yap, Kyoko L.; Negorev, Dmitri G.; Schultz, David C.; Psulkowski, Elyse; Fredericks, William J.; White, David E.; Maul, Gerd G.; Sadofsky, Moshe J.; Zhou, Ming-Ming; Rauscher, Frank J.

    2015-01-01

    SUMMARY Tandem PHD and bromodomains are often found in chromatin-associated proteins and have been shown to cooperate in gene silencing. Each domain can bind specifically modified histones: the mechanisms of cooperation between these domains are unknown. We show that the PHD domain of the KAP1 corepressor functions as an intramolecular E3 ligase for sumoylation of the adjacent bromodomain. The RING finger-like structure of the PHD domain is required for both Ubc9 binding and sumoylation and directs modification to specific lysine residues in the bromodomain. Sumoylation is required for KAP1-mediated gene silencing and functions by directly recruiting the SETDB1 histone methyltransferase and the CHD3/Mi2 component of the NuRD complex via SUMO interacting motifs. Sumoylated KAP1 stimulates the histone methyltransferase activity of SETDB1. These data provide a mechanistic explanation for the cooperation of PHD and bromodomains in gene regulation and describe a new function of the PHD domain as an intramolecular E3 SUMO ligase. PMID:18082607

  20. Recent advances in the discovery of potent and selective HDAC6 inhibitors.

    PubMed

    Wang, Xiu-Xiu; Wan, Ren-Zhong; Liu, Zhao-Peng

    2018-01-01

    Histone deacetylase HDAC6, a member of the class IIb HDAC family, is unique among HDAC enzymes in having two active catalytic domains, and has unique physiological function. In addition to the modification of histone, HDAC6 targets specific substrates including α-tubulin and HSP90, and are involved in protein trafficking and degradation, cell shape and migration. Selective HDAC6 inhibitors are an emerging class of pharmaceuticals due to the involvement of HDAC6 in different pathways related to neurodegenerative diseases, cancer, and immunology. Therefore, extensive investigations have been made in the discovery of selective HDAC6 inhibitors. Based on their different zinc binding groups (ZBGs), in this review, HDAC6 inhibitors are grouped as hydroxamic acids, a sulfur containing ZBG based derivatives and other ZBG-derived compounds, and their enzymatic inhibitory activity, selectivity and other biological activities are introduced and summarized. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    PubMed Central

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  2. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions.

    PubMed

    Feng, You; Maity, Ranjan; Whitelegge, Julian P; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T; Bedford, Mark T; Masson, Jean-Yves; Clarke, Steven G

    2013-12-27

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.

  3. Links between genome replication and chromatin landscapes.

    PubMed

    Sequeira-Mendes, Joana; Gutierrez, Crisanto

    2015-07-01

    Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  4. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation*

    PubMed Central

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G.; Fondufe-Mittendorf, Yvonne N.

    2016-01-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  5. Promoters active in interphase are bookmarked during mitosis by ubiquitination

    PubMed Central

    Arora, Mansi; Zhang, Jie; Heine, George F.; Ozer, Gulcin; Liu, Hui-wen; Huang, Kun; Parvin, Jeffrey D.

    2012-01-01

    We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis. PMID:22941662

  6. Molecular dynamics simulation on HP1 protein binding by histone H3 tail methylation and phosphorylation

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Ke; Zou, Jian-Wei; Wu, Yu-Qian; Zhang, Na; Yu, Qing-Sen; Jiang, Yong-Jun

    Trimethylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Phosphorylation of histone H3 has been linked with mitotic chromatin condensation. During mitosis in vivo, H3 lysine 9 methylation and serine 10 phosphorylation can occur concomitantly on the same histone tail, whereas the influence of phosphorylation to trimethylation H3 tail recruiting HP1 remains controversial. In this work, molecular dynamics simulation of HP1 complexed with both trimethylated and phosphorylated H3 tail were performed and compared with the results from the previous methylated H3-HP1 trajectory. It is clear from the 10-ns dynamics simulation that two adjacent posttranslational modifications directly increase the flexibility of the H3 tail and weaken HP1 binding to chromatin. A combinatorial readout of two adjacent posttranslational modifications-a stable methylation and a dynamic phosphorylation mark-establish a regulatory mechanism of protein-protein interactions.

  7. Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development.

    PubMed

    Ikegami, Kohta; Ohgane, Jun; Tanaka, Satoshi; Yagi, Shintaro; Shiota, Kunio

    2009-01-01

    Genes constitute only a small proportion of the mammalian genome, the majority of which is composed of non-genic repetitive elements including interspersed repeats and satellites. A unique feature of the mammalian genome is that there are numerous tissue-dependent, differentially methylated regions (T-DMRs) in the non-repetitive sequences, which include genes and their regulatory elements. The epigenetic status of T-DMRs varies from that of repetitive elements and constitutes the DNA methylation profile genome-wide. Since the DNA methylation profile is specific to each cell and tissue type, much like a fingerprint, it can be used as a means of identification. The formation of DNA methylation profiles is the basis for cell differentiation and development in mammals. The epigenetic status of each T-DMR is regulated by the interplay between DNA methyltransferases, histone modification enzymes, histone subtypes, non-histone nuclear proteins and non-coding RNAs. In this review, we will discuss how these epigenetic factors cooperate to establish cell- and tissue-specific DNA methylation profiles.

  8. The Progeny of Arabidopsis thaliana Plants Exposed to Salt Exhibit Changes in DNA Methylation, Histone Modifications and Gene Expression

    PubMed Central

    Bilichak, Andriy; Ilnystkyy, Yaroslav; Hollunder, Jens; Kovalchuk, Igor

    2012-01-01

    Plants are able to acclimate to new growth conditions on a relatively short time-scale. Recently, we showed that the progeny of plants exposed to various abiotic stresses exhibited changes in genome stability, methylation patterns and stress tolerance. Here, we performed a more detailed analysis of methylation patterns in the progeny of Arabidopsis thaliana (Arabidopsis) plants exposed to 25 and 75 mM sodium chloride. We found that the majority of gene promoters exhibiting changes in methylation were hypermethylated, and this group was overrepresented by regulators of the chromatin structure. The analysis of DNA methylation at gene bodies showed that hypermethylation in the progeny of stressed plants was primarily due to changes in the 5′ and 3′ ends as well as in exons rather than introns. All but one hypermethylated gene tested had lower gene expression. The analysis of histone modifications in the promoters and coding sequences showed that hypermethylation and lower gene expression correlated with the enrichment of H3K9me2 and depletion of H3K9ac histones. Thus, our work demonstrated a high degree of correlation between changes in DNA methylation, histone modifications and gene expression in the progeny of salt-stressed plants. PMID:22291972

  9. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry.

    PubMed

    Pesavento, James J; Bullock, Courtney R; LeDuc, Richard D; Mizzen, Craig A; Kelleher, Neil L

    2008-05-30

    Quantitative proteomics has focused heavily on correlating protein abundances, ratios, and dynamics by developing methods that are protein expression-centric (e.g. isotope coded affinity tag, isobaric tag for relative and absolute quantification, etc.). These methods effectively detect changes in protein abundance but fail to provide a comprehensive perspective of the diversity of proteins such as histones, which are regulated by post-translational modifications. Here, we report the characterization of modified forms of HeLa cell histone H4 with a dynamic range >10(4) using a strictly Top Down mass spectrometric approach coupled with two dimensions of liquid chromatography. This enhanced dynamic range enabled the precise characterization and quantitation of 42 forms uniquely modified by combinations of methylation and acetylation, including those with trimethylated Lys-20, monomethylated Arg-3, and the novel dimethylated Arg-3 (each <1% of all H4 forms). Quantitative analyses revealed distinct trends in acetylation site occupancy depending on Lys-20 methylation state. Because both modifications are dynamically regulated through the cell cycle, we simultaneously investigated acetylation and methylation kinetics through three cell cycle phases and used these data to statistically assess the robustness of our quantitative analysis. This work represents the most comprehensive analysis of histone H4 forms present in human cells reported to date.

  10. Understanding the relationship between DNA methylation and histone lysine methylation☆

    PubMed Central

    Rose, Nathan R.; Klose, Robert J.

    2014-01-01

    DNA methylation acts as an epigenetic modification in vertebrate DNA. Recently it has become clear that the DNA and histone lysine methylation systems are highly interrelated and rely mechanistically on each other for normal chromatin function in vivo. Here we examine some of the functional links between these systems, with a particular focus on several recent discoveries suggesting how lysine methylation may help to target DNA methylation during development, and vice versa. In addition, the emerging role of non-methylated DNA found in CpG islands in defining histone lysine methylation profiles at gene regulatory elements will be discussed in the context of gene regulation. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. PMID:24560929

  11. The paternal hidden agenda: Epigenetic inheritance through sperm chromatin.

    PubMed

    Puri, Deepika; Dhawan, Jyotsna; Mishra, Rakesh K

    2010-07-01

    Epigenetic modifications play a crucial role in developmental gene regulation. These modifications, being reversible, provide a layer of information over and above the DNA sequence, that has plasticity and leads to the generation of cell type-specific epigenomes during cellular differentiation. In almost all higher eukaryotes, the oocyte provides not only its cytoplasm, mitochondria, maternally deposited RNA and proteins but also an epigenetic component in the form of DNA and histone-modifications. During spermeiogenesis however, most of the histones are replaced by protamines, leading to a loss of the epigenetic component. The sperm is, therefore, viewed as a passive carrier of the paternal genome with a disproportionate, lower epigenetic contribution except for DNA methylation, to the next generation. A recent study overturns this view by demonstrating a locus-specific retention of histones, with specific modifications in the sperm chromatin at the promoters of developmentally important genes. This programmed retention of epigenetic marks with a role in embryonic development is suggested to offset, in some measure, the dominant maternal effect. This new finding helps in addressing the question of epigenetic transmission of environmental and 'lifestyle' experiences across generations and raises the question of 'parental conflict' at the loci that may be differentially marked.

  12. Hypoxia-induced oxidative base modifications in the VEGF hypoxia-response element are associated with transcriptionally active nucleosomes.

    PubMed

    Ruchko, Mykhaylo V; Gorodnya, Olena M; Pastukh, Viktor M; Swiger, Brad M; Middleton, Natavia S; Wilson, Glenn L; Gillespie, Mark N

    2009-02-01

    Reactive oxygen species (ROS) generated in hypoxic pulmonary artery endothelial cells cause transient oxidative base modifications in the hypoxia-response element (HRE) of the VEGF gene that bear a conspicuous relationship to induction of VEGF mRNA expression (K.A. Ziel et al., FASEB J. 19, 387-394, 2005). If such base modifications are indeed linked to transcriptional regulation, then they should be detected in HRE sequences associated with transcriptionally active nucleosomes. Southern blot analysis of the VEGF HRE associated with nucleosome fractions prepared by micrococcal nuclease digestion indicated that hypoxia redistributed some HRE sequences from multinucleosomes to transcriptionally active mono- and dinucleosome fractions. A simple PCR method revealed that VEGF HRE sequences harboring oxidative base modifications were found exclusively in mononucleosomes. Inhibition of hypoxia-induced ROS generation with myxathiozol prevented formation of oxidative base modifications but not the redistribution of HRE sequences into mono- and dinucleosome fractions. The histone deacetylase inhibitor trichostatin A caused retention of HRE sequences in compacted nucleosome fractions and prevented formation of oxidative base modifications. These findings suggest that the hypoxia-induced oxidant stress directed at the VEGF HRE requires the sequence to be repositioned into mononucleosomes and support the prospect that oxidative modifications in this sequence are an important step in transcriptional activation.

  13. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors

    PubMed Central

    Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A.; Abdalla, Dulcineia S. P.

    2013-01-01

    Several biological activities have been described for polyphenolic compounds, including a modulator effect on the immune system. The effects of these biologically active compounds on the immune system are associated to processes as differentiation and activation of immune cells. Among the mechanisms associated to immune regulation are epigenetic modifications as DNA methylation of regulatory sequences, histone modifications and posttranscriptional repression by microRNAs that influences the gene expression of key players involved in the immune response. Considering that polyphenols are able to regulate the immune function and has been also demonstrated an effect on epigenetic mechanisms, it is possible to hypothesize that there exists a mediator role of epigenetic mechanisms in the modulation of the immune response by polyphenols. PMID:23812304

  14. Diversity and Divergence of Dinoflagellate Histone Proteins

    PubMed Central

    Marinov, Georgi K.; Lynch, Michael

    2015-01-01

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed. PMID:26646152

  15. Tug of war: adding and removing histone lysine methylation in Arabidopsis.

    PubMed

    Xiao, Jun; Lee, Un-Sa; Wagner, Doris

    2016-12-01

    Histone lysine methylation plays a fundamental role in the epigenetic regulation of gene expression in multicellular eukaryotes, including plants. It shapes plant developmental and growth programs as well as responses to the environment. The methylation status of certain amino-acids, in particular of the histone 3 (H3) lysine tails, is dynamically controlled by opposite acting histone methyltransferase 'writers' and histone demethylase 'erasers'. The methylation status is interpreted by a third set of proteins, the histone modification 'readers', which specifically bind to a methylated amino-acid on the H3 tail. Histone methylation writers, readers, and erasers themselves are regulated by intrinsic or extrinsic stimuli; this forms a feedback loop that contributes to development and environmental adaptation in Arabidopsis and other plants. Recent studies have expanded our knowledge regarding the biological roles and dynamic regulation of histone methylation. In this review, we will discuss recent advances in understanding the regulation and roles of histone methylation in plants and animals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Integrative Genome-Scale Analysis Identifies Epigenetic Mechanisms of Transcriptional Deregulation in Unfavorable Neuroblastomas.

    PubMed

    Henrich, Kai-Oliver; Bender, Sebastian; Saadati, Maral; Dreidax, Daniel; Gartlgruber, Moritz; Shao, Chunxuan; Herrmann, Carl; Wiesenfarth, Manuel; Parzonka, Martha; Wehrmann, Lea; Fischer, Matthias; Duffy, David J; Bell, Emma; Torkov, Alica; Schmezer, Peter; Plass, Christoph; Höfer, Thomas; Benner, Axel; Pfister, Stefan M; Westermann, Frank

    2016-09-15

    The broad clinical spectrum of neuroblastoma ranges from spontaneous regression to rapid progression despite intensive multimodal therapy. This diversity is not fully explained by known genetic aberrations, suggesting the possibility of epigenetic involvement in pathogenesis. In pursuit of this hypothesis, we took an integrative approach to analyze the methylomes, transcriptomes, and copy number variations in 105 cases of neuroblastoma, complemented by primary tumor- and cell line-derived global histone modification analyses and epigenetic drug treatment in vitro We found that DNA methylation patterns identify divergent patient subgroups with respect to survival and clinicobiologic variables, including amplified MYCN Transcriptome integration and histone modification-based definition of enhancer elements revealed intragenic enhancer methylation as a mechanism for high-risk-associated transcriptional deregulation. Furthermore, in high-risk neuroblastomas, we obtained evidence for cooperation between PRC2 activity and DNA methylation in blocking tumor-suppressive differentiation programs. Notably, these programs could be re-activated by combination treatments, which targeted both PRC2 and DNA methylation. Overall, our results illuminate how epigenetic deregulation contributes to neuroblastoma pathogenesis, with novel implications for its diagnosis and therapy. Cancer Res; 76(18); 5523-37. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine.

    PubMed

    Montagud-Romero, S; Montesinos, J; Pascual, M; Aguilar, M A; Roger-Sanchez, C; Guerri, C; Miñarro, J; Rodríguez-Arias, M

    2016-10-03

    Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, while there was an increase of HAT and a decrease of HDAC levels in the cortex. Three weeks after the last defeat, mice displayed an increase in histone H4(K12) acetylation and an upregulation of histone acetyl transferase (HAT) activity in the hippocampus. In addition, H3(K4)me3, which is closely associated with transcriptional initiation, was also augmented in the hippocampus three weeks after the last defeat. Inhibition of HAT by curcumin (100mg/kg) before each SD blocked the increase in the conditioned reinforcing effects of 1mg/kg of cocaine, while inhibition of HDAC by valproic acid (500mg/kg) before social stress potentiated cocaine-induced CPP. Preference was reinstated when animals received a priming dose of 0.5mg/kg of cocaine, an effect that was absent in untreated defeated mice. These results suggest that the experience of SD induces chromatin remodeling, alters histone acetylation and methylation, and modifies the effects of cocaine on place conditioning. They also point to epigenetic mechanisms as potential avenues leading to new treatments for the long-term effects of social stress on drug addiction. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Autoantibodies against Modified Histone Peptides in SLE Patients Are Associated with Disease Activity and Lupus Nephritis

    PubMed Central

    Dieker, Jürgen; Berden, Jo H.; Bakker, Marinka; Briand, Jean-Paul; Muller, Sylviane; Voll, Reinhard; Sjöwall, Christopher; Herrmann, Martin; Hilbrands, Luuk B.; van der Vlag, Johan

    2016-01-01

    Persistent exposure of the immune system to death cell debris leads to autoantibodies against chromatin in patients with systemic lupus erythematosus (SLE). Deposition of anti-chromatin/chromatin complexes can instigate inflammation in multiple organs including the kidney. Previously we identified specific cell death-associated histone modifications as targets of autoantibodies in SLE. In this study we addressed, in a large cohort of SLE patients and controls, the question whether plasma reactivities with specific histone peptides associated with serology and clinical features. Plasma from SLE patients with and without lupus nephritis, disease controls, and healthy controls, were tested in ELISA with histone H4 peptide acetylated at lysines 8, 12 and 16 (H4pac), H2B peptide acetylated at lysine 12 (H2Bpac), H3 peptide trimethylated at lysine 27 (H3pme), and their unmodified equivalents. SLE patients displayed a higher reactivity with the modified equivalent of each peptide. Reactivity with H4pac showed both a high sensitivity (89%) and specificity (91%) for SLE, while H2Bpac exhibited a high specificity (96%) but lower sensitivity (69%). Reactivity with H3pme appeared not specific for SLE. Anti-H4pac and anti-H2Bpac reactivity demonstrated a high correlation with disease activity. Moreover, patients reacting with multiple modified histone peptides exhibited higher SLEDAI and lower C3 levels. SLE patients with renal involvement showed higher reactivity with H2B/H2Bpac and a more pronounced reactivity with the modified equivalent of H3pme and H2Bpac. In conclusion, reactivity with H4pac and H2Bpac is specific for SLE patients and correlates with disease activity, whereas reactivity with H2Bpac is in particular associated with lupus nephritis. PMID:27780265

  19. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation.

    PubMed

    Cohen-Armon, Malka; Visochek, Leonid; Rozensal, Dana; Kalal, Adi; Geistrikh, Ilona; Klein, Rodika; Bendetz-Nezer, Sarit; Yao, Zhong; Seger, Rony

    2007-01-26

    PolyADP-ribose polymerases (PARPs) catalyze a posttranslational modification of nuclear proteins by polyADP-ribosylation. The catalytic activity of the abundant nuclear protein PARP-1 is stimulated by DNA strand breaks, and PARP-1 activation is required for initiation of DNA repair. Here we show that PARP-1 also acts within extracellular signal-regulated kinase (ERK) signaling cascade that mediates growth and differentiation. The findings reveal an alternative mode of PARP-1 activation, which does not involve binding to DNA or DNA damage. In a cell-free system, recombinant PARP-1 was intensively activated and thereby polyADP-ribosylated by a direct interaction with phosphorylated ERK2, and the activated PARP-1 dramatically increased ERK2-catalyzed phosphorylation of the transcription factor Elk1. In cortical neurons treated with nerve growth factors and in stimulated cardiomyocytes, PARP-1 activation enhanced ERK-induced Elk1-phosphorylation, core histone acetylation, and transcription of the Elk1-target gene c-fos. These findings constitute evidence for PARP-1 activity within the ERK signal-transduction pathway.

  20. Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics.

    PubMed

    Duncan, H F; Smith, A J; Fleming, G J P; Cooper, P R

    2016-05-01

    Dental pulp stem cells (DPSCs) offer significant potential for use in regenerative endodontics, and therefore, identifying cellular regulators that control stem cell fate is critical to devising novel treatment strategies. Stem cell lineage commitment and differentiation are regulated by an intricate range of host and environmental factors of which epigenetic influence is considered vital. Epigenetic modification of DNA and DNA-associated histone proteins has been demonstrated to control cell phenotype and regulate the renewal and pluripotency of stem cell populations. The activities of the nuclear enzymes, histone deacetylases, are increasingly being recognized as potential targets for pharmacologically inducing stem cell differentiation and dedifferentiation. Depending on cell maturity and niche in vitro, low concentration histone deacetylase inhibitor (HDACi) application can promote dedifferentiation of several post-natal and mouse embryonic stem cell populations and conversely increase differentiation and accelerate mineralization in DPSC populations, whilst animal studies have shown an HDACi-induced increase in stem cell marker expression during organ regeneration. Notably, both HDAC and DNA methyltransferase inhibitors have also been demonstrated to dramatically increase the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) for use in regenerative therapeutic procedures. As the regulation of cell fate will likely remain the subject of intense future research activity, this review aims to describe the current knowledge relating to stem cell epigenetic modification, focusing on the role of HDACi on alteration of DPSC phenotype, whilst presenting the potential for therapeutic application as part of regenerative endodontic regimens. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  1. Epigenetic Regulation of Vitamin D 24-Hydroxylase/CYP24A1 in Human Prostate Cancer

    PubMed Central

    Luo, Wei; Karpf, Adam R.; Deeb, Kristin K.; Muindi, Josephia R.; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.

    2010-01-01

    Calcitriol, a regulator of calcium homeostasis with antitumor properties, is degraded by the product of the CYP24A1 gene which is downregulated in human prostate cancer by unknown mechanisms. We found that CYP24A1 expression is inversely correlated with promoter DNA methylation in prostate cancer cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) activates CYP24A1 expression in prostate cancer cells. In vitro methylation of the CYP24A1 promoter represses its promoter activity. Furthermore, inhibition of histone deacetylases by trichostatin A (TSA) enhances the expression of CYP24A1 in prostate cancer cells. ChIP-qPCR reveals that specific histone modifications are associated with the CYP24A1 promoter region. Treatment with TSA increases H3K9ac and H3K4me2 and simultaneously decreases H3K9me2 at the CYP24A1 promoter. ChIP-qPCR assay reveals that treatment with DAC and TSA increases the recruitment of VDR to the CYP24A1 promoter. RT-PCR analysis of paired human prostate samples reveals that CYP24A1 expression is down-regulated in prostate malignant lesions compared to adjacent histologically benign lesions. Bisulfite pyrosequencing shows that CYP24A1 gene is hypermethylated in malignant lesions compared to matched benign lesions. Our findings indicate that repression of CYP24A1 gene expression in human prostate cancer cells is mediated in part by promoter DNA methylation and repressive histone modifications. PMID:20587525

  2. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem

    Treesearch

    Steven G Hussey; Eshchar Mizrachi; Andrew Groover; Dave K Berger; Alexander A Myburg

    2015-01-01

    Background: Histone modifications play an integral role in plant development, but have been poorly studied inwoody plants. Investigating chromatin organization in wood-forming tissue and its role in regulating gene expression allows us to understand the mechanisms underlying cellular differentiation during xylogenesis (wood...

  3. A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation.

    PubMed

    Sato, Yuko; Kujirai, Tomoya; Arai, Ritsuko; Asakawa, Haruhiko; Ohtsuki, Chizuru; Horikoshi, Naoki; Yamagata, Kazuo; Ueda, Jun; Nagase, Takahiro; Haraguchi, Tokuko; Hiraoka, Yasushi; Kimura, Akatsuki; Kurumizaka, Hitoshi; Kimura, Hiroshi

    2016-10-09

    Eukaryotic gene expression is regulated in the context of chromatin. Dynamic changes in post-translational histone modification are thought to play key roles in fundamental cellular functions such as regulation of the cell cycle, development, and differentiation. To elucidate the relationship between histone modifications and cellular functions, it is important to monitor the dynamics of modifications in single living cells. A genetically encoded probe called mintbody (modification-specific intracellular antibody), which is a single-chain variable fragment tagged with a fluorescent protein, has been proposed as a useful visualization tool. However, the efficacy of intracellular expression of antibody fragments has been limited, in part due to different environmental conditions in the cytoplasm compared to the endoplasmic reticulum where secreted proteins such as antibodies are folded. In this study, we have developed a new mintbody specific for histone H4 Lys20 monomethylation (H4K20me1). The specificity of the H4K20me1-mintbody in living cells was verified using yeast mutants and mammalian cells in which this target modification was diminished. Expression of the H4K20me1-mintbody allowed us to monitor the oscillation of H4K20me1 levels during the cell cycle. Moreover, dosage-compensated X chromosomes were visualized using the H4K20me1-mintbody in mouse and nematode cells. Using X-ray crystallography and mutational analyses, we identified critical amino acids that contributed to stabilization and/or proper folding of the mintbody. Taken together, these data provide important implications for future studies aimed at developing functional intracellular antibodies. Specifically, the H4K20me1-mintbody provides a powerful tool to track this particular histone modification in living cells and organisms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Molecular insights into the recognition of N-terminal histone modifications by the BRPF1 bromodomain

    PubMed Central

    Poplawski, Amanda; Hu, Kaifeng; Lee, Woonghee; Natesan, Senthil; Peng, Danni; Carlson, Samuel; Shi, Xiaobing; Balaz, Stefan; Markley, John L.; Glass, Karen C.

