Science.gov

Sample records for active hormonal intake

  1. Central action of ELABELA reduces food intake and activates arginine vasopressin and corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus.

    PubMed

    Santoso, Putra; Maejima, Yuko; Kumamoto, Kensuke; Takenoshita, Seiichi; Shimomura, Kenju

    2015-09-30

    ELABELA (ELA) is a novel hormone consisting of 32 amino acid peptides found in humans as well as other vertebrates and is considered to play an important role in the circulatory system through the apelin receptor (APJ). However, whether ELA also acts in the central nervous system remains unknown. Here, we show that ELA functions as an anorexigenic hormone in adult mouse brain. An intracerebroventricular injection of ELA reduces food intake and activates arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN), a hypothalamic region that regulates food intake. Cytosolic calcium ([Ca]i) measurement shows that ELA dose dependently increases [Ca]i in single AVP and CRH-immunoreactive neurons isolated from the PVN. Our data suggest that ELA functions as an anorexigenic hormone through activation of AVP and CRH neurons in the PVN.

  2. Effect of valproic acid on body weight, food intake, physical activity and hormones: results of a randomized controlled trial

    PubMed Central

    Martin, CK; Han, H; Anton, SD; Greenway, FL; Smith, SR

    2009-01-01

    The objective of this study was to identify mechanisms through which valproic acid (VPA) causes weight gain. Healthy participants (N = 52) were randomized to VPA or placebo in a double-blind study. Energy intake (EI) was measured in the laboratory at lunch and dinner, and physical activity (PA) was measured with accelerometry. Glucose levels and hormones [Peptide YY3–36, glucagon-like peptide-1 (GLP-1), leptin, ghrelin, insulin] that regulate EI were measured. Assessments occurred at baseline and week 3. Change from baseline was evaluated with mixed models (α = 0.05). Weight significantly increased in the VPA group (+0.49 kg), but not the placebo group. The VPA group increased fast food fats cravings and decreased glucose levels compared with placebo. Change in weight, EI and PA did not differ by group. Within group analyses indicated that the VPA group increased PA, hunger, binge eating, depression and GLP-1. VPA-associated weight gain is not likely due to changes in PA or the gut hormones studied. Although EI did not increase when measured after 3 weeks of treatment, VPA decreased glucose levels and increased motivation to eat; hence, EI might have increased in the short-term. Research testing VPA on short-term (1 week) EI, metabolism, and substrate partitioning is warranted. PMID:18583434

  3. Menstrual cycle hormones, food intake, and cravings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Food craving and intake are affected by steroid hormones during the menstrual cycle, especially in the luteal phase, when craving for certain foods has been reported to increase. However, satiety hormones such as leptin have also been shown to affect taste sensitivity, and therefore food ...

  4. Intraventricular melanin-concentrating hormone stimulates water intake independent of food intake.

    PubMed

    Clegg, Deborah J; Air, Ellen L; Benoit, Stephen C; Sakai, Randall S; Seeley, Randy J; Woods, Stephen C

    2003-02-01

    The lateral hypothalamus (LH) has a critical role in the control of feeding and drinking. Melanin-concentrating hormone (MCH) is an orexigenic peptidergic neurotransmitter produced primarily in the LH, and agouti-related protein (AgRP) is an orexigenic peptidergic neurotransmitter produced exclusively in the arcuate (ARC), an area that innervates the LH. We assessed drinking and eating after third ventricular (i3vt) administration of MCH and AgRP. MCH (2.5, 5, and 10 micro g i3vt) significantly increased food as well as water intake over 4 h when administered during either the light or the dark portion of the day-night cycle. When MCH (5 micro g) was administered to rats with access to water but no food, they drank significantly more water than when given the vehicle. AgRP (7 micro g i3vt), on the other hand, increased water intake but only in proportion to food intake during the dark and the light, and water intake was not increased after i3vt AgRP in the absence of food. Hence, in contrast to AgRP, MCH elicits increased water intake independent of food intake. These results are consistent with historical data linking activity of the LH with water as well as food intake.

  5. Hormonal control of feed intake in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Voluntary feed intake is controlled by a plethora of factors including, but not limited to, day length, social interactions, environmental conditions, oronasal sensory cues (i.e., taste, smell, texture), gastrointestinal fill, health status, metabolic status, dietary composition, drug interactions, ...

  6. Central administration of chicken growth hormone-releasing hormone decreases food intake in chicks.

    PubMed

    Tachibana, Tetsuya; Sugimoto, Ikue; Ogino, Madoka; Khan, Md Sakirul Islam; Masuda, Keiko; Ukena, Kazuyoshi; Wang, Yajun

    2015-02-01

    Growth hormone-releasing hormone (GHRH) is well known as a stimulator of growth hormone (GH) secretion. GHRH not only stimulates GH release but also modifies feeding behavior and energy homeostasis in rodents. In chickens (Gallus gallus domesticus), on the other hand, two types of GHRH, namely, chicken GHRH (cGHRH) and cGHRH-like peptide (cGHRH-LP), have been identified. The purpose of the present study was to investigate the effect of central injection of cGHRH and cGHRH-LP on feeding behavior in chicks. Intracerebroventricular (ICV) injection of both cGHRH and cGHRH-LP (0.04 to 1 nmol) significantly decreased food intake without any abnormal behavior in chicks. Furthermore, the feeding-inhibitory effect was not abolished by co-injection of the antagonist for pituitary adenylate cyclase-activating polypeptide (PACAP) or corticotropin-releasing hormone (CRH) receptors, suggesting that the anorexigenic effect of cGHRH and cGHRH-LP might not be related to the PACAP and CRH systems in the brain of chicks. Finally, 24-h food deprivation increased mRNA expression of cGHRH but not cGHRH-LP in the diencephalon. These results suggest that central cGHRH is related to inhibiting feeding behavior and energy homeostasis in chicks.

  7. Taste perception, associated hormonal modulation, and nutrient intake

    PubMed Central

    Loper, Hillary B.; La Sala, Michael; Dotson, Cedrick

    2015-01-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as “flavor.” It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. PMID:26024495

  8. Taste perception, associated hormonal modulation, and nutrient intake.

    PubMed

    Loper, Hillary B; La Sala, Michael; Dotson, Cedrick; Steinle, Nanette

    2015-02-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. PMID:26024495

  9. Taste perception, associated hormonal modulation, and nutrient intake.

    PubMed

    Loper, Hillary B; La Sala, Michael; Dotson, Cedrick; Steinle, Nanette

    2015-02-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension.

  10. Energy intake and appetite-related hormones following acute aerobic and resistance exercise.

    PubMed

    Balaguera-Cortes, Liliana; Wallman, Karen E; Fairchild, Timothy J; Guelfi, Kym J

    2011-12-01

    Previous research has shown that resistance and aerobic exercise have differing effects on perceived hunger and circulating levels of appetite-related hormones. However, the effect of resistance and aerobic exercise on actual energy intake has never been compared. This study investigated the effect of an acute bout of resistance exercise, compared with aerobic exercise, on subsequent energy intake and appetite-regulating hormones. Ten active men completed 3 trials in a counterbalanced design: 45 min of resistance exercise (RES; free and machine weights), aerobic exercise (AER; running), or a resting control trial (CON). Following exercise or CON, participants had access to a buffet-style array of breakfast foods and drinks to consume ad libitum. Plasma concentrations of a range of appetite-regulating hormones were measured throughout each trial. Despite significantly higher energy expenditure with AER compared with RES (p < 0.05), there was no difference in total energy intake from the postexercise meal between trials (p = 0.779). Pancreatic polypeptide was significantly higher prior to the meal after both RES and AER compared with CON. In contrast, active ghrelin was lower following RES compared with both CON and AER (p ≤ 0.05), while insulin was higher following RES compared with CON (p = 0.013). In summary, the differential response of appetite-regulating hormones to AER and RES does not appear to influence energy intake in the postexercise meal. However, given the greater energy expenditure associated with AER compared with RES, AER modes of exercise may be preferable for achieving short-term negative energy balance. PMID:22111518

  11. Neuro-hormonal control of food intake: basic mechanisms and clinical implications.

    PubMed

    Konturek, P C; Konturek, J W; Cześnikiewicz-Guzik, M; Brzozowski, T; Sito, E; Konturek, S J

    2005-12-01

    Obesity is one of the most common metabolic diseases and the greatest threats of the health because of possibility of numerous complications. In order to design effective drugs or apply the helpful surgical procedure it is essential to understand physiology of appetite control and pathophysiology of obesity. According to the first law of thermodynamics, the energy input in the form of food, equals energy expenditure through exercise, basal metabolism, thermogenesis and fat biosynthesis. The control of body weight actually concerns the control of adipose tissue with the key role of hypothalamus, possessing several neuronal centers such as that in lateral hypothalamic nuclei considered to be "hunger" center and in ventromedial nuclei serving as the "satiety" center. In addition, paraventricular and arcuate hypothalamic nuclei (ARC) are the sites where multiple hormones, released from the gut and adipose tissue, converge to regulate food intake and energy expenditure. There are two distinct types of neurons in ARC that are important in control of food intake; (1) preopiomelanocortin (POMC) neurons activated by an orexigenic hormones and releasing alpha-melanocyte-stimulating hormone (alpha-MSH) in satiety center and (2) neurons activated by orexigenic peptides such as ghrelin that release the substances including neuropeptide Y (NPY) and Agouti-Related Peptide (AgRP) in hunger center. ARC integrates neural (mostly vagal) and humoral inputs such as enteropeptides including orexigenic (ghrelin and orexins) and an orexigenic peptides (cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin and others) that exert a physiological role in regulating appetite and satiety. The peripherally (gut, adipose tissue) and centrally expressed modulators of appetitive behavior act through specific receptors in the afferent (mostly vagal) nerves and hypothalamic neurons implicated in adiposity signaling and regulation of food intake.

  12. Fecal thyroid hormones allow for the noninvasive monitoring of energy intake in capuchin monkeys.

    PubMed

    Schaebs, Franka S; Wolf, Tanja E; Behringer, Verena; Deschner, Tobias

    2016-10-01

    Measuring energetic condition of wild animals is of major importance in ecological research, as it is profoundly linked to fitness. However, noninvasive monitoring of energetic condition in wild-living animals is methodologically challenging. Measuring urinary C-peptide levels is a suitable method to noninvasively assess energy balance in wild-living animals. As collecting urine is not always feasible in the wild, it is essential to establish alternative biomarkers for other sample types to assess energy balance. Thyroid hormones (TH) are potential candidates as they are involved in the regulation of metabolic processes. During periods of low energy intake, serum TH levels are reduced, leading to a decrease in metabolic activity. To investigate whether fecal TH can serve as a biomarker for energy balance, we validated a total T3 ELISA to measure immunoreactive T3 (iT3) in fecal samples of yellow-breasted capuchins. We restricted caloric intake of seven males, assessed daily group caloric intake and determined daily individual fecal iT3 levels. Analytical validation of the assay showed that fecal iT3 levels can be reliably measured; however, proper storage conditions must be implemented and possible degradation to be accounted for. IT3 levels were significantly higher on days with high group caloric intake. However, individual iT3 levels varied substantially, resulting in an overlap across individuals between conditions. Our results indicate that fecal iT3 levels can serve as a useful biomarker to detect changes in energy intake of yellow-breasted capuchins. Overall, measuring fecal iT3 levels may present a suitable method for monitoring energy balance when urine collection is impossible. PMID:27460343

  13. Fecal thyroid hormones allow for the noninvasive monitoring of energy intake in capuchin monkeys.

    PubMed

    Schaebs, Franka S; Wolf, Tanja E; Behringer, Verena; Deschner, Tobias

    2016-10-01

    Measuring energetic condition of wild animals is of major importance in ecological research, as it is profoundly linked to fitness. However, noninvasive monitoring of energetic condition in wild-living animals is methodologically challenging. Measuring urinary C-peptide levels is a suitable method to noninvasively assess energy balance in wild-living animals. As collecting urine is not always feasible in the wild, it is essential to establish alternative biomarkers for other sample types to assess energy balance. Thyroid hormones (TH) are potential candidates as they are involved in the regulation of metabolic processes. During periods of low energy intake, serum TH levels are reduced, leading to a decrease in metabolic activity. To investigate whether fecal TH can serve as a biomarker for energy balance, we validated a total T3 ELISA to measure immunoreactive T3 (iT3) in fecal samples of yellow-breasted capuchins. We restricted caloric intake of seven males, assessed daily group caloric intake and determined daily individual fecal iT3 levels. Analytical validation of the assay showed that fecal iT3 levels can be reliably measured; however, proper storage conditions must be implemented and possible degradation to be accounted for. IT3 levels were significantly higher on days with high group caloric intake. However, individual iT3 levels varied substantially, resulting in an overlap across individuals between conditions. Our results indicate that fecal iT3 levels can serve as a useful biomarker to detect changes in energy intake of yellow-breasted capuchins. Overall, measuring fecal iT3 levels may present a suitable method for monitoring energy balance when urine collection is impossible.

  14. Dietary fat, fiber, and carbohydrate intake and endogenous hormone levels in premenopausal women.

    PubMed

    Cui, Xiaohui; Rosner, Bernard; Willett, Walter C; Hankinson, Susan E

    2010-10-01

    The authors conducted a cross-sectional study to investigate the associations of fat, fiber, and carbohydrate intake with endogenous estrogen, androgen, and insulin-like growth factor (IGF) levels among 595 premenopausal women. Overall, no significant associations were found between dietary intake of these macronutrients and plasma sex steroid hormone levels. Dietary fat intake was inversely associated with IGF-I and IGF-binding protein 3 (IGFBP-3) levels. When substituting 5% of energy from total fat for the equivalent amount of energy from carbohydrate or protein intake, the plasma levels of IGF-I and IGFBP-3 were 2.8% (95% confidence interval [CI] 0.3, 5.3) and 1.6% (95% CI 0.4, 2.8) lower, respectively. Animal fat, saturated fat, and monounsaturated fat intakes also were inversely associated with IGFBP-3 levels (P<0.05). Carbohydrates were positively associated with plasma IGF-I level. When substituting 5% of energy from carbohydrates for the equivalent amount of energy from fat or protein intake, the plasma IGF-I level was 2.0% (95% CI 0.1, 3.9%) higher. No independent associations between fiber intake and hormone levels were observed. The results suggest that a low-fat/high-fiber or carbohydrate diet is not associated with endogenous levels of sex steroid hormones, but it may modestly increase IGF-I and IGFBP-3 levels among premenopausal women.

  15. Effects of intracerebroventricularly and intraperitoneally administered growth hormone on body weight and food intake in fa/fa Zucker rats.

    PubMed

    Schulz, Carla; Wieczorek, Ingo; Reschke, Kirsten; Lehnert, Hendrik

    2002-01-01

    Growth hormone (GH) possesses multiple metabolic effects, in particular with regard to glucose and lipid homeostasis. Studies on the effects of GH on body weight and food and water intake are scarce and have yielded controversial results. We investigated the effects of different modes of GH administration on the parameters of body weight and food intake as well as on insulin and leptin concentrations in fa/fa Zucker rats. In control experiments, aqua pro injection was given. GH was administered over a time period of 11 days at a daily dose of 250 microg intraperitoneally (i.p.) and 25 microg intracerebroventricularly (i.c.v.). While both food intake and body weight were found to be unaltered in the four groups after this observation period, there was an enhanced food intake and consecutively an increase in body weight over the day period when compared to the night period in the groups of rats that received GH i.c.v. or i.p. This tendency was also shown for water intake. Insulin and leptin concentrations were similar in all groups. Thus, injection of GH appears to modify food intake-related behavior, since the periods of enhanced food and water intake were shifted from night- to daytime. Thus, while in general the metabolic parameters remained unchanged, the activity pattern was clearly modified.

  16. Sex differences in diurnal rhythms of food intake in mice caused by gonadal hormones and complement of sex chromosomes.

    PubMed

    Chen, Xuqi; Wang, Lixin; Loh, Dawn H; Colwell, Christopher S; Taché, Yvette; Reue, Karen; Arnold, Arthur P

    2015-09-01

    We measured diurnal rhythms of food intake, as well as body weight and composition, while varying three major classes of sex-biasing factors: activational and organizational effects of gonadal hormones, and sex chromosome complement (SCC). Four Core Genotypes (FCG) mice, comprising XX and XY gonadal males and XX and XY gonadal females, were either gonad-intact or gonadectomized (GDX) as adults (2.5months); food intake was measured second-by-second for 7days starting 5weeks later, and body weight and composition were measured for 22weeks thereafter. Gonadal males weighed more than females. GDX increased body weight/fat of gonadal females, but increased body fat and reduced body weight of males. After GDX, XX mice had greater body weight and more fat than XY mice. In gonad-intact mice, males had greater total food intake and more meals than females during the dark phase, but females had more food intake and meals and larger meals than males during the light phase. GDX reduced overall food intake irrespective of gonad type or SCC, and eliminated differences in feeding between groups with different gonads. Diurnal phase of feeding was influenced by all three sex-biasing variables. Gonad-intact females had earlier onset and acrophase (peak) of feeding relative to males. GDX caused a phase-advance of feeding, especially in XX mice, leading to an earlier onset of feeding in GDX XX vs. XY mice, but earlier acrophase in GDX males relative to females. Gonadal hormones and SCC interact in the control of diurnal rhythms of food intake.

  17. L‐arginine promotes gut hormone release and reduces food intake in rodents

    PubMed Central

    Alamshah, A.; McGavigan, A. K.; Spreckley, E.; Kinsey‐Jones, J. S.; Amin, A.; Tough, I. R.; O'Hara, H. C.; Moolla, A.; Banks, K.; France, R.; Hyberg, G.; Norton, M.; Cheong, W.; Lehmann, A.; Bloom, S. R.; Cox, H. M.

    2016-01-01

    Aims To investigate the anorectic effect of L‐arginine (L‐Arg) in rodents. Methods We investigated the effects of L‐Arg on food intake, and the role of the anorectic gut hormones glucagon‐like peptide‐1 (GLP‐1) and peptide YY (PYY), the G‐protein‐coupled receptor family C group 6 member A (GPRC6A) and the vagus nerve in mediating these effects in rodents. Results Oral gavage of L‐Arg reduced food intake in rodents, and chronically reduced cumulative food intake in diet‐induced obese mice. Lack of the GPRC6A in mice and subdiaphragmatic vagal deafferentation in rats did not influence these anorectic effects. L‐Arg stimulated GLP‐1 and PYY release in vitro and in vivo. Pharmacological blockade of GLP‐1 and PYY receptors did not influence the anorectic effect of L‐Arg. L‐Arg‐mediated PYY release modulated net ion transport across the gut mucosa. Intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration of L‐Arg suppressed food intake in rats. Conclusions L‐Arg reduced food intake and stimulated gut hormone release in rodents. The anorectic effect of L‐Arg is unlikely to be mediated by GLP‐1 and PYY, does not require GPRC6A signalling and is not mediated via the vagus. I.c.v. and i.p. administration of L‐Arg suppressed food intake in rats, suggesting that L‐Arg may act on the brain to influence food intake. Further work is required to determine the mechanisms by which L‐Arg suppresses food intake and its utility in the treatment of obesity. PMID:26863991

  18. Macronutrient Intake for Physical Activity

    NASA Astrophysics Data System (ADS)

    Buford, Thomas

    Proper nutrition is an essential element of athletic performance, body composition goals, and general health. Although natural variability among persons makes it impossible to create a single diet that can be recommended to all; examining scientific principles makes it easier for athletes and other physically active persons to eat a diet that prepares them for successful training and/or athletic competition. A proper nutritional design incorporates these principles and is tailored to the individual. It is important for the sports nutritionist, coach, and athlete to understand the role that each of the macronutrients plays in an active lifestyle. In addition, keys to success include knowing how to determine how many calories to consume, the macronutrient breakdown of those calories, and proper timing to maximize the benefits needed for the individual's body type and activity schedule.

  19. Feed intake and protein skeletal muscle in growing mice treated with growth hormone: time course effects.

    PubMed

    López-Oliva, M E; Agis-Torres, A; Unzaga, M T; Muñoz-Martínez, E

    2000-03-01

    The exogenous recombinant human growth hormone (rhGH) administration on gastrocnemius muscle growth performance and its contribution to body growth of male and female BALB/c mice fed a 12 % protein diet from 25 to 50 days of age, as well as the mechanism of utilization of feed intake to the lean muscle deposition were studied. Male and female weaning mice (21 days of age) were injected subcutaneously for 29 days with rhGH (74 ng x g(-1)) or saline vehicle (control). Feed intake and body weight (BW) were measured daily. At 25, 30, 35, 40, 45 and 50 days of age twenty mice were killed by cervical dislocation and the gastrocnemius muscle was isolated, weighed and the protein content was measured. The rhGH administration caused a biphasic response of BW and muscle growth as a consequence of age-specific feed intake changes. The initial feed intake fall induced the allometric proportion decreases in both muscle growth versus body growth and protein muscle versus muscle growth. That effect was due to ineffient utilization of energy and protein intake on protein muscle store. Later on, the self-controlled increase of feed intake leads to the recovery of muscle weight to control values, through nutrient partitioning toward non protein tissue showing a compensatory muscle growth. This suggests that a higher dietary protein level should be necessary for promoting the protein anabolic effect of GH during weaning.

  20. Effects of acute exercise on appetite hormones and ad libitum energy intake in men and women.

    PubMed

    Hagobian, Todd Alan; Yamashiro, Megan; Hinkel-Lipsker, Jake; Streder, Katherine; Evero, Nero; Hackney, Terry

    2013-01-01

    Acute exercise suppresses relative energy intake; however, it remains unclear whether this occurs in both men and women exposed to the same relative exercise treatment. Eleven healthy men (22 ± 2 years; 16% ± 6% body fat (BF); 26 ± 4 body mass index (BMI); 42.9 ± 6.5 mL·kg(-1)·min(-1) peak oxygen consumption ([Formula: see text]O(2peak))) and 10 healthy women (21 ± 2 years; 24 ± 2 BMI; 23% ± 3% BF; 39.9 ± 5.5 mL·kg(-1)·min(-1) [Formula: see text]O(2peak)) rested for 60 min or exercised on a cycle ergometer at 70% [Formula: see text]O(2peak) until 30% of total daily energy expenditure was expended (men, expenditure = 975 ± 195 kcal in 82 ± 13 min; women, expenditure = 713 ± 86 kcal in 84 ± 17 min) in a counterbalanced, crossover fashion. Appetite hormones and appetite ratings were assessed in response to each condition. Forty minutes after both conditions, ad libitum total and relative energy intake (energy intake minus energy cost of exercise) were assessed at a buffet meal. There was no significant sex or condition effect in appetite hormones (PYY(3-36), acylated ghrelin, insulin) and appetite ratings (hunger, satisfaction, fullness). Total energy intake in men was significantly higher (P < 0.05) in exercise and rest conditions (1648 ± 950, 1216 ± 633 kcal, respectively) compared with women (591 ± 183, 590 ± 231 kcal, respectively). Relative energy intake was significantly lower (P < 0.05) after exercise compared with rest in men (672 ± 827, 1133 ± 619 kcal, respectively) and women (-121 ± 243, 530 ± 233 kcal, respectively). These data highlight the effectiveness of acute exercise to suppress relative energy intake regardless of sex.

  1. Fruit, Vegetable, and Animal Food Intake and Breast Cancer Risk by Hormone Receptor Status

    PubMed Central

    Bao, Ping-Ping; Shu, Xiao-Ou; Zheng, Ying; Cai, Hui; Ruan, Zhi-Xian; Gu, Kai; Su, Yinghao; Gao, Yu-Tang; Zheng, Wei; Lu, Wei

    2013-01-01

    Background The effects of diet on breast cancer are controversial and whether the effects vary with hormone receptor status has not been well investigated. This study evaluated the associations of dietary factors with risk for breast cancer overall and by hormone receptor status of tumors among Chinese women. Methods The Shanghai Breast Cancer Study, a large, population-based, case-control study, enrolled 3,443 cases and 3,474 controls in 1996–1998 (phase I) and 2002–2004 (phase II); 2,676 cases had ER and PR data. Dietary intake was assessed using a validated, quantitative, food frequency questionnaire (FFQ). Odds ratios (ORs) and 95% confidence intervals (95% CI) were derived from multivariate, polychotomous, unconditional logistic regression models. Results Total vegetable intake was inversely related to breast cancer risk, with an adjusted OR for the highest quintile of 0.80 (95% CI = 0.67–0.95; P trend=0.02). Reduced risk was also related to high intake of allium vegetables (P trend = 0.01) and fresh legumes (P trend = 0.0008). High intake of citrus fruits and rosaceae fruits were inversely associated with breast cancer risk (P trend = 0.003 and P trend = 0.004, respectively), although no consistent association was seen for total fruit intake. Elevated risk was observed for all types of meat and fish intake (all P trend <0.05), while intakes of eggs and milk were associated with a decreased risk of breast cancer (both P trend <0.05). There was little evidence that associations with dietary intakes varied across the four tumor subtypes or between ER+/PR+ and ER−/PR− tumors (P for heterogeneity >0.05). Conclusion Our results suggest that high intake of total vegetables, certain fruits, milk, and eggs may reduce the risk of breast cancer, while high consumption of animal-source foods may increase risk. The dietary associations did not appear to vary by ER/PR status. PMID:22860889

  2. Effect of a moderate exercise on the regulatory hormones of food intake in rats.

    PubMed

    Ebal, Edmond; Cavalie, Hélian; Michaux, Odile; Lac, Gérard

    2007-09-01

    Strategies used to counteract overweight include generally endurance exercise. Force-resistance exercise has not been tested yet with this objective. The aim of this study was to investigate the response of the main regulatory hormones of food intake (insulin, adiponectin, leptin, ghrelin) and corticosterone, to a short force resistance exercise. Two groups of 16 rats, 65 days old, weighing 330g, were constituted. A standard diet (containing glucid: 72.2, lipid: 7.7, protid: 20% calories) was given "ad libitum". One group served as control, the second group was submitted to exercise training during 5 weeks. Training reduced the rats body weight by 6.4% and the total food intake during the 5 weeks by 11%. Training lowered the insulin and ghrelin levels, while corticosterone level was increased. Insulin, ghrelin and corticosterone only reached the significant threshold p<0.05. Thus, it seems that exercise, even of low intensity and duration, induces changes on hormones that regulate food intake and limit overweight. PMID:17462789

  3. The ghrelin/obestatin balance in the physiological and pathological control of growth hormone secretion, body composition and food intake.

    PubMed

    Hassouna, R; Zizzari, P; Tolle, V

    2010-07-01

    Ghrelin and obestatin are two gastrointestinal peptides obtained by post-translational processing of a common precursor, preproghrelin. Ghrelin is an orexigenic and adipogenic peptide and a potent growth hormone secretagogue (GHS) modified by the enzyme ghrelin-O-acyl-transferase to bind and activate its receptor, the GHS-R. The ghrelin/GHS-R pathway is complex and the effects of ghrelin on GH secretion, adiposity and food intake appear to be relayed by distinct mechanisms involving different transduction signals and constitutive activity for the GH-R, different cofactors as modulators of endogenous ghrelin signalling and/or alternative ghrelin receptors. The discovery of obestatin in 2005 brought an additional level of complexity to this fascinating system. Obestatin was initially identified as an anorexigenic peptide and as the cognate ligand for GPR39, but its effect on food intake and its ability to activate GPR39 are still controversial. Although several teams failed to reproduce the anorexigenic actions of obestatin, this peptide has been shown to antagonise GH secretion and food intake induced by ghrelin and could be an interesting pharmacological tool to counteract the actions of ghrelin. Ghrelin and obestatin immunoreactivities are recovered in the blood with an ultradian pulsatility and their concentrations in plasma vary with the nutritional status of the body. It is still a matter of debate whether both hormones are regulated by independent mechanisms and whether obestatin is a physiologically relevant peptide. Nevertheless, a significant number of studies show that the ghrelin/obestatin ratio is modified in anorexia nervosa and obesity. This suggests that the ghrelin/obestatin balance could be essential to adapt the body's response to nutritional challenges. Although measuring ghrelin and obestatin in plasma is challenging because many forms of the peptides circulate, more sensitive and selective assays to detect the different preproghrelin

  4. Effect of High Sugar Intake on Glucose Transporter and Weight Regulating Hormones in Mice and Humans

    PubMed Central

    Ritze, Yvonne; Bárdos, Gyöngyi; D’Haese, Jan G.; Ernst, Barbara; Thurnheer, Martin; Schultes, Bernd; Bischoff, Stephan C.

    2014-01-01

    Objective Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. Methods Five iso-caloric diets, enriched with liquid (in water 30% vol/vol) or solid (in diet 65% g/g) fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5) and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. Results In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001). Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. Conclusions We show that the form of sugar intake (liquid versus solid) is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals. PMID:25010715

  5. Modeling of the parathyroid hormone response after calcium intake in healthy subjects.

    PubMed

    Ahn, Jae Eun; Jeon, Sangil; Lee, Jongtae; Han, Seunghoon; Yim, Dong-Seok

    2014-06-01

    Plasma ionized calcium (Ca(2+)) concentrations are tightly regulated in the body and maintained within a narrow range; thus it is challenging to quantify calcium absorption under normal physiologic conditions. This study aimed to develop a mechanistic model for the parathyroid hormone (PTH) response after calcium intake and indirectly compare the difference in oral calcium absorption from PTH responses. PTH and Ca(2+) concentrations were collected from 24 subjects from a clinical trial performed to evaluate the safety and calcium absorption of Geumjin Thermal Water in comparison with calcium carbonate tablets in healthy subjects. Indirect response models (NONMEM Ver. 7.2.0) were fitted to observed Ca(2+) and PTH data, respectively, in a manner that absorbed but unobserved Ca(2+) inhibits the secretion of PTH. Without notable changes in Ca(2+) levels, PTH responses were modeled and used as a marker for the extent of calcium absorption. PMID:24976761

  6. Changes in Food Intake and Activity after Quitting Smoking.

    ERIC Educational Resources Information Center

    Hall, Sharon M.; And Others

    1989-01-01

    Evaluated changes in food intake and activity levels among 95 subjects who quit smoking. Found significant increases in calories, sucrose, and fats 2 weeks after quitting. Total sugars changes were less consistent. Activity levels did not change significantly. At week 26, caloric intake for abstinent women was approximately equal to baseline…

  7. Active acromegaly enhances spontaneous parathyroid hormone pulsatility.

    PubMed

    Mazziotti, Gherardo; Cimino, Vincenzo; De Menis, Ernesto; Bonadonna, Stefania; Bugari, Giovanna; De Marinis, Laura; Veldhuis, Johannes D; Giustina, Andrea

    2006-06-01

    In healthy subjects, parathyroid hormone (PTH) is secreted in a dual fashion, with low-amplitude and high-frequency pulses superimposed on tonic secretion. These 2 components of PTH secretion seem to have different effects on target organs. The aim of our study was to evaluate whether growth hormone excess in acromegaly may modify the spontaneous pulsatility of PTH. Five male patients with newly diagnosed active acromegaly and 8 healthy subjects were evaluated by 3-minute blood sampling for 6 hours. Plasma PTH concentrations were evaluated by multiparameter deconvolution analysis. Plasma PTH release profiles were also subjected to an approximate entropy (ApEn) estimate, which provides an ensemble measure of the serial regularity or orderliness of the release process. In acromegalic patients, baseline serum PTH values were not significantly different from those measured in the healthy subjects, as well as tonic PTH secretion rate, number of bursts, fractional pulsatile PTH secretion, and ApEn ratio. Conversely, PTH pulse half-duration was significantly longer in acromegalic patients vs healthy subjects (11.8+/-0.95 vs 6.9+/-1.6 minutes; P=.05), whereas PTH pulse mass showed a tendency (P=.06) to be significantly greater in acromegalic patients. These preliminary data suggest that growth hormone excess may affect PTH secretory dynamics in patients with acromegaly. Potentially negative bone effects of the modifications of PTH secretory pattern in acromegaly should be investigated.

  8. Hormonal modulation of food intake in response to low leptin levels induced by hypergravity

    NASA Technical Reports Server (NTRS)

    Moran, M. M.; Stein, T. P.; Wade, C. E.

    2001-01-01

    A loss in fat mass is a common response to centrifugation and it results in low circulating leptin concentrations. However, rats adapted to hypergravity are euphagic. The focus of this study was to examine leptin and other peripheral signals of energy balance in the presence of a hypergravity-induced loss of fat mass and euphagia. Male Sprague-Dawley rats were centrifuged for 14 days at gravity levels of 1.25, 1.5, or 2 G, or they remained stationary at 1 G. Urinary catecholamines, urinary corticosterone, food intake, and body mass were measured on Days 11 to 14. Plasma hormones and epididymal fat pad mass were measured on Day 14. Mean body mass of the 1.25, 1.5, and 2 G groups were significantly (P < 0.05) lower than controls, and no differences were found in food intake (g/day/100 g body mass) between the hypergravity groups and controls. Epididymal fat mass was 14%, 14%, and 21% lower than controls in the 1.25, 1.5, and 2.0 G groups, respectively. Plasma leptin was significantly reduced from controls by 46%, 45%, and 65% in the 1.25, 1.5, and 2 G groups, respectively. Plasma insulin was significantly lower in the 1.25, 1.5, and 2.0 G groups than controls by 35%, 38%, and 33%. No differences were found between controls and hypergravity groups in urinary corticosterone. Mean urinary epinephrine was significantly higher in the 1.5 and 2.0 G groups than in controls. Mean urinary norepinephrine was significantly higher in the 1.25, 1.5 and 2.0 G groups than in controls. Significant correlations were found between G load and body mass, fat mass, leptin, urinary epinephrine, and norepinephrine. During hypergravity exposure, maintenance of food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  9. Hormonal modulation of food intake in response to low leptin levels induced by hypergravity.

    PubMed

    Moran, M M; Stein, T P; Wade, C E

    2001-09-01

    A loss in fat mass is a common response to centrifugation and it results in low circulating leptin concentrations. However, rats adapted to hypergravity are euphagic. The focus of this study was to examine leptin and other peripheral signals of energy balance in the presence of a hypergravity-induced loss of fat mass and euphagia. Male Sprague-Dawley rats were centrifuged for 14 days at gravity levels of 1.25, 1.5, or 2 G, or they remained stationary at 1 G. Urinary catecholamines, urinary corticosterone, food intake, and body mass were measured on Days 11 to 14. Plasma hormones and epididymal fat pad mass were measured on Day 14. Mean body mass of the 1.25, 1.5, and 2 G groups were significantly (P < 0.05) lower than controls, and no differences were found in food intake (g/day/100 g body mass) between the hypergravity groups and controls. Epididymal fat mass was 14%, 14%, and 21% lower than controls in the 1.25, 1.5, and 2.0 G groups, respectively. Plasma leptin was significantly reduced from controls by 46%, 45%, and 65% in the 1.25, 1.5, and 2 G groups, respectively. Plasma insulin was significantly lower in the 1.25, 1.5, and 2.0 G groups than controls by 35%, 38%, and 33%. No differences were found between controls and hypergravity groups in urinary corticosterone. Mean urinary epinephrine was significantly higher in the 1.5 and 2.0 G groups than in controls. Mean urinary norepinephrine was significantly higher in the 1.25, 1.5 and 2.0 G groups than in controls. Significant correlations were found between G load and body mass, fat mass, leptin, urinary epinephrine, and norepinephrine. During hypergravity exposure, maintenance of food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  10. Investigation of the melanocyte stimulating hormones on food intake. Lack Of evidence to support a role for the melanocortin-3-receptor.

    PubMed

    Abbott, C R; Rossi, M; Kim, M; AlAhmed, S H; Taylor, G M; Ghatei, M A; Smith, D M; Bloom, S R

    2000-06-30

    The melanocortin receptors, melanocortin-3-receptor (MC3-R) and melanocortin-4-receptor (MC4-R), are expressed in many discrete medial hypothalamic nuclei implicated in feeding regulation. The pro-opiomelanocortin product alpha-melanocyte stimulating hormone (alpha-MSH), an MC3/4-R agonist, decreases food intake following intracerebroventricular (ICV) injection in rats. MC4-R's involvement in feeding has been established although a function for the MC3-R is unclear. We investigated endogenous melanocortin ligand binding and activation at the MC3-R and MC4-R and their effects on feeding. We have shown that alpha-MSH, desacetyl-alpha-MSH and beta-MSH bound to the MC3-R and MC4-R with similar affinity and stimulated cAMP with similar potency in HEK 293 cells transfected with MC3-R and MC4-R. In contrast gamma(2)-MSH showed selectivity for the MC3-R over the MC4-R both in binding affinity and cAMP stimulation. alpha-MSH and beta-MSH injected ICV into fasted rats at doses of 1, 3 and 6 nmol resulted in a decrease in food intake, (2 h food intake: alpha-MSH 6 nmol, 1.7+/-0.3 g; beta-MSH 6 nmol, 1.5+/-0.3 g vs. saline 6.0+/-0.5 g, P<0.001). Desacetyl alpha-MSH did not reduce food intake at low doses but was significant at 25 nmol (2 h food intake: desacetyl-alpha-MSH 6.1+/-1.0 g vs. saline 9.5+/-1.4 g, P<0.05). In contrast, gamma(2)-MSH had no effect on food intake when administered ICV to fasted rats. We were unable to establish a role for the MC3-R in feeding regulation. Our evidence, however, strengthens the hypothesis that the melanocortin's effects on food intake are mediated via the MC4-R.

  11. Appetite, appetite hormone and energy intake responses to two consecutive days of aerobic exercise in healthy young men.

    PubMed

    Douglas, Jessica A; King, James A; McFarlane, Ewan; Baker, Luke; Bradley, Chloe; Crouch, Nicole; Hill, David; Stensel, David J

    2015-09-01

    Single bouts of exercise do not cause compensatory changes in appetite, food intake or appetite regulatory hormones on the day that exercise is performed. It remains possible that such changes occur over an extended period or in response to a higher level of energy expenditure. This study sought to test this possibility by examining appetite, food intake and appetite regulatory hormones (acylated ghrelin, total peptide-YY, leptin and insulin) over two days, with acute bouts of exercise performed on each morning. Within a controlled laboratory setting, 15 healthy males completed two, 2-day long (09:00-16:00) experimental trials (exercise and control) in a randomised order. On the exercise trial participants performed 60 min of continuous moderate-high intensity treadmill running (day one: 70.1 ± 2.5% VO2peak, day two: 70.0 ± 3.2% VO2max (mean ± SD)) at the beginning of days one and two. Across each day appetite perceptions were assessed using visual analogue scales and appetite regulatory hormones were measured from venous blood samples. Ad libitum energy and macronutrient intakes were determined from meals provided two and six hours into each day and from a snack bag provided in-between trial days. Exercise elicited a high level of energy expenditure (total = 7566 ± 635 kJ across the two days) but did not produce compensatory changes in appetite or energy intake over two days (control: 29,217 ± 4006 kJ; exercise: 28,532 ± 3899 kJ, P > 0.050). Two-way repeated measures ANOVA did not reveal any main effects for acylated ghrelin or leptin (all P > 0.050). However a significant main effect of trial (P = 0.029) for PYY indicated higher concentrations on the exercise vs. control trial. These findings suggest that across a two day period, high volume exercise does not stimulate compensatory appetite regulatory changes.

  12. Ghrelin: much more than a hunger hormone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recen...

  13. The growth hormone receptor: mechanism of activation and clinical implications.

    PubMed

    Brooks, Andrew J; Waters, Michael J

    2010-09-01

    Growth hormone is widely used clinically to promote growth and anabolism and for other purposes. Its actions are mediated via the growth hormone receptor, both directly by tyrosine kinase activation and indirectly by induction of insulin-like growth factor 1 (IGF-1). Insensitivity to growth hormone (Laron syndrome) can result from mutations in the growth hormone receptor and can be treated with IGF-1. This treatment is, however, not fully effective owing to the loss of the direct actions of growth hormone and altered availability of exogenous IGF-1. Excessive activation of the growth hormone receptor by circulating growth hormone results in gigantism and acromegaly, whereas cell transformation and cancer can occur in response to autocrine activation of the receptor. Advances in understanding the mechanism of receptor activation have led to a model in which the growth hormone receptor exists as a constitutive dimer. Binding of the hormone realigns the subunits by rotation and closer apposition, resulting in juxtaposition of the catalytic domains of the associated tyrosine-protein kinase JAK2 below the cell membrane. This change results in activation of JAK2 by transphosphorylation, then phosphorylation of receptor tyrosines in the cytoplasmic domain, which enables binding of adaptor proteins, as well as direct phosphorylation of target proteins. This model is discussed in the light of salient information from closely related class 1 cytokine receptors, such as the erythropoietin, prolactin and thrombopoietin receptors. PMID:20664532

  14. The effect of increased lipid intake on hormonal responses during aerobic exercise in endurance-trained men.

    PubMed

    Christ, Emanuel R; Zehnder, Monica; Boesch, Chris; Trepp, Roman; Mullis, Primus E; Diem, Peter; Décombaz, Jacques

    2006-03-01

    In view of the growing health problem associated with obesity, clarification of the regulation of energy homeostasis is important. Peripheral signals, such as ghrelin and leptin, have been shown to influence energy homeostasis. Nutrients and physical exercise, in turn, influence hormone levels. Data on the hormonal response to physical exercise (standardized negative energy balance) after high-fat (HF) or low-fat (LF) diet with identical carbohydrate intake are currently not available. The aim of the study was to investigate whether a short-term dietary intervention with HF and LF affects ghrelin and leptin levels and their modulators, GH, insulin and cortisol, before and during aerobic exercise. Eleven healthy, endurance-trained male athletes (W(max) 365 +/- 29 W) were investigated twice in a randomized crossover design following two types of diet: 1. LF - 0.5 g fat/kg body weight (BW) per day for 2.5 days; 2. HF - 0.5 g fat/kg BW per day for 1 day followed by 3.5 g fat/kg BW per day for 1.5 days. After a standardized carbohydrate snack in the morning, metabolites and hormones (GH, ghrelin, leptin, insulin and cortisol) were measured before and at regular intervals throughout a 3-h aerobic exercise test on a cycloergometer at 50% of W(max). Diet did not significantly affect GH and cortisol concentrations during exercise but resulted in a significant increase in ghrelin and decrease in leptin concentrations after LF compared with HF diet (area under the curve (AUC) ghrelin LF vs HF: P < 0.03; AUC leptin LF vs HF: P < 0.02, Wilcoxon rank test). These data suggest that acute negative energy balance induced by exercise elicits a hormonal response with opposite changes of ghrelin and leptin. In addition, the hormonal response is modulated by the preceding intake of fat.

  15. Food Restriction-Induced Changes in Gonadotropin-Inhibiting Hormone Cells are Associated with Changes in Sexual Motivation and Food Hoarding, but not Sexual Performance and Food Intake

    PubMed Central

    Klingerman, Candice M.; Williams, Wilbur P.; Simberlund, Jessica; Brahme, Nina; Prasad, Ankita; Schneider, Jill E.; Kriegsfeld, Lance J.

    2011-01-01

    We hypothesized that putative anorectic and orexigenic peptides control the motivation to engage in either ingestive or sex behaviors, and these peptides function to optimize reproductive success in environments where energy fluctuates. Here, the putative orexigenic peptide, gonadotropin-inhibiting hormone (GnIH, also known as RFamide-related peptide-3), and the putative anorectic hormones leptin, insulin, and estradiol were examined during the course of food restriction. Groups of female Syrian hamsters were restricted to 75% of their ad libitum food intake or fed ad libitum for 4, 8, or 12 days. Two other groups were food-restricted for 12 days and then re-fed ad libitum for 4 or 8 days. After testing for sex and ingestive behavior, blood was sampled and assayed for peripheral hormones. Brains were immunohistochemically double-labeled for GnIH and the protein product of the immediate early gene, c-fos, a marker of cellular activation. Food hoarding, the number of double-labeled cells, and the percent of GnIH-Ir cells labeled with Fos-Ir were significantly increased at 8 and 12 days after the start of food restriction. Vaginal scent marking and GnIH-Ir cell number significantly decreased after the same duration of restriction. Food hoarding, but not food intake, was significantly positively correlated with cellular activation in GnIH-Ir cells. Vaginal scent marking was significantly negatively correlated with cellular activation in GnIH-Ir cells. There were no significant effects of food restriction on plasma insulin, leptin, estradiol, or progesterone concentrations. In the dorsomedial hypothalamus (DMH) of energetically challenged females, strong projections from NPY-Ir cells were found in close apposition to GnIH-Ir cells. Together these results are consistent with the idea that metabolic signals influence sexual and ingestive motivation via NPY fibers that project to GnIH cells in the DMH. PMID:22649396

  16. Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers.

    PubMed

    Zoenen, Maxime; Urizar, Eneko; Swillens, Stéphane; Vassart, Gilbert; Costagliola, Sabine

    2012-01-01

    Glycoprotein hormone receptors show strong negative cooperativity. As a consequence, at physiological hormone concentrations, a single agonist binds to a receptor dimer. Here we present evidence that constitutively active receptors lose cooperative allosteric regulation in direct relation with their basal activity. The most constitutive mutants lost nearly all cooperativity and showed an increase of initial tracer binding, reflecting the ability of each protomer to bind with equal affinity. Allosteric interaction between the protomers takes place at the transmembrane domain. The allosteric message resulting from hormone binding to the ectodomain of one protomer travels 'downward' to its transmembrane domain, before affecting the transmembrane domain of the other protomer. This results in transmission of an 'upward' message lowering the binding affinity of the ectodomain of the second protomer. Our results demonstrate a direct relation between the conformational changes associated with activation of the transmembrane domain and the allosteric behaviour of glycoprotein hormone receptors dimers.

  17. Ghrelin increases food intake, swimming activity and growth in juvenile brown trout (Salmo trutta).

    PubMed

    Tinoco, Ana B; Näslund, Joacim; Delgado, María J; de Pedro, Nuria; Johnsson, Jörgen I; Jönsson, Elisabeth

    2014-01-30

    Several key functions of ghrelin are well conserved through vertebrate phylogeny. However, some of ghrelin's effects are contradictory and among teleosts only a limited number of species have been used in functional studies on food intake and foraging-related behaviors. Here we investigated the long-term effects of ghrelin on food intake, growth, swimming activity and aggressive contest behavior in one year old wild brown trout (Salmo trutta) using intraperitoneal implants. Food intake and swimming activity were individually recorded starting from day 1, and aggressive behavior was tested at day 11, after ghrelin implantation. Body weight and growth rate were measured from the beginning to the end of the experiment. Triglycerides and lipase activity in muscle and liver; monoaminergic activity in the telencephalon and brainstem; and neuropeptide Y (NPY) mRNA levels in the hypothalamus were analyzed. Ghrelin treatment was found to increase food intake and growth without modifying lipid deposition or lipid metabolism in liver and muscle. Ghrelin treatment led to an increased foraging activity and a trend towards a higher swimming activity. Moreover, ghrelin-treated fish showed a tendency to initiate more conflicts, but this motivation was not reflected in a higher ability to win the conflicts. No changes were observed in monoaminergic activity and NPY mRNA levels in the brain. Ghrelin is therefore suggested to act as an orexigenic hormone regulating behavior in juvenile wild brown trout. These actions are accompanied with an increased growth without the alteration of liver and muscle lipid metabolism and they do not seem to be mediated by changes in brain monoaminergic activity or hypothalamic expression of NPY.

  18. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  19. Endocrine factors in the hypothalamic regulation of food intake in females: a review of the physiological roles and interactions of ghrelin, leptin, thyroid hormones, oestrogen and insulin.

    PubMed

    Somogyi, V; Gyorffy, A; Scalise, T J; Kiss, D S; Goszleth, G; Bartha, T; Frenyo, V L; Zsarnovszky, A

    2011-06-01

    Controlling energy homeostasis involves modulating the desire to eat and regulating energy expenditure. The controlling machinery includes a complex interplay of hormones secreted at various peripheral endocrine endpoints, such as the gastrointestinal tract, the adipose tissue, thyroid gland and thyroid hormone-exporting organs, the ovary and the pancreas, and, last but not least, the brain itself. The peripheral hormones that are the focus of the present review (ghrelin, leptin, thyroid hormones, oestrogen and insulin) play integrated regulatory roles in and provide feedback information on the nutritional and energetic status of the body. As peripheral signals, these hormones modulate central pathways in the brain, including the hypothalamus, to influence food intake, energy expenditure and to maintain energy homeostasis. Since the growth of the literature on the role of various hormones in the regulation of energy homeostasis shows a remarkable and dynamic expansion, it is now becoming increasingly difficult to understand the individual and interactive roles of hormonal mechanisms in their true complexity. Therefore, our goal is to review, in the context of general physiology, the roles of the five best-known peripheral trophic hormones (ghrelin, leptin, thyroid hormones, oestrogen and insulin, respectively) and discuss their interactions in the hypothalamic regulation of food intake.

  20. Effect of extended morning fasting upon ad libitum lunch intake and associated metabolic and hormonal responses in obese adults

    PubMed Central

    Chowdhury, E A; Richardson, J D; Tsintzas, K; Thompson, D; Betts, J A

    2016-01-01

    Background/Objectives: Breakfast omission is positively associated with obesity and increased risk of disease. However, little is known about the acute effects of extended morning fasting upon subsequent energy intake and associated metabolic/regulatory factors in obese adults. Subjects/Methods: In a randomised cross-over design, 24 obese men (n=8) and women (n=16) extended their overnight fast by omitting breakfast consumption or ingesting a typical carbohydrate-rich breakfast of 2183±393 kJ (521±94 kcal), before an ad libitum pasta lunch 3 h later. Blood samples were obtained throughout the day until 3 h post lunch and analysed for hormones implicated in appetite regulation, along with metabolic outcomes and subjective appetite measures. Results: Lunch intake was unaffected by extended morning fasting (difference=218 kJ, 95% confidence interval −54 kJ, 490 kJ; P=0.1) resulting in lower total intake in the fasting trial (difference=−1964 kJ, 95% confidence interval −1645 kJ, −2281 kJ; P<0.01). Systemic concentrations of peptide tyrosine–tyrosine and leptin were lower during the afternoon following morning fasting (P⩽0.06). Plasma-acylated ghrelin concentrations were also lower following the ad libitum lunch in the fasting trial (P<0.05) but this effect was not apparent for total ghrelin (P⩾0.1). Serum insulin concentrations were greater throughout the afternoon in the fasting trial (P=0.05), with plasma glucose also greater 1 h after lunch (P<0.01). Extended morning fasting did not result in greater appetite ratings after lunch, with some tendency for lower appetite 3 h post lunch (P=0.09). Conclusions: We demonstrate for the first time that, in obese adults, extended morning fasting does not cause compensatory intake during an ad libitum lunch nor does it increase appetite during the afternoon. Morning fasting reduced satiety hormone responses to a subsequent lunch meal but counterintuitively also reduced concentrations of

  1. Sugar-sweetened beverage intake in relation to semen quality and reproductive hormone levels in young men

    PubMed Central

    Chiu, Y.H.; Afeiche, M.C.; Gaskins, A.J.; Williams, P.L.; Mendiola, J.; Jørgensen, N.; Swan, S.H.; Chavarro, J.E.

    2014-01-01

    STUDY QUESTION Is consumption of sugar-sweetened beverages (SSB) associated with semen quality? SUMMARY ANSWER Higher consumption of SSB was associated with lower sperm motility among healthy, young men. WHAT IS KNOWN ALREADY The existing literature on the potential role of SSBs on male reproductive function is scarce and primarily focused on the relation between caffeinated beverages and semen quality. However, a rodent model suggests that SSBs may hamper male fertility. STUDY DESIGN, SIZE, DURATION The Rochester Young Men's Study; a cross-sectional study of 189 healthy young men carried out at the University of Rochester during 2009–2010. PARTICIPANTS/MATERIALS, SETTING, METHODS Men aged 18–22 years provided semen and blood samples, underwent a physical examination and completed a previously validated food frequency questionnaire (FFQ). Linear regression was used to analyze the association of SSBs with sperm parameters and reproductive hormone levels while adjusting for potential confounders. MAIN RESULTS AND THE ROLE OF CHANCE SSB intake was inversely related to progressive sperm motility. Men in the highest quartile of SSB intake (≥1.3 serving/day) had 9.8 (95% CI: 1.9,17.8) percentage units lower progressive sperm motility than men in the lowest quartile of intake (<0.2 serving/day) (P, trend = 0.03). This association was stronger among lean men (P, trend = 0.005) but absent among overweight or obese men (P, trend = 0.98). SSB intake was unrelated to other semen quality parameters or reproductive hormones levels. LIMITATIONS, REASONS FOR CAUTION As in all cross-sectional studies, causal inference is limited. An additional problem is that only single semen sample was obtained from each subject. WIDER IMPLICATIONS OF THE FINDINGS To our knowledge, this is the first report on the relation between SSB intake and low semen quality beyond the contribution of caffeinated beverages. While our findings are in agreement with recent experimental data in rodents

  2. Hormonal responses and test meal intake among obese teenagers before and after laparoscopic adjustable gastric banding123

    PubMed Central

    Devlin, Michael J; Schebendach, Janet; Tanofsky-Kraff, Marian; Zimmerli, Ellen; Korner, Judith; Yanovski, Jack A; Zitsman, Jeffrey L; Walsh, B Timothy

    2013-01-01

    Background: Relatively little is known about changes in eating behavior or hormonal responses to food after bariatric surgery in adolescents. Objective: This study compared eating behavior and hormones among adolescents in a bariatric surgery program with those in nonoverweight control adolescents and evaluated changes before and after laparoscopic adjustable gastric banding (LAGB). Design: Fasting leptin, peptide YY (PYY), and ghrelin concentrations were obtained, and postprandial ghrelin and PYY area under the curve (AUC) were assessed after a single-item breakfast. Intake from an ad libitum lunchtime multi-item meal was measured. Results: Compared with controls (n = 9), all presurgical candidates (n = 20) had significantly greater fasting leptin, lower fasting ghrelin, and lower AUC ghrelin but similar PYY and AUC PYY. Preoperative candidates did not differ from controls in total energy consumed during the test meal. Postoperatively, among the 11 participants with data both before and after surgery, BMI (in kg/m2) decreased by 3.5 (P < 0.001), significantly less energy was consumed in the test meal, and a smaller number of foods were selected. AUC ghrelin and PYY did not significantly change before or after LAGB. Conclusions: Few significant short-term changes were observed in appetitive hormones after LAGB. It is unclear whether objective measures of eating behavior will prove useful in evaluating the impact of bariatric surgery on outcomes. This trial was registered at clinicaltrials.gov as CT00764127. PMID:23985807

  3. Increased food intake and changes in metabolic hormones in response to chronic sleep restriction alternated with short periods of sleep allowance.

    PubMed

    Barf, R Paulien; Desprez, Tifany; Meerlo, Peter; Scheurink, Anton J W

    2012-01-01

    Rodent models for sleep restriction have good face validity when examining food intake and related regulatory metabolic hormones. However, in contrast to epidemiological studies in which sleep restriction is associated with body weight gain, sleep-restricted rats show a decrease in body weight. This difference with the human situation might be caused by the alternation between periods of sleep restriction and sleep allowance that often occur in real life. Therefore, we assessed the metabolic consequences of a chronic sleep restriction protocol that modeled working weeks with restricted sleep time alternated by weekends with sleep allowance. We hypothesized that this protocol could lead to body weight gain. Male Wistar rats were divided into three groups: sleep restriction (SR), forced activity control (FA), and home cage control (HC). SR rats were subjected to chronic sleep restriction by keeping them awake for 20 h per day in slowly rotating drums. To model the human condition, rats were subjected to a 4-wk protocol, with each week consisting of a 5-day period of sleep restriction followed by a 2-day period of sleep allowance. During the first experimental week, SR caused a clear attenuation of growth. In subsequent weeks, two important processes occurred: 1) a remarkable increase in food intake during SR days, 2) an increase in weight gain during the weekends of sleep allowance, even though food intake during those days was comparable to controls. In conclusion, our data revealed that the alternation between periods of sleep restriction and sleep allowance leads to complex changes in food intake and body weight, that prevent the weight loss normally seen in continuous sleep-restricted rats. Therefore, this "week-weekend" protocol may be a better model to study the metabolic consequences of restricted sleep. PMID:22012696

  4. Neonatal hormone changes and growth in lambs born to dams receiving differing nutritional intakes and selenium supplementation during gestation.

    PubMed

    Camacho, Leticia E; Meyer, Allison M; Neville, Tammi L; Hammer, Carolyn J; Redmer, Dale A; Reynolds, Lawrence P; Caton, Joel S; Vonnahme, Kimberly A

    2012-07-01

    To investigate the effects of maternal selenium (Se) supplementation and nutritional intake during gestation on hormone changes, percentage body weight (BW) change, and organ mass in neonatal lambs, ewes were allocated to differing Se levels (adequate Se (ASe, 11.5 μg/kg BW) or high Se (HSe, 77.0 μg/kg BW)) initiated at breeding and nutritional intake (60% (RES), 100% (CON), or 140% (HIGH) of NRC requirements) initiated at day 40 of gestation. At parturition, all lambs were removed from dams, fed common diets, and BW and blood samples were collected until day 19. There was a Se × nutritional intake × day interaction for percentage BW change from birth. Lambs born to ASe-HIGH ewes tended to have decreased BW change compared with ASe-CON and ASe-RES groups on day 7. Lambs from HSe-HIGH ewes tended to have increased BW change compared with HSe-RES and HSe-CON groups from days 7 to 19. At birth, there was a Se × sex of offspring interaction, in which male lambs from HSe ewes had decreased cortisol concentrations compared with all other lambs. By 24 h, lambs from RES ewes had decreased cortisol compared with those from HIGH ewes, with lambs from CON ewes being intermediate. Lambs from RES- and CON-fed ewes had greater thyroxine than HIGH ewes at 24 h. Organ masses on day 19 were mainly impacted by maternal nutritional intake and sex of the offspring. Birth weight alone did not predict growth performance during neonatal life. Moreover, despite a similar postnatal diet, maternal nutritional plane and Se status did impact neonatal endocrine profiles. Exact mechanisms of how neonatal endocrine status can influence later growth and development need to be determined.

  5. Addition of crude glycerin to pig diets: sow and litter performance, and metabolic and feed intake regulating hormones.

    PubMed

    Hernández, F; Orengo, J; Villodre, C; Martínez, S; López, M J; Madrid, J

    2016-06-01

    The continued growth in biofuel production has led to a search for alternative value-added applications of its main by-product, crude glycerin. The surplus glycerin production and a higher cost of feedstuffs have increased the emphasis on evaluating its nutritive value for animal feeding. The aim of this research was to evaluate the effect of the dietary addition of crude glycerin on sow and litter performance, and to determine the serum concentrations of hormones related to energy metabolism and feed intake in sows during gestation and lactation. A total of 63 sows were assigned randomly to one of three dietary treatments, containing 0, 3 or 6% crude glycerin (G0, G3 and G6, respectively) added to a barley-soybean meal-based diet. During gestation, none of the dietary treatments had an effect on performance, while during lactation, glycerin-fed sows consumed less feed than those fed the control diet (3.8 v. 4.2kg DM/day; P=0.007). Although lactating sows fed the G3 diet had a higher BW loss than those fed the control diet (���20.6 v. ���8.7 kg; P=0.002), this difference was not reflected in litter performance. In gestation, the inclusion of glycerin did not affect blood concentrations of insulin or cortisol. However, pregnant sows fed diets supplemented with glycerin showed lower concentrations of acyl-ghrelin and higher concentrations of leptin (���55 and +68%, respectively; P<0.001). In lactating sows, there were no differences between dietary treatments for any of the hormones measured. Pre-prandial acyl-ghrelin concentrations were positively correlated with cortisol concentrations during gestation (r=0.81; P=0.001) and lactation (r=0.61; P=0.015). In conclusion, the inclusion of up to 6% crude glycerin did not affect the performance of sows during the gestation period; however it had a negative effect on the feed intake and weight loss of lactating sows. Moreover, further research is needed to elucidate the potential relationship between

  6. Regulation of Seasonal Reproduction by Hypothalamic Activation of Thyroid Hormone

    PubMed Central

    Shinomiya, Ai; Shimmura, Tsuyoshi; Nishiwaki-Ohkawa, Taeko; Yoshimura, Takashi

    2014-01-01

    Organisms living outside the tropics measure the changes in the length of the day to adapt to seasonal changes in the environment. Animals that breed during spring and summer are called long-day breeders, while those that breed during fall are called short-day breeders. Although the influence of thyroid hormone in the regulation of seasonal reproduction has been known for several decades, its precise mechanism remained unknown. Recent studies revealed that the activation of thyroid hormone within the mediobasal hypothalamus plays a key role in this phenomenon. This localized activation of the thyroid hormone is controlled by thyrotropin (thyroid-stimulating hormone) secreted from the pars tuberalis of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal production, genes involved in photoperiodic signal transduction pathway could emerge as potential targets to facilitate domestication. PMID:24600435

  7. Postprandial effects on plasma lipids and satiety hormones from intake of liposomes made from fractionated oat oil: two randomized crossover studies

    PubMed Central

    Ohlsson, Lena; Rosenquist, Anna; Rehfeld, Jens F.; Härröd, Magnus

    2014-01-01

    Background The composition and surface structure of dietary lipids influence their intestinal degradation. Intake of liposomes made of fractionated oat oil (LOO) is suggested to affect the digestion process and postprandial lipemia and also induce satiety. Objective In the present study, the metabolic effects on plasma lipids and gut hormones related to satiety were investigated in healthy individuals after intake of LOO, with dairy lipids as placebo. Design Two blinded randomized studies with crossover design were performed. In the first study, 19 subjects consumed 35 g lipids from LOO or yoghurt in a breakfast meal. In a follow-up study, 15 women consumed 14 or 1.8 g lipids from LOO mixed in yoghurt. Blood samples were analyzed for plasma lipids, insulin, glucose, and intestinal hormones CCK, PYY, GLP-1, and GLP-2 before and four times after the meal. Subjective analysis of satiety was measured using a visual analog scale questionnaire. Participants recorded their food intake during the rest of the day. Results Intake of 35 and 14 g lipids from LOO significantly increased plasma concentrations of CCK, GLP-1, GLP-2, and PYY postprandially. This coincided with a prolonged elevation of triglycerides and large cholesterol-containing particles. Non-esterified fatty acids decreased after intake of 14 and 1.8 g lipids from LOO. The subjective sensation of satiety in women was increased 7 h after intake of 35 g lipids from LOO without any difference in food intake. Our results indicate that intake of 14 g lipids from LOO at breakfast substantially reduced energy intake during the rest of the day. Conclusions This study suggests that intake of LOO prolong lipid digestion, affect postprandial plasma lipids and have an effect on satiety. The effect of LOO on GLP-2 indicates that intake of LOO also improve gut health. PMID:25317122

  8. Osteoporosis Knowledge, Calcium Intake, and Weight-Bearing Physical Activity in Three Age Groups of Women.

    ERIC Educational Resources Information Center

    Terrio, Kate; Auld, Garry W.