    2014-01-01

    The monocytic leukemic zinc-finger (MOZ) histone acetyltransferase (HAT) acetylates free histones H3, H4, H2A, and H2B in vitro and is associated with up-regulation of gene transcription. The MOZ HAT functions as a quaternary complex with the bromodomain-PHD finger protein 1 (BRPF1), inhibitor of growth 5 (ING5), and hEaf6 subunits. BRPF1 links the MOZ catalytic subunit to the ING5 and hEaf6 subunits, thereby promoting MOZ HAT activity. Human BRPF1 contains multiple effector domains with known roles in gene transcription, and chromatin binding and remodeling. However, the biological function of the BRPF1 bromodomain remains unknown. Our findings reveal novel interactions of the BRPF1 bromodomain with multiple acetyllysine residues on the N-terminus of histones, and show it preferentially selects for H2AK5ac, H4K12ac and H3K14ac. We used chemical shift perturbation data from NMR titration experiments to map the BRPF1 bromodomain ligand binding pocket and identified key residues responsible for coordination of the post-translationally modified histones. Extensive molecular dynamics simulations were used to generate structural models of bromodomain-histone ligand complexes, to analyze H-bonding and other interactions, and to calculate the binding free energies. Our results outline the molecular mechanism driving binding specificity of the BRPF1 bromodomain for discrete acetyllysine residues on the N-terminal histone tails. Together these data provide insights on how histone recognition by the bromodomain directs the biological function of BRPF1, ultimately targeting the MOZ HAT complex to chromatin substrates. PMID:24333487

  5. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles.

    PubMed

    Aiese Cigliano, Riccardo; Sanseverino, Walter; Cremona, Gaetana; Ercolano, Maria R; Conicella, Clara; Consiglio, Federica M

    2013-01-28

    Histone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy. Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.

  6. Dynamics simulation on the flexibility and backbone motions of HP1 chromodomain bound to free and lysine 9-methylated histone H3 tails

    NASA Astrophysics Data System (ADS)

    Jiang, Yanke; Zou, Jianwei; Zeng, Min; Zhang, Na; Yu, Qingsen

    Histone methylation has emerged as a central epigenetic modification with both activating and repressive roles in eukaryotic chromatin. Drosophila HP1 (heterochromatin-associated protein 1) is one of the chromodomain proteins that contain the essential aromatic residues as the recognition pocket for lysine methylated histone H3 tail. The aromatic cage indicates that the complex of chromodomain protein binding lysine methylated histone H3 tail can be seen as a typical host-guest system between protein and protein. About 10-ns molecular dynamics simulations have been carried out in this study to examine how the presence of mono-, trimethylated lysine 9 histone H3 tail (Me1K9, Me3K9 H3) influences the motions of HP1 protein receptor. The study shows that the conformation of HP1 protein free of H3 tail easily changes, whereas that of HP1 protein bound to methylated H3 tail does not. But the conformation of inserted Me1K9 H3 changes obviously as the Me1K recognition makes hydrogen-bonded interactions associated with the aromatic cage even more unstable than those in free HP1 protein. The conformational change of Me1K9 H3 is correlated with the motions of HP1 protein. As the recognition factor going from Me1K to Me3K produces a more favorable interaction for aromatic ring, hydrogen-bonded interactions associated with aromatic cage in Me3K9 H3-HP1 complex were observed to be much more stable than those in Me1K9 H3-HP1 complex and free HP1. Because of correlation, the flexibility of Me3K9 H3 decreases. The simulations indicate that both the MeK and the surrounding histone tail sequence are necessary features of recognition which significantly affect the flexibility and backbone motions of HP1 chromodomain. These findings confirm a regulatory mechanism of protein-protein interactions through a trimethylated post-translational modification.

  7. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    PubMed Central

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  8. Multigenerational epigenetic adaptation of the hepatic wound-healing response.

    PubMed

    Zeybel, Müjdat; Hardy, Timothy; Wong, Yi K; Mathers, John C; Fox, Christopher R; Gackowska, Agata; Oakley, Fiona; Burt, Alastair D; Wilson, Caroline L; Anstee, Quentin M; Barter, Matt J; Masson, Steven; Elsharkawy, Ahmed M; Mann, Derek A; Mann, Jelena

    2012-09-01

    We investigated whether ancestral liver damage leads to heritable reprogramming of hepatic wound healing in male rats. We found that a history of liver damage corresponds with transmission of an epigenetic suppressive adaptation of the fibrogenic component of wound healing to the male F1 and F2 generations. Underlying this adaptation was less generation of liver myofibroblasts, higher hepatic expression of the antifibrogenic factor peroxisome proliferator-activated receptor γ (PPAR-γ) and lower expression of the profibrogenic factor transforming growth factor β1 (TGF-β1) compared to rats without this adaptation. Remodeling of DNA methylation and histone acetylation underpinned these alterations in gene expression. Sperm from rats with liver fibrosis were enriched for the histone variant H2A.Z and trimethylation of histone H3 at Lys27 (H3K27me3) at PPAR-γ chromatin. These modifications to the sperm chromatin were transmittable by adaptive serum transfer from fibrotic rats to naive rats and similar modifications were induced in mesenchymal stem cells exposed to conditioned media from cultured rat or human myofibroblasts. Thus, it is probable that a myofibroblast-secreted soluble factor stimulates heritable epigenetic signatures in sperm so that the resulting offspring better adapt to future fibrogenic hepatic insults. Adding possible relevance to humans, we found that people with mild liver fibrosis have hypomethylation of the PPARG promoter compared to others with severe fibrosis.

  9. Mild performic acid oxidation enhances chromatographic and top down mass spectrometric analyses of histones.

    PubMed

    Pesavento, James J; Garcia, Benjamin A; Streeky, James A; Kelleher, Neil L; Mizzen, Craig A

    2007-09-01

    Recent developments in top down mass spectrometry have enabled closely related histone variants and their modified forms to be identified and quantitated with unprecedented precision, facilitating efforts to better understand how histones contribute to the epigenetic regulation of gene transcription and other nuclear processes. It is therefore crucial that intact MS profiles accurately reflect the levels of variants and modified forms present in a given cell type or cell state for the full benefit of such efforts to be realized. Here we show that partial oxidation of Met and Cys residues in histone samples prepared by conventional methods, together with oxidation that can accrue during storage or during chip-based automated nanoflow electrospray ionization, confounds MS analysis by altering the intact MS profile as well as hindering posttranslational modification localization after MS/MS. We also describe an optimized performic acid oxidation procedure that circumvents these problems without catalyzing additional oxidations or altering the levels of posttranslational modifications common in histones. MS and MS/MS of HeLa cell core histones confirmed that Met and Cys were the only residues oxidized and that complete oxidation restored true intact abundance ratios and significantly enhanced MS/MS data quality. This allowed for the unequivocal detection, at the intact molecule level, of novel combinatorially modified forms of H4 that would have been missed otherwise. Oxidation also enhanced the separation of human core histones by reverse phase chromatography and decreased the levels of salt-adducted forms observed in ESI-FTMS. This method represents a simple and easily automated means for enhancing the accuracy and sensitivity of top down analyses of combinatorially modified forms of histones that may also be of benefit for top down or bottom up analyses of other proteins.

  10. Excess free histone H3 localizes to centrosomes for proteasome-mediated degradation during mitosis in metazoans.

    PubMed

    Wike, Candice L; Graves, Hillary K; Wason, Arpit; Hawkins, Reva; Gopalakrishnan, Jay; Schumacher, Jill; Tyler, Jessica K

    2016-08-17

    The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.

  11. Histone modifications controlling native and induced neural stem cell identity.

    PubMed

    Broccoli, Vania; Colasante, Gaia; Sessa, Alessandro; Rubio, Alicia

    2015-10-01

    During development, neural progenitor cells (NPCs) that are capable of self-renewing maintain a proliferative cellular pool while generating all differentiated neural cell components. Although the genetic network of transcription factors (TFs) required for neural specification has been well characterized, the unique set of histone modifications that accompanies this process has only recently started to be investigated. In vitro neural differentiation of pluripotent stem cells is emerging as a powerful system to examine epigenetic programs. Deciphering the histone code and how it shapes the chromatin environment will reveal the intimate link between epigenetic changes and mechanisms for neural fate determination in the developing nervous system. Furthermore, it will offer a molecular framework for a stringent comparison between native and induced neural stem cells (iNSCs) generated by direct neural cell conversion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In Utero Alcohol Exposure and the Alteration of Histone Marks in the Developing Fetus: An Epigenetic Phenomenon of Maternal Drinking

    PubMed Central

    Mandal, Chanchal; Halder, Debasish; Jung, Kyoung Hwa; Chai, Young Gyu

    2017-01-01

    Ethanol is well known for its teratogenic effects during fetal development. Maternal alcohol consumption allows the developing fetus to experience the detrimental effects of alcohol exposure. Alcohol-mediated teratogenic effects can vary based on the dosage and the length of exposure. The specific mechanism of action behind this teratogenic effect is still unknown. Previous reports demonstrated that alcohol participates in epigenetic alterations, especially histone modifications during fetal development. Additional research is necessary to understand the correlation between major epigenetic events and alcohol-mediated teratogenesis such as that observed in fetal alcohol spectrum disorder (FASD). Here, we attempted to collect all the available information concerning alcohol-mediated histone modifications during gestational fetal development. We hope that this review will aid researchers to further examine the issues associated with ethanol exposure. PMID:29104501

  13. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2.

    PubMed

    Christofides, Anthos; Karantanos, Theodoros; Bardhan, Kankana; Boussiotis, Vassiliki A

    2016-12-20

    Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity.

  14. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2

    PubMed Central

    Bardhan, Kankana; Boussiotis, Vassiliki A.

    2016-01-01

    Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity. PMID:27793053

  15. O-GlcNAcylation of histone deacetylases 1 in hepatocellular carcinoma promotes cancer progression.

    PubMed

    Zhu, Guizhou; Tao, Tao; Zhang, Dongmei; Liu, Xiaojuan; Qiu, Huiyuan; Han, LiJian; Xu, Zhiwei; Xiao, Ying; Cheng, Chun; Shen, Aiguo

    2016-08-01

    Hepatocellular carcinoma (HCC) is a malignant tumor originating in the liver. Previous studies have indicated that O-GlcNAc transferase (OGT) and histone deacetylase-1 (HDAC1) play important roles in the pathogenesis of HCC. In the present study, we investigated the physical link between OGT and HDAC1. The O-GlcNAcylation of HDAC1 is overexpressed in HCC. We found that HDAC1 has two major sites of O-GlcNAcylation in its histone deacetylase domain. HDAC1 O-GlcNAcylation increases the activated phosphorylation of HDAC1, which enhances its enzyme activity. HDAC1 O-GlcNAc mutants promote the p21 transcription regulation through affecting the acetylation levels of histones from chromosome, and then influence the proliferation of HCC cells. We also found that mutants of O-GlcNAcylation site of HDAC1 affect invasion and migration of HepG2 cells. E-cadherin level is highly up-regulated in HDAC1 O-GlcNAc mutant-treated liver cancer cells, which inhibit the occurrence and development of HCC. Our findings suggest that OGT promotes the O-GlcNAc modification of HDAC1in the development of HCC. Therefore, inhibiting O-GlcNAcylation of HDAC1 may repress the progression of HCC. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Synthesis and biological evaluation of largazole zinc-binding group analogs.

    PubMed

    Kim, Bumki; Ratnayake, Ranjala; Lee, Hyunji; Shi, Guqin; Zeller, Sabrina L; Li, Chenglong; Luesch, Hendrik; Hong, Jiyong

    2017-06-15

    Histone acetylation is an extensively investigated post-translational modification that plays an important role as an epigenetic regulator. It is controlled by histone acetyl transferases (HATs) and histone deacetylases (HDACs). The overexpression of HDACs and consequent hypoacetylation of histones have been observed in a variety of different diseases, leading to a recent focus of HDACs as attractive drug targets. The natural product largazole is one of the most potent natural HDAC inhibitors discovered so far and a number of largazole analogs have been prepared to define structural requirements for its HDAC inhibitory activity. However, previous structure-activity relationship studies have heavily investigated the macrocycle region of largazole, while there have been only limited efforts to probe the effect of various zinc-binding groups (ZBGs) on HDAC inhibition. Herein, we prepared a series of largazole analogs with various ZBGs and evaluated their HDAC inhibition and cytotoxicity. While none of the analogs tested were as potent or selective as largazole, the Zn 2+ -binding affinity of each ZBG correlated with HDAC inhibition and cytotoxicity. We expect that our findings will aid in building a deeper understanding of the role of ZBGs in HDAC inhibition as well as provide an important basis for the future development of new largazole analogs with non-thiol ZBGs as novel therapeutics for cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.).

    PubMed

    Ayyappan, Vasudevan; Kalavacharla, Venu; Thimmapuram, Jyothi; Bhide, Ketaki P; Sripathi, Venkateswara R; Smolinski, Tomasz G; Manoharan, Muthusamy; Thurston, Yaqoob; Todd, Antonette; Kingham, Bruce

    2015-01-01

    Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress.

  18. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Thimmapuram, Jyothi; Bhide, Ketaki P.; Sripathi, Venkateswara R.; Smolinski, Tomasz G.; Manoharan, Muthusamy; Thurston, Yaqoob; Todd, Antonette; Kingham, Bruce

    2015-01-01

    Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress. PMID:26167691

  19. Ketogenic diet improves the spatial memory impairment caused by exposure to hypobaric hypoxia through increased acetylation of histones in rats.

    PubMed

    Zhao, Ming; Huang, Xin; Cheng, Xiang; Lin, Xiao; Zhao, Tong; Wu, Liying; Yu, Xiaodan; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2017-01-01

    Exposure to hypobaric hypoxia causes neuron cell damage, resulting in impaired cognitive function. Effective interventions to antagonize hypobaric hypoxia-induced memory impairment are in urgent need. Ketogenic diet (KD) has been successfully used to treat drug-resistant epilepsy and improves cognitive behaviors in epilepsy patients and other pathophysiological animal models. In the present study, we aimed to explore the potential beneficial effects of a KD on memory impairment caused by hypobaric hypoxia and the underlying possible mechanisms. We showed that the KD recipe used was ketogenic and increased plasma levels of ketone bodies, especially β-hydroxybutyrate. The results of the behavior tests showed that the KD did not affect general locomotor activity but obviously promoted spatial learning. Moreover, the KD significantly improved the spatial memory impairment caused by hypobaric hypoxia (simulated altitude of 6000 m, 24 h). In addition, the improving-effect of KD was mimicked by intraperitoneal injection of BHB. The western blot and immunohistochemistry results showed that KD treatment not only increased the acetylated levels of histone H3 and histone H4 compared to that of the control group but also antagonized the decrease in the acetylated histone H3 and H4 when exposed to hypobaric hypoxia. Furthermore, KD-hypoxia treatment also promoted PKA/CREB activation and BDNF protein expression compared to the effects of hypoxia alone. These results demonstrated that KD is a promising strategy to improve spatial memory impairment caused by hypobaric hypoxia, in which increased modification of histone acetylation plays an important role.

  20. The histone codes for meiosis.

    PubMed

    Wang, Lina; Xu, Zhiliang; Khawar, Muhammad Babar; Liu, Chao; Li, Wei

    2017-09-01

    Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field. © 2017 Society for Reproduction and Fertility.

  1. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Amrita; Sanyal, Sulagna; Majumder, Parijat

    Recognition of core histone components of chromatin along with chromosomal DNA by a class of small molecule modulators is worth examining to evaluate their intracellular mode of action. A plant alkaloid ellipticine (ELP) which is a putative anticancer agent has so far been reported to function via DNA intercalation, association with topoisomerase II and binding to telomere region. However, its effect upon the potential intracellular target, chromatin is hitherto unreported. Here we have characterized the biomolecular recognition between ELP and different hierarchical levels of chromatin. The significant result is that in addition to DNA, it binds to core histone(s) andmore » can be categorized as a ‘dual binder’. As a sequel to binding with histone(s) and core octamer, it alters post-translational histone acetylation marks. We have further demonstrated that it has the potential to modulate gene expression thereby regulating several key biological processes such as nuclear organization, transcription, translation and histone modifications. - Highlights: • Ellipticine acts a dual binder binding to both DNA and core histone(s). • It induces structural perturbations in chromatin, chromatosome and histone octamer. • It alters histones acetylation and affects global gene expression.« less

  2. mRNA Traffic Control Reviewed: N6-Methyladenosine (m6 A) Takes the Driver's Seat.

    PubMed

    Visvanathan, Abhirami; Somasundaram, Kumaravel

    2018-01-01

    Messenger RNA is a flexible tool box that plays a key role in the dynamic regulation of gene expression. RNA modifications variegate the message conveyed by the mRNA. Similar to DNA and histone modifications, mRNA modifications are reversible and play a key role in the regulation of molecular events. Our understanding about the landscape of RNA modifications is still rudimentary in contrast to DNA and histone modifications. The major obstacle has been the lack of sensitive detection methods since they are non-editing events. However, with the advent of next-generation sequencing techniques, RNA modifications are being identified precisely at single nucleotide resolution. In recent years, methylation at the N6 position of adenine (m 6 A) has gained the attention of RNA biologists. The m 6 A modification has a set of writers (methylases), erasers (demethylases), and readers. Here, we provide a summary of interesting facts, conflicting findings, and recent advances in the technical and functional aspects of the m 6 A epitranscriptome. © 2017 WILEY Periodicals, Inc.

  3. Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin.

    PubMed

    Selvi B, Ruthrotha; Pradhan, Suman Kalyan; Shandilya, Jayasha; Das, Chandrima; Sailaja, Badi Sri; Shankar G, Naga; Gadad, Shrikanth S; Reddy, Ashok; Dasgupta, Dipak; Kundu, Tapas K

    2009-02-27

    DNA-binding anticancer agents cause alteration in chromatin structure and dynamics. We report the dynamic interaction of the DNA intercalator and potential anticancer plant alkaloid, sanguinarine (SGR), with chromatin. Association of SGR with different levels of chromatin structure was enthalpy driven with micromolar dissociation constant. Apart from DNA, it binds with comparable affinity with core histones and induces chromatin aggregation. The dual binding property of SGR leads to inhibition of core histone modifications. Although it potently inhibits H3K9 methylation by G9a in vitro, H3K4 and H3R17 methylation are more profoundly inhibited in cells. SGR inhibits histone acetylation both in vitro and in vivo. It does not affect the in vitro transcription from DNA template but significantly represses acetylation-dependent chromatin transcription. SGR-mediated repression of epigenetic marks and the alteration of chromatin geography (nucleography) also result in the modulation of global gene expression. These data, conclusively, show an anticancer DNA binding intercalator as a modulator of chromatin modifications and transcription in the chromatin context.

  4. Inhibition of intra-Golgi transport in vitro by mitotic kinase.

    PubMed

    Stuart, R A; Mackay, D; Adamczewski, J; Warren, G

    1993-02-25

    It has previously been shown that exocytic and endocytic membrane traffic are inhibited in mitotic mammalian cells. Here we have used a cell-free intra-Golgi transport assay supplemented with heterologous cytosols to mimic this effect in vitro. Cytosols with high histone kinase activity, made either from mitotic cells or by cyclin A treatment of interphase cells, inhibited intra-Golgi transport by up to 75%. Inhibition of transport was reversed by the kinase inhibitor staurosporine or by reduction in ATP levels leading to inactivation of histone kinase. The data indicate that cell cycle control of intra-Golgi transport is due to a reversible modification of cytosol, and this assay system may be used to study the molecular mechanism of mitotic transport inhibition in mammalian cells.

  5. Histone Variant Regulates DNA Repair via Chromatin Condensation | Center for Cancer Research

    Cancer.gov

    Activating the appropriate DNA repair pathway is essential for maintaining the stability of the genome after a break in both strands of DNA. How a pathway is selected, however, is not well understood. Since these double strand breaks (DSBs) occur while DNA is packaged as chromatin, changes in its organization are necessary for repair to take place. Numerous alterations have been associated with DSBs, including modifications of histone tails and exchange of histone variants, some increasing chromatin accessibility, others reducing it. In fact, distinct domains flanking a single DSB have been observed that are bound by opposing repair pathway proteins 53BP1and BRCA1, which promote non-homologous end joining (NHEJ) and homologous recombination (HR), respectively. To investigate whether DSB-proximal chromatin reorganization affects repair pathway selection, Philipp Oberdoerffer, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues performed a high-throughput RNA interference (RNAi) screen for chromatin-related genes that modulate HR.

  6. Epigenetic regulation and chromatin remodeling in learning and memory.

    PubMed

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-13

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.

  7. Histone Methylation Restrains the Expression of Subtype-Specific Genes during Terminal Neuronal Differentiation in Caenorhabditis elegans

    PubMed Central

    Chiang, Victor; Chalfie, Martin

    2013-01-01

    Although epigenetic control of stem cell fate choice is well established, little is known about epigenetic regulation of terminal neuronal differentiation. We found that some differences among the subtypes of Caenorhabditis elegans VC neurons, particularly the expression of the transcription factor gene unc-4, require histone modification, most likely H3K9 methylation. An EGF signal from the vulva alleviated the epigenetic repression of unc-4 in vulval VC neurons but not the more distant nonvulval VC cells, which kept unc-4 silenced. Loss of the H3K9 methyltransferase MET-2 or H3K9me2/3 binding proteins HPL-2 and LIN-61 or a novel chromodomain protein CEC-3 caused ectopic unc-4 expression in all VC neurons. Downstream of the EGF signaling in vulval VC neurons, the transcription factor LIN-11 and histone demethylases removed the suppressive histone marks and derepressed unc-4. Behaviorally, expression of UNC-4 in all the VC neurons caused an imbalance in the egg-laying circuit. Thus, epigenetic mechanisms help establish subtype-specific gene expression, which are needed for optimal activity of a neural circuit. PMID:24348272

  8. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance.

    PubMed

    Ramon-Krauel, Marta; Pentinat, Thais; Bloks, Vincent W; Cebrià, Judith; Ribo, Silvia; Pérez-Wienese, Ricky; Vilà, Maria; Palacios-Marin, Ivonne; Fernández-Pérez, Antonio; Vallejo, Mario; Téllez, Noèlia; Rodríguez, Miguel Àngel; Yanes, Oscar; Lerin, Carles; Díaz, Rubén; Plosch, Torsten; Tietge, Uwe J F; Jimenez-Chillaron, Josep C

    2018-05-29

    Postnatal overfeeding increases the risk of chronic diseases later in life, including obesity, insulin resistance, hepatic steatosis, and type 2 diabetes. Epigenetic mechanisms might underlie the long-lasting effects associated with early nutrition. Here we aimed to explore the molecular pathways involved in early development of insulin resistance and hepatic steatosis, and we examined the potential contribution of DNA methylation and histone modifications to long-term programming of metabolic disease. We used a well-characterized mouse model of neonatal overfeeding and early adiposity by litter size reduction. Neonatal overfeeding led to hepatic insulin resistance very early in life that persisted throughout adulthood despite normalizing food intake. Up-regulation of monoacylglycerol O-acyltransferase ( Mogat) 1 conceivably mediates hepatic steatosis and insulin resistance through increasing intracellular diacylglycerol content. Early and sustained deregulation of Mogat1 was associated with a combination of histone modifications that might favor Mogat1 expression. In sum, postnatal overfeeding causes extremely rapid derangements of hepatic insulin sensitivity that remain relatively stable until adulthood. Epigenetic mechanisms, particularly histone modifications, could contribute to such long-lasting effects. Our data suggest that targeting hepatic monoacylglycerol acyltransferase activity during early life might provide a novel strategy to improve hepatic insulin sensitivity and prevent late-onset insulin resistance and fatty liver disease.-Ramon-Krauel, M., Pentinat, T., Bloks, V. W., Cebrià, J., Ribo, S., Pérez-Wienese, R., Vilà, M., Palacios-Marin, I., Fernández-Pérez, A., Vallejo, M., Téllez, N., Rodríguez, M. À., Yanes, O., Lerin, C., Díaz, R., Plosch, T., Tietge, U. J. F., Jimenez-Chillaron, J. C. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance.

  9. Modification of the histone tetramer at the H3-H3 interface impacts tetrasome conformations and dynamics

    NASA Astrophysics Data System (ADS)

    Ordu, Orkide; Kremser, Leopold; Lusser, Alexandra; Dekker, Nynke H.

    2018-03-01

    Nucleosomes consisting of a short piece of deoxyribonucleic acid (DNA) wrapped around an octamer of histone proteins form the fundamental unit of chromatin in eukaryotes. Their role in DNA compaction comes with regulatory functions that impact essential genomic processes such as replication, transcription, and repair. The assembly of nucleosomes obeys a precise pathway in which tetramers of histones H3 and H4 bind to the DNA first to form tetrasomes, and two dimers of histones H2A and H2B are subsequently incorporated to complete the complex. As viable intermediates, we previously showed that tetrasomes can spontaneously flip between a left-handed and right-handed conformation of DNA-wrapping. To pinpoint the underlying mechanism, here we investigated the role of the H3-H3 interface for tetramer flexibility in the flipping process at the single-molecule level. Using freely orbiting magnetic tweezers, we studied the assembly and structural dynamics of individual tetrasomes modified at the cysteines close to this interaction interface by iodoacetamide (IA) in real time. While such modification did not affect the structural properties of the tetrasomes, it caused a 3-fold change in their flipping kinetics. The results indicate that the IA-modification enhances the conformational plasticity of tetrasomes. Our findings suggest that subnucleosomal dynamics may be employed by chromatin as an intrinsic and adjustable mechanism to regulate DNA supercoiling.

  10. Histone H3 Tails Containing Dimethylated Lysine and Adjacent Phosphorylated Serine Modifications Adopt a Specific Conformation during Mitosis and Meiosis▿ †

    PubMed Central

    Eberlin, Adrien; Grauffel, Cédric; Oulad-Abdelghani, Mustapha; Robert, Flavie; Torres-Padilla, Maria-Elena; Lambrot, Romain; Spehner, Danièle; Ponce-Perez, Lourdes; Würtz, Jean-Marie; Stote, Roland H.; Kimmins, Sarah; Schultz, Patrick; Dejaegere, Annick; Tora, Laszlo

    2008-01-01

    Condensation of chromatin, mediated in part by posttranslational modifications of histones, is essential for cell division during mitosis. Histone H3 tails are dimethylated on lysine (Kme2) and become phosphorylated on serine (Sp) residues during mitosis. We have explored the possibility that these double modifications are involved in the establishment of H3 tail conformations during the cell cycle. Here we describe a specific chromatin conformation occurring at Kme2 and adjacently phosphorylated S of H3 tails upon formation of a hydrogen bond. This conformation appears exclusively between early prophase and early anaphase of the mitosis, when chromatin condensation is highest. Moreover, we observed that the conformed H3Kme2Sp tail is present at the diplotene and metaphase stages in spermatocytes and oocytes. Our data together with results obtained by cryoelectron microscopy suggest that the conformation of Kme2Sp-modified H3 tails changes during mitosis and meiosis. This is supported by biostructural modeling of a modified histone H3 tail bound by an antibody, indicating that Kme2Sp-modified H3 tails can adopt at least two different conformations. Thus, the H3K9me2S10p and the H3K27me2S28p sites are involved in the acquisition of specific chromatin conformations during chromatin condensation for cell division. PMID:18180282

  11. A new paradigm in toxicology and teratology: altering gene activity in the absence of DNA sequence variation.

    PubMed

    Reamon-Buettner, Stella Marie; Borlak, Jürgen

    2007-07-01

    'Epigenetics' is a heritable phenomenon without change in primary DNA sequence. In recent years, this field has attracted much attention as more epigenetic controls of gene activities are being discovered. Such epigenetic controls ensue from an interplay of DNA methylation, histone modifications, and RNA-mediated pathways from non-coding RNAs, notably silencing RNA (siRNA) and microRNA (miRNA). Although epigenetic regulation is inherent to normal development and differentiation, this can be misdirected leading to a number of diseases including cancer. All the same, many of the processes can be reversed offering a hope for epigenetic therapies such as inhibitors of enzymes controlling epigenetic modifications, specifically DNA methyltransferases, histone deacetylases, and RNAi therapeutics. 'In utero' or early life exposures to dietary and environmental exposures can have a profound effect on our epigenetic code, the so-called 'epigenome', resulting in birth defects and diseases developed later in life. Indeed, examples are accumulating in which environmental exposures can be attributed to epigenetic causes, an encouraging edge towards greater understanding of the contribution of epigenetic influences of environmental exposures. Routine analysis of epigenetic modifications as part of the mechanisms of action of environmental contaminants is in order. There is, however, an explosion of research in the field of epigenetics and to keep abreast of these developments could be a challenge. In this paper, we provide an overview of epigenetic mechanisms focusing on recent reviews and studies to serve as an entry point into the realm of 'environmental epigenetics'.

  12. CTCF-KDM4A complex correlates with histone modifications that negatively regulate CHD5 gene expression in cancer cell lines

    PubMed Central

    Guerra-Calderas, Lissania; González-Barrios, Rodrigo; Patiño, Carlos César; Alcaraz, Nicolás; Salgado-Albarrán, Marisol; de León, David Cantú; Hernández, Clementina Castro; Sánchez-Pérez, Yesennia; Maldonado-Martínez, Héctor Aquiles; De la Rosa-Velazquez, Inti A.; Vargas-Romero, Fernanda; Herrera, Luis A.; García-Carrancá, Alejandro; Soto-Reyes, Ernesto

    2018-01-01

    Histone demethylase KDM4A is involved in H3K9me3 and H3K36me3 demethylation, which are epigenetic modifications associated with gene silencing and RNA Polymerase II elongation, respectively. KDM4A is abnormally expressed in cancer, affecting the expression of multiple targets, such as the CHD5 gene. This enzyme localizes at the first intron of CHD5, and the dissociation of KDM4A increases gene expression. In vitro assays showed that KDM4A-mediated demethylation is enhanced in the presence of CTCF, suggesting that CTCF could increase its enzymatic activity in vivo, however the specific mechanism by which CTCF and KDM4A might be involved in the CHD5 gene repression is poorly understood. Here, we show that CTCF and KDM4A form a protein complex, which is recruited into the first intron of CHD5. This is related to a decrease in H3K36me3/2 histone marks and is associated with its transcriptional downregulation. Depletion of CTCF or KDM4A by siRNA, triggered the reactivation of CHD5 expression, suggesting that both proteins are involved in the negative regulation of this gene. Furthermore, the knockout of KDM4A restored the CHD5 expression and H3K36me3 and H3K36me2 histone marks. Such mechanism acts independently of CHD5 promoter DNA methylation. Our findings support a novel mechanism of epigenetic repression at the gene body that does not involve promoter silencing. PMID:29682202

  13. Epigenetic modulation with HDAC inhibitor CG200745 induces anti-proliferation in non-small cell lung cancer cells.

    PubMed

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer.

  14. Epigenetic Modulation with HDAC Inhibitor CG200745 Induces Anti-Proliferation in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer. PMID:25781604

  15. Osthole improves function of periodontitis periodontal ligament stem cells via epigenetic modification in cell sheets engineering.

    PubMed

    Sun, Jin; Dong, Zhiwei; Zhang, Yang; He, Xiaoning; Fei, Dongdong; Jin, Fang; Yuan, Lin; Li, Bei; Jin, Yan

    2017-07-12

    Inflammatory microenvironment causes the change of epigenetic modification in periodontal ligament stem cells derived from periodontitis tissues (P-PDLSCs), which results in defective osteogenic differentiation compared to cells from healthy tissues. It's urgent to explore therapeutic strategies aimed at epigenetic targets associated with the regenerative ability of PDLSCs. Osthole, a small-molecule compound extracted from Chinese herbs, has been documented to promote osteogenesis and cell sheets formation of healthy PDLSCs. However, whether osthole shows same effect on P-PDLSCs and the mechanism of promotive effect is still unknown. The purpose of this study was to determine whether Osthole could restore defective osteogenic differentiation of P-PDLSCs via epigenetic modification. We demonstrated that 10 -7  Mol/L of Osthole was the best concentration for osteogenic differentiation and proliferation of P-PDLSCs. Mechanistically, we also found that Osthole upregulated MOZ and MORF, histone acetylases that specifically catalyze acetylation of Histone3 lisine9 (H3K9) and Histone3 lisine14 (H3K14), which are key regulators in osteogenic differentiation of P-PDLSCs. Furthermore, Osthole treatment improved cell sheet formation and enhanced the bone formation of PDLSC sheets in animal models of periodontitis. Our study suggests that Osthole is a promising drug to cure periodontitis via regulating epigenetic modification in cell sheets engineering.

  16. Histone acetyltransferase general control non-repressed protein 5 (GCN5) affects the fatty acid composition of Arabidopsis thaliana seeds by acetylating fatty acid desaturase3 (FAD3).

    PubMed

    Wang, Tianya; Xing, Jiewen; Liu, Xinye; Liu, Zhenshan; Yao, Yingyin; Hu, Zhaorong; Peng, Huiru; Xin, Mingming; Zhou, Dao-Xiu; Zhang, Yirong; Ni, Zhongfu

    2016-12-01

    Seed oils are important natural resources used in the processing and preparation of food. Histone modifications represent key epigenetic mechanisms that regulate gene expression, plant growth and development. However, histone modification events during fatty acid (FA) biosynthesis are not well understood. Here, we demonstrate that a mutation of the histone acetyltransferase GCN5 can decrease the ratio of α-linolenic acid (ALA) to linoleic acid (LA) in seed oil. Using RNA-Seq and ChIP assays, we identified FAD3, LACS2, LPP3 and PLAIIIβ as the targets of GCN5. Notably, the GCN5-dependent H3K9/14 acetylation of FAD3 determined the expression levels of FAD3 in Arabidopsis thaliana seeds, and the ratio of ALA/LA in the gcn5 mutant was rescued to the wild-type levels through the overexpression of FAD3. The results of this study indicated that GCN5 modulated FA biosynthesis by affecting the acetylation levels of FAD3. We provide evidence that histone acetylation is involved in FA biosynthesis in Arabidopsis seeds and might contribute to the optimization of the nutritional structure of edible oils through epigenetic engineering. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  17. Effects of histone deacetylase inhibitory prodrugs on epigenetic changes and DNA damage response in tumor and heart of glioblastoma xenograft.

    PubMed

    Tarasenko, Nataly; Nudelman, Abraham; Rozic, Gabriela; Cutts, Suzanne M; Rephaeli, Ada

    2017-08-01

    The histone deacetylase (HDAC) inhibitory prodrugs of butyric (AN7) and valproic (AN446) acids, which release the active acids upon metabolic degradation, were studied examining their differential effects on the viability, HDAC inhibitory activity and the DNA damage response (DDR), in glioblastoma cell and normal human astrocytes (NHAs). In xenografts of glioblastoma, AN7 or AN446 given or the combination of each of them with Dox augmented the anticancer activity of Dox and protected the heart from its toxicity. In order to determine the processes underlying these opposing effects, the changes induced by these treatments on the epigenetic landscape, the DDR, and fibrosis were compared in tumors and hearts of glioblastoma xenografts. The potency of AN7 and AN446 as HDAC inhibitors was correlated with their effects on the viability of the cancer and non-cancer cells. The prodrugs affected the epigenetic landscape and the DDR in a tissue-specific and context-dependent manner. Findings suggest that the selectivity of the prodrugs could be attributed to their different effects on histone modification patterns in normal vs. transformed tissues. Further studies are warranted to substantiate the potential of AN446 as a new anticancer drug for glioblastoma patients.

  18. The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) production.

    PubMed

    Xu, Guiliang; Liu, Guilin; Xiong, Sidong; Liu, Haiyan; Chen, Xi; Zheng, Biao

    2015-02-27

    SET and MYND domain-containing 2 (Smyd2), a histone 3 lysine 4- and histone 3 lysine 36 (H3K36)-specific methyltransferase, plays critical roles in cardiac development and tumorigenesis. However, the role of Smyd2 in immunity and inflammation remains poorly understood. In this study, we report that Smyd2 is a novel negative regulator for macrophage activation and M1 polarization. Elevated Smyd2 expression suppresses the production of proinflammatory cytokines, including IL-6 and TNF, and inhibits the expression of important cell surface molecules, including major MHC-II and costimulatory molecules. Furthermore, macrophages with high Smyd2 expression inhibit Th-17 cell differentiation but promote regulatory T cell differentiation as a result of increased TGF-β production and decreased IL-6 secretion. In macrophages, Smyd2 specifically facilitates H3K36 dimethylation at Tnf and Il6 promoters to suppress their transcription and inhibits NF-κB and ERK signaling. Therefore, our data demonstrate that epigenetic modification by Smyd2-mediated H3K36 dimethylation at Tnf and Il6 promoters plays an important role in the regulation of macrophage activation during inflammation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae.

    PubMed

    Soriano, Ignacio; Morafraile, Esther C; Vázquez, Enrique; Antequera, Francisco; Segurado, Mónica

    2014-09-13

    Eukaryotic genomes are replicated during S phase according to a temporal program. Several determinants control the timing of origin firing, including the chromatin environment and epigenetic modifications. However, how chromatin structure influences the timing of the activation of specific origins is still poorly understood. By performing high-resolution analysis of genome-wide nucleosome positioning we have identified different chromatin architectures at early and late replication origins. These different patterns are already established in G1 and are tightly correlated with the organization of adjacent transcription units. Moreover, specific early and late nucleosomal patterns are fixed robustly, even in rpd3 mutants in which histone acetylation and origin timing have been significantly altered. Nevertheless, higher histone acetylation levels correlate with the local modulation of chromatin structure, leading to increased origin accessibility. In addition, we conducted parallel analyses of replication and nucleosome dynamics that revealed that chromatin structure at origins is modulated during origin activation. Our results show that early and late replication origins present distinctive nucleosomal configurations, which are preferentially associated to different genomic regions. Our data also reveal that origin structure is dynamic and can be locally modulated by histone deacetylation, as well as by origin activation. These data offer novel insight into the contribution of chromatin structure to origin selection and firing in budding yeast.

  20. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma | Office of Cancer Genomics

    Cancer.gov

    In a recent Nature article, Morin et al. uncovered a novel role for chromatin modification in driving the progression of two non-Hodgkin lymphomas (NHLs), follicular lymphoma and diffuse large B-cell lymphoma. Through DNA and RNA sequencing of 117 tumor samples and 10 assorted cell lines, the authors identified and validated 109 genes with multiple mutations in these B-cell NHLs. Of the 109 genes, several genes not previously linked to lymphoma demonstrated positive selection for mutation including two genes involved in histone modification, MLL2 and MEF2B.

  1. Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression.

    PubMed

    Melas, P A; Lennartsson, A; Vakifahmetoglu-Norberg, H; Wei, Y; Åberg, E; Werme, M; Rogdaki, M; Mannervik, M; Wegener, G; Brené, S; Mathé, A A; Lavebratt, C

    2013-05-07

    Neuropeptide Y (NPY) has been implicated in depression, emotional processing and stress response. Part of this evidence originates from human single-nucleotide polymorphism (SNP) studies. In the present study, we report that a SNP in the rat Npy promoter (C/T; rs105431668) affects in vitro transcription and DNA-protein interactions. Genotyping studies showed that the C-allele of rs105431668 is present in a genetic rat model of depression (Flinders sensitive line; FSL), while the SNP's T-allele is present in its controls (Flinders resistant line; FRL). In vivo experiments revealed binding of a transcription factor (CREB2) and a histone acetyltransferase (Ep300) only at the SNP locus of the FRL. Accordingly, the FRL had increased hippocampal levels of Npy mRNA and H3K18 acetylation; a gene-activating histone modification maintained by Ep300. Next, based on previous studies showing antidepressant-like effects of physical activity in the FSL, we hypothesized that physical activity may affect Npy's epigenetic status. In line with this assumption, physical activity was associated with increased levels of Npy mRNA and H3K18 acetylation. Physical activity was also associated with reduced mRNA levels of a histone deacetylase (Hdac5). Conclusively, the rat rs105431668 appears to be a functional Npy SNP that may underlie depression-like characteristics. In addition, the achieved epigenetic reprogramming of Npy provides molecular support for the putative effectiveness of physical activity as a non-pharmacological antidepressant.

  2. Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression

    PubMed Central

    Melas, P A; Lennartsson, A; Vakifahmetoglu-Norberg, H; Wei, Y; Åberg, E; Werme, M; Rogdaki, M; Mannervik, M; Wegener, G; Brené, S; Mathé, A A; Lavebratt, C

    2013-01-01

    Neuropeptide Y (NPY) has been implicated in depression, emotional processing and stress response. Part of this evidence originates from human single-nucleotide polymorphism (SNP) studies. In the present study, we report that a SNP in the rat Npy promoter (C/T; rs105431668) affects in vitro transcription and DNA–protein interactions. Genotyping studies showed that the C-allele of rs105431668 is present in a genetic rat model of depression (Flinders sensitive line; FSL), while the SNP's T-allele is present in its controls (Flinders resistant line; FRL). In vivo experiments revealed binding of a transcription factor (CREB2) and a histone acetyltransferase (Ep300) only at the SNP locus of the FRL. Accordingly, the FRL had increased hippocampal levels of Npy mRNA and H3K18 acetylation; a gene-activating histone modification maintained by Ep300. Next, based on previous studies showing antidepressant-like effects of physical activity in the FSL, we hypothesized that physical activity may affect Npy's epigenetic status. In line with this assumption, physical activity was associated with increased levels of Npy mRNA and H3K18 acetylation. Physical activity was also associated with reduced mRNA levels of a histone deacetylase (Hdac5). Conclusively, the rat rs105431668 appears to be a functional Npy SNP that may underlie depression-like characteristics. In addition, the achieved epigenetic reprogramming of Npy provides molecular support for the putative effectiveness of physical activity as a non-pharmacological antidepressant. PMID:23652932

  3. Sequence-Specific Targeting of Dosage Compensation in Drosophila Favors an Active Chromatin Context

    PubMed Central

    Gelbart, Marnie; Tolstorukov, Michael Y.; Plachetka, Annette; Kharchenko, Peter V.; Jung, Youngsook L.; Gorchakov, Andrey A.; Larschan, Erica; Gu, Tingting; Minoda, Aki; Riddle, Nicole C.; Schwartz, Yuri B.; Elgin, Sarah C. R.; Karpen, Gary H.; Pirrotta, Vincenzo; Kuroda, Mitzi I.; Park, Peter J.

    2012-01-01

    The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at “entry sites” that contain a consensus sequence motif (“MSL recognition element” or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome. PMID:22570616

  4. Convergent evolution of chromatin modification by structurally distinct enzymes: comparative enzymology of histone H3 Lys²⁷ methylation by human polycomb repressive complex 2 and vSET.

    PubMed

    Swalm, Brooke M; Hallenbeck, Kenneth K; Majer, Christina R; Jin, Lei; Scott, Margaret Porter; Moyer, Mikel P; Copeland, Robert A; Wigle, Tim J

    2013-07-15

    H3K27 (histone H3 Lys27) methylation is an important epigenetic modification that regulates gene transcription. In humans, EZH (enhancer of zeste homologue) 1 and EZH2 are the only enzymes capable of catalysing methylation of H3K27. There is great interest in understanding structure-function relationships for EZH2, as genetic alterations in this enzyme are thought to play a causal role in a number of human cancers. EZH2 is challenging to study because it is only active in the context of the multi-subunit PRC2 (polycomb repressive complex 2). vSET is a viral lysine methyltransferase that represents the smallest protein unit capable of catalysing H3K27 methylation. The crystal structure of this minimal catalytic protein has been solved and researchers have suggested that vSET might prove useful as an EZH2 surrogate for the development of active site-directed inhibitors. To test this proposition, we conducted comparative enzymatic analysis of human EZH2 and vSET and report that, although both enzymes share similar preferences for methylation of H3K27, they diverge in terms of their permissiveness for catalysing methylation of alternative histone lysine sites, their relative preferences for utilization of multimeric macromolecular substrates, their active site primary sequences and, most importantly, their sensitivity to inhibition by drug-like small molecules. The cumulative data led us to suggest that EZH2 and vSET have very distinct active site structures, despite the commonality of the reaction catalysed by the two enzymes. Hence, the EZH2 and vSET pair of enzymes represent an example of convergent evolution in which distinct structural solutions have developed to solve a common catalytic need.

  5. Epigenetics in myeloid derived suppressor cells: a sheathed sword towards cancer

    PubMed Central

    Zhang, Chao; Wang, Shuo; Liu, Yufeng; Yang, Cheng

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells composed of progenitors and precursors to myeloid cells, are deemed to participate in the development of tumor-favoring immunosuppressive microenvironment. Thus, the regulatory strategies targeting MDSCs' expansion, differentiation, accumulation and function could possibly be effective “weapons” in anti-tumor immunotherapies. Epigenetic mechanisms, which involve DNA modification, covalent histone modification and RNA interference, result in the heritable down-regulation or silencing of gene expression without a change in DNA sequences. Epigenetic modification of MDSC's functional plasticity leads to the remodeling of its characteristics, therefore reframing the microenvironment towards countering tumor growth and metastasis. This review summarized the pertinent findings on the DNA methylation, covalent histone modification, microRNAs and small interfering RNAs targeting MDSC in cancer genesis, progression and metastasis. The potentials as well as possible obstacles in translating into anti-cancer therapeutics were also discussed. PMID:27458169

  6. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men.

    PubMed

    Hammoud, Saher Sue; Nix, David A; Hammoud, Ahmad O; Gibson, Mark; Cairns, Bradley R; Carrell, Douglas T

    2011-09-01

    The sperm chromatin of fertile men retains a small number of nucleosomes that are enriched at developmental gene promoters and imprinted gene loci. This unique chromatin packaging at certain gene promoters provides these genomic loci the ability to convey instructive epigenetic information to the zygote, potentially expanding the role and significance of the sperm epigenome in embryogenesis. We hypothesize that changes in chromatin packaging may be associated with poor reproductive outcome. Seven patients with reproductive dysfunction were recruited: three had unexplained poor embryogenesis during IVF and four were diagnosed with male infertility and previously shown to have altered protamination. Genome-wide analysis of the location of histones and histone modifications was analyzed by isolation and purification of DNA bound to histones and protamines. The histone-bound fraction of DNA was analyzed using high-throughput sequencing, both initially and following chromatin immunoprecipitation. The protamine-bound fraction was hybridized to agilent arrays. DNA methylation was examined using bisulfite sequencing. Unlike fertile men, five of seven infertile men had non-programmatic (randomly distributed) histone retention genome-wide. Interestingly, in contrast to the total histone pool, the localization of H3 Lysine 4 methylation (H3K4me) or H3 Lysine 27 methylation (H3K27me) was highly similar in the gametes of infertile men compared with fertile men. However, there was a reduction in the amount of H3K4me or H3K27me retained at developmental transcription factors and certain imprinted genes. Finally, the methylation status of candidate developmental promoters and imprinted loci were altered in a subset of the infertile men. This initial genome-wide analysis of epigenetic markings in the sperm of infertile men demonstrates differences in composition and epigenetic markings compared with fertile men, especially at certain imprinted and developmental loci. Although no single locus displays a complete change in chromatin packaging or DNA modification, the data suggest that moderate changes throughout the genome exist and may have a cumulative detrimental effect on fecundity.

  7. A map of human PRDM9 binding provides evidence for novel behaviors of PRDM9 and other zinc-finger proteins in meiosis

    PubMed Central

    Noor, Nudrat; Bitoun, Emmanuelle; Tumian, Afidalina; Imbeault, Michael; Chapman, J Ross; Aricescu, A Radu

    2017-01-01

    PRDM9 binding localizes almost all meiotic recombination sites in humans and mice. However, most PRDM9-bound loci do not become recombination hotspots. To explore factors that affect binding and subsequent recombination outcomes, we mapped human PRDM9 binding sites in a transfected human cell line and measured PRDM9-induced histone modifications. These data reveal varied DNA-binding modalities of PRDM9. We also find that human PRDM9 frequently binds promoters, despite their low recombination rates, and it can activate expression of a small number of genes including CTCFL and VCX. Furthermore, we identify specific sequence motifs that predict consistent, localized meiotic recombination suppression around a subset of PRDM9 binding sites. These motifs strongly associate with KRAB-ZNF protein binding, TRIM28 recruitment, and specific histone modifications. Finally, we demonstrate that, in addition to binding DNA, PRDM9's zinc fingers also mediate its multimerization, and we show that a pair of highly diverged alleles preferentially form homo-multimers. PMID:29072575

  8. The interplay of post-translational modification and gene therapy.

    PubMed

    Osamor, Victor Chukwudi; Chinedu, Shalom N; Azuh, Dominic E; Iweala, Emeka Joshua; Ogunlana, Olubanke Olujoke

    2016-01-01

    Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery.

  9. Epigenetic Alterations in Cellular Immunity: New Insights into Autoimmune Diseases.

    PubMed

    Wang, Zijun; Lu, Qianjin; Wang, Zhihui

    2017-01-01

    Epigenetic modification is an additional regulator in immune responses as the genome-wide profiling somehow fails to explain the sophisticated mechanisms in autoimmune diseases. The effect of epigenetic modifications on adaptive immunity derives from their regulations to induce a permissive or negative gene expression. Epigenetic events, such as DNA methylation, histone modifications and microRNAs (miRNAs) are often found in T cell activation, differentiation and commitment which are the major parts in cellular immunity. Recognizing the complexity of interactions between epigenetic mechanisms and immune disturbance in autoimmune diseases is essential for the exploration of efficient therapeutic targets. In this review, we summarize a list of studies that indicate the significance of dysregulated epigenetic modifications in autoimmune diseases while focusing on T cell immunity. © 2017 The Author(s)Published by S. Karger AG, Basel.

  10. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Chanchal; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3β at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNAmore » at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3β by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3β silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3β activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells. - Highlights: • High glucose induces phosphorylation of histone H3 and dephosphorylation of GSK-3β. • Moreover, hyperglycemia also leads to increased DNA methylation in MDA-MB-231 cells. • Inhibition of GSK-3β prevented histone H3 phosphorylation and reduced DNMT1 levels. • Interplay exists between GSK-3β, histone H3 phosphorylation and DNA methylation.« less

  11. PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4

    PubMed Central

    Saavedra, Francisco; Rivera, Carlos; Rivas, Elizabeth; Merino, Paola; Garrido, Daniel; Hernández, Sergio; Forné, Ignasi; Vassias, Isabelle; Gurard-Levin, Zachary A.; Alfaro, Iván E.; Imhof, Axel; Almouzni, Geneviève

    2017-01-01

    Abstract Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iβ. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iβ protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iβ depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iβ and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4. PMID:28977641

  12. PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4.

    PubMed

    Saavedra, Francisco; Rivera, Carlos; Rivas, Elizabeth; Merino, Paola; Garrido, Daniel; Hernández, Sergio; Forné, Ignasi; Vassias, Isabelle; Gurard-Levin, Zachary A; Alfaro, Iván E; Imhof, Axel; Almouzni, Geneviève; Loyola, Alejandra

    2017-11-16

    Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iβ. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iβ protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iβ depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iβ and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The Oncoprotein BRD4-NUT Generates Aberrant Histone Modification Patterns.