    2002-01-01

    Determined the extent and integration of osteoporosis knowledge in three age groups of women, comparing knowledge to calcium intake and weight bearing physical activity (WBPA). Overall calcium intake was relatively high. There were no differences in knowledge, calcium intake, or WBPA by age, nor did knowledge predict calcium intake and WBPA. None…

  9. Intake of Phthalate-tainted Foods and Serum Thyroid Hormones in Taiwanese Children and Adolescents

    NASA Astrophysics Data System (ADS)

    Tsai, Hui-Ju; Wu, Chia-Fang; Tsai, Yi-Chun; Huang, Po-Chin; Chen, Mei-Lien; Wang, Shu-Li; Chen, Bai-Hsiun; Chen, Chu-Chih; Wu, Wen-Chiu; Hsu, Pi-Shan; Hsiung, Chao A.; Wu, Ming-Tsang

    2016-07-01

    On April-May, 2011, phthalates, mainly Di-(2-ethylhexyl) phthalate (DEHP), were deliberately added to a variety of foodstuff as a substitute emulsifier in Taiwan. This study investigated the relationship between DEHP-tainted foodstuffs exposure and thyroid function in possibly affected children and adolescents. Two hundred fifty participants <18 years possibly exposed to DEHP were enrolled in this study between August 2012 and January 2013. Questionnaires were used to collect details on their past exposure to DEHP-tainted food items. Blood and urine samples were collected for biochemical workups to measure current exposure derived from three urinary DEHP metabolites using a creatinine excretion-based model. More than half of 250 participants were estimated to be exposed to DEHP-tainted foods found to exceed the recommend tolerable daily intake of DEHP established by the European Food Safety Authority (<50 μg/kg/day). The median daily DEHP intake (DDI) among those 250 participants was 46.52 μg/kg/day after multiple imputation. This value was ~10-fold higher than the current median DEHP intake (4.46 μg/kg/day, n = 240). Neither past nor current DEHP exposure intensity was significantly associated with serum thyroid profiles. Future studies may want to follow the long-term health effects of this food scandal in affected children and adolescents.

  10. Intake of Phthalate-tainted Foods and Serum Thyroid Hormones in Taiwanese Children and Adolescents

    PubMed Central

    Tsai, Hui-Ju; Wu, Chia-Fang; Tsai, Yi-Chun; Huang, Po-Chin; Chen, Mei-Lien; Wang, Shu-Li; Chen, Bai-Hsiun; Chen, Chu-Chih; Wu, Wen-Chiu; Hsu, Pi-Shan; Hsiung, Chao A.; Wu, Ming-Tsang

    2016-01-01

    On April-May, 2011, phthalates, mainly Di-(2-ethylhexyl) phthalate (DEHP), were deliberately added to a variety of foodstuff as a substitute emulsifier in Taiwan. This study investigated the relationship between DEHP-tainted foodstuffs exposure and thyroid function in possibly affected children and adolescents. Two hundred fifty participants <18 years possibly exposed to DEHP were enrolled in this study between August 2012 and January 2013. Questionnaires were used to collect details on their past exposure to DEHP-tainted food items. Blood and urine samples were collected for biochemical workups to measure current exposure derived from three urinary DEHP metabolites using a creatinine excretion-based model. More than half of 250 participants were estimated to be exposed to DEHP-tainted foods found to exceed the recommend tolerable daily intake of DEHP established by the European Food Safety Authority (<50 μg/kg/day). The median daily DEHP intake (DDI) among those 250 participants was 46.52 μg/kg/day after multiple imputation. This value was ~10-fold higher than the current median DEHP intake (4.46 μg/kg/day, n = 240). Neither past nor current DEHP exposure intensity was significantly associated with serum thyroid profiles. Future studies may want to follow the long-term health effects of this food scandal in affected children and adolescents. PMID:27470018

  11. An improved thyroid hormone reporter assay to determine the thyroid hormone-like activity of amiodarone, bithionol, closantel and rafoxanide.

    PubMed

    Matsubara, Kana; Sanoh, Seigo; Ohta, Shigeru; Kitamura, Shigeyuki; Sugihara, Kazumi; Fujimoto, Nariaki

    2012-01-01

    A number of environmental chemicals have been reported to exhibit thyroid hormone-like activity. Since thyroid hormones play a crucial role in development, it is important to identify chemicals in the environment that are capable of endocrine disruption of thyroid hormone homeostasis. In order to detect thyroid hormone-like activity, the growth of pituitary cell lines has been commonly used as a sensitive marker, albeit with limited specificity to thyroid hormones. Reporter gene assays using the thyroid hormone responsive element (TRE) connected to the luciferase reporter gene have also been developed. Thus far however, this type of assay appears to have limited sensitivity compared to cell growth assays. In the present study, we developed a highly sensitive TRE reporter gene assay by using a pituitary cell line, MtT/E-2, and by culturing cells in a serum-free medium. Our assay was developed in order to detect T3 activity at a concentration of 10(-11)M. This assay identified thyroid hormone-like activity from the antiarrhythmic drug, amiodarone, and from three anti-parasitic drugs, bithionol, closantel and rafoxanide, all commonly used in veterinary medicine. Thyroid hormone-like activity of these compounds was further confirmed by the induction of BCL3 gene expression in MtT/E-2, which is known to be regulated by thyroid hormones. Our improved assay was proved to be a sensitive tool for assessing thyroid hormone-like activity of environmental chemicals. PMID:22015988

  12. Social Support, Nutrition Intake, and Physical Activity in Cancer Survivors

    PubMed Central

    Coleman, Shanice; Berg, Carla J.; Thompson, Nancy J.

    2015-01-01

    Objectives To examine depressive symptoms, hope, social support, and quality of life in relation to fruit and vegetable (FV) intake and physical activity (PA) among cancer survivors diagnosed within the past 4 years. Methods In 2010, participants were recruited from a southeastern US cancer center and completed a mail-based survey (response rate 22.7%) assessing these psychosocial factors, FV intake, and PA. Results Among 128 participants, 72% consumed ≥5 FV/ day; 77.8% walked for exercise ≥4 times/ week. Controlling for sociodemographics, consuming ≥5 FV/day was associated with greater significant other social support (p = .004); walking for exercise ≥4 times/week was associated with greater friend support (p = .003). Conclusions These findings can inform tertiary cancer prevention interventions. PMID:24636037

  13. Hormonal activity, cytotoxicity and developmental toxicity of UV filters.

    PubMed

    Balázs, Adrienn; Krifaton, Csilla; Orosz, Ivett; Szoboszlay, Sándor; Kovács, Róbert; Csenki, Zsolt; Urbányi, Béla; Kriszt, Balázs

    2016-09-01

    Ultraviolet (UV) filters are commonly used compounds in personal care products and polymer based materials, as they can absorb solar energy in the UVA and UVB spectrum. However, they are able to bind to hormone receptors and have several and different types of hormonal activities determined by in vitro assays. One of the aims of this work was to measure the hormonal and cytotoxic activities of four frequently used UV filters using bioluminescence based yeast test organisms. Using Saccharomyces cerevisiae BLYES and BLYAS strains allowed the rapid and reliable detection of agonist and antagonist hormonal activities, whereas BLYR strain served to measure cytotoxicity. Results confirmed that all tested UV filters show multiple hormonal activities. Cytotoxicity is detected only in the case of benzophenone-3. Research data on the toxic effects of benzophenone-3, especially on aquatic organisms are scarce, so further investigations were carried out regarding its cytotoxic and teratogenic effects on bacteria and zebrafish (Danio rerio) embryos, respectively. Results revealed the cytotoxicity of benzophenone-3 not only to yeasts but to bacteria, as well as its ability to influence zebrafish embryo hatching and development.

  14. Hormonal activity, cytotoxicity and developmental toxicity of UV filters.

    PubMed

    Balázs, Adrienn; Krifaton, Csilla; Orosz, Ivett; Szoboszlay, Sándor; Kovács, Róbert; Csenki, Zsolt; Urbányi, Béla; Kriszt, Balázs

    2016-09-01

    Ultraviolet (UV) filters are commonly used compounds in personal care products and polymer based materials, as they can absorb solar energy in the UVA and UVB spectrum. However, they are able to bind to hormone receptors and have several and different types of hormonal activities determined by in vitro assays. One of the aims of this work was to measure the hormonal and cytotoxic activities of four frequently used UV filters using bioluminescence based yeast test organisms. Using Saccharomyces cerevisiae BLYES and BLYAS strains allowed the rapid and reliable detection of agonist and antagonist hormonal activities, whereas BLYR strain served to measure cytotoxicity. Results confirmed that all tested UV filters show multiple hormonal activities. Cytotoxicity is detected only in the case of benzophenone-3. Research data on the toxic effects of benzophenone-3, especially on aquatic organisms are scarce, so further investigations were carried out regarding its cytotoxic and teratogenic effects on bacteria and zebrafish (Danio rerio) embryos, respectively. Results revealed the cytotoxicity of benzophenone-3 not only to yeasts but to bacteria, as well as its ability to influence zebrafish embryo hatching and development. PMID:27208882

  15. Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays.

    PubMed

    Brand, Walter; de Jongh, Cindy M; van der Linden, Sander C; Mennes, Wim; Puijker, Leo M; van Leeuwen, Cornelis J; van Wezel, Annemarie P; Schriks, Merijn; Heringa, Minne B

    2013-05-01

    To screen for hormonal activity in water samples, highly sensitive in vitro CALUX bioassays are available which allow detection of estrogenic (ERα), androgenic (AR), progestagenic (PR), and glucocorticoid (GR) activities. This paper presents trigger values for the ERα, AR, PR, and GR CALUX bioassays for agonistic hormonal activities in (drinking) water, which define a level above which human health risk cannot be waived a priori and additional examination of specific endocrine activity may be warranted. The trigger values are based on 1) acceptable or tolerable daily intake (ADI/TDI) values of specific compounds, 2) pharmacokinetic factors defining their bioavailability, 3) estimations of the bioavailability of unknown compounds with equivalent hormonal activity, 4) relative endocrine potencies, and 5) physiological, and drinking water allocation factors. As a result, trigger values of 3.8ng 17β-estradiol (E2)-equivalents (eq)/L, 11ng dihydrotestosterone (DHT)-eq/L, 21ng dexamethasone (DEX)-eq/L, and 333ng Org2058-eq/L were derived. Benchmark Quotient (BQ) values were derived by dividing hormonal activity in water samples by the derived trigger using the highest concentrations detected in a recent, limited screening of Dutch water samples, and were in the order of (value) AR (0.41)>ERα (0.13)>GR (0.06)>PR (0.04). The application of trigger values derived in the present study can help to judge measured agonistic hormonal activities in water samples using the CALUX bioassays and help to decide whether further examination of specific endocrine activity followed by a subsequent safety evaluation may be warranted, or whether concentrations of such activity are of low priority with respect to health concerns in the human population. For instance, at one specific drinking water production site ERα and AR (but no GR and PR) activities were detected in drinking water, however, these levels are at least a factor 83 smaller than the respective trigger values, and

  16. Executive cognitive function as a correlate and predictor of child food intake and physical activity.

    PubMed

    Riggs, Nathaniel; Chou, Chih-Ping; Spruijt-Metz, Donna; Pentz, Mary Ann

    2010-01-01

    Investigated were relations among executive cognitive function (ECF), food intake, and physical activity in 184, fourth grade children. It was hypothesized that self-reported ECF proficiency would predict greater self-reported fruit/vegetable intake and physical activity, but less "snack food" intake. Structural models demonstrated that ECF was significantly correlated with less concurrent snack food intake and greater concurrent fruit/vegetable intake, but not physical activity. Baseline ECF also significantly predicted greater fruit/vegetable intake and physical activity four months later, but not snack food intake. One implication is to promote ECF as a correlate and predictor of food intake and physical activity in children by providing opportunities for youth to practice newly developing ECF capacities.

  17. Responses of ram lambs to active immunization against testosterone and luteinizing hormone-releasing hormone.

    PubMed

    Schanbacher, B D

    1982-03-01

    Active immunization of young ram lambs against testosterone and luteinizing hormone-releasing hormone (LHRH) was shown to block the growth attributes characteristic of intact ram lambs. Testosterone and LHRH-immunized lambs grew at a slower rate and converted feed to live weight gain less efficiently than albumin-immunized controls. Lambs immunized against testosterone and LHRH had high antibody titers for their respective antigens. Moreover, testosterone-immunized lambs had high serum concentrations of luteinizing hormone (LH) and testosterone, whereas LHRH-immunized lambs had low to nondetectable serum concentrations of these hormones. Release of LH and testosterone following the intravenous administration of LHRH (250 ng) was absent in LHRH-immunized lambs, but quantitatively similar for intact and albumin-immunized control lambs. Testosterone-immunized lambs responded as did conventional castrates with a large LH release, but testosterone concentrations were unchanged. These findings are discussed relative to the integrity of the hypothalamic-pituitary-testicular endocrine axis and the importance of gonadotropin support for normal testicular development. These data show that LHRH immunoneutralization effectively retards testicular development and produces a castration effect in young ram lambs.

  18. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens.

    PubMed

    Harvey, S; Gineste, C; Gaylinn, B D

    2014-08-01

    Two peptides with sequence similarities to growth hormone releasing hormone (GHRH) have been identified by analysis of the chicken genome. One of these peptides, chicken (c) GHRH-LP (like peptide) was previously found to poorly bind to chicken pituitary membranes or to cloned and expressed chicken GHRH receptors and had little, if any, growth hormone (GH)-releasing activity in vivo or in vitro. In contrast, a second more recently discovered peptide, cGHRH, does bind to cloned and expressed cGHRH receptors and increases cAMP activity in transfected cells. The possibility that this peptide may have in vivo GH-releasing activity was therefore assessed. The intravenous (i.v.) administration of cGHRH to immature chickens, at doses of 3-100 μg/kg, significantly increased circulating GH concentrations within 10 min of injection and the plasma GH levels remained elevated for at least 30 min after the injection of maximally effective doses. The plasma GH responses to cGHRH were comparable with those induced by human (h) or porcine (p) GHRH preparations and to that induced by thyrotropin releasing hormone (TRH). In marked contrast, the i.v. injection of cGHRH-LP had no significant effect on circulating GH concentrations in immature chicks. GH release was also increased from slaughterhouse chicken pituitary glands perifused for 5 min with cGHRH at doses of 0.1 μg/ml or 1.0 μg/ml, comparable with GH responses to hGHRH1-44. In contrast, the perifusion of chicken pituitary glands with cGHRH-LP had no significant effect on GH release. In summary, these results demonstrate that cGHRH has GH-releasing activity in chickens and support the possibility that it is the endogenous ligand of the cGHRH receptor.

  19. Role of abnormal anterior pituitary hormones-growth hormone and prolactin in active systemic lupus erythematosus

    PubMed Central

    Zhu, Xiaohua; Xu, Jinhua; Li, Shujuan; Huang, Wen; Li, Feng

    2015-01-01

    Background: The role of anterior pituitary hormones in systemic lupus erythematosus (SLE) remains controversial. Aims and Objectives: We determined the expression levels of human growth hormone (GH), prolactin (PRL), and their receptors in subjects presenting with SLE, and modulation of disease severity. Materials and methods: Forty-seven subjects and ten healthy controls were assessed for possible association between SLE disease activity and levels of serum PRL, GH and thyrotropin-releasing hormone (TRH). In peripheral blood mononuclear cells (PBMC), specific binding and mRNA expression of receptors for GH (GHR), and PRL (PRLR) were determined by receptor-ligand binding assay (RLBA) and RT-PCR. PBMC of recruited subjects were treated with hPRL and rhGH to assess IgG production and antibodies against dsDNA. Results: In active SLE subjects we found elevated PRL and GH levels. Study subject PBMCs displayed augmented GHR and PRLR protein and mRNA expression. Study subjects also showed a positive correlation in serum PRL levels and specific antibodies against dsDNA, SLE disease activity index (SLEDAI), and proteinuria. However, a negative correlation was found between serum PRL levels and complement component C3. We found a positive correlation between specific binding rates of PRLR and GHR and both SLE activity and dsDNA antibody titers. Enhanced IgG and anti-dsDNA secretion was observed in cultured PBMC stimulated by PRL or GH with/without PHA, PWM, IL-2 or IL-10. In active SLE, a close association was found between augmented PRL and GH levels, expression and specific binding activities of PRLR and GHR, and changes in the specific titer of anti-dsDNA. Conclusion: Anterior pituitary hormones play an important role in the pathogenesis of SLE. High levels of growth hormone (GH) and prolactin (PRL) play a role in pathogenesis of SLE, which is correlated with SLE disease activity and antibodies against dsDNA. The mechanism of GH and PRL in SLE was complicated and should

  20. Athletic Activity and Hormone Concentrations in High School Female Athletes

    PubMed Central

    Wojtys, Edward M.; Jannausch, Mary L.; Kreinbrink, Jennifer L.; Harlow, Siobán D.; Sowers, MaryFran R.

    2015-01-01

    Context: Physical activity may affect the concentrations of circulating endogenous hormones in female athletes. Understanding the relationship between athletic and physical activity and circulating female hormone concentrations is critical. Objective: To test the hypotheses that (1) the estradiol-progesterone profile of high school adolescent girls participating in training, conditioning, and competition would differ from that of physically inactive, age-matched adolescent girls throughout a 3-month period; and (2) athletic training and conditioning would alter body composition (muscle, bone), leading to an increasingly greater lean–body-mass to fat–body-mass ratio with accompanying hormonal changes. Design: Cohort study. Settings: Laboratory and participants' homes. Patients or Other Participants: A total of 106 adolescent girls, ages 14–18 years, who had experienced at least 3 menstrual cycles in their lifetime. Main Outcome Measure(s): Participants were prospectively monitored throughout a 13-week period, with weekly physical activity assessments and 15 urine samples for estrogen, luteinizing hormone, creatinine, and progesterone concentrations. Each girl underwent body-composition measurements before and after the study period. Results: Seventy-four of the 98 girls (76%) who completed the study classified themselves as athletes. Body mass index, body mass, and fat measures remained stable, and 17 teenagers had no complete menstrual cycle during the observation period. Mean concentrations of log(estrogen/creatinine) were slightly greater in nonathletes who had cycles of <24 or >35 days. Mean log(progesterone/creatinine) concentrations in nonathletes were less in the first half and greater in the second half of the cycle, but the differences were not statistically significant. Conclusions: A moderate level of athletic or physical activity did not influence urine concentrations of estrogen, progesterone, or luteinizing hormones. However, none of the

  1. Molecular characterization of melanin-concentrating hormone (MCH) in Schizothorax prenanti: cloning, tissue distribution and role in food intake regulation.

    PubMed

    Wang, Tao; Yuan, Dengyue; Zhou, Chaowei; Lin, Fangjun; Wei, Rongbin; Chen, Hu; Wu, Hongwei; Xin, Zhiming; Liu, Ju; Gao, Yundi; Chen, Defang; Yang, Shiyong; Wang, Yan; Pu, Yundan; Li, Zhiqiong

    2016-06-01

    Melanin-concentrating hormone (MCH) is a crucial neuropeptide involved in various biological functions in both mammals and fish. In this study, the full-length MCH cDNA was obtained from Schizothorax prenanti by rapid amplification of cDNA ends polymerase chain reaction. The full-length MCH cDNA contained 589 nucleotides including an open reading frame of 375 nucleotides encoding 256 amino acids. MCH mRNA was highly expressed in the brain by real-time quantitative PCR analysis. Within the brain, expression of MCH mRNA was preponderantly detected in the hypothalamus. In addition, the MCH mRNA expression in the S. prenanti hypothalamus of fed group was significantly decreased compared with the fasted group at 1 and 3 h post-feeding, respectively. Furthermore, the MCH gene expression presented significant increase in the hypothalamus of fasted group compared with the fed group during long-term fasting. After re-feeding, there was a dramatic decrease in MCH mRNA expression in the hypothalamus of S. prenanti. The results indicate that the expression of MCH is affected by feeding status. Taken together, our results suggest that MCH may be involved in food intake regulation in S. prenanti. PMID:26690629

  2. Effects of sauna and glucose intake on TSH and thyroid hormone levels in plasma of euthyroid subjects.

    PubMed

    Strbák, V; Tatár, P; Angyal, R; Strec, V; Aksamitová, K; Vigas, M; Jánosová, H

    1987-05-01

    The effect of sauna on thyroid function parameters and its modification by glucose was studied in young euthyroid male volunteers. A 30-minute stay in sauna resulted in an increase in plasma TSH; the response was exaggerated if glycemia had been increased by oral glucose intake at the beginning of the experiment. Plasma rT3 also increased in sauna, this response was, however, blunted by the higher glycemia. TSH response to sauna was definitely present in young men (aged 20 to 25) and absent in middle-aged ones (50 to 55). To explore the mechanism of the effect of increased glycemia, TRH tests were performed and dopamine infusions were administered with and without glucose pretreatment. Increased glycemia did not affect TSH and T3 response to TRH in young volunteers; however, 90 minutes after the administration, plasma rT3 levels were significantly lower in glucose pretreated subjects than in those receiving TRH injections after water pretreatment. Simultaneous infusion of glucose prevented the inhibitory effect of dopamine infusion on plasma TSH. It was concluded that glucose directly modulates the effect of sauna on plasma TSH at a suprapituitary level, while the inhibiting effect of glucose on plasma rT3 response to sauna and TRH is probably mediated by the insulin effect on thyroid hormone metabolism. PMID:3106755

  3. Molecular characterization of melanin-concentrating hormone (MCH) in Schizothorax prenanti: cloning, tissue distribution and role in food intake regulation.

    PubMed

    Wang, Tao; Yuan, Dengyue; Zhou, Chaowei; Lin, Fangjun; Wei, Rongbin; Chen, Hu; Wu, Hongwei; Xin, Zhiming; Liu, Ju; Gao, Yundi; Chen, Defang; Yang, Shiyong; Wang, Yan; Pu, Yundan; Li, Zhiqiong

    2016-06-01

    Melanin-concentrating hormone (MCH) is a crucial neuropeptide involved in various biological functions in both mammals and fish. In this study, the full-length MCH cDNA was obtained from Schizothorax prenanti by rapid amplification of cDNA ends polymerase chain reaction. The full-length MCH cDNA contained 589 nucleotides including an open reading frame of 375 nucleotides encoding 256 amino acids. MCH mRNA was highly expressed in the brain by real-time quantitative PCR analysis. Within the brain, expression of MCH mRNA was preponderantly detected in the hypothalamus. In addition, the MCH mRNA expression in the S. prenanti hypothalamus of fed group was significantly decreased compared with the fasted group at 1 and 3 h post-feeding, respectively. Furthermore, the MCH gene expression presented significant increase in the hypothalamus of fasted group compared with the fed group during long-term fasting. After re-feeding, there was a dramatic decrease in MCH mRNA expression in the hypothalamus of S. prenanti. The results indicate that the expression of MCH is affected by feeding status. Taken together, our results suggest that MCH may be involved in food intake regulation in S. prenanti.

  4. Coupling between Nutrient Availability and Thyroid Hormone Activation.

    PubMed

    Lartey, Lattoya J; Werneck-de-Castro, João Pedro; O-Sullivan, InSug; Unterman, Terry G; Bianco, Antonio C

    2015-12-18

    The activity of the thyroid gland is stimulated by food availability via leptin-induced thyrotropin-releasing hormone/thyroid-stimulating hormone expression. Here we show that food availability also stimulates thyroid hormone activation by accelerating the conversion of thyroxine to triiodothyronine via type 2 deiodinase in mouse skeletal muscle and in a cell model transitioning from 0.1 to 10% FBS. The underlying mechanism is transcriptional derepression of DIO2 through the mTORC2 pathway as defined in rictor knockdown cells. In cells kept in 0.1% FBS, there is DIO2 inhibition via FOXO1 binding to the DIO2 promoter. Repression of DIO2 by FOXO1 was confirmed using its specific inhibitor AS1842856 or adenoviral infection of constitutively active FOXO1. ChIP studies indicate that 4 h after 10% FBS-containing medium, FOXO1 binding markedly decreases, and the DIO2 promoter is activated. Studies in the insulin receptor FOXO1 KO mouse indicate that insulin is a key signaling molecule in this process. We conclude that FOXO1 represses DIO2 during fasting and that derepression occurs via nutritional activation of the PI3K-mTORC2-Akt pathway. PMID:26499800

  5. Peptides and Food Intake

    PubMed Central

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  6. Peptides and food intake.

    PubMed

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  7. Change in hormones reflecting sympathetic activity in the Finnish sauna.

    PubMed

    Lammintausta, R; Syvälahti, E; Pekkarinen, A

    1976-08-01

    The effects of the high temperature (80-120 degrees C) of the Finnish Sauna bath on the concentrations of growth hormone, immunoreactive insulin and renin activity in plasma, on blood glucose and on the urinary excretion of aldosterone, vanilmandelic acid and sodium of 55 healthy volunteers were studied. There was a significant increase in mean heart rate (62%), serum growth hormone (142%) and plasma renin activity (95%) in the Sauna. One hour after the Sauna bath the mean serum growth hormone had returned to the control level while plasma renin activity still remained higher (p less than 0.05) than before the Sauna bath. The serum insulin, blood sugar and urinary excretion of aldosterone and VMA did not change during or after Sauna bath. The urinary sodium excretion decreased significantly after the Sauna bath and the decrease was most striking (46%) during the first 6-hour period from the beginning of Sauna bath. Plasma renin activity values correlated positively with 12-hour urinary VMA excretion (p less than 0.01) and negatively with 6-hour urinary sodium excretion (p less than 0.05) before and after Sauna, suggesting the role of catecholamines and sodium depletion in renin response in Sauna.

  8. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  9. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  10. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  11. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  12. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  13. Leptin activates chicken growth hormone promoter without chicken STAT3 in vitro.

    PubMed

    Murase, Daisuke; Namekawa, Shoko; Ohkubo, Takeshi

    2016-01-01

    Leptin is an adipocyte-derived hormone that not only regulates food intake and energy homeostasis but also induces growth hormone (GH) mRNA expression and release, thereby controlling growth and metabolism in mammals. The molecular mechanism of leptin-induced regulation of GH gene transcription is unclear. The current study investigated the effects of leptin on the chicken GH (cGH) promoter and the molecular mechanism underlying leptin-induced cGH gene expression in vitro. Leptin activated the cGH promoter in the presence of chPit-1α in CHO cells stably expressing the chicken leptin receptor. Promoter activation did not require STAT-binding elements in the cGH promoter or STAT3 activity. However, JAK2 activation was required for leptin-dependent activity. JAK2-dependent pathways include p42/44 MAPK and PI3K, and inhibition of these pathways partially blocked leptin-induced cGH gene transcription. Although CK2 directly activates JAK2, a CK2 inhibitor blocked leptin-dependent activation of the cGH gene without affecting JAK2 phosphorylation. The CK2 inhibitor suppressed Erk1/2 and Akt phosphorylation. Additional data implicate Src family kinases in leptin-dependent cGH gene activation. These results suggest that leptin activates the cGH gene in the presence of chPit-1α via several leptin-activated kinases. Although further study is required, we suggest that the leptin-induced JAK2/p42/44 MAPK and JAK2/PI3K cascades are activated by Src-meditated CK2, leading to CBP phosphorylation and interaction with chPit-1α, resulting in transactivation of the cGH promoter.

  14. Contributions of upper gut hormones and motility to the energy intake-suppressant effects of intraduodenal nutrients in healthy, lean men - a pooled-data analysis.

    PubMed

    Schober, Gudrun; Lange, Kylie; Steinert, Robert E; Hutchison, Amy T; Luscombe-Marsh, Natalie D; Landrock, Maria F; Horowitz, Michael; Seimon, Radhika V; Feinle-Bisset, Christine

    2016-09-01

    We have previously identified pyloric pressures and plasma cholecystokinin (CCK) concentrations as independent determinants of energy intake following administration of intraduodenal lipid and intravenous CCK. We evaluated in healthy men whether these parameters also determine energy intake in response to intraduodenal protein, and whether, across the nutrients, any predominant gastrointestinal (GI) factors exist, or many factors make small contributions. Data from nine published studies, in which antropyloroduodenal pressures, GI hormones, and GI /appetite perceptions were measured during intraduodenal lipid or protein infusions, were pooled. In all studies energy intake was quantified immediately after the infusions. Specific variables for inclusion in a mixed-effects multivariable model for determination of independent predictors of energy intake were chosen following assessment for collinearity, and within-subject correlations between energy intake and these variables were determined using bivariate analyses adjusted for repeated measures. In models based on all studies, or lipid studies, there were significant effects for amplitude of antral pressure waves, premeal glucagon-like peptide-1 (GLP-1) and time-to-peak GLP-1 concentrations, GLP-1 AUC and bloating scores (P < 0.05), and trends for basal pyloric pressure (BPP), amplitude of duodenal pressure waves, peak CCK concentrations, and hunger and nausea scores (0.05 < P ≤ 0.094), to be independent determinants of subsequent energy intake. In the model including the protein studies, only BPP was identified as an independent determinant of energy intake (P < 0.05). No single parameter was identified across all models, and effects of the variables identified were relatively small. Taken together, while GI mechanisms contribute to the regulation of acute energy intake by lipid and protein, their contribution to the latter is much less. Moreover, the effects are likely to reflect small, cumulative

  15. Contributions of upper gut hormones and motility to the energy intake-suppressant effects of intraduodenal nutrients in healthy, lean men - a pooled-data analysis.

    PubMed

    Schober, Gudrun; Lange, Kylie; Steinert, Robert E; Hutchison, Amy T; Luscombe-Marsh, Natalie D; Landrock, Maria F; Horowitz, Michael; Seimon, Radhika V; Feinle-Bisset, Christine

    2016-09-01

    We have previously identified pyloric pressures and plasma cholecystokinin (CCK) concentrations as independent determinants of energy intake following administration of intraduodenal lipid and intravenous CCK. We evaluated in healthy men whether these parameters also determine energy intake in response to intraduodenal protein, and whether, across the nutrients, any predominant gastrointestinal (GI) factors exist, or many factors make small contributions. Data from nine published studies, in which antropyloroduodenal pressures, GI hormones, and GI /appetite perceptions were measured during intraduodenal lipid or protein infusions, were pooled. In all studies energy intake was quantified immediately after the infusions. Specific variables for inclusion in a mixed-effects multivariable model for determination of independent predictors of energy intake were chosen following assessment for collinearity, and within-subject correlations between energy intake and these variables were determined using bivariate analyses adjusted for repeated measures. In models based on all studies, or lipid studies, there were significant effects for amplitude of antral pressure waves, premeal glucagon-like peptide-1 (GLP-1) and time-to-peak GLP-1 concentrations, GLP-1 AUC and bloating scores (P < 0.05), and trends for basal pyloric pressure (BPP), amplitude of duodenal pressure waves, peak CCK concentrations, and hunger and nausea scores (0.05 < P ≤ 0.094), to be independent determinants of subsequent energy intake. In the model including the protein studies, only BPP was identified as an independent determinant of energy intake (P < 0.05). No single parameter was identified across all models, and effects of the variables identified were relatively small. Taken together, while GI mechanisms contribute to the regulation of acute energy intake by lipid and protein, their contribution to the latter is much less. Moreover, the effects are likely to reflect small, cumulative

  16. Comparison of self-reported energy availability and metabolic hormones to assess adequacy of dietary energy intake in young elite athletes.

    PubMed

    Koehler, Karsten; Achtzehn, Silvia; Braun, Hans; Mester, Joachim; Schaenzer, Wilhelm

    2013-07-01

    Previous intervention studies suggest that leptin, insulin, insulin-like growth factor 1 (IGF-1), and triiodthyronine (T3) are sensitive markers of inadequate energy intake in relation to exercise expenditures. Because of limitations in metabolic hormone measurements, self-reported energy availability (EA) based on food and activity records may present an alternative for characterizing energy status in young athletes. The purpose of the current study was to assess whether self-reported EA is related to leptin, insulin, IGF-1, and T3 in 352 young athletes. Sex, body composition, sport participation, and acute weight changes were considered as confounding variables. Multiple linear regression revealed that EA was negatively associated with leptin (p < 0.05) but not with insulin, IGF-1, or T3. Female athletes with low EA (<30 kcal·kg(-1) fat-free mass (FFM)) had higher leptin concentrations (5.0 ± 4.7 ng·mL(-1)) and more body fat (18.3% ± 5.1%) than did females with normal EA (leptin, 3.1 ± 2.4 ng·mL(-1); body fat, 15.8% ± 4.2%; both, p < 0.001). Athletes reporting acute weight loss (>1 kg·week(-1)) had a lower EA (18.9 ± 7.4 kcal·kg(-1) FFM) than did weight-stable athletes (30.0 ± 11.2 kcal·kg(-1) FFM) or athletes reporting weight gain (>1 kg; 49.7 ± 13.1 kcal·kg(-1) FFM). IGF-1 and T3 were also reduced in athletes who lost weight (p < 0.01). This cross-sectional study reveals a lack of association between self-reported EA and metabolic hormones indicative of energy status in young athletes. Further studies are needed to investigate whether self-reported EA and metabolic hormones are in better agreement when measured repeatedly.

  17. Time-dependent effects of leptin on food intake and locomotor activity in goldfish.

    PubMed

    Vivas, Y; Azpeleta, C; Feliciano, A; Velarde, E; Isorna, E; Delgado, M J; De Pedro, N

    2011-05-01

    The present study investigates the possible circadian dependence of leptin effects on food intake, locomotor activity, glycemia and plasma cortisol levels in goldfish (Carassius auratus). Fish were maintained under 12L:12D photoperiod and subjected to two different feeding schedules, one group fed during photophase (10:00) and the other one during scotophase (22:00). Leptin or saline were intraperitoneally injected at two different times (10:00 or 22:00), coincident or not with the meal time. To eliminate the entraining effect of the light/dark cycle, goldfish maintained under 24h light (LL) were fed and leptin-injected at 10:00. A reduction in food intake and locomotor activity and an increase in glycemia were found in goldfish fed and leptin-injected at 10:00. No significant changes in circulating cortisol were observed. Those effects were not observed when leptin was administered during the scotophase, regardless the feeding schedule; neither in fish maintained under LL, suggesting that a day/night cycle would be necessary to observe the actions of leptin administered during the photophase. Changes in locomotor activity and glycemia were only observed in goldfish when leptin was injected at daytime, coincident with the feeding schedule, suggesting that these leptin actions could be dependent on the feeding time as zeitgeber. In view of these results it appears that the circadian dependence of leptin actions in goldfish can be determined by the combination of both zeitgebers, light/dark cycle and food. Our results point out the relevance of the administration time when investigating regulatory functions of hormones.

  18. Regulation of rat adrenal vasoactive intestinal peptide content: effects of adrenocorticotropic hormone treatment and changes in dietary sodium intake.

    PubMed

    Hinson, J P; Renshaw, D; Carroll, M; Kapas, S

    2001-09-01

    Vasoactive intestinal peptide (VIP) is well established as a paracrine regulator of adrenal function. It is present in nerves supplying the adrenal cortex, although previous studies have found that the amount of VIP in the outer zones of the rat adrenal is not affected by ligating the splanchnic nerve supplying the adrenal gland. The present studies were designed to investigate the mechanisms involved in regulating the VIP content of the rat adrenal gland. This study examined the effects of changes in electrolyte balance and adrenocorticotropic hormone (ACTH) administration on the adrenal content of VIP as measured by radioimmunoassay. Rats on a low sodium diet had a significantly increased capsular/zona glomerulosa immunoreactive VIP (irVIP) level, while rats on a high sodium diet had suppressed levels relative to controls. Changes in dietary sodium did not affect inner zone/medullary VIP content. Administration of ACTH caused a decrease in irVIP levels in the capsular/zona glomerulosa portion of the adrenal gland but had no effect on the inner zone/medulla. Analysis of mRNA encoding VIP revealed a large increase in expression of VIP in the sodium-deplete group compared with the control, with no change in VIP expression in the sodium-loaded group. ACTH treatment was found to significantly decrease VIP mRNA levels in the capsular portion. Neither ACTH treatment nor changes in sodium intake affected inner zones/medullary VIP message. These data suggest that VIP in the capsule and zona glomerulosa region of the adrenal cortex is regulated in response to the physiological status of the animal, with changes in capsular/zona glomerulosa VIP correlating with changes in zona glomerulosa function.

  19. Gut hormones: emerging role in immune activation and inflammation.

    PubMed

    Khan, W I; Ghia, J E

    2010-07-01

    Gut inflammation is characterized by mucosal recruitment of activated cells from both the innate and adaptive immune systems. In addition to immune cells, inflammation in the gut is associated with an alteration in enteric endocrine cells and various biologically active compounds produced by these cells. Although the change in enteric endocrine cells or their products is considered to be important in regulating gut physiology (motility and secretion), it is not clear whether the change plays any role in immune activation and in the regulation of gut inflammation. Due to the strategic location of enteric endocrine cells in gut mucosa, these gut hormones may play an important role in immune activation and promotion of inflammation in the gut. This review addresses the research on the interface between immune and endocrine systems in gastrointestinal (GI) pathophysiology, specifically in the context of two major products of enteric endocrine systems, namely serotonin (5-hydroxytryptamine: 5-HT) and chromogranins (Cgs), in relation to immune activation and generation of inflammation. The studies reviewed in this paper demonstrate that 5-HT activates the immune cells to produce proinflammatory mediators and by manipulating the 5-HT system it is possible to modulate gut inflammation. In the case of Cgs the scenario is more complex, as this hormone has been shown to play both proinflammatory and anti-inflammatory functions. It is also possible that interaction between 5-HT and Cgs may play a role in the modulation of immune and inflammatory responses. In addition to enhancing our understanding of immunoendocrine interaction in the gut, the data generated from the these studies may have implications in understanding the role of gut hormone in the pathogenesis of both GI and non-GI inflammatory diseases which may lead ultimately to improved therapeutic strategies in inflammatory disorders. PMID:20408856

  20. Feedlot performance, carcass characteristics, hormones, and metabolites in steers actively immunized against growth hormone-releasing factor.

    PubMed

    Harvey, R W; Armstrong, J D; Heimer, E P; Campbell, R M

    1993-11-01

    Large-framed Simmental and Charolais steers were actively immunized against growth hormone-releasing factor (GRF) to evaluate the effect on growth, carcass characteristics (especially intramuscular fat deposition), and concentrations of somatotropin (ST) and IGF-I. Primary immunizations of 1.5 mg of GRF-(1-29)-Gly-Gly-Cys-NH2 conjugated to 1.5 mg of human serum albumin (GRFi, n = 12) or 1.5 mg of human serum albumin (HSAi, n = 12) were given at approximately 10 mo of age. Booster immunizations of .5 mg of the appropriate antigen were given at d 49 and 125. Weights of steers administered GRFi were less (P < .05) than those given HSAi at 126 d (34.6 kg) or at 262 d (48.2 kg) after treatment. Carcass weights were 28.2 kg less (P < .01) for GRFi than for HSAi steers. Dry matter intake was not affected by immunization treatment, whereas feed efficiency was reduced in GRFi steers. Marbling scores were higher (P < .05) for HSAi than for GRFi steers but similar percentages (83.3) of both treatments graded Low Choice or higher. Rib sections of GRFi steers contained more fat (31.2 vs 25.0%) and less lean (63.3 vs 68.4%) than those of HSAi steers (P < .05). A breed x treatment interaction was observed for percentage of fat within the trimmed longissimus muscle (P < .05); percentage of fat was similar for Charolais and Simmental steers when immunized against HSAi but was higher for Simmental than for Charolais when immunized against GRFi.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters.

    PubMed

    Schuhler, S; Warner, A; Finney, N; Bennett, G W; Ebling, F J P; Brameld, J M

    2007-04-01

    Thyrotrophin-releasing hormone (TRH) is known to play an important role in the control of food intake and energy metabolism in addition to its actions on the pituitary-thyroid axis. We have previously shown that central administration of TRH decreases food intake in Siberian hamsters. This species is being increasingly used as a physiological rodent model in which to understand hypothalamic control of long-term changes in energy balance because it accumulates fat reserves in long summer photoperiods, and decreases food intake and body weight when exposed to short winter photoperiods. The objectives of our study in Siberian hamsters were: (i) to investigate whether peripheral administration of TRH would mimic the effects of central administration of TRH on food intake and whether these effects would differ dependent upon the ambient photoperiod; (ii) to determine whether TRH would have an effect on energy expenditure; and (iii) to investigate the potential sites of action of TRH. Both peripheral (5-50 mg/kg body weight; i.p.) and central (0.5 microg/ml; i.c.v.) administration of TRH decreased food intake, and increased locomotor activity, body temperature and oxygen consumption in the Siberian hamster, with a rapid onset and short duration of action. Systemic treatment with TRH was equally effective in suppressing feeding regardless of ambient photoperiod. The acute effects of TRH are likely to be centrally mediated and independent of its role in the control of the production of thyroid hormones. We conclude that TRH functions to promote a catabolic energetic state by co-ordinating acute central and chronic peripheral (thyroid-mediated) function.

  2. Active metabolism of thyroid hormone during metamorphosis of amphioxus.

    PubMed

    Paris, Mathilde; Hillenweck, Anne; Bertrand, Stéphanie; Delous, Georges; Escriva, Hector; Zalko, Daniel; Cravedi, Jean-Pierre; Laudet, Vincent

    2010-07-01

    Thyroid hormones (THs), and more precisely the 3,3',5-triiodo-l-thyronine (T(3)) acetic derivative 3,3',5-triiodothyroacetic acid (TRIAC), have been shown to activate metamorphosis in amphioxus. However, it remains unknown whether TRIAC is endogenously synthesized in amphioxus and more generally whether an active TH metabolism is regulating metamorphosis. Here we show that amphioxus naturally produces TRIAC from its precursors T(3) and l-thyroxine (T(4)), supporting its possible role as the active TH in amphioxus larvae. In addition, we show that blocking TH production inhibits metamorphosis and that this effect is compensated by exogenous T(3), suggesting that a peak of TH production is important for advancement of proper metamorphosis. Moreover, several amphioxus genes encoding proteins previously proposed to be involved in the TH signaling pathway display expression profiles correlated with metamorphosis. In particular, thyroid hormone receptor (TR) and deiodinases gene expressions are either up- or down-regulated during metamorphosis and by TH treatments. Overall, these results suggest that an active TH metabolism controls metamorphosis in amphioxus, and that endogenous TH production and metabolism as well as TH-regulated metamorphosis are ancestral in the chordate lineage.

  3. Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.

    PubMed

    Arnadottir, M; Nilsson-Ehle, P

    1994-01-01

    The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions.

  4. Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.

    PubMed

    Arnadottir, M; Nilsson-Ehle, P

    1994-01-01

    The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions. PMID:7870347

  5. Activation of membrane-associated estrogen receptors decreases food and water intake in ovariectomized rats.

    PubMed

    Santollo, Jessica; Marshall, Anikó; Daniels, Derek

    2013-01-01

    Estradiol (E2) decreases food and water intake in a variety of species, including rats. Available evidence suggests that this is mediated by genomic mechanisms that are most often attributed to nuclear estrogen receptors. More recent studies indicate that membrane-associated estrogen receptors (mERs) also can influence gene expression through the activation of transcription factors, yet it is unclear whether mERs are involved in mediating the hypophagic and antidipsetic effects of E2. In the present experiments, we injected E2 or a membrane-impermeable form of E2 (E2-BSA) into the lateral cerebral ventricle of ovariectomized female rats and evaluated the effect on 23 h food and water intake. First, we found that higher doses of E2 were necessary to reduce water intake than were sufficient to reduce food intake. Analysis of drinking microstructure revealed that the decrease in water intake after E2 treatment was mediated by both a decrease in burst number and burst size. Next, the activation of mERs with E2-BSA decreased both overnight food and water intake and analysis of drinking microstructure indicated that the decreased water intake resulted from a decrease in burst number. Finally, E2-BSA did not condition a taste aversion, suggesting that the inhibitory effects on food and water intake were not secondary to malaise. Together these findings suggest that activation of mERs is sufficient to decrease food and water intake in female rats.

  6. Limits to sustained energy intake. XVI. Body temperature and physical activity of female mice during pregnancy.

    PubMed

    Gamo, Yuko; Bernard, Amelie; Mitchell, Sharon E; Hambly, Catherine; Al Jothery, Aqeel; Vaanholt, Lobke M; Król, Elzbieta; Speakman, John R

    2013-06-15

    Lactation is the most energy-demanding phase of mammalian reproduction, and lactation performance may be affected by events during pregnancy. For example, food intake may be limited in late pregnancy by competition for space in the abdomen between the alimentary tract and fetuses. Hence, females may need to compensate their energy budgets during pregnancy by reducing activity and lowering body temperature. We explored the relationships between energy intake, body mass, body temperature and physical activity throughout pregnancy in the MF1 mouse. Food intake and body mass of 26 females were recorded daily throughout pregnancy. Body temperature and physical activity were monitored every minute for 23 h a day by implanted transmitters. Body temperature and physical activity declined as pregnancy advanced, while energy intake and body mass increased. Compared with a pre-mating baseline period, mice increased energy intake by 56% in late pregnancy. Although body temperature declined as pregnancy progressed, this served mostly to reverse an increase between baseline and early pregnancy. Reduced physical activity may compensate the energy budget of pregnant mice but body temperature changes do not. Over the last 3 days of pregnancy, food intake declined. Individual variation in energy intake in the last phase of pregnancy was positively related to litter size at birth. As there was no association between the increase in body mass and the decline in intake, we suggest the decline was not caused by competition for abdominal space. These data suggest overall reproductive performance is probably not constrained by events during pregnancy. PMID:23720802

  7. Limits to sustained energy intake. XVI. Body temperature and physical activity of female mice during pregnancy.

    PubMed

    Gamo, Yuko; Bernard, Amelie; Mitchell, Sharon E; Hambly, Catherine; Al Jothery, Aqeel; Vaanholt, Lobke M; Król, Elzbieta; Speakman, John R

    2013-06-15

    Lactation is the most energy-demanding phase of mammalian reproduction, and lactation performance may be affected by events during pregnancy. For example, food intake may be limited in late pregnancy by competition for space in the abdomen between the alimentary tract and fetuses. Hence, females may need to compensate their energy budgets during pregnancy by reducing activity and lowering body temperature. We explored the relationships between energy intake, body mass, body temperature and physical activity throughout pregnancy in the MF1 mouse. Food intake and body mass of 26 females were recorded daily throughout pregnancy. Body temperature and physical activity were monitored every minute for 23 h a day by implanted transmitters. Body temperature and physical activity declined as pregnancy advanced, while energy intake and body mass increased. Compared with a pre-mating baseline period, mice increased energy intake by 56% in late pregnancy. Although body temperature declined as pregnancy progressed, this served mostly to reverse an increase between baseline and early pregnancy. Reduced physical activity may compensate the energy budget of pregnant mice but body temperature changes do not. Over the last 3 days of pregnancy, food intake declined. Individual variation in energy intake in the last phase of pregnancy was positively related to litter size at birth. As there was no association between the increase in body mass and the decline in intake, we suggest the decline was not caused by competition for abdominal space. These data suggest overall reproductive performance is probably not constrained by events during pregnancy.

  8. Increased food intake in growth hormone-transgenic common carp (Cyprinus carpio L.) may be mediated by upregulating Agouti-related protein (AgRP).

    PubMed

    Zhong, Chengrong; Song, Yanlong; Wang, Yaping; Zhang, Tanglin; Duan, Ming; Li, Yongming; Liao, Lanjie; Zhu, Zuoyan; Hu, Wei

    2013-10-01

    In fish, food intake and feeding behavior are crucial for survival, competition, growth and reproduction. Growth hormone (GH)-transgenic common carp exhibit an enhanced growth rate, increased food intake and higher feed conversion rate. However, the underlying molecular mechanisms of feeding regulation in GH-transgenic (TG) fish are not clear. In this study, we observed feeding behavior of TG and non-transgenic (NT) common carp, and analyzed the mRNA expression levels of NPY, AgRP I, orexin, POMC, CCK, and CART I in the hypothalamus and telencephalon after behavioral observation. We detected similar gene expression levels in the hypothalamus of TG and NT common carp, which had been cultured in the field at the same age. Furthermore, we tested the effects of GH on hypothalamus fragments in vitro to confirm our findings. We demonstrated that TG common carp displayed increased food intake and reduced food consumption time, which were associated with a marked increase in hypothalamic AgRP I mRNA expression. Our results suggest that elevated GH levels may influence food intake and feeding behavior by upregulating the hypothalamic orexigenic factor AgRP I in GH-transgenic common carp. PMID:23583469

  9. Dose-dependent effects of a soluble dietary fibre (pectin) on food intake, adiposity, gut hypertrophy and gut satiety hormone secretion in rats.

    PubMed

    Adam, Clare L; Williams, Patricia A; Garden, Karen E; Thomson, Lynn M; Ross, Alexander W

    2015-01-01

    Soluble fermentable dietary fibre elicits gut adaptations, increases satiety and potentially offers a natural sustainable means of body weight regulation. Here we aimed to quantify physiological responses to graded intakes of a specific dietary fibre (pectin) in an animal model. Four isocaloric semi-purified diets containing 0, 3.3%, 6.7% or 10% w/w apple pectin were offered ad libitum for 8 or 28 days to young adult male rats (n = 8/group). Measurements were made of voluntary food intake, body weight, initial and final body composition by magnetic resonance imaging, final gut regional weights and histology, and final plasma satiety hormone concentrations. In both 8- and 28-day cohorts, dietary pectin inclusion rate was negatively correlated with food intake, body weight gain and the change in body fat mass, with no effect on lean mass gain. In both cohorts, pectin had no effect on stomach weight but pectin inclusion rate was positively correlated with weights and lengths of small intestine and caecum, jejunum villus height and crypt depth, ileum crypt depth, and plasma total glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) concentrations, and at 8 days was correlated with weight and length of colon and with caecal mucosal depth. Therefore, the gut's morphological and endocrine adaptations were dose-dependent, occurred within 8 days and were largely sustained for 28 days during continued dietary intervention. Increasing amounts of the soluble fermentable fibre pectin in the diet proportionately decreased food intake, body weight gain and body fat content, associated with proportionately increased satiety hormones GLP-1 and PYY and intestinal hypertrophy, supporting a role for soluble dietary fibre-induced satiety in healthy body weight regulation. PMID:25602757

  10. Hormonal activity of polycyclic musks evaluated by reporter gene assay.

    PubMed

    Mori, Taiki; Iida, Mitsuru; Ishibashi, Hiroshi; Kohra, Shinya; Takao, Yuji; Takemasa, Takehiro; Arizono, Koji

    2007-01-01

    Synthetic musk fragrance compounds, such as polycyclic musks (PCMs), are a group of chemicals used extensively as personal care products, and can be found in the environment and the human body. PCMs, such as 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexa-methylcyclopenta-gamma-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyltetralin (AHTN), are known to have agonistic activities toward human estrogen receptor alpha (hERalpha) and hERbeta, and have antagonistic activity toward the human androgen receptor (hAR), as shown in several reporter gene assays. However, little is known about the interaction of PCMs with the human thyroid hormone receptor (hTR), and the hormonal effects of other PCMs except for HHCB and AHTN. In this study, we focus on the interactions of six PCMs, namely, HHCB, AHTN, 4-acetyl-1,1-dimethyl-6-tert-butyl-indan (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI), 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone (DPMI), and 5-acetyl-1,1,2,6-tetramethyl-3-isopropy-lindan (ATII) with hERalpha, hAR, and hTRbeta by in vitro reporter gene assay using Chinese hamster ovary cells. All the samples were found to be agonists toward hERalpha, whereas no agonistic activities of these PCMs for hAR and hTRbeta were observed. No antagonistic activities for hERalpha and hTRbeta were observed at the concentrations tested. However, several PCMs, namely, HHCB, AHTN, ATII, ADBI, and AHMI, showed dose-dependent antagonistic activities for hAR, and the IC50 values of these compounds were estimated to be 1.0 x 10(-7), 1.5 x 10(-7), 1.4 x 10(-7), 9.8 x 10(-6), and 1.4 x 10(-7) M, respectively. The results suggest that these PCMs interact with hERalpha and hAR but have no hormonal effect on hTRbeta. This is the first report on the agonistic and antagonistic activities of ATII, ADBI, AHMI, and DPMI for hERalpha and hAR as determined by in vitro reporter gene assay using stably transfected Chinese hamster ovary cells.

  11. Activation of physiological stress responses by a natural reward: Novel vs. repeated sucrose intake.

    PubMed

    Egan, Ann E; Ulrich-Lai, Yvonne M

    2015-10-15

    Pharmacological rewards, such as drugs of abuse, evoke physiological stress responses, including increased heart rate and blood pressure, and activation of the hypothalamic-pituitary-adrenal (HPA) axis. It is not clear to what extent the natural reward of palatable foods elicits similar physiological responses. In order to address this question, HPA axis hormones, heart rate, blood pressure and brain pCREB immunolabeling were assessed following novel and repeated sucrose exposure. Briefly, adult, male rats with ad libitum food and water were given either a single (day 1) or repeated (twice-daily for 14 days) brief (up to 30 min) exposure to a second drink bottle containing 4 ml of 30% sucrose drink vs. water (as a control for bottle presentation). Sucrose-fed rats drank more than water-fed on all days of exposure, as expected. On day 1 of exposure, heart rate, blood pressure, plasma corticosterone, and locomotion were markedly increased by presentation of the second drink bottle regardless of drink type. After repeated exposure (day 14), these responses habituated to similar extents regardless of drink type and pCREB immunolabeling in the hypothalamic paraventricular nucleus (PVN) also did not vary with drink type, whereas basolateral amygdala pCREB was increased by sucrose intake. Taken together, these data suggest that while sucrose is highly palatable, physiological stress responses were evoked principally by the drink presentation itself (e.g., an unfamiliar intervention by the investigators), as opposed to the palatability of the offered drink.

  12. Acute changes in serum calcium and parathyroid hormone circulating levels induced by the oral intake of five currently available calcium salts in healthy male volunteers.

    PubMed

    Deroisy, R; Zartarian, M; Meurmans, L; Nelissenne, N; Micheletti, M C; Albert, A; Reginster, J Y

    1997-05-01

    Several calcium supplements are currently available and many of them are marketed without proper comparison of the bioavailability of the actual preparations. The aim of the present trial was to evaluate and compare the acute changes in serum calcium (Ca) and parathyroid hormone (PTH) levels following the oral administration of a vehicle and of five calcium salts currently prescribed in Western Europe. No significant changes in serum Ca or PTH levels were observed after administration of the vehicle. All calcium salts induced significant increases in serum Ca and decreases in serum PTH compared to baseline values. Comparison of the six response curves revealed a significantly greater increase in serum Ca and a greater decrease in serum PTH after each of the calcium salts than observed after the vehicle. However, no statistically significant differences were observed between the different calcium salts for serum Ca increments. The decrease in serum PTH observed after administration of an ossein-hydroxyapatite complex was significantly less important than after the four other calcium salts, even if statistically different than after vehicle. When assessing the area under the curve (AUC) of PTH values, we observed that calcium carbonate and citrate induce a significantly greater decrease in serum PTH than the other calcium salts which are, however, statistically more active than the vehicle. Serum PTH is decreased under the lower limit of the normal range (10 pg/ml), between t60 and t120 for calcium carbonate and citrate and between t60 and t90 for calcium gluconolactate while the mean PTH values remain within the normal range throughout the study with calcium pidolate, the ossein-hydroxyapatite complex and the vehicle. In conclusion, all calcium preparations significantly increase serum calcium and decrease serum parathormone, compared to what is observed after oral intake of a vehicle. However, significant differences in suppression of parathormone are observed

  13. Preparation of an active recombinant peptide of crustacean androgenic gland hormone.

    PubMed

    Okuno, Atsuro; Hasegawa, Yuriko; Nishiyama, Makoto; Ohira, Tsuyoshi; Ko, Rinkei; Kurihara, Masaaki; Matsumoto, Shogo; Nagasawa, Hiromichi

    2002-03-01

    In crustaceans, male sexual characteristics are induced by a hormone referred to as androgenic gland hormone. We have recently cloned a candidate cDNA in the terrestrial isopod Armadillidium vulgare. In order to prove that this cDNA encodes the hormone, recombinant single-chain precursor molecules consisting of B chain, C peptide and A chain were produced using both baculovirus and bacterial expression systems. Neither recombinant precursors showed activity. Digestion of only the precursor carrying a glycan moiety with lysyl endopeptidase gave a heterodimeric peptide with hormonal activity by removing a part of C peptide. These results indicate that the cDNA encodes the hormone. PMID:11836008

  14. Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits

    PubMed Central

    Schaaf, Laura; Heeley, Nicholas; Heuschmid, Lena; Bai, Yunjing; Barrantes, Francisco J.; Apergis-Schoute, John

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating appetite and have been shown to do so by influencing neural activity in the hypothalamus. To shed light on the hypothalamic circuits governing acetylcholine’s (ACh) regulation of appetite this study investigated the influence of hypothalamic nAChRs expressing the α4 subunit. We found that antagonizing the α4β2 nAChR locally in the lateral hypothalamus with di-hydro-ß-erythroidine (DHβE), an α4 nAChR antagonist with moderate affinity, caused an increase in food intake following free access to food after a 12 hour fast, compared to saline-infused animals. Immunocytochemical analysis revealed that orexin/hypocretin (HO), oxytocin, and tyrosine hydroxylase (TH)-containing neurons in the A13 and A12 of the hypothalamus expressed the nAChR α4 subunit in varying amounts (34%, 42%, 50%, and 51%, respectively) whereas melanin concentrating hormone (MCH) neurons did not, suggesting that DHβE-mediated increases in food intake may be due to a direct activation of specific hypothalamic circuits. Systemic DHβE (2 mg/kg) administration similarly increased food intake following a 12 hour fast. In these animals a subpopulation of orexin/hypocretin neurons showed elevated activity compared to control animals and MCH neuronal activity was overall lower as measured by expression of the immediate early gene marker for neuronal activity cFos. However, oxytocin neurons in the paraventricular hypothalamus and TH-containing neurons in the A13 and A12 did not show differential activity patterns. These results indicate that various neurochemically distinct hypothalamic populations are under the influence of α4β2 nAChRs and that cholinergic inputs to the lateral hypothalamus can affect satiety signals through activation of local α4β2 nAChR-mediated transmission. PMID:26247203

  15. Studies on the bioassayable growth hormone-like activity of plasma

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Vodian, M. A.; Grindeland, R. E.

    1978-01-01

    Evidence supporting the existence of bioassayable growth hormone-like activity in blood plasma distinct from the growth hormone measurable by radioimmunoassay and from somatomedin is presented. Tibial assays of the growth-hormone-like activity of injected, concentrated normal human and rat plasma in hypophysectomized rats reveal 200- and 50-fold activity excesses, respectively, with respect to the amount of growth hormone detected by radioimmunoassay. The origin of this bioassayable plasma hormone has been localized to the region of the pituitary, the origin of growth hormone, a distribution not followed by somatomedin C. Purification of the bioassayable agent indicates that is has a molecular weight of between 60,000 and 80,000, in contrast to that of growth hormone (20,000), and that the bioassayable activity is distinct from that of somatomedin C. Growth hormone-like activity detected in Cohn fraction IV as well as plasma activity, are found to be collectable on Dowex 50 resin, in contrast to somatomedin C and nonsuppressible insulin-like activity. The formation of bioassayable growth hormone-activity agents from radioimmunoassayable growth hormone and directly in the pituitary is suggested.

  16. Chronic ethanol intake modifies pyrrolidon carboxypeptidase activity in mouse frontal cortex synaptosomes under resting and K+ -stimulated conditions: role of calcium.

    PubMed

    Mayas, María Dolores; Ramírez-Expósito, María Jesús; García-López, María Jesús; Carrera, María Pilar; Martínez-Martos, José Manuel

    2008-07-01

    Pyrrolidon carboxypeptidase (Pcp) is an omega peptidase that removes pyroglutamyl N-terminal residues of peptides such as thyrotrophin-releasing hormone (TRH), which is one of the neuropeptides that has been localized into many areas of the brain and acts as an endogenous neuromodulator of several parameters related to ethanol (EtOH) consumption. In this study, we analysed the effects of chronic EtOH intake on Pcp activity on mouse frontal cortex synaptosomes and their corresponding supernatant under basal and K+ -stimulated conditions, in presence and absence of calcium (Ca2+) to know the regulation of Pcp on TRH. In basal conditions, chronic EtOH intake significantly decreased synaptosomes Pcp activity but only in absence of Ca2+. However, supernatant Pcp activity is also decreased in presence and absence of calcium. Under K+-stimulated conditions, chronic EtOH intake decreased synaptosomes Pcp activity but only in absence of Ca2+, whereas supernatant Pcp activity was significantly decreased only in presence of Ca2+. The general inhibitory effect of chronic EtOH intake on Pcp activity suggests an inhibition of TRH metabolism and an enhancement of TRH neurotransmitter/neuromodulator functions, which could be related to putative processes of tolerance to EtOH in which TRH has been involved. Our data may also indicate that active peptides and their degrading peptidases are released together to the synaptic cleft to regulate the neurotransmitter/neuromodulator functions of these peptides, through a Ca2+ -dependent mechanism.

  17. Reevaluation of the relative activities of the pituitary glycoprotein hormones (follicle-stimulating hormone, luteinizing hormone, and thyrotrophin) from the green sea turtle, Chelonia mydas.

    PubMed

    Licht, P; Papkoff, H

    1985-06-01

    The discovery that the follicle-stimulating hormone (FSH) previously prepared from the green sea turtle, Chelonia mydas, contained a major neurohypophysial contaminant prompted a repurification and characterization of the glycoprotein hormones in this turtle. Results reaffirmed the physicochemical distinctiveness of the three hormones. Minimal cross-contamination between hormones (less than 2%) was achieved by ion-exchange chromatography, subunit dissociation (of contaminating luteinizing hormone (LH], gel filtration, and immuno-affinity chromatography. New preparations of FSH and thyrotrophin (TSH) derived from adult pituitaries proved to be more potent than those described previously (the degree depending on the nature of the assay); FSH showed the expected increase in activity based on estimated contamination of previous preparations. LH was similar to original preparations except for enhanced activity in FSH radioreceptor assays. Binding assays (in heterologous and homologous systems) again demonstrated the general absence of an FSH-specific receptor in the reptilian (chelonian and squamate) testes. In an in vivo bioassay in the lizard Anolis, the turtle FSH was orders of magnitude more potent than LH in stimulating both testis growth and androgen secretion, but in vitro LH was considerably more potent than FSH in stimulating androgen secretion in squamate and chelonian testes. Thus, the possibility exists that androgen secretion in some chelonian systems may exhibit a high degree of LH specificity like that of mammals and birds.

  18. Effect of two bakery products on short-term food intake and gut-hormones in young adults: a pilot study.

    PubMed

    Santaliestra-Pasías, A M; Garcia-Lacarte, M; Rico, M C; Aguilera, C M; Moreno, L A

    2015-08-01

    The aim of this study is to compare the effect of conventional bread and a whole grain bread on appetite and energy intake, satiety and satiety gut-hormones. A randomized controlled crossover pilot study was carried out in 11 university students (age: 18.7 ± 0.9 years; body mass index: 22.7 ± 2.7 kg/m(2)). Participants consumed two different mid-morning cereal-based snacks, including a conventional or whole grain bread. Two testing days were completed, including satiety questionnaires, blood sampling and consumption of standardized breakfast, mid-morning test-snacks and ad libitum lunch. Several gut-hormones were analysed and satiation was assessed using Visual Analogue Scale scores. The consumption of whole grain bread increased satiety perception, decreased the remained energy intake during the testing day, and decreased the postprandial response of peptide YY, compared with conventional bread (p < 0.005). These data suggest that the consumption of whole grain bread might be a useful strategy to improve satiety. PMID:27199158

  19. Hormonal changes and couple bonding in consensual sadomasochistic activity.

    PubMed

    Sagarin, Brad J; Cutler, Bert; Cutler, Nadine; Lawler-Sagarin, Kimberly A; Matuszewich, Leslie

    2009-04-01

    In two studies, 58 sadomasochistic (SM) practitioners provided physiological measures of salivary cortisol and testosterone (hormones associated with stress and dominance, respectively) and psychological measures of relationship closeness before and after participating in SM activities. Observed activities included bondage, sensory deprivation, a variety of painful and pleasurable stimulation, verbal and non-verbal communication, and expressions of caring and affection. During the scenes, cortisol rose significantly for participants who were bound, receiving stimulation, and following orders, but not for participants who were providing stimulation, orders, or structure. Female participants who were bound, receiving stimulation, and following orders also showed increases in testosterone during the scenes. Thereafter, participants who reported that their SM activities went well showed reductions in physiological stress (cortisol) and increases in relationship closeness. Among participants who reported that their SM activities went poorly, some showed decreases in relationship closeness whereas others showed increases. The increases in relationship closeness combined with the displays of caring and affection observed as part of the SM activities offer support for the modern view that SM, when performed consensually, has the potential to increase intimacy between participants. PMID:18563549

  20. JAK2 activation by growth hormone and other cytokines

    PubMed Central

    Waters, Michael J.; Brooks, Andrew J.

    2015-01-01

    Growth hormone (GH) and structurally related cytokines regulate a great number of physiological and pathological processes. They do this by coupling their single transmembrane domain (TMD) receptors to cytoplasmic tyrosine kinases, either as homodimers or heterodimers. Recent studies have revealed that many of these receptors exist as constitutive dimers rather than being dimerized as a consequence of ligand binding, which has necessitated a new paradigm for describing their activation process. In the present study, we describe a model for activation of the tyrosine kinase Janus kinase 2 (JAK2) by the GH receptor homodimer based on biochemical data and molecular dynamics simulations. Binding of the bivalent ligand reorientates and rotates the receptor subunits, resulting in a transition from a form with parallel TMDs to one where the TMDs separate at the point of entry into the cytoplasm. This movement slides the pseudokinase inhibitory domain of one JAK kinase away from the kinase domain of the other JAK within the receptor dimer–JAK complex, allowing the two kinase domains to interact and trans-activate. This results in phosphorylation and activation of STATs and other signalling pathways linked to this receptor which then regulate postnatal growth, metabolism and stem cell activation. We believe that this model will apply to most if not all members of the class I cytokine receptor family, and will be useful in the design of small antagonists and agonists of therapeutic value. PMID:25656053

  1. Effect of thermal stress on physiological parameters, feed intake and plasma thyroid hormones concentration in Alentejana, Mertolenga, Frisian and Limousine cattle breeds

    NASA Astrophysics Data System (ADS)

    Pereira, Alfredo M. F.; Baccari, Flávio; Titto, Evaldo A. L.; Almeida, J. A. Afonso

    2008-01-01

    The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7°C to 40.0°C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.

  2. Thyroid hormone and vitamin D regulate VGF expression and promoter activity

    PubMed Central

    Lewis, Jo E; Brameld, John M; Hill, Phil; Wilson, Dana; Barrett, Perry; Ebling, Francis J P; Jethwa, Preeti H

    2016-01-01

    The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VGF expression (P<0.05) and VGF promoter activity (P<0.0001). Similarly, treatment with 1,25-dihydroxyvitamin D3 increased endogenous VGF mRNA expression (P<0.05) and VGF promoter activity (P<0.0001), whereas triiodothyronine (T3) decreased both (P<0.01 and P<0.0001). Finally, intra-hypothalamic administration of T3 blocked the short day-induced increase in VGF expression in the dorsomedial posterior arcuate nucleus of Siberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure. PMID:26643910

  3. Protein intake and nitrogen balance in male non-active adolescents and soccer players.

    PubMed

    Boisseau, N; Le Creff, C; Loyens, M; Poortmans, J R

    2002-12-01

    Recommendations for the requirements for protein intake amount usually to 0.8-1.0 g x kg(-1) body mass x day(-1) in adolescents without any reference to the undertaking of acute exercise or to the training status. The present investigation intended to determine the nitrogen balance and protein intake in 8 healthy male non-active adolescents and 11 adolescent soccer players, both groups aged about 15 years. An assessment of nutrient intake was obtained by analysing 7 day food records collected by a questionnaire. Nitrogen excretion rate was determined and nitrogen balance was calculated from the mean daily protein intake and the urinary excretion. The results showed that the nutritional status of the two groups was similar. Nevertheless, we found that their diets were quite inappropriate in terms of the intakes of carbohydrate, some minerals (zinc, calcium, magnesium), vitamins (A, B6, D) and fibre. A positive nitrogen balance was observed from a mean protein intake of 1.57 g x kg(-1) body mass x day(-1) in these adolescents, whether they were non-active or athletes. Thus, the present investigation indicated that the growth and development in non-active adolescents and in adolescent soccer-players give rise to a need for a higher protein intake than is usually recommended. However, the higher protein requirements did not seem to be related only to the increased energy expenditure imposed by the exercise training in the soccer-player group.

  4. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site

    PubMed Central

    Naranda, Tatjana; Wong, Kenneth; Kaufman, R. Ilene; Goldstein, Avram; Olsson, Lennart

    1999-01-01

    Applying a homology search method previously described, we identified a sequence in the extracellular dimerization site of the erythropoietin receptor, distant from the hormone binding site. A peptide identical to that sequence was synthesized. Remarkably, it activated receptor signaling in the absence of erythropoietin. Neither the peptide nor the hormone altered the affinity of the other for the receptor; thus, the peptide does not bind to the hormone binding site. The combined activation of signal transduction by hormone and peptide was strongly synergistic. In mice, the peptide acted like the hormone, protecting against the decrease in hematocrit caused by carboplatin. PMID:10377456

  5. Parathyroid hormone secretory pattern, circulating activity, and effect on bone turnover in adult growth hormone deficiency.

    PubMed

    Ahmad, A M; Hopkins, M T; Fraser, W D; Ooi, C G; Durham, B H; Vora, J P

    2003-02-01

    Adult growth hormone deficiency (AGHD) is associated with osteoporosis. Reports have associated parathyroid hormone (PTH) circadian rhythm abnormalities with osteoporosis. Furthermore, there is evidence of relative PTH insensitivity in AGHD patients. Factors regulating PTH circadian rhythm are not fully understood. There is evidence that serum phosphate is a likely determinant of PTH rhythm. The aim of this study was to investigate PTH circadian rhythm and its circulating activity and association with bone turnover in untreated AGHD patients compared to healthy individuals. We sampled peripheral venous blood at 30-min and urine at 3-h intervals during the day over a 24-h period from 1400 h in 14 untreated AGHD patients (7 M, 7 W; mean age, 49.5 +/- 10.7 years) and 14 age (48.6 +/- 11.4 years; P = NS) and gender-matched controls. Cosinor analysis was performed to analyze rhythm parameters. Cross-correlational analysis was used to determine the relationship between variables. Serum PTH (1-84), phosphate, total calcium, urea, creatinine, albumin, type I collagen C-telopeptides (CT(x)), a bone resorption marker, and procollagen type I amino-terminal propeptide (PINP), a bone formation marker, were measured on all samples. Nephrogenous cyclic adenosine monophosphate (NcAMP), which reflects the renal activity of PTH, was calculated from plasma and urinary cAMP. Urinary calcium and phosphate were measured on all urine samples. Significant circadian rhythms were observed for serum PTH, phosphate, CT(x), and PINP in AGHD and healthy subjects (P < 0.001). No significant rhythm was observed for serum-adjusted calcium. PTH MESOR (rhythm-adjusted mean) was significantly higher (P < 0.05), whereas the MESOR values for phosphate, CT(x) (P < 0.05), and PINP (P < 0.001) were lower in AGHD patients than in controls. AGHD patients had significantly lower 24-h NcAMP (P < 0.001) and higher urinary calcium excretion (P < 0.05). Maximum cross-correlation between PTH and phosphate (r = 0

  6. Chronic delivery of α-melanocyte-stimulating hormone in rat hypothalamus using albumin-alginate microparticles: effects on food intake and body weight.

    PubMed

    Lucas, N; Legrand, R; Breton, J; Déchelotte, P; Edwards-Lévy, F; Fetissov, S O

    2015-04-01

    Chronic delivery of neuropeptides in the brain is a useful experimental approach to study their long-term effects on various biological parameters. In this work, we tested albumin-alginate microparticles, as a potential delivery system, to study if continuous release in the hypothalamus of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, may result in a long-term decrease in food intake and body weight. The 2-week release of α-MSH from peptide-loaded particles was confirmed by an in vitro assay. Then, daily food intake and body weight were studied for 18 days in rats injected bilaterally into the paraventricular hypothalamic nucleus with particles loaded or not with α-MSH. A decrease in body weight gain, persisting throughout the study, was found in rats injected with α-MSH-charged particles as compared with rats receiving non-charged particles and with rats injected with the same dose of α-MSH in solution. Food intake was significantly decreased for 3 days in rats receiving α-MSH-loaded particles and it was not followed by the feeding rebound effect which appears after food restriction. The presence of α-MSH-loaded particles in the hypothalamus was confirmed by immunohistochemistry. In conclusion, our study validates albumin-alginate microparticles as a new carrier system for long-term delivery of neuropeptides in the brain and demonstrates that chronic delivery of α-MSH in the hypothalamus results in a prolonged suppression of food intake and a decrease of body weight gain in rats.

  7. Osteoporosis knowledge, calcium intake, and weight-bearing physical activity in three age groups of women.

    PubMed

    Terrio, Kate; Auld, Garry W

    2002-10-01

    The purpose of this study was to determine the extent and integration of osteoporosis knowledge in three age groups of women and compare knowledge to calcium intake and weight-bearing physical activity (WBPA). In this cross-sectional study, knowledge, calcium intake and WBPA were assessed using probe interviews, a food frequency and an activity questionnaire, respectively. Seventy-five white women were separated into three groups: young (25-35 years), middle aged (36-46 years) and postmenopausal (50+ years). Concept maps were used to assess knowledge (concepts, integration and misconceptions). Calcium intakes from diet, supplements and fortified orange juice were estimated as were minutes of daily WBPA. Analysis of covariance was used to compare knowledge, calcium intake and WBPA by age group. Covariates included education, family history, physical problems making exercise difficult, and lactose intolerance. Chi square analysis was used to determine differences in these covariates across age groups. Correlations and regression analysis were used to determine relationships between knowledge and behaviors. Knowledge scores averaged 32-44 points (183 possible). Average calcium intake in all groups exceeded the Dietary Reference Intake's recommended Adequate Intake but 20-24% consumed less than 60% of the AI. Housework, walking at work, and standing at home and work accounted for 90% of WBPA. Knowledge about osteoporosis was limited and not associated with age, WBPA or calcium intake. Calcium intake and WBPA were not associated with age. Practitioners need to provide explicit information on osteoporosis and risk reducing behaviors to women of all ages. PMID:12238730

  8. Self-Control Constructs Related to Measures of Dietary Intake and Physical Activity in Adolescents

    PubMed Central

    Wills, Thomas A.; Isasi, Carmen R.; Mendoza, Don; Ainette, Michael G.

    2007-01-01

    Purpose To test self-regulation concepts in relation to dietary intake and physical activity patterns in adolescence, which we predicted to be influenced by components of a self-control model. Methods A survey was conducted with a multiethnic sample of 9th grade public school students in a metropolitan area (N = 539). Confirmatory analysis tested the measurement structure of self-control. Structural equation modeling tested the association of self-control constructs with measures of fruit and vegetable intake, saturated-fat intake, physical activity, and sedentary behavior. Results Confirmatory analysis of 14 indicators of self-control showed best fit for a two-factor structure, with latent constructs of good self-control (planfulness) and poor self-control (impulsiveness). Good self-control was related to more fruit and vegetable intake, more participation in sports, and less sedentary behavior. Poor self-control was related to more saturated-fat intake and less vigorous exercise. These effects were independent of gender, ethnicity, and parental education, which themselves had relations to diet and exercise measures. Multiple-group modeling indicated that effects of self-control were comparable across gender and ethnicity subgroups. Conclusions Self-control concepts are relevant for patterns of dietary intake and physical activity among adolescents. Attention to self-control processes may be warranted for prevention programs to improve health behaviors in childhood and adolescence. PMID:18023783

  9. Inverse associations of outdoor activity and vitamin D intake with the risk of Parkinson's disease.

    PubMed

    Zhu, Dan; Liu, Gui-you; Lv, Zheng; Wen, Shi-rong; Bi, Sheng; Wang, Wei-zhi

    2014-10-01

    Early studies had suggested that vitamin D intake was inversely associated with neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. However, the associations of vitamin D intake and outdoor activities with Parkinson's disease (PD) are still unclear, so this study is to evaluate these relationships from a case-control study in elderly Chinese. The study population involved 209 cases with new onsets of PD and 210 controls without neurodegenerative diseases. The data on dietary vitamin D and outdoor activities were collected using a food-frequency questionnaire and self-report questionnaire. Multivariable logistic regressions were used to examine the associations between dietary outdoor activities, vitamin D intake and PD. Adjustment was made for sex, age, smoking, alcohol use, education, and body mass index (BMI). Adjusted odds ratios (ORs) for PD in quartiles for outdoor physical activity were 1 (reference), 0.739 (0.413, 1.321), 0.501 (0.282, 0.891), and 0.437 (0.241, 0.795), respectively (P=0.002 for trend). Adjusted ORs for PD in quartiles for total vitamin D intake were 1 (reference), 0.647 (0.357, 1.170), 0.571 (0.318, 1.022), and 0.538 (0.301, 0.960), respectively (P=0.011 for trend). Our study suggested that outdoor activity and total vitamin D intake were inversely associated with PD, and outdoor activity seems to be more significantly associated with decreased risk for PD.

  10. Brainstem thyrotropin-releasing hormone regulates food intake through vagal-dependent cholinergic stimulation of ghrelin secretion.

    PubMed

    Ao, Yan; Go, Vay Liang W; Toy, Natalie; Li, Tei; Wang, Yu; Song, Moon K; Reeve, Joseph R; Liu, Yanyun; Yang, Hong

    2006-12-01

    The brainstem is essential for mediating energetic response to starvation. Brain stem TRH is synthesized in caudal raphe nuclei innervating brainstem and spinal vagal and sympathetic motor neurons. Intracisternal injection (ic) of a stable TRH analog RX77368 (7.5-25 ng) dose-dependently stimulated solid food intake by 2.4- to 3-fold in freely fed rats, an effect that lasted for 3 h. By contrast, RX77368 at 25 ng injected into the lateral ventricle induced a delayed and insignificant orexigenic effect only in the first hour. In pentobarbital-anesthetized rats, RX77368 (50 ng) ic induced a significant bipeak increase in serum total ghrelin levels from the basal of 8.7+/-1.7 ng/ml to 13.4+/-2.4 ng/ml at 30 min and 14.5+/-2.0 ng/ml at 90 min, which was prevented by either bilateral vagotomy (-60 min) or atropine pretreatment (2 mg/kg, -30 min) but magnified by bilateral adrenalectomy (-60 min). TRH analog ic-induced food intake in freely fed rats was abolished by either peripheral atropine or ghrelin receptor antagonist (D-Lys-3)-GHRP-6 (10 micromol/kg) or ic Y1 receptor antagonist 122PU91 (10 nmol/5 microl). Brain stem TRH mRNA and TRH receptor 1 mRNA increased by 57-58 and 33-35% in 24- and 48-h fasted rats and returned to the fed levels after a 3-h refeeding. Natural food intake in overnight fasted rats was significantly reduced by ic TRH antibody, ic Y1 antagonist, and peripheral atropine. These data establish a physiological role of brainstem TRH in vagal-ghrelin-mediated stimulation of food intake, which involves interaction with brainstem Y1 receptors.

  11. Antidepressant Use is Associated with Increased Energy Intake and Similar Levels of Physical Activity.

    PubMed

    Jensen-Otsu, Elsbeth; Austin, Gregory L

    2015-11-01

    Antidepressants have been associated with weight gain, but the causes are unclear. The aims of this study were to assess the association of antidepressant use with energy intake, macronutrient diet composition, and physical activity. We used data on medication use, energy intake, diet composition, and physical activity for 3073 eligible adults from the 2005-2006 National Health and Nutrition Examination Survey (NHANES). Potential confounding variables, including depression symptoms, were included in the models assessing energy intake, physical activity, and sedentary behavior. Antidepressant users reported consuming an additional (mean ± S.E.) 215 ± 73 kcal/day compared to non-users (p = 0.01). There were no differences in percent calories from sugar, fat, or alcohol between the two groups. Antidepressant users had similar frequencies of walking or biking, engaging in muscle-strengthening activities, and engaging in moderate or vigorous physical activity. Antidepressant users were more likely to use a computer for ≥2 h/day (OR 1.77; 95% CI: 1.09-2.90), but TV watching was similar between the two groups. These results suggest increased energy intake and sedentary behavior may contribute to weight gain associated with antidepressant use. Focusing on limiting food intake and sedentary behaviors may be important in mitigating the weight gain associated with antidepressant use. PMID:26610562

  12. A Novel Wearable Device for Food Intake and Physical Activity Recognition

    PubMed Central

    Farooq, Muhammad; Sazonov, Edward

    2016-01-01

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure. PMID:27409622

  13. Antidepressant Use is Associated with Increased Energy Intake and Similar Levels of Physical Activity.

    PubMed

    Jensen-Otsu, Elsbeth; Austin, Gregory L

    2015-11-20

    Antidepressants have been associated with weight gain, but the causes are unclear. The aims of this study were to assess the association of antidepressant use with energy intake, macronutrient diet composition, and physical activity. We used data on medication use, energy intake, diet composition, and physical activity for 3073 eligible adults from the 2005-2006 National Health and Nutrition Examination Survey (NHANES). Potential confounding variables, including depression symptoms, were included in the models assessing energy intake, physical activity, and sedentary behavior. Antidepressant users reported consuming an additional (mean ± S.E.) 215 ± 73 kcal/day compared to non-users (p = 0.01). There were no differences in percent calories from sugar, fat, or alcohol between the two groups. Antidepressant users had similar frequencies of walking or biking, engaging in muscle-strengthening activities, and engaging in moderate or vigorous physical activity. Antidepressant users were more likely to use a computer for ≥2 h/day (OR 1.77; 95% CI: 1.09-2.90), but TV watching was similar between the two groups. These results suggest increased energy intake and sedentary behavior may contribute to weight gain associated with antidepressant use. Focusing on limiting food intake and sedentary behaviors may be important in mitigating the weight gain associated with antidepressant use.

  14. A Novel Wearable Device for Food Intake and Physical Activity Recognition.

    PubMed

    Farooq, Muhammad; Sazonov, Edward

    2016-01-01

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure. PMID:27409622

  15. The effect of supplementation of calcium, vitamin D, boron, and increased fluoride intake on bone mechanical properties and metabolic hormones in rat.

    PubMed

    Ghanizadeh, G; Babaei, M; Naghii, Mohammad Reza; Mofid, M; Torkaman, G; Hedayati, M

    2014-04-01

    Evidence indicates that optimal nutrition plays a role in bone formation and maintenance. Besides major components of mineralization such as calcium, phosphorus, and vitamin D, other nutrients like boron and fluoride have beneficial role, too. In this study, 34 male Wistar rats were divided into five groups: control diet, fluoride, fluoride + boron, fluoride + calcium + vitamin D, and fluoride + boron + calcium + vitamin D. Boron equal to 1.23 mg, calcium and vitamin D equal to 210 mg + 55 IU and fluoride equal to 0.7 mg/rat/day was added to their drinking water for 8 weeks. Plasma blood samples and bones were collected. Findings are evidence that fluoride + boron intake revealed significant positive effects on bone mechanical properties and bone metabolic hormones. These findings suggest that combined intake of these two elements has beneficial effects on bone stiffness and breaking strength comparing to even calcium + vitamin D supplementation. This evidence dealing with health problems related to bone and skeletal system in humans should justify further investigation of the role of boron and fluoride with other elements in relation to bone.

  16. Dietary and hormonal evaluation of men at different risks for prostate cancer: fiber intake, excretion, and composition, with in vitro evidence for an association between steroid hormones and specific fiber components.

    PubMed

    Ross, J K; Pusateri, D J; Shultz, T D

    1990-03-01

    Dietary fiber intake and fecal fiber excretion were investigated in 53 Seventh-day Adventist men: 18 nonvegetarians (NVs), 20 lactoovovegetarians (LOVs), and 15 vegans (Vs). Three-day composite diets and stools were analyzed for neutral detergent fiber (NDF), hemicellulose, cellulose, lignin, and pectin. In vitro binding of estrone (E1), estradiol-17 beta (E2), and testosterone (T) to a water-insoluble fiber fraction obtained from these diets was correlated with the intake of specific dietary fiber components. Vs consumed and excreted significantly more of all fiber components than did LOVs or NVs. LOVs consumed more of all fiber components (except cellulose) than did omnivores and excreted more NDF, hemicellulose, and cellulose. Dietary lignin was positively correlated with T binding in the V group. There were significant relationships for all groups combined between lignin and water-insoluble fiber binding of E1, E2, and T. Further study is needed to clarify relationships between fiber components, steroid-hormone metabolism, and risk of prostate cancer.

  17. Agavins from Agave angustifolia and Agave potatorum affect food intake, body weight gain and satiety-related hormones (GLP-1 and ghrelin) in mice.

    PubMed

    Santiago-García, Patricia Araceli; López, Mercedes G

    2014-12-01

    Agavins act as a fermentable dietary fiber and have attracted attention due to their potential for reducing the risk of disease. Therefore, we evaluated the effect of supplementation using 10% agavins with a short-degree of polymerization (SDP) from Agave angustifolia Haw. (AASDP) or Agave potatorum Zucc. (APSDP) along with chicory fructans (RSE) as a reference for 5 weeks, on the energy intake, body weight gain, satiety-related hormones from the gut and blood (GLP-1 and ghrelin), blood glucose and lipids, and short-chain fatty acids (SCFAs) from the gut of ad libitum-fed mice. We evaluated the energy intake daily and weight gain every week. At the end of the experiment, portal vein blood samples as well as intestinal segments and the stomach were collected to measure glucagon-like peptide-1 (GLP-1) and ghrelin using RIA and ELISA kits, respectively. Colon SCFAs were measured using gas chromatography. The energy intake, body weight gain, and triglycerides were lower in the fructan-fed mice than in the STD-fed mice. The AASDP, APSDP, and RSE diets increased the serum levels of GLP-1 (40, 93, and 16%, respectively vs. STD) (P ≤ 0.05), whereas ghrelin was decreased (16, 38, and 42%, respectively) (P ≤ 0.05). Butyric acid increased significantly in the APSDP-fed mice (26.59 mmol g(-1), P ≤ 0.001) compared with that in the AASDP- and RSE-fed mice. We concluded that AASDP and APSDP are able to promote the secretion of the peptides involved in appetite regulation, which might help to control obesity and its associated metabolic disorder. PMID:25367106

  18. Agavins from Agave angustifolia and Agave potatorum affect food intake, body weight gain and satiety-related hormones (GLP-1 and ghrelin) in mice.

    PubMed

    Santiago-García, Patricia Araceli; López, Mercedes G

    2014-12-01

    Agavins act as a fermentable dietary fiber and have attracted attention due to their potential for reducing the risk of disease. Therefore, we evaluated the effect of supplementation using 10% agavins with a short-degree of polymerization (SDP) from Agave angustifolia Haw. (AASDP) or Agave potatorum Zucc. (APSDP) along with chicory fructans (RSE) as a reference for 5 weeks, on the energy intake, body weight gain, satiety-related hormones from the gut and blood (GLP-1 and ghrelin), blood glucose and lipids, and short-chain fatty acids (SCFAs) from the gut of ad libitum-fed mice. We evaluated the energy intake daily and weight gain every week. At the end of the experiment, portal vein blood samples as well as intestinal segments and the stomach were collected to measure glucagon-like peptide-1 (GLP-1) and ghrelin using RIA and ELISA kits, respectively. Colon SCFAs were measured using gas chromatography. The energy intake, body weight gain, and triglycerides were lower in the fructan-fed mice than in the STD-fed mice. The AASDP, APSDP, and RSE diets increased the serum levels of GLP-1 (40, 93, and 16%, respectively vs. STD) (P ≤ 0.05), whereas ghrelin was decreased (16, 38, and 42%, respectively) (P ≤ 0.05). Butyric acid increased significantly in the APSDP-fed mice (26.59 mmol g(-1), P ≤ 0.001) compared with that in the AASDP- and RSE-fed mice. We concluded that AASDP and APSDP are able to promote the secretion of the peptides involved in appetite regulation, which might help to control obesity and its associated metabolic disorder.

  19. Growth hormone and drug metabolism. Acute effects on nuclear ribonucleic acid polymerase activity and chromatin.

    PubMed Central

    Spelsberg, T C; Wilson, J T

    1976-01-01

    Adult male rats, subjected either to sham operation or to hypophysectomy and adrenalectomy were maintained for 10 days before treatment with growth hormone. Results of the acute effects of growth hormone on the rat liver nuclear RNA polymerase I (nucleolar) and II (nucleoplasmic) activities as well as the chromatin template capacity were then studied and compared with the growth-hormone effects on the drug metabolism described in the preceding paper (Wilson & Spelsberg, 1976). 2. Conditions for isolation and storage of nuclei for maintenance of optimal polymerase activities are described. It is verified that the assays for polymerase activities require a DNA template, all four nucleoside triphosphates, and a bivalent cation, and that the acid-insoluble radioactive product represents RNA. Proof is presented that under high-salt conditions DNA-like RNA (polymerase II) is synthesized, and that under low-salt conditions in the presence of alpha-amanitin, rRNA (polymerase I) is synthesized. 3. In the livers of hypophysectomized/adrenalectomized rats, growth hormone increases the activity of both RNA polymerase enzymes and the chromatin template capacity within 1h after treatment. The effects last for 12h in the case of polymerase II but for only 6h in the case of polymerase I. Sham-operated rats respond to growth hormone in a manner somewhat similar to that shown by hypophysectomized/adrenalectomized rats. These results, which demonstrate an enhancement of RNA polymerase I activity in response to growth hormone, support those from other laboratories. 4. Growth-hormone enhancement of the chromatin template capacity in the liver of hypophysectomized/adrenalectomized rats contrasts with previous reports. The growth-hormone-induced de-repression of the chromatin DNA could represent the basis of the growth-hormone-induced enhancement of RNA polymerase II activity in the hypophysectomized/adrenalectomized rats, although some effect of growth-hormone on the polymerase enzymes

  20. Physical activity benefits bone density and bone-related hormones in adult men with cervical spinal cord injury.

    PubMed

    Chain, Amina; Koury, Josely C; Bezerra, Flávia Fioruci

    2012-09-01

    Severe bone loss is a recognized complication of chronic spinal cord injury (SCI). Physical exercise contributes to bone health; however, its influence on bone mass of cervical SCI individuals has not been investigated. The aim of this study was to investigate the influence of physical activity on bone mass, bone metabolism, and vitamin D status in quadriplegics. Total, lumbar spine (L1-L4), femur and radius bone mineral density (BMD) were assessed in active (n = 15) and sedentary (n = 10) quadriplegic men by dual energy X-ray absorptiometry. Concentrations of 25-hydroxyvitamin D [25(OH)D], PTH, IGF1, osteocalcin and NTx were measured in serum. After adjustments for duration of injury, total body mass, and habitual calcium intake, bone indices were similar between groups, except for L1-L4 BMD Z score that was higher in the sedentary group (P < 0.05). Hours of physical exercise per week correlated positively with 25(OH)D (r = 0.59; P < 0.05) and negatively with PTH (r = -0.50; P < 0.05). Femur BMD was negatively associated with the number of months elapsed between the injury and the onset of physical activity (r = -0.60; P < 0.05). Moreover, in the active subjects, both L1-L4 BMD Z score (r = 0.72; P < 0.01) and radius BMD (r = 0.59; P < 0.05) were positively associated with calcium intake. In this cross-sectional study, both the onset of physical activity after injury and the number of hours dedicated to exercise were able to influence bone density and bone-related hormones in quadriplegic men. Our results also suggest a positive combined effect of exercise and calcium intake on bone health of quadriplegic individuals.

  1. Pharmacological actions of the peptide hormone amylin in the long-term regulation of food intake, food preference, and body weight.

    PubMed

    Mack, Christine; Wilson, Julie; Athanacio, Jennifer; Reynolds, James; Laugero, Kevin; Guss, Stacy; Vu, Calvin; Roth, Jonathan; Parkes, David

    2007-11-01

    The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.

  2. Effects of Hormonally Active Agents on Steroid Hormone Receptor Expression and Cell Proliferation in the Myometrium of Ovariectomized Macaques

    PubMed Central

    Hill, Georgette D.; Moore, Alicia B.; Kissling, Grace E.; Flagler, Norris D.; Ney, Elizabeth; Cline, J. Mark; Dixon, Darlene

    2011-01-01

    Hormone replacement therapy and selective estrogen receptor modulators have been controversial treatment options for postmenopausal women because of their potential health benefits and/or risks. In this study, we determine the effects of the hormonally active compounds, conjugated equine estrogens (CEE), medroxyprogesterone acetate (MPA), CEE + MPA, and tamoxifen (TAM) on the myometrium of ovariectomized macaques. Immunoexpression of estrogen receptor-α (ERα), progesterone receptor (PR), and Ki-67 in the myometrium is assessed. We found no significant difference in ERα myometrial expression in the CEE, MPA, and CEE + MPA treatment groups, but there was a significant decrease in expression in animals administered TAM versus controls. Conjugated equine estrogen−, TAM−, and CEE + MPA-treated animals had significantly increased expression of PR in myometrial cells and there was no difference in PR expression in cells from MPA-treated animals versus control animals. Myometrial cell proliferation did not significantly differ between the controls and any of the treatment groups, although normalized Ki-67 values were somewhat higher in the CEE and TAM groups. These data suggest that ERα and PR expression in the myometrium is influenced by treatment with hormonally active agents. PMID:21411722

  3. How do sex hormones modify arrhythmogenesis in long QT syndrome? Sex hormone effects on arrhythmogenic substrate and triggered activity.

    PubMed

    Odening, Katja E; Koren, Gideon

    2014-11-01

    Gender differences in cardiac repolarization and the arrhythmogenic risk of patients with inherited and acquired long QT syndromes are well appreciated clinically. Enhancing our knowledge of the mechanisms underlying these differences is critical to improve our therapeutic strategies for preventing sudden cardiac death in such patients. This review summarizes the effects of sex hormones on the expression and function of ion channels that control cardiac cell excitation and repolarization as well as key proteins that regulate Ca(2+) dynamics at the cellular level. Moreover, it examines the role of sex hormones in modifying the dynamic spatiotemporal (regional and transmural) heterogeneities in action potential duration (eg, the arrhythmogenic substrate) and the susceptibility to (sympathetic) triggered activity at the tissue, organ, and whole animal levels. Finally, it explores the implications of these effects on the management of patients with LQTS.

  4. Effects of rabbit anti-α-melanocyte-stimulating hormone (α-MSH) immunoglobulins on α-MSH signaling related to food intake control.

    PubMed

    Lucas, Nicolas; Legrand, Romain; Ouelaa, Wassila; Breton, Jonathan; Tennoune, Naouel; Bole-Feysot, Christine; Déchelotte, Pierre; Fetissov, Sergueï O

    2014-02-01

    Anti-α-melanocyte-stimulating hormone (α-MSH) polyclonal antibodies have been used for α-MSH neutralization in functional studies, but the results are sometime inconsistent with the antibody expected blocking properties. The present study aimed to determine if rabbit (Rb) anti-α-MSH immunoglobulins (Ig) may inhibit or enhance α-MSH signaling on melanocortin receptor type 4 (MC4R) and α-MSH-induced anorexigenic effect if presented as immune complexes with α-MSH. Polyclonal Rb anti-α-MSH IgG were commercially available and their ability to bind α-MSH has been confirmed by the immunohistochemical detection of α-MSH neurons in the rat hypothalamus. In vitro assay of the cyclic-adenosine mono-phosphate (cAMP) secreted by cells transfected with MC4R was performed to analyze effect of Rb IgG on α-MSH-induced cAMP production. We found that adding Rb IgG to α-MSH resulted in stimulation of cAMP detected at lower peptide concentrations as compared to α-MSH alone. To determine effects of Rb IgG on food intake, rats were injected into the arcuate hypothalamic nucleus with either α-MSH, Rb IgG alone or Rb IgG preincubated with α-MSH. During 2 days after injections, food intake was increased in both groups of rats receiving Rb IgG. However, during following 4 days when food was restricted to 1h/day, only the Rb IgG group displayed higher food intake. Furthermore, after the refeeding, 24h food intake was lower in rats receiving Rb IgG - α-MSH immune complexes. This group of rats was also characterized by higher number of immunopositive neurons in the arcuate nucleus expressing α-MSH and agouti-related protein but not tyrosine hydroxylase. Taken together, these results show that Rb anti-α-MSH antisera, although efficient for immunohistochemical detection of α-MSH, does not always display α-MSH blocking properties but, in contrast, may enhance α-MSH binding to MC4R and increase α-MSH anorexigenic effects when presented as immune complexes with the peptide

  5. Diurnal pattern of pulsatile luteinizing hormone and testosterone secretion in adult male rhesus monkeys (Macaca mulatta): influence of the timing of daily meal intake.

    PubMed

    Mattern, L G; Helmreich, D L; Cameron, J L

    1993-03-01

    Adult male rhesus monkeys have a diurnal pattern of reproductive hormone secretion that is characterized by significantly elevated LH and testosterone secretion in the evening hours and a nadir in secretion of these hormones in the morning. To test the hypothesis that the daily pattern of food intake may play a role in regulating the diurnal pattern of reproductive hormone secretion we performed three studies. First, to determine the relationship between the timing of the diurnal rise in LH secretion and meal consumption, blood samples were collected from 13 adult male rhesus monkeys via chronically indwelling venous catheters (samples every 15-20 min from 0800-0800 h) while monkeys were maintained on the standard feeding regimen in our colony (one meal of Purina monkey chow fed between 1100 and 1200 h). On a day of normal feeding there was a significant diurnal rhythm in mean LH concentrations with elevated levels at night (nadir: 13.41 +/- 0.82 ng/ml from 0800-1100 h; peak: 21.34 +/- 1.56 ng/ml from 2000-2300 h, P < or = 0.05). The rising phase of the diurnal rhythm in LH secretion was apparent starting in the early afternoon, shortly after the daily meal, at 1400 h (5 h before lights went off at 1900 h), and the diurnal rise in LH secretion was no longer apparent by 0500 h (several hours before the lights went on at 0700 h). Second, we examined the influence of missing the daily meal on the diurnal pattern of LH and testosterone secretion. Blood samples were collected for a 24-h period on a day of fasting from 9 monkeys. On a day of fasting there was no diurnal rise in plasma LH or testosterone concentrations; plasma concentrations of these hormones remained at the low morning levels throughout the day. Third, we examined the diurnal pattern of LH and testosterone secretion after adapting 5 monkeys (for 6-8 weeks) to a new meal time that was 6 h later in the day than the standard meal time (i.e. at 1700 h). After adaptation to this later feeding time monkeys

  6. Scopolamine-induced convulsions in fasted mice after food intake: effects of glucose intake, antimuscarinic activity and anticonvulsant drugs.

    PubMed

    Enginar, Nurhan; Nurten, Asiye; Celik, Pinar Yamantürk; Açikmeşe, Bariş

    2005-09-01

    The present study was performed to further evaluate the contribution of antimuscarinic activity and hypoglycaemia to the development of scopolamine-induced convulsions in fasted mice after food intake. The effects of anticonvulsant drugs on convulsions were also evaluated. Antimuscarinic drugs atropine (3 mg/kg) and biperiden (10 mg/kg) were given intraperitoneally (i.p) to animals fasted for 48 h. Like scopolamine, both drugs induced convulsions after animals were allowed to eat ad libitum. Another group of animals was given glucose (5%) in drinking water during fasting. These animals, although they had normoglycaemic blood levels after fasting, also developed convulsions after treated with scopolamine i.p. (3 mg/kg), atropine (3 mg/kg) or biperiden (10 mg/kg) and allowed to eat ad libitum. Among the drugs studied, only valproate (340 mg/kg), gabapentin (50 mg/kg) and diazepam (2.5 and 5 mg/kg) markedly reduced the incidence of scopolamine-induced convulsions. The present results indicate that antimuscarinic activity, but not hypoglycaemia, underlies these convulsions which do not respond to most of the conventional anticonvulsant drugs.

  7. Hormonal Responses to Active and Passive Recovery After Load Carriage.

    PubMed

    Taipale, Ritva S; Heinaru, Siiri; Nindl, Bradley C; Vaara, Jani P; Santtila, Matti; Häkkinen, Keijo; Kyröläinen, Heikki

    2015-11-01

    Military operations often induce fatigue resulting from load carriage. Recovery promotes military readiness. This study investigated the acute effects of AR vs. PR after load carriage on maximal isometric leg extension force (MVC) and serum hormonal concentrations. Male reservists (27 ± 3 years, 180 ± 7 cm, 74 ± 11 kg, V[Combining Dot Above]O2max 64 ± 9 ml·kg⁻¹·min⁻¹) completed PR (n = 8) or AR (n = 8) after 50 minutes of loaded (16 kg) uphill (gradient 4.0%) treadmill marching at individual anaerobic threshold. No differences were observed between groups in relative changes in MVC during the marching loading, after AR or PR or the next morning. Significant differences in relative responses to AR and PR postmarching loading were observed in serum testosterone (T), cortisol, and sex-hormone binding globulin immediately post AR and PR; however the next morning, all serum hormone concentrations had returned to normal. This study did not reveal any significant differences between the effects of AR and PR after an hour-long marching protocol at approximately anaerobic threshold on MVC or serum hormones the morning after the experimental marching protocol. Thus, based on the variable measured in this study, marching performed by physically fit army reservists at an intensity at or below anaerobic threshold may not necessitate specialized recovery protocols.

  8. Fate of steroid hormones and endocrine activities in swine manure disposal and treatment facilities.

    PubMed

    Combalbert, Sarah; Bellet, Virginie; Dabert, Patrick; Bernet, Nicolas; Balaguer, Patrick; Hernandez-Raquet, Guillermina

    2012-03-01

    Manure may contain high concern endocrine-disrupting compounds (EDCs) such as steroid hormones, naturally produced by pigs, which are present at μgL(-1) levels. Manure may also contain other EDCs such as nonylphenols (NP), polycyclic aromatic hydrocarbons (PAHs) and dioxins. Thus, once manure is applied to the land as soil fertilizer these compounds may reach aquifers and consequently living organisms, inducing abnormal endocrine responses. In France, manure is generally stored in anaerobic tanks prior spreading on land; when nitrogen removal is requested, manure is treated by aerobic processes before spreading. However, little is known about the fate of hormones and multiple endocrine-disrupting activities in such manure disposal and treatment systems. Here, we determined the fate of hormones and diverse endocrine activities during manure storage and treatment by combining chemical analysis and in vitro quantification of estrogen (ER), aryl hydrocarbon (AhR), androgen (AR), pregnane-X (PXR) and peroxysome proliferator-activated γ (PPARγ) receptor-mediated activities. Our results show that manure contains large quantities of hormones and activates ER and AhR, two of the nuclear receptors studied. Most of these endocrine activities were found in the solid fraction of manure and appeared to be induced mainly by hormones and other unidentified pollutants. Hormones, ER and AhR activities found in manure were poorly removed during manure storage but were efficiently removed by aerobic treatment of manure.

  9. Physical Activity, Dietary Intake, and the Insulin Resistance Syndrome in Nondiabetic Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Draheim, Christopher C.; Williams, Daniel P.; McCubbin, Jeffrey A.

    2002-01-01

    A study identified 145 adults with mild mental retardation and hyperinsulinemia, borderline high triglycerides, low high-density lipoprotein cholesterol, hypertension, and abdominal obesity. Those who participated in more frequent bouts of physical activity or who consumed lower dietary fat intakes were one-third as likely to have hyperinsulinemia…

  10. HUMAN ACTIVITIES THAT MAY LEAD TO HIGH INHALED INTAKE DOSES IN CHILDREN AGED 6-13

    EPA Science Inventory

    The paper focuses on possible activities of children aged 6-13 that may make them susceptible to high hourly intake doses of ozone (O3) air pollution. Data from an O3 exposure modeling exercise indicates that a relatively few hours can account for a significant amount of the t...

  11. Do Negative Emotions Predict Alcohol Consumption, Saturated Fat Intake, and Physical Activity in Older Adults?

    ERIC Educational Resources Information Center

    Anton, Stephen D.; Miller, Peter M.

    2005-01-01

    This study examined anger, depression, and stress as related to alcohol consumption, saturated fat intake, and physical activity. Participants were 23 older adults enrolled in either an outpatient or in-residence executive health program. Participants completed (a) a health-risk appraisal assessing medical history and current health habits, (b)…

  12. Effect of supplementing activated charcoal on the intake of honey mesquite leaves by lambs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine if intake of honey mesquite (Prosopis glandulosa Torr.) leaves by sheep could be increased by supplementing four levels of activated charcoal supplemental (0.0, 0.33, 0.67 and 1.00 g/kg of BW). Twenty wether lambs (36.6 ± 0.6 kg) were randomly assigned to the 4 tre...

  13. Effect of supplementing activated charcoal on the intake of honey mesquite leaves by lambs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine if intake of honey mesquite (Prosopis glandulosa Torr.) leaves by sheep could be increased by supplementing activated charcoal at 0.0, 0.33, 0.67 or 1.00 g / kg of body weight. Twenty wether lambs (36.6 ± 0.6 kg) were randomly assigned to the 4 treatment levels. La...

  14. Neuropeptide B in Nile tilapia Oreochromis niloticus: molecular cloning and its effects on the regulation of food intake and mRNA expression of growth hormone and prolactin.

    PubMed

    Yang, Lu; Sun, Caiyun; Li, Wensheng

    2014-05-01

    Neuropeptide B (NPB) regulates food intake, energy homeostasis and hormone secretion in mammals via two G-protein coupled receptors, termed as GPR 7 and GPR 8. However, there is no study that reports the function of NPB in teleosts. In this study, the full-length cDNA of prepro-NPB with the size of 663bp was cloned from the hypothalamus of Nile tilapia. The CDS of the prepro-NPB is 387bp which encodes a precursor protein with the size of 128a.a. This precursor contains a mature peptide with the size of 29a.a, and it was named as NPB29. Tissue distribution study showed that this gene was mainly expressed in different parts of brain, especially in the diencephalon as well as hypothalamus, and the spinal cord in Nile tilapia. Fasting significantly stimulated the mRNA expression of NPB in the brain area without hypothalamus, and refeeding after fasting for 3 and 14days also showed similar effects on NPB expression. While, only short-term fasting (3days) and refeeding after fasting for 7 and 14days induced mRNA expression of NPB in the hypothalamus. Intraperitoneal (i.p.) injection of NPB remarkably elevated the mRNA expression of hypothalamic neuropeptide Y (NPY), cholecystokinin 1 (CCK1) and pituitary prolactin (PRL), whereas significantly inhibited growth hormone (GH) expression in pituitary. These observations in the present study suggested that NPB may participate in the regulation of feeding and gene expression of pituitary GH and PRL in Nile tilapia.

  15. Dairy consumption and insulin resistance: the role of body fat, physical activity, and energy intake.

    PubMed

    Tucker, Larry A; Erickson, Andrea; LeCheminant, James D; Bailey, Bruce W

    2015-01-01

    The relationship between dairy consumption and insulin resistance was ascertained in 272 middle-aged, nondiabetic women using a cross-sectional design. Participants kept 7-day, weighed food records to report their diets, including dairy intake. Insulin resistance was assessed using the homeostatic model assessment (HOMA). The Bod Pod was used to measure body fat percentage, and accelerometry for 7 days was used to objectively index physical activity. Regression analysis was used to determine the extent to which mean HOMA levels differed across low, moderate, and high dairy intake categories. Results showed that women in the highest quartile of dairy consumption had significantly greater log-transformed HOMA values (0.41 ± 0.53) than those in the middle-two quartiles (0.22 ± 0.55) or the lowest quartile (0.19 ± 0.58) (F = 6.90, P = 0.0091). The association remained significant after controlling for each potential confounder individually and all covariates simultaneously. Adjusting for differences in energy intake weakened the relationship most, but the association remained significant. Of the 11 potential confounders, only protein intake differed significantly across the dairy categories, with those consuming high dairy also consuming more total protein than their counterparts. Apparently, high dairy intake is a significant predictor of insulin resistance in middle-aged, nondiabetic women.

  16. Dairy Consumption and Insulin Resistance: The Role of Body Fat, Physical Activity, and Energy Intake

    PubMed Central

    Tucker, Larry A.; Erickson, Andrea; LeCheminant, James D.; Bailey, Bruce W.

    2015-01-01

    The relationship between dairy consumption and insulin resistance was ascertained in 272 middle-aged, nondiabetic women using a cross-sectional design. Participants kept 7-day, weighed food records to report their diets, including dairy intake. Insulin resistance was assessed using the homeostatic model assessment (HOMA). The Bod Pod was used to measure body fat percentage, and accelerometry for 7 days was used to objectively index physical activity. Regression analysis was used to determine the extent to which mean HOMA levels differed across low, moderate, and high dairy intake categories. Results showed that women in the highest quartile of dairy consumption had significantly greater log-transformed HOMA values (0.41 ± 0.53) than those in the middle-two quartiles (0.22 ± 0.55) or the lowest quartile (0.19 ± 0.58) (F = 6.90, P = 0.0091). The association remained significant after controlling for each potential confounder individually and all covariates simultaneously. Adjusting for differences in energy intake weakened the relationship most, but the association remained significant. Of the 11 potential confounders, only protein intake differed significantly across the dairy categories, with those consuming high dairy also consuming more total protein than their counterparts. Apparently, high dairy intake is a significant predictor of insulin resistance in middle-aged, nondiabetic women. PMID:25710041

  17. Association of Proton Pump Inhibitor (PPI) Use with Energy Intake, Physical Activity, and Weight Gain

    PubMed Central

    Czwornog, Jennifer L.; Austin, Gregory L.

    2015-01-01

    Studies suggest proton pump inhibitor (PPI) use impacts body weight regulation, though the effect of PPIs on energy intake, energy extraction, and energy expenditure is unknown. We used data on 3073 eligible adults from the National Health and Nutrition Examination Survey (NHANES). Medication use, energy intake, diet composition, and physical activity were extracted from NHANES. Multivariate regression models included confounding variables. Daily energy intake was similar between PPI users and non-users (p = 0.41). Diet composition was similar between the two groups, except that PPI users consumed a slightly greater proportion of calories from fat (34.5% vs. 33.2%; p = 0.02). PPI users rated themselves as being as physically active as their age/gender-matched peers and reported similar frequencies of walking or biking. However, PPI users were less likely to have participated in muscle-strengthening activities (OR: 0.53; 95% CI: 0.30–0.95). PPI users reported similar sedentary behaviors to non-users. Male PPI users had an increase in weight (of 1.52 ± 0.59 kg; p = 0.021) over the previous year compared to non-users, while female PPI users had a non-significant increase in weight. The potential mechanisms for PPI-associated weight gain are unclear as we did not find evidence for significant differences in energy intake or markers of energy expenditure. PMID:26492268

  18. Increased Thyroid Hormone Activation Accompanies the Formation of Thyroid Hormone-Dependent Negative Feedback in Developing Chicken Hypothalamus.

    PubMed

    Mohácsik, P; Füzesi, T; Doleschall, M; Szilvásy-Szabó, A; Vancamp, P; Hadadi, É; Darras, V M; Fekete, C; Gereben, B

    2016-03-01

    The hypothalamic-pituitary-thyroid axis is governed by hypophysiotropic TRH-synthesizing neurons located in the hypothalamic paraventricular nucleus under control of the negative feedback of thyroid hormones. The mechanisms underlying the ontogeny of this phenomenon are poorly understood. We aimed to determine the onset of thyroid hormone-mediated hypothalamic-negative feedback and studied how local hypothalamic metabolism of thyroid hormones could contribute to this process in developing chicken. In situ hybridization revealed that whereas exogenous T4 did not induce a statistically significant inhibition of TRH expression in the paraventricular nucleus at embryonic day (E)19, T4 treatment was effective at 2 days after hatching (P2). In contrast, TRH expression responded to T3 treatment in both age groups. TSHβ mRNA expression in the pituitary responded to T4 in a similar age-dependent manner. Type 2 deiodinase (D2) was expressed from E13 in tanycytes of the mediobasal hypothalamus, and its activity increased between E15 and P2 both in the mediobasal hypothalamus and in tanycyte-lacking hypothalamic regions. Nkx2.1 was coexpressed with D2 in E13 and P2 tanycytes and transcription of the cdio2 gene responded to Nkx2.1 in U87 glioma cells, indicating its potential role in the developmental regulation of D2 activity. The T3-degrading D3 enzyme was also detected in tanycytes, but its level was not markedly changed before and after the period of negative feedback acquisition. These findings suggest that increasing the D2-mediated T3 generation during E18-P2 could provide the sufficient local T3 concentration required for the onset of T3-dependent negative feedback in the developing chicken hypothalamus. PMID:26779746

  19. Increased Thyroid Hormone Activation Accompanies the Formation of Thyroid Hormone-Dependent Negative Feedback in Developing Chicken Hypothalamus.

    PubMed

    Mohácsik, P; Füzesi, T; Doleschall, M; Szilvásy-Szabó, A; Vancamp, P; Hadadi, É; Darras, V M; Fekete, C; Gereben, B

    2016-03-01

    The hypothalamic-pituitary-thyroid axis is governed by hypophysiotropic TRH-synthesizing neurons located in the hypothalamic paraventricular nucleus under control of the negative feedback of thyroid hormones. The mechanisms underlying the ontogeny of this phenomenon are poorly understood. We aimed to determine the onset of thyroid hormone-mediated hypothalamic-negative feedback and studied how local hypothalamic metabolism of thyroid hormones could contribute to this process in developing chicken. In situ hybridization revealed that whereas exogenous T4 did not induce a statistically significant inhibition of TRH expression in the paraventricular nucleus at embryonic day (E)19, T4 treatment was effective at 2 days after hatching (P2). In contrast, TRH expression responded to T3 treatment in both age groups. TSHβ mRNA expression in the pituitary responded to T4 in a similar age-dependent manner. Type 2 deiodinase (D2) was expressed from E13 in tanycytes of the mediobasal hypothalamus, and its activity increased between E15 and P2 both in the mediobasal hypothalamus and in tanycyte-lacking hypothalamic regions. Nkx2.1 was coexpressed with D2 in E13 and P2 tanycytes and transcription of the cdio2 gene responded to Nkx2.1 in U87 glioma cells, indicating its potential role in the developmental regulation of D2 activity. The T3-degrading D3 enzyme was also detected in tanycytes, but its level was not markedly changed before and after the period of negative feedback acquisition. These findings suggest that increasing the D2-mediated T3 generation during E18-P2 could provide the sufficient local T3 concentration required for the onset of T3-dependent negative feedback in the developing chicken hypothalamus.

  20. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand. PMID:25916672

  1. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  2. Influence of activating hormones on human platelet membrane Ca/sup 2 +/-ATPase activity

    SciTech Connect

    Resink, T.J.; Dimitrov, D.; Stucki, S.; Buehler, F.R.

    1986-07-16

    Intact platelets were pretreated with hormones and thereafter membranes were prepared and Ca/sup 2 +/-ATPase activity determined. Thrombin decreased the V/sub max/ of Ca/sup 2 +/-ATPase after pretreatment of intact platelets. Platelet activating factor, vasopressin and ADP also decreased Ca/sup 2 +/-ATPase activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) or A23187 or ionomycin alone had no effect, while the simultaneous pretreatment with TPA and Ca/sup 2 +/-ionophore decreased Ca/sup 2 +/-ATPase activity. cAMP elevating agents prostaglandin E/sub 1/ (PGE/sub 1/) and forskolin had no influence per se on Ca/sup 2 +/-ATPase, but antagonized the inhibitory effect of thrombin. The data suggest a close connection between phosphoinositide metabolism and the Ca/sup 2 +/-ATPase system.

  3. Effects of a growth hormone-releasing hormone antagonist on telomerase activity, oxidative stress, longevity, and aging in mice

    PubMed Central

    Banks, William A.; Morley, John E.; Farr, Susan A.; Price, Tulin O.; Ercal, Nuran; Vidaurre, Irving; Schally, Andrew V.

    2010-01-01

    Both deficiency and excess of growth hormone (GH) are associated with increased mortality and morbidity. GH replacement in otherwise healthy subjects leads to complications, whereas individuals with isolated GH deficiency such as Laron dwarfs show increased life span. Here, we determined the effects of treatment with the GH-releasing hormone (GHRH) receptor antagonist MZ-5-156 on aging in SAMP8 mice, a strain that develops with aging cognitive deficits and has a shortened life expectancy. Starting at age 10 mo, mice received daily s.c. injections of 10 μg/mouse of MZ-5-156. Mice treated for 4 mo with MZ-5-156 showed increased telomerase activity, improvement in some measures of oxidative stress in brain, and improved pole balance, but no change in muscle strength. MZ-5-156 improved cognition after 2 mo and 4 mo, but not after 7 mo of treatment (ages 12, 14 mo, and 17 mo, respectively). Mean life expectancy increased by 8 wk with no increase in maximal life span, and tumor incidence decreased from 10 to 1.7%. These results show that treatment with a GHRH antagonist has positive effects on some aspects of aging, including an increase in telomerase activity. PMID:21135231

  4. Active Control of Automotive Intake Noise under Rapid Acceleration using the Co-FXLMS Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Jin; Lee, Gyeong-Tae; Oh, Jae-Eung

    The method of reducing automotive intake noise can be classified by passive and active control techniques. However, passive control has a limited effect of noise reduction at low frequency range (below 500 Hz) and is limited by the space of the engine room. However, active control can overcome these passive control limitations. The active control technique mostly uses the Least-Mean-Square (LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time, particularly when the Filtered-X LMS (FXLMS) algorithm is applied to an active noise control (ANC) system. However, the convergence performance of the LMS algorithm decreases significantly when the FXLMS algorithm is applied to the active control of intake noise under rapidly accelerating driving conditions. Therefore, in this study, the Co-FXLMS algorithm was proposed to improve the control performance of the FXLMS algorithm during rapid acceleration. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. The performance of the Co-FXLMS algorithm is presented in comparison with that of the FXLMS algorithm. Experimental results show that active noise control using Co-FXLMS is effective in reducing automotive intake noise during rapid acceleration.

  5. [Hormonal activity of the hypophysis-gonadal system in male hamadryas baboons in relationship to their hierarchical position].

    PubMed

    Taranov, A G; Shashk-ogly, L K; Goncharov, N P

    1986-03-01

    Hierarchic status-dependent hormonal activity of pituitary-gonadal system was studied in an isolated group of hamadryas baboons. Testosterone level was higher in dominating males. The level of sex hormone was higher in aged animals with great muscle mass. No correlation was observed between hierarchic status of hamadryas baboon males and the blood level of luteinizing hormone.