    PubMed

    Zee, Barry M; Dibona, Amy B; Alekseyenko, Artyom A; French, Christopher A; Kuroda, Mitzi I

    2016-01-01

    Defects in chromatin proteins frequently manifest in diseases. A striking case of a chromatin-centric disease is NUT-midline carcinoma (NMC), which is characterized by expression of NUT as a fusion partner most frequently with BRD4. ChIP-sequencing studies from NMC patients revealed that BRD4-NUT (B4N) covers large genomic regions and elevates transcription within these domains. To investigate how B4N modulates chromatin, we performed affinity purification of B4N when ectopically expressed in 293-TREx cells and quantified the associated histone posttranslational modifications (PTM) using proteomics. We observed significant enrichment of acetylation particularly on H3 K18 and of combinatorial patterns such as H3 K27 acetylation paired with K36 methylation. We postulate that B4N complexes override the preexisting histone code with new PTM patterns that reflect aberrant transcription and that epigenetically modulate the nucleosome environment toward the NMC state.

  14. The Oncoprotein BRD4-NUT Generates Aberrant Histone Modification Patterns

    PubMed Central

    Zee, Barry M.; Dibona, Amy B.; Alekseyenko, Artyom A.; French, Christopher A.; Kuroda, Mitzi I.

    2016-01-01

    Defects in chromatin proteins frequently manifest in diseases. A striking case of a chromatin-centric disease is NUT-midline carcinoma (NMC), which is characterized by expression of NUT as a fusion partner most frequently with BRD4. ChIP-sequencing studies from NMC patients revealed that BRD4-NUT (B4N) covers large genomic regions and elevates transcription within these domains. To investigate how B4N modulates chromatin, we performed affinity purification of B4N when ectopically expressed in 293-TREx cells and quantified the associated histone posttranslational modifications (PTM) using proteomics. We observed significant enrichment of acetylation particularly on H3 K18 and of combinatorial patterns such as H3 K27 acetylation paired with K36 methylation. We postulate that B4N complexes override the preexisting histone code with new PTM patterns that reflect aberrant transcription and that epigenetically modulate the nucleosome environment toward the NMC state. PMID:27698495

  15. [Epigenetics of prostate cancer].

    PubMed

    Yi, Xiao-Ming; Zhou, Wen-Quan

    2010-07-01

    Prostate cancer is one of the most common malignant tumors in males, and its etiology and pathogenesis remain unclear. Epigenesis is involved in prostate cancer at all stages of the process, and closely related with its growth and metastasis. DNA methylation and histone modification are the most important manifestations of epigenetics in prostate cancer. The mechanisms of carcinogenesis of DNA methylation include whole-genome hypomethylation, aberrant local hypermethylation of promoters and genomic instability. DNA methylation is closely related to the process of prostate cancer, as in DNA damage repair, hormone response, tumor cell invasion/metastasis, cell cycle regulation, and so on. Histone modification causes corresponding changes in chromosome structure and the level of gene transcription, and it may affect the cycle, differentiation and apoptosis of cells, resulting in prostate cancer. Some therapies have been developed targeting the epigenetic changes in prostate cancer, including DNA methyltransferases and histone deacetylase inhibitors, and have achieved certain desirable results.

  16. Epigenetics in Prostate Cancer

    PubMed Central

    Albany, Costantine; Alva, Ajjai S.; Aparicio, Ana M.; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M.

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases. PMID:22191037

  17. Epigenetics in prostate cancer.

    PubMed

    Albany, Costantine; Alva, Ajjai S; Aparicio, Ana M; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a "normal" epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  18. ELF-MF exposure affects the robustness of epigenetic programming during granulopoiesis

    NASA Astrophysics Data System (ADS)

    Manser, Melissa; Sater, Mohamad R. Abdul; Schmid, Christoph D.; Noreen, Faiza; Murbach, Manuel; Kuster, Niels; Schuermann, David; Schär, Primo

    2017-03-01

    Extremely-low-frequency magnetic fields (ELF-MF) have been classified as “possibly carcinogenic” to humans on the grounds of an epidemiological association of ELF-MF exposure with an increased risk of childhood leukaemia. Yet, underlying mechanisms have remained obscure. Genome instability seems an unlikely reason as the energy transmitted by ELF-MF is too low to damage DNA and induce cancer-promoting mutations. ELF-MF, however, may perturb the epigenetic code of genomes, which is well-known to be sensitive to environmental conditions and generally deranged in cancers, including leukaemia. We examined the potential of ELF-MF to influence key epigenetic modifications in leukaemic Jurkat cells and in human CD34+ haematopoietic stem cells undergoing in vitro differentiation into the neutrophilic lineage. During granulopoiesis, sensitive genome-wide profiling of multiple replicate experiments did not reveal any statistically significant, ELF-MF-dependent alterations in the patterns of active (H3K4me2) and repressive (H3K27me3) histone marks nor in DNA methylation. However, ELF-MF exposure showed consistent effects on the reproducibility of these histone and DNA modification profiles (replicate variability), which appear to be of a stochastic nature but show preferences for the genomic context. The data indicate that ELF-MF exposure stabilizes active chromatin, particularly during the transition from a repressive to an active state during cell differentiation.

  19. Sumoylation of the Basic Helix-Loop-Helix Transcription Factor Sharp-1 Regulates Recruitment of the Histone Methyltransferase G9a and Function in Myogenesis*

    PubMed Central

    Wang, Yaju; Shankar, Shilpa Rani; Kher, Devaki; Ling, Belinda Mei Tze; Taneja, Reshma

    2013-01-01

    Sumoylation is an important post-translational modification that alters the activity of many transcription factors. However, the mechanisms that link sumoylation to alterations in chromatin structure, which culminate in tissue specific gene expression, are not fully understood. In this study, we demonstrate that SUMO modification of the transcription factor Sharp-1 is required for its full transcriptional repression activity and function as an inhibitor of skeletal muscle differentiation. Sharp-1 is modified by sumoylation at two conserved lysine residues 240 and 255. Mutation of these SUMO acceptor sites in Sharp-1 does not impact its subcellular localization but attenuates its ability to act as a transcriptional repressor and inhibit myogenic differentiation. Consistently, co-expression of the SUMO protease SENP1 with wild type Sharp-1 abrogates Sharp-1-dependent inhibition of myogenesis. Interestingly, sumoylation acts as a signal for recruitment of the co-repressor G9a. Thus, enrichment of G9a, and histone H3 lysine 9 dimethylation (H3K9me2), a signature of G9a activity, is dramatically reduced at muscle promoters in cells expressing sumoylation-defective Sharp-1. Our findings demonstrate how sumoylation of Sharp-1 exerts an impact on chromatin structure and transcriptional repression of muscle gene expression through recruitment of G9a. PMID:23637228

  20. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation.

    PubMed

    Gaughan, Luke; Logan, Ian R; Neal, David E; Robson, Craig N

    2005-01-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors and plays a critical role in regulating the expression of genes involved in androgen-dependent and -independent tumour formation. Regulation of the AR is achieved by alternate binding of either histone acetyltransferase (HAT)-containing co-activator proteins, or histone deacetylase 1 (HDAC1). Factors that control AR stability may also constitute an important regulatory mechanism, a notion that has been confirmed with the finding that the AR is a direct target for Mdm2-mediated ubiquitylation and proteolysis. Using chromatin immunoprecipitation (ChIP) and re-ChIP analyses, we show that Mdm2 associates with AR and HDAC1 at the active androgen-responsive PSA promoter in LNCaP prostate cancer cells. Furthermore, we demonstrate that Mdm2-mediated modification of AR and HDAC1 catalyses protein destabilization and attenuates AR sactivity, suggesting that ubiquitylation of the AR and HDAC1 may constitute an additional mechanism for regulating AR function. We also show that HDAC1 and Mdm2 function co-operatively to reduce AR-mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60, suggesting interplay between acetylation status and receptor ubiquitylation in AR regulation. In all, our data indicates a novel role for Mdm2 in regulating components of the AR transcriptosome.

  1. Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes.

    PubMed

    Zhang, Hua; Zhao, Yu; Zhou, Dao-Xiu

    2017-12-01

    Sirtuins, a family of proteins with homology to the yeast silent information regulator 2 (Sir2), are NAD+-dependent histone deacetylases and play crucial roles in energy sensing and regulation in yeast and animal cells. Plants are autotrophic organisms and display distinct features of carbon and energy metabolism. It remains largely unexplored whether and how plant cells sense energy/redox status to control carbon metabolic flux under various growth conditions. In this work, we show that the rice nuclear sirtuin OsSRT1 not only functions as an epigenetic regulator to repress glycolytic genes expression and glycolysis in seedlings, but also inhibits transcriptional activity of glyceraldehyde-3-phosphatedehydrogenase (GAPDH) that is enriched on glycolytic genes promoters and stimulates their expression. We show that OsSRT1 reduces GAPDH lysine acetylation and nuclear accumulation that are enhanced by oxidative stress. Mass spectrometry identified six acetylated lysines regulated by OsSRT1. OsSRT1-dependent lysine deacetylation of OsGAPDH1 represses transcriptional activity of the protein. The results indicate that OsSRT1 represses glycolysis by both regulating epigenetic modification of histone and inhibiting the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes in rice. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation1

    PubMed Central

    Eichten, Steven R.; Schmitz, Robert J.; Springer, Nathan M.

    2014-01-01

    Chromatin modifications and epigenetics may play important roles in many plant processes, including developmental regulation, responses to environmental stimuli, and local adaptation. Chromatin modifications describe biochemical changes to chromatin state, such as alterations in the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNAs that associate with a genomic region. The term epigenetic is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Here, we specifically define epigenetics to include the key aspects of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and independence from DNA sequence changes. We argue against generically equating chromatin and epigenetics; although many examples of epigenetics involve chromatin changes, those chromatin changes are not always heritable or may be influenced by genetic changes. Careful use of the terms chromatin modifications and epigenetics can help separate the biochemical mechanisms of regulation from the inheritance patterns of altered chromatin states. Here, we also highlight examples in which chromatin modifications and epigenetics affect important plant processes. PMID:24872382

  3. Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status.

    PubMed

    Qian, Yi; Zhang, Jie; Hu, Qinglin; Xu, Ming; Chen, Yue; Hu, Guoqing; Zhao, Meirong; Liu, Sijin

    2015-11-01

    Silver nanoparticles (nanosilver, AgNPs) have been shown to induce toxicity in vitro and in vivo; however, the molecular bases underlying the detrimental effects have not been thoroughly understood. Although there are numerous studies on its genotoxicity, only a few studies have investigated the epigenetic changes, even less on the changes of histone modifications by AgNPs. In the current study, we probed the AgNP-induced alterations to histone methylation that could be responsible for globin reduction in erythroid cells. AgNP treatment caused a significant reduction of global methylation level for histone 3 (H3) in erythroid MEL cells at sublethal concentrations, devoid of oxidative stress. The ChIP-PCR analyses demonstrated that methylation of H3 at lysine (Lys) 4 (H3K4) and Lys 79 (H3K79) on the β-globin locus was greatly reduced. The reduction in methylation could be attributed to decreased histone methyltransferase DOT-1L and MLL levels as well as the direct binding between AgNPs to H3/H4 that provide steric hindrance to prevent methylation as predicted by the all-atom molecular dynamics simulations. This direct interaction was further proved by AgNP-mediated pull-down assay and immunoprecipitation assay. These changes, together with decreased RNA polymerase II activity and chromatin binding at this locus, resulted in decreased hemoglobin production. By contrast, Ag ion-treated cells showed no alterations in histone methylation level. Taken together, these results showed a novel finding in which AgNPs could alter the methylation status of histone. Our study therefore opens a new avenue to study the biological effects of AgNPs at sublethal concentrations from the perspective of epigenetic mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Prefrontal cortex expression of chromatin modifier genes in male WSP and WSR mice changes across ethanol dependence, withdrawal, and abstinence.

    PubMed

    Hashimoto, Joel G; Gavin, David P; Wiren, Kristine M; Crabbe, John C; Guizzetti, Marina

    2017-05-01

    Alcohol-use disorder (AUD) is a relapsing disorder associated with excessive ethanol consumption. Recent studies support the involvement of epigenetic mechanisms in the development of AUD. Studies carried out so far have focused on a few specific epigenetic modifications. The goal of this project was to investigate gene expression changes of epigenetic regulators that mediate a broad array of chromatin modifications after chronic alcohol exposure, chronic alcohol exposure followed by 8 h withdrawal, and chronic alcohol exposure followed by 21 days of abstinence in Withdrawal-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) selected mouse lines. We found that chronic vapor exposure to highly intoxicating levels of ethanol alters the expression of several chromatin remodeling genes measured by quantitative PCR array analyses. The identified effects were independent of selected lines, which, however, displayed baseline differences in epigenetic gene expression. We reported dysregulation in the expression of genes involved in histone acetylation, deacetylation, lysine and arginine methylation and ubiquitinationhylation during chronic ethanol exposure and withdrawal, but not after 21 days of abstinence. Ethanol-induced changes are consistent with decreased histone acetylation and with decreased deposition of the permissive ubiquitination mark H2BK120ub, associated with reduced transcription. On the other hand, ethanol-induced changes in the expression of genes involved in histone lysine methylation are consistent with increased transcription. The net result of these modifications on gene expression is likely to depend on the combination of the specific histone tail modifications present at a given time on a given promoter. Since alcohol does not modulate gene expression unidirectionally, it is not surprising that alcohol does not unidirectionally alter chromatin structure toward a closed or open state, as suggested by the results of this study. Published by Elsevier Inc.

  5. Chromatin immunoprecipitation (ChIP) method for non-model fruit flies (Diptera: Tephritidae) and evidence of histone modifications.

    PubMed

    Nagalingam, Kumaran; Lorenc, Michał T; Manoli, Sahana; Cameron, Stephen L; Clarke, Anthony R; Dudley, Kevin J

    2018-01-01

    Interactions between DNA and proteins located in the cell nucleus play an important role in controlling physiological processes by specifying, augmenting and regulating context-specific transcription events. Chromatin immunoprecipitation (ChIP) is a widely used methodology to study DNA-protein interactions and has been successfully used in various cell types for over three decades. More recently, by combining ChIP with genomic screening technologies and Next Generation Sequencing (e.g. ChIP-seq), it has become possible to profile DNA-protein interactions (including covalent histone modifications) across entire genomes. However, the applicability of ChIP-chip and ChIP-seq has rarely been extended to non-model species because of a number of technical challenges. Here we report a method that can be used to identify genome wide covalent histone modifications in a group of non-model fruit fly species (Diptera: Tephritidae). The method was developed by testing and refining protocols that have been used in model organisms, including Drosophila melanogaster. We demonstrate that this method is suitable for a group of economically important pest fruit fly species, viz., Bactrocera dorsalis, Ceratitis capitata, Zeugodacus cucurbitae and Bactrocera tryoni. We also report an example ChIP-seq dataset for B. tryoni, providing evidence for histone modifications in the genome of a tephritid fruit fly for the first time. Since tephritids are major agricultural pests globally, this methodology will be a valuable resource to study taxa-specific evolutionary questions and to assist with pest management. It also provides a basis for researchers working with other non-model species to undertake genome wide DNA-protein interaction studies.

  6. Prefrontal cortex expression of chromatin modifier genes in male WSP and WSR mice changes across ethanol dependence, withdrawal, and abstinence

    PubMed Central

    Hashimoto, Joel G.; Gavin, David P.; Wiren, Kristine M.; Crabbe, John C.; Guizzetti, Marina

    2017-01-01

    Alcohol-use disorder (AUD) is a relapsing disorder associated with excessive ethanol consumption. Recent studies support the involvement of epigenetic mechanisms in the development of AUD. Studies carried out so far have focused on a few specific epigenetic modifications. The goal of this project was to investigate gene expression changes of epigenetic regulators that mediate a broad array of chromatin modifications after chronic alcohol exposure, chronic alcohol exposure followed by 8 h withdrawal, and chronic alcohol exposure followed by 21 days of abstinence in Withdrawal-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) selected mouse lines. We found that chronic vapor exposure to highly intoxicating levels of ethanol alters the expression of several chromatin remodeling genes measured by quantitative PCR array analyses. The identified effects were independent of selected lines, which, however, displayed baseline differences in epigenetic gene expression. We reported dysregulation in the expression of genes involved in histone acetylation, deacetylation, lysine and arginine methylation and ubiquitination, and in DNA methylation during chronic ethanol exposure and withdrawal, but not after 21 days of abstinence. Ethanol-induced changes are consistent with decreased histone acetylation and with decreased deposition of the permissive ubiquitination mark H2BK120ub, associated with reduced transcription. On the other hand, ethanol-induced changes in the expression of genes involved in histone lysine methylation are consistent with increased transcription. The net result of these modifications on gene expression is likely to depend on the combination of the specific histone tail modifications present at a given time on a given promoter. Since alcohol does not modulate gene expression unidirectionally, it is not surprising that alcohol does not unidirectionally alter chromatin structure toward a closed or open state, as suggested by the results of this study. PMID:28433423

  7. Histone Modification Associated with Initiation of DNA Replication | Center for Cancer Research

    Cancer.gov

    Before cells are able to divide, they must first duplicate their chromosomes accurately. DNA replication and packaging of DNA into chromosomes by histone proteins need to be coordinated by the cell to ensure proper transmission of genetic and epigenetic information to the next generation. Mammalian DNA replication begins at specific chromosomal sites, called replication

  8. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  9. Proteomic characterization of histone variants in the mouse testis by mass spectrometry-based top-down analysis.

    PubMed

    Kwak, Ho-Geun; Dohmae, Naoshi

    2016-11-15

    Various histones, including testis-specific histones, exist during spermatogenesis and some of them have been reported to play a key role in chromatin remodeling. Mass spectrometry (MS)-based characterization has become the important step to understand histone structures. Although individual histones or partial histone variant groups have been characterized, the comprehensive analysis of histone variants has not yet been conducted in the mouse testis. Here, we present the comprehensive separation and characterization of histone variants from mouse testes by a top-down approach using MS. Histone variants were successfully separated on a reversed phase column using high performance liquid chromatography (HPLC) with an ion-pairing reagent. Increasing concentrations of testis-specific histones were observed in the mouse testis and some somatic histones increased in the epididymis. Specifically, the increase of mass abundance in H3.2 in the epididymis was inversely proportional to the decrease in H3t in the testis, which was approximately 80%. The top-down characterization of intact histone variants in the mouse testis was performed using LC-MS/MS. The masses of separated histone variants and their expected post-translation modifications were calculated by performing deconvolution with information taken from the database. TH2A, TH2B and H3t were characterized by MS/MS fragmentation. Our approach provides comprehensive knowledge for identification of histone variants in the mouse testis that will contribute to the structural and functional research of histone variants during spermatogenesis.

  10. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, Sara; Miousse, Isabelle R.

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promotermore » type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.« less

  11. Epigenetic Marks Define the Lineage and Differentiation Potential of Two Distinct Neural Crest-Derived Intermediate Odontogenic Progenitor Populations

    PubMed Central

    Gopinathan, Gokul; Kolokythas, Antonia

    2013-01-01

    Epigenetic mechanisms, such as histone modifications, play an active role in the differentiation and lineage commitment of mesenchymal stem cells. In the present study, epigenetic states and differentiation profiles of two odontogenic neural crest-derived intermediate progenitor populations were compared: dental pulp (DP) and dental follicle (DF). ChIP on chip assays revealed substantial H3K27me3-mediated repression of odontoblast lineage genes DSPP and dentin matrix protein 1 (DMP1) in DF cells, but not in DP cells. Mineralization inductive conditions caused steep increases of mineralization and patterning gene expression levels in DP cells when compared to DF cells. In contrast, mineralization induction resulted in a highly dynamic histone modification response in DF cells, while there was only a subdued effect in DP cells. Both DF and DP progenitors featured H3K4me3-active marks on the promoters of early mineralization genes RUNX2, MSX2, and DLX5, while OSX, IBSP, and BGLAP promoters were enriched for H3K9me3 or H3K27me3. Compared to DF cells, DP cells expressed higher levels of three pluripotency-associated genes, OCT4, NANOG, and SOX2. Finally, gene ontology comparison of bivalent marks unique for DP and DF cells highlighted cell–cell attachment genes in DP cells and neurogenesis genes in DF cells. In conclusion, the present study indicates that the DF intermediate odontogenic neural crest lineage is distinguished from its DP counterpart by epigenetic repression of DSPP and DMP1 genes and through dynamic histone enrichment responses to mineralization induction. Findings presented here highlight the crucial role of epigenetic regulatory mechanisms in the terminal differentiation of odontogenic neural crest lineages. PMID:23379639

  12. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas.

    PubMed

    Sneeringer, Christopher J; Scott, Margaret Porter; Kuntz, Kevin W; Knutson, Sarah K; Pollock, Roy M; Richon, Victoria M; Copeland, Robert A

    2010-12-07

    EZH2, the catalytic subunit of the PRC2 complex, catalyzes the mono- through trimethylation of lysine 27 on histone H3 (H3K27). Histone H3K27 trimethylation is a mechanism for suppressing transcription of specific genes that are proximal to the site of histone modification. Point mutations of the EZH2 gene (Tyr641) have been reported to be linked to subsets of human B-cell lymphoma. The mutant allele is always found associated with a wild-type allele (heterozygous) in disease cells, and the mutations were reported to ablate the enzymatic activity of the PRC2 complex for methylating an unmodified peptide substrate. Here we demonstrate that the WT enzyme displays greatest catalytic efficiency (k(cat)/K) for the zero to monomethylation reaction of H3K27 and diminished efficiency for subsequent (mono- to di- and di- to trimethylation) reactions. In stark contrast, the disease-associated Y641 mutations display very limited ability to perform the first methylation reaction, but have enhanced catalytic efficiency for the subsequent reactions, relative to the WT enzyme. These results imply that the malignant phenotype of disease requires the combined activities of a H3K27 monomethylating enzyme (PRC2 containing WT EZH2 or EZH1) together with the mutant PRC2s for augmented conversion of H3K27 to the trimethylated form. To our knowledge, this is the first example of a human disease that is dependent on the coordinated activities of normal and disease-associated mutant enzymatic function.

  13. Preparative two-step purification of recombinant H1.0 linker histone and its domains.

    PubMed

    Ivic, Nives; Bilokapic, Silvija; Halic, Mario

    2017-01-01

    H1 linker histones are small basic proteins that have a key role in the formation and maintenance of higher-order chromatin structures. Additionally, many examples have shown that linker histones play an important role in gene regulation, modulated by their various subtypes and posttranslational modifications. Obtaining high amounts of very pure linker histones, especially for efficient antibody production, remains a demanding and challenging procedure. Here we present an easy and fast method to purify human linker histone H1.0 overexpressed in Escherichia coli, as well as its domains: N-terminal/globular domain and C-terminal intrinsically disordered domain. This purification protocol relies on a simple affinity chromatography step followed by cation exchange due to the highly basic properties of histone proteins. Therefore, this protocol can also be applied to other linker histones. Highly pure proteins in amounts sufficient for most biochemical experiments can be obtained. The functional quality of purified H1.0 histone and its domains has been confirmed by pull-down, gel-mobility shift assays and the nuclear import assay.

  14. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases

    PubMed Central

    Lee, Sanghun; Xu, Siming; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2016-01-01

    Posttranslational modification of histones modulates gene expression affecting diverse biological functions. We showed that the Arabidopsis thaliana histone methyl transferases SET DOMAIN GROUP8 (SDG8) and SDG25 regulate pep1-, flg22-, and effector-triggered immunity as well as systemic acquired resistance. Genome-wide basal and induced transcriptome changes regulated by SDG8 and/or SDG25 showed that two genes of the SDG-dependent transcriptome, CAROTENOID ISOMERASE2 (CCR2) and ECERIFERUM3 (CER3), were also required for plant immunity, establishing mechanisms in defense functions for SDG8 and SDG25. CCR2 catalyzes the biosynthesis of carotenoids, whereas CER3 is involved in the biosynthesis of cuticular wax. SDG8 and SDG25 affected distinct and overlapping global and locus-specific histone H3 lysine 4 (H3K4) and histone H3 lysine 36 (H3K36) methylations. Loss of immunity in sdg mutants was attributed to altered global and CCR2- and CER3-specific histone lysine methylation (HLM). Loss of immunity in sdg, ccr2, and cer3 mutants was also associated with diminished accumulation of lipids and loss of cuticle integrity. In addition, sdg8 and sdg25 mutants were impaired in H2B ubiquitination (H2Bubn) at CCR2, CER3, and H2Bubn regulated R gene, SNC1, revealing crosstalk between the two types of histone modifications. In summary, SDG8 and SDG25 contribute to plant immunity directly through HLM or indirectly through H2Bubn and by regulating expression of plant immunity genes, accumulation of lipids, biosynthesis of carotenoids, and maintenance of cuticle integrity. PMID:27354553

  15. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases.