  6. Active immunization to luteinizing hormone releasing hormone to inhibit the induction of mammary tumors in the rat

    SciTech Connect

    Ravdin, P.M.; Jordan, V.C.

    1988-01-01

    Immunization of female rats with a bovine serum albumin-luteinizing hormone releasing hormone conjugate results in suppression of dimethylbenzanthracene mammary tumor incidence. Tumor incidence was 1.3, and 1.29 tumors per rat in bovine serum albumin alone (n = 10) and unimmunized (n = 18) control groups, but no tumors were found in the bovine serum albumin-luteinizing hormone releasing hormone conjugate immunized animals (n = 10). In a second experiment immunization with bovine serum albumin-luteinizing hormone releasing hormone conjugates reduced tumor incidence to 0.3 tumors per rat (n = 10) from the 1.2 tumors per animal seen in the control animals (n = 10) immunized with bovine serum albumin alone. Bovine serum albumin-luteinizing hormone immunization caused the production of anti-LHRH antibodies, an interruption of estrous cycles, lowered serum estradiol and progesterone levels, and atrophy of the ovaries and uteri. Immunization BSA-hormone conjugates is a novel anti-tumor strategy.

  7. [Hypothyroidism Associated to TSH Hormone-Receptor Autoantibodies with Blocking Activity Assessed In Vitro].

    PubMed

    Marques, Pedro; Chikh, Karim; Charrié, Anne; Pina, Rosa; Bugalho, Maria João; Lopes, Lurdes

    2015-01-01

    Thyroid-stimulating hormone-receptor autoantibodies normally causes hyperthyroidism. However, they might have blocking activity causing hypothyroidism. A 11-year-old girl followed due to type 1 diabetes mellitus, celiac disease and euthyroid lymphocytic thyroiditis at diagnosis. Two years after the initial evaluation, thyroid-stimulating hormone was suppressed with normal free T4; nine months later, a biochemical evolution to hypothyroidism with thyroid-stimulating hormone-receptor autoantibodies elevation was seen; the patient remained always asymptomatic. Chinese hamster ovary cells were transfected with the recombinant human thyroid-stimulating hormone -receptor, and then exposed to the patient's serum; it was estimated a 'moderate' blocking activity of these thyroid-stimulating hormone-receptor autoantibodies, and concomitantly excluded stimulating action. In this case, the acknowledgment of the blocking activity of the serum thyroid-stimulating hormone-receptor autoantibodies, supported the hypothesis of a multifactorial aetiology of the hypothyroidism, which in the absence of the in vitro tests, we would consider only as a consequence of the destructive process associated to lymphocytic thyroiditis.

  8. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  9. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors.

    PubMed

    Rühl, R; Landrier, J F

    2016-01-01

    Adiponectin is an adipokine mainly secreted by adipocytes that presents antidiabetic, anti-inflammatory, and antiatherogenic functions. Therefore, modulation of adiponectin expression represents a promising target for prevention or treatment of several diseases including insulin resistance and type II diabetes. Pharmacological agents such as the nuclear hormone receptor synthetic agonists like peroxisome proliferator activated receptor γ agonists are of particular interest in therapeutic strategies due to their ability to increase the plasma adiponectin concentration. Nutritional approaches are also of particular interest, especially in primary prevention, since some active compounds of our diet (notably vitamins, carotenoids, or other essential nutrients) are direct or indirect lipid-activators of nuclear hormone receptors and are modifiers of adiponectin expression and secretion. The aim of the present review is to summarize current knowledge about the nutritional regulation of adiponectin by derivatives of active compounds naturally present in the diet acting as indirect or direct activators of nuclear hormone receptors.

  10. Physically active men show better semen parameters and hormone values than sedentary men.

    PubMed

    Vaamonde, Diana; Da Silva-Grigoletto, Marzo Edir; García-Manso, Juan Manuel; Barrera, Natalibeth; Vaamonde-Lemos, Ricardo

    2012-09-01

    Physical exercise promotes many health benefits. The present study was undertaken to assess possible semen and hormone differences among physically active (PA) subjects and sedentary subjects (SE). The analyzed qualitative sperm parameters were: volume, sperm count, motility, and morphology; where needed, additional testing was performed. The measured hormones were: follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), cortisol (C), and the ratio between T and C (T/C). Maximum oxygen consumption was also assessed to check for differences in fitness level. Statistically significant differences were found for several semen parameters such as total progressive motility (PA: 60.94 ± 5.03; SE: 56.07 ± 4.55) and morphology (PA: 15.54 ± 1.38, SE: 14.40 ± 1.15). The seminological values observed were supported by differences in hormones, with FSH, LH, and T being higher in PA than in SE (5.68 ± 2.51 vs. 3.14 ± 1.84; 5.95 ± 1.11 vs. 5.08 ± 0.98; 7.68 ± 0.77 vs. 6.49 ± 0.80, respectively). Likewise, the T/C ratio, index of anabolic versus catabolic status, was also higher in PA (0.46 ± 0.11 vs. 0.32 ± 0.07), which further supports the possibility of an improved hormonal environment. The present study shows that there are differences in semen and hormone values of physically active subjects and sedentary subjects. Physically active subjects seem to have a more anabolic hormonal environment and a healthier semen production.

  11. Food intake response to exercise and active video gaming in adolescents: effect of weight status.

    PubMed

    Chaput, J P; Tremblay, A; Pereira, B; Boirie, Y; Duclos, M; Thivel, D

    2016-02-14

    Although a few data are available regarding the impact of video games on energy intake (EI) in lean adolescents, there is no evidence on the effect of passive and active video gaming on food intake in both lean and obese youth. It is also unknown whether isoenergetic active video games and exercise differently affect food consumption in youth. In all, twelve lean and twelve obese adolescent boys (12-15 years old) had to complete four 1-h sessions in a cross-over design study: control (CON; sitting), passive video game (PVG; boxing game on Xbox 360), active video game (AVG; boxing game on Xbox Kinect 360) and exercise (EX; cycling). The exercise and active video game activities were designed to generate the same energy expenditure (EE). EE was measured using a K4b2 portable indirect calorimeter. Ad libitum food intake and appetite sensations were assessed following the sessions. AVG and EX-EE were significantly higher in obese participants and significantly higher compared with PVG and CON in both groups. Obese participants significantly ate more than lean ones in all four conditions (P<0·001). EI did not differ between conditions in obese participants (CON: 4935 (SD 1490) kJ; PVG: 4902 (SD 1307) kJ; AVG: 4728 (SD 1358) kJ; EX: 4643 (SD 1335) kJ), and was significantly lower in lean participants after EX (2847 (SD 577) kJ) compared with PVG (3580 (SD 863) kJ) and AVG (3485 (SD 643) kJ) (P<0·05). Macronutrient intake was not significantly different between the groups or conditions. Hunger was significantly higher and satiety was lower in obese participants but no condition effect was observed. Overall, moderate-intensity exercise provides better effect on energy balance than an isoenergetic hour of active video gaming in lean adolescent boys by dually affecting EE and EI. PMID:26596899

  12. Food intake response to exercise and active video gaming in adolescents: effect of weight status.

    PubMed

    Chaput, J P; Tremblay, A; Pereira, B; Boirie, Y; Duclos, M; Thivel, D

    2016-02-14

    Although a few data are available regarding the impact of video games on energy intake (EI) in lean adolescents, there is no evidence on the effect of passive and active video gaming on food intake in both lean and obese youth. It is also unknown whether isoenergetic active video games and exercise differently affect food consumption in youth. In all, twelve lean and twelve obese adolescent boys (12-15 years old) had to complete four 1-h sessions in a cross-over design study: control (CON; sitting), passive video game (PVG; boxing game on Xbox 360), active video game (AVG; boxing game on Xbox Kinect 360) and exercise (EX; cycling). The exercise and active video game activities were designed to generate the same energy expenditure (EE). EE was measured using a K4b2 portable indirect calorimeter. Ad libitum food intake and appetite sensations were assessed following the sessions. AVG and EX-EE were significantly higher in obese participants and significantly higher compared with PVG and CON in both groups. Obese participants significantly ate more than lean ones in all four conditions (P<0·001). EI did not differ between conditions in obese participants (CON: 4935 (SD 1490) kJ; PVG: 4902 (SD 1307) kJ; AVG: 4728 (SD 1358) kJ; EX: 4643 (SD 1335) kJ), and was significantly lower in lean participants after EX (2847 (SD 577) kJ) compared with PVG (3580 (SD 863) kJ) and AVG (3485 (SD 643) kJ) (P<0·05). Macronutrient intake was not significantly different between the groups or conditions. Hunger was significantly higher and satiety was lower in obese participants but no condition effect was observed. Overall, moderate-intensity exercise provides better effect on energy balance than an isoenergetic hour of active video gaming in lean adolescent boys by dually affecting EE and EI.

  13. Energy intake, expenditure and pattern of daily activity of Nigerian male students.

    PubMed

    Cole, A H; Ogbe, J O

    1987-11-01

    1. Twenty apparently healthy and normal Nigerian male students, resident at the University of Ibadan campus, were studied for seven consecutive days to assess their food energy intake and expenditure and pattern of their daily activities. 2. The mean age (years) of the group was 24.0 (SD 3.23, range 20-30), mean height (m) 1.71 (SD 0.06, range 1.61-1.84) and body-weight (kg) was 61.1 (SD 5.01, range 51.0-69.5). 3. The food intake of each subject was obtained by direct weighing and its energy value determined using a ballistic bomb calorimeter. Patterns of daily activities were recorded and the energy costs of representative activities were determined by indirect calorimetry. 4. Activities mainly involved sitting, mean 580 (SD 167, range 394-732) min/d. Sleeping and standing activities took a mean of 445 (SD 112) and 115 (SD 75) min/d respectively. Personal domestic activities took a mean of 94 (SD 40) min/d. 5. The mean energy intake of the group was 11,182 (SD 1970) kJ/d or 183 (SD 32) kJ/kg body-weight per d. This value is lower than the 12.5 MJ/d recommended by the Food and Agriculture Organization (FAO)/World Health Organization (WHO) (1973) as the energy requirement for an adult man engaged in moderate activities, but it is higher than the FAO/WHO/United Nations University (UNU) (1985) recommended value of 10.8 MJ/d for a male office clerk (light activity). It is also lower than the recommended energy requirement of 11.6 MJ/d for a subsistence farmer (moderately active work) (FAO/WHO/UNU, 1985). 6. The mean energy expenditure of the male subjects was 9876 (SD 1064, range 7159-12,259) kJ/d and was lower than mean intake. 7. The energy intake and expenditure values indicated that the groups participating in the present study were not physically very active. It is an indication that the Nigerian male students expended less but probably consumed more energy than required. It is suggested for health reasons and for mental fitness that the Nigerian male students

  14. Hormone Activity of Hydroxylated Polybrominated Diphenyl Ethers on Human Thyroid Receptor-β: In Vitro and In Silico Investigations

    PubMed Central

    Li, Fei; Xie, Qing; Li, Xuehua; Li, Na; Chi, Ping; Chen, Jingwen; Wang, Zijian; Hao, Ce

    2010-01-01

    Background Hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disrupt thyroid hormone status because of their structural similarity to thyroid hormone. However, the molecular mechanisms of interactions with thyroid hormone receptors (TRs) are not fully understood. Objectives We investigated the interactions between HO-PBDEs and TRβ to identify critical structural features and physicochemical properties of HO-PBDEs related to their hormone activity, and to develop quantitative structure–activity relationship (QSAR) models for the thyroid hormone activity of HO-PBDEs. Methods We used the recombinant two-hybrid yeast assay to determine the hormone activities to TRβ and molecular docking to model the ligand–receptor interaction in the binding site. Based on the mechanism of action, molecular structural descriptors were computed, selected, and employed to characterize the interactions, and finally a QSAR model was constructed. The applicability domain (AD) of the model was assessed by Williams plot. Results The 18 HO-PBDEs tested exhibited significantly higher thyroid hormone activities than did PBDEs (p < 0.05). Hydrogen bonding was the characteristic interaction between HO-PBDE molecules and TRβ, and aromaticity had a negative effect on the thyroid hormone activity of HO-PBDEs. The developed QSAR model had good robustness, predictive ability, and mechanism interpretability. Conclusions Hydrogen bonding and electrostatic interactions between HO-PBDEs and TRβ are important factors governing thyroid hormone activities. The HO-PBDEs with higher ability to accept electrons tend to have weak hydrogen bonding with TRβ and lower thyroid hormone activities. PMID:20439171

  15. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    PubMed Central

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  16. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  17. Experimental studies of active and passive flow control techniques applied in a twin air-intake.

    PubMed

    Paul, Akshoy Ranjan; Joshi, Shrey; Jindal, Aman; Maurya, Shivam P; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG.

  18. Dietary Reference Intakes for the macronutrients and energy: considerations for physical activity.

    PubMed

    Zello, Gordon A

    2006-02-01

    The Dietary Reference Intakes (DRIs) are the North American reference standards for nutrients in the diets of healthy individuals. The macronutrient DRI report includes the standards for energy, fat and fatty acids, carbohydrate and fiber, and protein and amino acids. Equations used to identify the Estimated Energy Requirement (EER) were also developed based on individual characteristics including levels of physical activity. The DRIs for the macronutrients are presented as Recommended Dietary Allowances (RDAs) or Adequate Intakes (AIs), as well as Acceptable Macronutrient Distribution Ranges (AMDRs), and were arrived at by considering both nutrient inadequacies and excesses. In addition, recommendations are made that would reduce the risk of chronic diseases, such as setting intake limits for added sugar; reducing cholesterol, saturated, and trans fatty acids consumption; and increasing levels of physical activity. As healthy individuals include those engaged in various levels of physical activity, the DRIs should apply to the athlete and address their macronutrient and energy needs. This paper summarizes the macronutrient DRI report as applied to the adult, with discussion of the dietary needs of those engaged in various levels of physical activity, including the athlete.

  19. Greater Survival After Breast Cancer in Physically Active Women With High Vegetable-Fruit Intake Regardless of Obesity

    PubMed Central

    Pierce, John P.; Stefanick, Marcia L.; Flatt, Shirley W.; Natarajan, Loki; Sternfeld, Barbara; Madlensky, Lisa; Al-Delaimy, Wael K.; Thomson, Cynthia A.; Kealey, Sheila; Hajek, Richard; Parker, Barbara A.; Newman, Vicky A.; Caan, Bette; Rock, Cheryl L.

    2007-01-01

    Purpose Single-variable analyses have associated physical activity, diet, and obesity with survival after breast cancer. This report investigates interactions among these variables. Patients and Methods A prospective study was performed of 1,490 women diagnosed and treated for early-stage breast cancer between 1991 and 2000. Enrollment was an average of 2 years postdiagnosis. Only seven women were lost to follow-up through December 2005. Results In univariate analysis, reduced mortality was weakly associated with higher vegetable-fruit consumption, increased physical activity, and a body mass index that was neither low weight nor obese. In a multivariate Cox model, only the combination of consuming five or more daily servings of vegetables-fruits, and accumulating 540+ metabolic equivalent tasks-min/wk (equivalent to walking 30 minutes 6 d/wk), was associated with a significant survival advantage (hazard ratio, 0.56; 95% CI, 0.31 to 0.98). The approximate 50% reduction in risk associated with these healthy lifestyle behaviors was observed in both obese and nonobese women, although fewer obese women were physically active with a healthy dietary pattern (16% v 30%). Among those who adhered to this healthy lifestyle, there was no apparent effect of obesity on survival. The effect was stronger in women who had hormone receptor–positive cancers. Conclusion A minority of breast cancer survivors follow a healthy lifestyle that includes both recommended intakes of vegetables-fruits and moderate levels of physical activity. The strong protective effect observed suggests a need for additional investigation of the effect of the combined influence of diet and physical activity on breast cancer survival. PMID:17557947

  20. Bone Mineral Density Changes after Physical Training and Calcium Intake in Students with Attention Deficit and Hyper Activity Disorders

    ERIC Educational Resources Information Center

    Arab ameri, Elahe; Dehkhoda, Mohammad Reza; Hemayattalab, Rasool

    2012-01-01

    In this study we investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with attention deficit and hyper activity (ADHD) disorder. For this reason 54 male students with ADHD (age 8-12 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…

  1. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    PubMed

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk.

  2. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition

    PubMed Central

    Reitz, M. U.; Gifford, M. L.; Schäfer, P.

    2015-01-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth–immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth–immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth–immunity cross-talk. PMID:25821072

  3. Effects of long-term growth hormone-releasing factor treatment on growth, feed conversion efficiency and dry matter intake in growing female buffaloes (Bubalus bubalis).

    PubMed

    Mondal, M; Prakash, B S

    2005-08-01

    Effects of long-term growth hormone-releasing factor (GRF) on growth performance, feed conversion efficiency (FCE) and dry matter intake (DMI) were studied in growing buffaloes. Twelve female Murrah buffaloes of 6-8 months of age were divided into two groups of six each on the basis of their body weights so that the average body weights of the groups did not differ (p > 0.05). Animals of each group were administered intravenously with either sterile distilled water (control group) or equal volume of GRF solution containing 10 mug GRF (1-44)-NH2/100 kg body weight (treatment group) at fortnight interval from week 6 (5-week pre-treatment period) for 36 weeks (weeks 6-42 treatment period). Thereafter a 10-week post-treatment period was added. All the animals were weighed consecutively 2 days in a week and the average body weight of the two observations in the week was thus considered for further calculation. Dry matter intake was recorded daily. Average daily gain, FCE and DMI/100 kg body weight were also calculated. Plasma progesterone was estimated in the samples collected twice a week at 3-4-day intervals to assess whether either group had begun ovarian cycles. It was found that ADG and FCE were higher (p < 0.01) in GRF-treated animals during treatment and even 10-week post-treatment period. Interestingly, total DMI was not different (p > 0.05) between the groups during treatment period but found to be lower in GRF treated animals during post-treatment period. The DMI/100 kg body weight was lower (p < 0.01) in GRF-treated animals during treatment and even after cessation of treatment for 10 weeks. The GRF administration for long-term increased (p < 0.05) plasma progesterone. Plasma progesterone concentrations suggest that no animal from either group reached puberty till the end of the experiment. In conclusion, repeated GRF administration for longer term decreased (p < 0.01) DMI/100 kg body weight and increased (p < 0.01) FCE and enabled the animals to grow faster

  4. Effects of long-term growth hormone-releasing factor treatment on growth, feed conversion efficiency and dry matter intake in growing female buffaloes (Bubalus bubalis).

    PubMed

    Mondal, M; Prakash, B S

    2005-08-01

    Effects of long-term growth hormone-releasing factor (GRF) on growth performance, feed conversion efficiency (FCE) and dry matter intake (DMI) were studied in growing buffaloes. Twelve female Murrah buffaloes of 6-8 months of age were divided into two groups of six each on the basis of their body weights so that the average body weights of the groups did not differ (p > 0.05). Animals of each group were administered intravenously with either sterile distilled water (control group) or equal volume of GRF solution containing 10 mug GRF (1-44)-NH2/100 kg body weight (treatment group) at fortnight interval from week 6 (5-week pre-treatment period) for 36 weeks (weeks 6-42 treatment period). Thereafter a 10-week post-treatment period was added. All the animals were weighed consecutively 2 days in a week and the average body weight of the two observations in the week was thus considered for further calculation. Dry matter intake was recorded daily. Average daily gain, FCE and DMI/100 kg body weight were also calculated. Plasma progesterone was estimated in the samples collected twice a week at 3-4-day intervals to assess whether either group had begun ovarian cycles. It was found that ADG and FCE were higher (p < 0.01) in GRF-treated animals during treatment and even 10-week post-treatment period. Interestingly, total DMI was not different (p > 0.05) between the groups during treatment period but found to be lower in GRF treated animals during post-treatment period. The DMI/100 kg body weight was lower (p < 0.01) in GRF-treated animals during treatment and even after cessation of treatment for 10 weeks. The GRF administration for long-term increased (p < 0.05) plasma progesterone. Plasma progesterone concentrations suggest that no animal from either group reached puberty till the end of the experiment. In conclusion, repeated GRF administration for longer term decreased (p < 0.01) DMI/100 kg body weight and increased (p < 0.01) FCE and enabled the animals to grow faster.

  5. Intake of honey mesquite (Prosopis glandulosa) leaves by lambs using different levels of activated charcoal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 24-day feeding trial was conducted to assess the effect of feeding four levels of activated charcoal (0.0, 0.33, 0.67 and 1.00 g/kg of body weight) on intake of honey mesquite leaves (Prosopis glandulosa Torr.) by 20 wether lambs (36.6 ± 0.6 kg) that were randomly assigned to treatments. Lambs wer...

  6. Chronic hyperammonemia alters the circadian rhythms of corticosteroid hormone levels and of motor activity in rats.

    PubMed

    Ahabrach, Hanan; Piedrafita, Blanca; Ayad, Abdelmalik; El Mlili, Nisrin; Errami, Mohammed; Felipo, Vicente; Llansola, Marta

    2010-05-15

    Patients with liver cirrhosis may present hepatic encephalopathy with a wide range of neurological disturbances and alterations in sleep quality and in the sleep-wake circadian rhythm. Hyperammonemia is a main contributor to the neurological alterations in hepatic encephalopathy. We have assessed, in an animal model of chronic hyperammonemia without liver failure, the effects of hyperammonemia per se on the circadian rhythms of motor activity, temperature, and plasma levels of adrenal corticosteroid hormones. Chronic hyperammonemia alters the circadian rhythms of locomotor activity and of cortisol and corticosterone levels in blood. Different types of motor activity are affected differentially. Hyperammonemia significantly alters the rhythm of spontaneous ambulatory activity, reducing strongly ambulatory counts and slightly average velocity during the night (the active phase) but not during the day, resulting in altered circadian rhythms. In contrast, hyperammonemia did not affect wheel running at all, indicating that it affects spontaneous but not voluntary activity. Vertical activity was affected only very slightly, indicating that hyperammonemia does not induce anxiety. Hyperammonemia abolished completely the circadian rhythm of corticosteroid hormones in plasma, completely eliminating the peaks of cortisol and corticosterone present in control rats at the start of the dark period. The data reported show that chronic hyperammonemia, similar to that present in patients with liver cirrhosis, alters the circadian rhythms of corticosteroid hormones and of motor activity. This suggests that hyperammonemia would be a relevant contributor to the alterations in corticosteroid hormones and in circadian rhythms in patients with liver cirrhosis.

  7. Hormonal specificity and activation of social behavior in male red-winged blackbirds.

    PubMed

    Harding, C F; Walters, M J; Collado, D; Sheridan, K

    1988-09-01

    Five groups of male red-winged blackbirds were observed 12 times over 14 days in an aviary setting. An estradiol-treated female was present during the last two observations of each group. Each group of males consisted of a castrated (CA) and an intact (IN) control and six castrated males given one of the following hormone treatments: the aromatizable androgens, testosterone (T) and androstenedione (AE); the nonaromatizable androgens, 5 alpha-dihydrotestosterone (DHT), and androsterone (AN); the estrogen, estradiol (E); or a combination of E + DHT. Castration significantly reduced the frequency of singing and three common vocalizations, chucks, checks, and ips, below the levels shown by IN males. Only hormone treatments which provided both androgenic and estrogenic metabolites (A + E = T, AE, E + DHT) restored normal levels of these behaviors in castrated males. Endocrine status also modulated epaulet display. IN and A + E males were more likely than other males to keep their epaulets constantly exposed. The frequency of sidling and supplanting also varied significantly across hormone-treatment groups, with A + E males showing higher frequencies of these behaviors than other males. T was clearly the most effective hormone treatment in activating hormone-sensitive behaviors in this species. Hormone treatment was more important than size or plumage pattern in determining the outcome of aggressive interactions. In some groups, the dominant male clearly inhibited the performance of hormone-sensitive behaviors by other males. Among A + E males, the frequency of higher intensity song spread displays was highly correlated with the frequency of high-intensity aggressive behaviors and negatively correlated with the tendency to withdraw from other males. Patterns of correlations among behaviors suggest that some calls are more hormone dependent than others, and thus may serve different signal functions.

  8. Effects of sex hormones, forskolin, and nicotine on choline acetyltransferase activity in human isolated placenta.

    PubMed

    Wessler, Ignaz; Schwarze, Sören; Brockerhoff, Peter; Bittinger, Fernando; Kirkpatrick, Charles James; Kilbinger, Heinz

    2003-04-01

    The activity of choline acetyltransferase (ChAT) was investigated in the human placenta before and after long-term incubation (24 h) to test the effects of sex hormones, nicotine and forskolin. ChAT activity differed considerably between the amnion (0.03 micromol/mg protein/h) and the villus (0.56). After long-term incubation, ChAT activity persisted in the latter but declined in the amnion. Neither sex hormones (beta-estradiol, testosterone, progesterone; 10 or 100 nM each) nor follicle stimulating hormone and luteinizing hormone (FSH/LH; 8.4 U/ml each) modified ChAT activity. Also nicotine (1 nM-100 microM) did not affect ChAT activity. Forskolin, an activitor of adenylyl cyclase, reduced ChAT activity in the villus but not in amnion. The present model offers the possibility to investigate ChAT regulation in intact tissue under long-term incubation. The risks of maternal smoking during pregnancy cannot be attributed to an effect of nicotine on placental ChAT activity. Differences in the regulation of ChAT appear to exist between neuronal and nonneuronal cells.

  9. Would right atrial stretch inhibit sodium intake following GABAA receptor activation in the lateral parabrachial nucleus?

    PubMed

    Shimoura, Caroline Gusson; Barbosa, Silas Pereira; Menani, Jose Vanderlei; De Gobbi, Juliana Irani Fratucci

    2013-10-11

    The knowledge of the mechanisms underlying circulating volume control may be achieved by stretching a balloon placed at the junction of the superior vena cava-right atrial junction (SVC-RAJ). We investigated whether the inflation of a balloon at the SVC-RAJ inhibits the intake of 0.3M NaCl induced by GABAA receptor activation in the lateral parabrachial nucleus (LPBN) in euhydrated and satiated rats. Male Wistar rats (280-300 g) with bilateral stainless steel LPBN cannulae and balloons implanted at the SVC-RAJ were used. Bilateral injections of the GABAA receptor agonist muscimol (0.5 ηmol/0.2l) in the LPBN with deflated balloons increased intake of 0.3M NaCl (30.1 ± 3.9 vs. saline: 2.2 ± 0.7)ml/210 min, n=8) and water (17.7 ± 1.9 vs. saline: 2.9 ± 0.5 ml/210 min). Conversely, 0.3M NaCl (27.8 ± 2.1 ml/210 min) and water (22.8 ± 2.3 ml/210 min) intake were not affected in rats with inflated balloons at the SVC-RAJ. The results show that sodium and water intake induced by muscimol injected into the LPBN was not affected by balloon inflation at the SVC-RAJ. We suggest that the blockade of LPBN neuronal activity with muscimol injections impairs inhibitory mechanisms activated by signals from cardiopulmonary volume receptors determined by balloon inflation.

  10. Transport of steroid hormones, phytoestrogens, and estrogenic activity across a swine lagoon/sprayfield system.

    PubMed

    Yost, Erin E; Meyer, Michael T; Dietze, Julie E; Williams, C Michael; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W

    2014-10-01

    The inflow, transformation, and attenuation of natural steroid hormones and phytoestrogens and estrogenic activity were assessed across the lagoon/sprayfield system of a prototypical commercial swine sow operation. Free and conjugated steroid hormones (estrogens, androgens, and progesterone) were detected in urine and feces of sows across reproductive stages, with progesterone being the most abundant steroid hormone. Excreta also contained phytoestrogens indicative of a soy-based diet, particularly, daidzein, genistein, and equol. During storage in barn pits and the anaerobic lagoon, conjugated hormones dissipated, and androgens and progesterone were attenuated. Estrone and equol persisted along the waste disposal route. Following application of lagoon slurry to agricultural soils, all analytes exhibited attenuation within 2 days. However, analytes including estrone, androstenedione, progesterone, and equol remained detectable in soil at 2 months postapplication. Estrogenic activity in the yeast estrogen screen and T47D-KBluc in vitro bioassays generally tracked well with analyte concentrations. Estrone was found to be the greatest contributor to estrogenic activity across all sample types. This investigation encompasses the most comprehensive suite of natural hormone and phytoestrogen analytes examined to date across a livestock lagoon/sprayfield and provides global insight into the fate of these analytes in this widely used waste management system.

  11. Luteinizing hormone releasing factor activity in peripheral blood from women during the midcycle luteinizing hormone ovulatory surge.

    PubMed

    Malacara, J M; Seyler Le, J; Reichlin, S

    1972-01-01

    Luteinizing hormone (LH) releasing activity was measured in the plas ma of normal women at different stages of menstrual cycle. For the bioassay in rats, 40 ml of plasma were serially extracted with increasing concentrations of methanol. The supernatants were dried and assayed for LH releasing factor (LRF) activity in ovariectomized-estroge n-progesterone-thyroxine treated rats, the end point being the increase in radioimmunoassayable rat LH. 15 samples obtained during the pre- or postovulatory period had low but detectable releasing effects when compared to saline controls (p less than .025). 6 out of 36 specimens obtained between Days 12-16 revealed LRF activity which exceeded the mean of nonovulatory responses by more than 3 standard deviations (SDs) (p less than .01). 4 of the 6 samples with high LRF activity had LH elevations greater than 3 SDs in the same specimens. Plasma LH was a function of plasma LRF as determined by Pearson's coefficient of correlation (r = .419, p less than .004). These results support the view that in the human, the ovulatory LH surge is triggered by estrogen stimulation of hypothlamic LRF release.

  12. Ethanol intake and motor sensitization: the role of brain catalase activity in mice with different genotypes.

    PubMed

    Correa, M; Sanchis-Segura, C; Pastor, R; Aragon, C M G

    2004-09-15

    The C57BL/6J strain of inbred mice shows a characteristic pattern of ethanol-induced behaviors: very weak acute locomotor stimulation, a lack of locomotor-sensitizing effect of ethanol, and a high level of ethanol intake. This strain has relatively low levels of activity of the ethanol metabolizing enzyme catalase, and it has been proposed that brain catalase plays a role in the modulation of some behavioral effects of ethanol. In the first study of the present paper, we investigated the effects of pharmacological manipulations of brain catalase activity on C57BL/6J mice in acute ethanol-induced locomotion and ethanol intake. Results indicated that the reduction in motor activity produced by ethanol was reversed by pretreatment with catalase potentiators and it was enhanced by catalase inhibitors. In addition, ethanol intake was highly correlated with brain catalase activity in mice treated with a catalase potentiator. In the second study, F1 hybrid mice (SWXB6) from the outbred Swiss-Webster mice and the inbred C57BL/6J mice were used. Basal brain catalase activity levels of F1 mice were intermediate between to those of the two progenitor genotypes. That profile of catalase activity was parallel to the acute-ethanol-induced locomotion and to repeated-ethanol-induced motor sensitization effects observed across the three types of mice. These data suggest that brain catalase activity modifications in the C57BL/6J strain change the pattern of several ethanol-related behaviors in this inbred mouse.

  13. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy.

    PubMed

    Sinha, Rohit Anthony; You, Seo-Hee; Zhou, Jin; Siddique, Mobin M; Bay, Boon-Huat; Zhu, Xuguang; Privalsky, Martin L; Cheng, Sheue-Yann; Stevens, Robert D; Summers, Scott A; Newgard, Christopher B; Lazar, Mitchell A; Yen, Paul M

    2012-07-01

    For more than a century, thyroid hormones (THs) have been known to exert powerful catabolic effects, leading to weight loss. Although much has been learned about the molecular mechanisms used by TH receptors (TRs) to regulate gene expression, little is known about the mechanisms by which THs increase oxidative metabolism. Here, we report that TH stimulation of fatty acid β-oxidation is coupled with induction of hepatic autophagy to deliver fatty acids to mitochondria in cell culture and in vivo. Furthermore, blockade of autophagy by autophagy-related 5 (ATG5) siRNA markedly decreased TH-mediated fatty acid β-oxidation in cell culture and in vivo. Consistent with this model, autophagy was altered in livers of mice expressing a mutant TR that causes resistance to the actions of TH as well as in mice with mutant nuclear receptor corepressor (NCoR). These results demonstrate that THs can regulate lipid homeostasis via autophagy and help to explain how THs increase oxidative metabolism.

  14. Cross-behavior associations and multiple health behavior change: A longitudinal study on physical activity and fruit and vegetable intake.

    PubMed

    Fleig, Lena; Küper, Carina; Lippke, Sonia; Schwarzer, Ralf; Wiedemann, Amelie U

    2015-05-01

    This study aimed to examine the interrelation of physical activity and fruit and vegetable intake. The influence of stage congruence between physical activity and fruit and vegetable intake on multiple behavior change was also investigated. Health behaviors, social-cognitions, and stages of change were assessed in 2693 adults at two points in time. Physical activity and fruit and vegetable intake were assessed 4 weeks after the baseline. Social-cognitions, stages as well as stage transitions across behavior domains were positively interrelated. Stage congruence was not related to changes in physical activity and fruit and vegetable intake. Physical activity and nutrition appear to facilitate rather than hinder each other. Having intentions to change both behaviors simultaneously does not seem to overburden individuals.

  15. Geography Influences Dietary Intake, Physical Activity and Weight Status of Adolescents

    PubMed Central

    Downs, Shauna M.; Fraser, Shawn N.; Storey, Kate E.; Forbes, Laura E.; Spence, John C.; Plotnikoff, Ronald C.; Raine, Kim D.; Hanning, Rhona M.; McCargar, Linda J.

    2012-01-01

    Purpose. The purpose of this study was to assess rural and urban differences in the dietary intakes, physical activity levels and weight status of a large sample of Canadian youth in both 2005 and 2008. Materials and Methods. A cross-sectional study of rural and urban adolescents (n = 10, 023) in Alberta was conducted in both 2005 and 2008 using a web-based survey. Results. There was an overall positive change in nutrient intakes between 2005 and 2008; however, rural residents generally had a poorer nutrient profile than urban residents (P < .001). They consumed less fibre and a greater percent energy from saturated fat. The mean physical activity scores increased among rural youth between 2005 and 2008 (P < .001), while remaining unchanged among urban youth. Residence was significantly related to weight status in 2005 (P = .017), but not in 2008. Conclusion. Although there were small improvements in nutrient intakes from 2005 to 2008, several differences in the lifestyle behaviours of adolescents living in rural and urban areas were found. The results of this study emphasize the importance of making policy and program recommendations to support healthy lifestyle behaviours within the context of the environments in which adolescents live. PMID:22685637

  16. Intake of Lutein-Rich Vegetables Is Associated with Higher Levels of Physical Activity

    PubMed Central

    Crichton, Georgina; Elias, Merrill; Alkerwi, Ala’a; Buckley, Jonathon

    2015-01-01

    Levels of physical inactivity, a major contributor to burden of disease, are high in many countries. Some preliminary research suggests that circulating lutein concentrations are associated with high levels of physical activity (PA). We aimed to assess whether the intake of lutein-containing foods, including vegetables and eggs, is associated with levels of PA in two studies conducted in different countries. Dietary data and PA data collected from participants in two cross-sectional studies: the Maine-Syracuse Longitudinal Study (MSLS), conducted in Central New York, USA (n = 972), and the Observation of Cardiovascular Risk Factors in Luxembourg Study (ORISCAV-LUX) (n = 1331) were analyzed. Higher intakes of lutein containing foods, including green leafy vegetables, were associated with higher levels of PA in both study sites. Increasing the consumption of lutein-rich foods may have the potential to impact positively on levels of PA. This needs to be further explored in randomized controlled trials. PMID:26393650

  17. Intake of Lutein-Rich Vegetables Is Associated with Higher Levels of Physical Activity.

    PubMed

    Crichton, Georgina; Elias, Merrill; Alkerwi, Ala'a; Buckley, Jonathon

    2015-09-18

    Levels of physical inactivity, a major contributor to burden of disease, are high in many countries. Some preliminary research suggests that circulating lutein concentrations are associated with high levels of physical activity (PA). We aimed to assess whether the intake of lutein-containing foods, including vegetables and eggs, is associated with levels of PA in two studies conducted in different countries. Dietary data and PA data collected from participants in two cross-sectional studies: the Maine-Syracuse Longitudinal Study (MSLS), conducted in Central New York, USA (n = 972), and the Observation of Cardiovascular Risk Factors in Luxembourg Study (ORISCAV-LUX) (n = 1331) were analyzed. Higher intakes of lutein containing foods, including green leafy vegetables, were associated with higher levels of PA in both study sites. Increasing the consumption of lutein-rich foods may have the potential to impact positively on levels of PA. This needs to be further explored in randomized controlled trials.

  18. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay

    SciTech Connect

    Prestwich, G.D.; Wawrzenczyk, C.

    1985-08-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites.

  19. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay.

    PubMed Central

    Prestwich, G D; Wawrzeńczyk, C

    1985-01-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites. PMID:3860862

  20. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes

    PubMed Central

    Stoney, Patrick N.; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J.

    2015-01-01

    Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)‐synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA‐responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1‐expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. GLIA 2016;64:425–439 PMID:26527258

  1. Corticotropin-releasing factor-overexpressing mice exhibit reduced neuronal activation in the arcuate nucleus and food intake in response to fasting.

    PubMed

    Stengel, Andreas; Goebel, Miriam; Million, Mulugeta; Stenzel-Poore, Mary P; Kobelt, Peter; Mönnikes, Hubert; Taché, Yvette; Wang, Lixin

    2009-01-01

    Corticotropin-releasing factor (CRF) overexpressing (OE) mice are a genetic model that exhibits features of chronic stress. We investigated whether the adaptive feeding response to a hypocaloric challenge induced by food deprivation is impaired under conditions of chronic CRF overproduction. Food intake response to a 16-h overnight fast and ip injection of gut hormones regulating food intake were compared in CRF-OE and wild type (WT) littermate mice along with brain Fos expression, circulating ghrelin levels, and gastric emptying of a nonnutrient meal. CRF-OE mice injected ip with saline showed a 47 and 44% reduction of 30-min and 4-h cumulative food intake response to an overnight fast, respectively, compared with WT. However, the 30-min food intake decrease induced by ip cholecystokinin (3 microg/kg) and increase by ghrelin (300 microg/kg) were similar in CRF-OE and WT mice. Overnight fasting increased the plasma total ghrelin to similar levels in CRF-OE and WT mice, although CRF-OE mice had a 2-fold reduction of nonfasting ghrelin levels. The number of Fos-immunoreactive cells induced by fasting in the arcuate nucleus was reduced by 5.9-fold in CRF-OE compared with WT mice whereas no significant changes were observed in other hypothalamic nuclei. In contrast, fasted CRF-OE mice displayed a 5.6-fold increase in Fos-immunoreactive cell number in the dorsal motor nucleus of the vagus nerve and a 34% increase in 20-min gastric emptying. These findings indicate that sustained overproduction of hypothalamic CRF in mice interferes with fasting-induced activation of arcuate nucleus neurons and the related hyperphagic response.

  2. Maximal Oxygen Intake and Maximal Work Performance of Active College Women.

    ERIC Educational Resources Information Center

    Higgs, Susanne L.

    Maximal oxygen intake and associated physiological variables were measured during strenuous exercise on women subjects (N=20 physical education majors). Following assessment of maximal oxygen intake, all subjects underwent a performance test at the work level which had elicited their maximal oxygen intake. Mean maximal oxygen intake was 41.32…

  3. Nutritional Intake, Physical Activity and Quality of Life in COPD Patients.

    PubMed

    Chambaneau, A; Filaire, M; Jubert, L; Bremond, M; Filaire, E

    2016-08-01

    In this study, we aimed to document the level of physical activity (PA), quality of life, depression status and nutritional data of 20 individuals with chronic obstructive pulmonary disease (COPD) (mean age 65.0±7.0 years) admitted in hospital for pulmonary rehabilitation and compare these data to those obtained in 20 similarly aged healthy individuals. Nutritional data were collected using a 3-day diet record. COPD patients engaged in significantly less PA than healthy individuals and achieved a significant higher score of Beck Depression Inventory (BDI) than the control group. Their Fat Free Mass Index (FFMI) was significantly lower when compared to the control group (p<0.05). Patients had significantly lower total caloric intake, Vitamins B6, B9, B12, Vitamin E, β carotene and omega 3 than controls. Moreover, patients with low FFMI reported significantly lower mean intake of energy, carbohydrate, vitamin E and vitamin B6 than patients with normal FFMI. Because oxidative stress and inflammation are features of many lung diseases, nutrients with anti-oxidant and anti-inflammatory properties could be useful in prevention or treatment. Further work is needed to explore the possible relationship between the intake of B group vitamins, Vitamin E, n-3PUFAS and the development and progression of lung disease. PMID:27286177

  4. Preprandial ghrelin is not affected by macronutrient intake, energy intake or energy expenditure

    PubMed Central

    Paul, David R; Kramer, Matthew; Rhodes, Donna G; Rumpler, William V

    2005-01-01

    Background Ghrelin, a peptide secreted by endocrine cells in the gastrointestinal tract, is a hormone purported to have a significant effect on food intake and energy balance in humans. The influence of factors related to energy balance on ghrelin, such as daily energy expenditure, energy intake, and macronutrient intake, have not been reported. Secondly, the effect of ghrelin on food intake has not been quantified under free-living conditions over a prolonged period of time. To investigate these effects, 12 men were provided with an ad libitum cafeteria-style diet for 16 weeks. The macronutrient composition of the diets were covertly modified with drinks containing 2.1 MJ of predominantly carbohydrate (Hi-CHO), protein (Hi-PRO), or fat (Hi-FAT). Total energy expenditure was measured for seven days on two separate occasions (doubly labeled water and physical activity logs). Results Preprandial ghrelin concentrations were not affected by macronutrient intake, energy expenditure or energy intake (all P > 0.05). In turn, daily energy intake was significantly influenced by energy expenditure, but not ghrelin. Conclusion Preprandial ghrelin does not appear to be influenced by macronutrient composition, energy intake, or energy expenditure. Similarly, ghrelin does not appear to affect acute or chronic energy intake under free-living conditions. PMID:15745452

  5. Biochemical assays on plasminogen activators and hormones from kidney sources

    NASA Technical Reports Server (NTRS)

    Barlow, Grant H.; Lewis, Marian L.; Morrison, Dennis R.

    1988-01-01

    Investigations were established for the purpose of analyzing the conditioned media from human embryonic kidney cell subpopulations separated in space by electrophoresis. This data is based on the experiments performed on STS-8 on the continuous flow electrophoresis system. The primary biological activity that was analyzed was plasminogen activator activity, but some assays for erythropoeitin and human granulocyte colony stimulating activity were also performed. It is concluded that a battery of assays are required to completely define the plasminogen activator profile of a conditioned media from cell culture. Each type of assay measures different parts of the mixture and are influenced by different parameters. The functional role of each assay is given along with an indication of which combination of assays are required to answer specific questions. With this type of information it is possible by combinations of assays with mathematical analysis to pinpoint a specific component of the system.

  6. Sex Hormones' Regulation of Rodent Physical Activity: A Review

    PubMed Central

    Lightfoot, J. Timothy

    2008-01-01

    There is a large body of emerging literature suggesting that physical activity is regulated to a varying extent by biological factors. Available animal data strongly suggests that there is a differential regulation of physical activity by sex and that the majority of this differential regulation is mediated by estrogen/testosterone pathways with females in many animal species having higher daily activity levels than males. The purpose of this manuscript is to review the mechanisms by which estrogen, progesterone, and testosterone affect the regulation of physical daily activity. This review lays the foundation for future investigations in humans as well as discussions about relative disease risk mediated by differential biological regulation of physical activity by sex. PMID:18449357

  7. Exercising in the Fasted State Reduced 24-Hour Energy Intake in Active Male Adults

    PubMed Central

    Deitrick, Ronald W.; Hillman, Angela R.

    2016-01-01

    The effect of fasting prior to morning exercise on 24-hour energy intake was examined using a randomized, counterbalanced design. Participants (12 active, white males, 20.8 ± 3.0 years old, VO2max: 59.1 ± 5.7 mL/kg/min) fasted (NoBK) or received breakfast (BK) and then ran for 60 minutes at 60%  VO2max. All food was weighed and measured for 24 hours. Measures of blood glucose and hunger were collected at 5 time points. Respiratory quotient (RQ) was measured during exercise. Generalized linear mixed models and paired sample t-tests examined differences between the conditions. Total 24-hour (BK: 19172 ± 4542 kJ versus NoBK: 15312 ± 4513 kJ; p < 0.001) and evening (BK: 12265 ± 4278 kJ versus NoBK: 10833 ± 4065; p = 0.039) energy intake and RQ (BK: 0.90 ± 0.03 versus NoBK: 0.86 ± 0.03; p < 0.001) were significantly higher in BK than NoBK. Blood glucose was significantly higher in BK than NoBK before exercise (5.2 ± 0.7 versus 4.5 ± 0.6 mmol/L; p = 0.025). Hunger was significantly lower for BK than NoBK before exercise, after exercise, and before lunch. Blood glucose and hunger were not associated with energy intake. Fasting before morning exercise decreased 24-hour energy intake and increased fat oxidation during exercise. Completing exercise in the morning in the fasted state may have implications for weight management. PMID:27738523

  8. mGluR1/5 activation in the lateral hypothalamus increases food intake via the endocannabinoid system.

    PubMed

    Sánchez-Fuentes, Asai; Marichal-Cancino, Bruno A; Méndez-Díaz, Mónica; Becerril-Meléndez, Alline L; Ruiz-Contreras, Alejandra E; Prospéro-Garcia, Oscar

    2016-09-19

    Mounting evidence has shown that glutamatergic and endocannabinoid systems in the hypothalamus regulate mammalian food intake. Stimulation of hypothalamic mGluR1/5 and CB1 receptors induces hyperphagia suggesting a possible interaction between these systems to control food intake. In addition, synthesis of endocannabinoids has been reported after mGluR1/5 stimulation in the brain. The aim of this study was to examine the potential cannabinergic activity in the food intake induction by lateral hypothalamic stimulation of mGluR1/5. Wistar albino male rats received bilateral infusions in the lateral hypothalamus (LH) of: (i) vehicle; (ii) (RS)-2-Chloro-5-hidroxyphenylglycine (CHPG; mGluR1/5 agonist); (iii) 2-AG (CB1 endogenous agonist); (iv) AM251 (CB1 antagonist); (v) tetrahydrolipstatin (THL, 1.2μg; diacyl-glycerol lipase inhibitor); and (vi) combinations of CHPG + with the other aforementioned drugs. Food intake was evaluated the first two hours after drug administration. CHPG significantly increased food intake; whereas CHPG in combination with a dose of 2-AG (with no effects on food intake) greatly increased food ingestion compared to CHPG alone. The increase induced by CHPG in food intake was prevented with AM251 or THL. These results suggest that activation of mGluR1/5 in the lateral hypothalamus induces an orexigenic effect via activation of the endocannabinoid system.

  9. Nectar intake rate is modulated by changes in sucking pump activity according to colony starvation in carpenter ants.

    PubMed

    Falibene, Agustina; Josens, Roxana

    2008-05-01

    Dynamics of fluid feeding has been deeply studied in insects. However, the ability to vary the nectar-intake rate depending only on the carbohydrate deprivation has been clearly demonstrated only in Camponotus mus ants. When insect morphometry and fluid properties remain constant, changes in intake rate could only be attributed to variations in sucking pump activity. Previous records of the electrical activity generated during feeding in C. mus have revealed two different signal patterns: the regular (RP, frequencies: 2-5 Hz) and the irregular (IP, frequencies: 7-12 Hz). This work studies the mechanism underlying food intake-rate modulation in ants by analysing whether these patterns are involved. Behaviour and electrical activity generated by ants at different starvation levels were analysed during feeding on sucrose solutions. Ants were able to modulate the intake rate for a variety of sucrose concentrations (10, 40 and 60%w/w). The IP only occurred for 60% of solutions and its presence did not affect the intake rate. However, during the RP generated under the starved state, we found frequencies up to 7.5 Hz. RP frequencies positively correlated with the intake-rate for all sucrose concentrations. Hence, intake-rate modulation according to sugar deprivation is mainly achieved by the ant's ability to vary the pumping frequency. PMID:18320196

  10. mGluR1/5 activation in the lateral hypothalamus increases food intake via the endocannabinoid system.

    PubMed

    Sánchez-Fuentes, Asai; Marichal-Cancino, Bruno A; Méndez-Díaz, Mónica; Becerril-Meléndez, Alline L; Ruiz-Contreras, Alejandra E; Prospéro-Garcia, Oscar

    2016-09-19

    Mounting evidence has shown that glutamatergic and endocannabinoid systems in the hypothalamus regulate mammalian food intake. Stimulation of hypothalamic mGluR1/5 and CB1 receptors induces hyperphagia suggesting a possible interaction between these systems to control food intake. In addition, synthesis of endocannabinoids has been reported after mGluR1/5 stimulation in the brain. The aim of this study was to examine the potential cannabinergic activity in the food intake induction by lateral hypothalamic stimulation of mGluR1/5. Wistar albino male rats received bilateral infusions in the lateral hypothalamus (LH) of: (i) vehicle; (ii) (RS)-2-Chloro-5-hidroxyphenylglycine (CHPG; mGluR1/5 agonist); (iii) 2-AG (CB1 endogenous agonist); (iv) AM251 (CB1 antagonist); (v) tetrahydrolipstatin (THL, 1.2μg; diacyl-glycerol lipase inhibitor); and (vi) combinations of CHPG + with the other aforementioned drugs. Food intake was evaluated the first two hours after drug administration. CHPG significantly increased food intake; whereas CHPG in combination with a dose of 2-AG (with no effects on food intake) greatly increased food ingestion compared to CHPG alone. The increase induced by CHPG in food intake was prevented with AM251 or THL. These results suggest that activation of mGluR1/5 in the lateral hypothalamus induces an orexigenic effect via activation of the endocannabinoid system. PMID:27542344

  11. Nectar intake rate is modulated by changes in sucking pump activity according to colony starvation in carpenter ants.

    PubMed

    Falibene, Agustina; Josens, Roxana

    2008-05-01

    Dynamics of fluid feeding has been deeply studied in insects. However, the ability to vary the nectar-intake rate depending only on the carbohydrate deprivation has been clearly demonstrated only in Camponotus mus ants. When insect morphometry and fluid properties remain constant, changes in intake rate could only be attributed to variations in sucking pump activity. Previous records of the electrical activity generated during feeding in C. mus have revealed two different signal patterns: the regular (RP, frequencies: 2-5 Hz) and the irregular (IP, frequencies: 7-12 Hz). This work studies the mechanism underlying food intake-rate modulation in ants by analysing whether these patterns are involved. Behaviour and electrical activity generated by ants at different starvation levels were analysed during feeding on sucrose solutions. Ants were able to modulate the intake rate for a variety of sucrose concentrations (10, 40 and 60%w/w). The IP only occurred for 60% of solutions and its presence did not affect the intake rate. However, during the RP generated under the starved state, we found frequencies up to 7.5 Hz. RP frequencies positively correlated with the intake-rate for all sucrose concentrations. Hence, intake-rate modulation according to sugar deprivation is mainly achieved by the ant's ability to vary the pumping frequency.

  12. Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons.

    PubMed

    Katsurada, Kenichi; Maejima, Yuko; Nakata, Masanori; Kodaira, Misato; Suyama, Shigetomo; Iwasaki, Yusaku; Kario, Kazuomi; Yada, Toshihiko

    2014-08-22

    Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain.

  13. Association between chronotype, food intake and physical activity in medical residents.

    PubMed

    Mota, Maria Carliana; Waterhouse, Jim; De-Souza, Daurea Abadia; Rossato, Luana Thomazetto; Silva, Catarina Mendes; Araújo, Maria Bernadete Jeha; Tufik, Sérgio; de Mello, Marco Túlio; Crispim, Cibele Aparecida

    2016-01-01

    An individual's chronotype is a trait which reflects his/her diurnal preferences for the times of rest and activities, and displays a continuum from morningness to eveningness. Studies have shown that eveningness tends to be associated with a less healthy lifestyle, including increased likelihood of developing obesity. In this study, we examined the relationship between chronotype and food intake, physical sleep and activity in 72 resident physicians (52 women and 20 men). Assessments included chronotype evaluation by the Horne and Ostberg Morningness-Eveningness questionnaire (MEQ); food intake pattern through a self-administered food diary that was kept over the course of 3 non-successive days; physical activity level, using the Baecke questionnaire (BQ); sleep quality and quantity using the Pittsburgh Sleep Quality Index (PSQI); and sleepiness, Epworth Sleepiness Scale (ESS). Linear regression analyses, after adjustments for age, sex, body mass index (BMI), hours of additional work per week ESS and total physical activity score, showed that the chronotype score was negatively associated with cholesterol (coefficient = -0.24; p = 0.04), sweets (coefficient = -0.27, p = 0.03) and vegetables (coefficient = -0.26; p = 0.04) intakes. Following the same statistical adjustments, the chronotype score was positivity associated with leisure-time index (coefficient = 0.26, p = 0.03) and BQ total score (coefficient = 0.27, p = 0.03). We concluded that most issues related to nutrition problems and unhealthy lifestyle were associated with scores indicative of eveningness. These findings emphasize the importance of assessing an individual's chronotype when examining feeding behavior.

  14. Vitamin D and Calcium Intakes, Physical Activity, and Calcaneus BMC among School-Going 13-Year Old Malaysian Adolescents

    PubMed Central

    Suriawati, A. A.; Abdul Majid, Hazreen; Al-Sadat, Nabilla; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid

    2016-01-01

    Background: Dietary calcium and vitamin D are essential for bone development. Apart from diet, physical activity may potentially improve and sustain bone health. Objective: To investigate the relationship between the dietary intake of calcium and vitamin D, physical activity, and bone mineral content (BMC) in 13-year-old Malaysian adolescents. Design: Cross-sectional. Setting: Selected public secondary schools from the central and northern regions of Peninsular Malaysia. Participants: The subjects were from the Malaysian Health and Adolescents Longitudinal Research Team Cohort study (MyHeARTs). Methods: The data included seven-day diet histories, anthropometric measurements, and the BMC of calcaneal bone using a portable broadband ultrasound bone densitometer. Nutritionist Pro software was used to calculate the dietary calcium and vitamin D intakes from the diet histories, based on the Nutrient Composition of Malaysian Food Database guidance for the dietary calcium intake and the Singapore Energy and Nutrient Composition of Food Database for vitamin D intake. Results: A total of 289 adolescents (65.7% females) were recruited. The average dietary intakes of calcium and vitamin D were 377 ± 12 mg/day and 2.51 ± 0.12 µg/day, respectively, with the majority of subjects failing to meet the Recommended Nutrient Intake (RNI) of Malaysia for dietary calcium and vitamin D. All the subjects had a normal Z-score for the BMC (−2.00 or higher) with a mean of 0.55 ± 0.01. From the statistical analysis of the factors contributing to BMC, it was found that for those subjects with a higher intake of vitamin D, a higher combination of the intake of vitamin D and calcium resulted in significantly higher BMC quartiles. The regression analysis showed that the BMC might have been influenced by the vitamin D intake. Conclusions: A combination of the intake of vitamin D and calcium is positively associated with the BMC. PMID:27783041

  15. The associations between family history of coronary heart disease, physical activity, dietary intake and body size.

    PubMed

    Slattery, M L; Schumacher, M C; Hunt, S C; Williams, R R

    1993-02-01

    Physical activity has been associated with coronary heart disease (CHD) as well as several CHD risk factors. In this study, we examine the association of a positive family history of CHD and physical activity on dietary intake and body size indicators among 891 healthy young adults (18 to 39 years of age) and 471 older adults (40 to 83) observed between 1980 and 1986. Participants reported the number of times per week they walked and/or jogged one mile, biked three miles, participated in sports, or performed other intense activities. Older men with a family history of CHD reported more physical activity than men without a family history of CHD (60% compared to 28.6%; p = 0.002). Younger women without a family history of CHD reported more physical activity than women with a family history of CHD (30.2% compared to 15.9%; p = 0.004). Fruit and vegetable intake increased with increasing levels of physical activity in younger adults. The only dietary association with family history was higher levels of fatty foods reported among older women with a family history versus those without a family history (p = 0.03). Young women with a family history of CHD were more likely to have higher BMI levels at all levels of physical activity and a higher percent of their ideal body weight per unit of physical activity (p = 0.01). For instance, young women who were most active with a family history of CHD were at 115% of their ideal body weight, while those without a family history were at 110.2% of their ideal body weight. There were no significant interactions between physical activity and CHD family history in this population. These findings suggest that family history of CHD alone may not be adequate to stimulate one to adopt a more healthy lifestyle.

  16. Endocrine and hematological responses of beef heifers divergently ranked for residual feed intake following a bovine corticotropin-releasing hormone challenge.

    PubMed

    Kelly, A K; Earley, B; McGee, M; Fahey, A G; Kenny, D A

    2016-04-01

    The objective of this study was to determine if beef heifers divergently ranked on phenotypic residual feed intake (RFI) differed in their physiological stress response to an exogenous bovine corticotropin-releasing hormone (bCRH) challenge. Yearling Limousin × Friesian heifers ( = 86) were ranked by RFI. The 15 highest (mean 0.66 kg DM/d; high RFI) and 15 lowest (mean -0.72 kg DM/d; low RFI) ranking animals were used for this study. During the study period, heifers (mean age 485 ± 13 d; mean BW 408 ± 31.4 kg) were housed in a slatted-floor facility. To facilitate intensive blood collection, heifers were fitted aseptically with indwelling jugular catheters. All heifers received dexamethasone (DEX; 20 µg/kg BW i.m.) 12 h before the bCRH challenge (d 0). Heparinized blood samples were collected at -60 and 0 min before administration of DEX, and 12 h after DEX administration. Following DEX administration, cortisol and dehydroepiandrosterone (DHEA) concentrations similarly decreased ( ≥ 0.22) between high and low RFI groups. The response of the HPA axis to a standardized dose of bCRH (0.3 μg/kg BW) was examined. On d 0, serial blood samples were collected at -20, 0, 20, 40, 60, 80, 100, 120, 150, 180, 210, 240, 270, 330, and 390 min relative to the time of bCRH administration (0 min) and were analyzed for plasma cortisol and DHEA concentrations. Blood hematology variables were also determined at -20, 0, 20, 80, 150, 270, 330, and 390 min relative to bCRH administration. Neither an RFI × sampling time interaction nor a direct effect of RFI were detected ( ≥ 0.36) for plasma cortisol, DHEA concentrations, or cortisol:DHEA ratio. An effect of sample time was observed for cortisol ( < 0.001), DHEA ( = 0.04), and cortisol:DHEA ( = 0.02), with cortisol concentration peaking at 60 min post-CRH administration. The maximum concentration and rate of change in cortisol and DHEA concentrations following bCRH administration were not different ( ≥ 0.20) between the high

  17. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein

    PubMed Central

    Liu, Pengcheng; Peng, Hong-Juan; Zhu, Jinsong

    2015-01-01

    Juvenile hormone (JH) is a key regulator of a wide diversity of developmental and physiological events in insects. Although the intracellular JH receptor methoprene-tolerant protein (MET) functions in the nucleus as a transcriptional activator for specific JH-regulated genes, some JH responses are mediated by signaling pathways that are initiated by proteins associated with plasma membrane. It is unknown whether the JH-regulated gene expression depends on the membrane-mediated signal transduction. In Aedes aegypti mosquitoes, we found that JH activated the phospholipase C (PLC) pathway and quickly increased the levels of inositol 1,4,5-trisphosphate, diacylglycerol, and intracellular calcium, leading to activation and autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). When abdomens from newly emerged mosquitoes were cultured in vitro, the JH-activated gene expression was repressed substantially if specific inhibitors of PLC or CaMKII were added to the medium together with JH. In newly emerged female mosquitoes, RNAi-mediated depletion of PLC or CaMKII considerably reduced the expression of JH-responsive genes, including the Krüppel homolog 1 gene (AaKr-h1) and the early trypsin gene (AaET). JH-induced loading of MET to the promoters of AaKr-h1 and AaET was weakened drastically when either PLC or CaMKII was inactivated in the cultured tissues. Therefore, the results suggest that the membrane-initiated signaling pathway modifies the DNA-binding activity of MET via phosphorylation and thus facilitates the genomic responses to JH. In summary, this study reveals an interplay of genomic and nongenomic signaling mechanisms of JH. PMID:25825754

  18. Hormonal control of proteinase activity in squash cotyledons.

    PubMed

    Penner, D; Ashton, F M

    1967-06-01

    A crude proteolytic enzyme preparation which hydrolyzes casein was isolated from the cotyledons of squash seedlings. The presence of ethylene diamine tetraacetate or cysteine did not appreciably affect the activity of the preparation. During the course of germination, the level of proteolytic activity increased in the cotyledons of intact embryos through the third day and then decreased. The presence of the embryonic axis during the first 32 hours of germination was a prerequisite for the development of maximum proteolytic activity.The presence of a cytokinin, such as benzyladenine, kinetin, BTP [6-(benzylamino)-9-(2-tetrahydropyranyl)-9H-purine], or phenyladenine, in the culture solution could reproduce the effect of the embryonic axis. Other growth regulators did not produce this stimulation. High concentrations (1 mm) of all growth regulators examined were inhibitory. Various combinations of growth regulators failed to produce any synergistic effects. 6-Methylpurine inhibited the development of proteinase activity, and this inhibition was only partially restored by benzyladenine.A proteinase was partially purified from the cotyledons of 2-day-old squash seedlings and its synthesis was shown to be under the control of the embryonic axis.