    PubMed

    Lee, Sanghun; Fu, Fuyou; Xu, Siming; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2016-07-01

    Posttranslational modification of histones modulates gene expression affecting diverse biological functions. We showed that the Arabidopsis thaliana histone methyl transferases SET DOMAIN GROUP8 (SDG8) and SDG25 regulate pep1-, flg22-, and effector-triggered immunity as well as systemic acquired resistance. Genome-wide basal and induced transcriptome changes regulated by SDG8 and/or SDG25 showed that two genes of the SDG-dependent transcriptome, CAROTENOID ISOMERASE2 (CCR2) and ECERIFERUM3 (CER3), were also required for plant immunity, establishing mechanisms in defense functions for SDG8 and SDG25. CCR2 catalyzes the biosynthesis of carotenoids, whereas CER3 is involved in the biosynthesis of cuticular wax. SDG8 and SDG25 affected distinct and overlapping global and locus-specific histone H3 lysine 4 (H3K4) and histone H3 lysine 36 (H3K36) methylations. Loss of immunity in sdg mutants was attributed to altered global and CCR2- and CER3-specific histone lysine methylation (HLM). Loss of immunity in sdg, ccr2, and cer3 mutants was also associated with diminished accumulation of lipids and loss of cuticle integrity. In addition, sdg8 and sdg25 mutants were impaired in H2B ubiquitination (H2Bubn) at CCR2, CER3, and H2Bubn regulated R gene, SNC1, revealing crosstalk between the two types of histone modifications. In summary, SDG8 and SDG25 contribute to plant immunity directly through HLM or indirectly through H2Bubn and by regulating expression of plant immunity genes, accumulation of lipids, biosynthesis of carotenoids, and maintenance of cuticle integrity. © 2016 American Society of Plant Biologists. All rights reserved.

  16. Inhibitors of Protein Methyltransferases and Demethylases

    PubMed Central

    2017-01-01

    Post-translational modifications of histones by protein methyltransferases (PMTs) and histone demethylases (KDMs) play an important role in the regulation of gene expression and transcription and are implicated in cancer and many other diseases. Many of these enzymes also target various nonhistone proteins impacting numerous crucial biological pathways. Given their key biological functions and implications in human diseases, there has been a growing interest in assessing these enzymes as potential therapeutic targets. Consequently, discovering and developing inhibitors of these enzymes has become a very active and fast-growing research area over the past decade. In this review, we cover the discovery, characterization, and biological application of inhibitors of PMTs and KDMs with emphasis on key advancements in the field. We also discuss challenges, opportunities, and future directions in this emerging, exciting research field. PMID:28338320

  17. Effects of histone deacetylase inhibitor sodium butyrate on heroin seeking behavior in the nucleus accumbens in rats.

    PubMed

    Chen, Wei-Sheng; Xu, Wen-Jin; Zhu, Hua-Qiang; Gao, Lei; Lai, Miao-Jun; Zhang, Fu-Qiang; Zhou, Wen-Hua; Liu, Hui-Fen

    2016-12-01

    Histone acetylation and other modifications of the chromatin are important regulators of gene expression and may contribute to drug-induced behaviors and neuroplasticity. Inhibition of histone deacetylases (HDAC) activity results in the change of some drug-induced behaviors,however, relatively little is known about the effects of HDAC inhibitors on heroin-seeking behavior. In the present study, male rats were trained to self-administer heroin under a FR1 schedule for consecutive 14 days, followed by 14 daily 2h extinction session in the operant chamber. After training, the heroin priming (250μg/kg) was introduced for the reinstatement of heroin-seeking behavior. Pretreatment with sodium butyrate (NaB) (200 or 400mg/kg, i.p.), an inhibitor of HDAC, failed to affect heroin self-administration. Additionally,systemic administration of NaB (400mg/kg, i.p.)increased significantly the reinstatement of heroin-seeking induced by heroin priming when NaB administered 12h, but not 6h before the reinstatement test. The same effect was observed after the intracerebroventricular injection of NaB (5μL, 100μg/μL). Moreover, the levels of histone H3 acetylation at lysine 18(H3K18)and H4 acetylation at lysine 5 or lysine 8(H4K5 or H4K8)in the accumbens nucleus core and shell were remarkably increased during the reinstatement and were further strengthened after intracerebroventricular injection of NaB. These results demonstrated that activation of histone acetylation may be involved in the heroin-seeking behavior, and identifying these epigenetic changes will be critical in proposing a novel pharmacological strategy for treating heroin addiction. Copyright © 2016. Published by Elsevier B.V.

  18. The Arabidopsis Histone Methyltransferase SUVR4 Binds Ubiquitin via a Domain with a Four-Helix Bundle Structure

    PubMed Central

    Rahman, Mohummad Aminur; Kristiansen, Per E.; Veiseth, Silje V.; Andersen, Jan Terje; Yap, Kyoko L.; Zhou, Ming-Ming; Sandlie, Inger; Thorstensen, Tage; Aalen, Reidunn B.

    2014-01-01

    In eukaryotes, different chromatin states facilitate or repress gene expression and restrict the activity of transposable elements. Post-translational modifications (PTMs) of amino acid residues on the N-terminal tails of histones are suggested to define such states. The histone lysine methyltransferase (HKMTase) SU(VAR)3-9 RELATED4 (SUVR4) of Arabidopsis thaliana functions as a repressor of transposon activity. Binding of ubiquitin by the WIYLD domain facilitates the addition of two methyl groups to monomethylated lysine 9 of histone H3. By using nuclear magnetic resonance (NMR) spectroscopy, we identified SUVR4 WIYLD (S4WIYLD) as a domain with a four-helix bundle structure, in contrast to three-helix bundles of other ubiquitin binding domains. NMR titration analyses showed that residues of helix α1 (Q38, L39, and D40) and helix α4 (N68, T70, A71, V73, D74, I76, S78, and E82) of S4WIYLD and residues between the first and second β-strands (T9 and G10) and on β-strands 3 (R42, G47, K48, and Q49) and 4 (H68, R72, and L73) undergo significant chemical shift changes when the two proteins interact. A model of the complex, generated using HADDOCK, suggests that the N-terminal and C-terminal parts of S4WIYLD constitute a surface that interacts with charged residues close to the hydrophobic patch of ubiquitin. The WIYLD domains of the closely related SUVR1 and SUVR2 Arabidopsis proteins also bind ubiquitin, indicating that this is a general feature of this domain. The question of whether SUVR proteins act as both readers of monoubiquitinated H2B and writers of histone PTMs is discussed. PMID:24625295

  19. Effects of soybean meal on digestive enzymes activity, expression of inflammation-related genes, and chromatin modifications in marine fish (Sparus aurata L.) larvae.

    PubMed

    Perera, Erick; Yúfera, Manuel

    2017-04-01

    The effects of soybean meal (SBM) in early diet of Sparus aurata larvae at two developmental windows were assessed. Prolonged (beyond 14 days post-hatch, dph) feeding with SBM decreased the activity of pancreatic enzymes of larvae. In the absence of SBM these larvae later resumed enzyme activities, but exhibited a significant delay in development. Larvae response to SBM involved up-regulation of extracellular matrix remodeling enzymes and pro-inflammatory cytokines, coupled with a drop in putative intestinal enzymes. Larvae receiving SBM at first feeding appear later to have lower expression of inflammation-related genes, especially those fed SBM until 14 dph. Multivariate analysis confirmed that the duration of the SBM early feeding period drives the physiology of larvae in different directions. Feeding larvae with SBM increased global histone H3 acetylation, whereas upon removal of SBM the process was reverted. A more in deep analysis revealed a dynamic interplay among several reversible histone modifications such as H3K14ac and H3K27m3. Finally, we showed that SBM feeding of larvae results in global hypomethylation that persist after SBM removal. This study is the first demonstrating an effect of diet on marine fish epigenetics. It is concluded that there are limitations for extending SBM feeding of S. aurata larvae beyond 14 dph even under co-feeding with live feed, affecting key physiological processes and normal growth. However, up to 14 dph, SBM does not affect normal development, and produces apparently lasting effects on some key enzymes, genes, and chromatin modifications.

  20. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure

    PubMed Central

    North, Justin A.; Šimon, Marek; Ferdinand, Michelle B.; Shoffner, Matthew A.; Picking, Jonathan W.; Howard, Cecil J.; Mooney, Alex M.; van Noort, John; Poirier, Michael G.; Ottesen, Jennifer J.

    2014-01-01

    Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA–histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure. PMID:24561803

  1. Antidepressant-Like Effects of Acupuncture-Insights From DNA Methylation and Histone Modifications of Brain-Derived Neurotrophic Factor.

    PubMed

    Jiang, Huili; Zhang, Xuhui; Lu, Jun; Meng, Hong; Sun, Yang; Yang, Xinjing; Zhao, Bingcong; Bao, Tuya

    2018-01-01

    Sensitive and stable biomarkers that facilitate depression detection and monitor the antidepressant efficiency are currently unavailable. Thus, the objective is to investigate the potential of DNA methylation and histone modifications of brain-derived neurotrophic factor (BDNF) in monitoring severity and antidepressive effects of acupuncture. The depression rat model was imitated by social isolation and chronic unpredicted mild stress (CUMS). The expression of serum BDNF was detected by enzyme-linked immunosorbent assay (ELISA), the hippocampal BDNF, acetylation levels in histone H3 lysine 9 (acH3K9), and HDAC2 by Western blot, the hippocampal mRNA of BDNF by RT-polymerase chain reaction (PCR). The DNA methylation patterns of the promoter I of BDNF was detected by MS-PCR. We investigated that the expression of BDNF in serum and hippocampus were significantly downregulated compared with controls. The same trend was found in mRNA of BDNF. Notably, acupuncture reversed the downregulation of BDNF in serum and hippocampus and mRNA of BDNF compared with model group. Acupuncture reversed the CUMS-induced downregulation of hippocampal acH3K9. On the contrary, the CUMS-induced upregulation of hippocampal HDAC2 in model group was significantly reversed by acupuncture. Collectively, the antidepressant effect of acupuncture might be mediated by regulating the DNA methylation and histone modifications of BDNF, which may represent novel biomaker for detection of depression and monitoring severity and antidepressive effects.

  2. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast

    PubMed Central

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-01-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast. PMID:23382177

  3. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair.

    PubMed

    Qin, Song; Parthun, Mark R

    2002-12-01

    The modification of newly synthesized histones H3 and H4 by type B histone acetyltransferases has been proposed to play a role in the process of chromatin assembly. The type B histone acetyltransferase Hat1p and specific lysine residues in the histone H3 NH(2)-terminal tail (primarily lysine 14) are redundantly required for telomeric silencing. As many gene products, including other factors involved in chromatin assembly, have been found to participate in both telomeric silencing and DNA damage repair, we tested whether mutations in HAT1 and the histone H3 tail were also sensitive to DNA-damaging agents. Indeed, mutations both in specific lysine residues in the histone H3 tail and in HAT1 resulted in sensitivity to methyl methanesulfonate. The DNA damage sensitivity of the histone H3 and HAT1 mutants was specific for DNA double-strand breaks, as these mutants were sensitive to the induction of an exogenous restriction endonuclease, EcoRI, but not to UV irradiation. While histone H3 mutations had minor effects on nonhomologous end joining, the primary defect in the histone H3 and HAT1 mutants was in the recombinational repair of DNA double-strand breaks. Epistasis analysis indicates that the histone H3 and HAT1 mutants may influence DNA double-strand break repair through Asf1p-dependent chromatin assembly.

  4. Histone Methylation and microRNA-dependent Regulation of Epigenetic Activities in Neural Progenitor Self-Renewal and Differentiation.

    PubMed

    Cacci, Emanuele; Negri, Rodolfo; Biagioni, Stefano; Lupo, Giuseppe

    2017-01-01

    Neural stem/progenitor cell (NSPC) self-renewal and differentiation in the developing and the adult brain are controlled by extra-cellular signals and by the inherent competence of NSPCs to produce appropriate responses. Stage-dependent responsiveness of NSPCs to extrinsic cues is orchestrated at the epigenetic level. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulation control crucial aspects of NSPC development and function, and are also implicated in pathological conditions. While their roles in the regulation of stem cell fate have been largely explored in pluripotent stem cell models, the epigenetic signature of NSPCs is also key to determine their multipotency as well as their progressive bias towards specific differentiation outcomes. Here we review recent developments in this field, focusing on the roles of histone methylation marks and the protein complexes controlling their deposition in NSPCs of the developing cerebral cortex and the adult subventricular zone. In this context, we describe how bivalent promoters, carrying antagonistic epigenetic modifications, feature during multiple steps of neural development, from neural lineage specification to neuronal differentiation. Furthermore, we discuss the emerging cross-talk between epigenetic regulators and microRNAs, and how the interplay between these different layers of regulation can finely tune the expression of genes controlling NSPC maintenance and differentiation. In particular, we highlight recent advances in the identification of astrocyte-enriched microRNAs and their function in cell fate choices of NSPCs differentiating towards glial lineages.

  5. Approaches for Studying the Subcellular Localization, Interactions, and Regulation of Histone Deacetylase 5 (HDAC5)

    PubMed Central

    Guise, Amanda J.; Cristea, Ileana M.

    2017-01-01

    As a member of the class IIa family of histone deacetylases, the histone deacetylase 5 (HDAC5) is known to undergo nuclear–cytoplasmic shuttling and to be a critical transcriptional regulator. Its misregulation has been linked to prominent human diseases, including cardiac diseases and tumorigenesis. In this chapter, we describe several experimental methods that have proven effective for studying the functions and regulatory features of HDAC5. We present methods for assessing the subcellular localization, protein interactions, posttranslational modifications (PTMs), and activity of HDAC5 from the standpoint of investigating either the endogenous protein or tagged protein forms in human cells. Specifically, given that at the heart of HDAC5 regulation lie its dynamic localization, interactions, and PTMs, we present methods for assessing HDAC5 localization in fixed and live cells, for isolating HDAC5-containing protein complexes to identify its interactions and modifications, and for determining how these PTMs map to predicted HDAC5 structural motifs. Lastly, we provide examples of approaches for studying HDAC5 functions with a focus on its regulation during cell-cycle progression. These methods can readily be adapted for the study of other HDACs or non-HDAC-proteins of interest. Individually, these techniques capture temporal and spatial snapshots of HDAC5 functions; yet together, these approaches provide powerful tools for investigating both the regulation and regulatory roles of HDAC5 in different cell contexts relevant to health and disease. PMID:27246208

  6. The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation.

    PubMed

    Sawado, Tomoyuki; Halow, Jessica; Bender, M A; Groudine, Mark

    2003-04-15

    To investigate the molecular basis of beta-globin gene activation, we analyzed factor recruitment and histone modification at the adult beta-globin gene in wild-type (WT)/locus control region knockout (DeltaLCR) heterozygous mice and in murine erythroleukemia (MEL) cells. Although histone acetylation and methylation (Lys 4) are high before and after MEL differentiation, recruitment of the erythroid-specific activator NF-E2 to the promoter and preinitiation complex (PIC) assembly occur only after differentiation. We reported previously that targeted deletion of the LCR reduces beta-globin gene expression to 1%-4% of WT without affecting promoter histone acetylation. Here, we report that NF-E2 is recruited equally efficiently to the adult beta-globin promoters of the DeltaLCR and WT alleles. Moreover, the LCR deletion reduces PIC assembly only twofold, but has a dramatic effect on Ser 5 phosphorylation of RNA polymerase II and transcriptional elongation. Our results suggest at least three distinct stages in beta-globin gene activation: (1) an LCR-independent chromatin opening stage prior to NF-E2 recruitment to the promoter and PIC assembly; (2) an intermediate stage in which NF-E2 binding (LCR-independent) and PIC assembly (partially LCR-dependent) occur; and (3) an LCR-dependent fully active stage characterized by efficient pol II elongation. Thus, in its native location the LCR functions primarily downstream of activator recruitment and PIC assembly.

  7. Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides

    PubMed Central

    Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A.

    2016-01-01

    We present the mass spectrometry (MS) based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone post-translational modifications (PTMs). Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has thus gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform 2-fold more MS/MS events than traditional DIA, it acquired on average ~5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. PMID:27193262

  8. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2})more » in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.« less

  9. Chromatin remodeling in somatic cells injected into mature pig oocytes.

    PubMed

    Bui, Hong-Thuy; Van Thuan, Nguyen; Wakayama, Teruhiko; Miyano, Takashi

    2006-06-01

    We examined the involvement of histone H3 modifications in the chromosome condensation and decondensation of somatic cell nuclei injected into mature pig oocytes. Nuclei of pig granulosa cells were transferred into in vitro matured intact pig oocytes, and histone H3 phosphorylation, acetylation, and methylation were examined by immunostaining with specific antibodies in relation to changes in chromosome morphology. In the condensed chromosomes of pig oocytes at metaphase II, histone H3 was phosphorylated at serine 10 (H3-S10) and serine 28 (H3-S28), and methylated at lysine 9 (H3-K9), but was not acetylated at lysine 9, 14 and 18 (H3-K9, H3-K14 and H3-K18). During the first 2 h after nuclear transfer, a series of events were observed in the somatic nuclei: nuclear membrane disassembly; chromosome condensation to form a metaphase-like configuration; an increase in histone H3 phosphorylation levels (H3-S10 and H3-S28). Next, pig oocytes injected with nuclei of somatic cells were electroactivated and the chromosome morphology of oocytes and somatic cells was examined along with histone modifications. Generally, chromosomes of the somatic cells showed a similar progression of cell cycle stage to that of oocytes, through anaphase II- and telophase II-like stages then formed pronucleus-like structures, although the morphology of the spindles differed from that of oocyte spindles. The chromosomes of somatic cells also showed changes in histone H3 dephosphorylation and reacetylation, similar to oocytes. In contrast, histone H3 methylation (H3-K9) of somatic cell nuclei did not show any significant change after injection and electroactivation of the oocytes. These results suggest that nuclear remodeling including histone H3 phosphorylation and acetylation of injected somatic nuclei took place in the oocytes under regulation by the oocyte cytoplasm.

  10. Differential response of cancer cells to HDAC inhibitors trichostatin A and depsipeptide.

    PubMed

    Chang, J; Varghese, D S; Gillam, M C; Peyton, M; Modi, B; Schiltz, R L; Girard, L; Martinez, E D

    2012-01-03

    Over the last decade, several drugs that inhibit class I and/or class II histone deacetylases (HDACs) have been identified, including trichostatin A, the cyclic depsipeptide FR901228 and the antibiotic apicidin. These compounds have had immediate application in cancer research because of their ability to reactivate aberrantly silenced tumour suppressor genes and/or block tumour cell growth. Although a number of HDAC inhibitors are being evaluated in preclinical cancer models and in clinical trials, little is known about the differences in their specific mechanism of action and about the unique determinants of cancer cell sensitivity to each of these inhibitors. Using a combination of cell viability assays, HDAC enzyme activity measurements, western blots for histone modifications, microarray gene expression analysis and qRT-PCR, we have characterised differences in trichostatin A vs depsipeptide-induced phenotypes in lung cancer, breast cancer and skin cancer cells and in normal cells and have then expanded these studies to other HDAC inhibitors. Cell viability profiles across panels of lung cancer, breast cancer and melanoma cell lines showed distinct sensitivities to the pan-inhibitor TSA compared with the class 1 selective inhibitor depsipeptide. In several instances, the cell lines most sensitive to one inhibitor were most resistant to the other inhibitor, demonstrating these drugs act on at least some non-overlapping cellular targets. These differences were not explained by the HDAC selectivity of these inhibitors alone since apicidin, which is a class 1 selective compound similar to depsipeptide, also showed a unique drug sensitivity profile of its own. TSA had greater specificity for cancer vs normal cells compared with other HDAC inhibitors. In addition, at concentrations that blocked cancer cell viability, TSA effectively inhibited purified recombinant HDACs 1, 2 and 5 and moderately inhibited HDAC8, while depsipeptide did not inhibit the activity of purified HDACs in vitro but did in cellular extracts, suggesting a potentially indirect action of this drug. Although both depsipeptide and TSA increased levels of histone acetylation in cancer cells, only depsipeptide decreased global levels of transcriptionally repressive histone methylation marks. Analysis of gene expression profiles of an isogenic cell line pair that showed discrepant sensitivity to depsipeptide, suggested that resistance to this inhibitor may be mediated by increased expression of multidrug resistance genes triggered by exposure to chemotherapy as was confirmed by verapamil studies. Although generally thought to have similar activities, the HDAC modulators trichostatin A and depsipeptide demonstrated distinct phenotypes in the inhibition of cancer cell viability and of HDAC activity, in their selectivity for cancer vs normal cells, and in their effects on histone modifications. These differences in mode of action may bear on the future therapeutic and research application of these inhibitors.

  11. Histone Core Phosphorylation Regulates DNA Accessibility*

    PubMed Central

    Brehove, Matthew; Wang, Tao; North, Justin; Luo, Yi; Dreher, Sarah J.; Shimko, John C.; Ottesen, Jennifer J.; Luger, Karolin; Poirier, Michael G.

    2015-01-01

    Nucleosome unwrapping dynamics provide transient access to the complexes involved in DNA transcription, repair, and replication, whereas regulation of nucleosome unwrapping modulates occupancy of these complexes. Histone H3 is phosphorylated at tyrosine 41 (H3Y41ph) and threonine 45 (H3T45ph). H3Y41ph is implicated in regulating transcription, whereas H3T45ph is involved in DNA replication and apoptosis. These modifications are located in the DNA-histone interface near where the DNA exits the nucleosome, and are thus poised to disrupt DNA-histone interactions. However, the impact of histone phosphorylation on nucleosome unwrapping and accessibility is unknown. We find that the phosphorylation mimics H3Y41E and H3T45E, and the chemically correct modification, H3Y41ph, significantly increase nucleosome unwrapping. This enhances DNA accessibility to protein binding by 3-fold. H3K56 acetylation (H3K56ac) is also located in the same DNA-histone interface and increases DNA unwrapping. H3K56ac is implicated in transcription regulation, suggesting that H3Y41ph and H3K56ac could function together. We find that the combination of H3Y41ph with H3K56ac increases DNA accessibility by over an order of magnitude. These results suggest that phosphorylation within the nucleosome DNA entry-exit region increases access to DNA binding complexes and that the combination of phosphorylation with acetylation has the potential to significantly influence DNA accessibility to transcription regulatory complexes. PMID:26175159

  12. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model.

    PubMed

    Ricobaraza, Ana; Cuadrado-Tejedor, Mar; Pérez-Mediavilla, Alberto; Frechilla, Diana; Del Río, Joaquin; García-Osta, Ana

    2009-06-01

    Chromatin modification through histone acetylation is a molecular pathway involved in the regulation of transcription underlying memory storage. Sodium 4-phenylbutyrate (4-PBA) is a well-known histone deacetylase inhibitor, which increases gene transcription of a number of genes, and also exerts neuroprotective effects. In this study, we report that administration of 4-PBA reversed spatial learning and memory deficits in an established mouse model of Alzheimer's disease (AD) without altering beta-amyloid burden. We also observed that the phosphorylated form of tau was decreased in the AD mouse brain after 4-PBA treatment, an effect probably due to an increase in the inactive form of the glycogen synthase kinase 3beta (GSK3beta). Interestingly, we found a dramatic decrease in brain histone acetylation in the transgenic mice that may reflect an indirect transcriptional repression underlying memory impairment. The administration of 4-PBA restored brain histone acetylation levels and, as a most likely consequence, activated the transcription of synaptic plasticity markers such as the GluR1 subunit of the AMPA receptor, PSD95, and microtubule-associated protein-2. The results suggest that 4-PBA, a drug already approved for clinical use, may provide a novel approach for the treatment of AD.

  13. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcriptionmore » elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR.« less

  14. Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats

    PubMed Central

    Izquierdo-Bouldstridge, Andrea; Bustillos, Alberto; Bonet-Costa, Carles; Aribau-Miralbés, Patricia; García-Gomis, Daniel; Dabad, Marc; Esteve-Codina, Anna; Pascual-Reguant, Laura; Peiró, Sandra; Esteller, Manel; Murtha, Matthew; Millán-Ariño, Lluís

    2017-01-01

    Abstract Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response. PMID:28977426

  15. The emerging role of epigenetics in rheumatic diseases.

    PubMed

    Gay, Steffen; Wilson, Anthony G

    2014-03-01

    Epigenetics is a key mechanism regulating the expression of genes. There are three main and interrelated mechanisms: DNA methylation, post-translational modification of histone proteins and non-coding RNA. Gene activation is generally associated with lower levels of DNA methylation in promoters and with distinct histone marks such as acetylation of amino acids in histones. Unlike the genetic code, the epigenome is altered by endogenous (e.g. hormonal) and environmental (e.g. diet, exercise) factors and changes with age. Recent evidence implicates epigenetic mechanisms in the pathogenesis of common rheumatic disease, including RA, OA, SLE and scleroderma. Epigenetic drift has been implicated in age-related changes in the immune system that result in the development of a pro-inflammatory status termed inflammageing, potentially increasing the risk of age-related conditions such as polymyalgia rheumatica. Therapeutic targeting of the epigenome has shown promise in animal models of rheumatic diseases. Rapid advances in computational biology and DNA sequencing technology will lead to a more comprehensive understanding of the roles of epigenetics in the pathogenesis of common rheumatic diseases.

  16. Epigenetic modifications in 3D: Nuclear organization of the differentiating mammary epithelial cell

    USDA-ARS?s Scientific Manuscript database

    During the development of tissues, complex programs take place to reach terminally differentiated states with specific gene expression profiles. Epigenetic regulations such as, histone modifications and chromatin condensation have been implicated in the short and long-term control of transcription. ...