  19. In Vitro, Ex Vivo, and In Vivo Determination of Thyroid Hormone Modulating Activity of Benzothiazoles.

    PubMed

    Hornung, Michael W; Kosian, Patricia A; Haselman, Jonathan T; Korte, Joseph J; Challis, Katie; Macherla, Chitralekha; Nevalainen, Erica; Degitz, Sigmund J

    2015-08-01

    As in vitro assays are increasingly used to screen chemicals for their potential to produce endocrine disrupting adverse effects, it is important to understand their predictive capacity. The potential for a set of 6 benzothiazoles to affect endpoints related to thyroid hormone synthesis inhibition were assessed using in vitro, ex vivo, and in vivo assays. Inhibition of thyroid peroxidase (TPO) derived from pig thyroid glands was determined for benzothiazole (BTZ), 2-mercaptobenzothiazole (MBT), 5-chloro-2-mercaptobenzothiazole (CMBT), 2-aminobenzothiazole (ABT), 2-hydroxybenzothiazole (HBT), and 2-methylthiobenzothiazole (MTBT). Their rank order potency for TPO inhibition was MBT=CMBT>ABT>BTZ, whereas HBT and MTBT exhibited no inhibitory activity. The benzothiazoles were tested further in a Xenopus laevis thyroid gland explant culture assay in which inhibition of thyroxine (T4) release was the measured endpoint. In this assay all 6 benzothiazoles inhibited T4 release. The activity of the benzothiazoles for disrupting thyroid hormone activity was verified in vivo using X. laevis tadpoles in a 7-day assay. The 2 most potent chemicals for TPO inhibition, MBT and CMBT, produced responses in vivo indicative of T4 synthesis inhibition including induction of sodium iodide symporter mRNA and decreases in glandular and circulating thyroid hormones. The capability to measure thyroid hormone levels in the glands and blood by ultrahigh performance LC-MS/MS methods optimized for small tissue samples was critical for effects interpretation. These results indicate that inhibition of TPO activity in vitro was a good indicator of a chemical's potential for thyroid hormone disruption in vivo and may be useful for prioritizing chemicals for further investigation. PMID:25953703

  20. Chronic sugar intake dampens feeding-related activity of neurons synthesizing a satiety mediator, oxytocin

    PubMed Central

    Mitra, Anaya; Gosnell, Blake A.; Schiöth, Helgi B.; Grace, Martha K.; Klockars, Anica; Olszewski, Pawel K.; Levine, Allen S.

    2010-01-01

    Increased tone of orexigens mediating reward occurs upon repeated consumption of sweet foods. Interestingly, some of these reward orexigens, such as opioids, diminish activity of neurons synthesizing oxytocin, a nonapeptide that promotes satiety and feeding termination. It is not known, however, whether consumption-related activity of the central oxytocin system is modified under chronic sugar feeding reward itself. Therefore, we examined how chronic consumption of a rewarding high-sucrose (HS) vs. bland cornstarch (CS) diet affected the activity of oxytocin cells in the hypothalamus at the time of meal termination. Schedule-fed (2 hrs/day) rats received either a HS or CS powdered diet for 20 days. On the 21st day, they were given the same or the opposite diet, and food was removed after the main consummatory activity was completed. Animals were perfused 60 minutes after feeding termination and brains were immunostained for oxytocin and the marker of neuronal activity, c-Fos. The percentage of c-Fos-positive oxytocin cells in the hypothalamic paraventricular nucleus was significantly lower in rats chronically exposed to the HS than to the CS diet, regardless of which diet they received on the final day. A similar pattern was observed in the supraoptic nucleus. We conclude that the chronic rather than acute sucrose intake reduces activity of the anorexigenic oxytocin system. These findings indicate that chronic consumption of sugar blunts activity of pathways that mediate satiety. We speculate that a reduction in central satiety signaling precipitated by regular intake of foods high in sugar may lead to generalized overeating. PMID:20399242

  1. Influence of physical activity in the intake of trihalomethanes in indoor swimming pools.

    PubMed

    Marco, Esther; Lourencetti, Carolina; Grimalt, Joan O; Gari, Mercè; Fernández, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis

    2015-07-01

    This study describes the relationship between physical activity and intake of trihalomethanes (THMs), namely chloroform (CHCl3), bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) and bromoform (CHBr3), in individuals exposed in two indoor swimming pools which used different disinfection agents, chlorine (Cl-SP) and bromine (Br-SP). CHCl3 and CHBr3 were the dominant compounds in air and water of the Cl-SP and Br-SP, respectively. Physical exercise was assessed from distance swum and energy expenditure. The changes in exhaled breath concentrations of these compounds were measured from the differences after and before physical activity. A clear dependence between distance swum or energy expenditure and exhaled breath THM concentrations was observed. The statistically significant relationships involved higher THM concentrations at higher distances swum. However, air concentration was the major factor determining the CHCl3 and CHCl2Br intake in swimmers whereas distance swum was the main factor for CHBr3 intake. These two causes of THM incorporation into swimmers concurrently intensify the concentrations of these compounds into exhaled breath and pointed to inhalation as primary mechanism for THM uptake. Furthermore, the rates of THM incorporation were proportionally higher as higher was the degree of bromination of the THM species. This trend suggested that air-water partition mechanisms in the pulmonary system determined higher retention of the THM compounds with lower Henry's Law volatility constants than those of higher constant values. Inhalation is therefore the primary mechanisms for THM exposure of swimmers in indoor buildings. PMID:25885117

  2. Stimulation of hormone-responsive adenylate cyclase activity by a factor present in the cell cytosol.

    PubMed Central

    MacNeil, S; Crawford, A; Amirrasooli, H; Johnson, S; Pollock, A; Ollis, C; Tomlinson, S

    1980-01-01

    1. Homogenates of whole tissues were shown to contain both intracellular and extracellular factors that affected particulate adenylate cyclase activity in vitro. Factors present in the extracellular fluids produced an inhibition of basal, hormone- and fluoride-stimulated enzyme activity but factors present in the cell cytosol increased hormone-stimulated activity with relatively little effect on basal or fluoride-stimulated enzyme activity. 2. The existence of this cytosol factor or factors was investigated using freshly isolated human platelets, freshly isolated rat hepatocytes, and cultured cells derived from rat osteogenic sarcoma, rat calvaria, mouse melanoma, pig aortic endothelium, human articular cartilage chondrocytes and human bronchial carcinoma (BEN) cells. 3. The stimulation of the hormone response by the cytosol factor ranged from 60 to 890% depending on the tissue of origin of the adenylate cyclase. 4. In each case the behaviour of the factor was similar to the action of GTP on that particular adenylate cyclase preparation. 5. No evidence of tissue or species specificity was found, as cytosols stimulated adenylate cyclase from their own and unrelated tissues to the same degree. 6. In the human platelet, the inclusion of the cytosol in the assay of adenylate cyclase increased the rate of enzyme activity in response to stimulation by prostaglandin E1 without affecting the amount of prostaglandin E1 required for half-maximal stimulation or the characteristics of enzyme activation by prostaglandin E. PMID:7396869

  3. A role for mitogen-activated protein kinase in mediating activation of the glycoprotein hormone alpha-subunit promoter by gonadotropin-releasing hormone.

    PubMed Central

    Roberson, M S; Misra-Press, A; Laurance, M E; Stork, P J; Maurer, R A

    1995-01-01

    Gonadotropin-releasing hormone (GnRH) interacts with a G protein-coupled receptor and increases the transcription of the glycoprotein hormone alpha-subunit gene. We have explored the possibility that mitogen-activated protein kinase (MAPK) plays a role in mediating GnRH effects on transcription. Activation of the MAPK cascade by an expression vector for a constitutively active form of the Raf-1 kinase led to stimulation of the alpha-subunit promoter in a concentration-dependent manner. GnRH treatment was found to increase the phosphorylation of tyrosine residues of MAPK and to increase MAPK activity, as determined by an immune complex kinase assay. A reporter gene assay using the MAPK-responsive, carboxy-terminal domain of the Elk1 transcription factor was also consistent with GnRH-induced activation of MAPK. Interference with the MAPK pathway by expression vectors for kinase-defective MAPKs or vectors encoding MAPK phosphatases reduced the transcription-stimulating effects of GnRH. The DNA sequences which are required for responses to GnRH include an Ets factor-binding site. An expression vector for a dominant negative form of Ets-2 was able to reduce GnRH effects on expression of the alpha-subunit gene. These findings provide evidence that GnRH treatment leads to activation of the MAPK cascade in gonadotropes and that activation of MAPK contributes to stimulation of the alpha-subunit promoter. It is likely that an Ets factor serves as a downstream transcriptional effector of MAPK in this system. PMID:7791760

  4. Allosteric receptor activation by the plant peptide hormone phytosulfokine.

    PubMed

    Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie

    2015-09-10

    Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.

  5. Design and Control of a Proof-of-Concept Active Jet Engine Intake Using Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Song, Gangbing; Ma, Ning; Penney, Nicholas; Barr, Todd; Lee, Ho-Jun; Arnold, Steven M.

    2004-01-01

    The design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators is used to demonstrate the potential of an adaptive intake to improve the fuel efficiency of a jet engine. The Nitinol SMA material is selected for this research due to the material's ability to generate large strains of up to 5 percent for repeated operations, a high power-to-weight ratio, electrical resistive actuation, and easy fabrication into a variety of shapes. The proof-of-concept engine intake employs an overlapping leaf design arranged in a concentric configuration. Each leaf is mounted on a supporting bar that rotates upon actuation by SMA wires electrical resistive heating. Feedback control is enabled through the use of a laser range sensor to detect the movement of a leaf and determine the radius of the intake area. Due to the hysteresis behavior inherent in SMAs, a nonlinear robust controller is used to direct the SMA wire actuation. The controller design utilizes the sliding-mode approach to compensate for the nonlinearities associated with the SMA actuator. Feedback control experiments conducted on a fabricated proof-of-concept model have demonstrated the capability to precisely control the intake area and achieve up to a 25 percent reduction in intake area. The experiments demonstrate the feasibility of engine intake area control using the proposed design.

  6. Theory of partial agonist activity of steroid hormones

    PubMed Central

    Chow, Carson C.; Ong, Karen M.; Kagan, Benjamin; Simons, S. Stoney

    2015-01-01

    The different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system, we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression. We now extend this framework to the actions of antisteroids in gene induction. The theory shows why changes in PAA cannot be explained simply by differences in ligand affinity for receptor and requires action at a second step or site in the overall sequence of reactions. The theory also provides a method for locating the position of this second site, relative to a concentration limited step (CLS), which is a previously identified step in glucocorticoid-regulated transactivation that always occurs at the same position in the overall sequence of events of gene induction. Finally, the theory predicts that classes of antagonist ligands may be grouped on the basis of their maximal PAA with excess added cofactor and that the members of each class differ by how they act at the same step in the overall gene induction process. Thus, this theory now makes it possible to predict how different cofactors modulate antisteroid PAA, which should be invaluable in developing more selective antagonists. PMID:25984562

  7. The regulation of the SARK promoter activity by hormones and environmental signals.

    PubMed

    Delatorre, Carla A; Cohen, Yuval; Liu, Li; Peleg, Zvi; Blumwald, Eduardo

    2012-09-01

    The Senescence Associated Receptor Protein Kinase (P(SARK)) promoter, fused to isopentenyltransferase (IPT) gene has been shown to promote drought tolerance in crops. We dissected P(SARK) in order to understand the various elements associated with its activation and suppression. The activity of P(SARK) was higher in mature and early senescing leaves, and abiotic stress induced its activity in mature leaves. Bioinformatics analysis suggests the interactions of multiple cis-acting elements in the control of P(SARK) activity. In vitro gel shift assays and yeast one hybrid system revealed interactions of P(SARK) with transcription factors related to abscisic acid and cytokinin response. Deletion analysis of P(SARK), fused to GUS-reporter gene was used to identify specific regions regulating transcription under senescence or during drought stress. Effects of exogenous hormonal treatments were characterized in entire plants and in leaf disk assays, and regions responsive to various hormones were defined. Our results indicate a complex interaction of plant hormones and additional factors modulating P(SARK) activity under stress resulting in a transient induction of expression.

  8. Variability in HOMA-IR, lipoprotein profile and selected hormones in young active men.

    PubMed

    Keska, Anna; Lutoslawska, Grazyna; Czajkowska, Anna; Tkaczyk, Joanna; Mazurek, Krzysztof

    2013-01-01

    Resistance to insulin actions is contributing to many metabolic disturbances. Such factors as age, sex, nutrition, body fat, and physical activity determine body insulin resistance. Present study attempted to asses insulin resistance and its metabolic effects with respect to energy intake in young, lean, and active men. A total of 87 men aged 18-23 participated in the study. Plasma levels of glucose, insulin, lipoproteins, cortisol, and TSH were determined. Insulin resistance was expressed as Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) and calculated using homeostatic model. The median value of HOMA-IR (1.344) was used to divide subjects into two groups. Men did not differ in anthropometric parameters, daily physical activity, and plasma TSH and cortisol levels. However, in men with higher HOMA-IR significantly lower daily energy intake was observed concomitantly with higher TG, TC, and HDL-C concentrations in plasma versus their counterparts with lower HOMA-IR. Exclusively in subjects with higher HOMA-IR significant and positive correlation was noted between HOMA-IR and TC and LDL-C. We concluded that despite a normal body weight and physical activity, a subset of young men displayed unfavorable changes in insulin sensitivity and lipid profile, probably due to insufficient energy intake.

  9. Acute injection of ASP in the third ventricle inhibits food intake and locomotor activity in rats.

    PubMed

    Roy, Christian; Roy, Marie-Claude; Gauvreau, Danny; Poulin, Anne-Marie; Tom, Fun-Qun; Timofeeva, Elena; Richard, Denis; Cianflone, Katherine

    2011-07-01

    Acylation-stimulating protein (ASP; also known as C3adesArg) stimulates triglyceride synthesis and glucose transport via interaction with its receptor C5L2, which is expressed peripherally (adipose tissue, muscle) and centrally. Previous studies have shown that ASP-deficient mice (C3KO) and C5L2-deficient mice (C5L2KO) are hyperphagic (59 to 229% increase, P < 0.0001), which is counterbalanced by increased energy expenditure measured as oxygen consumption (Vo(2)) and a lower RQ. The aim of the present study was to evaluate ASP's effect on food intake, energy expenditure, and neuropeptide expression. Male rats were surgically implanted with intracerebroventricular (icv) cannulas directed toward the third ventricle. After a 5-h fast, rats were injected, and food intake was assessed at 0.5, 1, 2, 4, 16, 24, and 48 h, with a 5- to 7-day washout period between each injection. Acute icv injections of ASP (0.3-1,065 pmol) had a time-dependent effect on decreasing food intake by 20 to 57% (P < 0.05). Decreases were detected by 30 min (maximum 57%, P < 0.01) and at the highest dose effects extended to 48 h (19%, P < 0.05, 24- to 48-h period). Daily body weight gain was decreased by 131% over the first 24 h and 29% over the second 24 h (P < 0.05). A conditioned taste aversion test indicated that there was no malaise. Furthermore, acute ASP injection affected energy substrate usage, demonstrated by decreased Vo(2) and RQ (P < 0.05; implicating greater fatty acid usage), with a 49% decrease in total activity over 24 h (P < 0.05). ASP administration also increased anorexic neuropeptide POMC expression (44%) in the arcuate nucleus, with no change in NPY. Altogether ASP may have central in addition to peripheral effects.

  10. Comprehensive assessment of hormones, phytoestrogens, and estrogenic activity in an anaerobic swine waste lagoon.

    PubMed

    Yost, Erin E; Meyer, Michael T; Dietze, Julie E; Meissner, Benjamin M; Worley-Davis, Lynn; Williams, C Michael; Lee, Boknam; Kullman, Seth W

    2013-12-01

    In this study, the distribution of steroid hormones, phytoestrogens, and estrogenic activity was thoroughly characterized within the anaerobic waste lagoon of a typical commercial swine sow operation. Three independent rounds of sampling were conducted in June 2009, April 2010, and February 2011. Thirty-seven analytes in lagoon slurry and sludge were assessed using LC/MS-MS, and yeast estrogen screen was used to determine estrogenic activity. Of the hormone analytes, steroidal estrogens were more abundant than androgens or progesterone, with estrone being the predominant estrogen species. Conjugated hormones were detected only at low levels. The isoflavone metabolite equol was by far the predominant phytoestrogen species, with daidzein, genistein, formononetin, and coumestrol present at lower levels. Phytoestrogens were often more abundant than steroidal estrogens, but contributed minimally toward total estrogenic activity. Analytes were significantly elevated in the solid phases of the lagoon; although low observed log KOC values suggest enhanced solubility in the aqueous phase, perhaps due to dissolved or colloidal organic carbon. The association with the solid phase, as well as recalcitrance of analytes to anaerobic degradation, results in a markedly elevated load of analytes and estrogenic activity within lagoon sludge. Overall, findings emphasize the importance of adsorption and transformation processes in governing the fate of these compounds in lagoon waste, which is ultimately used for broadcast application as a fertilizer. PMID:24144340

  11. Comprehensive assessment of hormones, phytoestrogens, and estrogenic activity in an anaerobic swine waste lagoon

    USGS Publications Warehouse

    Yost, Erin E.; Meyer, Michael T.; Dietze, Julie E.; Meissner, Benjamin M.; Williams, Mike; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W.

    2013-01-01

    In this study, the distribution of steroid hormones, phytoestrogens, and estrogenic activity was thoroughly characterized within the anaerobic waste lagoon of a typical commercial swine sow operation. Three independent rounds of sampling were conducted in June 2009, April 2010, and February 2011. Thirty-seven analytes in lagoon slurry and sludge were assessed using LC/MS-MS, and yeast estrogen screen was used to determine estrogenic activity. Of the hormone analytes, steroidal estrogens were more abundant than androgens or progesterone, with estrone being the predominant estrogen species. Conjugated hormones were detected only at low levels. The isoflavone metabolite equol was by far the predominant phytoestrogen species, with daidzein, genistein, formononetin, and coumestrol present at lower levels. Phytoestrogens were often more abundant than steroidal estrogens, but contributed minimally towards total estrogenic activity. Analytes were significantly elevated in the solid phases of the lagoon; although low observed log KOC values suggest enhanced solubility in the aqueous phase, perhaps due to dissolved or colloidal organic carbon. The association with the solid phase, as well as recalcitrance of analytes to anaerobic degradation, results in a markedly elevated load of analytes and estrogenic activity within lagoon sludge. Overall, findings emphasize the importance of adsorption and transformation processes in governing the fate of these compounds in lagoon waste, which is ultimately used for broadcast application as a fertilizer.

  12. Comprehensive assessment of hormones, phytoestrogens, and estrogenic activity in an anaerobic swine waste lagoon.

    PubMed

    Yost, Erin E; Meyer, Michael T; Dietze, Julie E; Meissner, Benjamin M; Worley-Davis, Lynn; Williams, C Michael; Lee, Boknam; Kullman, Seth W

    2013-12-01

    In this study, the distribution of steroid hormones, phytoestrogens, and estrogenic activity was thoroughly characterized within the anaerobic waste lagoon of a typical commercial swine sow operation. Three independent rounds of sampling were conducted in June 2009, April 2010, and February 2011. Thirty-seven analytes in lagoon slurry and sludge were assessed using LC/MS-MS, and yeast estrogen screen was used to determine estrogenic activity. Of the hormone analytes, steroidal estrogens were more abundant than androgens or progesterone, with estrone being the predominant estrogen species. Conjugated hormones were detected only at low levels. The isoflavone metabolite equol was by far the predominant phytoestrogen species, with daidzein, genistein, formononetin, and coumestrol present at lower levels. Phytoestrogens were often more abundant than steroidal estrogens, but contributed minimally toward total estrogenic activity. Analytes were significantly elevated in the solid phases of the lagoon; although low observed log KOC values suggest enhanced solubility in the aqueous phase, perhaps due to dissolved or colloidal organic carbon. The association with the solid phase, as well as recalcitrance of analytes to anaerobic degradation, results in a markedly elevated load of analytes and estrogenic activity within lagoon sludge. Overall, findings emphasize the importance of adsorption and transformation processes in governing the fate of these compounds in lagoon waste, which is ultimately used for broadcast application as a fertilizer.

  13. Identification of SRC3/AIB1 as a Preferred Coactivator for Hormone-activated Androgen Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Li, Jun; He, Yuanzheng; MacKeigan, Jeffrey P.; Melcher, Karsten; Yong, Eu-Leong; Xu, H.Eric

    2010-09-17

    Transcription activation by androgen receptor (AR), which depends on recruitment of coactivators, is required for the initiation and progression of prostate cancer, yet the mechanisms of how hormone-activated AR interacts with coactivators remain unclear. This is because AR, unlike any other nuclear receptor, prefers its own N-terminal FXXLF motif to the canonical LXXLL motifs of coactivators. Through biochemical and crystallographic studies, we identify that steroid receptor coactivator-3 (SRC3) (also named as amplified in breast cancer-1 or AIB1) interacts strongly with AR via synergistic binding of its first and third LXXLL motifs. Mutagenesis and functional studies confirm that SRC3 is a preferred coactivator for hormone-activated AR. Importantly, AR mutations found in prostate cancer patients correlate with their binding potency to SRC3, corroborating with the emerging role of SRC3 as a prostate cancer oncogene. These results provide a molecular mechanism for the selective utilization of SRC3 by hormone-activated AR, and they link the functional relationship between AR and SRC3 to the development and growth of prostate cancer.

  14. Osteoporosis, vitamin C intake, and physical activity in Korean adults aged 50 years and over.

    PubMed

    Kim, Min Hee; Lee, Hae-Jeung

    2016-03-01

    [Purpose] To investigate associations between vitamin C intake, physical activity, and osteoporosis among Korean adults aged 50 and over. [Subjects and Methods] This study was based on bone mineral density measurement data from the 2008 to 2011 Korean National Health and Nutritional Examination Survey. The study sample comprised 3,047 subjects. The normal group was defined as T-score ≥ -1.0, and the osteoporosis group as T-score ≤ -2.5. The odds ratios for osteoporosis were assessed by logistic regression of each vitamin C intake quartile. [Results] Compared to the lowest quartile of vitamin C intake, the other quartiles showed a lower likelihood of osteoporosis after adjusting for age and gender. In the multi-variate model, the odds ratio for the likelihood of developing osteoporosis in the non-physical activity group significantly decreased to 0.66, 0.57, and 0.46 (p for trend = 0.0046). However, there was no significant decrease (0.98, 1.00, and 0.97) in the physical activity group. [Conclusion] Higher vitamin C intake levels were associated with a lower risk of osteoporosis in Korean adults aged over 50 with low levels of physical activity. However, no association was seen between vitamin C intake and osteoporosis risk in those with high physical activity levels.

  15. Locomotor activity and body temperature in selected mouse lines differing greatly in feed intake.

    PubMed

    Sojka, P A; Griess, R S; Nielsen, M K

    2013-08-01

    Locomotor activity, body temperature, feed intake, and BW were measured on 382 mature male mice sampled from lines previously selected (25 generations) for either high (MH) or low (ML) heat loss and an unselected control (MC). Animals were from all 3 independent replicates of the 3 lines and across 4 generations (68 through 71). Locomotor activity and body temperatures were obtained using implanted transmitters with data collection over 4 d following a 3-d postsurgery recovery period. Data were collected every minute and then averaged into 30-min periods, thus providing 192 data points for each mouse. Least-squares means for feed intake adjusted for BW (Feed/BW, feed·BW(-1)·d(-1), g/g) were 0.1586, 0.1234, and 0.1125 (±0.0022) for MH, MC, and ML, respectively, with line being a highly significant source of variation (P < 0.0003). Line effects for locomotor activity counts, transformed to the 0.25 power for analysis, were significantly different, with MH mice being 2.1 times more active than ML mice (P < 0.003); MC mice were intermediate. Differences in body temperature were significant for both line (P < 0.03) and day effects (P < 0.001), with a 0.32°C difference between the MH and ML lines. Fourier series analysis used the combined significant periodicities of 24, 18, 12, 9, 6, and 3 h to describe circadian cycles for activity and body temperature. All 3 lines expressed daily peaks in body temperature and locomotor activity ∼3 h into darkness and ∼2 h after lights were turned on. There was a stronger relationship between locomotor activity and Feed/BW (P < 0.0001) than between body temperature and Feed/BW (P < 0.01); differences between lines in locomotor activity and body temperature explained 17% and 3%, respectively, of differences between lines in Feed/BW. Thus, line differences in locomotor activity contribute to line differences in maintenance, but approximately 80% of the differences between the MH and ML selection lines in Feed/BW remains

  16. Factors associated with low water intake among US high school students - National Youth Physical Activity and Nutrition Study, 2010.

    PubMed

    Park, Sohyun; Blanck, Heidi M; Sherry, Bettylou; Brener, Nancy; O'Toole, Terrence

    2012-09-01

    Drinking plain water instead of sugar-sweetened beverages is one approach for reducing energy intake. Only a few studies have examined characteristics associated with plain water intake among US youth. The purpose of our cross-sectional study was to examine associations of demographic characteristics, weight status, dietary habits, and other behavior-related factors with plain water intake among a nationally representative sample of US high school students. The 2010 National Youth Physical Activity and Nutrition Study data for 11,049 students in grades 9 through 12 were used. Multivariable logistic regression analysis was used to calculate adjusted odds ratios (ORs) and 95% CIs for variables associated with low water intake (<3 times/day). Nationwide, 54% of high school students reported drinking water <3 times/day. Variables significantly associated with a greater odds for low water intake were age ≤15 years (OR 1.1), consuming <2 glasses/day of milk (OR 1.5), nondiet soda ≥1 time/day (OR 1.6), other sugar-sweetened beverages ≥1 time/day (OR 1.4), fruits and 100% fruit juice <2 times/day (OR 1.7), vegetables <3 times/day (OR 2.3), eating at fast-food restaurants 1 to 2 days/week and ≥3 days/week (OR 1.3 and OR 1.4, respectively), and being physically active ≥60 minutes/day on <5 days/week (OR 1.6). Being obese was significantly associated with reduced odds for low water intake (OR 0.7). The findings of these significant associations of low water intake with poor diet quality, frequent fast-food restaurant use, and physical inactivity may be used to tailor intervention efforts to increase plain water intake as a substitute for sugar-sweetened beverages and to promote healthy lifestyles.

  17. Thyroid hormones regulate the onset of osmotic activity of rat liver mitochondria after birth.

    PubMed

    Almeida, A; Lopez-Mediavilla, C; Medina, J M

    1997-02-01

    The effect of thyroid hormone deprivation on the osmotic activity of liver mitochondria from early newborn rats was studied. Experimentally induced hypothyroidism prevented the increase in the osmotic activity of mitochondria observed immediately after birth. Osmotic activity was restored by T4 and T3 treatment to hypothyroid newborns but not when this treatment was supplemented with cycloheximide. Under the same circumstances, streptomycin had no effect. Hypothyroidism abolished the change in the slope of the osmotic curve (plot of inverse absorbance of mitochondrial suspensions incubated in sucrose solutions vs. inverse sucrose concentration) observed in mitochondria from euthyroid newborns at 110-120 mOsm sucrose, suggesting that hypothyroidism prevents the formation of tight physical connections between mitochondrial outer and inner membranes. Thyroid hormone deprivation increased the passive permeability of the mitochondrial inner membrane to protons, resulting in a decreased respiratory control ratio. Hypothyroidism prevented the sharp decrease in the affinity of mitochondria for ATP observed in euthyroid newborns immediately after birth. These results corroborate our previous suggestion (Endocrinology, 1995, 136:4448) that, during the early neonatal period, thyroid hormones control the synthesis of some nucleus-coded protein(s) involved in the assembly of F0,F1-ATPase.

  18. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats

    PubMed Central

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry

  19. Feeding Behaviour, Swimming Activity and Boldness Explain Variation in Feed Intake and Growth of Sole (Solea solea) Reared in Captivity

    PubMed Central

    Mas-Muñoz, Julia; Komen, Hans; Schneider, Oliver; Visch, Sander W.; Schrama, Johan W.

    2011-01-01

    The major economic constraint for culturing sole (Solea solea) is its slow and variable growth. The objective was to study the relationship between feed intake/efficiency, growth, and (non-) feeding behaviour of sole. Sixteen juveniles with an average (SD) growth of 2.7 (1.9) g/kg0.8/d were selected on their growth during a 4-week period in which they were housed communally with 84 other fish. Selected fish were housed individually during a second 4-week period to measure individual feed intake, growth, and behaviour. Fish were hand-fed three times a day during the dark phase of the day until apparent satiation. During six different days, behaviour was recorded twice daily during 3 minutes by direct observations. Total swimming activity, frequency of burying and of escapes were recorded. At the beginning and end of the growth period, two sequential behavioural tests were performed: “Novel Environment” and “Light Avoidance”. Fish housed individually still exhibited pronounced variation in feed intake (CV = 23%), growth (CV = 25%) and behavior (CV = 100%). Differences in feed intake account for 79% of the observed individual differences in growth of sole. Fish with higher variation in feed intake between days and between meals within days had significantly a lower total feed intake (r = −0.65 and r = −0.77) and growth. Active fish showed significantly higher feed intake (r = 0.66) and growth (r = 0.58). Boldness during both challenge tests was related to fast growth: (1) fish which reacted with a lower latency time to swim in a novel environment had significantly higher feed intake (r = −0.55) and growth (r = −0.66); (2) fish escaping during the light avoidance test tended to show higher feed intake (P<0.1) and had higher growth (P<0.05). In conclusion, feeding consistency, swimming activity in the tank, and boldness during behavioral tests are related to feed intake and growth of sole in captivity. PMID:21738651

  20. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake.

    PubMed

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control. PMID:27147989

  1. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake

    PubMed Central

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J.

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control. PMID:27147989

  2. Calcium-sensing receptor activation in chronic kidney disease: effects beyond parathyroid hormone control.

    PubMed

    Massy, Ziad A; Hénaut, Lucie; Larsson, Tobias E; Vervloet, Marc G

    2014-11-01

    Secondary hyperparathyroidism (SHPT) is an important complication of advanced chronic kidney disease (CKD). Cinacalcet, an allosteric modulator of the calcium-sensing receptor (CaSR) expressed in parathyroid glands, is the only calcimimetic approved to treat SHPT in patients on dialysis. By enhancing CaSR sensitivity for plasma extracellular calcium (Ca(2+)0), cinacalcet reduces serum parathyroid hormone, Ca(2+)0, and serum inorganic phosphorous concentrations, allowing better control of SHPT and CKD-mineral and bone disorders. Of interest, the CaSR also is expressed in a variety of tissues where its activation regulates diverse cellular processes, including secretion, apoptosis, and proliferation. Thus, the existence of potential off-target effects of cinacalcet cannot be neglected. This review summarizes our current knowledge concerning the potential role(s) of the CaSR expressed in various tissues in CKD-related disorders, independently of parathyroid hormone control.

  3. Chronic ethanol intake modifies renin-angiotensin system-regulating aminopeptidase activities in mouse cerebellum.

    PubMed

    Mayas, M D; Ramírez-Expósito, M J; García, M J; Carrera, M P; Cobo, M; Camacho, B; Martínez Martos, J M

    2005-04-01

    In developing cerebellum, where critical periods of vulnerability have been established for several basic substances, it has been extensively studied the wide array of abnormalities induced by exposure to ethanol (EtOH). However, little is known about the effects of EtOH consumption on cerebellar functions in adult individuals. Several studies show participation in cognitive activities to be concentrated in the lateral cerebellum (hemispheres), whereas basic motor functions such as balance and coordination are represented in the medial parts of the cerebellum (vermis and paravermis). In addition to the circulating renin angiotensin system (RAS), a local system has been postulated in brain. The effector peptides of the RAS are formed via the activity of several aminopeptidases (AP). The present work analyses the effect of chronic EtOH intake on the RAS-regulating AP activities in the soluble and membrane-bound fractions of two cerebellar locations: the hemispheres and the vermis. We hypothesize that cerebellar RAS is involved in basic motor functions rather than in cognitive activities.

  4. Dietary intake of magnesium may modulate depression.

    PubMed

    Yary, Teymoor; Aazami, Sanaz; Soleimannejad, Kourosh

    2013-03-01

    Depressive symptoms are frequent in students and may lead to countless problems. Several hypotheses associate magnesium with depression because of the presence of this mineral in several enzymes, hormones, and neurotransmitters, which may play a key role in the pathological pathways of depression. The aim of this study was to assess whether magnesium intake could modulate depressive symptoms. A cross-sectional study was conducted on a convenience sample of 402 Iranian postgraduate students studying in Malaysia to assess the relationship between magnesium intake and depressive symptoms. The mean age of the participants was 32.54 ± 6.22 years. The results of the study demonstrated an inverse relationship between magnesium intake and depressive symptoms, which persisted even after adjustments for sex, age, body mass index, monthly expenses, close friends, living on campus, smoking (current and former), education, physical activity, and marital status.

  5. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle.

    PubMed

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel; Brzezinska, Zofia; Klapcinska, Barbara; Galbo, Henrik; Gorski, Jan

    2010-09-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid and carbohydrate metabolism.

  6. Isolation, cDNA cloning, and growth promoting activity of rabbitfish (Siganus guttatus) growth hormone.

    PubMed

    Ayson, F G; de Jesus, E G; Amemiya, Y; Moriyama, S; Hirano, T; Kawauchi, H

    2000-02-01

    We report the isolation, cDNA cloning, and growth promoting activity of rabbitfish (Siganus guttatus; Teleostei; Perciformes; Siganidae) growth hormone (GH). Rabbitfish GH was extracted from pituitary glands under alkaline conditions, fractionated by gel filtration chromatography on Sephadex G-100, and purified by high-performance liquid chromatography. The fractions containing GH were identified by immunoblotting with bonito GH antiserum. Under nonreducing conditions, the molecular weight of rabbitfish GH is about 19 kDa as estimated by SDS-PAGE. The purified hormone was potent in promoting growth in rabbitfish fry. Weekly intraperitoneal injections of the hormone significantly accelerated growth. This was evident 3 weeks after the start of the treatment, and its effect was still significant 2 weeks after the treatment was terminated. Rabbitfish GH cDNA was cloned to determine its nucleotide sequence. Excluding the poly (A) tail, rabbitfish GH cDNA is 860 base pairs (bp) long. It contained untranslated regions of 94 and 175 bp in the 5' and 3' ends, respectively. It has an open reading frame of 588 bp coding for a signal peptide of 18 amino acids and a mature protein of 178 amino acid residues. Rabbitfish GH has 4 cysteine residues. On the amino acid level, rabbitfish GH shows high identity (71-74%) with GHs of other perciforms, such as tuna, sea bass, yellow tail, bonito, and tilapia, and less (47-49%) identity with salmonid and carp GHs.

  7. Stress hormone levels in a freshwater turtle from sites differing in human activity.

    PubMed

    Polich, Rebecca L

    2016-01-01

    Glucocorticoids, such as corticosterone (CORT), commonly serve as a measure of stress levels in vertebrate populations. These hormones have been implicated in regulation of feeding behaviour, locomotor activity, body mass, lipid metabolism and other crucial behaviours and physiological processes. Thus, understanding how glucocorticoids fluctuate seasonally and in response to specific stressors can yield insight into organismal health and the overall health of populations. I compared circulating CORT concentrations between two similar populations of painted turtle, Chrysemys picta, which differed primarily in the level of exposure to human recreational activities. I measured basal CORT concentrations as well as the CORT stress response and did not find any substantive difference between the two populations. This similarity may indicate that painted turtles are not stressed by the presence of humans during the nesting season. The results of this study contribute to our understanding of CORT concentrations in freshwater reptiles, a group that is historically under-represented in studies of circulating hormone concentrations; specifically, studies that seek to use circulating concentrations of stress hormones, such as CORT, as a measure of the effect of human activities on wild populations. They also give insight into how these species as a whole may respond to human recreational activities during crucial life-history stages, such as the nesting season. Although there was no discernable difference between circulating CORT concentrations between the urban and rural populations studied, I did find a significant difference in circulating CORT concentrations between male and female C. picta. This important finding provides better understanding of the sex differences between male and female painted turtles and adds to our understanding of this species and other species of freshwater turtle. PMID:27293763

  8. Stress hormone levels in a freshwater turtle from sites differing in human activity

    PubMed Central

    Polich, Rebecca L.

    2016-01-01

    Glucocorticoids, such as corticosterone (CORT), commonly serve as a measure of stress levels in vertebrate populations. These hormones have been implicated in regulation of feeding behaviour, locomotor activity, body mass, lipid metabolism and other crucial behaviours and physiological processes. Thus, understanding how glucocorticoids fluctuate seasonally and in response to specific stressors can yield insight into organismal health and the overall health of populations. I compared circulating CORT concentrations between two similar populations of painted turtle, Chrysemys picta, which differed primarily in the level of exposure to human recreational activities. I measured basal CORT concentrations as well as the CORT stress response and did not find any substantive difference between the two populations. This similarity may indicate that painted turtles are not stressed by the presence of humans during the nesting season. The results of this study contribute to our understanding of CORT concentrations in freshwater reptiles, a group that is historically under-represented in studies of circulating hormone concentrations; specifically, studies that seek to use circulating concentrations of stress hormones, such as CORT, as a measure of the effect of human activities on wild populations. They also give insight into how these species as a whole may respond to human recreational activities during crucial life-history stages, such as the nesting season. Although there was no discernable difference between circulating CORT concentrations between the urban and rural populations studied, I did find a significant difference in circulating CORT concentrations between male and female C. picta. This important finding provides better understanding of the sex differences between male and female painted turtles and adds to our understanding of this species and other species of freshwater turtle. PMID:27293763

  9. Locust flight activity as a model for hormonal regulation of lipid mobilization and transport.

    PubMed

    Van der Horst, Dick J; Rodenburg, Kees W

    2010-08-01

    Flight activity of insects provides a fascinating yet relatively simple model system for studying the regulation of processes involved in energy metabolism. This is particularly highlighted during long-distance flight, for which the locust constitutes a long-standing favored model insect, which as one of the most infamous agricultural pests additionally has considerable economical importance. Remarkably many aspects and processes pivotal to our understanding of (neuro)hormonal regulation of lipid mobilization and transport during insect flight activity have been discovered in the locust; among which are the peptide adipokinetic hormones (AKHs), synthesized and stored by the neurosecretory cells of the corpus cardiacum, that regulate and integrate lipid (diacylglycerol) mobilization and transport, the functioning of the reversible conversions of lipoproteins (lipophorins) in the hemolymph during flight activity, revealing novel concepts for the transport of lipids in the circulatory system, and the structure and functioning of the exchangeable apolipopotein, apolipophorin III, which exhibits a dual capacity to exist in both lipid-bound and lipid-free states that is essential to these lipophorin conversions. Besides, the lipophorin receptor (LpR) was identified and characterized in the locust. In an integrative approach, this short review aims at highlighting the locust as an unrivalled model for studying (neuro)hormonal regulation of lipid mobilization and transport during insect flight activity, that additionally has offered a broad and profound research model for integrative physiology and biochemistry, and particularly focuses on recent developments in the concept of AKH-induced changes in the lipophorin system during locust flight, that deviates fundamentally from the lipoprotein-based transport of lipids in the circulation of mammals. Current studies in this field employing the locust as a model continue to attribute to its role as a favored model organism, but

  10. Role of maternal thyroid hormones in the developing neocortex and during human evolution

    PubMed Central

    Stenzel, Denise; Huttner, Wieland B.

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  11. Role of maternal thyroid hormones in the developing neocortex and during human evolution.

    PubMed

    Stenzel, Denise; Huttner, Wieland B

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  12. Effects of activation and blockade of orexin A receptors in the medial preoptic area on food intake in male rats.

    PubMed

    Sarihi, Abdolrahman; Emam, Amir Hossein; Panah, Mohammad Hosseini; Komaki, Alireza; Seif, Sadegh; Vafaeirad, Majid; Alaii, Elham

    2015-09-14

    It has been shown that activation of type 1 orexinergic receptors (ORX1) in several parts of the hypothalamus stimulate food intake. Orexin A receptive sites for food intake exist primarily in a narrow band of the hypothalamus that is known to be involved in control of energy homeostasis. The present study aimed to investigate the role of orexin receptors in the medial preoptic area (MPOA) on food intake in rats. Twenty-four male rats weighing 200-250g were divided into three groups (n=8 in each group). Rats were cannulated using stereotaxic coordinates above the MPOA. Normal saline was microinjected into the MPOA in the control group. Another group received intra MPOA microinjection of SB334867, a selective antagonist for ORX1 receptors. In the other group, orexin A was microinjected (0.5μl of 1μmol) into the MPOA. Food intake was measured in metabolic cages. The statistical significance of differences between groups was detected by a one way ANOVA. A value of p<0.05 was considered significant. There was no significant difference in food consumption between saline and SB334867 treated groups. However, activation of the orexin receptor in the MPOA significantly increased food intake during the 2 and 8h after orexin A microinjection. Our results showed that during ad libitum access to food, activation but not blockade of the MPOA ORX1 receptor can increase food intake in a time-dependent manner. The role of these receptors in hunger and appetite stimulation requires further study.

  13. Just Be It! Healthy and Fit Increases Fifth Graders' Fruit and Vegetable Intake, Physical Activity, and Nutrition Knowledge

    ERIC Educational Resources Information Center

    DelCampo, Diana; Baca, Jacqueline S.; Jimenez, Desaree; Sanchez, Paula Roybal; DelCampo, Robert

    2011-01-01

    Just Be It! Healthy and Fit reduces the risk factors for childhood obesity for fifth graders using hands-on field trips, in-class lessons, and parent outreach efforts. Pre-test and post-test scores from the year-long classroom instruction showed a statistically significant increase in fruit and vegetable intake, physical activity, and nutrition…

  14. Effects of ostracism and social connection-related activities on adolescents’ motivation to eat and energy intake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: assess the effect of ostracism and social connection-related activities on adolescents’ motivation to eat and their energy intake. Methods Participants (n¼103; M age¼13.6 years) were either ostracized or included when playing a computer game, Cyberball. Next, they wrote about their friend...

  15. Inverse associations of outdoor activity and vitamin D intake with the risk of Parkinson’s disease

    PubMed Central

    Zhu, Dan; Liu, Gui-you; Lv, Zheng; Wen, Shi-rong; Bi, Sheng; Wang, Wei-zhi

    2014-01-01

    Early studies had suggested that vitamin D intake was inversely associated with neurodegenerative diseases, such as Alzheimer’s disease and multiple sclerosis. However, the associations of vitamin D intake and outdoor activities with Parkinson’s disease (PD) are still unclear, so this study is to evaluate these relationships from a case-control study in elderly Chinese. The study population involved 209 cases with new onsets of PD and 210 controls without neurodegenerative diseases. The data on dietary vitamin D and outdoor activities were collected using a food-frequency questionnaire and self-report questionnaire. Multivariable logistic regressions were used to examine the associations between dietary outdoor activities, vitamin D intake and PD. Adjustment was made for sex, age, smoking, alcohol use, education, and body mass index (BMI). Adjusted odds ratios (ORs) for PD in quartiles for outdoor physical activity were 1 (reference), 0.739 (0.413, 1.321), 0.501 (0.282, 0.891), and 0.437 (0.241, 0.795), respectively (P=0.002 for trend). Adjusted ORs for PD in quartiles for total vitamin D intake were 1 (reference), 0.647 (0.357, 1.170), 0.571 (0.318, 1.022), and 0.538 (0.301, 0.960), respectively (P=0.011 for trend). Our study suggested that outdoor activity and total vitamin D intake were inversely associated with PD, and outdoor activity seems to be more significantly associated with decreased risk for PD. PMID:25294382

  16. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    PubMed Central

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.; Großkinsky, Dominik K.; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C.; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of

  17. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E; Großkinsky, Dominik K; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-11-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of

  18. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E; Großkinsky, Dominik K; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-11-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of

  19. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas

    PubMed Central

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-01-01

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared to the snack food itself. PMID:25973686

  20. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas.

    PubMed

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-05-14

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared to the snack food itself.

  1. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas.

    PubMed

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-01-01

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared to the snack food itself. PMID:25973686

  2. Growth hormone (GH) activity is associated with increased serum oestradiol and reduced anti-Müllerian hormone in healthy male volunteers treated with GH and a GH antagonist.

    PubMed

    Andreassen, M; Frystyk, J; Faber, J; Kristensen, L Ø; Juul, A

    2013-07-01

    Growth hormone (GH) and insulin-like growth factor I (IGF-I) receptors are present on pituitary gonadotrophs and on testicular Leydig and Sertoli cells. Thus, the GH/IGF-I system may modulate the pituitary-gonadal axis in males. This is a randomized cross-over study. Eight healthy male volunteers (mean age 35, range 29-46 years) were treated with GH for 3 weeks (1st week 0.01, 2nd week 0.02, 3rd week 0.03 mg/day/kg) or a GH receptor antagonist (Pegvisomant) (1st week 10, last 2 weeks 15 mg/day), separated by 8 weeks of washout. Before and after the two treatment periods, concentrations of luteinizing hormone (LH), follicle-stimulating hormone, testosterone, oestradiol, sex hormone-binding globulin, inhibin B and Anti-Müllerian Hormone (AMH) were measured. During GH treatment, IGF-I increased [(median (IQR)] 166 (162-235) vs. 702 (572-875) μg/L, p < 0.001) together with oestradiol [(mean ± SD) 78 ± 23 vs. 111 ± 30 pm, p = 0.019], and the oestradiol/testosterone ratio (p = 0.003). By contrast, AMH (42 ± 14 vs. 32 ± 7 pm, p = 0.018), Inhibin B (211 (146-226) vs. 176 (129-204) ng/L, p = 0.059) and LH (3.8 ± 1.5 vs. 3.2 ± 1.2 U/L, p = 0.096) decreased. During pegvisomant treatment IGF-I (204 (160-290) vs. 106 (97-157) μg/L, p = 0.001) and oestradiol (86 ± 28 vs. 79 ± 25 pm, p = 0.060) decreased. No significant changes or trends in the other reproductive hormones occurred during the two treatment regimens. GH/IGF-I activity was positively associated with serum oestradiol, suggesting that GH/IGF-I stimulates aromatase activity in vivo. As a novel observation, we found that high GH activity was associated with reduced levels of the Sertoli cell marker AMH. Further studies are needed to evaluate possible effects of GH on Sertoli cell function and/or spermatogenesis. PMID:23785020

  3. Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat.

    PubMed

    Lin, Jean Z; Martagón, Alexandro J; Cimini, Stephanie L; Gonzalez, Daniel D; Tinkey, David W; Biter, Amadeo; Baxter, John D; Webb, Paul; Gustafsson, Jan-Åke; Hartig, Sean M; Phillips, Kevin J

    2015-11-24

    The functional conversion of white adipose tissue (WAT) into a tissue with brown adipose tissue (BAT)-like activity, often referred to as "browning," represents an intriguing strategy for combating obesity and metabolic disease. We demonstrate that thyroid hormone receptor (TR) activation by a synthetic agonist markedly induces a program of adaptive thermogenesis in subcutaneous WAT that coincides with a restoration of cold tolerance to cold-intolerant mice. Distinct from most other browning agents, pharmacological TR activation dissociates the browning of WAT from activation of classical BAT. TR agonism also induces the browning of white adipocytes in vitro, indicating that TR-mediated browning is cell autonomous. These data establish TR agonists as a class of browning agents, implicate the TRs in the browning of WAT, and suggest a profound pharmacological potential of this action.

  4. Children at familial risk for obesity: an examination of dietary intake, physical activity and weight status.

    PubMed

    Eck, L H; Klesges, R C; Hanson, C L; Slawson, D

    1992-02-01

    A large cohort of children was divided into two groups based on their parents' weight status. The high risk group had one or two overweight parent(s) (n = 92, 4.4 +/- 0.5 years), while the low risk group had no parent overweight (n = 95, 4.5 +/- 0.5 years). Weight of the two groups was similar at the start of the study but the high risk group gained marginally more weight over a one year period (P = 0.05). Although total energy intake was similar, the high risk group was consuming a larger percentage of energy from fat (P = 0.0004) and a smaller percentage from carbohydrate (P = 0.0002). Observed physical activity as similar for most levels but marginally higher for the stationary level and marginally lower in total activity in the high risk group. These results suggest a pattern that may lead to increased weight gain in a high risk group as they grow older.

  5. The role of food intake regulating peptides in cardiovascular regulation.

    PubMed

    Mikulášková, B; Maletínská, L; Zicha, J; Kuneš, J

    2016-11-15

    Obesity is a risk factor that worsens cardiovascular events leading to higher morbidity and mortality. However, the exact mechanisms of relation between obesity and cardiovascular events are unclear. Nevertheless, it has been demonstrated that pharmacological therapy for obesity has great potential to improve some cardiovascular problems. Therefore, it is important to determine the common mechanisms regulating both food intake and blood pressure. Several hormones produced by peripheral tissues work together with neuropeptides involved in the regulation of both food intake and blood pressure. Anorexigenic (food intake lowering) hormones such as leptin, glucagon-like peptide-1 and cholecystokinin cooperate with α-melanocyte-stimulating hormone, cocaine- and amphetamine-regulated peptide as well as prolactin-releasing peptide. Curiously their collective actions result in increased sympathetic activity, especially in the kidney, which could be one of the factors responsible for the blood pressure increases seen in obesity. On the other hand, orexigenic (food intake enhancing) peptides, especially ghrelin released from the stomach and acting in the brain, cooperates with orexins, neuropeptide Y, melanin-concentrating hormone and galanin, which leads to decreased sympathetic activity and blood pressure. This paradox should be intensively studied in the future. Moreover, it is important to know that the hypothalamus together with the brainstem seem to be major structures in the regulation of food intake and blood pressure. Thus, the above mentioned regions might be essential brain components in the transmission of peripheral signals to the central effects. In this short review, we summarize the current information on cardiovascular effects of food intake regulating peptides. PMID:27450151

  6. The role of food intake regulating peptides in cardiovascular regulation.

    PubMed

    Mikulášková, B; Maletínská, L; Zicha, J; Kuneš, J

    2016-11-15

    Obesity is a risk factor that worsens cardiovascular events leading to higher morbidity and mortality. However, the exact mechanisms of relation between obesity and cardiovascular events are unclear. Nevertheless, it has been demonstrated that pharmacological therapy for obesity has great potential to improve some cardiovascular problems. Therefore, it is important to determine the common mechanisms regulating both food intake and blood pressure. Several hormones produced by peripheral tissues work together with neuropeptides involved in the regulation of both food intake and blood pressure. Anorexigenic (food intake lowering) hormones such as leptin, glucagon-like peptide-1 and cholecystokinin cooperate with α-melanocyte-stimulating hormone, cocaine- and amphetamine-regulated peptide as well as prolactin-releasing peptide. Curiously their collective actions result in increased sympathetic activity, especially in the kidney, which could be one of the factors responsible for the blood pressure increases seen in obesity. On the other hand, orexigenic (food intake enhancing) peptides, especially ghrelin released from the stomach and acting in the brain, cooperates with orexins, neuropeptide Y, melanin-concentrating hormone and galanin, which leads to decreased sympathetic activity and blood pressure. This paradox should be intensively studied in the future. Moreover, it is important to know that the hypothalamus together with the brainstem seem to be major structures in the regulation of food intake and blood pressure. Thus, the above mentioned regions might be essential brain components in the transmission of peripheral signals to the central effects. In this short review, we summarize the current information on cardiovascular effects of food intake regulating peptides.

  7. Leap of Faith: Does serum luteinizing hormone always accurately reflect central reproductive neuroendocrine activity?

    PubMed Central

    Moenter, Suzanne M.

    2015-01-01

    Function of the central aspects of the hypothalamo-pituitary-gonadal axis has been assessed in a number of ways including direct measurements of hypothalamic output and indirect measures using gonadotropin release from the pituitary as a bioassay for reproductive neuroendocrine activity. Here, methods for monitoring these various parameters are briefly reviewed and then examples presented of both concordance and discrepancy between central and peripheral measurements, with a focus on situations in which elevated GnRH neurosecretion is not reflected accurately by pituitary luteinizing hormone release. Implications for interpretation of gonadotropin data are discussed. PMID:26278916

  8. Endogenous opiates modulate the pulsatile secretion of biologically active luteinizing hormone in man.

    PubMed

    Veldhuis, J D; Rogol, A D; Johnson, M L

    1983-12-01

    We studied the secretion of physiological pools of immunoreactive and biologically active luteinizing hormone in response to endogenous pulses of gonadotropin-releasing hormone (GNRH) in eugonadal men. Concentrations of immunoactive and bioactive luteinizing hormone (LH) were determined in blood drawn at 20-min intervals for 8 h in eight normal men under two conditions: (a) after placebo, in order to evaluate spontaneous LH pulsations in the basal state, and (b) after administration of the opiate-receptor antagonist, naltrexone, which is believed to amplify the pulsatile release of endogenous GNRH. Spontaneous and naltrexone-stimulated secretion of LH occurred in pulses of high biological activity, as measured in the RICT (rat interstitial cell testosterone bioassay), i.e., bioactive:immunoactive LH ratios within both spontaneous and naltrexone-stimulated LH pulses were higher than corresponding interpulse ratios (P less than 0.001). Quantitative characterization of the pulsatile release of bioactive LH revealed the following specific effects of opiate-receptor blockade: increased 8-h mean and integrated serum concentrations of bioactive LH (P less than 0.002), enhanced pulse frequency of bioactive LH release (P less than 0.001), and augmented peak amplitude of bio-LH pulses (P less than 0.01). Moreover, this increase in episodic secretion of bioactive LH was associated with increased 8-h mean and integrated serum testosterone concentrations in these men (P less than 0.05). We conclude the following: (a) LH is normally released in spontaneous pulses of high biological activity in men; (b) when the endogenous GNRH signal is amplified by opiate-receptor blockade, the pituitary gland releases more frequent bioactive LH pulses, which are of high amplitude and contain a high bioactive:immunoactive LH ratio. This increase in pulsatile release of bioactive LH quantitated in the RICT assay in vitro is reflected by acutely increased serum testosterone concentrations in vivo

  9. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants.

  10. Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta.

    PubMed

    Shi, Wei; Zhang, Feng-Xian; Hu, Guan-Jiu; Hao, Ying-Qun; Zhang, Xiao-Wei; Liu, Hong-Ling; Wei, Si; Wang, Xin-Ru; Giesy, John P; Yu, Hong-Xia

    2012-07-01

    Thyroid hormone disrupting compounds in water sources is a concern. Thyroid hormone (TH) agonist and antagonist activities of water sources from the Yangtze River, Huaihe River, Taihu Lake and ground water in the Yangtze River Delta region were evaluated by use of a TH reporter gene assay based on the green monkey kidney fibroblast (CV-1). While weak TH receptor (TR) agonist potency was observed in only one of 15 water sources, antagonist potency was present in most of the water sources. TR antagonist equivalents could be explained by the presence of dibutyl phthalate (DBP), with concentrations ranging from 2.8×10(1) to 1.6×10(3) μg DBP /L (ATR-EQ(50)s). None of the ground waters exhibited TH agonist potencies while all of the samples from Taihu Lake displayed notable TR antagonist potencies. To identify the responsible thyroid active compounds, instrumental analysis was conducted to measure a list of potential thyroid-disrupting chemicals, including organochlorine (OC) pesticides and phthalate esters. Combining the results of the instrumental analysis with those of the bioassay, DBP was determined to account for 17% to 144% of ATR-EQ(50)s in water sources. Furthermore, ATR-EQ(20-80) ranges for TR antagonist activities indicated that samples from locations WX-1 and WX-2 posed the greatest health concern and the associated uncertainty may warrant further investigation.

  11. Metabolic hormones in saliva: origins and functions

    PubMed Central

    Zolotukhin, S.

    2012-01-01

    The salivary proteome consists of thousands of proteins, which include, among others, hormonal modulators of energy intake and output. Although the functions of this prominent category of hormones in whole body energy metabolism are well characterized, their functions in the oral cavity, whether as a salivary component, or when expressed in taste cells, are less studied and poorly understood. The respective receptors for the majority of salivary metabolic hormones have been also shown to be expressed in salivary glands, taste cells, or other cells in the oral mucosa. This review provides a comprehensive account of the gastrointestinal hormones, adipokines, and neuropeptides identified in saliva, salivary glands, or lingual epithelium, as well as their respective cognate receptors expressed in the oral cavity. Surprisingly, few functions are assigned to salivary metabolic hormones, and these functions are mostly associated with the modulation of taste perception. Because of the well-characterized correlation between impaired oral nutrient sensing and increased energy intake and body mass index, a conceptually provocative point of view is introduced, whereupon it is argued that targeted changes in the composition of saliva could affect whole body metabolism in response to the activation of cognate receptors expressed locally in the oral mucosa. PMID:22994880

  12. Web-enabled and improved software tools and data are needed to measure nutrient intakes and physical activity for personalized health research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food intake, physical activity and genetic make-up each impact health and each factor influences the impact of the other two factors. Nutrigenomics is a term used to describe interactions between food intake, physical activity and genomics. Knowledge about the interplay between environment and ge...

  13. Activation of hypothalamic serotonin receptors reduced intake of dietary fat and protein but not carbohydrate.

    PubMed

    Smith, B K; York, D A; Bray, G A

    1999-09-01

    Systemic treatment with dexfenfluramine (dF), fluoxetine, or serotonin (5-hydroxytryptamine, 5-HT) recently was shown to suppress fat and occasionally protein but not carbohydrate intake in rats when a macronutrient selection paradigm was employed. These reports contrast with the prevailing literature, which for the past decade has described a role for serotonin neurotransmission in the modification of dietary carbohydrate consumption. To test the hypothesis that the suppression of fat selection and/or consumption by systemic serotonin agonists involves stimulation of central 5-HT receptors, a series of experiments was performed in nondeprived rats. In experiment 1, third cerebroventricular (3V) infusion of the nonselective 5-HT antagonist metergoline prevented the reduction in fat but not carbohydrate feeding caused by systemic dF. Furthermore, 3V metergoline alone increased fat intake. In experiments 2 and 3, 3V infusion of 5-HT(1B/2C) receptor agonists D-norfenfluramine (DNF) or quipazine inhibited fat intake exclusively. Next, the infusion of DNF or 5-HT into the region of the paraventricular nucleus (PVN) reduced both fat and protein intake (experiments 4 and 5). Finally, in experiment 6, when rats were grouped by baseline diet preference, 5-HT infused into the PVN led to a dose-related decrease in fat intake in both carbohydrate- and fat-preferring rats. In contrast, there were no dose effects of 5-HT on carbohydrate or protein intake in either preference group. However, in fat-preferring rats, the highest dose of 5-HT reduced intake of all three macronutrient diets. These results demonstrate a selective effect of exogenous serotonergic drugs in the hypothalamus to reduce fat rather than carbohydrate intake and suggest that higher baseline fat intake enhances responsivity to serotonergic drugs.