  17. LANP mediates neuritic pathology in Spinocerebellar ataxia type 1

    PubMed Central

    Cvetanovic, Marija; Kular, Rupinder K.; Opal, Puneet

    2014-01-01

    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease that results from a pathogenic glutamine-repeat expansion in the protein ataxin-1 (ATXN1). Although the functions of ATXN1 are still largely unknown, there is evidence to suggest that ATXN1 plays a role in regulating gene expression, the earliest process known to go awry in SCA1 mouse models. In this study, we show that ATXN1 reduces histone acetylation, a post-translational modification of histones associated with enhanced transcription, and represses histone acetyl transferase-mediated transcription. In addition, we find that depleting the Leucine-rich Acidic Nuclear Protein (LANP)—an ATXN1 binding inhibitor of histone acetylation—reverses aspects of SCA1 neuritic pathology. PMID:22884877

  18. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, You-e; Liu, Lian; Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its targetmore » genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased fetal adrenal SF-1 acetylation. • Prenatal nicotine-exposed damages fetal adrenal mitochondrial structure.« less

  19. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    PubMed

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  20. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity

    PubMed Central

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  1. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity*

    PubMed Central

    Samant, Sadhana A.; Pillai, Vinodkumar B.; Sundaresan, Nagalingam R.; Shroff, Sanjeev G.; Gupta, Mahesh P.

    2015-01-01

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107

  2. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice.

    PubMed

    Kuzumaki, Naoko; Ikegami, Daigo; Imai, Satoshi; Narita, Michiko; Tamura, Rie; Yajima, Marie; Suzuki, Atsuo; Miyashita, Kazuhiko; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru

    2010-09-01

    A variety of mechanisms that contribute to the accumulation of age-related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL-1beta in the hippocampus, and whether in vitro treatment with IL-1beta in neural stem cells directly impairs neurogenesis. Ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were increased in the dentate gyrus of the hippocampus of 28-month-old mice. Furthermore, the mRNA level of IL-1beta was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL-1beta in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL-1beta in the hippocampus.

  3. Specific histone modification responds to arsenic-induced oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Lu

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showedmore » that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.« less

  4. Targeting the Epigenome with Bioactive Food Components for Cancer Prevention

    PubMed Central

    Ong, Thomas Prates; Moreno, Fernando Salvador; Ross, Sharon Ann

    2012-01-01

    Epigenetic processes participate in cancer development and likely influence cancer prevention. Global DNA hypomethylation, gene promoter hypermethylation and aberrant histone post-translational modifications are hallmarks of neoplastic cells which have been associated with genomic instability and altered gene expression. Because epigenetic deregulation occurs early in carcinogenesis and is potentially reversible, intervention strategies targeting the epigenome have been proposed for cancer prevention. Bioactive food components (BFCs) with anticancer potential, including folate, polyphenols, selenium, retinoids, fatty acids, isothiocyanates and allyl compounds, influence DNA methylation and histone modification processes. Such activities have been shown to affect the expression of genes involved in cell proliferation, death and differentiation that are frequently altered in cancer. Although the epigenome represents a promising target for cancer prevention with BFCs, few studies have addressed the influence of dietary components on these mechanisms in vivo, particularly on the phenotype of humans, and thus the exact mechanisms whereby diet mediates an effect on cancer prevention remains unclear. Primary factors that should be elucidated include the effective doses and dose timing of BFCs to attain epigenetic effects. Because diet-epigenome interactions are likely to occur in utero, the impact of early-life nutrition on cancer risk programming should be further investigated. PMID:22353664

  5. POTAMOS mass spectrometry calculator: computer aided mass spectrometry to the post-translational modifications of proteins. A focus on histones.

    PubMed

    Vlachopanos, A; Soupsana, E; Politou, A S; Papamokos, G V

    2014-12-01

    Mass spectrometry is a widely used technique for protein identification and it has also become the method of choice in order to detect and characterize the post-translational modifications (PTMs) of proteins. Many software tools have been developed to deal with this complication. In this paper we introduce a new, free and user friendly online software tool, named POTAMOS Mass Spectrometry Calculator, which was developed in the open source application framework Ruby on Rails. It can provide calculated mass spectrometry data in a time saving manner, independently of instrumentation. In this web application we have focused on a well known protein family of histones whose PTMs are believed to play a crucial role in gene regulation, as suggested by the so called "histone code" hypothesis. The PTMs implemented in this software are: methylations of arginines and lysines, acetylations of lysines and phosphorylations of serines and threonines. The application is able to calculate the kind, the number and the combinations of the possible PTMs corresponding to a given peptide sequence and a given mass along with the full set of the unique primary structures produced by the possible distributions along the amino acid sequence. It can also calculate the masses and charges of a fragmented histone variant, which carries predefined modifications already implemented. Additional functionality is provided by the calculation of the masses of fragments produced upon protein cleavage by the proteolytic enzymes that are most widely used in proteomics studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. GANP regulates recruitment of AID to immunoglobulin variable regions by modulating transcription and nucleosome occupancy

    PubMed Central

    Singh, Shailendra Kumar; Maeda, Kazuhiko; Eid, Mohammed Mansour Abbas; Almofty, Sarah Ameen; Ono, Masaya; Pham, Phuong; Goodman, Myron F.; Sakaguchi, Nobuo

    2013-01-01

    Somatic hypermutation in B cells is initiated by activation-induced cytidine deaminase-catalyzed C→U deamination at immunoglobulin variable regions. Here we investigate the role of the germinal centre-associated nuclear protein (GANP) in enhancing the access of activation-induced cytidine deaminase (AID) to immunoglobulin variable regions. We show that the nuclear export factor GANP is involved in chromatin modification at rearranged immunoglobulin variable loci, and its activity requires a histone acetyltransferase domain. GANP interacts with the transcription stalling protein Spt5 and facilitates RNA Pol-II recruitment to immunoglobulin variable regions. Germinal centre B cells from ganp-transgenic mice showed a higher AID occupancy at the immunoglobulin variable region, whereas B cells from conditional ganp-knockout mice exhibit a lower AID accessibility. These findings suggest that GANP-mediated chromatin modification promotes transcription complex recruitment and positioning at immunoglobulin variable loci to favour AID targeting. PMID:23652018

  7. Hyperglycemia impedes definitive endoderm differentiation of human embryonic stem cells by modulating histone methylation patterns.

    PubMed

    Chen, A C H; Lee, Y L; Fong, S W; Wong, C C Y; Ng, E H Y; Yeung, W S B

    2017-06-01

    Exposure to maternal diabetes during fetal growth is a risk factor for the development of type II diabetes (T2D) in later life. Discovery of the mechanisms involved in this association should provide valuable background for therapeutic treatments. Early embryogenesis involves epigenetic changes including histone modifications. The bivalent histone methylation marks H3K4me3 and H3K27me3 are important for regulating key developmental genes during early fetal pancreas specification. We hypothesized that maternal hyperglycemia disrupted early pancreas development through changes in histone bivalency. A human embryonic stem cell line (VAL3) was used as the cell model for studying the effects of hyperglycemia upon differentiation into definitive endoderm (DE), an early stage of the pancreatic lineage. Hyperglycemic conditions significantly down-regulated the expression levels of DE markers SOX17, FOXA2, CXCR4 and EOMES during differentiation. This was associated with retention of the repressive histone methylation mark H3K27me3 on their promoters under hyperglycemic conditions. The disruption of histone methylation patterns was observed as early as the mesendoderm stage, with Wnt/β-catenin signaling being suppressed during hyperglycemia. Treatment with Wnt/β-catenin signaling activator CHIR-99021 restored the expression levels and chromatin methylation status of DE markers, even in a hyperglycemic environment. The disruption of DE development was also found in mouse embryos at day 7.5 post coitum from diabetic mothers. Furthermore, disruption of DE differentiation in VAL3 cells led to subsequent impairment in pancreatic progenitor formation. Thus, early exposure to hyperglycemic conditions hinders DE development with a possible relationship to the later impairment of pancreas specification.

  8. Rice epigenomics and epigenetics: challenges and opportunities.

    PubMed

    Chen, Xiangsong; Zhou, Dao-Xiu

    2013-05-01

    During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Archaeal DNA on the histone merry-go-round.

    PubMed

    Bhattacharyya, Sudipta; Mattiroli, Francesca; Luger, Karolin

    2018-05-04

    How did the nucleosome, the fundamental building block of all eukaryotic chromatin, evolve? This central question has been impossible to address because the four core histones that make up the protein core of the nucleosome are so highly conserved in all eukaryotes. With the discovery of small, minimalist histone-like proteins in most known archaea, the likely origin of histones was identified. We recently determined the structure of an archaeal histone-DNA complex, revealing that archaeal DNA topology and protein-DNA interactions are astonishingly similar compared to the eukaryotic nucleosome. This was surprising since most archaeal histones form homodimers which consist only of the minimal histone fold and are devoid of histone tails and extensions. Unlike eukaryotic H2A-H2B and H3-H4 heterodimers that assemble into octameric particles wrapping ~150 bp DNA, archaeal histones form polymers around which DNA coils in a quasi-continuous superhelix. At any given point, this superhelix has the same geometry as nucleosomal DNA. This suggests that the architectural role of histones (i.e. the ability to bend DNA into a nucleosomal superhelix) was established before archaea and eukaryotes diverged, while the ability to form discrete particles, together with signaling functions of eukaryotic chromatin (i.e. epigenetic modifications) were secondary additions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. The molecular basis for stability of heterochromatin-mediated silencing in mammals.

    PubMed

    Hiragami-Hamada, Kyoko; Xie, Sheila Q; Saveliev, Alexander; Uribe-Lewis, Santiago; Pombo, Ana; Festenstein, Richard

    2009-11-04

    The archetypal epigenetic phenomenon of position effect variegation (PEV) in Drosophila occurs when a gene is brought abnormally close to heterochromatin, resulting in stochastic silencing of the affected gene in a proportion of cells that would normally express it. PEV has been instrumental in unraveling epigenetic mechanisms. Using an in vivo mammalian model for PEV we have extensively investigated the molecular basis for heterochromatin-mediated gene silencing. Here we distinguish 'epigenetic effects' from other cellular differences by studying ex vivo cells that are identical, apart from the expression of the variegating gene which is silenced in a proportion of the cells. By separating cells according to transgene expression we show here that silencing appears to be associated with histone H3 lysine 9 trimethylation (H3K9me3), DNA methylation and the localization of the silenced gene to a specific nuclear compartment enriched in these modifications. In contrast, histone H3 acetylation (H3Ac) and lysine 4 di or tri methylation (H3K4me2/3) are the predominant modifications associated with expression where we see the gene in a euchromatic compartment. Interestingly, DNA methylation and inaccessibility, rather than H3K9me3, correlated most strongly with resistance to de-repression by cellular activation. These results have important implications for understanding the contribution of specific factors involved in the establishment and maintenance of gene silencing and activation in vivo.

  11. Alcohol and epigenetic changes: Summary of the 2011 Alcohol and Immunology Research Interest Group (AIRIG) meeting

    PubMed Central

    Zahs, Anita; Curtis, Brenda J.; Waldschmidt, Thomas J.; Brown, Lou Ann S.; Gauthier, Theresa W.; Choudhry, Mashkoor A.; Kovacs, Elizabeth J.; Bird, Melanie D.

    2013-01-01

    On November 18, 2011, the 16th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at Loyola University Medical Center in Maywood, Illinois. The focus of this year’s meeting was alcohol’s effect on epigenetic changes and possible outcomes induced by these changes. Two sessions, which consisted of talks from invited speakers as well as presentations of selected abstracts, were held in addition to a poster session. Participants presented information on alcohol-induced alterations in histone modifications and gene expression along with immunologic responses to alcohol. Speakers shared new research specifically on histone deacetylase enzyme expression and modifications due to alcohol and the downstream effect of these modifications may have on gene expression and tissue damage. Additional studies suggested that alcohol exacerbates inflammation when combined with other insults such as infection, trauma, inhalation injury, and disease. PMID:22738858

  12. Euchromatic subdomains in rice centromeres are associated with genes and transcription.

    PubMed

    Wu, Yufeng; Kikuchi, Shinji; Yan, Huihuang; Zhang, Wenli; Rosenbaum, Heidi; Iniguez, A Leonardo; Jiang, Jiming

    2011-11-01

    The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.

  13. Chronic exposure to a low concentration of bisphenol A during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes.

    PubMed

    Trapphoff, Tom; Heiligentag, Martyna; El Hajj, Nady; Haaf, Thomas; Eichenlaub-Ritter, Ursula

    2013-12-01

    To determine whether exposure to low concentrations of the endocrine disrupting chemical bisphenol A (BPA) during follicle culture and oocyte growth alters the methylation status of differentially methylated regions (DMRs) of imprinted genes and histone posttranslational modification patterns in mammalian oocytes. Comparative and control study. Experimental laboratory. C57/Bl6JxCBA/Ca mice. Exposure of oocytes to 3 nM or 300 nM BPA during follicle culture from preantral to antral stage. Methylation status of DMRs of maternally imprinted (Snrpn, Igf2r, and Mest) and paternally imprinted gene(s) (H19) in mouse germinal vesicle oocytes; trimethylation of histone H3K9, acetylation of histone H4K12, and distance between centromeres of sister chromatids in metaphase II oocytes. Exposure to 3 nM BPA was associated with slightly accelerated follicle development, statistically significant increases in allele methylation errors in DMRs of maternally imprinted genes, and statistically significant decreases in histone H3K9 trimethylation and interkinetochore distance. The disturbances in oocyte genomic imprinting and modification of posttranslational histone and centromere architecture provide the first link between low BPA exposures and induction of epigenetic changes that may contribute to chromosome congression failures and meiotic errors, and to altered gene expression that might affect health of the offspring. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice.

    PubMed

    Reddy, Marpadga A; Sumanth, Putta; Lanting, Linda; Yuan, Hang; Wang, Mei; Mar, Daniel; Alpers, Charles E; Bomsztyk, Karol; Natarajan, Rama

    2014-02-01

    Epigenetic mechanisms such as chromatin histone H3 lysine methylation and acetylation have been implicated in diabetic vascular complications. However, histone modification profiles at pathologic genes associated with diabetic nephropathy in vivo and their regulation by the angiotensin II type 1 receptor (AT1R) are not clear. Here we tested whether treatment of type 2 diabetic db/db mice with the AT1R blocker losartan not only ameliorates diabetic nephropathy, but also reverses epigenetic changes. As expected, the db/db mice had increased blood pressure, mesangial hypertrophy, proteinuria, and glomerular expression of RAGE and PAI-1 vs. control db/+ mice. This was associated with increased RNA polymerase II recruitment and permissive histone marks as well as decreased repressive histone marks at these genes, and altered expression of relevant histone modification enzymes. Increased MCP-1 mRNA levels were not associated with such epigenetic changes, suggesting post-transcriptional regulation. Losartan attenuated key parameters of diabetic nephropathy and gene expression, and reversed some but not all the epigenetic changes in db/db mice. Losartan also attenuated increased H3K9/14Ac at RAGE, PAI-1, and MCP-1 promoters in mesangial cells cultured under diabetic conditions. Our results provide novel information about the chromatin state at key pathologic genes in vivo in diabetic nephropathy mediated in part by AT1R. Thus, combination therapies targeting epigenetic regulators and AT1R could be evaluated for more effective treatment of diabetic nephropathy.

  15. An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition

    PubMed Central

    Yuan, Chih-Chi; Craske, Madeleine Lisa; Labhart, Paul; Guler, Gulfem D.; Arnott, David; Maile, Tobias M.; Busby, Jennifer; Henry, Chisato; Kelly, Theresa K.; Tindell, Charles A.; Jhunjhunwala, Suchit; Zhao, Feng; Hatton, Charlie; Bryant, Barbara M.

    2016-01-01

    Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) has been instrumental in inferring the roles of histone post-translational modifications in the regulation of transcription, chromatin compaction and other cellular processes that require modulation of chromatin structure. However, analysis of ChIP-seq data is challenging when the manipulation of a chromatin-modifying enzyme significantly affects global levels of histone post-translational modifications. For example, small molecule inhibition of the methyltransferase EZH2 reduces global levels of histone H3 lysine 27 trimethylation (H3K27me3). However, standard ChIP-seq normalization and analysis methods fail to detect a decrease upon EZH2 inhibitor treatment. We overcome this challenge by employing an alternative normalization approach that is based on the addition of Drosophila melanogaster chromatin and a D. melanogaster-specific antibody into standard ChIP reactions. Specifically, the use of an antibody that exclusively recognizes the D. melanogaster histone variant H2Av enables precipitation of D. melanogaster chromatin as a minor fraction of the total ChIP DNA. The D. melanogaster ChIP-seq tags are used to normalize the human ChIP-seq data from DMSO and EZH2 inhibitor-treated samples. Employing this strategy, a substantial reduction in H3K27me3 signal is now observed in ChIP-seq data from EZH2 inhibitor treated samples. PMID:27875550

  16. An Alternative Approach to ChIP-Seq Normalization Enables Detection of Genome-Wide Changes in Histone H3 Lysine 27 Trimethylation upon EZH2 Inhibition.

    PubMed

    Egan, Brian; Yuan, Chih-Chi; Craske, Madeleine Lisa; Labhart, Paul; Guler, Gulfem D; Arnott, David; Maile, Tobias M; Busby, Jennifer; Henry, Chisato; Kelly, Theresa K; Tindell, Charles A; Jhunjhunwala, Suchit; Zhao, Feng; Hatton, Charlie; Bryant, Barbara M; Classon, Marie; Trojer, Patrick

    2016-01-01

    Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) has been instrumental in inferring the roles of histone post-translational modifications in the regulation of transcription, chromatin compaction and other cellular processes that require modulation of chromatin structure. However, analysis of ChIP-seq data is challenging when the manipulation of a chromatin-modifying enzyme significantly affects global levels of histone post-translational modifications. For example, small molecule inhibition of the methyltransferase EZH2 reduces global levels of histone H3 lysine 27 trimethylation (H3K27me3). However, standard ChIP-seq normalization and analysis methods fail to detect a decrease upon EZH2 inhibitor treatment. We overcome this challenge by employing an alternative normalization approach that is based on the addition of Drosophila melanogaster chromatin and a D. melanogaster-specific antibody into standard ChIP reactions. Specifically, the use of an antibody that exclusively recognizes the D. melanogaster histone variant H2Av enables precipitation of D. melanogaster chromatin as a minor fraction of the total ChIP DNA. The D. melanogaster ChIP-seq tags are used to normalize the human ChIP-seq data from DMSO and EZH2 inhibitor-treated samples. Employing this strategy, a substantial reduction in H3K27me3 signal is now observed in ChIP-seq data from EZH2 inhibitor treated samples.

  17. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice

    PubMed Central

    Reddy, Marpadga A.; Sumanth, Putta; Lanting, Linda; Yuan, Hang; Wang, Mei; Mar, Daniel; Alpers, Charles E.; Bomsztyk, Karol; Natarajan, Rama

    2013-01-01

    Epigenetic mechanisms such as chromatin histone H3 lysine methylation and acetylation have been implicated in diabetic vascular complications. However, histone modification profiles at pathologic genes associated with diabetic nephropathy in vivo and their regulation by the angiotensin II type 1 receptor (AT1R) are not clear. Here we tested whether treatment of type 2 diabetic db/db mice with the AT1R blocker Losartan not only ameliorates diabetic nephropathy, but also reverses epigenetic changes. As expected, the db/db mice had increased blood pressure, mesangial hypertrophy, proteinuria and glomerular expression of RAGE and PAI-1 versus control db/+ mice. This was associated with increased RNA Polymerase II recruitment and permissive histone marks as well as decreased repressive histone marks at these genes, and altered expression of relevant histone modification enzymes. Increased MCP-1 mRNA levels were not associated with such epigenetic changes, suggesting post-transcriptional regulation. Losartan attenuated key parameters of diabetic nephropathy and gene expression, and reversed some but not all the epigenetic changes in db/db mice. Losartan also attenuated increased H3K9/14Ac at RAGE, PAI-1 and MCP-1 promoters in mesangial cells cultured under diabetic conditions. Our results provide novel information about the chromatin state at key pathologic genes in vivo in diabetic nephropathy mediated in part by AT1R. Thus combination therapies targeting epigenetic regulators and AT1R could be evaluated for more effective treatment of diabetic nephropathy. PMID:24088954

  18. Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast.

    PubMed

    Castelnuovo, Manuele; Zaugg, Judith B; Guffanti, Elisa; Maffioletti, Andrea; Camblong, Jurgi; Xu, Zhenyu; Clauder-Münster, Sandra; Steinmetz, Lars M; Luscombe, Nicholas M; Stutz, Françoise

    2014-04-01

    Most genomes, including yeast Saccharomyces cerevisiae, are pervasively transcribed producing numerous non-coding RNAs, many of which are unstable and eliminated by nuclear or cytoplasmic surveillance pathways. We previously showed that accumulation of PHO84 antisense RNA (asRNA), in cells lacking the nuclear exosome component Rrp6, is paralleled by repression of sense transcription in a process dependent on the Hda1 histone deacetylase (HDAC) and the H3K4 histone methyl transferase Set1. Here we investigate this process genome-wide and measure the whole transcriptome of various histone modification mutants in a Δrrp6 strain using tiling arrays. We confirm widespread occurrence of potentially antisense-dependent gene regulation and identify three functionally distinct classes of genes that accumulate asRNAs in the absence of Rrp6. These classes differ in whether the genes are silenced by the asRNA and whether the silencing is HDACs and histone methyl transferase-dependent. Among the distinguishing features of asRNAs with regulatory potential, we identify weak early termination by Nrd1/Nab3/Sen1, extension of the asRNA into the open reading frame promoter and dependence of the silencing capacity on Set1 and the HDACs Hda1 and Rpd3 particularly at promoters undergoing extensive chromatin remodelling. Finally, depending on the efficiency of Nrd1/Nab3/Sen1 early termination, asRNA levels are modulated and their capability of silencing is changed.

  19. Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast

    PubMed Central

    Castelnuovo, Manuele; Zaugg, Judith B.; Guffanti, Elisa; Maffioletti, Andrea; Camblong, Jurgi; Xu, Zhenyu; Clauder-Münster, Sandra; Steinmetz, Lars M.; Luscombe, Nicholas M.; Stutz, Françoise

    2014-01-01

    Most genomes, including yeast Saccharomyces cerevisiae, are pervasively transcribed producing numerous non-coding RNAs, many of which are unstable and eliminated by nuclear or cytoplasmic surveillance pathways. We previously showed that accumulation of PHO84 antisense RNA (asRNA), in cells lacking the nuclear exosome component Rrp6, is paralleled by repression of sense transcription in a process dependent on the Hda1 histone deacetylase (HDAC) and the H3K4 histone methyl transferase Set1. Here we investigate this process genome-wide and measure the whole transcriptome of various histone modification mutants in a Δrrp6 strain using tiling arrays. We confirm widespread occurrence of potentially antisense-dependent gene regulation and identify three functionally distinct classes of genes that accumulate asRNAs in the absence of Rrp6. These classes differ in whether the genes are silenced by the asRNA and whether the silencing is HDACs and histone methyl transferase-dependent. Among the distinguishing features of asRNAs with regulatory potential, we identify weak early termination by Nrd1/Nab3/Sen1, extension of the asRNA into the open reading frame promoter and dependence of the silencing capacity on Set1 and the HDACs Hda1 and Rpd3 particularly at promoters undergoing extensive chromatin remodelling. Finally, depending on the efficiency of Nrd1/Nab3/Sen1 early termination, asRNA levels are modulated and their capability of silencing is changed. PMID:24497191

  20. Curcumin modulates the effect of histone modification on the expression of chemokines by type II alveolar epithelial cells in a rat COPD model.

    PubMed

    Gan, Lixing; Li, Chengye; Wang, Jian; Guo, Xuejun

    2016-01-01

    Studies have suggested that histone modification has a positive impact on various aspects associated with the progression of COPD. Histone deacetylase 2 (HDAC2) suppresses proinflammatory gene expression through deacetylation of core histones. To investigate the effect of histone modification on the expression of chemokines in type II alveolar epithelial cells (AEC II) in a rat COPD model and regulation of HDAC2 expression by curcumin in comparison with corticosteroid. The rat COPD model was established by cigarette smoke exposure and confirmed by histology and pathophysioloy. AEC II were isolated and cultured in vitro from the COPD models and control animals. The cells were treated with curcumin, corticosteroid, or trichostatin A, and messenger RNA (mRNA) expression of interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2α (MIP-2α) was assessed by quantitative real-time polymerase chain reaction (RT-PCR). The expression of HDAC2 was measured by Western blot. Chromatin immunoprecipitation was used to detect H3/H4 acetylation and H3K9 methylation in the promoter region of three kinds of chemokine genes (IL-8, MCP-1, and MIP-2α). Compared to the control group, the mRNAs of MCP-1, IL-8, and MIP-2α were upregulated 4.48-fold, 3.14-fold, and 2.83-fold, respectively, in the AEC II from COPD model. The protein expression of HDAC2 in the AEC II from COPD model was significantly lower than from the control group ( P <0.05). The decreased expression of HDAC2 was negatively correlated with the increased expression of IL-8, MCP-1, and MIP-2α mRNAs (all P <0.05). The level of H3/H4 acetylation was higher but H3K9 methylation in the promoter region of chemokine genes was lower in the cells from COPD model than from the control group (all P <0.05). Curcumin downregulated the expression of MCP-1, IL-8, and MIP-2α, and the expression was further enhanced in the presence of corticosteroid. Moreover, curcumin restored HDAC2 expression, decreased the levels of H3/H4 acetylation, and increased H3K9 methylation in the promoter region of chemokine in the presence or absence of dexamethasone (all P <0.05). Curcumin may suppress chemokines and restore corticosteroid resistance in COPD through modulating HDAC2 expression and its effect on histone modification.

  1. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified.