  14. How do sex hormones modify arrhythmogenesis in long-QT syndrome? – Sex hormone effects on arrhythmogenic substrate and triggered activity

    PubMed Central

    Odening, Katja E.; Koren, Gideon

    2015-01-01

    Gender differences in cardiac repolarization and the arrhythmogenic risk of patients with inherited and acquired long-QT syndromes are well appreciated clinically. Enhancing our knowledge of the mechanisms underlying these differences is critical to improve our therapeutic strategies for preventing sudden cardiac death in such patients. This review summarizes the effects of sex hormones on the expression and function of ion channels that control cardiac cell excitation and repolarization as well as key proteins that regulate Ca2+ dynamics at the cellular level. Moreover, it examines the role of sex hormones in modifying the dynamic spatiotemporal (regional and transmural) heterogeneities in action potential duration (e.g., the arrhythmogenic substrate) and the susceptibility to (sympathetic) triggered activity at the tissue, organ, and whole-animal levels. Finally, it explores the implications of these effects on the management of LQTS patients. PMID:24954242

  15. Stressor-specific effects of sex on HPA axis hormones and activation of stress-related neurocircuitry.

    PubMed

    Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge

    2013-11-01

    Experiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress. Female rats had a similar threshold of HPA axis hormone release following low intensity noise stress as male rats. Sex did not affect the acute release, or the return of HPA axis hormones to baseline following moderate intensity noise stress. Sensitive indices of auditory functioning obtained by modulation of the acoustic startle reflex by weak pre-pulses did not reveal any sexual dimorphism. Furthermore, male and female rats exhibited similar c-fos mRNA expression in the brain following noise stress, including several sex-influenced stress-related regions. The HPA axis response to noise stress was not affected by stage of estrous cycle, and ovariectomy significantly increased hormone release. Direct comparison of HPA axis hormone release to two different stressors in the same animals revealed that although female rats exhibit robustly higher HPA axis hormone release after restraint stress, the same effect was not observed following moderate and high intensity loud noise stress. Finally, the differential effect of sex on HPA axis responses to noise and restraint stress cannot readily be explained by differential social cues or general pain processing. These studies suggest the effect of sex on acute stress-induced HPA axis hormone activity is highly dependent on the type of stressor.

  16. The chemical chaperones tauroursodeoxycholic and 4-phenylbutyric acid accelerate thyroid hormone activation and energy expenditure

    PubMed Central

    da-Silva, Wagner S.; Ribich, Scott; e Drigo, Rafael Arrojo; Castillo, Melany; Patty, Mary-Elizabeth; Bianco, Antonio C.

    2011-01-01

    Exposure of cell lines endogenously expressing the thyroid hormone activating enzyme type 2 deiodinase (D2) to the chemical chaperones tauroursodeoxycholic acid (TUDCA) or 4-phenylbutiric acid (4-PBA) increases D2 expression, activity and T3 production. In brown adipocytes, TUDCA or 4-PBA induced T3-dependent genes and oxygen consumption (~2-fold), an effect partially lost in D2 knockout cells. In wild type, but not in D2 knockout mice, administration of TUDCA lowered the respiratory quotient, doubled brown adipose tissue D2 activity and normalized the glucose intolerance associated with high fat feeding. Thus, D2 plays a critical role in the metabolic effects of chemical chaperones. PMID:21237159

  17. Glucocorticoid hormones increase the activity of plasma membrane alkaline phosphodiesterase I in rat hepatoma cells.

    PubMed Central

    Rousseau, G G; Amar-Costesec, A; Verhaegen, M; Granner, D K

    1980-01-01

    In rat hepatoma cells the synthetic glucocorticoid dexamethasone causes a 3-fold increase in the activity of the plasma membrane enzyme alkaline phosphodiesterase I (oligonucleat 5'-nucleotidohydrolase, EC 3.1.4.1). The data are consistent with an induction phenomenon mediated by the glucocorticoid receptor involved in tyrosine aminotransferase induction. The effect on alkaline phosphodiesterase I is not a reflection of a general membrane effect of dexamethasone, because the activity of three other enzymes of the plasma membrane is unaffected. On the other hand, nucleoside diphosphatase (nucleoside diphosphate phosphohydrolase acting on ADP) activity is inhibited. Thus, two more enzymes sensitive to glucocorticoids have been identified in a cell line in which these hormones influence only very few gene products. This paper describes enzymatic changes in the plasma membrane of rat hepatoma cells in which glucocorticoids normalize a number of membrane-associated processes that are considered to be characteristic of transformed cells. PMID:6102383

  18. Hormone levels

    MedlinePlus

    Blood or urine tests can determine the levels of various hormones in the body. This includes reproductive hormones, thyroid hormones, adrenal hormones, pituitary hormones, and many others. For more information, see: ...

  19. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice

    PubMed Central

    Blednov, Y.A.; Benavidez, J.M.; Geil, C.; Perra, S.; Morikawa, H.; Harris, R.A.

    2011-01-01

    Previous studies showed that mice with genetic predisposition for high alcohol consumption as well as human alcoholics show changes in brain expression of genes related to immune signaling. In addition, mutant mice lacking genes related to immune function show decreased alcohol consumption (Blednov et al., in press), suggesting that immune signaling promotes alcohol consumption. To test the possibility that activation of immune signaling will increase alcohol consumption, we treated mice with lipopolysaccaride (LPS; 1 mg/kg, i.p.) and tested alcohol consumption in the continuous two-bottle choice test. To take advantage of the long-lasting activation of brain immune signaling by LPS, we measured drinking beginning one week or one month after LPS treatment and continued the studies for several months. LPS produced persistent increases in alcohol consumption in C57/Bl6 J (B6) inbred mice, FVBxB6F1 and B6xNZBF1 hybrid mice, but not in FVB inbred mice. To determine if this effect of LPS is mediated through binding to TLR4, we tested mice lacking CD14, a key component of TLR4 signaling. These null mutants showed no increase of alcohol intake after treatment with LPS. LPS treatment decreased ethanol-conditioned taste aversion but did not alter ethanol-conditioned place preference (B6xNZBF1 mice). Electro-physiological studies of dopamine neurons in the ventral tegmental area showed that pretreatment of mice with LPS decreased the neuronal firing rate. These results suggest that activation of immune signaling promotes alcohol consumption and alters certain aspects of alcohol reward/aversion. PMID:21266194

  20. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle.

    PubMed

    Lesmana, Ronny; Sinha, Rohit A; Singh, Brijesh K; Zhou, Jin; Ohba, Kenji; Wu, Yajun; Yau, Winifred W Y; Bay, Boon-Huat; Yen, Paul M

    2016-01-01

    Thyroid hormone (TH) and autophagy share similar functions in regulating skeletal muscle growth, regeneration, and differentiation. Although TH recently has been shown to increase autophagy in liver, the regulation and role of autophagy by this hormone in skeletal muscle is not known. Here, using both in vitro and in vivo models, we demonstrated that TH induces autophagy in a dose- and time-dependent manner in skeletal muscle. TH induction of autophagy involved reactive oxygen species (ROS) stimulation of 5'adenosine monophosphate-activated protein kinase (AMPK)-Mammalian target of rapamycin (mTOR)-Unc-51-like kinase 1 (Ulk1) signaling. TH also increased mRNA and protein expression of key autophagy genes, microtubule-associated protein light chain 3 (LC3), Sequestosome 1 (p62), and Ulk1, as well as genes that modulated autophagy and Forkhead box O (FOXO) 1/3a. TH increased mitochondrial protein synthesis and number as well as basal mitochondrial O2 consumption, ATP turnover, and maximal respiratory capacity. Surprisingly, mitochondrial activity and biogenesis were blunted when autophagy was blocked in muscle cells by Autophagy-related gene (Atg)5 short hairpin RNA (shRNA). Induction of ROS and 5'adenosine monophosphate-activated protein kinase (AMPK) by TH played a significant role in the up-regulation of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), the key regulator of mitochondrial synthesis. In summary, our findings showed that TH-mediated autophagy was essential for stimulation of mitochondrial biogenesis and activity in skeletal muscle. Moreover, autophagy and mitochondrial biogenesis were coupled in skeletal muscle via TH induction of mitochondrial activity and ROS generation. PMID:26562261

  1. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion.

    PubMed

    Han, Su Young; McLennan, Timothy; Czieselsky, Katja; Herbison, Allan E

    2015-10-20

    Normal reproductive functioning in mammals depends upon gonadotropin-releasing hormone (GnRH) neurons generating a pulsatile pattern of gonadotropin secretion. The neural mechanism underlying the episodic release of GnRH is not known, although recent studies have suggested that the kisspeptin neurons located in the arcuate nucleus (ARN) may be involved. In the present experiments we expressed channelrhodopsin (ChR2) in the ARN kisspeptin population to test directly whether synchronous activation of these neurons would generate pulsatile luteinizing hormone (LH) secretion in vivo. Characterization studies showed that this strategy targeted ChR2 to 70% of all ARN kisspeptin neurons and that, in vitro, these neurons were activated by 473-nm blue light with high fidelity up to 30 Hz. In vivo, the optogenetic activation of ARN kisspeptin neurons at 10 and 20 Hz evoked high amplitude, pulse-like increments in LH secretion in anesthetized male mice. Stimulation at 10 Hz for 2 min was sufficient to generate repetitive LH pulses. In diestrous female mice, only 20-Hz activation generated significant increments in LH secretion. In ovariectomized mice, 5-, 10-, and 20-Hz activation of ARN kisspeptin neurons were all found to evoke LH pulses. Part of the sex difference, but not the gonadal steroid dependence, resulted from differential pituitary sensitivity to GnRH. Experiments in kisspeptin receptor-null mice, showed that kisspeptin was the critical neuropeptide underlying the ability of ARN kisspeptin neurons to generate LH pulses. Together these data demonstrate that synchronized activation of the ARN kisspeptin neuronal population generates pulses of LH. PMID:26443858

  2. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion.

    PubMed

    Han, Su Young; McLennan, Timothy; Czieselsky, Katja; Herbison, Allan E

    2015-10-20

    Normal reproductive functioning in mammals depends upon gonadotropin-releasing hormone (GnRH) neurons generating a pulsatile pattern of gonadotropin secretion. The neural mechanism underlying the episodic release of GnRH is not known, although recent studies have suggested that the kisspeptin neurons located in the arcuate nucleus (ARN) may be involved. In the present experiments we expressed channelrhodopsin (ChR2) in the ARN kisspeptin population to test directly whether synchronous activation of these neurons would generate pulsatile luteinizing hormone (LH) secretion in vivo. Characterization studies showed that this strategy targeted ChR2 to 70% of all ARN kisspeptin neurons and that, in vitro, these neurons were activated by 473-nm blue light with high fidelity up to 30 Hz. In vivo, the optogenetic activation of ARN kisspeptin neurons at 10 and 20 Hz evoked high amplitude, pulse-like increments in LH secretion in anesthetized male mice. Stimulation at 10 Hz for 2 min was sufficient to generate repetitive LH pulses. In diestrous female mice, only 20-Hz activation generated significant increments in LH secretion. In ovariectomized mice, 5-, 10-, and 20-Hz activation of ARN kisspeptin neurons were all found to evoke LH pulses. Part of the sex difference, but not the gonadal steroid dependence, resulted from differential pituitary sensitivity to GnRH. Experiments in kisspeptin receptor-null mice, showed that kisspeptin was the critical neuropeptide underlying the ability of ARN kisspeptin neurons to generate LH pulses. Together these data demonstrate that synchronized activation of the ARN kisspeptin neuronal population generates pulses of LH.

  3. Comparison of in vitro hormone activities of selected phthalates using reporter gene assays.

    PubMed

    Shen, Ouxi; Du, Guizhen; Sun, Hong; Wu, Wei; Jiang, Yi; Song, Ling; Wang, Xinru

    2009-12-01

    Phthalates are widely used in the plastic industry and food packaging, imparting softness and flexibility to normally rigid plastic medical devices and children's toys. Even though phthalates display low general toxicity, there is increasing concern on the effects of endocrine system induced by some of phthalate compounds. The hormone activity of dibutyl phthalate (DBP), mono-n-butyl phthalate (MBP) and di-2-ethylhexyl phthalate (DEHP) were assessed using the luciferase reporter gene assays. The results showed that DBP, MBP and DEHP, not only exhibited potent antiandrogenic activity, with IC(50) value of 1.05x10(-6), 1.22x10(-7)M and exceeding 1x10(-4)M respectively, but also showed the androgenic activity with EC(50) value of 6.17x10(-6), 1.13x10(-5)M and exceeding 1x10(-4)M. We also found that all the three related chemicals possessed thyroid receptor (TR) antagonist activity with IC(50) of 1.31x10(-5), 2.77x10(-6)M and exceeding 1x10(-4)M respectively, and none showed TR agonist activity. These results indicate that TR might be the targets of industrial chemicals. In the ER mediate reporter gene assay, three chemicals showed no agonistic activity except for DBP, which appeared weakly estrogenic at the concentration of 1.0x10(-4)M. Together, the findings demonstrate that the three phthalates could simultaneously disrupt the function of two or more hormonal receptors. Therefore, these phthalates should be considered in risk assessments for human health.

  4. Novel pyrazole derivatives as neutral CB₁ antagonists with significant activity towards food intake.

    PubMed

    Manca, Ilaria; Mastinu, Andrea; Olimpieri, Francesca; Falzoi, Matteo; Sani, Monica; Ruiu, Stefania; Loriga, Giovanni; Volonterio, Alessandro; Tambaro, Simone; Bottazzi, Mirko Emilio Heiner; Zanda, Matteo; Pinna, Gérard Aimè; Lazzari, Paolo

    2013-04-01

    In spite of rimonabant's withdrawal from the European market due to its adverse effects, interest in the development of drugs based on CB1 antagonists is revamping on the basis of the peculiar properties of this class of compounds. In particular, new strategies have been proposed for the treatment of obesity and/or related risk factors through CB1 antagonists, i.e. by the development of selectively peripherally acting agents or by the identification of neutral CB1 antagonists. New compounds based on the lead CB1 antagonist/inverse agonist rimonabant have been synthesized with focus on obtaining neutral CB1 antagonists. Amongst the new derivatives described in this paper, the mixture of the two enantiomers (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-(2-cyclohexyl-1-hydroxyethyl)-4-methyl-1H-pyrazole ((±)-5), and compound 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-[(Z)-2-cyclohexyl-1-fluorovinyl]-4-methyl-1H-pyrazole ((Z)-6), showed interesting pharmacological profiles. According to the preliminary pharmacological evaluation, these novel pyrazole derivatives showed in fact both neutral CB1 antagonism behaviour and significant in vivo activity towards food intake.

  5. Preparation, characterization and molecular modeling of PEGylated human growth hormone with agonist activity.

    PubMed

    Khameneh, Bahman; Jaafari, Mahmoud Reza; Hassanzadeh-Khayyat, Mohammad; Varasteh, AbdolReza; Chamani, JamshidKhan; Iranshahi, Mehrdad; Mohammadpanah, Hamid; Abnous, Khalil; Saberi, Mohammad Reza

    2015-09-01

    In this study, site-specific PEGylated human growth hormone (hGH) was prepared by microbial transglutaminase, modeled and characterized. To this end, the effects of different reaction parameters including reaction media, PEG:protein ratios, reaction time and pH value were investigated. PEG-hGH was purified by size exclusion chromatography method and analyzed by SDS-PAGE, BCA, peptide mapping, ESI and MALDI-TOF-TOF mass spectroscopy methods. Biophysical and biological properties of PEG-hGH were evaluated. Molecular simulation was utilized to provide molecular insight into the protein-receptor interaction. The optimum conditions that were obtained for PEGylation were phosphate buffer with pH of 7.4, 48 h of stirring and PEG:protein ratio of 40:1. By this method, mono-PEG-hGH with high reaction yield was obtained and PEGylation site was at Gln-40 residue. The circular dichroism and fluorescence spectrum indicated that PEGylation did not change the secondary structure while tertiary structure was altered. Upon enzymatic PEGylation, agonistic activity of hGH was preserved; however, Somavert(®), which is prepared by chemical PEGylation, is an antagonist form of protein. These data were confirmed by the total energy of affinity obtained by computational protein-receptor interaction. In conclusion, PEGylation of hGH was led to prepare a novel form of hormone with an agonist activity which merits further investigations. PMID:26116386

  6. Hormonal contraceptives masculinize brain activation patterns in the absence of behavioral changes in two numerical tasks.

    PubMed

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert

    2014-01-16

    The aim of the present study was to identify, whether and how oral hormonal contraceptives (OCs) alter women's number processing. Behavioral performance and brain activation patterns (BOLD-response) of 14 OC-users were evaluated during two distinct numerical tasks (number comparison, number bisection) and compared to 16 men (high testosterone), and 16 naturally cycling women, once during their follicular (low hormone levels) and once during their luteal cycle phase (high progesterone). For both tasks, reliable sex differences and menstrual cycle dependent modulation have previously been described. If progestogenic effects of the synthetic progestins contained in OC play a predominant role, OC-users should be comparable to luteal women. If androgenic effects of the synthetic steroids exert the progestogenic actions, OC-users should be comparable to men. Likewise, if neither of the above are the case, the reduction of endogenous steroids by OCs should make OC-users comparable to follicular women. Our findings suggest that OC-users resemble follicular women in their behavioral performance, but show male-like brain activation patterns during both tasks. Analysis of brain-behavior relationships suggests that OC-users differ from naturally cycling women in the way they recruit their neural resources to deal with challenges of the tasks. We conclude that OCs, which are used by 100 million women worldwide, may have profound effects on cognition that have not been recognized so far. PMID:24231554

  7. Thyroid hormones increase Na -H exchange activity in renal brush border membranes

    SciTech Connect

    Kinsella, J.; Sacktor, B.

    1985-06-01

    Na -H exchange activity, i.e., amiloride-sensitive Na and H flux, in renal proximal tubule brush border (luminal) membrane vesicles was increased in the hyperthyroid rat and decreased in the hypothyroid rat, relative to the euthyroid animal. A positive correlation was found between Na -H exchange activity and serum concentrations of thyroxine (T4) and triiodothyronine (T3). The thyroid status of the animal did not alter amiloride-insensitive Na uptake. The rate of passive pH gradient dissipation was higher in membrane vesicles from hyperthyroid rats compared to the rate in vesicles from hypothyroid animals, a result which would tend to limit the increase in Na uptake in vesicles from hyperthyroid animals. Na -dependent phosphate uptake was increased in membrane vesicles from hyperthyroid rats; Na -dependent D-glucose and L-proline uptakes were not changed by the thyroid status of the animal. The effect of thyroid hormones in increasing the uptake of Na in the brush border membrane vesicle is consistent with the action of the hormones in enhancing renal Na reabsorption.

  8. Thyroid hormone disrupting activities of sediment from the Guanting Reservoir, Beijing, China.

    PubMed

    Li, Jian; Li, Morui; Ren, Shujuan; Feng, Chenglian; Li, Na

    2014-06-15

    In the present study, yeast bioassays were used to evaluate and characterize the thyroid receptor (TR) disrupting activities of the organic extracts and elutriates of the sediments from the Guanting Reservoir, Beijing, China. An accelerated solvent extraction was used to separate the organic extracts, which were subjected to a yeast bioassay. The organic extracts could affect thyroid hormone signaling by decreasing the binding of the thyroid hormone. The TR antagonistic activity equivalents (TEQbio) referring to amiodarone hydrochloride were calculated and the observed TEQbio-organic extracts ranged from 25.4 ± 3.7 to 176.9 ± 18.0 μg/g. Elutriate toxicity tests using the modified yeast bioassay revealed that the elutriates also significantly antagonized the TR, with the TEQbio-elutriates ranging from N.D. to 7.8 ± 0.8 μg/L. To characterize the toxic compounds, elutriates were extracted by using a C18 cartridge or treated with ethylenediaminetetraacetic acid (EDTA, 30 mg/L). The results suggested that the addition of EDTA eliminated over 74.3% of the total effects, and the chemical analysis revealed that heavy metals, some of which exhibited TR disrupting potency, for example Zn and Cd, were detectable with higher concentrations in the elutriates. Thus, the cause(s) of toxicity in the elutriate appear to be partly related to the heavy metals.

  9. Third ventricular coinjection of subthreshold doses of NPY and AgRP stimulate food hoarding and intake and neural activation.

    PubMed

    Teubner, Brett J W; Keen-Rhinehart, Erin; Bartness, Timothy J

    2012-01-01

    We previously demonstrated that 3rd ventricular (3V) neuropeptide Y (NPY) or agouti-related protein (AgRP) injection potently stimulates food foraging/hoarding/intake in Siberian hamsters. Because NPY and AgRP are highly colocalized in arcuate nucleus neurons in this and other species, we tested whether subthreshold doses of NPY and AgRP coinjected into the 3V stimulates food foraging, hoarding, and intake, and/or neural activation [c-Fos immunoreactivity (c-Fos-ir)] in hamsters housed in a foraging/hoarding apparatus. In the behavioral experiment, each hamster received four 3V treatments by using subthreshold doses of NPY and AgRP for all behaviors: 1) NPY, 2) AgRP, 3) NPY+AgRP, and 4) saline with a 7-day washout period between treatments. Food foraging, intake, and hoarding were measured 1, 2, 4, and 24 h and 2 and 3 days postinjection. Only when NPY and AgRP were coinjected was food intake and hoarding increased. After identical treatment in separate animals, c-Fos-ir was assessed at 90 min and 14 h postinjection, times when food intake (0-1 h) and hoarding (4-24 h) were uniquely stimulated. c-Fos-ir was increased in several hypothalamic nuclei previously shown to be involved in ingestive behaviors and the central nucleus of the amygdala (CeA), but only in NPY+AgRP-treated animals (90 min and 14 h: magno- and parvocellular regions of the hypothalamic paraventricular nucleus and perifornical area; 14 h only: CeA and sub-zona incerta). These results suggest that NPY and AgRP interact to stimulate food hoarding and intake at distinct times, perhaps released as a cocktail naturally with food deprivation to stimulate these behaviors.

  10. Relation of dietary restraint scores to activation of reward-related brain regions in response to food intake, anticipated intake, and food pictures.

    PubMed

    Burger, Kyle S; Stice, Eric

    2011-03-01

    Prospective studies indicate that individuals with elevated dietary restraint scores are at increased risk for future bulimic symptom onset, suggesting that these individuals may show hyper-responsivity of reward regions to food and food cues. Thus, we used functional magnetic resonance imaging (fMRI) to examine the relation of dietary restraint scores to activation of reward-related brain regions in response to receipt and anticipated receipt of chocolate milkshake and exposure to pictures of appetizing foods in 39 female adolescents (mean age=15.5 ± 0.94). Dietary restraint scores were positively correlated with activation in the right orbitofrontal cortex (OFC) and bilateral dorsolateral prefrontal cortex (DLPFC) in response to milkshake receipt. However, dietary restraint scores did not correlate with activation in response to anticipated milkshake receipt or exposure to food pictures. Results indicate that individuals who report high dietary restraint have a hyper-responsivity in reward-related brain regions when food intake is occurring, which may increase risk for overeating and binge eating.

  11. Television viewing and obesity in 300 women: evaluation of the pathways of energy intake and physical activity.

    PubMed

    Tucker, Larry A; Tucker, Jared M

    2011-10-01

    We assessed the roles of energy intake and physical activity in the relationships among television (TV) viewing, body composition, and obesity using high-quality measurement methods. Adult women (n = 300) reported TV viewing behavior, which was categorized into infrequent (≤ 1 h/day), moderate (2 h/day), and frequent (≥ 3 h/day) viewing. Body fat percentage (BF%) was assessed using plethysmography (Bod Pod) and BMI was calculated from height and body weight. Energy intake and physical activity, including time spent in sedentary, moderate, and vigorous physical activity (PA), were objectively measured using 7-day weighed food records and 7-day accelerometry, respectively. The mean BF% of frequent TV viewers (34.6 ± 6.9%) was significantly greater (F = 3.9, P = 0.0218) than those of moderate (31.5 ± 6.7%) and infrequent viewers (30.8 ± 7.0%); however, BMI did not differ across the TV viewing groups (F = 0.8, P = 0.4172). Controlling statistically for differences in age, education, time in sedentary activity, time in moderate activity, and energy intake, considered individually, had no influence on the relationships between TV viewing and BF%, nor TV and BMI. Moreover, the relationship between TV and BF% remained significant after adjusting for differences in BMI (F = 3.6, P = 0.0276). However, adjusting for total PA reduced the relationship between TV and BF% to nonsignificance (F = 2.5, P = 0.0810), as did time spent in vigorous PA (F = 2.2, P = 0.1307). These data suggest a strong relationship between TV viewing and BF%. This association appears to be due, in part, to differences in total PA, particularly vigorous PA, but not time spent in sedentary activity, moderate activity, or energy intake.

  12. Influence of dietary intake and physical activity on annual rhythm of human blood cholesterol concentrations.

    PubMed

    Blüher, M; Hentschel, B; Rassoul, F; Richter, V

    2001-05-01

    Seasonal variation in the plasma total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) have been repeatedly reported, with contradictory results regarding the pattern of seasonal variation of these parameters. Furthermore, it is still not well established whether the variation is due to changes in the nutrition or changes in physical activity depending on the season. The aim of this study was therefore to determine plasma TC and HDL-C in different groups of healthy participants: 19 vegetarians with a constant diet independent of the season, 14 athletes with almost constant physical activity over the year, and 114 controls in the age groups 20-26 years (mean age 24 + 1.5 years) and 40-48 years (mean age 44.3 + 2.1 years). Over 2 years, blood samples were collected every 2-3 months and were analyzed for plasma TC and HDL-C. At all visits, body mass index (BMI) and waist-to-hip ratio (WHR) were calculated, and nutrition and physical activity profiles were obtained. The seasonal model was calculated using object-oriented software for the analysis of longitudinal data in S (OSWALD); multiple regression analysis was used to determine the influence of age, gender, diet, and physical activity on seasonal changes of the lipid parameters. In all groups, we found an annual rhythm of the plasma TC and HDL-C concentrations, which can be mathematically described by a sine curve with a maximum in winter and a minimum in summer. This rhythm was independent of the age, gender, BMI, diet, or physical activity. The observed seasonal differences between the maximum and the minimum were about 5%-10% for TC and about 5%-8% for HDL-C concentration. These differences were greater than the determined circadian (TC 3.5%, HDL-C 4%) and day-to-day changes for TC and HDL-C (coefficient of variation <5% for both). In conclusion, annual rhythm of TC and HDL-C is not primarily induced by seasonal differences in dietary intake or physical activity. Therefore, the annual rhythm in

  13. Motivational versus social cognitive interventions for promoting fruit and vegetable intake and physical activity in African American adolescents.

    PubMed

    Wilson, Dawn K; Friend, Ronald; Teasley, Nicole; Green, Sabra; Reaves, Irvine Lee; Sica, Domenic A

    2002-01-01

    Strategic self-presentation (motivational intervention [MI]) is a theoretical approach that is distinct from social cognitive theory (SCT). Specifically, strategic self-presentation involves increasing motivation by creating cognitive dissonance and inducing shifts in self-concept by generating positive coping strategies during a videotaped session. Fifty-three healthy African American adolescents were randomized to a SCT+MI, SCT-only, or an education-only group for increasing fruit and vegetable (F&V) intake and physical activity. The SCT+MI and SCT-only groups received a 12-week SCT program. Students in the SCT+MI group also participated in a strategic self-presentation videotape session. Participants completed 3-day food records, completed measures of self-concept and self-efficacy, and wore an activity monitor for 4 days at pre- and posttreatment. Both the SCT+MI (2.6 +/- 1.4 vs. 5.7 +/- 2.2, p < .05) and the SCT-only (2.5 +/- 1.2 vs. 4.8 +/- 2.4, p < .05) groups showed greater increases in F&V intake from pre- to posttreatment as compared with the education-only group (2.3 +/- 1.0, vs. 3.3 +/- 2.1, p > .05). There were no significant time or group effects for any of the physical activity measures. Correlation analyses revealed that only the SCT+MI group showed that dietary self-concept (r = .58, r = .67, p < .05) and dietary self-efficacy (r = .65, r = .85, p < .05) were significantly correlated with posttreatment F&V intake and change in F&V intake, respectively. These findings suggest that the change in F&V intake in the SCT+MI group resulted from strategic self-presentation, which induced positive shifts in self-concept and self-efficacy.

  14. Leptin stimulates hepatic activation of thyroid hormones and promotes early posthatch growth in the chicken.

    PubMed

    Li, Rongjie; Hu, Yan; Ni, Yingdong; Xia, Dong; Grossmann, Roland; Zhao, Ruqian

    2011-10-01

    Hepatic iodothyronine deiodinases (Ds) are involved in the conversion of thyroid hormones (THs) which interacts with growth hormone (GH) to regulate posthatch growth in the chicken. Previous studies suggest that leptin-like immunoreactive substance deposited in the egg may serve as a maternal signal to program posthatch growth. To test the hypothesis that maternal leptin may affect early posthatch growth through modifying hepatic activation of THs, we injected 5.0μg of recombinant murine leptin into the albumen of breeder eggs before incubation. Furthermore, chicken embryo hepatocytes (CEHs) were treated with leptin in vitro to reveal the direct effect of leptin on expression and activity of Ds. In ovo leptin administration markedly accelerated early posthatch growth, elevated serum levels of total and free triiodothyronine (tT3 and fT3), while that of total thyroxin (tT4) remained unchanged. Hepatic mRNA expression and activity of D1 which converts T4 to T3 or rT3 to T2, were significantly increased in leptin-treated chickens, while those of D3 which converts T3 to T2 or T4 to rT3, were significantly decreased. Moreover, hepatic expression of GHR and IGF-I mRNA was all up-regulated in leptin-treated chickens. Males demonstrated more pronounced responses. A direct effect of leptin on Ds was shown in CEHs cultured in vitro. Expression and activity of D1 were increased, whereas those of D3 were decreased, in leptin-treated cells. These data suggest that in ovo leptin administration improves early posthatch growth, in a gender-specific fashion, probably through improving hepatic activation of THs and up-regulating hepatic expression of GHR and IGF-I.

  15. Gonadotrophin-releasing activity of neurohypophysial hormones: II. The pituitary oxytocin receptor mediating gonadotrophin release differs from that of corticotrophs.

    PubMed

    Evans, J J; Catt, K J

    1989-07-01

    Neurohypophysial hormones stimulate gonadotrophin release from dispersed rat anterior pituitary cells in vitro, acting through receptors distinct from those which mediate the secretory response to gonadotrophin-releasing hormone (GnRH). The LH response to oxytocin was not affected by the presence of the phosphodiesterase inhibitor, methyl isobutylxanthine, but was diminished in the absence of extracellular calcium and was progressively increased as the calcium concentration in the medium was raised to normal. In addition, the calcium channel antagonist, nifedipine, suppressed oxytocin-stimulated secretion of LH. It is likely that the mechanisms of LH release induced by GnRH and neurohypophysial hormones are similar, although stimulation of gonadotrophin secretion is mediated by separate receptor systems. Oxytocin was more active than vasopressin in releasing LH, but less active in releasing ACTH. The highly selective oxytocin agonist, [Thr4,Gly7]oxytocin, elicited concentration-dependent secretion of LH but had little effect on corticotrophin secretion. The neurohypophysial hormone antagonist analogues, [d(CH2)5Tyr(Me)2]vasopressin, [d(CH2)5Tyr(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2Val4,Cit8]vasopressin, inhibited the LH response to both oxytocin and vasopressin. However, [d(CH2)5Tyr(Me)2]vasopressin was much less effective in inhibiting the ACTH response to the neurohypophysial hormones, and [d(CH2)5Tyr-(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2,Val4,Cit8]vasopressin exhibited no inhibitory activity against ACTH release. Thus, agonist and antagonist analogues of neurohypophysial hormones display divergent activities with regard to LH and ACTH responses, and the neuropeptide receptor mediating gonadotroph activation is clearly different from that on the corticotroph. Whereas the corticotroph receptor is a vasopressin-type receptor an oxytocin-type receptor is responsible for gonadotrophin release by neurohypophysial hormones.

  16. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    SciTech Connect

    Chi, Hsiang-Cheng; Liao, Chen-Hsin; Huang, Ya-Hui; Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I; Chen, Wei-Jan; Lin, Kwang-Huei

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  17. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work.

    PubMed

    Salgado-Delgado, Roberto; Angeles-Castellanos, Manuel; Saderi, Nadia; Buijs, Ruud M; Escobar, Carolina

    2010-03-01

    Shift work or night work is associated with hypertension, metabolic syndrome, cancer, and other diseases. The cause for these pathologies is proposed to be the dissociation between the temporal signals from the biological clock and the sleep/activity schedule of the night worker. We investigated the mechanisms promoting metabolic desynchrony in a model for night work in rats, based on daily 8-h activity schedules during the resting phase. We demonstrate that the major alterations leading to internal desynchrony induced by this working protocol, flattened glucose and locomotor rhythms and the development of abdominal obesity, were caused by food intake during the rest phase. Shifting food intake to the normal activity phase prevented body weight increase and reverted metabolic and rhythmic disturbances of the shift work animals to control ranges. These observations demonstrate that feeding habits may prevent or induce internal desynchrony and obesity.

  18. Depressive symptoms are associated with dietary intake but not physical activity among overweight and obese women from disadvantaged neighborhoods.

    PubMed

    Whitaker, Kara M; Sharpe, Patricia A; Wilcox, Sara; Hutto, Brent E

    2014-04-01

    Evidence suggests that depressive symptoms are associated with poorer dietary intake and inadequate physical activity; however, this association has not been examined in lower-income overweight and obese African American women. The objective of this cross-sectional study was to examine the associations between depressive symptoms and diet and physical activity in 196 women (87% African American; age, 25-51 years). Higher depressive symptoms were hypothesized to predict poorer diet quality, greater emotional eating, lower physical activity levels, and greater sedentary time. Depressive symptoms were measured using the validated short form of the Center for Epidemiological Studies Depression Scale. Dietary intake and quality were assessed using three 24-hour dietary recalls. Emotional eating was evaluated using 4 items from the emotional eating subscale of the Eating Behavior Patterns Questionnaire. Physical activity and sedentary time were objectively measured using the ActiGraph accelerometer. Linear regression models tested the associations between depressive symptoms and each dietary and physical activity outcome variable. Symptoms of depression were positively associated with total daily caloric intake from saturated fat and total sugars, as well as emotional eating scores (P < .05). Although not statistically significant, depressive symptoms were positively associated with sweetened beverage consumption (P = .06) and added sugars (P = .07). Depressive symptoms were not associated with total fat, sodium, fruit and vegetables, fast food consumption, the Alternate Healthy Eating Index score, moderate-to-vigorous physical activity, or sedentary time. Future studies should explore the mechanisms linking the identified associations between depressive symptoms and dietary intake, such as the role of emotional eating.

  19. Depressive symptoms are associated with dietary intake but not physical activity among overweight and obese women from disadvantaged neighborhoods.

    PubMed

    Whitaker, Kara M; Sharpe, Patricia A; Wilcox, Sara; Hutto, Brent E

    2014-04-01

    Evidence suggests that depressive symptoms are associated with poorer dietary intake and inadequate physical activity; however, this association has not been examined in lower-income overweight and obese African American women. The objective of this cross-sectional study was to examine the associations between depressive symptoms and diet and physical activity in 196 women (87% African American; age, 25-51 years). Higher depressive symptoms were hypothesized to predict poorer diet quality, greater emotional eating, lower physical activity levels, and greater sedentary time. Depressive symptoms were measured using the validated short form of the Center for Epidemiological Studies Depression Scale. Dietary intake and quality were assessed using three 24-hour dietary recalls. Emotional eating was evaluated using 4 items from the emotional eating subscale of the Eating Behavior Patterns Questionnaire. Physical activity and sedentary time were objectively measured using the ActiGraph accelerometer. Linear regression models tested the associations between depressive symptoms and each dietary and physical activity outcome variable. Symptoms of depression were positively associated with total daily caloric intake from saturated fat and total sugars, as well as emotional eating scores (P < .05). Although not statistically significant, depressive symptoms were positively associated with sweetened beverage consumption (P = .06) and added sugars (P = .07). Depressive symptoms were not associated with total fat, sodium, fruit and vegetables, fast food consumption, the Alternate Healthy Eating Index score, moderate-to-vigorous physical activity, or sedentary time. Future studies should explore the mechanisms linking the identified associations between depressive symptoms and dietary intake, such as the role of emotional eating. PMID:24774065

  20. Developing in vitro reporter gene assays to assess the hormone receptor activities of chemicals frequently detected in drinking water.

    PubMed

    Sun, Hong; Si, Chaozong; Bian, Qian; Chen, Xiaodong; Chen, Liansheng; Wang, Xinru

    2012-08-01

    The present study intended to develop receptor-mediated luciferase reporter gene assays to evaluate and compare the estrogen receptor (ER), androgen receptor (AR) and thyroid hormone receptor (TR) activities of target chemicals. Di-2-ethylhexyl-phthalate (DEHP), chlorpyrifos (CPF), 2,4-dichlorophenoxyacetic acid (2,4-D) and bisphenol A (BPA) are some of the most common contaminants in drinking water and are frequently detected in China and worldwide. The chemicals were tested at concentrations of 0.1, 1, 10 and 100 times their maximum contaminant level in drinking water. The results showed that BPA possessed various activities on ER, AR and TR. DEHP and CPF could suppress 17β-estradiol or testosterone activity with different potencies, and DEHP possessed weaker anti-thyroid hormone activity. 2,4-D showed no agonist or antagonist activity against these hormone receptors, but it significantly enhanced the activity of testosterone through AR. Furthermore, the mixture of DEHP and CPF exhibited stronger ER and AR antagonist activities than each single component alone, but their combined effects were less than the expected effects based on the additive model. These results implied that the transcription activation mediated by hormone receptors was the potential endocrine-disrupting mechanism of the test chemicals. Our study also provided useful tools for evaluation of their endocrine disrupting activity.

  1. The effect of cold on serum thyroid hormones and hepatic 5 prime mono-deiodinase activity

    SciTech Connect

    Hesslink, R.L. Jr.; Quesada, M.; D'Alesandro, M.; Homer, L.D.; Reed, J.L.; Christopherson, R.; Young, B.A. Univ. of Alberta, Edmonton )

    1991-03-11

    Cold exposed swine have an increases serum concentration of triiodothyronine (T{sub 3}) and increased T{sub 3} production rate. It is thought that hepatic thyroxine (T{sub 4}) deiodination (5DI) contributes to circulating T{sub 3} concentrations. The authors investigated the effects of cold exposure (14 days) on energy intake, serum free T{sub 3} (FT{sub 3}) and free T{sub 4} (FT{sub 4}) levels; and 5DI in 5-month boars. Hepatic 5DI activity was determined by measuring the {sup 125}I generated from trace amounts of {sup 125}I T{sub 4}. FT{sub 3} and FT{sub 4} were assayed by RIA. Swine were housed in either 20C (control; n = 5) or 4C (cold; n = 7) chambers and given food ad libitum. Cold exposure increased energy intake by 42%. The increase (93%) in hepatic 5DI V{sub max} after cold exposure parallels the increase in whole animal T{sub 3} production and may account for FT{sub 3} values found after cold exposure.

  2. Delaying colostrum intake by one day has important effects on metabolic traits and on gastrointestinal and metabolic hormones in neonatal calves.

    PubMed

    Hadorn, U; Hammon, H; Bruckmaier, R M; Blum, J W

    1997-10-01

    Effects on metabolic and endocrine traits of feeding colostrum on d 1 and 2, then mature milk up to d 7, or glucose or water on d 1, colostrum on d 2 and 3 and then mature milk up to d 7 were studied in calves. Calves fed colostrum within the first 24 h after birth had significantly higher rectal temperatures, heart rates and respiratory frequencies than calves provided only water or glucose. Significantly elevated plasma nonesterified fatty acid and bilirubin concentrations on d 1 and 2 of life in calves fed only water on d 1 compared with calves of the other groups mirrored reduced energy intake. Fecal consistency was significantly higher during wk 1 of life, and gastrin and glucose-dependent insulinotropic polypeptide increased only on d 1 and/or 2 of life in calves already fed colostrum on d 1, expressing improved functioning of the gastrointestinal tract. Significantly higher plasma globulin levels up to d 7 in calves fed colostrum on d 1 than in those starting colostrum intake only on d 2 demonstrated significantly enhanced efficiency of gamma-globulin absorption. Furthermore, significantly higher circulating glucose, albumin, insulin, insulin-like growth factor-I concentrations and significantly lower urea levels in calves fed colostrum on d 1 compared with those fed colostrum starting on d 2 of life indicated stimulation of anabolic processes. In conclusion, colostrum intake by calves within the first 24 h of life is needed not only for an adequate immune status, but also to produce the additional important and favorable effects on metabolic and endocrine traits and on vitality.

  3. Effects of a breakfast spread out over time on the food intake at lunch and the hormonal responses in obese men.

    PubMed

    Allirot, Xavier; Seyssel, Kevin; Saulais, Laure; Roth, Hubert; Charrié, Anne; Drai, Jocelyne; Goudable, Joelle; Blond, Emilie; Disse, Emmanuel; Laville, Martine

    2014-03-29

    The effects of frequent eating on health and particularly on appetite and metabolism are unclear. We have previously shown that frequent eating decreased appetite and energy intake at the subsequent meal in lean men. In the present study, we tested the same pattern in obese subjects. Seventeen obese men participated in: (i) two sessions consisting of a breakfast consumed in one eating episode at T0 (F1), or in four isocaloric eating episodes at T0, T60, T120, and T180min (F4), followed by an ad libitum buffet (T240) in an experimental restaurant. Subjects rated their appetite throughout the sessions. (ii) two sessions consisting of the same breakfasts F1 and F4 in a Clinical Centre, followed by a standardized meal. Blood sampling was performed to study ghrelin, glucagon-like peptide-1 (GLP-1), and metabolic kinetics. Indirect calorimetry measurements were performed. After F4, at T240min, ghrelin concentration (P=0.03) and hunger ratings (P<0.001) were lower while GLP-1 concentration (P=0.006) and satiety ratings (P=0.02) were higher. In F4, subjects consumed at the buffet, less food in grams (P=0.04) and less energy from low energy dense foods (P=0.01), but total energy intakes were not different between conditions. In F4, the area under the curve was lower for insulin (P=0.02) and non-esterified fatty acids (NEFA) (P=0.03). Diet induced thermogenesis was reduced in F4 (P=0.03) between T0 and T240. Even if subjective and physiological data suggest a beneficial effect of frequent eating on appetite in obese men, no effect was demonstrated on energy intake. Moreover, the decrease in diet induced thermogenesis and lipolysis, reflected by NEFA profiles, could be deleterious on energy balance in the long run. PMID:24472321

  4. Growth hormone activity in mitochondria depends on GH receptor Box 1 and involves caveolar pathway targeting

    SciTech Connect

    Perret-Vivancos, Cecile; Abbate, Aude; Ardail, Dominique; Raccurt, Mireille; Usson, Yves; Lobie, Peter E.; Morel, Gerard . E-mail: gerard.morel@univ-lyon1.fr

    2006-02-01

    Growth hormone (GH) binding to its receptor (GHR) initiates GH-dependent signal transduction and internalization pathways to generate the biological effects. The precise role and way of action of GH on mitochondrial function are not yet fully understood. We show here that GH can stimulate cellular oxygen consumption in CHO cells transfected with cDNA coding for the full-length GHR. By using different GHR cDNA constructs, we succeeded in determining the different parts of the GHR implicated in the mitochondrial response to GH. Polarography and two-photon excitation fluorescence microscopy analysis showed that the Box 1 of the GHR intracellular domain was required for an activation of the mitochondrial respiration in response to a GH exposure. However, confocal laser scanning microscopy demonstrated that cells lacking the GHR Box 1 could efficiently internalize the hormone. We demonstrated that internalization mediated either by clathrin-coated pits or by caveolae was able to regulate GH mitochondrial effect: these two pathways are both essential to obtain the GH stimulatory action on mitochondrial function. Moreover, electron microscopic and biochemical approaches allowed us to identify the caveolar pathway as essential for targeting GH and GHR to mitochondria.

  5. Intake port

    DOEpatents

    Mendler, Edward Charles

    2005-02-01

    The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.

  6. The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases.

    PubMed

    Brüser, Antje; Schulz, Angela; Rothemund, Sven; Ricken, Albert; Calebiro, Davide; Kleinau, Gunnar; Schöneberg, Torsten

    2016-01-01

    Glycoprotein hormones (GPHs) are the main regulators of the pituitary-thyroid and pituitary-gonadal axes. Selective interaction between GPHs and their cognate G protein-coupled receptors ensure specificity in GPH signaling. The mechanisms of how these hormones activate glycoprotein hormone receptors (GPHRs) or how mutations and autoantibodies can alter receptor function were unclear. Based on the hypothesis that GPHRs contain an internal agonist, we systematically screened peptide libraries derived from the ectodomain for agonistic activity on the receptors. We show that a peptide (p10) derived from a conserved sequence in the C-terminal part of the extracellular N terminus can activate all GPHRs in vitro and in GPHR-expressing tissues. Inactivating mutations in this conserved region or in p10 can inhibit activation of the thyroid-stimulating hormone receptor by autoantibodies. Our data suggest an activation mechanism where, upon extracellular ligand binding, this intramolecular agonist isomerizes and induces structural changes in the 7-transmembrane helix domain, triggering G protein activation. This mechanism can explain the pathophysiology of activating autoantibodies and several mutations causing endocrine dysfunctions such as Graves disease and hypo- and hyperthyroidism. Our findings highlight an evolutionarily conserved activation mechanism of GPHRs and will further promote the development of specific ligands useful to treat Graves disease and other dysfunctions of GPHRs.

  7. Altered baseline brain activities before food intake in obese men: a resting state fMRI study.

    PubMed

    Zhang, Bin; Tian, Derun; Yu, Chunshui; Zhang, Jing; Tian, Xiao; von Deneen, Karen M; Zang, Yufeng; Walter, Martin; Liu, Yijun

    2015-01-01

    Obesity as a chronic disease has become a global epidemic. However, why obese individuals eat more still remains unclear. Recent functional neuroimaging studies have found abnormal brain activations in obese people. In the present study, we used resting state functional MRI to observe spontaneous blood-oxygen-level dependent (BOLD) signal fluctuations during both hunger and satiety states in 20 lean and 20 obese men. Using a regional homogeneity (ReHo) analysis method, we measured temporal homogeneity of the regional BOLD signals. We found that, before food intake, obese men had significantly increased synchronicity of activity in the left putamen relative to lean men. Decreased synchronicity of activity was found in the orbitofrontal cortex (OFC) and medial prefrontal cortex(MPFC) in the obese subjects. And, the ratings of hunger of the obese subjects were higher than those of the lean subjects before food intake. After food intake, we did not find the significant differences between the obese men and the lean men. In all participations, synchronicity of activity increased from the fasted to the satiated state in the OFC. The results indicated that OFC plays an important role in feeding behavior, and OFC signaling may be disordered in obesity. Obese men show less inhibitory control during fasting state. This study has provided strong evidence supporting the hypothesis that there is a hypo-functioning reward circuitry in obese individuals, in which the frontal cortex may fail to inhibit the striatum, and consequently lead to overeating and obesity. PMID:25459293

  8. Active immunization of gilts against gonadotropin-releasing hormone: effects on secretion of gonadotropins, reproductive function, and responses to agonists of gonadotropin-releasing hormone.

    PubMed

    Esbenshade, K L; Britt, J H

    1985-10-01

    Sexually mature gilts were actively immunized against gonadotropin-releasing hormone (GnRH) by conjugating GnRH to bovine serum albumin, emulsifying the conjugate in Freund's adjuvant, and giving the emulsion as a primary immunization at Week 0 and as booster immunizations at Weeks 10 and 14. Antibody titers were evident by 2 wk after primary immunization and increased markedly in response to booster immunizations. Active immunization against GnRH caused gonadotropins to decline to nondetectable levels, gonadal steroids to decline to basal levels, and the gilts to become acyclic. Prolactin concentrations in peripheral circulation were unaffected by immunization against GnRH. The endocrine status of the hypothalamic-pituitary-ovarian axis was examined by giving GnRH and two agonists to GnRH and by ovariectomy. An i.v. injection of 100 micrograms GnRH caused release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in control animals, but not in gilts immunized against GnRH. In contrast, administration of 5 micrograms D-(Ala6, des-Gly-NH2(10] ethylamide or 5 micrograms D-(Ser-t-But6, des-Gly-NH2(10] ethylamide resulted in immediate release of LH and FSH in both control and GnRH-immunized gilts. Circulating concentrations of LH and FSH increased after ovariectomy in the controls, but remained at nondetectable levels in gilts immunized against GnRH. Prolactin concentrations did not change in response to ovariectomy. We conclude that cyclic gilts can be actively immunized against GnRH and that this causes cessation of estrous cycles and inhibits secretion of LH, FSH, and gonadal steroids.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Bed rest suppresses bioassayable growth hormone release in response to muscle activity

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Goulet, C.; Grindeland, R. E.; Hodgson, J. A.; Bigbee, A. J.; Edgerton, V. R.

    1997-01-01

    Hormonal responses to muscle activity were studied in eight men before (-13 or -12 and -8 or -7 days), during (2 or 3, 8 or 9, and 13 or 14 days) and after (+2 or +3 and +10 or +11 days) 17 days of bed rest. Muscle activity consisted of a series of unilateral isometric plantar flexions, including 4 maximal voluntary contractions (MVCs), 48 contractions at 30% MVC, and 12 contractions at 80% MVC, all performed at a 4:1-s work-to-rest ratio. Blood was collected before and immediately after muscle activity to measure plasma growth hormone by radioimmunoassay (IGH) and by bioassay (BGH) of tibia epiphyseal cartilage growth in hypophysectomized rats. Plasma IGH was unchanged by muscle activity before, during, or after bed rest. Before bed rest, muscle activity increased (P < 0.05) BGH by 66% at -13 or -12 days (2,146 +/- 192 to 3,565 +/- 197 microg/l) and by 92% at -8 or -7 days (2,162 +/- 159 to 4,161 +/- 204 microg/l). After 2 or 3 days of bed rest, there was no response of BGH to the muscle activity, a pattern that persisted through 8 or 9 days of bed rest. However, after 13 or 14 days of bed rest, plasma concentration of BGH was significantly lower after than before muscle activity (2,594 +/- 211 to 2,085 +/- 109 microg/l). After completion of bed rest, muscle activity increased BGH by 31% at 2 or 3 days (1,807 +/- 117 to 2,379 +/- 473 microg/l; P < 0.05), and by 10 or 11 days the BGH response was similar to that before bed rest (1,881 +/- 75 to 4,160 +/- 315 microg/l; P < 0.05). These data demonstrate that the ambulatory state of an individual can have a major impact on the release of BGH, but not IGH, in response to a single bout of muscle activity.

  10. Defining the epigenetic actions of growth hormone: acute chromatin changes accompany GH-activated gene transcription.

    PubMed

    Chia, Dennis J; Rotwein, Peter

    2010-10-01

    Many of the long-term physiological effects of GH require hormone-mediated changes in gene expression. The transcription factor signal transducer and activator of transcription 5b (Stat5b) plays a critical role in the actions of GH on growth and metabolism by regulating a large number of GH-dependent genes by incompletely understood mechanisms. Here we have assessed the impact of GH-initiated and Stat5b-mediated signaling on the chromatin landscape of hormone-regulated genes in the liver of pituitary-deficient young adult male rats. In the absence of GH there was minimal ongoing transcription at the Socs2, Cish, Igfals, and Spi 2.1 promoters, minimal occupancy of Stat5b at proximal promoter sites, and relatively closed chromatin, as evidenced by low levels of core histone acetylation. In contrast, transcriptionally silent Igf1 promoter 1 appeared poised to be activated, based on binding of coactivators p300 and Med1/Trap220, high levels of histone acetylation, and the presence of RNA polymerase II. GH treatment led to a 8- to 20-fold rise in transcriptional activity of all five genes within 30-60 min and was accompanied by binding of Stat5b to the proximal Socs2, Cish, Igfals, and Spi 2.1 promoters and to seven distal Igf1 Stat5b elements, by enhanced histone acetylation at all five promoters, by recruitment of RNA polymerase II to the Socs2, Cish, Igfals, and Spi 2.1 promoters, and by loss of the transcriptional repressor Bcl6 from Socs2, Cish, and Igfals Stat5b sites, but not from two Igf1 Stat5b domains. We conclude that GH actions induce rapid and dramatic changes in hepatic chromatin at target promoters and propose that the chromatin signature of Igf1 differs from other GH-and Stat5b-dependent genes. PMID:20702579

  11. Putative relationship between hormonal status and serum pyrrolidone carboxypeptidase activity in pre- and post- menopausal women with breast cancer.

    PubMed

    Carrera-González, María del Pilar; Ramírez-Expósito, María Jesús; Dueñas, Basilio; Martínez-Ferrol, Julia; Mayas, María Dolores; Martínez-Martos, José Manuel

    2012-12-01

    In breast cancer, hormonal changes are rather constant in post-menopausal women since they tend to vary only over long time spans. However, in pre-menopausal women, the development of breast cancer is associated with hormonal physiological variations. The aim of the present work was to analyse the changes in circulating levels of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in pre- and post-menopausal women that were healthy or with breast cancer, and their connection to serum pyrrolidone carboxypeptidase (Pcp) activity. We observed significant changes in the hormonal profile in post-menopausal women with breast cancer compared to the control group. In pre-menopausal women, we found significant changes in circulating GnRH levels with respect to the healthy group. Our present results support the existence of neuroendocrine misregulation that could be involved in tumour progression, with Pcp being a potentially new pharmacological target in breast cancer treatments.

  12. Chewing activities and oesophageal motility during feed intake, rumination and eructation in camels.

    PubMed

    von Engelhardt, W; Haarmeyer, P; Kaske, M; Lechner-Doll, M

    2006-02-01

    It was the aim of this study to characterize rumination behaviour, eructation and oesophageal motility in camels to identify similarities and differences between camels and domestic ruminants. Recordings were carried out in five camels fed on a hay-based diet. On an average, the duration of rumination, feeding and resting was 8.3, 5.6 and 10.1 h per 24 h, respectively. Rumination activity peaked in the morning between 9:00 and 11:00 and in the night between 02:00 and 04:00 a.m. During rumination periods, on an average 67 boluses were regurgitated per hour. Each bolus was chewed for an average of 45 s with 68 chews per min. The pause between two rumination cycles lasted on an average 9 s. Hay intake took 61 min/kg dry matter (DM), rumination lasted 71 min/kg DM of hay consumed. The regurgitation of a bolus started with a contraction of cranial compartment 1 (C 1) during a B-sequence, followed by a deep inspiration with closed glottis. Digesta enters the oesophagus, and an antiperistaltic wave transported the bolus orally. Eructation starts with a contraction of the caudal C1 during a B-sequence when the cranial C1 is relaxed. After entering the oesophagus, a rapid antiperistaltic wave transports the gas orally. Results revealed that the parameter values obtained in the camels were remarkably similar to those in domestic ruminants despite profound morphological differences and different patterns of forestomach motility.

  13. Fiber intake and plasminogen activator inhibitor-1 in type 2 diabetes: Look AHEAD (Action for Health in Diabetes) Trial findings at baseline and 1 year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasminogen activator inhibitor 1 (PAI-1) is elevated in obese individuals with type 2 diabetes and may contribute, independently of traditional factors, to increased cardiovascular disease risk. Fiber intake may decrease PAI-1 levels. We examined the associations of fiber intake and its changes wit...

  14. Enhanced Anti-Tumoral Activity of Methotrexate-Human Serum Albumin Conjugated Nanoparticles by Targeting with Luteinizing Hormone-Releasing Hormone (LHRH) Peptide

    PubMed Central

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120–138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX. PMID:21845098

  15. Hepatic messenger ribonucleic acid activity profiles in experimental azotemia in the rat. Relationship to food intake and thyroid function.

    PubMed Central

    Kinlaw, W B; Schwartz, H L; Mariash, C N; Bingham, C; Carr, F E; Oppenheimer, J H

    1984-01-01

    We have studied the hepatic messenger RNA (mRNA) activity profile in chronically azotemic rats and sought to determine whether the observed changes could be mediated either by reduced food intake or diminished thyroid function at the tissue level. mRNA activity profiles were produced by two-dimensional gel electrophoretic separation of radioactively labeled products of an in vitro reticulocyte lysate system which had been programmed by hepatic RNA. Of the approximately 240 translational products identified in this system, seven sequences were consistently altered in azotemia. In pair-fed animals six of these also decreased, but the alterations in three were depressed to a significantly lesser extent in the pair-fed group. Moreover, analysis of covariance suggested that food intake could account for the differences in only one sequence. The possibility that the mRNA activity profile in azotemia could represent the effects of diminished thyroid function was minimized by the finding that the reductions in plasma thyroxine (T4) and triiodothyronine (T3) levels observed were due largely to reduced plasma protein binding, with maintenance of the mean free T4 and free T3 concentrations within the normal range. The changes in only one mRNA sequence could be related to free T3 levels alone. Our findings, therefore, indicate that although diminished food intake and reduced thyroid function may contribute to some of the observed changes in the mRNA activity profiles, the bulk of alterations in azotemia appear to be mediated by other mechanisms. The striking overlap between the sequences affected by azotemia and pair-feeding raises the speculation that altered gene expression in azotemia may reflect an impaired hepatic response at the pretranslational level to metabolic signals associated with food intake. Images PMID:6511910

  16. Tissue deiodinase activity during prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone-releasing peptide-2.

    PubMed

    Debaveye, Yves; Ellger, Björn; Mebis, Liese; Van Herck, Erik; Coopmans, Willy; Darras, Veerle; Van den Berghe, Greet

    2005-12-01

    Prolonged critical illness is characterized by reduced pulsatile TSH secretion, causing reduced thyroid hormone release and profound changes in thyroid hormone metabolism, resulting in low circulating T(3) and elevated rT(3) levels. To further unravel the underlying mechanisms, we investigated the effects of exogenous TRH and GH-releasing peptide-2 (GHRP-2) in an in vivo model of prolonged critical illness. Burn-injured, parenterally fed rabbits were randomized to receive 4-d treatment with saline, 60 microg/kg.h GHRP-2, 60 microg/kg.h TRH, or 60 microg/kg.h TRH plus 60 microg/kg.h GHRP-2 started on d 4 of the illness (n = 8/group). The activities of the deiodinase 1 (D1), D2, and D3 in snap-frozen liver, kidney, and muscle as well as their impact on circulating thyroid hormone levels were studied. Compared with healthy controls, hepatic D1 activity in the saline-treated, ill animals was significantly down-regulated (P = 0.02), and D3 activity tended to be up-regulated (P = 0.06). Infusion of TRH and TRH plus GHRP-2 restored the catalytic activity of D1 (P = 0.02) and increased T(3) levels back within physiological range (P = 0.008). D3 activity was normalized by all three interventions, but only addition of GHRP-2 to TRH prevented the rise in rT(3) seen with TRH alone (P = 0.02). Liver D1 and D3 activity were correlated (respectively, positively and negatively) with the changes in circulating T(3) (r = 0.84 and r = -0.65) and the T(3)/rT(3) ratio (r = 0.71 and r = -0.60). We conclude that D1 activity during critical illness is suppressed and related to the alterations within the thyrotropic axis, whereas D3 activity tends to be increased and under the joint control of the somatotropic and thyrotropic axes. PMID:16150898

  17. Melanin-concentrating hormone is necessary for olanzapine-inhibited locomotor activity in male mice.

    PubMed

    Chee, Melissa J S; Douris, Nicholas; Forrow, Avery B; Monnard, Arnaud; Lu, Shuangyu; Flaherty, Stephen E; Adams, Andrew C; Maratos-Flier, Eleftheria

    2015-10-01

    Olanzapine (OLZ), an atypical antipsychotic, can be effective in treating patients with restricting type anorexia nervosa who exercise excessively. Clinical improvements include weight gain and reduced pathological hyperactivity. However the neuronal populations and mechanisms underlying OLZ actions are not known. We studied the effects of OLZ on hyperactivity using male mice lacking the hypothalamic neuropeptide melanin-concentrating hormone (MCHKO) that are lean and hyperactive. We compared the in vivo effects of systemic or intra-accumbens nucleus (Acb) OLZ administration on locomotor activity in WT and MCHKO littermates. Acute systemic OLZ treatment in WT mice significantly reduced locomotor activity, an effect that is substantially attenuated in MCHKO mice. Furthermore, OLZ infusion directly into the Acb of WT mice reduced locomotor activity, but not in MCHKO mice. To identify contributing neuronal mechanisms, we assessed the effect of OLZ treatment on Acb synaptic transmission ex vivo and in vitro. Intraperitoneal OLZ treatment reduced Acb GABAergic activity in WT but not MCHKO neurons. This effect was also seen in vitro by applying OLZ to acute brain slices. OLZ reduced the frequency and amplitude of GABAergic activity that was more robust in WT than MCHKO Acb. These findings indicate that OLZ reduced Acb GABAergic transmission and that MCH is necessary for the hypolocomotor effects of OLZ.

  18. Tuberoinfundibular peptide of 39 residues (TIP39): molecular structure and activity for parathyroid hormone 2 receptor.