    PubMed

    Ji, Meng-Meng; Huang, Yao-Hui; Huang, Jin-Yan; Wang, Zhao-Fu; Fu, Di; Liu, Han; Liu, Feng; Leboeuf, Christophe; Wang, Li; Ye, Jing; Lu, Yi-Ming; Janin, Anne; Cheng, Shu; Zhao, Wei-Li

    2018-04-01

    Due to heterogeneous morphological and immunophenotypic features, approximately 50% of peripheral T-cell lymphomas are unclassifiable and categorized as peripheral T-cell lymphomas, not otherwise specified. These conditions have an aggressive course and poor clinical outcome. Identification of actionable biomarkers is urgently needed to develop better therapeutic strategies. Epigenetic alterations play a crucial role in tumor progression. Histone modifications, particularly methylation and acetylation, are generally involved in chromatin state regulation. Here we screened the core set of genes related to histone methylation ( KMT2D , SETD2 , KMT2A , KDM6A ) and acetylation ( EP300 , CREBBP ) and identified 59 somatic mutations in 45 of 125 (36.0%) patients with peripheral T-cell lymphomas, not otherwise specified. Histone modifier gene mutations were associated with inferior progression-free survival time of the patients, irrespective of chemotherapy regimens, but an increased response to the histone deacetylase inhibitor chidamide. In vitro , chidamide significantly inhibited the growth of EP300-mutated T-lymphoma cells and KMT2D-mutated T-lymphoma cells when combined with the hypomethylating agent decitabine. Mechanistically, decitabine acted synergistically with chidamide to enhance the interaction of KMT2D with transcription factor PU.1, regulated H3K4me-associated signaling pathways, and sensitized T-lymphoma cells to chidamide. In a xenograft KMT2D-mutated T-lymphoma model, dual treatment with chidamide and decitabine significantly retarded tumor growth and induced cell apoptosis through modulation of the KMT2D/H3K4me axis. Our work thus contributes to the understanding of aberrant histone modification in peripheral T-cell lymphomas, not otherwise specified and the stratification of a biological subset that can benefit from epigenetic treatment. Copyright© 2018 Ferrata Storti Foundation.

  2. Epigenetic Regulation of Werner Syndrome Gene in Age-Related Cataract

    PubMed Central

    Guan, Huaijin

    2015-01-01

    Purpose. To examine the promoter methylation and histone modification of WRN (Werner syndrome gene), a DNA repair gene, and their relationship with the gene expression in age-related cataract (ARC) lens. Methods. We collected the lenses after cataract surgery from 117ARC patients and 39 age-matched non-ARC. WRN expression, DNA methylation and histone modification around the CpG island were assessed. The methylation status of Human-lens-epithelium cell (HLEB-3) was chemically altered to observe the relationship between methylation and expression of WRN. Results. The WRN expression was significantly decreased in the ARC anterior lens capsules comparing with the control. The CpG island of WRN promoter in the ARC anterior lens capsules displayed hypermethylation comparing with the controls. The WRN promoter was almost fully methylated in the cortex of ARC and control lens. Acetylated H3 was lower while methylated H3-K9 was higher in ARC anterior lens capsules than that of the controls. The expression of WRN in HLEB-3 increased after demethylation of the cells. Conclusions. A hypermethylation in WRN promoter and altered histone modification in anterior lens capsules might contribute to the ARC mechanism. The data suggest an association of altered DNA repair capability in lens with ARC pathogenesis. PMID:26509079

  3. Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq.

    PubMed

    Busby, Michele; Xue, Catherine; Li, Catherine; Farjoun, Yossi; Gienger, Elizabeth; Yofe, Ido; Gladden, Adrianne; Epstein, Charles B; Cornett, Evan M; Rothbart, Scott B; Nusbaum, Chad; Goren, Alon

    2016-01-01

    The robustness of ChIP-seq datasets is highly dependent upon the antibodies used. Currently, polyclonal antibodies are the standard despite several limitations: They are non-renewable, vary in performance between lots and need to be validated with each new lot. In contrast, monoclonal antibody lots are renewable and provide consistent performance. To increase ChIP-seq standardization, we investigated whether monoclonal antibodies could replace polyclonal antibodies. We compared monoclonal antibodies that target five key histone modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac and H3K27me3) to their polyclonal counterparts in both human and mouse cells. Overall performance was highly similar for four monoclonal/polyclonal pairs, including when we used two distinct lots of the same monoclonal antibody. In contrast, the binding patterns for H3K27ac differed substantially between polyclonal and monoclonal antibodies. However, this was most likely due to the distinct immunogen used rather than the clonality of the antibody. Altogether, we found that monoclonal antibodies as a class perform equivalently to polyclonal antibodies for the detection of histone post-translational modifications in both human and mouse. Accordingly, we recommend the use of monoclonal antibodies in ChIP-seq experiments.

  4. Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits

    PubMed Central

    Basavarajappa, Balapal S.; Subbanna, Shivakumar

    2016-01-01

    Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS), which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD). Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA) biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD. PMID:27070644

  5. Differential histone modification and protein expression associated with cell wall removal and regeneration in rice (Oryza sativa).

    PubMed

    Tan, Feng; Zhang, Kangling; Mujahid, Hana; Verma, Desh Pal S; Peng, Zhaohua

    2011-02-04

    The cell wall is a critical extracellular structure that provides protection and structural support in plant cells. To study the biological function of the cell wall and the regulation of cell wall resynthesis, we examined cellular responses to enzymatic removal of the cell wall in rice (Oryza sativa) suspension cells using proteomic approaches. We find that removal of cell wall stimulates cell wall synthesis from multiple sites in protoplasts instead of from a single site as in cytokinesis. Nucleus DAPI stain and MNase digestion further show that removal of the cell wall is concomitant with substantial chromatin reorganization. Histone post-translational modification studies using both Western blots and isotope labeling assisted quantitative mass spectrometry analyses reveal that substantial histone modification changes, particularly H3K18(AC) and H3K23(AC), are associated with the removal and regeneration of the cell wall. Label-free quantitative proteome analyses further reveal that chromatin associated proteins undergo dramatic changes upon removal of the cell wall, along with cytoskeleton, cell wall metabolism, and stress-response proteins. This study demonstrates that cell wall removal is associated with substantial chromatin change and may lead to stimulation of cell wall synthesis using a novel mechanism.

  6. ATRX, a member of the SNF2 family of helicase/ATPases, is required for chromosome alignment and meiotic spindle organization in metaphase II stage mouse oocytes.

    PubMed

    De La Fuente, Rabindranath; Viveiros, Maria M; Wigglesworth, Karen; Eppig, John J

    2004-08-01

    ATRX is a centromeric heterochromatin binding protein belonging to the SNF2 family of helicase/ATPases with chromatin remodeling activity. Mutations in the human ATRX gene result in X-linked alpha-thalassaemia with mental retardation (ATRX) syndrome and correlate with changes in methylation of repetitive DNA sequences. We show here that ATRX also functions to regulate key stages of meiosis in mouse oocytes. At the germinal vesicle (GV) stage, ATRX was found associated with the perinucleolar heterochromatin rim in transcriptionally quiescent oocytes. Phosphorylation of ATRX during meiotic maturation is dependent upon calcium calmodulin kinase (CamKII) activity. Meiotic resumption also coincides with deacetylation of histone H4 at lysine 5 (H4K5 Ac) while ATRX and histone H3 methylated on lysine 9 (H3K9) remained bound to the centromeres and interstitial regions of condensing chromosomes, respectively. Inhibition of histone deacetylases (HDACs) with trichostatin A (TSA) disrupted ATRX binding to the centromeres of hyperacetylated chromosomes resulting in abnormal chromosome alignments at metaphase II (MII). Similarly, while selective ablation of ATRX by antibody microinjection and RNA interference (RNAi) had no effect on the progression of meiosis, it had severe consequences for the alignment of chromosomes on the metaphase II spindle. These results suggest that genome-wide epigenetic modifications such as global histone deacetylation are essential for the binding of ATRX to centromeric heterochromatin. Moreover, centromeric ATRX is required for correct chromosome alignment and organization of a bipolar meiotic metaphase II spindle.

  7. Trisomy 21 Alters DNA Methylation in Parent-of-Origin-Dependent and -Independent Manners

    PubMed Central

    Alves da Silva, Antônio Francisco; Machado, Filipe Brum; Pavarino, Érika Cristina; Biselli-Périco, Joice Matos; Zampieri, Bruna Lancia; da Silva Francisco Junior, Ronaldo; Mozer Rodrigues, Pedro Thyago; Terra Machado, Douglas; Santos-Rebouças, Cíntia Barros; Gomes Fernandes, Maria; Chuva de Sousa Lopes, Susana Marina; Lopes Rios, Álvaro Fabricio

    2016-01-01

    The supernumerary chromosome 21 in Down syndrome differentially affects the methylation statuses at CpG dinucleotide sites and creates genome-wide transcriptional dysregulation of parental alleles, ultimately causing diverse pathologies. At present, it is unknown whether those effects are dependent or independent of the parental origin of the nondisjoined chromosome 21. Linkage analysis is a standard method for the determination of the parental origin of this aneuploidy, although it is inadequate in cases with deficiency of samples from the progenitors. Here, we assessed the reliability of the epigenetic 5mCpG imprints resulting in the maternally (oocyte)-derived allele methylation at a differentially methylated region (DMR) of the candidate imprinted WRB gene for asserting the parental origin of chromosome 21. We developed a methylation-sensitive restriction enzyme-specific PCR assay, based on the WRB DMR, across single nucleotide polymorphisms (SNPs) to examine the methylation statuses in the parental alleles. In genomic DNA from blood cells of either disomic or trisomic subjects, the maternal alleles were consistently methylated, while the paternal alleles were unmethylated. However, the supernumerary chromosome 21 did alter the methylation patterns at the RUNX1 (chromosome 21) and TMEM131 (chromosome 2) CpG sites in a parent-of-origin-independent manner. To evaluate the 5mCpG imprints, we conducted a computational comparative epigenomic analysis of transcriptome RNA sequencing (RNA-Seq) and histone modification expression patterns. We found allele fractions consistent with the transcriptional biallelic expression of WRB and ten neighboring genes, despite the similarities in the confluence of both a 17-histone modification activation backbone module and a 5-histone modification repressive module between the WRB DMR and the DMRs of six imprinted genes. We concluded that the maternally inherited 5mCpG imprints at the WRB DMR are uncoupled from the parental allele expression of WRB and ten neighboring genes in several tissues and that trisomy 21 alters DNA methylation in parent-of-origin-dependent and -independent manners. PMID:27100087

  8. Aberrant Epigenetic Alterations of Glutathione-S-Transferase P1 in Age-Related Nuclear Cataract.

    PubMed

    Chen, Jia; Zhou, Jing; Wu, Jian; Zhang, Guowei; Kang, Lihua; Ben, Jindong; Wang, Yong; Qin, Bai; Guan, Huaijin

    2017-03-01

    Oxidative damage of lens tissue contributes to the formation of age-related cataract. Pi-class glutathione-S-transferase (GSTP1) plays a role in the removal of oxidative adducts by transferring them to glutathione. To assess epigenetic regulation of GSTP1 and its potential role in age-related nuclear cataract (ARNC) pathogenesis, we evaluated GSTP1 mRNA expression, methylation, and chromatin modifications in lenses from ARNC patients. The mRNA and protein of lens GSTP1 were assayed by relative quantitative real-time polymerase chain reaction (qRT-PCR) and Western blots. Methylation of the GSTP1 promoter was determined by bisulfite genomic sequencing. Chromatin modification was detected by chromatin immunoprecipitation. DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities were also assayed by enzyme-linked immunosorbent assay (ELISA)-like reaction. To assess the effect of DNA methylation on the mRNA expression of GSTP1, human lens epithelium HLE-B3 cells were treated with the demethylation compound 5-aza-dC, followed by qRT-PCR assay. GSTP1 mRNA and protein levels were significantly reduced in lens epithelium and cortex of ARNC cases versus age-matched controls. The changes corresponded to hypermethylation of the GSTP1 promoter CpG islands. The loss of GSTP1 mRNA and protein and the increased DNA promoter methylation might be correlated with the severity of the ARNC. ARNC lenses also had lower acetylation of histone proteins H3, H4, and lower methylation of H3K4, and higher methylation of H3K9. Histone modifications were not correlated with the severity of the ARNCs. DNMT and HDAC were elevated in lenses from ARNCs compared with controls. Demethylation treatment of HLE-B3 cells with 5-aza-dC enhanced the expression of GSTP1. Epigenetic alteration of GSTP1 regulates its expression in lens epithelial and cortical tissues. These changes likely contribute to the pathogenesis of ARNC.

  9. A Combinatorial Platform for the Optimization of Peptidomimetic Methyl-Lysine Reader Antagonists

    NASA Astrophysics Data System (ADS)

    Barnash, Kimberly D.

    Post-translational modification of histone N-terminal tails mediates chromatin compaction and, consequently, DNA replication, transcription, and repair. While numerous post-translational modifications decorate histone tails, lysine methylation is an abundant mark important for both gene activation and repression. Methyl-lysine (Kme) readers function through binding mono-, di-, or trimethyl-lysine. Chemical intervention of Kme readers faces numerous challenges due to the broad surface-groove interactions between readers and their cognate histone peptides; yet, the increasing interest in understanding chromatin-modifying complexes suggests tractable lead compounds for Kme readers are critical for elucidating the mechanisms of chromatin dysregulation in disease states and validating the druggability of these domains and complexes. The successful discovery of a peptide-derived chemical probe, UNC3866, for the Polycomb repressive complex 1 (PRC1) chromodomain Kme readers has proven the potential for selective peptidomimetic inhibition of reader function. Unfortunately, the systematic modification of peptides-to-peptidomimetics is a costly and inefficient strategy for target-class hit discovery against Kme readers. Through the exploration of biased chemical space via combinatorial on-bead libraries, we have developed two concurrent methodologies for Kme reader chemical probe discovery. We employ biased peptide combinatorial libraries as a hit discovery strategy with subsequent optimization via iterative targeted libraries. Peptide-to-peptidomimetic optimization through targeted library design was applied based on structure-guided library design around the interaction of the endogenous peptide ligand with three target Kme readers. Efforts targeting the WD40 reader EED led to the discovery of the 3-mer peptidomimetic ligand UNC5115 while combinatorial repurposing of UNC3866 for off-target chromodomains resulted in the discovery of UNC4991, a CDYL/2-selective ligand, and UNC4848, a MPP8 and CDYL/2 ligand. Ultimately, our efforts demonstrate the generalizability of a peptidomimetic combinatorial platform for the optimization of Kme reader ligands in a target class manner.

  10. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity.

    PubMed

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci.

  11. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity

    PubMed Central

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci. PMID:27087825

  12. Using a model comparison approach to describe the assembly pathway for histone H1

    PubMed Central

    Contreras, Carlos; Villasana, Minaya; Hendzel, Michael J.

    2018-01-01

    Histones H1 or linker histones are highly dynamic proteins that diffuse throughout the cell nucleus and associate with chromatin (DNA and associated proteins). This binding interaction of histone H1 with the chromatin is thought to regulate chromatin organization and DNA accessibility to transcription factors and has been proven to involve a kinetic process characterized by a population that associates weakly with chromatin and rapidly dissociates and another population that resides at a binding site for up to several minutes before dissociating. When considering differences between these two classes of interactions in a mathematical model for the purpose of describing and quantifying the dynamics of histone H1, it becomes apparent that there could be several assembly pathways that explain the kinetic data obtained in living cells. In this work, we model these different pathways using systems of reaction-diffusion equations and carry out a model comparison analysis using FRAP (fluorescence recovery after photobleaching) experimental data from different histone H1 variants to determine the most feasible mechanism to explain histone H1 binding to chromatin. The analysis favors four different chromatin assembly pathways for histone H1 which share common features and provide meaningful biological information on histone H1 dynamics. We show, using perturbation analysis, that the explicit consideration of high- and low-affinity associations of histone H1 with chromatin in the favored assembly pathways improves the interpretation of histone H1 experimental FRAP data. To illustrate the results, we use one of the favored models to assess the kinetic changes of histone H1 after core histone hyperacetylation, and conclude that this post-transcriptional modification does not affect significantly the transition of histone H1 from a weakly bound state to a tightly bound state. PMID:29352283

  13. Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra.

    PubMed

    Reddy, Puli Chandramouli; Ubhe, Suyog; Sirwani, Neha; Lohokare, Rasika; Galande, Sanjeev

    2017-08-01

    Histones are fundamental components of chromatin in all eukaryotes. Hydra, an emerging model system belonging to the basal metazoan phylum Cnidaria, provides an ideal platform to understand the evolution of core histone components at the base of eumetazoan phyla. Hydra exhibits peculiar properties such as tremendous regenerative capacity, lack of organismal senescence and rarity of malignancy. In light of the role of histone modifications and histone variants in these processes it is important to understand the nature of histones themselves and their variants in hydra. Here, we report identification of the complete repertoire of histone-coding genes in the Hydra magnipapillata genome. Hydra histones were classified based on their copy numbers, gene structure and other characteristic features. Genomic organization of canonical histone genes revealed the presence of H2A-H2B and H3-H4 paired clusters in high frequency and also a cluster with all core histones along with H1. Phylogenetic analysis of identified members of H2A and H2B histones suggested rapid expansion of these groups in Hydrozoa resulting in the appearance of unique subtypes. Amino acid sequence level comparisons of H2A and H2B forms with bilaterian counterparts suggest the possibility of a highly mobile nature of nucleosomes in hydra. Absolute quantitation of transcripts confirmed the high copy number of histones and supported the canonical nature of H2A. Furthermore, functional characterization of H2A.X.1 and a unique variant H2A.X.2 in the gastric region suggest their role in the maintenance of genome integrity and differentiation processes. These findings provide insights into the evolution of histones and their variants in hydra. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Targeting epigenetic regulations in cancer

    PubMed Central

    Ning, Bo; Li, Wenyuan; Zhao, Wei; Wang, Rongfu

    2016-01-01

    Epigenetic regulation of gene expression is a dynamic and reversible process with DNA methylation, histone modifications, and chromatin remodeling. Recently, groundbreaking studies have demonstrated the importance of DNA and chromatin regulatory proteins from different aspects, including stem cell, development, and tumor genesis. Abnormal epigenetic regulation is frequently associated with diseases and drugs targeting DNA methylation and histone acetylation have been approved for cancer therapy. Although the network of epigenetic regulation is more complex than people expect, new potential druggable chromatin-associated proteins are being discovered and tested for clinical application. Here we review the key proteins that mediate epigenetic regulations through DNA methylation, the acetylation and methylation of histones, and the reader proteins that bind to modified histones. We also discuss cancer associations and recent progress of pharmacological development of these proteins. PMID:26508480

  15. Lysine Acetylation in Sexual Stage Malaria Parasites Is a Target for Antimalarial Small Molecules

    PubMed Central

    Trenholme, Katharine; Marek, Linda; Duffy, Sandra; Pradel, Gabriele; Fisher, Gillian; Hansen, Finn K.; Skinner-Adams, Tina S.; Butterworth, Alice; Ngwa, Che Julius; Moecking, Jonas; Goodman, Christopher D.; McFadden, Geoffrey I.; Sumanadasa, Subathdrage D. M.; Fairlie, David P.; Avery, Vicky M.

    2014-01-01

    Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology. PMID:24733477

  16. Smurf2 Regulates DNA Repair and Packaging to Prevent Tumors | Center for Cancer Research

    Cancer.gov

    The blueprint for all of a cell’s functions is written in the genetic code of DNA sequences as well as in the landscape of DNA and histone modifications. DNA is wrapped around histones to package it into chromatin, which is stored in the nucleus. It is important to maintain the integrity of the chromatin structure to ensure that the cell continues to behave appropriately.

  17. The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic Limb

    PubMed Central

    Cotney, Justin; Leng, Jing; Yin, Jun; Reilly, Steven K.; DeMare, Laura E.; Emera, Deena; Ayoub, Albert E.; Rakic, Pasko; Noonan, James P.

    2013-01-01

    SUMMARY The evolution of human anatomical features likely involved changes in gene regulation during development. However, the nature and extent of human-specific developmental regulatory functions remain unknown. We obtained a genome-wide view of cis-regulatory evolution in human embryonic tissues by comparing the histone modification H3K27ac, which provides a quantitative readout of promoter and enhancer activity, during human, rhesus, and mouse limb development. Based on increased H3K27ac, we find that 13% of promoters and 11% of enhancers have gained activity on the human lineage since the human-rhesus divergence. These gains largely arose by modification of ancestral regulatory activities in the limb or potential co-option from other tissues and are likely to have heterogeneous genetic causes. Most enhancers that exhibit gain of activity in humans originated in mammals. Gains at promoters and enhancers in the human limb are associated with increased gene expression, suggesting they include molecular drivers of human morphological evolution. PMID:23827682

  18. In the loop: how chromatin topology links genome structure to function in mechanisms underlying learning and memory.

    PubMed

    Watson, L Ashley; Tsai, Li-Huei

    2017-04-01

    Different aspects of learning, memory, and cognition are regulated by epigenetic mechanisms such as covalent DNA modifications and histone post-translational modifications. More recently, the modulation of chromatin architecture and nuclear organization is emerging as a key factor in dynamic transcriptional regulation of the post-mitotic neuron. For instance, neuronal activity induces relocalization of gene loci to 'transcription factories', and specific enhancer-promoter looping contacts allow for precise transcriptional regulation. Moreover, neuronal activity-dependent DNA double-strand break formation in the promoter of immediate early genes appears to overcome topological constraints on transcription. Together, these findings point to a critical role for genome topology in integrating dynamic environmental signals to define precise spatiotemporal gene expression programs supporting cognitive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Persistently Altered Epigenetic Marks in the Mouse Uterus After Neonatal Estrogen Exposure

    PubMed Central

    Jefferson, Wendy N.; Chevalier, Dominique M.; Phelps, Jazma Y.; Cantor, Amy M.; Padilla-Banks, Elizabeth; Newbold, Retha R.; Archer, Trevor K.; Kinyamu, H. Karimi

    2013-01-01

    Neonatal exposure to diethylstilbestrol (DES) causes permanent alterations in female reproductive tract gene expression, infertility, and uterine cancer in mice. To determine whether epigenetic mechanisms could explain these phenotypes, we first tested whether DES altered uterine expression of chromatin-modifying proteins. DES treatment significantly reduced expression of methylcytosine dioxygenase TET oncogene family, member 1 (TET1) on postnatal day 5; this decrease was correlated with a subtle decrease in DNA 5-hydroxymethylcytosine in adults. There were also significant reductions in histone methyltransferase enhancer of zeste homolog 2 (EZH2), histone lysine acetyltransferase 2A (KAT2A), and histone deacetylases HDAC1, HDAC2, and HDAC3. Uterine chromatin immunoprecipitation was used to analyze the locus-specific association of modified histones with 2 genes, lactoferrin (Ltf) and sine oculis homeobox 1 (Six1), which are permanently upregulated in adults after neonatal DES treatment. Three histone modifications associated with active transcription, histone H3 lysine 9 acetylation (H3K9ac), H3 lysine 4 trimethylation (H3K4me3), and H4 lysine 5 acetylation (H4K5ac) were enriched at specific Ltf promoter regions after DES treatment, but this enrichment was not maintained in adults. H3K9ac, H4K5ac, and H3K4me3 were enriched at Six1 exon 1 immediately after neonatal DES treatment. As adults, DES-treated mice had greater differences in H4K5ac and H3K4me3 occupancy at Six1 exon 1 and new differences in these histone marks at an upstream region. These findings indicate that neonatal DES exposure temporarily alters expression of multiple chromatin-modifying proteins and persistently alters epigenetic marks in the adult uterus at the Six1 locus, suggesting a mechanism for developmental exposures leading to altered reproductive function and increased cancer risk. PMID:24002655

  20. Histone H3 phosphorylation in GBM: a new rational to guide the use of kinase inhibitors in anti-GBM therapy.

    PubMed

    Pacaud, Romain; Cheray, Mathilde; Nadaradjane, Arulraj; Vallette, François M; Cartron, Pierre-François

    2015-01-01

    Histones post-translational modifications (PTMs) are crucial components of diverse processes that modulate chromatin. Among the histones PTMs, the histones phosphorylation appears such crucial since it plays a significant role into DNA repair structure, transcription and chromatin compaction during cell division and apoptosis. However, little is known about the prognostic value of the histone phosphorylation in human cancer. This point could be considerate such as an important gap in anti-cancer therapy since the use of adequate kinase inhibitors could remedy to the aberrant histone phosphorylation associated with a poor prognosis factor. To remedy at this situation, we analyzed the phosphorylation level of histone H3 at the residues T3, T6, S10, S28, Y41 and T45 in a collection of 42 glioblastoma multiformes (GBM). Our data indicated that the high level of pH3T6, pH3S10 and pH3Y41 are signatures associated with a poor prognosis of overall survival (OS) of GBM treated with the "temozolomide and irradiation standard" treatment of GBM (named TMZ+Irad treatment). Our data also showed that these signatures are correlated with the high activity of kinases already described as writers of the pH3T6, pH3S10 and pH3Y41 i.e. the PKC, Aurora-B and JAK2, respectively. Finally, our analysis revealed that the use of Enzastaurin, AZD1152, and AZD1480 abrogated the high level of pH3T6, pH3S10 and pH3Y41 while increasing the sensitivity to the "temozolomide and irradiation"-induced cell death. To conclude, it appears that this work provides biomarkers for patient stratification for a therapy including kinase inhibitors.

  1. A Simple Method for Visualization of Locus-Specific H4K20me1 Modifications in Living Caenorhabditis elegans Single Cells.

    PubMed

    Shinkai, Yoichi; Kuramochi, Masahiro; Doi, Motomichi

    2018-05-03

    Recently, advances in next-generation sequencing technologies have enabled genome-wide analyses of epigenetic modifications; however, it remains difficult to analyze the states of histone modifications at a single-cell resolution in living multicellular organisms because of the heterogeneity within cellular populations. Here we describe a simple method to visualize histone modifications on the specific sequence of target locus at a single-cell resolution in living Caenorhabditis elegans , by combining the LacO/LacI system and a genetically-encoded H4K20me1-specific probe, "mintbody". We demonstrate that Venus-labeled mintbody and mTurquoise2-labeled LacI can co-localize on an artificial chromosome carrying both the target locus and LacO sequences, where H4K20me1 marks the target locus. We demonstrate that our visualization method can precisely detect H4K20me1 depositions on the her-1 gene sequences on the artificial chromosome, to which the dosage compensation complex binds to regulate sex determination. The degree of H4K20me1 deposition on the her-1 sequences on the artificial chromosome correlated strongly with sex, suggesting that, using the artificial chromosome, this method can reflect context-dependent changes of H4K20me1 on endogenous genomes. Furthermore, we demonstrate live imaging of H4K20me1 depositions on the artificial chromosome. Combined with ChIP assays, this mintbody-LacO/LacI visualization method will enable analysis of developmental and context-dependent alterations of locus-specific histone modifications in specific cells and elucidation of the underlying molecular mechanisms. Copyright © 2018, G3: Genes, Genomes, Genetics.

  2. In Vitro Cytokine Licensing Induces Persistent Permissive Chromatin at the IDO1 Promoter

    PubMed Central

    Rovira Gonzalez, Yazmin I.; Lynch, Patrick J.; Thompson, Elaine E.; Stultz, Brian G.; Hursh, Deborah A.

    2016-01-01

    Background Mesenchymal stromal cells (MSCs) are being investigated as therapies for inflammatory diseases due to their immunosuppressive capacity. IFN-γ treatment primes MSC immunosuppression partially through induction of Indoleamine 2,3-dioxygenase (IDO1), which depletes tryptophan necessary to support proliferation of activated T-cells. We investigated the role of histone modifications in the timing and maintenance of induced IDO1 expression in MSCs under clinical manufacturing conditions, such as cryopreservation. Methods We used chromatin immunoprecipitation and quantitative polymerase chain reaction (PCR) to assay levels of transcriptionally permissive acetylated H3K9 and repressive trimethylated H3K9 histone modifications surrounding the transcriptional start site for IDO1, and reverse transcriptase PCR and immunoblotting to detect mRNA and protein. Results MSCs derived from three donors approached maximum IDO1 mRNA levels following 24 hours of in vitro cytokine treatment. Induction of IDO1 expression correlated with increased acetylation of H3K9 concomitant with reduction of trimethylated H3K9 modifications at the promoter. Examination of two additional donors confirmed this result. While induced IDO1 levels declined within two days after cytokine removal and freeze thawing, the activated chromatin state was maintained. Upon re-exposure to cytokines, previously primed MSCs accumulated near-maximum IDO1 mRNA levels within four to eight hours. Discussion Our data indicate that in vitro priming of MSCs causes chromatin remodeling at the IDO1 promoter, that this alteration is maintained during processing commonly used to prepare MSCs for clinical use, and that once primed, MSCs are poised for IDO1 expression even in the absence of cytokines. PMID:27421739

  3. Epigenetic Transgenerational Inheritance of Altered Sperm Histone Retention Sites.

    PubMed

    Ben Maamar, Millissia; Sadler-Riggleman, Ingrid; Beck, Daniel; Skinner, Michael K

    2018-03-28

    A variety of environmental toxicants and factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. Epigenetic alterations in the germline (sperm or egg) are required to transmit transgenerational phenotypes. The current study was designed to investigate the potential role of histones in sperm to help mediate the epigenetic transgenerational inheritance. The agricultural fungicide vinclozolin and the pesticide DDT (dichlorodiphenyltrichloroethane) were independently used to promote the epigenetic transgenerational inheritance of disease. Purified cauda epididymal sperm were collected from the transgenerational F3 generation control and exposure lineage male rats for histone analysis. A reproducible core of histone H3 retention sites was observed using an H3 chromatin immunoprecipitation (ChIP-Seq) analysis in control lineage sperm. Interestingly, the same core group of H3 retention sites plus additional differential histone retention sites (DHRs) were observed in the F3 generation exposure lineage sperm. Although new histone H3 retention sites were observed, negligible change in histone modification (methylation of H3K27me3) was observed between the control and exposure lineages. Observations demonstrate that in addition to alterations in sperm DNA methylation and ncRNA previously identified, the induction of differential histone retention sites (DHRs) also appear to be involved in environmentally induced epigenetic transgenerational inheritance.

  4. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation

    PubMed Central

    Nakagawa, Takeya; Kajitani, Takuya; Togo, Shinji; Masuko, Norio; Ohdan, Hideki; Hishikawa, Yoshitaka; Koji, Takehiko; Matsuyama, Toshifumi; Ikura, Tsuyoshi; Muramatsu, Masami; Ito, Takashi

    2008-01-01

    Transcriptional initiation is a key step in the control of mRNA synthesis and is intimately related to chromatin structure and histone modification. Here, we show that the ubiquitylation of H2A (ubH2A) correlates with silent chromatin and regulates transcriptional initiation. The levels of ubH2A vary during hepatocyte regeneration, and based on microarray expression data from regenerating liver, we identified USP21, a ubiquitin-specific protease that catalyzes the hydrolysis of ubH2A. When chromatin is assembled in vitro, ubH2A, but not H2A, specifically represses the di- and trimethylation of H3K4. USP21 relieves this ubH2A-specific repression. In addition, in vitro transcription analysis revealed that ubH2A represses transcriptional initiation, but not transcriptional elongation, by inhibiting H3K4 methylation. Notably, ubH2A-mediated repression was not observed when H3 Lys 4 was changed to arginine. Furthermore, overexpression of USP21 in the liver up-regulates a gene that is normally down-regulated during hepatocyte regeneration. Our studies revealed a novel mode of trans-histone cross-talk, in which H2A ubiquitylation controls the di- and trimethylation of H3K4, resulting in regulation of transcriptional initiation. PMID:18172164

  5. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice.

    PubMed

    Ding, Bo; Bellizzi, Maria del Rosario; Ning, Yuese; Meyers, Blake C; Wang, Guo-Liang

    2012-09-01

    Histone acetylation and deacetylation play an important role in the modification of chromatin structure and regulation of gene expression in eukaryotes. Chromatin acetylation status is modulated antagonistically by histone acetyltransferases and histone deacetylases (HDACs). In this study, we characterized the function of histone deacetylase701 (HDT701), a member of the plant-specific HD2 subfamily of HDACs, in rice (Oryza sativa) innate immunity. Transcription of HDT701 is increased in the compatible reaction and decreased in the incompatible reaction after infection by the fungal pathogen Magnaporthe oryzae. Overexpression of HDT701 in transgenic rice leads to decreased levels of histone H4 acetylation and enhanced susceptibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo). By contrast, silencing of HDT701 in transgenic rice causes elevated levels of histone H4 acetylation and elevated transcription of pattern recognition receptor (PRR) and defense-related genes, increased generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, as well as enhanced resistance to both M. oryzae and Xoo. We also found that HDT701 can bind to defense-related genes to regulate their expression. Taken together, these results demonstrate that HDT701 negatively regulates innate immunity by modulating the levels of histone H4 acetylation of PRR and defense-related genes in rice.

  6. A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding

    PubMed Central

    Kostrhon, Sebastian; Kontaxis, Georg; Kaufmann, Tanja; Schirghuber, Erika; Kubicek, Stefan; Konrat, Robert

    2017-01-01

    N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD–BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein–protein interactions by intramolecular mimicry. PMID:28864776

  7. Controlling DNA methylation: many roads to one modification.

    PubMed

    Freitag, Michael; Selker, Eric U

    2005-04-01

    Genetic, biochemical and cytological studies on DNA methylation in several eukaryotic organisms have resulted in leaps of understanding in the past three years. Discoveries of mechanistic links between DNA methylation and histone methylation, and between these processes and RNA interference (RNAi) machineries have reinvigorated the field. The details of the connections between DNA methylation, histone modifications and RNA silencing remain to be elucidated, but it is already clear that no single pathway accounts for all DNA methylation found in eukaryotes. Rather, different taxa use one or more of several general mechanisms to control methylation. Despite recent progress, classic questions remain, including: What are the signals for DNA methylation? Are "de novo" and "maintenance" methylation truly separate processes? How is DNA methylation regulated?

  8. The SUVR4 Histone Lysine Methyltransferase Binds Ubiquitin and Converts H3K9me1 to H3K9me3 on Transposon Chromatin in Arabidopsis

    PubMed Central

    Veiseth, Silje V.; Rahman, Mohummad A.; Yap, Kyoko L.; Fischer, Andreas; Egge-Jacobsen, Wolfgang; Reuter, Gunter; Zhou, Ming-Ming; Aalen, Reidunn B.; Thorstensen, Tage

    2011-01-01

    Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation–dependent and –independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity. PMID:21423664

  9. The Bromodomain of Gcn5 Regulates Site Specificity of Lysine Acetylation on Histone H3*

    PubMed Central

    Cieniewicz, Anne M.; Moreland, Linley; Ringel, Alison E.; Mackintosh, Samuel G.; Raman, Ana; Gilbert, Tonya M.; Wolberger, Cynthia; Tackett, Alan J.; Taverna, Sean D.

    2014-01-01

    In yeast, the conserved histone acetyltransferase (HAT) Gcn5 associates with Ada2 and Ada3 to form the catalytic module of the ADA and SAGA transcriptional coactivator complexes. Gcn5 also contains an acetyl-lysine binding bromodomain that has been implicated in regulating nucleosomal acetylation in vitro, as well as at gene promoters in cells. However, the contribution of the Gcn5 bromodomain in regulating site specificity of HAT activity remains unclear. Here, we used a combined acid-urea gel and quantitative mass spectrometry approach to compare the HAT activity of wild-type and Gcn5 bromodomain-mutant ADA subcomplexes (Gcn5-Ada2-Ada3). Wild-type ADA subcomplex acetylated H3 lysines with the following specificity; H3K14 > H3K23 > H3K9 ≈ H3K18 > H3K27 > H3K36. However, when the Gcn5 bromodomain was defective in acetyl-lysine binding, the ADA subcomplex demonstrated altered site-specific acetylation on free and nucleosomal H3, with H3K18ac being the most severely diminished. H3K18ac was also severely diminished on H3K14R, but not H3K23R, substrates in wild-type HAT reactions, further suggesting that Gcn5-catalyzed acetylation of H3K14 and bromodomain binding to H3K14ac are important steps preceding H3K18ac. In sum, this work details a previously uncharacterized cross-talk between the Gcn5 bromodomain “reader” function and enzymatic HAT activity that might ultimately affect gene expression. Future studies of how mutations in bromodomains or other histone post-translational modification readers can affect chromatin-templated enzymatic activities will yield unprecedented insight into a potential “histone/epigenetic code.” MS data are available via ProteomeXchange with identifier PXD001167. PMID:25106422

  10. Absolute quantification of histone PTM marks by MRM-based LC-MS/MS.

    PubMed

    Gao, Jun; Liao, Rijing; Yu, Yanyan; Zhai, Huili; Wang, Yingqi; Sack, Ragna; Peters, Antoine H F M; Chen, Jiajia; Wu, Haiping; Huang, Zheng; Hu, Min; Qi, Wei; Lu, Chris; Atadja, Peter; Oyang, Counde; Li, En; Yi, Wei; Zhou, Shaolian

    2014-10-07

    The N-terminal tails of core histones harbor the sites of numerous post-translational modifications (PTMs) with important roles in the regulation of chromatin structure and function. Profiling histone PTM marks provides data that help understand the epigenetics events in cells and their connections with cancer and other diseases. Our previous study demonstrated that specific derivatization of histone peptides by NHS propionate significantly improved their chromatographic performance on reversed phase columns for LC/MS analysis. As a step forward, we recently developed a multiple reaction monitoring (MRM) based LC-MS/MS method to analyze 42 targeted histone peptides. By using stable isotopic labeled peptides as internal standards that are spiked into the reconstituted solutions, this method allows to measure absolute concentration of the tryptic peptides of H3 histone proteins extracted from cancer cell lines. The method was thoroughly validated for the accuracy and reproducibility through analyzing recombinant histone proteins and cellular samples. The linear dynamic range of the MRM assays was achieved in 3 orders of magnitude from 1 nM to 1 μM for all targeted peptides. Excellent intrabatch and interbatch reproducibility (<15% CV) was obtained. This method has been used to study translocated NSD2 (a histone lysine methyltransferase that catalyzes the histone lysine 36 methylation) function with its overexpression in KMS11 multiple myeloma cells. From the results we have successfully quantitated both individual and combinatorial histone marks in parental and NSD2 selective knockout KMS11 cells.

  11. ChromBiSim: Interactive chromatin biclustering using a simple approach.

    PubMed

    Noureen, Nighat; Zohaib, Hafiz Muhammad; Qadir, Muhammad Abdul; Fazal, Sahar

    2017-10-01

    Combinatorial patterns of histone modifications sketch the epigenomic locale. Specific positions of these modifications in the genome are marked by the presence of such signals. Various methods highlight such patterns on global scale hence missing the local patterns which are the actual hidden combinatorics. We present ChromBiSim, an interactive tool for mining subsets of modifications from epigenomic profiles. ChromBiSim efficiently extracts biclusters with their genomic locations. It is the very first user interface based and multiple cell type handling tool for decoding the interplay of subsets of histone modifications combinations along their genomic locations. It displays the results in the forms of charts and heat maps in accordance with saving them in files which could be used for post analysis. ChromBiSim tested on multiple cell types produced in total 803 combinatorial patterns. It could be used to highlight variations among diseased versus normal cell types of any species. ChromBiSim is available at (http://sourceforge.net/projects/chrombisim) in C-sharp and python languages. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Histone Modifications in a Mouse Model of Early Adversities and Panic Disorder: Role for Asic1 and Neurodevelopmental Genes.

    PubMed

    Cittaro, Davide; Lampis, Valentina; Luchetti, Alessandra; Coccurello, Roberto; Guffanti, Alessandro; Felsani, Armando; Moles, Anna; Stupka, Elia; D' Amato, Francesca R; Battaglia, Marco

    2016-04-28

    Hyperventilation following transient, CO2-induced acidosis is ubiquitous in mammals and heritable. In humans, respiratory and emotional hypersensitivity to CO2 marks separation anxiety and panic disorders, and is enhanced by early-life adversities. Mice exposed to the repeated cross-fostering paradigm (RCF) of interference with maternal environment show heightened separation anxiety and hyperventilation to 6% CO2-enriched air. Gene-environment interactions affect CO2 hypersensitivity in both humans and mice. We therefore hypothesised that epigenetic modifications and increased expression of genes involved in pH-detection could explain these relationships. Medullae oblongata of RCF- and normally-reared female outbred mice were assessed by ChIP-seq for H3Ac, H3K4me3, H3K27me3 histone modifications, and by SAGE for differential gene expression. Integration of multiple experiments by network analysis revealed an active component of 148 genes pointing to the mTOR signalling pathway and nociception. Among these genes, Asic1 showed heightened mRNA expression, coherent with RCF-mice's respiratory hypersensitivity to CO2 and altered nociception. Functional enrichment and mRNA transcript analyses yielded a consistent picture of enhancement for several genes affecting chemoception, neurodevelopment, and emotionality. Particularly, results with Asic1 support recent human findings with panic and CO2 responses, and provide new perspectives on how early adversities and genes interplay to affect key components of panic and related disorders.

  13. Cancer Chemoprevention by Dietary Polyphenols: Promising Role for Epigenetics

    PubMed Central

    Link, Alexander; Balaguer, Francesc; Goel, Ajay

    2010-01-01

    Epigenetics refers to heritable changes that are not encoded in the DNA sequence itself, but play an important role in the control of gene expression. In mammals, epigenetic mechanisms include changes in DNA methylation, histone modifications and non-coding RNAs. Although epigenetic changes are heritable in somatic cells, these modifications are also potentially reversible, which makes them attractive and promising avenues for tailoring cancer preventive and therapeutic strategies. Burgeoning evidence in the last decade has provided unprecedented clues that diet and environmental factors directly influence epigenetic mechanisms in humans. Dietary polyphenols from green tea, turmeric, soybeans, broccoli and others have shown to possess multiple cell-regulatory activities within cancer cells. More recently, we have begun to understand that some of the dietary polyphenols may exert their chemopreventive effects in part by modulating various components of the epigenetic machinery in humans. In this article, we first discuss the contribution of diet and environmental factors on epigenetic alterations; subsequently, we provide a comprehensive review of literature on the role of various dietary polyphenols. In particular, we summarize the current knowledge on a large number of dietary agents and their effects on DNA methylation, histone modifications and regulation of expression of non-coding miRNAs in various in vitro and in vivo models. We emphasize how increased understanding of the chemopreventive effects of dietary polyphenols on specific epigenetic alterations may provide unique and yet unexplored novel and highly effective chemopreventive strategies for reducing the health burden of cancer and other diseases in humans. PMID:20599773

  14. VEZF1 Elements Mediate Protection from DNA Methylation

    PubMed Central

    Strogantsev, Ruslan; Gaszner, Miklos; Hair, Alan; Felsenfeld, Gary; West, Adam G.

    2010-01-01

    There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin state. PMID:20062523

  15. The many faces of ubiquitinated histone H2A: insights from the DUBs

    PubMed Central

    Vissers, Joseph HA; Nicassio, Francesco; van Lohuizen, Maarten; Di Fiore, Pier Paolo; Citterio, Elisabetta

    2008-01-01

    Monoubiquitination of H2A is a major histone modification in mammalian cells. Understanding how monoubiquitinated H2A (uH2A) regulates DNA-based processes in the context of chromatin is a challenging question. Work in the past years linked uH2A to transcriptional repression by the Polycomb group proteins of developmental regulators. Recently, a number of mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from H2A have been discovered. These studies provide convincing evidence that H2A deubiquitination is connected with gene activation. In addition, uH2A regulatory enzymes have crucial roles in the cellular response to DNA damage and in cell cycle progression. In this review we will discuss new insights into uH2A biology, with emphasis on the H2A DUBs. PMID:18430235

  16. Roles of epigenome in mammalian spermatogenesis.

    PubMed

    Song, Ning; Endo, Daisuke; Koji, Takehiko

    2014-04-01

    Mammalian spermatogenesis is a successive process consisting of spermatogonial proliferation, spermatocytic meiosis, and spermiogenesis, representing the maturation of haploid spermatids. During the process, 25-75 % of the expected sperm yield is thought to be lost through apoptosis. In addition, spermatogenesis is considered to be a process undergoing successive heterochromatinization, finally reaching a complete condensed form in the sperm head. Thus, cell proliferation, differentiation and death may be strictly regulated by epigenetic factors in this process. This review describes the current understanding of the role of epigenome in spermatogenesis, especially focusing on the following aspects; DNA methylation, modification of histones, and small RNA function. These epigenetic factors affect each other and play a central role in events essential for spermatogenesis, fertilization and embryogenesis, through the regulation of gene expression, transposon activities, meiotic sex chromosome inactivation, histone remodeling and genome imprinting. Finally, a brief discussion of future avenues of study is highlighted.

  17. Demonstration of separate phosphotyrosyl- and phosphoseryl- histone phosphatase activities in the plasma membranes of a human astrocytoma.

    PubMed

    Leis, J F; Knowles, A F; Kaplan, N O

    1985-06-01

    A plasma membrane preparation from a human astrocytoma contained p-nitrophenyl phosphate (pNPP), phosphotyrosyl histone, and phosphoseryl histone hydrolysis activities. The pNPPase and phosphotyrosyl histone phosphatase activities were inhibited by vanadate, whereas the phosphoseryl histone phosphatase activity was not; the latter activity was inhibited by pyrophosphate and nucleoside di- and triphosphates. When the membranes were solubilized by Triton X-100 and the solubilized proteins were subjected to column chromatography on DEAE-Sephadex, Sepharose 6B-C1, and wheat germ agglutinin-Sepharose 4B columns, the pNPPase activity from the phosphoseryl histone phosphatase activity. The results from column chromatography also indicated that there may be multiple phosphotyrosyl and phosphoseryl protein phosphatases in the plasma membranes.

  18. Epigenetic modifications by Trithorax group proteins during early embryogenesis: do members of Trx-G function as maternal effect genes?

    PubMed

    Andreu-Vieyra, Claudia; Matzuk, Martin M

    2007-02-01

    Maternal effect genes encode transcripts that are expressed during oogenesis. These gene products are stored in the oocyte and become functional during resumption of meiosis and zygote genome activation, and in embryonic stem cells. To date, a few maternal effect genes have been identified in mammals. Epigenetic modifications have been shown to be important during early embryonic development and involve DNA methylation and post-translational modification of core histones. During development, two families of proteins have been shown to be involved in epigenetic changes: Trithorax group (Trx-G) and Polycomb group (Pc-G) proteins. Trx-G proteins function as transcriptional activators and have been shown to accumulate in the oocyte. Deletion of Trx-G members using conventional knockout technology results in embryonic lethality in the majority of the cases analysed to date. Recent studies using conditional knockout mice have revealed that at least one family member is necessary for zygote genome activation. We propose that other Trx-G members may also regulate embryonic genome activation and that the use of oocyte-specific deletor mouse lines will help clarify their roles in this process.

  19. [Effect of hydroquinone on the histone deacetylase in human bone marrow mononuclear cells].

    PubMed

    Hong, L L; Yu, K; Yan, Q X; Xu, X; Shi, Y F; Ge, H P

    2016-03-20

    To observe the activity of histone deacetylase and the mRNA expression level of HDAC1 and HDAC2 in human bone marrow mononuclear cells, which induced by hydroquinone and exposed to hydroquinone plus Trichostatin as a histone deacetylase inhibitor for 10 hours respectively. Collect the bone marrow mononuclear cells suspension,divided into control group,HQ group (3 h, 6 h, 12 h, 24 h) , HQ+TSA 10 h group and HQ 10 h group. Extract the nuclear proteins and RNA, test the activity of histone deacetylase with the colorimetric HDAC assay kit and detect the mRNA expression level of HDAC1 and HDAC2 by real-time Polymerase Chain Reaction (PCR). The HDAC activity of HQ3 h group, HQ6 h group and HQ12 h group were 1.31 times, 1.53 times and 1.148 times than that of control group respectively. And the difference was statistically significant (P<0.05). Except the HQ24 h group (P>0.05) , the HDAC1 mRNA expression of HQ3 h group, HQ6 h group and HQ12 h group were 1.173 times, 1.901 times and 2.348 times than that of control group respectively. And the difference was statistically significant (P<0.05). The HDAC2 mRNA expression of HQ6 h group and HQ12 h group were 1.426 times and 1.766 times than that of the control group respectively. And the difference was statistically significant (P<0.05). No significant difference was observed between HQ3 h group, HQ24 h group and control group (P>0.05). The cells were treated by hydroquinone plus TSA for 10 hours. The HDAC activity of HQ+TSA 10h group was reduced by 25.6% than that of HQ 10 h group (P<0.05) and rised 13.0% compared to the control group (P<0.05). And the difference was statistically significant between groups (P<0.05) .The cells were treated by hydroquinone plus TSA for 10 hours. The HDAC1 mRNA expression of the HQ+TSA 10h group is reduced by 26.9% than that of HQ10h group. The HDAC2 mRNA expression is reduced by 19.3% compared to the HQ 10h group.And the difference was statistically significant between groups (P<0.05). The HDAC1 and HDAC2 mRNA expression is obviously higher than the control group, the difference was statistically significant (P<0.05). Treatment of hydroquinone, the histone deacetylase activity and the mRNA expression of HDAC1 and HDAC2 were increased in a certain time range. The histone deacetylase inhibitor (TSA) can reduce the histone deacetylase activity and the mRNA expression level of HDAC1 and HDAC2 in the bone marrow mononuclear cell induce by hydroquinone.It can be confirmed that hematopoietic damage induced by the benzene metabolites is related to the histone acetylation modification level.

  20. Epigenetic Regulation of Transcription in Trypanosomatid Protozoa.

    PubMed

    Martínez-Calvillo, Santiago; Romero-Meza, Gabriela; Vizuet-de-Rueda, Juan C; Florencio-Martínez, Luis E; Manning-Cela, Rebeca; Nepomuceno-Mejía, Tomás

    2018-02-01

    The Trypanosomatid family includes flagellated parasites that cause fatal human diseases. Remarkably, protein-coding genes in these organisms are positioned in long tandem arrays that are transcribed polycistronically. However, the knowledge about regulation of transcription initiation and termination in trypanosomatids is scarce. The importance of epigenetic regulation in these processes has become evident in the last years, as distinctive histone modifications and histone variants have been found in transcription initiation and termination regions. Moreover, multiple chromatin-related proteins have been identified and characterized in trypanosomatids, including histone-modifying enzymes, effector complexes, chromatin-remodelling enzymes and histone chaperones. Notably, base J, a modified thymine residue present in the nuclear DNA of trypanosomatids, has been implicated in transcriptional regulation. Here we review the current knowledge on epigenetic control of transcription by all three RNA polymerases in this group of early-diverged eukaryotes.

Top