    PubMed

    Della Penna, K; Kinose, F; Sun, H; Koblan, K S; Wang, H

    2003-01-01

    The neuropeptide TIP39 was recently purified from bovine hypothalamus based on the ability of the peptide to activate the parathyroid hormone 2 receptor (PTH2R) ( Nat. Neurosci. 2 (1999) 941). PTH2R is abundantly expressed in the nervous system, and its expression pattern suggests that it may play a role in modulation of pituitary function and in nociception. Towards understanding the physiological role of TIP39 and PTH2R, we cloned human, mouse and rat TIP39 gene. Our results revealed that: (1) the mature peptide is processed from a precursor; (2) TIP39 peptide is highly conserved among species; and (3) TIP39 from all species activates adenylyl cyclase and elevates intracellular calcium levels through PTH2R. We also defined and compared the structure-activity relationship of TIP39 on both activation of adenylyl cyclase and calcium mobilization pathways through PTH2R, finding common and differential determinants of TIP39 that are required for these pathways. Furthermore, we observed that TIP39 elevates intracellular calcium levels in primary dorsal root ganglion neurons whereas the peptide inactive on PTH2R do not, suggesting that TIP39 may activate these neurons important for nociception in vivo through PTH2R-dependent mechanisms.

  19. Occurrence of thyroid hormone activities in drinking water from eastern China: contributions of phthalate esters.

    PubMed

    Shi, Wei; Hu, Xinxin; Zhang, Fengxian; Hu, Guanjiu; Hao, Yingqun; Zhang, Xiaowei; Liu, Hongling; Wei, Si; Wang, Xinru; Giesy, John P; Yu, Hongxia

    2012-02-01

    Thyroid hormone is essential for the development of humans. However, some synthetic chemicals with thyroid disrupting potentials are detectable in drinking water. This study investigated the presence of thyroid active chemicals and their toxicity potential in drinking water from five cities in eastern China by use of an in vitro CV-1 cell-based reporter gene assay. Waters were examined from several phases of drinking water processing, including source water, finished water from waterworks, tap water, and boiled tap water. To identify the responsible compounds, concentrations and toxic equivalents of a list of phthalate esters were quantitatively determined. None of the extracts exhibited thyroid receptor (TR) agonist activity. Most of the water samples exhibited TR antagonistic activities. None of the boiled water displayed the TR antagonistic activity. Dibutyl phthalate accounted for 84.0-98.1% of the antagonist equivalents in water sources, while diisobutyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate also contributed. Approximately 90% of phthalate esters and TR antagonistic activities were removable by waterworks treatment processes, including filtration, coagulation, aerobic biodegradation, chlorination, and ozonation. Boiling water effectively removed phthalate esters from tap water. Thus, this process was recommended to local residents to reduce certain potential thyroid related risks through drinking water. PMID:22191625

  20. The Association between Dietary Intake of Folate and Physical Activity with Psychological Dimensions of Depressive Symptoms among Students from Iran

    PubMed Central

    Yary, Teymoor

    2013-01-01

    Depression in students is a major public health problem. Although several risk factors associated with depression have been identified, the cause of depression is still not clear. Several studies have demonstrated that physical activity and nutrient intake, such as increased levels of B vitamins in serum, decrease symptoms of depression. The aim of this study was to investigate the association between physical activity and dietary intake of vitamins B6, B9, and B12 and symptoms of depression among postgraduate students. The results of this study suggest that intake of vitamin B9 may modulate the total score of Center for Epidemiological Studies Depression Scale (CES-D) and two subscales of the CES-D including depressive affect and interpersonal difficulties. This study also showed that moderate/high levels of physical activity were inversely and significantly associated with symptoms of depression (total scores) and three subscales of the CES-D including depressive affect, positive affect, and somatic complaints. PMID:24324965

  1. [Bone and Nutrition. Bone and phosphorus intake].

    PubMed

    Arai, Hidekazu; Sakuma, Masae

    2015-07-01

    Phosphorus is necessary for bone mineralization. Although adequate phosphorus intake is essential for skeletal mineralization, it is reported that excessive phosphorus intake can induce deleterious effect on bone. Recently, since the Japanese diet has been westernized, phosphorus intake by the meat and dairy products has increased. Furthermore, along with the development of processed foods, excessive intake of inorganic phosphorus from food additives has become a problem. An adverse effect on parathyroid hormone (PTH) secretion from high phosphorus intake was seen only when calcium intake was inadequate. Dietary calcium to phosphorus ratio can be considered as one of the indicators that can predict the health of the bone.

  2. [Bone and Nutrition. Bone and phosphorus intake].

    PubMed

    Arai, Hidekazu; Sakuma, Masae

    2015-07-01

    Phosphorus is necessary for bone mineralization. Although adequate phosphorus intake is essential for skeletal mineralization, it is reported that excessive phosphorus intake can induce deleterious effect on bone. Recently, since the Japanese diet has been westernized, phosphorus intake by the meat and dairy products has increased. Furthermore, along with the development of processed foods, excessive intake of inorganic phosphorus from food additives has become a problem. An adverse effect on parathyroid hormone (PTH) secretion from high phosphorus intake was seen only when calcium intake was inadequate. Dietary calcium to phosphorus ratio can be considered as one of the indicators that can predict the health of the bone. PMID:26119308

  3. Thyroid Hormone Levels and TSH Activity in Patients with Obstructive Sleep Apnea Syndrome.

    PubMed

    Bielicki, P; Przybyłowski, T; Kumor, M; Barnaś, M; Wiercioch, M; Chazan, R

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is characterized by complete cessation of inspiratory flow (apnea) or upper airway airflow limitation (hypopnea) with increased respiratory muscle activity, which is repeatedly observed during sleep. Hypothyroidism has been described as a rare cause of OSAS, but it is considered to be the main cause of breathing disorders during sleep in patients in whom an improvement of OSAS is observed after thyroid hormone replacement therapy. Nevertheless, euthyreosis due to thyroxine replacement in patients with OSAS often does not improve the breathing disorder and treatment with continuous positive airway pressure is usually applied. The aim of this study was to assess thyroid function in patients with OSAS. We studied 813 patients in whom severe OSAS was diagnosed; the mean apnea-hypopnea index was 44.0. Most of the patients were obese (mean BMI 33.1 ± 6.6 kg/m2) and had excessive daytime sleepiness (ESS 12.8 ± 6.6). With the thyroid stimulating hormone (TSH) concentration as the major criterion, hypothyroidism was diagnosed in 38 (4.7%) and hyperthyroidism was diagnosed in 31 (3.8%) patients. Analysis of basic anthropometric data, selected polysomnography results, and TSH, fT3, and fT4 values did not reveal any significant correlations. In conclusion, the incidence of thyroid function disorders seems to be no different in OSAS than that in the general population. We did not find correlations between TSH activity and the severity of breathing disorders during sleep. PMID:26542600

  4. Alpha-melanocyte stimulating hormone ameliorates disease activity in an induced murine lupus-like model.

    PubMed

    Botte, D A C; Noronha, I L; Malheiros, D M A C; Peixoto, T V; de Mello, S B V

    2014-08-01

    Alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide exhibiting anti-inflammatory activity in experimental models of autoimmune diseases. However, no studies thus far have examined the effects of α-MSH on systemic lupus erythematosus (SLE). This study aimed to determine the effects of an α-MSH agonist in induced murine lupus. Here we employed female Balb/cAn mice in which lupus was induced by pristane. Groups of lupus animals were treated daily with the α-MSH analogue [Nle4, DPhe7]-α-MSH (NDP-MSH) (1·25 mg/kg) injected intraperitoneally or saline for 180 days. Normal animals comprised the control group. Arthritis incidence, plasma immunoglobulin (Ig)G isotypes, anti-nuclear antibodies (ANA) and plasma cytokines were evaluated. Renal function was assessed by proteinuria and histopathological lesion. Glomerular levels of IgG, α-smooth muscle actin (α-SMA), inducible nitric oxide synthase (iNOS), C3, CD3, melanocortin receptors (MCR)1, corticotrophin-releasing factor (CRF) and α-MSH was estimated by immunohistochemistry. When compared with normal controls, lupus animals exhibited increased arthritis, IgG levels, ANA, interleukin (IL)-6, IL-10, proteinuria and mesangial cell proliferation together with glomerular expression of α-SMA and iNOS. Glomerular expression of MCR1 was reduced in lupus animals. NDP-MSH treatment reduced arthritis scores by 70% and also diminished IgG1 and IgG2a levels and ANA incidence. In the glomerulus, NDP-MSH treatment reduced cellularity by 50% together with reducing IgG deposits, and expression levels of α-SMA, iNOS and CRF were also all decreased. Taken together, our results suggest for the first time that α-MSH treatment improves several parameters of SLE disease activity in mice, and indicate that this hormone is an interesting potential future treatment option.

  5. Significant role of female sex hormones in cardiac myofilament activation in angiotensin II-mediated hypertensive rats.

    PubMed

    Pandit, Sulaksana; Woranush, Warunya; Wattanapermpool, Jonggonnee; Bupha-Intr, Tepmanas

    2014-07-01

    Ovariectomy leads to suppression of cardiac myofilament activation in healthy rats implicating the physiological essence of female sex hormones on myocardial contraction. However, the possible function of these hormones during pathologically induced myofilament adaptation is not known. In this study, sham-operated and ovariectomized female rats were chronically exposed to angiotensin II (AII), which has been shown to cause myocardial adaptation. In the shams, AII induced cardiac adaptation by increasing myofilament Ca(2+) sensitivity. Interestingly, this hypersensitivity was further enhanced in AII-infused ovariectomized rats. Ovariectomy increased the phosphorylation levels of cardiac tropomyosin, which may underlie the mechanism of hypersensitivity. On the other hand, AII infusion did not alter maximal tension that was suppressed after ovariectomy. This finding coincided with a comparable increase in β-isoform of myosin heavy chains in both ovariectomized groups. Together, it is conceivable that female sex hormones serve as predominant factors that regulate cardiac myofilament activation. Furthermore, they may prevent stress-induced myofilament maladaptation.

  6. Iron intakes of Australian infants and toddlers: findings from the Melbourne Infant Feeding, Activity and Nutrition Trial (InFANT) Program.

    PubMed

    Atkins, Linda A; McNaughton, Sarah A; Campbell, Karen J; Szymlek-Gay, Ewa A

    2016-01-28

    Fe deficiency remains the most common nutritional deficiency worldwide and young children are at particular risk. Preventative food-based strategies require knowledge of current intakes, sources of Fe, and factors associated with low Fe intakes; yet few data are available for Australian children under 2 years. This study's objectives were to determine intakes and food sources of Fe for Australian infants and toddlers and identify non-dietary factors associated with Fe intake. Dietary, anthropometric and socio-demographic data from the Melbourne Infant Feeding, Activity and Nutrition Trial Program were analysed for 485 infants (mean age: 9·1 (sd 1·2) months) and 423 toddlers (mean age: 19·6 (sd 2·6) months) and their mothers. Dietary intakes were assessed via 24-h recalls over 3 non-consecutive days. Prevalence of inadequate Fe intake was estimated using the full probability approach. Associations between potential non-dietary predictors (sex, breast-feeding status, age when introduced to solid foods, maternal age, maternal education, maternal employment status and mother's country of birth) and Fe intakes were assessed using linear regression. Mean Fe intakes were 9·1 (sd 4·3) mg/d for infants and 6·6 (sd 2·4) mg/d for toddlers. Our results showed that 32·6 % of infants and 18·6 % of toddlers had inadequate Fe intake. Main food sources of Fe were Fe-fortified infant formula and cereals for infants and toddlers, respectively. Female sex and current breast-feeding were negatively associated with infant Fe intakes. Introduction to solid foods at or later than 6 months was negatively associated with Fe intake in toddlers. These data may facilitate food-based interventions to improve Australian children's Fe intake levels.

  7. Iron intakes of Australian infants and toddlers: findings from the Melbourne Infant Feeding, Activity and Nutrition Trial (InFANT) Program.

    PubMed

    Atkins, Linda A; McNaughton, Sarah A; Campbell, Karen J; Szymlek-Gay, Ewa A

    2016-01-28

    Fe deficiency remains the most common nutritional deficiency worldwide and young children are at particular risk. Preventative food-based strategies require knowledge of current intakes, sources of Fe, and factors associated with low Fe intakes; yet few data are available for Australian children under 2 years. This study's objectives were to determine intakes and food sources of Fe for Australian infants and toddlers and identify non-dietary factors associated with Fe intake. Dietary, anthropometric and socio-demographic data from the Melbourne Infant Feeding, Activity and Nutrition Trial Program were analysed for 485 infants (mean age: 9·1 (sd 1·2) months) and 423 toddlers (mean age: 19·6 (sd 2·6) months) and their mothers. Dietary intakes were assessed via 24-h recalls over 3 non-consecutive days. Prevalence of inadequate Fe intake was estimated using the full probability approach. Associations between potential non-dietary predictors (sex, breast-feeding status, age when introduced to solid foods, maternal age, maternal education, maternal employment status and mother's country of birth) and Fe intakes were assessed using linear regression. Mean Fe intakes were 9·1 (sd 4·3) mg/d for infants and 6·6 (sd 2·4) mg/d for toddlers. Our results showed that 32·6 % of infants and 18·6 % of toddlers had inadequate Fe intake. Main food sources of Fe were Fe-fortified infant formula and cereals for infants and toddlers, respectively. Female sex and current breast-feeding were negatively associated with infant Fe intakes. Introduction to solid foods at or later than 6 months was negatively associated with Fe intake in toddlers. These data may facilitate food-based interventions to improve Australian children's Fe intake levels. PMID:26571345

  8. 78 FR 64064 - Agency Information Collection (Principles of Excellence Complaint System Intake) Activity Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... System Intake. OMB Control Number: 2900-NEW. Type of Review: New collection. Abstract: The purpose of the complaint system is to provide a standardized method to submit a complaint against an educational... complaints utilizing their systems architecture with each agency only having access to their data....

  9. Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression.

    PubMed Central

    Qi, J S; Desai-Yajnik, V; Yuan, Y; Samuels, H H

    1997-01-01

    Thyroid hormone receptor (T3R) is a member of the steroid hormone receptor gene family of nuclear hormone receptors. In most cells T3R activates gene expression only in the presence of its ligand, L-triiodothyronine (T3). However, in certain cell types (e.g., GH4C1 cells) expression of T3R leads to hormone-independent constitutive activation. This activation by unliganded T3R occurs with a variety of gene promoters and appears to be independent of the binding of T3R to specific thyroid hormone response elements (TREs). Previous studies indicate that this constitutive activation results from the titration of an inhibitor of transcription. Since the tumor suppresser p53 is capable of repressing a wide variety of gene promoters, we considered the possibility that the inhibitor is p53. Evidence to support this comes from studies indicating that expression of p53 blocks T3R-mediated constitutive activation in GH4C1 cells. In contrast with hormone-independent activation by T3R, p53 had little or no effect on T3-dependent stimulation which requires TREs. In addition, p53 mutants which oligomerize with wild-type p53 and interfere with its function also increase promoter activity. This enhancement is of similar magnitude to but is not additive with the stimulation mediated by unliganded T3R, suggesting that they target the same factor. Since p53 mutants are known to target wild-type p53 in the cell, this suggests that T3R also interacts with p53 in vivo and that endogenous levels of p53 act to suppress promoter activity. Evidence supporting both functional and physical interactions of T3R and p53 in the cell is presented. The DNA binding domain (DBD) of T3R is important in mediating constitutive activation, and the receptor DBD appears to functionally interact with the N terminus of p53 in the cell. In vitro binding studies indicate that the T3R DBD is important for interaction of T3R with p53 and that this interaction is reduced by T3. These findings are consistent with

  10. Effect of Carissa opaca leaves extract on lipid peroxidation, antioxidant activity and reproductive hormones in male rats

    PubMed Central

    2013-01-01

    Background Carissa opaca leaves are traditionally used in the treatment of male dysfunction and hormonal disorder as well as in oxidative stress in Pakistan and Asia. The present study was designed to assess the protective effects of methanolic extract of Carissa opaca leaves (MLC) on carbon tetrachloride (CCl4)-induced reproductive stress in male rats and bioactive constituents responsible for the activity. Methods CCl4 was induced in 42 male rats for eight weeks and checked the protective efficacy of methanolic extract of Carissa opaca leaves at various hormonal imbalances, alteration of antioxidant enzymes, DNA fragmentation levels and lipid peroxidation caused testicular fibrosis in testis while High performance Liquid Chromatography (HPLC) was used for detection of bioactive components. Results HPLC characterization revealed the presence of isoquercitin , hyperoside , vitexin , myricetin and kaempherol. CCl4 caused significant alteration in the secretion of reproductive hormones. Activity of antioxidant enzymes viz; catalase, superoxide dimutase and phase II metabolizing enzymes including glutathione peroxidase, glutathione reductase and reduced glutathione was decreased while DNA fragmentation, hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with CCl4 treatment. Co-administration of 100 mg/kg and 200 mg/kg b.w. MLC effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels. Conclusion Protective effects of methanolic extract of Carissa opaca against CCl4−induced antioxidant and hormonal dysfunction which might be due to bioactive compound present in extract. PMID:23786717

  11. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.

    PubMed

    Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-04-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. PMID:26850278

  12. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones.

    PubMed

    Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H; Kleiner, Ralph E; Du, Xiu Quan; Leissring, Malcolm A; Tang, Wei-Jen; Charron, Maureen J; Seeliger, Markus A; Saghatelian, Alan; Liu, David R

    2014-07-01

    Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation.

  13. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.

    PubMed

    Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-04-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding.

  14. Involvement of matrix metalloproteinase activity in hormone-induced mammary tumor regression.

    PubMed

    Simian, Marina; Molinolo, Alfredo; Lanari, Claudia

    2006-01-01

    Proteolytic activity and remodeling of the extracellular matrix are important players in tumor progression. However, to date the role of the extracellular matrix in tumor regression remains unresolved. To address this, we used a progesterone-dependent in vivo mouse mammary tumor line, C4-HD, which regresses in response to hormone therapy. Within the first 72 hours of treatment, massive apoptosis was accompanied by changes in the staining patterns of laminin and collagens I, III, and IV. We thus hypothesized that an increase in matrix metalloproteinase (MMP) activity could be involved in this process. This indeed was the case as the activities of MMP-2, -9, and -3 increased in regressing tumors, coinciding with the peak of apoptosis. Moreover, cell-cell interactions were disrupted during early hours of regression with E-cadherin levels reduced and fragmentation products detected during regression. Analysis of beta-catenin revealed that although total levels within the tissue did not change, this molecule switched from being involved in cell-cell adhesion in the growing tumor to being expressed in the reactive stroma during regression. Our data provide a novel role for proteolytic activity in tumor regression and question the underlying principle for using MMP inhibitors in cancer treatment. PMID:16400029

  15. Activation of μ opioid receptors in the LPBN facilitates sodium intake in rats.

    PubMed

    Pavan, Carolina G; Roncari, Camila F; Barbosa, Silas P; De Paula, Patrícia M; Colombari, Débora S A; De Luca, Laurival A; Colombari, Eduardo; Menani, José V

    2015-07-15

    Important inhibitory mechanisms for the control of water and sodium intake are present in the lateral parabrachial nucleus (LPBN). Opioid receptors are expressed by LPBN neurons and injections of β-endorphin (nonspecific opioid receptor agonist) in this area induce 0.3M NaCl and water intake in satiated rats. In the present study, we investigated the effects of the injections of endomorphin-1 (μ opioid receptor agonist) alone or combined with the blockade of μ, κ or δ opioid receptors into the LPBN on 0.3M NaCl and water intake induced by subcutaneous injections of the diuretic furosemide (FURO) combined with low dose of the angiotensin converting enzyme inhibitor captopril (CAP). Male Holtzman rats with stainless steel cannulas implanted bilaterally in the LPBN were used. Bilateral injections of endomorphin-1 (0.1, 0.25, 0.5, 1.0, 2.0 and 4.0nmol/0.2μl) into the LPBN increased 0.3M NaCl and water intake induced by FURO+CAP. The previous blockade of μ opioid receptor with CTAP (1.0nmol/0.2μl) into the LPBN reduced the effect of endomorphin-1 on FURO+CAP-induced 0.3M NaCl. GNTI (κ opioid receptor antagonist; 2.0nmol/0.2μl) and naltrindole (δ opioid receptor antagonist; 2.0nmol/0.2μl) injected into the LPBN did not change the effects of endomorphin-1 on FURO+CAP-induced 0.3M NaCl. The results suggest that μ opioid receptors in the LPBN are involved in the control of sodium intake.

  16. Bone mineral density changes after physical training and calcium intake in students with attention deficit and hyper activity disorders.

    PubMed

    Arab Ameri, Elahe; Dehkhoda, Mohammad Reza; Hemayattalab, Rasool

    2012-01-01

    In this study we investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with attention deficit and hyper activity (ADHD) disorder. For this reason 54 male students with ADHD (age 8-12 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical activity: exercise groups with or without calcium supplementation (Ex+Ca+ and Ex+Ca-) and non-exercise groups with or without calcium supplementation (Ex-Ca+ and Ex-Ca-). The intervention involved 50 min of weight bearing exercise performed 3 sessions a week and/or the addition of dietary calcium rich food using enriched cow milk with vitamin D containing 250 mg calcium per serving, over 9 months. Paired-samples t-test, one way ANOVA analysis, and Tukey tests were used to determine the main and combined effects of training and calcium on BMD. All groups showed greater femoral neck BMD after 9 months. The increase in femoral neck BMD was significantly different between all groups (p < 0.05). Ex+Ca+ group has greater increase in BMD than other groups. Apparently, the effect of training was greater than calcium intake (p < 0.05). These results help to provide more evidence for public health organizations to deal with both exercise and nutrition issues in children with ADHD disorder for the achievement of peak BMD.

  17. Effect of physical activity on weight loss, energy expenditure and energy intake during diet induced weight loss

    PubMed Central

    DeLany, James P.; Kelley, David E.; Hames, Kazanna C.; Jakicic, John M.; Goodpaster, Bret H.

    2016-01-01

    Objective Objective measurements of physical activity (PA), energy expenditure (EE) and energy intake can provide valuable information regarding appropriate strategies for successful sustained weight loss. Design and methods We examined total EE by doubly labeled water, resting metabolic rate, PA with activity monitors, and energy intake by the Intake/Balance technique in 116 severely obese undergoing intervention with diet alone (DO) or diet plus PA (D-PA). Results Weight loss of 9.6±6.8 kg resulted in decreased EE which was not minimized in the D-PA group. Comparing the highest and lowest quartiles of increase in PA revealed a lower decrease in TDEE (−122±319 vs. −376±305 kcal/d), elimination of the drop in AEE (83±279 vs. −211±284 kcal/d) and greater weight loss (13.0±7.0 vs. 8.1±6.3 kg). Increased PA was associated with greater adherence to energy restriction and maintenance of greater weight loss during months 7–12. Conclusion Noncompliance to prescribed PA in the DO and D-PA groups partially masked the effects of PA to increase weight loss and to minimize the reduced EE. Increased PA was also associated with improved adherence to prescribed caloric restriction. A strong recommendation needs to be made to improve interventions that promote PA within the context of behavioral weight loss interventions. PMID:23804562

  18. Bone mineral density changes after physical training and calcium intake in students with attention deficit and hyper activity disorders.

    PubMed

    Arab Ameri, Elahe; Dehkhoda, Mohammad Reza; Hemayattalab, Rasool

    2012-01-01

    In this study we investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with attention deficit and hyper activity (ADHD) disorder. For this reason 54 male students with ADHD (age 8-12 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical activity: exercise groups with or without calcium supplementation (Ex+Ca+ and Ex+Ca-) and non-exercise groups with or without calcium supplementation (Ex-Ca+ and Ex-Ca-). The intervention involved 50 min of weight bearing exercise performed 3 sessions a week and/or the addition of dietary calcium rich food using enriched cow milk with vitamin D containing 250 mg calcium per serving, over 9 months. Paired-samples t-test, one way ANOVA analysis, and Tukey tests were used to determine the main and combined effects of training and calcium on BMD. All groups showed greater femoral neck BMD after 9 months. The increase in femoral neck BMD was significantly different between all groups (p < 0.05). Ex+Ca+ group has greater increase in BMD than other groups. Apparently, the effect of training was greater than calcium intake (p < 0.05). These results help to provide more evidence for public health organizations to deal with both exercise and nutrition issues in children with ADHD disorder for the achievement of peak BMD. PMID:22155532

  19. Cadmium effects on hypothalamic activity and pituitary hormone secretion in the male.

    PubMed

    Lafuente, A; Esquifino, A I

    1999-11-22

    Cadmium specifically modify amine metabolism at the central nervous system and pituitary hormone secretions. Thus, the physiological functions controlled by these hormones can be modulated by cadmium. This xenobiotic is associated with deleterious effects on the gonadal function and with changes in the secretory pattern of other pituitary hormones like prolactin, ACTH, GH or TSH. The observed changes in pituitary hormone secretion do not correlate with the modifications of central nervous system metabolism of the neurotransmitters involved in their regulation. The accumulative data indicates the existence of a disruption in the regulatory mechanisms of the hypothalamic-pituitary axis. The physiological significance of these effects remains to be elucidated.

  20. The Effect of a Dairy-Based Recovery Beverage on Post-Exercise Appetite and Energy Intake in Active Females.

    PubMed

    Brown, Meghan A; Green, Benjamin P; James, Lewis J; Stevenson, Emma J; Rumbold, Penny L S

    2016-01-01

    This study was designed to assess the effect of a dairy-based recovery beverage on post-exercise appetite and energy intake in active females. Thirteen active females completed three trials in a crossover design. Participants completed 60 min of cycling at 65% V̇O2peak, before a 120 min recovery period. On completion of cycling, participants consumed a commercially available dairy-based beverage (DBB), a commercially available carbohydrate beverage (CHO), or a water control (H₂O). Non-esterified fatty acids, glucose, and appetite-related peptides alongside measures of subjective appetite were sampled at baseline and at 30 min intervals during recovery. At 120 min, energy intake was assessed in the laboratory by ad libitum assessment, and in the free-living environment by weighed food record for the remainder of the study day. Energy intake at the ad libitum lunch was lower after DBB compared to H₂O (4.43 ± 0.20, 5.58 ± 0.41 MJ, respectively; p = 0.046; (95% CI: -2.28, -0.20 MJ)), but was not different to CHO (5.21 ± 0.46 MJ), with no difference between trials thereafter. Insulin and GLP-17-36 were higher following DBB compared to H₂O (p = 0.015 and p = 0.001, respectively) but not to CHO (p = 1.00 and p = 0.146, respectively). In addition, glucagon was higher following DBB compared to CHO (p = 0.008) but not to H₂O (p = 0.074). The results demonstrate that where DBB consumption may manifest in accelerated recovery, this may be possible without significantly affecting total energy intake and subsequent appetite-related responses relative to a CHO beverage. PMID:27338460

  1. The Effect of a Dairy-Based Recovery Beverage on Post-Exercise Appetite and Energy Intake in Active Females.

    PubMed

    Brown, Meghan A; Green, Benjamin P; James, Lewis J; Stevenson, Emma J; Rumbold, Penny L S

    2016-06-08

    This study was designed to assess the effect of a dairy-based recovery beverage on post-exercise appetite and energy intake in active females. Thirteen active females completed three trials in a crossover design. Participants completed 60 min of cycling at 65% V̇O2peak, before a 120 min recovery period. On completion of cycling, participants consumed a commercially available dairy-based beverage (DBB), a commercially available carbohydrate beverage (CHO), or a water control (H₂O). Non-esterified fatty acids, glucose, and appetite-related peptides alongside measures of subjective appetite were sampled at baseline and at 30 min intervals during recovery. At 120 min, energy intake was assessed in the laboratory by ad libitum assessment, and in the free-living environment by weighed food record for the remainder of the study day. Energy intake at the ad libitum lunch was lower after DBB compared to H₂O (4.43 ± 0.20, 5.58 ± 0.41 MJ, respectively; p = 0.046; (95% CI: -2.28, -0.20 MJ)), but was not different to CHO (5.21 ± 0.46 MJ), with no difference between trials thereafter. Insulin and GLP-17-36 were higher following DBB compared to H₂O (p = 0.015 and p = 0.001, respectively) but not to CHO (p = 1.00 and p = 0.146, respectively). In addition, glucagon was higher following DBB compared to CHO (p = 0.008) but not to H₂O (p = 0.074). The results demonstrate that where DBB consumption may manifest in accelerated recovery, this may be possible without significantly affecting total energy intake and subsequent appetite-related responses relative to a CHO beverage.

  2. The Effect of a Dairy-Based Recovery Beverage on Post-Exercise Appetite and Energy Intake in Active Females

    PubMed Central

    Brown, Meghan A.; Green, Benjamin P.; James, Lewis J.; Stevenson, Emma J.; Rumbold, Penny L. S.

    2016-01-01

    This study was designed to assess the effect of a dairy-based recovery beverage on post-exercise appetite and energy intake in active females. Thirteen active females completed three trials in a crossover design. Participants completed 60 min of cycling at 65% V̇O2peak, before a 120 min recovery period. On completion of cycling, participants consumed a commercially available dairy-based beverage (DBB), a commercially available carbohydrate beverage (CHO), or a water control (H2O). Non-esterified fatty acids, glucose, and appetite-related peptides alongside measures of subjective appetite were sampled at baseline and at 30 min intervals during recovery. At 120 min, energy intake was assessed in the laboratory by ad libitum assessment, and in the free-living environment by weighed food record for the remainder of the study day. Energy intake at the ad libitum lunch was lower after DBB compared to H2O (4.43 ± 0.20, 5.58 ± 0.41 MJ, respectively; p = 0.046; (95% CI: −2.28, −0.20 MJ)), but was not different to CHO (5.21 ± 0.46 MJ), with no difference between trials thereafter. Insulin and GLP-17-36 were higher following DBB compared to H2O (p = 0.015 and p = 0.001, respectively) but not to CHO (p = 1.00 and p = 0.146, respectively). In addition, glucagon was higher following DBB compared to CHO (p = 0.008) but not to H2O (p = 0.074). The results demonstrate that where DBB consumption may manifest in accelerated recovery, this may be possible without significantly affecting total energy intake and subsequent appetite-related responses relative to a CHO beverage. PMID:27338460

  3. Growth hormone activates phospholipase C in proximal tubular basolateral membranes from canine kidney

    SciTech Connect

    Rogers, S.A.; Hammerman, M.R. )

    1989-08-01

    To delineate pathways for signal transduction by growth hormone (GH) in proximal tubule, the authors incubated basolateral membranes isolated from canine kidney with human growth hormone (hGH) or human prolactin (hPrl) and measured levels of inositol trisphosphate (InsP{sub 3}) in suspensions and of diacylglycerol extractable from the membranes. Incubation with hGH, but not hPrl, increased levels of InsP{sub 3} and diacylglycerol in a concentration-dependent manner. Half-maximal effects occurred between 0.1 and 1 nM hGH. Increased levels of InsP{sub 3} were measured after as little as 5 sec of incubation with 1 nM hGH, and increase was maximal after 15 sec. Increases were no longer detectable after 60 sec because of dephosphorylation of InsP{sub 3} in membrane suspensions. hGH did not affect rates of dephosphorylation. hGH-stimulated increases in InsP{sub 3} were detectable in membranes suspended in 0, 0.1, and 0.2 {mu}M calcium but not in 0.3 or 1.0 {mu}M calcium. {sup 125}I-labeled hGH-receptor complexes with M{sub r} values of 66,000 and 140,000 were identified in isolated basolateral membranes. The findings establish that GH activates phospholipase C in isolated canine renal proximal tubular basolateral membranes, potentially after binding to a specific receptor. This process could mediate signal transmission by GH across the plasma membrane of the proximal tubular cell and elsewhere.

  4. Identification of Thyroid Hormone Receptor Active Compounds Using a Quantitative High-Throughput Screening Platform

    PubMed Central

    Freitas, Jaime; Miller, Nicole; Mengeling, Brenda J.; Xia, Menghang; Huang, Ruili; Houck, Keith; Rietjens, Ivonne M.C.M.; Furlow, J. David; Murk, Albertinka J.

    2014-01-01

    To adapt the use of GH3.TRE-Luc reporter gene cell line for a quantitative high-throughput screening (qHTS) platform, we miniaturized the reporter gene assay to a 1536-well plate format. 1280 chemicals from the Library of Pharmacologically Active Compounds (LOPAC) and the National Toxicology Program (NTP) 1408 compound collection were analyzed to identify potential thyroid hormone receptor (TR) agonists and antagonists. Of the 2688 compounds tested, eight scored as potential TR agonists when the positive hit cut-off was defined at ≥10% efficacy, relative to maximal triiodothyronine (T3) induction, and with only one of those compounds reaching ≥20% efficacy. One common class of compounds positive in the agonist assays were retinoids such as all-trans retinoic acid, which are likely acting via the retinoid-X receptor, the heterodimer partner with the TR. Five potential TR antagonists were identified, including the antiallergy drug tranilast and the anxiolytic drug SB 205384 but also some cytotoxic compounds like 5-fluorouracil. None of the inactive compounds were structurally related to T3, nor had been reported elsewhere to be thyroid hormone disruptors, so false negatives were not detected. None of the low potency (>100µM) TR agonists resembled T3 or T4, thus these may not bind directly in the ligand-binding pocket of the receptor. For TR agonists, in the qHTS, a hit cut-off of ≥20% efficacy at 100 µM may avoid identification of positives with low or no physiological relevance. The miniaturized GH3.TRE-Luc assay offers a promising addition to the in vitro test battery for endocrine disruption, and given the low percentage of compounds testing positive, its high-throughput nature is an important advantage for future toxicological screening. PMID:24772387

  5. A new strategy to analyze possible association structures between dynamic nocturnal hormone activities and sleep alterations in humans.

    PubMed

    Kalus, Stefanie; Kneib, Thomas; Steiger, Axel; Holsboer, Florian; Yassouridis, Alexander

    2009-04-01

    The human sleep process shows dynamic alterations during the night. Methods are needed to examine whether and to what extent such alterations are affected by internal, possibly time-dependent, factors, such as endocrine activity. In an observational study, we examined simultaneously sleep EEG and nocturnal levels of renin, growth hormone (GH), and cortisol (between 2300 and 0700) in 47 healthy volunteers comprising 24 women (41.67 +/- 2.93 yr of age) and 23 men (37.26 +/- 2.85 yr of age). Hormone concentrations were measured every 20 min. Conventional sleep stage scoring at 30-s intervals was applied. Semiparametric multinomial logit models are used to study and quantify possible time-dependent hormone effects on sleep stage transition courses. Results show that increased cortisol levels decrease the probability of transition from rapid-eye-movement (REM) sleep to wakefulness (WAKE) and increase the probability of transition from REM to non-REM (NREM) sleep, irrespective of the time in the night. Via the model selection criterion Akaike's information criterion, it was found that all considered hormone effects on transition probabilities with the initial state WAKE change with time. Similarly, transition from slow-wave sleep (SWS) to light sleep (LS) is affected by a "hormone-time" interaction for cortisol and renin, but not GH. For example, there is a considerable increase in the probability of SWS-LS transition toward the end of the night, when cortisol concentrations are very high. In summary, alterations in human sleep possess dynamic forms and are partially influenced by the endocrine activity of certain hormones. Statistical methods, such as semiparametric multinomial and time-dependent logit regression, can offer ambitious ways to investigate and estimate the association intensities between the nonstationary sleep changes and the time-dependent endocrine activities. PMID:19144755

  6. [Incretin hormones].

    PubMed

    Cáp, J

    2011-04-01

    Incretin hormones are peptides that are secreted from endocrine cell of gastrointestinal tract after nutrient ingestion and stimulate insulin secretion. Glucosodependent Insulinotropic Peptide--GIP is released from K-cells of duodenum and proximal jejunum, recently GIP synthesis has been proved in pancreatic alpha cells. Besides the incretin effect causes GIP increased lipogenesis and decreased lipolysis in fat tissue, increased bone formation and decreased resorption and has protective and proliferative effect on CNS neurons. Both GIP agonists (to treat diabetes) and antagonist (to treat obesity) are being studied. Another incretin hormone is derived in intestinal I-cells by posttranslational processing of proglucagon--glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). GLP-1 stimulates insuline production and inhibits glucagon secretion, exerts proliferative and antiapoptotic effect on beta-cells. Via receptors on vagal nerve and central mechanisms decreases food intake and decreases body weight. By deceleration of gastric emptying it attenuates increases in meal-associated blood glucose levels. It exerts cardioprotective effects. GLP-1 receptors have been proved in liver recently but decreased liver glucose production and increased glucose uptake by liver and muscle are mediated indirectly by altering insulin and glucagons levels. GLP-2 stimulates enterocytes proliferation, up-regulates intestinal nutrient transport, improves intestinal barrier function, and inhibits gastric and intestinal motility. GLP-2 also reduces bone resorption. PMID:21612069

  7. Thyroid hormone receptor binding to DNA and T3-dependent transcriptional activation are inhibited by uremic toxins

    PubMed Central

    Santos, Guilherme M; Pantoja, Carlos J; Costa e Silva, Aluízio; Rodrigues, Maria C; Ribeiro, Ralff C; Simeoni, Luiz A; Lomri, Noureddine; Neves, Francisco AR

    2005-01-01

    Background There is a substantial clinical overlap between chronic renal failure (CRF) and hypothyroidism, suggesting the presence of hypothyroidism in uremic patients. Although CRF patients have low T3 and T4 levels with normal thyroid-stimulating hormone (TSH), they show a higher prevalence of goiter and evidence for blunted tissue responsiveness to T3 action. However, there are no studies examining whether thyroid hormone receptors (TRs) play a role in thyroid hormone dysfunction in CRF patients. To evaluate the effects of an uremic environment on TR function, we investigated the effect of uremic plasma on TRβ1 binding to DNA as heterodimers with the retinoid X receptor alpha (RXRα) and on T3-dependent transcriptional activity. Results We demonstrated that uremic plasma collected prior to hemodialysis (Pre-HD) significantly reduced TRβ1-RXRα binding to DNA. Such inhibition was also observed with a vitamin D receptor (VDR) but not with a peroxisome proliferator-activated receptor gamma (PPARγ). A cell-based assay confirmed this effect where uremic pre-HD ultrafiltrate inhibited the transcriptional activation induced by T3 in U937 cells. In both cases, the inhibitory effects were reversed when the uremic plasma and the uremic ultrafiltrate were collected and used after hemodialysis (Post-HD). Conclusion These results suggest that dialyzable toxins in uremic plasma selectively block the binding of TRβ1-RXRα to DNA and impair T3 transcriptional activity. These findings may explain some features of hypothyroidism and thyroid hormone resistance observed in CRF patients. PMID:15807894

  8. Factors associated with low drinking water intake among adolescents: the Florida Youth Physical Activity and Nutrition Survey, 2007.

    PubMed

    Park, Sohyun; Sherry, Bettylou; O'Toole, Terrence; Huang, Youjie

    2011-08-01

    There is limited information on which characteristics are associated with water intake among adolescents. This cross-sectional study examined the association between demographic, dietary, and behavioral factors and low water intake as the outcome measure. Analyses were based on the 2007 Florida Youth Physical Activity and Nutrition Survey using a representative sample of 4,292 students in grades six through eight in 86 Florida public middle schools. Multivariable logistic regression was used to calculate adjusted odds ratios (ORs) and 95% confidence intervals for factors associated with low water intake (<3 glasses water per day). About 64% of students had low water intake. Factors significantly associated with low water intake were Hispanic ethnicity and non-Hispanic other (vs non-Hispanic white; ORs 0.79 and 0.76, respectively), drinking no 100% juice, drinking it <1 time/day, and drinking it 1 to 2 times/day (vs drinking it ≥3 times/day; ORs 1.83, 1.91, and 1.32, respectively), drinking no milk and drinking <2 glasses of milk/day (vs drinking ≥2 glasses/day; ORs 1.42 and 1.41, respectively), drinking <1 soda/day (vs drinking none; OR 1.40), drinking fruit-flavored drinks/sports drinks <1 time/day and drinking it ≥1 time/day (vs drinking none; ORs 1.49 and 1.41, respectively), eating at a fast-food restaurant ≥3 days/week (vs none; OR 1.38, respectively), not participating on team sports or participating on 1 to 2 team sports in previous 12 months (vs participating on ≥3 teams; ORs 1.77 and 1.24, respectively), and consuming snack/soda while watching television/movies "sometimes" and "most/every time" (vs never; ORs 1.65 and 2.20, respectively). The strongest factor associated with low water intake was frequent consumption of snacks/sodas while watching television/movies. Although study findings should be corroborated in other states and in a nationally representative sample, they may be useful in targeting adolescents for increased water consumption.

  9. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo.

  10. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo. PMID:23074026

  11. The Effects of Gonadotrophin Releasing Hormone Administration in Early Postpartum Dairy Cows on Hormone Concentrations, Ovarian Activity and Reproductive Performance: A Review

    PubMed Central

    Leslie, K. E.

    1983-01-01

    Gonadotrophin releasing hormones have become widely used hormonal compounds in veterinary medicine, particularly with respect to bovine reproduction. The character and physiological actions of gonadotrophin releasing hormone are briefly reviewed and its clinical applications are summarized. The endocrinological research concerned with the use of gonadotrophin releasing hormone in the early postpartum period is discussed. Field trials which have been conducted to assess the effects of postpartum gonadotrophin releasing hormone administration on reproductive performance have varied widely in both design and interpretation of results. These experiments are reviewed, including the clinical trials using normal cows as well as those on cows with retained placenta. PMID:17422245

  12. Effect of Dietary Fiber Intake on Lipoprotein Cholesterol Levels Independent of Estradiol in Healthy Premenopausal Women

    PubMed Central

    Mumford, Sunni L.; Schisterman, Enrique F.; Siega-Riz, Anna Maria; Gaskins, Audrey J.; Wactawski-Wende, Jean; VanderWeele, Tyler J.

    2011-01-01

    High-fiber diets are associated with improved lipid profiles. However, pre- and postmenopausal women respond differently to fiber intake, suggesting that endogenous estradiol mediates the effect. The authors' objective was to determine the direct effect of fiber intake on lipoprotein cholesterol levels independent of estradiol among premenopausal women. The BioCycle Study, a prospective cohort study conducted at the State University of New York at Buffalo from 2005 to 2007, followed 259 healthy women for up to 2 complete menstrual cycles. Serum lipoprotein and hormone levels were measured at 16 visits timed using fertility monitors. Fiber intake was assessed by 8 24-hour recalls. Marginal structural models with inverse probability weights for both lipoprotein and estradiol levels were used to estimate controlled direct effects of the highest category of fiber intake (≥22 g/day vs. <22 g/day) while accounting for age, body mass index, total energy, vitamin E intake, physical activity, luteinizing hormone, follicle-stimulating hormone, and progesterone. Reductions were observed in total and low density lipoprotein cholesterol in women with higher fiber intakes. Direct effects were greater than total effects. These analyses suggested that estradiol mediates at least part of the association between fiber and cholesterol among premenopausal women. More research is needed to elucidate the biologic mechanisms driving these associations. PMID:21148240

  13. Central and direct regulation of testicular activity by gonadotropin-inhibitory hormone and its receptor.

    PubMed

    Ubuka, Takayoshi; Son, You Lee; Tobari, Yasuko; Narihiro, Misato; Bentley, George E; Kriegsfeld, Lance J; Tsutsui, Kazuyoshi

    2014-01-01

    Gonadotropin-inhibitory hormone (GnIH) was first identified in Japanese quail to be an inhibitor of gonadotropin synthesis and release. GnIH peptides have since been identified in all vertebrates, and all share an LPXRFamide (X = L or Q) motif at their C-termini. The receptor for GnIH is the G protein-coupled receptor 147 (GPR147), which inhibits cAMP signaling. Cell bodies of GnIH neurons are located in the paraventricular nucleus (PVN) in birds and the dorsomedial hypothalamic area (DMH) in most mammals. GnIH neurons in the PVN or DMH project to the median eminence to control anterior pituitary function via GPR147 expressed in gonadotropes. Further, GnIH inhibits gonadotropin-releasing hormone (GnRH)-induced gonadotropin subunit gene transcription by inhibiting the adenylate cyclase/cAMP/PKA-dependent ERK pathway in an immortalized mouse gonadotrope cell line (LβT2 cells). GnIH neurons also project to GnRH neurons that express GPR147 in the preoptic area (POA) in birds and mammals. Accordingly, GnIH can inhibit gonadotropin synthesis and release by decreasing the activity of GnRH neurons as well as by directly inhibiting pituitary gonadotrope activity. GnIH and GPR147 can thus centrally suppress testosterone secretion and spermatogenesis by acting in the hypothalamic-pituitary-gonadal axis. GnIH and GPR147 are also expressed in the testis of birds and mammals, possibly acting in an autocrine/paracrine manner to suppress testosterone secretion and spermatogenesis. GnIH expression is also regulated by melatonin, stress, and social environment in birds and mammals. Accordingly, the GnIH-GPR147 system may play a role in transducing physical and social environmental information to regulate optimal testicular activity in birds and mammals. This review discusses central and direct inhibitory effects of GnIH and GPR147 on testosterone secretion and spermatogenesis in birds and mammals.

  14. Sex Differences in the Effects of Mental Work and Moderate-Intensity Physical Activity on Energy Intake in Young Adults

    PubMed Central

    Drapeau, Vicky; Sénécal, Caroline; Tremblay, Angelo

    2013-01-01

    The aim of this study was to examine the acute effects of mental work and moderate-intensity physical activity on various components of energy balance in young and healthy adults. With the use of a randomized crossover design, 35 participants aged 24 ± 3 years completed three 45-min conditions, namely, (i) resting in a sitting position (control), (ii) reading and writing (mental work (MW)), and (iii) exercising on a treadmill at 40% of peak oxygen uptake (exercise), followed by an ad libitum lunch. The endpoints were spontaneous energy intake (EI), energy expenditure (EE), appetite sensations, and EI for the remainder of the day. We observed that the energy cost of the control and MW conditions was about the same whereas the exercise condition increased EE to a greater extent in men than women. Exercise induced a decrease in EI relative to EE compared to the control condition that was more pronounced in men than women. However, women tended to increase their energy intake after the MW condition compared to the control one whereas an opposite trend was observed in men. None of the appetite sensation markers differed significantly between both sexes. In conclusion, men and women have specific food intake patterns when submitted to cognitive and physical stimuli. PMID:24967260

  15. Daily intake of bisphenol A and triclosan and their association with anthropometric data, thyroid hormones and weight loss in overweight and obese individuals.

    PubMed

    Geens, Tinne; Dirtu, Alin C; Dirinck, Eveline; Malarvannan, Govindan; Van Gaal, Luc; Jorens, Philippe G; Covaci, Adrian

    2015-03-01

    Bisphenol A (BPA) and triclosan (TCS) were determined in urine of Belgian overweight and obese (n=151) and lean (n=43) individuals. After the first urine collection (0M), obese patients started a diet program or have undergone bariatric surgery. Hereafter, three additional urine samples from obese patients were collected after 3 (3M), 6 (6M) and 12 (12M) months. Both compounds were detected in >99% of the samples. BPA had median concentrations of 1.7 and 1.2ng/mL in obese and lean groups, respectively, while TCS had median concentrations of 1.5 and 0.9ng/mL in the obese and lean groups, respectively. The obese group had higher urinary concentrations (ng/mL) of BPA (p<0.5), while no significant differences were found for TCS between the obese and lean groups. No time trends between the different collection moments were observed. The BPA concentrations in the obese group were negatively associated with age, while no gender difference or relationship with body mass index was observed. For TCS, no relationships with gender, BMI, or age were found. The temporal variability of BPA and TCS was assessed with calculation of the intraclass correlation coefficient, Spearman rank correlation coefficients, and surrogate category analysis. We observed evidence that single spot urine samples might be predictive of exposure over a longer period of time. Dietary intakes of BPA and TCS did not differ significantly among the time points considered after obese individuals started losing weight (6 and 12months). Multiple linear regression analyses after adjusting for age and weight loss revealed negative associations between urinary TCS and serum FT4 in the 0M and 3M female obese individuals and positive associations between urinary BPA and serum TSH in the lean group.

  16. Hormonal control in a state of decreased activation: potentiation of arginine vasopressin secretion.

    PubMed

    O'Halloran, J P; Jevning, R; Wilson, A F; Skowsky, R; Walsh, R N; Alexander, C

    1985-10-01

    Behaviorally induced stress is associated with increased arginine vasopressin (AVP) secretion. In this report we describe a phasic conditioned response of AVP secretion yielding 2.6-7.1 times normal plasma concentration of this hormone in association with a physiological state of decreased activation, that associated with the mental technique of "transcendental meditation" (TM) in long-term practitioners (6-8 years of regular elicitation). Such a very large phasic response of AVP was previously unknown in the normal physiology of AVP. This elevation was not accompanied by elevation of plasma osmolality. Unstylized ordinary eyes closed rest in a separate group of subjects studied in the same manner was associated with normal plasma AVP concentration. Galvanic skin resistance (GSR) increased during both TM and rest with significantly larger increase associated with TM. Other measures of activation, including muscle metabolism, and the Spielberger Anxiety Inventory indicated marked relaxation in association with TM. In previous research it has been shown that blood pressure does not change acutely during this behavior. These observations indicate that neither stress nor operation of other usual homeostatic control mechanisms are responsible for elevated for AVP in the meditators. It is speculated that the apparently unique mechanism of TM-induced AVP secretion may be more specifically related to the behavioral effects of meditation.

  17. Role of chicken Pit-1 isoforms in activating growth hormone gene.

    PubMed

    Murase, Daisuke; Taniuchi, Shusuke; Takeuchi, Sakae; Adachi, Hiromi; Kansaku, Norio; Okazaki, Katsuichiro; Ohkubo, Takeshi

    2011-09-01

    In the present study, we expressed chicken (ch) Pit-1α (chPit-1α) and chPit-1γin vitro to compare the roles of chPit-1s in the transcription of the chicken growth hormone (chGH) gene. Both green fluorescence protein (GFP)-fused chPit-1γ and GFP-fused chPit-1α were localized in the nuclei of COS-7 cells. In a luciferase reporter gene assay, both chPit-1α and chPit-1γ transactivated the chGH promoter, and chPit-1α showed a more potent effect than chPit-1γ. On the other hand, an increase of cellular cAMP induced by forskolin promoted transactivation of the chGH gene with chPit-1α and chPit-1γ to similar extents. These results suggest that chPit-1γ may modulate the basal promoter activity of the chGH gene to the same degree as chPit-1α; however, a structural difference observed at the N-terminus transactivation domains in chPit-1α and chPit-1γ could be associated with the efficiency of basal activation of the chGH promoter. PMID:21703269

  18. Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation.

    PubMed

    Pencheva, Nora; Buss, Colin G; Posada, Jessica; Merghoub, Taha; Tavazoie, Sohail F

    2014-02-27

    Melanoma metastasis is a devastating outcome lacking an effective preventative therapeutic. We provide pharmacologic, molecular, and genetic evidence establishing the liver-X nuclear hormone receptor (LXR) as a therapeutic target in melanoma. Oral administration of multiple LXR agonists suppressed melanoma invasion, angiogenesis, tumor progression, and metastasis. Molecular and genetic experiments revealed these effects to be mediated by LXRβ, which elicits these outcomes through transcriptional induction of tumoral and stromal apolipoprotein-E (ApoE). LXRβ agonism robustly suppressed tumor growth and metastasis across a diverse mutational spectrum of melanoma lines. LXRβ targeting significantly prolonged animal survival, suppressed the progression of established metastases, and inhibited brain metastatic colonization. Importantly, LXRβ activation displayed melanoma-suppressive cooperativity with the frontline regimens dacarbazine, B-Raf inhibition, and the anti-CTLA-4 antibody and robustly inhibited melanomas that had acquired resistance to B-Raf inhibition or dacarbazine. We present a promising therapeutic approach that uniquely acts by transcriptionally activating a metastasis suppressor gene.

  19. Comparative aspects of steroid hormone metabolism and ovarian activity in felids, measured noninvasively in feces.

    PubMed

    Brown, J L; Wasser, S K; Wildt, D E; Graham, L H

    1994-10-01

    Noninvasive fecal assays were used to study steroid metabolism and ovarian activity in several felid species. Using the domestic cat (Felis catus) as model, the excretory products of injected [14C]estradiol (E2) and [14C]progesterone (P4) were determined. Within 2 days, 97.0 +/- 0.6% and 96.7 +/- 0.5% of recovered E2 and P4 radioactivity, respectively, was found in feces. E2 was excreted as unconjugated estradiol and estrone (40%) and as a non-enzyme-hydrolyzable conjugate (60%). P4 was excreted primarily as non-enzyme-hydrolyzable, conjugated metabolites (78%) and as unconjugated pregnenolone epimers. A simple method for extracting fecal steroid metabolites optimized extraction efficiencies of the E2 and P4 excretion products (90.1 +/- 0.8% and 87.2 +/- 1.4%, respectively). Analysis of HPLC fractions of extracted fecal samples from the radiolabel-injected domestic cats revealed that E2 immunoreactivity coincided primarily with the unconjugated metabolized [14C]E2 peak, whereas progestogen immunoreactivity coincided with a single conjugated epimer and multiple unconjugated pregnenolone epimers. After HPLC separation, similar immunoreactive E2 and P4 metabolite profiles were observed in the leopard cat (F. bengalensis), cheetah (Acinonyx jubatus), clouded leopard (Neofelis nebulosa), and snow leopard (Panthera uncia). Longitudinal analyses demonstrated that changes in fecal E2 and P4 metabolite concentrations reflected natural or artificially induced ovarian activity. For example, severalfold increases in E2 excretion were associated with overt estrus or exogenous gonadotropin treatment, and elevated fecal P4 metabolite concentrations occurred during pregnant and nonpregnant (pseudopregnant) luteal phases. Although overall concentrations were similar, the duration of elevated fecal P4 metabolites during pseudopregnancy was approximately half that observed during pregnancy. In summary, steroid metabolism mechanisms appear to be conserved among these physically

  20. Comparative aspects of steroid hormone metabolism and ovarian activity in felids, measured noninvasively in feces.

    PubMed

    Brown, J L; Wasser, S K; Wildt, D E; Graham, L H

    1994-10-01

    Noninvasive fecal assays were used to study steroid metabolism and ovarian activity in several felid species. Using the domestic cat (Felis catus) as model, the excretory products of injected [14C]estradiol (E2) and [14C]progesterone (P4) were determined. Within 2 days, 97.0 +/- 0.6% and 96.7 +/- 0.5% of recovered E2 and P4 radioactivity, respectively, was found in feces. E2 was excreted as unconjugated estradiol and estrone (40%) and as a non-enzyme-hydrolyzable conjugate (60%). P4 was excreted primarily as non-enzyme-hydrolyzable, conjugated metabolites (78%) and as unconjugated pregnenolone epimers. A simple method for extracting fecal steroid metabolites optimized extraction efficiencies of the E2 and P4 excretion products (90.1 +/- 0.8% and 87.2 +/- 1.4%, respectively). Analysis of HPLC fractions of extracted fecal samples from the radiolabel-injected domestic cats revealed that E2 immunoreactivity coincided primarily with the unconjugated metabolized [14C]E2 peak, whereas progestogen immunoreactivity coincided with a single conjugated epimer and multiple unconjugated pregnenolone epimers. After HPLC separation, similar immunoreactive E2 and P4 metabolite profiles were observed in the leopard cat (F. bengalensis), cheetah (Acinonyx jubatus), clouded leopard (Neofelis nebulosa), and snow leopard (Panthera uncia). Longitudinal analyses demonstrated that changes in fecal E2 and P4 metabolite concentrations reflected natural or artificially induced ovarian activity. For example, severalfold increases in E2 excretion were associated with overt estrus or exogenous gonadotropin treatment, and elevated fecal P4 metabolite concentrations occurred during pregnant and nonpregnant (pseudopregnant) luteal phases. Although overall concentrations were similar, the duration of elevated fecal P4 metabolites during pseudopregnancy was approximately half that observed during pregnancy. In summary, steroid metabolism mechanisms appear to be conserved among these physically

  1. Structure-activity relationship of adipokinetic hormone analogs in the striped hawk moth, Hippotion eson.

    PubMed

    Marco, Heather G; Gäde, Gerd

    2015-06-01

    We showed previously that the sphingid moth Hippotion eson synthesizes the highest number of adipokinetic hormones (AKHs) ever recorded, viz. five, in its corpus cardiacum: two octa-, two nona- and one decapeptide. Further, the endogenous decapeptide (Manse-AKH-II) and the other four AKHs are all active in lipid mobilization, whereas a non-lepidopteran decapeptide (Lacsp-AKH, five amino acid substitutions compared with Manse-AKH-II), was inactive in H. eson. We tested the decapeptide, Lacol-AKH, from a noctuid moth for the first time in a bioassay and it shows a maximal AKH effect in H. eson. Lacol-AKH differs from Manse-AKH-II in three places and from Lacsp-AKH in four places. We, thus, used Lacol-AKH as a lead peptide on which a series of AKH analogs are based to represent: (a) single amino acid replacements (according to the substitutions in Lacsp-AKH), (b) shorter chain lengths, (c) modified termini, and (d) a replacement of Trp in position 8. These analogs, as well as a few naturally occurring AKHs from other lepidopterans were tested in in vivo adipokinetic assays to gain insight into the ligand-receptor interaction in H. eson. Our results show that the second and third amino acids are important for biological activity in the sphingid moth. Analogs with an N-[acetylated]Glu(1) (instead of a pyroGlu), or a free C-terminus, or Ala(8) were not active in the bioassays, while shortened Lacol-AKH analogs and the undecapeptide, non-amidated Vanca-AKH showed very reduced activity (below 25%). This information is important for the consideration of peptide mimetics to combat specific lepidopteran pest insects.

  2. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics.

    PubMed

    Butt, Craig M; Stapleton, Heather M

    2013-11-18

    Many halogenated organic contaminants (HOCs) are considered endocrine disruptors and affect the hypothalamic-pituitary-thyroid axis, often by interfering with circulating levels of thyroid hormones (THs). We investigated one potential mechanism for TH disruption, inhibition of sulfotransferase activity. One of the primary roles of TH sulfation is to support the regulation of biologically active T3 through the formation of inactive THs. We investigated TH sulfotransferase inhibition by 14 hydroxylated polybrominated diphenyl ethers (OH BDEs), BDE 47, triclosan, and fluorinated, chlorinated, brominated, and iodinated analogues of 2,4,6-trihalogenated phenol and bisphenol A (BPA). A new mass spectrometry-based method was also developed to measure the formation rates of 3,3'-T2 sulfate (3,3'-T2S). Using pooled human liver cytosol, we investigated the influence of these HOCs on the sulfation of 3,3'-T2, a major substrate for TH sulfation. For the formation of 3,3'-T2S, the Michaelis constant (Km) was 1070 ± 120 nM and the Vmax was 153 ± 6.6 pmol min(-1) (mg of protein)(-1). All chemicals investigated inhibited sulfotransferase activity with the exception of BDE 47. The 2,4,6-trihalogenated phenols were the most potent inhibitors followed by the OH BDEs and then halogenated BPAs. The IC50 values for the OH BDEs were primarily in the low nanomolar range, which may be environmentally relevant. In silico molecular modeling techniques were also used to simulate the binding of OH BDE to SULT1A1. This study suggests that some HOCs, including antimicrobial chemicals and metabolites of flame retardants, may interfere with TH regulation through inhibition of sulfotransferase activity. PMID:24089703

  3. The UV filter benzophenone 3 (BP-3) activates hormonal genes mimicking the action of ecdysone and alters embryo development in the insect Chironomus riparius (Diptera).

    PubMed

    Ozáez, Irene; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2014-09-01

    Numerous studies have evaluated the endocrine effects of UV filters in vertebrates, but little attention has been paid to their possible hormonal activity in invertebrates. We examined the effects of benzophenone-3 (BP-3), one of the most common sunscreen agents, in Chironomus riparius (Insecta), a reference organism in aquatic toxicology. Salivary glands from larvae were treated with either the hormone ecdysone or BP-3 to compare the response of endocrine genes. It was found that BP-3 elicits the same effects as the natural hormone activating the expression of a set of ecdysone responsive genes. BP-3 also activated the stress gene hsp70. Interestingly, similar effects have been confirmed in vivo in embryos. Moreover, BP-3 also altered embryogenesis delaying hatching. This is the first demonstration of hormonal activity of UV filters in invertebrates, showing a mode of action similar to ecdysteroid hormones. This finding highlights the potential endocrine disruptive effects of these emergent pollutants.

  4. The UV filter benzophenone 3 (BP-3) activates hormonal genes mimicking the action of ecdysone and alters embryo development in the insect Chironomus riparius (Diptera).

    PubMed

    Ozáez, Irene; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2014-09-01

    Numerous studies have evaluated the endocrine effects of UV filters in vertebrates, but little attention has been paid to their possible hormonal activity in invertebrates. We examined the effects of benzophenone-3 (BP-3), one of the most common sunscreen agents, in Chironomus riparius (Insecta), a reference organism in aquatic toxicology. Salivary glands from larvae were treated with either the hormone ecdysone or BP-3 to compare the response of endocrine genes. It was found that BP-3 elicits the same effects as the natural hormone activating the expression of a set of ecdysone responsive genes. BP-3 also activated the stress gene hsp70. Interestingly, similar effects have been confirmed in vivo in embryos. Moreover, BP-3 also altered embryogenesis delaying hatching. This is the first demonstration of hormonal activity of UV filters in invertebrates, showing a mode of action similar to ecdysteroid hormones. This finding highlights the potential endocrine disruptive effects of these emergent pollutants. PMID:24878782

  5. Screening of hormone-like activities in bottled waters available in Southern Spain using receptor-specific bioassays.

    PubMed

    Real, Macarena; Molina-Molina, José-Manuel; Jiménez-Díaz, Inmaculada; Arrebola, Juan Pedro; Sáenz, José-María; Fernández, Mariana F; Olea, Nicolás

    2015-01-01

    Bottled water consumption is a putative source of human exposure to endocrine-disrupting chemicals (EDCs). Research has been conducted on the presence of chemicals with estrogen-like activity in bottled waters and on their estrogenicity, but few data are available on the presence of hormonal activities associated with other nuclear receptors (NRs). The aim of this study was to determine the presence of endocrine activities dependent on the activation of human estrogen receptor alpha (hERa) and/or androgen receptor (hAR) in water in glass or plastic bottles sold to consumers in Southern Spain. Hormone-like activities were evaluated in 29 bottled waters using receptor-specific bioassays based on reporter gene expression in PALM cells [(anti-)androgenicity] and cell proliferation assessment in MCF-7 cells [(anti-)estrogenicity] after optimized solid phase extraction (SPE). All of the water samples analyzed showed hormonal activity. This was estrogenic in 79.3% and anti-estrogenic in 37.9% of samples and was androgenic in 27.5% and anti-androgenic in 41.3%, with mean concentrations per liter of 0.113pM 17β-estradiol (E2) equivalent units (E2Eq), 11.01pM anti-estrogen (ICI 182780) equivalent units (ICI 182780Eq), 0.33pM methyltrienolone (R1881) equivalent units (R1881Eq), and 0.18nM procymidone equivalent units (ProcEq). Bottled water consumption contributes to EDC exposure. Hormone-like activities observed in waters from both plastic and glass bottles suggest that plastic packaging is not the sole source of contamination and that the source of the water and bottling process may play a role, among other factors. Further research is warranted on the cumulative effects of long-term exposure to low doses of EDCs.

  6. [The central nervous system and appetite: possible sites of activity for food intake therapy].

    PubMed

    Lombardi, C; Govoni, S; Trabucchi, M

    1984-07-31

    Recent progress in the field of neurochemical and neuropharmacological research into food intake control by the central nervous system is discussed. Particular emphasis is laid on the fundamental role played by the hypothalamus as the integration centre for the various afferent impulses and the processor of behavioural patterns aimed at the quest for, and ingestion of food. Physiopathological knowledge of central appetite regulation mechanisms is essential for the understanding of the aetiopathogenesis of many clinical forms of human obesity and is the best basis for decisions on the pharmacological and behavioural approach to the treatment of this disease.

  7. Assessment of multiple hormone activities of a UV-filter (octocrylene) in zebrafish (Danio rerio).

    PubMed

    Zhang, Qiuya Y; Ma, Xiaoyan Y; Wang, Xiaochang C; Ngo, Huu Hao

    2016-09-01

    In this study, zebrafish (Danio rerio) were exposed to a UV-filter-octocrylene (OCT) with elevated concentrations for 28 d. The total body accumulation of OCT in zebrafish was found to reach 2321.01 ("L" level), 31,234.80 ("M" level), and 70,593.38 ng g(-1) ("H" level) when the average OCT exposure concentration was controlled at 28.61, 505.62, and 1248.70 μg L(-1), respectively. Gross and histological observations as well as RT-qPCR analysis were conducted to determine the effects of OCT accumulation on zebrafish. After exposure, the gonad-somatic index and percentage of vitellogenic oocytes were found to increase significantly in the ovaries of female zebrafish at the H accumulation level. Significant up-regulation of esr1 and cyp19b were observed in the gonads, as well as vtg1 in the livers for both female and male zebrafish. At M and H accumulation levels, apparent down-regulation of ar was observed in the ovaries and testis of the female and male zebrafish, respectively. Although the extent of the effects on zebrafish differed at different accumulation levels, the induction of vtg1 and histological changes in the ovaries are indications of estrogenic activity and the inhibition of esr1 and ar showed antiestrogenic and antiandrogenic activity, respectively. Thus, as OCT could easily accumulate in aquatic life such as zebrafish, one of its most of concern hazards would be the disturbance of the histological development and its multiple hormonal activities. PMID:27337435

  8. Class IIa Histone Deacetylases are Hormone-activated regulators of FOXO and Mammalian Glucose Homeostasis

    PubMed Central

    Mihaylova, Maria M.; Vasquez, Debbie S.; Ravnskjaer, Kim; Denechaud, Pierre-Damien; Yu, Ruth T.; Alvarez, Jacqueline G.; Downes, Michael; Evans, Ronald M.; Montminy, Marc; Shaw, Reuben J.

    2011-01-01

    SUMMARY Class IIa histone deacetylases (HDACs) are signal-dependent modulators of transcription with established roles in muscle differentiation and neuronal survival. We show here that in liver, Class IIa HDACs (HDAC4, 5, and 7) are phosphorylated and excluded from the nucleus by AMPK family kinases. In response to the fasting hormone glucagon, Class IIa HDACs are rapidly dephosphorylated and translocated to the nucleus where they associate with the promoters of gluconeogenic enzymes such as G6Pase. In turn, HDAC4/5 recruit HDAC3, which results in the acute transcriptional induction of these genes via deacetylation and activation of Foxo family transcription factors. Loss of Class IIa HDACs in murine liver results in inhibition of FOXO target genes and lowers blood glucose, resulting in increased glycogen storage. Finally, suppression of Class IIa HDACs in mouse models of Type 2 Diabetes ameliorates hyperglycemia, suggesting that inhibitors of Class I/II HDACs may be potential therapeutics for metabolic syndrome. PMID:21565617

  9. E-NTPDase 3 (ATP diphosphohydrolase) from cardiomyocytes, activity and expression are modulated by thyroid hormone.

    PubMed

    Barreto-Chaves, Maria Luiza M; Carneiro-Ramos, Marcela Sorelli; Cotomacci, Guilherme; Júnior, Marconi Barbosa Coutinho; Sarkis, João José Freitas

    2006-06-01

    Degradation of adenine nucleotides by myocardial cells occurs, in part, by a cascade of surface-located enzymes converting ATP into adenosine that has important implications for the regulation of the nucleotide/nucleoside ratio modulating the cardiac functions. Thyroid hormones have profound effects on cardiovascular system, as observed in hypo- and hyperthyroidism. Combined biochemical parameters and gene expression analysis approaches were used to investigate the influence of tri-iodothyronine (T3) on ATP and ADP hydrolysis by isolated myocytes. Cultures of cardiomyocytes were submitted to increasing doses of T3 for 24h. Enzymatic activity and expression were evaluated. T3 (0.1 nM) caused an increase in ATP and ADP hydrolysis. Experiments with specific inhibitors suggest the involvement of an NTPDase, which was confirmed by an increase in NTPDase 3 messenger RNA (mRNA) levels. Since T3 promotes an increase in the contractile protein, leading to cardiac hypertrophy, it is tempting to postulate that the increase in ATP hydrolysis and the decrease in the extracellular levels signify an important factor for prevention of excessive contractility. PMID:16584835

  10. Dystocia in 3-year-old beef heifers; relationship to maternal nutrient intake during early- and mid-gestation, pelvic area and hormonal indicators of placental function.

    PubMed

    Micke, G C; Sullivan, T M; Rolls, P J; Hasell, B; Greer, R M; Norman, S T; Perry, V E A

    2010-04-01

    may be useful for identifying heifers at an increased risk of dystocia and (b) increased ES and bPL concentrations at calving are associated with increased risk of dystocia. Pelvic area measurements obtained prior to conception remain valid in their assessment of the relationship between pelvic area and likelihood of dystocia occurring in the event of changing maternal nutrient intake during gestation. This is an important finding given maternal diets high in protein and energy during the second trimester of gestation increased calf birth weight and calf birth weight was associated with an increase in the occurrence of dystocia in heifers calving as 3-year olds.

  11. Dystocia in 3-year-old beef heifers; relationship to maternal nutrient intake during early- and mid-gestation, pelvic area and hormonal indicators of placental function.

    PubMed

    Micke, G C; Sullivan, T M; Rolls, P J; Hasell, B; Greer, R M; Norman, S T; Perry, V E A

    2010-04-01

    may be useful for identifying heifers at an increased risk of dystocia and (b) increased ES and bPL concentrations at calving are associated with increased risk of dystocia. Pelvic area measurements obtained prior to conception remain valid in their assessment of the relationship between pelvic area and likelihood of dystocia occurring in the event of changing maternal nutrient intake during gestation. This is an important finding given maternal diets high in protein and energy during the second trimester of gestation increased calf birth weight and calf birth weight was associated with an increase in the occurrence of dystocia in heifers calving as 3-year olds. PMID:19762178

  12. Coinjection of CCK and leptin reduces food intake via increased CART/TRH and reduced AMPK phosphorylation in the hypothalamus.

    PubMed

    Akieda-Asai, Sayaka; Poleni, Paul-Emile; Date, Yukari

    2014-06-01

    CCK and leptin are anorectic hormones produced in the small intestine and white adipose tissue, respectively. Investigating how these hormones act together as an integrated anorectic signal is important for elucidating the mechanisms by which energy balance is maintained. We found here that coadministration of subthreshold CCK and leptin, which individually have no effect on feeding, dramatically reduced food intake in rats. Phosphorylation of AMP-activated protein kinase (AMPK) in the hypothalamus significantly decreased after coinjection of CCK and leptin. In addition, coadministration of these hormones significantly increased mRNA levels of anorectic cocaine- and amphetamine-regulated transcript (CART) and thyrotropin-releasing hormone (TRH) in the hypothalamus. The interactive effect of CCK and leptin on food intake was abolished by intracerebroventricular preadministration of the AMPK activator AICAR or anti-CART/anti-TRH antibodies. These findings indicate that coinjection of CCK and leptin reduces food intake via reduced AMPK phosphorylation and increased CART/TRH in the hypothalamus. Furthermore, by using midbrain-transected rats, we investigated the role of the neural pathway from the hindbrain to the hypothalamus in the interaction of CCK and leptin to reduce food intake. Food intake reduction induced by coinjection of CCK and leptin was blocked in midbrain-transected rats. Therefore, the neural pathway from hindbrain to hypothalamus plays an important role in transmitting the anorectic signals provided by coinjection of CCK and leptin. Our findings give further insight into the mechanisms of feeding and energy balance.

  13. Melatonin and Steroid Hormones Activate Intermembrane CU,ZN-Superoxide Dismutase by Means of Mitochondrial Cytochrome P450

    PubMed Central

    IÑARREA, Pedro; CASANOVA, Alvaro; ALAVA, Maria Angeles; ITURRALDE, María; CADENAS, Enrique

    2011-01-01

    Melatonin and steroid hormones are cytochrome P450 (CYP or P450; EC 1.14.14.1) substrates that have antioxidant properties and mitochondrial protective activities. IMS (Mitochondrial intermembrane space) SOD1 (Cu,Zn-superoxide dismutase) is activated following oxidative modification of its critical thiol moieties by superoxide anion (O2.− ). This study was aimed at investigating the potential association between the hormonal protective antioxidant actions in mitochondria and regulation of IMS SOD1 activity. Melatonin, testosterone, dihydrotestosterone, estradiol, and vitamin D induced a sustained activation over time of SOD1 in intact mitochondria showing a bell-shaped enzyme activation dose-response with a threshold at 50 nM and a maximum effect at 1 μM concentration. Enzyme activation was not affected by furafylline, but it was inhibited by omeprazole, ketoconazole, and tiron, thereby supporting the occurrence of a mitochondrial P450 activity and O2.− requirements. Mitochondrial P450–dependent activation of IMS SOD1 prevented O2.− -induced loss of aconitase activity in intact mitochondria respiring at state 3 respiration. Optimal protection of aconitase activity was observed at 0.1 μM P450 substrate concentration evidencing a likely oxidative effect on the mitochondrial matrix by higher substrate concentrations. Likewise, enzyme activation mediated by mitochondrial P450 activity delayed CaCl2-induced loss of trans-membrane potential, and decreased cytochrome c release. Omeprazole and ketoconazole abrogated both protecting mitochondrial functions promoted by melatonin and steroid hormones. PMID:21397009

  14. Assessment of Anthropometric Indices, Salt Intake and Physical Activity in the Aetiology of Prehypertension

    PubMed Central

    Gupta, Rani; Saxena, Yogesh

    2016-01-01

    Introduction Globally, prehypertension is responsible for approximately 62% of cardiovascular and 49% of ischemic heart disease (IHD) episodes. Current data from the Indian subcontinent suggests that prevalence of prehypertension was 47% amongst young urban residents. Considering its serious prognosis, the current study was undertaken to assess risk factors such as for cardiovascular diseases in prehypertensives adult males in Uttarakhand region. Materials and Methods This cross-sectional analytical study was conducted in the Department of Physiology, HIMS, Dehradun, over a period of 12 months. Volunteers (20-40 years) were divided into two groups; Group I (Controls): normotensives and Group II (Cases): prehypertensives based on JNC VII classification. Results Exercise capacity, determined by peak VO2 consumption was significantly lower in prehypertensive group than the normotensive group (p<0.001). Daily salt intake of pre-hypertensives was significantly greater than the normotensive subjects (p<0.001). Multiple Linear Regression analysis revealed that average baseline SBP increases by 0.34 mmHg for every 1 kg increase in weight and average baseline DBP increases by 0.25 mmHg for every 1 year increase in age. Conclusion Exercise capacity was found decreased in pre-hypertensives and they have high daily salt intake. Also, weight and age emerged as independent risk factors for SBP and DBP respectively. PMID:27042453

  15. Effect of alcohol on the proestrous surge of luteinizing hormone (LH) and the activation of LH-releasing hormone (LHRH) neurons in the female rat.

    PubMed

    Ogilvie, K M; Rivier, C

    1997-04-01

    Reproduction is adversely affected by alcohol abuse in humans and laboratory animals. In rats, alcohol exposure suppresses both luteinizing hormone (LH) and sex steroid secretion, although consensus is lacking as to which level of the hypothalamic-pituitary-gonadal (HPG) axis is primarily affected. We tested the hypothesis that acute alcohol treatment inhibits the HPG axis by blunting release of LH-releasing hormone (LHRH) in female rats, by examining the effect of this drug on the central reproductive endocrine event; i.e., the proestrous surge of gonadotropins, which triggers ovulation. In a first series of experiments, we injected alcohol at 8 A.M. and 12 P.M. on proestrus and measured plasma levels of LH, estradiol (E2), and progesterone during the afternoons of proestrus and estrus. Alcohol administration blocked the proestrous surge of LH and ovulation. In subsequent experiments, alcohol inhibited the surge of LHRH (measured by push-pull cannulation) and LHRH neuronal activation (measured by Fos labeling in LHRH neurons). Because alcohol also decreased E2 levels, we reasoned that it might have prevented positive feedback; however, alcohol retained its ability to inhibit the LH surge evoked by E2 implantation in ovariectomized females, disproving this hypothesis. Additionally, alcohol does not act via increased corticosteroid secretion, because alcohol also blocked the proestrous surge in adrenalectomized females. Last, exogenous administration of LHRH to alcohol-blocked animals evoked LH secretion and ovulation, indicating that pituitary and/or ovarian function could be restored by mimicking the hypothalamic signal. Collectively, these data indicate that in female rats, alcohol inhibits the gonadotropin surge primarily by decreasing LHRH secretion.

  16. Manganese-enhanced magnetic resonance imaging for mapping of whole brain activity patterns associated with the intake of snack food in ad libitum fed rats.

    PubMed

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2013-01-01

    Non-homeostatic hyperphagia, which is a major contributor to obesity-related hyperalimentation, is associated with the diet's molecular composition influencing, for example, the energy content. Thus, specific food items such as snack food may induce food intake independent from the state of satiety. To elucidate mechanisms how snack food may induce non-homeostatic food intake, it was tested if manganese-enhanced magnetic resonance imaging (MEMRI) was suitable for mapping the whole brain activity related to standard and snack food intake under normal behavioral situation. Application of the MnCl2 solution by osmotic pumps ensured that food intake was not significantly affected by the treatment. After z-score normalization and a non-affine three-dimensional registration to a rat brain atlas, significantly different grey values of 80 predefined brain structures were recorded in ad libitum fed rats after the intake of potato chips compared to standard chow at the group level. Ten of these areas had previously been connected to food intake, in particular to hyperphagia (e.g., dorsomedial hypothalamus or the anterior paraventricular thalamic nucleus) or to the satiety system (e.g., arcuate hypothalamic nucleus or solitary tract); 27 areas were related to reward/addiction including the core and shell of the nucleus accumbens, the ventral pallidum and the ventral striatum (caudate and putamen). Eleven areas associated to sleep displayed significantly reduced Mn2+ -accumulation and six areas related to locomotor activity showed significantly increased Mn2+ -accumulation after the intake of potato chips. The latter changes were associated with an observed significantly higher locomotor activity. Osmotic pump-assisted MEMRI proved to be a promising technique for functional mapping of whole brain activity patterns associated to nutritional intake under normal behavior. PMID:23408973

  17. Morphological and ultrastructural aspects of the activation of avian medullary bone osteoclasts by parathyroid hormone.

    PubMed

    Miller, S C; Bowman, B M; Myers, R L

    1984-02-01

    The activation of physiologically inactive medullary bone osteoclasts by parathyroid hormone (PTH) was examined using light and electron microscopy and histomorphometric methods. Medullary bone osteoclasts are functionally inactive during the avian egg-laying cycle when an egg shell is not being calcified in the shell gland. Japanese quail hens were given 0.5 IU/g PTH and the medullary bone osteoclasts were examined up to 90 min later. Administration of PTH results in rapid changes in osteoclast morphology and ultrastructure. Within 10 min ectoplasmic regions containing condensed-appearing material are evident in areas of the cell adjacent to bone surfaces. In tannic acid-fixed specimens, these ectoplasmic regions contain bundles of filaments extending perpendicularly from the osteoclast plasma membrane into the cytoplasm. It is in these areas that ruffled border development is initiated. Even at 10 min after PTH administration, mineral crystals are seen between the developing cell surface invaginations and folds. By 15 min after PTH administration, ruffled borders have appeared next to bone surfaces. The rapid development of ruffled borders on medullary bone osteoclasts after PTH is confirmed by electron microscope histomorphometry. By 30 min after PTH administration, ruffled borders are well developed and large endocytic vacuoles are beginning to appear in the osteoclast cytoplasm. Light microscope histomorphometric measurements indicate that osteoclasts are also increasing in size and spreading along bone surfaces with time after PTH administration. This study provides a morphologic and ultrastructural description of osteoclast activation by PTH. The results indicate that osteoclasts may effect rapid changes in bone resorption and mineral metabolism due to exogenous PTH in hens.

  18. Beneficial effects of postmenopausal hormone replacement therapy with transdermal estradiol on sensitivity to activated protein C.

    PubMed

    De Mitrio, V; Marino, R; Cicinelli, E; Galantino, P; Di Bari, L; Giannoccaro, F; De Pergola, G; Lapecorella, M; Schonauer, S; Schiraldi, O

    2000-03-01

    Many hemostatic and fibrinolytic parameters have been evaluated following hormone replacement therapy (HRT) but little is known about its influence on the anticoagulant response to activated protein C (APC-sensitivity). For this purpose, we studied the effect of transdermal 17-beta-estradiol (50 microg/24 h) by a continuous regimen on the APC-sensitivity, in 28 postmenopausal hysterectomized women (mean age, 47 years; range, 44-65 years). We also measured the plasma proteins directly involved in the protein C anticoagulant pathway, such as activities of factor VIII (VIII:C), factor V and free protein S. Von Willebrand factor (vWF) antigen, the carrier protein of factor VIII, was also determined. Blood sampling was done at baseline and after 16-week therapy. A significant increase in the normalized APC-sensitivity ratio (n-APC-SR) values (mean +/- SD: pre-trial, 0.88 +/- 0.14; post-trial, 1.01 +/- 0.12; P < 0.001) and a significant decrease of factor VIII:C plasma levels (pre-trial, 1.13 +/- 0.29 IU/ml; post-trial, 0.98 +/- 0.20 IU/ ml; P = 0.001) were found. No difference was observed in factor V, protein S and vWF plasma levels. Correlation studies demonstrated only a significant negative correlation between the percent change in n-APC-SR and the percent change in factor VIII:C (r = -0.574; P = 0.001). Our findings clearly show that HRT with transdermal estradiol improves the anticoagulant response to APC, probably as a result of a decreased factor VIII:C. We also suggest that a similar but opposite mechanism may occur for perorally administered estrogens used in the HRT. These results may have some clinical implications about the reported increase of the risk for venous thromboembolism following HRT.

  19. Thymic hormonal activity on human peripheral blood lymphocytes, in vitro. V. Effect on induction of lymphocytotoxicity.

    PubMed

    Shoham, J; Cohen, M

    1983-01-01

    Thymic hormonal effect on lymphocytotoxicity induced in vitro and its target specificity were tested using peripheral blood mononuclear cells (PBMC) of healthy subjects. PBMC were treated by the thymic extract TP-1, a similarly prepared spleen extract (SE) or medium only (1 h, 37 degrees C) and then induced to express cytotoxic activity by exposure to allogeneic tumor cells in mixed cultures or by Con A stimulation. The cytotoxicity developed after several days in culture was assayed on 51Cr labelled tumor cells. TP-1 caused a significant mean enhancement of cytotoxicity induced and assayed on Raji lymphoma cells (mean % specific lysis, 31.5 +/- 2.9 without TP-1 and 53.7 +/- 3.6 with TP-1; n = 42; p less than 0.01). The scatter of individual responses to TP-1 was wide, however, and included also some cases of TP-1 induced suppression. Similar wide scatter of TP-1 effects with emphasis on TP-1 induced enhancement was observed with other tumor cell lines or with Con A as inducers. Usually, SE had no effect on induced cytotoxicity. Target selectivity (specificity) of induced cytotoxicity was tested by induction and assay on several tumor cell lines with crossing over, as well as by cold competition assay. When target selectivity was present, it was not masked by TP-1 induced enhancement. Moreover, in some cases, target selectivity became more pronounced after TP-1 treatment. However, TP-1 enhanced also Con A induced non-specific cytotoxicity. No effect of TP-1 on natural killer cell activity of fresh PBMC could be demonstrated. It is suggested that both selective cytotoxicity (T-cell dependent) and non-selective one maybe modulated directly by TP-1 and indirectly by TP-1 modified secondary interactions in culture. This profound regulatory effects could be demonstrated in the PBMC of immune-intact healthy adults.

  20. Is calcitonin an active hormone in the onset and prevention of hypocalcemia in dairy cattle?

    PubMed

    Rodríguez, E M; Bach, A; Devant, M; Aris, A

    2016-04-01

    The objective of this study was to assess the potential importance of calcitonin (CALC) in the onset of subclinical hypocalcemia (experiment 1) and in the physiological mechanisms underlying the prevention of bovine hypocalcemia under metabolic acidosis (experiments 2 and 3). In experiment 1, 15 Holstein cows naturally incurring subclinical hypocalcemia during the first 5d postpartum were classified as low subclinical hypocalcemia (LSH) when blood Ca concentrations were between 7.5 and 8.5mg/dL, or as high subclinical hypocalcemia (HSH) when blood Ca concentrations were between 6.0 and 7.6 mg/dL. Blood samples were taken daily from d -5 to 5 relative to parturition to determine concentrations of parathyroid hormone (PTH), CALC, and 1,25(OH)2D3. In experiment 2, 24 Holstein bulls (497 ± 69 kg of body weight and 342 ± 10.5d of age) were assigned to 2 treatments (metabolic acidosis or control). Metabolic acidosis was induced by an oral administration of ammonium chloride (2.5 mEq/d) during 10 d, and animals were slaughtered thereafter. Blood samples were collected before slaughter to determine CALC, PTH, 1,25(OH)2D3, and samples of urine, kidney, parathyroid, and thyroid glands were obtained immediately after slaughter to determine expression of several genes in these tissues. Last, in experiment 3, we tested the activity of CALC under metabolic acidosis in vitro using breast cancer cell (T47D) cultures. Although PTH tended to be greater in HSH than in LSH, the levels of 1,25(OH)2D3 were lower in HSH cows (experiment 1). Blood CALC concentration was not affected by the severity of subclinical hypocalcemia, but it was influenced by days from calving (experiment 1). The expression of PTH receptor (PTHR) in the kidney was increased under metabolic acidosis (experiment 2). Furthermore, the activity of CALC was impaired under acidic blood pH (experiment 3). In conclusion, the CALC rise in HSH cows after calving impaired the recovery of blood Ca concentrations because the

  1. Silage intake, rumination and pseudo-rumination activity in sheep studied by radiography and jaw movement recordings.

    PubMed

    Deswysen, A G; Ehrlein, H J

    1981-09-01

    1. The eating and ruminating activity of four rams given long-chopped silage ad lib. in two daily meals was studied by jaw movement recordings. The events of rumination and pseudo-rumination were observed by fluoroscopy and by cineradiography. 2. The rate of eating was highest at the beginning of the main meal and then declined gradually. 3. The silage intake level was low. 4. The swallowed silage did not accumulate at the cardiac region but was forced into the dorsal sac of the rumen by the contractions of the reticulum and cranial sac of the rumen. For regurgitation the solid particles had to return via the ventral and cranial sac of the rumen into the reticulum. 5. Liquid reticular contents with floating solid particles were aspirated into the oesophagus during the maximum of the regurgitation contraction of the reticulum. 6. The rumination activity during the day presented a high proportion of pseudo-rumination cycles whereas during the night the rumination became progressively normal. 7. Pseudo-rumination was caused by delayed return of the fibrous silage particles into the reticulum. Thus in pseudo-rumination the regurgitated material consisted predominantly of fluid containing only a small quantity of solid particles. 8. The results explain why long-chopped silage intake is associated with pseudo-rumination, a lower breakdown of particles and a waste of digestion time.

  2. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake.

    PubMed

    Cardoso, Bárbara R; Busse, Alexandre L; Hare, Dominic J; Cominetti, Cristiane; Horst, Maria A; McColl, Gawain; Magaldi, Regina M; Jacob-Filho, Wilson; Cozzolino, Silvia M F

    2016-02-01

    Selenoproteins play important roles in antioxidant mechanisms, and are thus hypothesised to have some involvement in the pathology of certain types of dementia. Mild cognitive impairment (MCI) and Alzheimer's disease (AD) are both thought to involve impaired biological activity of certain selenoproteins. Previously, supplementation with a selenium-rich Brazil nut (Bertholletia excelsa) has shown potential in reducing cognitive decline in MCI patients, and could prove to be a safe and effective nutritional approach early in the disease process to slow decline. Here, we have conducted a pilot study that examined the effects of a range of single nucleotide polymorphisms (SNPs) in genes encoding the selenoproteins glutathione peroxidase (GPX1) and selenoprotein P (SEPP) in response to selenium supplementation via dietary Brazil nuts, including selenium status, oxidative stress parameters and GPX1 and SEPP gene expression. Our data suggest that GPX1 Pro198Leu rs1050450 genotypes may differentially affect the selenium status and GPx activity. Moreover, rs7579 and rs3877899 SNPs in SEPP gene, as well as GPX1 rs1050450 genotypes can influence the expression of GPX1 and SEPP mRNA in response to Brazil nuts intake. This small study gives cause for larger investigations into the role of these SNPs in both the selenium status and response to selenium dietary intake, especially in chronic degenerative conditions like MCI and AD. PMID:26661784

  3. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake.

    PubMed

    Cardoso, Bárbara R; Busse, Alexandre L; Hare, Dominic J; Cominetti, Cristiane; Horst, Maria A; McColl, Gawain; Magaldi, Regina M; Jacob-Filho, Wilson; Cozzolino, Silvia M F

    2016-02-01

    Selenoproteins play important roles in antioxidant mechanisms, and are thus hypothesised to have some involvement in the pathology of certain types of dementia. Mild cognitive impairment (MCI) and Alzheimer's disease (AD) are both thought to involve impaired biological activity of certain selenoproteins. Previously, supplementation with a selenium-rich Brazil nut (Bertholletia excelsa) has shown potential in reducing cognitive decline in MCI patients, and could prove to be a safe and effective nutritional approach early in the disease process to slow decline. Here, we have conducted a pilot study that examined the effects of a range of single nucleotide polymorphisms (SNPs) in genes encoding the selenoproteins glutathione peroxidase (GPX1) and selenoprotein P (SEPP) in response to selenium supplementation via dietary Brazil nuts, including selenium status, oxidative stress parameters and GPX1 and SEPP gene expression. Our data suggest that GPX1 Pro198Leu rs1050450 genotypes may differentially affect the selenium status and GPx activity. Moreover, rs7579 and rs3877899 SNPs in SEPP gene, as well as GPX1 rs1050450 genotypes can influence the expression of GPX1 and SEPP mRNA in response to Brazil nuts intake. This small study gives cause for larger investigations into the role of these SNPs in both the selenium status and response to selenium dietary intake, especially in chronic degenerative conditions like MCI and AD.

  4. The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release.

    PubMed

    Kola, Blerina; Wittman, Gábor; Bodnár, Ibolya; Amin, Faisal; Lim, Chung Thong; Oláh, Márk; Christ-Crain, Mirjam; Lolli, Francesca; van Thuijl, Hinke; Leontiou, Chrysanthia A; Füzesi, Tamás; Dalino, Paolo; Isidori, Andrea M; Harvey-White, Judith; Kunos, George; Nagy, György M; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-12-01

    This study aimed to investigate whether the growth hormone release and metabolic effects of ghrelin on AMPK activity of peripheral tissues are mediated by cannabinoid receptor type 1 (CB1) and the central nervous system. CB1-knockout (KO) and/or wild-type mice were injected peripherally or intracerebroventricularly with ghrelin and CB1 antagonist rimonabant to study tissue AMPK activity and gene expression (transcription factors SREBP1c, transmembrane protein FAS, enzyme PEPCK, and protein HSL). Growth hormone levels were studied both in vivo and in vitro. Peripherally administered ghrelin in liver, heart, and adipose tissue AMPK activity cannot be observed in CB1-KO or CB1 antagonist-treated mice. Intracerebroventricular ghrelin treatment can influence peripheral AMPK activity. This effect is abolished in CB1-KO mice and by intracerebroventricular rimonabant treatment, suggesting that central CB1 receptors also participate in the signaling pathway that mediates the effects of ghrelin on peripheral tissues. Interestingly, in vivo or in vitro growth hormone release is intact in response to ghrelin in CB1-KO animals. Our data suggest that the metabolic effects of ghrelin on AMPK in peripheral tissues are abolished by the lack of functional CB1 receptor via direct peripheral effect and partially through the central nervous system, thus supporting the existence of a possible ghrelin-cannabinoid-CB1-AMPK pathway.

  5. Effects of juvenile hormone (JH) analog insecticides on larval development and JH esterase activity in two spodopterans.

    PubMed

    El-Sheikh, El-Sayed A; Kamita, Shizuo G; Hammock, Bruce D

    2016-03-01

    Juvenile hormone analog (JHA) insecticides are biological and structural mimics of JH, a key insect developmental hormone. Toxic and anti-developmental effects of the JHA insecticides methoprene, fenoxycarb, and pyriproxyfen were investigated on the larval and pupal stages of Spodoptera littoralis and Spodoptera frugiperda. Bioassays showed that fenoxycarb has the highest toxicity and fastest speed of kill in 2nd instar S. littoralis. All three JHAs affected the development of 6th instar (i.e., final instar) and pupal S. frugiperda. JH esterase (JHE) is a critical enzyme that helps to regulate JH levels during insect development. JHE activity in the last instar S. littoralis and S. frugiperda was 11 and 23 nmol min(-1) ml(-1) hemolymph, respectively. Methoprene and pyriproxyfen showed poor inhibition of JHE activity from these insects, whereas fenoxycarb showed stronger inhibition. The inhibitory activity of fenoxycarb, however, was more than 1000-fold lower than that of OTFP, a highly potent inhibitor of JHEs. Surprisingly, topical application of methoprene, fenoxycarb or pyriproxyfen on 6th instars of S. littoralis and S. frugiperda prevented the dramatic reduction in JHE activity that was found in control insects. Our findings suggest that JHAs may function as JH agonists that play a disruptive role or a hormonal replacement role in S. littoralis and S. frugiperda. PMID:26969437

  6. Neural Activation during Anticipated Peer Evaluation and Laboratory Meal Intake in Overweight Girls with and without Loss of Control Eating

    PubMed Central

    Jarcho, Johanna; Tanofsky-Kraff, Marian; Nelson, Eric E.; Engel, Scott G.; Vannucci, Anna; Field, Sara E.; Romer, Adrienne; Hannallah, Louise; Brady, Sheila M.; Demidowich, Andrew P.; Shomaker, Lauren B.; Courville, Amber B.; Pine, Daniel S.; Yanovski, Jack A.

    2015-01-01

    The interpersonal model of loss of control (LOC) eating proposes that socially distressing situations lead to anxious states that trigger excessive food consumption. Self-reports support these links, but the neurobiological underpinnings of these relationships remain unclear. We therefore examined brain regions associated with anxiety in relation to LOC eating and energy intake in the laboratory. Twenty-two overweight and obese (BMIz: 1.9±0.4) adolescent (15.8±1.6y) girls with LOC eating (LOC+, n=10) and without LOC eating (LOC−, n=12) underwent functional magnetic resonance imaging (fMRI) during a simulated peer interaction chatroom paradigm. Immediately after the fMRI scan, girls consumed lunch ad libitum from a 10,934-kcal laboratory buffet meal with the instruction to “let yourself go and eat as much as you want.” Pre-specified hypotheses regarding activation of five regions of interest were tested. Analysis of fMRI data revealed a significant group by peer feedback interaction in the ventromedial prefrontal cortex (vmPFC), such that LOC+ had less activity following peer rejection (vs. acceptance), while LOC− had increased activity (p <.005). Moreover, functional coupling between vmPFC and striatum for peer rejection (vs. acceptance) interacted with LOC status: coupling was positive for LOC+, but negative in LOC− (p <.005). Activity of fusiform face area (FFA) during negative peer feedback from high-value peers also interacted with LOC status (p < .005). A positive association between FFA activation and intake during the meal was observed among only those with LOC eating. In conclusion, overweight and obese girls with LOC eating may be distinguished by a failure to engage regions of prefrontal cortex implicated in emotion regulation in response to social distress. The relationship between FFA activation and food intake supports the notion that heightened sensitivity to incoming interpersonal cues and perturbations in socio-emotional neural circuits

  7. [TV, overweight and nutritional surveillance. Ads content, food intake and physical activity].

    PubMed

    Spagnoli, T D; Bioletti, L; Bo, C; Formigatti, M

    2003-01-01

    The relationship between television viewing and obesity in children and adults was examined in a large number of cross-sectional epidemiological studies. Some randomised, controlled trials confirmed the evidence that television viewing is a cause of increased body fatness. It seems of utility in nutritional surveillance to esteem time spent by children and adults in television watching and to evaluate ads contents and food preferences suggested by them. This editorial shows a two-years long analysis of food commercials broadcasted by the main Italian TV networks; food ads targeted on children, housewives and sport fans were evaluated; the relationship between television viewing, commercials and food intake or global lifestyle was investigated in a Piedmont's population (from Northern Italy). School projects aimed to reduce television viewing represent a promising strategy for preventing childhood obesity. PMID:14969315

  8. Thyroid hormone-induced changes in the hepatic monooxygenase system, heme oxygenase activity and epoxide hydrolase activity in adult male, female and immature rats.

    PubMed

    Leakey, J E; Mukhtar, H; Fouts, J R; Bend, J R

    1982-07-01

    In 8-day-old rat pups, pretreatment with a single injection of L-triiodothyronine or L-thyroxine decreased hepatic cytochrome P-450 content, aminopyrine N-demethylase activity and epoxide hydrolase activity but increased hepatic microsomal cytochrome c reductase, 7-ethoxyresorufin O-deethylase and heme oxygenase activities without significantly altering UDP-glucuronosyltransferase activity (towards o-aminophenol) or the microsomal yield. In adult rats of either sex such single injections of L-triiodothyronine failed to significantly alter these enzyme activities. However, multiple injections evoked changes similar to those observed in the pups, in all these enzyme activities, except that 7-ethoxyresorufin O-deethylase activity was slightly decreased rather than increased. These findings demonstrate that: (1) The hepatic monooxygenase system in the rat pup is more responsive to thyroid hormones than that in adult. (2) Thyroid hormones can decrease rat liver cytochrome P-450 content and its dependent monooxygenase activity independently of sexual maturity. (3) Thyroid hormones also decrease hepatic epoxide hydrolase activity in both pups and adults. Thus, hyperthyroidism could render the rat pup more susceptible to hepatotoxicity from electrophilic epoxides which utilize microsomal epoxide hydrolase as the major detoxication pathway.

  9. Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region

    PubMed Central

    2004-01-01

    The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expression. Treatment of human UCP3 transgenic mice with thyroid hormones induced the expression of the human gene in skeletal muscle. In addition, transient transfection experiments demonstrate that thyroid hormones activate the transcription of the human UCP3 gene promoter when MyoD and the TR (thyroid hormone receptor) were co-transfected. The action of thyroid hormones on UCP3 gene transcription is mediated by the binding of the TR to a proximal region in the UCP3 gene promoter that contains a direct repeat structure. An intact DNA sequence of this site is required for thyroid hormone responsiveness and TR binding. Chromatin immunoprecipitation assays revealed that the TR binds this element in vivo. The murine Ucp3 gene promoter was also dependent on MyoD and responsive to thyroid hormone in transient transfection assays. However, it was much less sensitive to thyroid hormone than the human UCP3 promoter. In summary, UCP3 gene transcription is activated by thyroid hormone treatment in vivo, and this activation is mediated by a TRE (thyroid hormone response element) in the proximal promoter region. Such regulation suggests a link between UCP3 gene expression and the effects of thyroid hormone on mitochondrial function in skeletal muscle. PMID:15496137

  10. Gonadotropin-releasing hormone 1 directly affects corpora lutea lifespan in Mediterranean buffalo (Bubalus bubalis) during diestrus: presence and in vitro effects on enzymatic and hormonal activities.

    PubMed

    Zerani, Massimo; Catone, Giuseppe; Maranesi, Margherita; Gobbetti, Anna; Boiti, Cristiano; Parillo, Francesco

    2012-08-01

    The expression of gonadotropin-releasing hormone (GNRH) receptor (GNRHR) and the direct role of GNRH1 on corpora lutea function were studied in Mediterranean buffalo during diestrus. Immunohistochemistry evidenced at early, mid, and late luteal stages the presence of GNRHR only in large luteal cells and GNRH1 in both small and large luteal cells. Real-time PCR revealed GNRHR and GNRH1 mRNA at the three luteal stages, with lowest values in late corpora lutea. In vitro corpora lutea progesterone production was greater in mid stages and lesser in late luteal phases, whereas prostaglandin F2 alpha (PGF2alpha) increased from early to late stages, and PGE2 was greater in the earlier-luteal phase. Cyclooxygenase 1 (prostaglandin-endoperoxide synthase 1; PTGS1) activity did not change during diestrus, whereas PTGS2 increased from early to late stages, and PGE2-9-ketoreductase (PGE2-9-K) was greater in late corpora lutea. PTGS1 activity was greater than PTGS2 in early corpora lutea and lesser in late luteal phase. In corpora lutea cultured in vitro, the GNRH1 analog (buserelin) reduced progesterone secretion and increased PGF2alpha secretion as well as PTGS2 and PGE2-9-K activities at mid and late stages. PGE2 release and PTGS1 activity were increased by buserelin only in late corpora lutea. These results suggest that GNRH is expressed in all luteal cells of buffalo, whereas GNRHR is only expressed in large luteal phase. Additionally, GNRH directly down-regulates corpora lutea progesterone release, with the concomitant increases of PGF2alpha production and PTGS2 and PGE2-9-K enzymatic activities. PMID:22592497

  11. Implantation: mutual activity of sex steroid hormones and the immune system guarantee the maternal-embryo interaction.

    PubMed

    Gnainsky, Yulia; Dekel, Nava; Granot, Irit

    2014-09-01

    Implantation is strictly dependent on the mutual interaction between a receptive endometrium and the blastocyst. Hence, synchronization between blastocyst development and the acquisition of endometrial receptivity is a prerequisite for the success of this process. This review depicts the cellular and molecular events that coordinate these complex activities. Specifically, the involvement of the sex steroid hormones, estrogen and progesterone, as well as components of the immune system, such as cytokines and specific blood cells, is elaborated. PMID:24959815

  12. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes

    PubMed Central

    Bolden, Ashley L.

    2015-01-01

    Background Increasing concern over bisphenol A (BPA) as an endocrine-disrupting chemical and its possible effects on human health have prompted the removal of BPA from consumer products, often labeled “BPA-free.” Some of the chemical replacements, however, are also bisphenols and may have similar physiological effects in organisms. Bisphenol S (BPS) and bisphenol F (BPF) are two such BPA substitutes. Objectives This review was carried out to evaluate the physiological effects and endocrine activities of the BPA substitutes BPS and BPF. Further, we compared the hormonal potency of BPS and BPF to that of BPA. Methods We conducted a systematic review based on the Office of Health Assessment and Translation (OHAT) protocol. Results We identified the body of literature to date, consisting of 32 studies (25 in vitro only, and 7 in vivo). The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo. BPS also has potencies similar to that of estradiol in membrane-mediated pathways, which are important for cellular actions such as proliferation, differentiation, and death. BPS and BPF also showed other effects in vitro and in vivo, such as altered organ weights, reproductive end points, and enzyme expression. Conclusions Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects. Citation Rochester JR, Bolden AL. 2015. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123:643–650; http://dx.doi.org/10.1289/ehp.1408989 PMID:25775505

  13. Association of Hormonal Contraceptive Use With Reduced Levels of Depressive Symptoms: A National Study of Sexually Active Women in the United States

    PubMed Central

    Keyes, Katherine M.; Cheslack-Postava, Keely; Westhoff, Carolyn; Heim, Christine M.; Haloossim, Michelle; Walsh, Kate; Koenen, Karestan

    2013-01-01

    An estimated 80% of sexually active young women in the United States use hormonal contraceptives during their reproductive years. Associations between hormonal contraceptive use and mood disturbances remain understudied, despite the hypothesis that estrogen and progesterone play a role in mood problems. In this study, we used data from 6,654 sexually active nonpregnant women across 4 waves of the National Longitudinal Study of Adolescent Health (1994–2008), focusing on women aged 25–34 years. Women were asked about hormonal contraceptive use in the context of a current sexual partnership; thus, contraceptive users were compared with other sexually active women who were using either nonhormonal contraception or no contraception. Depressive symptoms were assessed with the Center for Epidemiologic Studies Depression Scale. At ages 25–34 years, hormonal contraceptive users had lower mean levels of concurrent depressive symptoms (β = −1.04, 95% confidence interval: −1.73, −0.35) and were less likely to report a past-year suicide attempt (odds ratio = 0.37, 95% confidence interval: 0.14, 0.95) than women using low-efficacy contraception or no contraception, in models adjusted for propensity scores for hormonal contraceptive use. Longitudinal analyses indicated that associations between hormonal contraception and depressive symptoms were stable. Hormonal contraception may reduce levels of depressive symptoms among young women. Systematic investigation of exogenous hormones as a potential preventive factor in psychiatric epidemiology is warranted. PMID:24043440

  14. Does Increased Exercise or Physical Activity Alter Ad-Libitum Daily Energy Intake or Macronutrient Composition in Healthy Adults? A Systematic Review

    PubMed Central

    Donnelly, Joseph E.; Herrmann, Stephen D.; Lambourne, Kate; Szabo, Amanda N.; Honas, Jeffery J.; Washburn, Richard A.

    2014-01-01

    Background The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. Objective To address the question: Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? Data Sources PubMed and Embase were searched (January 1990–January 2013) for studies that presented data on energy and/or macronutrient intake by level of exercise, physical activity or change in response to exercise. Ninety-nine articles (103 studies) were included. Study Eligibility Criteria Primary source articles published in English in peer-reviewed journals. Articles that presented data on energy and/or macronutrient intake by level of exercise or physical activity or changes in energy or macronutrient intake in response to acute exercise or exercise training in healthy (non-athlete) adults (mean age 18–64 years). Study Appraisal and Synthesis Methods Articles were grouped by study design: cross-sectional, acute/short term, non-randomized, and randomized trials. Considerable heterogeneity existed within study groups for several important study parameters, therefore a meta-analysis was considered inappropriate. Results were synthesized and presented by study design. Results No effect of physical activity, exercise or exercise training on energy intake was shown in 59% of cross-sectional studies (n = 17), 69% of acute (n = 40), 50% of short-term (n = 10), 92% of non-randomized (n = 12) and 75% of randomized trials (n = 24). Ninety-four percent of acute, 57% of short-term, 100% of non-randomized and 74% of randomized trials found no effect of exercise on macronutrient intake. Forty-six percent of cross-sectional trials found lower fat intake with increased physical activity. Limitations The literature is limited by the lack of adequately powered trials of sufficient duration, which have prescribed and measured exercise energy expenditure

  15. Modulation of the Hormone Setting by Rhodococcus fascians Results in Ectopic KNOX Activation in Arabidopsis1[W][OA

    PubMed Central

    Depuydt, Stephen; Doležal, Karel; Van Lijsebettens, Mieke; Moritz, Thomas; Holsters, Marcelle; Vereecke, Danny

    2008-01-01

    The biotrophic actinomycete Rhodococcus fascians has a profound impact on plant development and a common aspect of the symptomatology is the deformation of infected leaves. In Arabidopsis (Arabidopsis thaliana), the serrated leaf margins formed upon infection resemble the leaf phenotype of transgenic plants with ectopic expression of KNOTTED-like homeobox (KNOX) genes. Through transcript profiling, we demonstrate that class-I KNOX genes are transcribed in symptomatic leaves. Functional analysis revealed that BREVIPEDICELLUS/KNOTTED-LIKE1 and mainly SHOOT MERISTEMLESS were essential for the observed leaf dissection. However, these results also positioned the KNOX genes downstream in the signaling cascade triggered by R. fascians infection. The much faster activation of ARABIDOPSIS RESPONSE REGULATOR5 and the establishment of homeostatic and feedback mechanisms to control cytokinin (CK) levels support the overrepresentation of this hormone in infected plants due to the secretion by the pathogen, thereby placing the CK response high up in the cascade. Hormone measurements show a net decrease of tested CKs, indicating either that secretion by the bacterium and degradation by the plant are in balance, or, as suggested by the strong reaction of 35S:CKX plants, that other CKs are at play. At early time points of the interaction, activation of gibberellin 2-oxidase presumably installs a local hormonal setting favorable for meristematic activity that provokes leaf serrations. The results are discussed in the context of symptom development, evasion of plant defense, and the establishment of a specific niche by R. fascians. PMID:18184732

  16. Evaluation of hormone-like activity of the dissolved organic matter fraction (DOM) of compost and digestate.

    PubMed

    Scaglia, Barbara; Pognani, Michele; Adani, Fabrizio

    2015-05-01

    Biomasses are usually applied to soil for their agronomic properties (fertilization and amendment properties). Biomass can also have bio-stimulating effects on plants because of the presence of hormones and hormone-like molecules. Although compost has been the subject for studies of this aspect, no data have yet been reported on the extraction of this kind of molecule from digestate biomass. The aim of this work is to study the auxin- and gibberellin-like activity of pig slurry digestate in comparison with those of pruning and garden wastes compost's dissolved organic fraction (DOM). DOM (i.e., fraction<0.45 μm) is the most reactive among the organic matter fractions readily available to microbial and plant metabolism. No gibberellin-like activities were found for either compost or digestate, whereas digestate showed auxin-like properties which were found to be located in its neutral hydrophobic (NHo) DOM fractions. Hormone activity was due principally to the presence of auxin coming from the anaerobic digestion of aromatic amino acids. PMID:25668284

  17. Neural Activation During Mental Rotation in Complete Androgen Insensitivity Syndrome: The Influence of Sex Hormones and Sex Chromosomes.

    PubMed

    van Hemmen, Judy; Veltman, Dick J; Hoekzema, Elseline; Cohen-Kettenis, Peggy T; Dessens, Arianne B; Bakker, Julie

    2016-03-01

    Sex hormones, androgens in particular, are hypothesized to play a key role in the sexual differentiation of the human brain. However, possible direct effects of the sex chromosomes, that is, XX or XY, have not been well studied in humans. Individuals with complete androgen insensitivity syndrome (CAIS), who have a 46,XY karyotype but a female phenotype due to a complete androgen resistance, enable us to study the separate effects of gonadal hormones versus sex chromosomes on neural sex differences. Therefore, in the present study, we compared 46,XY men (n = 30) and 46,XX women (n = 29) to 46,XY individuals with CAIS (n = 21) on a mental rotation task using functional magnetic resonance imaging. Previously reported sex differences in neural activation during mental rotation were replicated in the control groups, with control men showing more activation in the inferior parietal lobe than control women. Individuals with CAIS showed a female-like neural activation pattern in the parietal lobe, indicating feminization of the brain in CAIS. Furthermore, this first neuroimaging study in individuals with CAIS provides evidence that sex differences in regional brain function during mental rotation are most likely not directly driven by genetic sex, but rather reflect gonadal hormone exposure.

  18. Evaluation of hormone-like activity of the dissolved organic matter fraction (DOM) of compost and digestate.

    PubMed

    Scaglia, Barbara; Pognani, Michele; Adani, Fabrizio

    2015-05-01

    Biomasses are usually applied to soil for their agronomic properties (fertilization and amendment properties). Biomass can also have bio-stimulating effects on plants because of the presence of hormones and hormone-like molecules. Although compost has been the subject for studies of this aspect, no data have yet been reported on the extraction of this kind of molecule from digestate biomass. The aim of this work is to study the auxin- and gibberellin-like activity of pig slurry digestate in comparison with those of pruning and garden wastes compost's dissolved organic fraction (DOM). DOM (i.e., fraction<0.45 μm) is the most reactive among the organic matter fractions readily available to microbial and plant metabolism. No gibberellin-like activities were found for either compost or digestate, whereas digestate showed auxin-like properties which were found to be located in its neutral hydrophobic (NHo) DOM fractions. Hormone activity was due principally to the presence of auxin coming from the anaerobic digestion of aromatic amino acids.

  19. Testicular Steroidogenesis and Locomotor Activity Are Regulated by Gonadotropin-Inhibitory Hormone in Male European Sea Bass

    PubMed Central

    Paullada-Salmerón, José A.; Cowan, Mairi; Aliaga-Guerrero, María; López-Olmeda, José F.; Mañanós, Evaristo L.; Zanuy, Silvia

    2016-01-01

    Gonadotropin-inhibitory hormone (GnIH) is a neurohormone that suppresses reproduction by acting at both the brain and pituitary levels. In addition to the brain, GnIH may also be produced in gonads and can regulate steroidogenesis and gametogenesis. However, the function of GnIH in gonadal physiology has received little attention in fish. The main objective of this study was to evaluate the effects of peripheral sbGnih-1 and sbGnih-2 implants on gonadal development and steroidogenesis during the reproductive cycle of male sea bass (Dicentrarchus labrax). Both Gnihs decreased testosterone (T) and 11-ketotestosterone (11-KT) plasma levels in November and December (early- and mid-spermatogenesis) but did not affect plasma levels of the progestin 17,20β-dihydroxy-4-pregnen-3-one (DHP). In February (spermiation), fish treated with sbGnih-1 and sbGnih-2 exhibited testicles with abundant type A spermatogonia and partial spermatogenesis. In addition, we determined the effects of peripheral Gnih implants on plasma follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) levels, as well as on brain and pituitary expression of the main reproductive hormone genes and their receptors during the spermiation period (February). Treatment with sbGnih-2 increased brain gnrh2, gnih, kiss1r and gnihr transcript levels. Whereas, both Gnihs decreased lhbeta expression and plasma Lh levels, and sbGnih-1 reduced plasmatic Fsh. Finally, through behavioral recording we showed that Gnih implanted animals exhibited a significant increase in diurnal activity from late spermatogenic to early spermiogenic stages. Our results indicate that Gnih may regulate the reproductive axis of sea bass acting not only on brain and pituitary hormones but also on gonadal physiology and behavior. PMID:27788270

  20. Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestagens.

    PubMed

    Säfholm, Moa; Ribbenstedt, Anton; Fick, Jerker; Berg, Cecilia

    2014-11-19

    Most amphibians breed in water, including the terrestrial species, and may therefore be exposed to water-borne pharmaceuticals during critical phases of the reproductive cycle, i.e. sex differentiation and gamete maturation. The objectives of this paper were to (i) review available literature regarding adverse effects of hormonally active pharmaceuticals on amphibians, with special reference to environmentally relevant exposure levels and (ii) expand the knowledge on toxicity of progestagens in amphibians by determining effects of norethindrone (NET) and progesterone (P) exposure to 0, 1, 10 or 100 ng l(-1) (nominal) on oogenesis in the test species Xenopus tropicalis. Very little information was found on toxicity of environmentally relevant concentrations of pharmaceuticals on amphibians. Research has shown that environmental concentrations (1.8 ng l(-1)) of the pharmaceutical oestrogen ethinylestradiol (EE2) cause developmental reproductive toxicity involving impaired spermatogenesis in frogs. Recently, it was found that the progestagen levonorgestrel (LNG) inhibited oogenesis in frogs by interrupting the formation of vitellogenic oocytes at an environmentally relevant concentration (1.3 ng l(-1)). Results from the present study revealed that 1 ng NET l(-1) and 10 ng P l(-1) caused reduced proportions of vitellogenic oocytes and increased proportions of previtellogenic oocytes compared with the controls, thereby indicating inhibited vitellogenesis. Hence, the available literature shows that the oestrogen EE2 and the progestagens LNG, NET and P impair reproductive functions in amphibians at environmentally relevant exposure concentrations. The progestagens are of particular concern given their prevalence, the range of compounds and that several of them (LNG, NET and P) share the same target (oogenesis) at environmental exposure concentrations, indicating a risk for adverse effects on fertility in exposed wild amphibians.

  1. Risks of hormonally active pharmaceuticals to amphibians: a growing concern regarding progestagens

    PubMed Central

    Säfholm, Moa; Ribbenstedt, Anton; Fick, Jerker; Berg, Cecilia

    2014-01-01

    Most amphibians breed in water, including the terrestrial species, and may therefore be exposed to water-borne pharmaceuticals during critical phases of the reproductive cycle, i.e. sex differentiation and gamete maturation. The objectives of this paper were to (i) review available literature regarding adverse effects of hormonally active pharmaceuticals on amphibians, with special reference to environmentally relevant exposure levels and (ii) expand the knowledge on toxicity of progestagens in amphibians by determining effects of norethindrone (NET) and progesterone (P) exposure to 0, 1, 10 or 100 ng l−1 (nominal) on oogenesis in the test species Xenopus tropicalis. Very little information was found on toxicity of environmentally relevant concentrations of pharmaceuticals on amphibians. Research has shown that environmental concentrations (1.8 ng l−1) of the pharmaceutical oestrogen ethinylestradiol (EE2) cause developmental reproductive toxicity involving impaired spermatogenesis in frogs. Recently, it was found that the progestagen levonorgestrel (LNG) inhibited oogenesis in frogs by interrupting the formation of vitellogenic oocytes at an environmentally relevant concentration (1.3 ng l−1). Results from the present study revealed that 1 ng NET l−1 and 10 ng P l−1 caused reduced proportions of vitellogenic oocytes and increased proportions of previtellogenic oocytes compared with the controls, thereby indicating inhibited vitellogenesis. Hence, the available literature shows that the oestrogen EE2 and the progestagens LNG, NET and P impair reproductive functions in amphibians at environmentally relevant exposure concentrations. The progestagens are of particular concern given their prevalence, the range of compounds and that several of them (LNG, NET and P) share the same target (oogenesis) at environmental exposure concentrations, indicating a risk for adverse effects on fertility in exposed wild amphibians. PMID:25405966

  2. Select steroid hormone glucuronide metabolites can cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Frick, Morin M.; Zhang, Yingning; Maier, Steven F.; Sammakia, Tarek; Rice, Kenner C.; Watkins, Linda R.

    2014-01-01

    We have recently shown that several classes of glucuronide metabolites, including the morphine metabolite morphine-3-glucuronide and the ethanol metabolite ethyl glucuronide, cause toll like receptor 4 (TLR4)-dependent signalling in vitro and enhanced pain in vivo. Steroid hormones, including estrogens and corticosterone, are also metabolized through glucuronidation. Here we demonstrate that in silico docking predicts that corticosterone, corticosterone-21-glucuronide, estradiol, estradiol-3-glucuronide and estradiol-17-glucuronide all dock with the MD-2 component of the TLR4 receptor complex. In addition to each docking with MD-2, the docking of each was altered by pre-docking with (+)-naloxone, a TLR4 signaling inhibitor. As agonist versus antagonist activity cannot be determined from these in silico interactions, an in vitro study was undertaken to clarify which of these compounds can act in an agonist fashion. Studies using a cell line transfected with TLR4, necessary co-signaling molecules, and a reporter gene revealed that only estradiol-3-glucuronide and estradiol-17-glucuronide increased reporter gene product, indicative of TLR4 agonism. Finally, in in vivo studies, each of the 5 drugs was injected intrathecally at equimolar doses. In keeping with the in vitro results, only estradiol-3-glucuronide and estradiol-17-glucuronide caused enhanced pain. For both compounds, pain enhancement was blocked by the TLR4 antagonist lipopolysaccharide from Rhodobacter sphaeroides, evidence for the involvement in TLR4 in the resultant pain enhancement. These findings have implications for several chronic pain conditions, including migraine and tempromandibular joint disorder, in which pain episodes are more likely in cycling females when estradiol is decreasing and estradiol metabolites are at their highest. PMID:25218902

  3. Methylated Cytokinins from the Phytopathogen Rhodococcus fascians Mimic Plant Hormone Activity1[OPEN

    PubMed Central

    Radhika, Venkatesan; Ueda, Nanae; Tsuboi, Yuuri; Kojima, Mikiko; Kikuchi, Jun; Kudo, Takuji; Sakakibara, Hitoshi

    2015-01-01

    Cytokinins (CKs), a class of phytohormones that regulate plant growth and development, are also synthesized by some phytopathogens to disrupt the hormonal balance and to facilitate niche establishment in their hosts. Rhodococcus fascians harbors the fasciation (fas) locus, an operon encoding several genes homologous to CK biosynthesis and metabolism. This pathogen causes unique leafy gall symptoms reminiscent of CK overproduction; however, bacterial CKs have not been clearly correlated with the severe symptoms, and no virulence-associated unique CKs or analogs have been identified. Here, we report the identification of monomethylated N6-(∆2-isopentenyl)adenine and dimethylated N6-(∆2-isopentenyl)adenine (collectively, methylated cytokinins [MeCKs]) from R. fascians. MeCKs were recognized by a CK receptor and up-regulated type-A ARABIDOPSIS THALIANA RESPONSE REGULATOR genes. Treatment with MeCKs inhibited root growth, a hallmark of CK action, whereas the receptor mutant was insensitive. MeCKs were retained longer in planta than canonical CKs and were poor substrates for a CK oxidase/dehydrogenase, suggesting enhanced biological stability. MeCKs were synthesized by S-adenosyl methionine-dependent methyltransferases (MT1 and MT2) that are present upstream of the fas genes. The best substrate for methylation was isopentenyl diphosphate. MT1 and MT2 catalyzed distinct methylation reactions; only the MT2 product was used by FAS4 to synthesize monomethylated N6-(∆2-isopentenyl)adenine. The MT1 product was dimethylated by MT2 and used as a substrate by FAS4 to produce dimethylated N6-(∆2-isopentenyl)adenine. Chemically synthesized MeCKs were comparable in activity. Our results strongly suggest that MeCKs function as CK mimics and play a role in this plant-pathogen interaction. PMID:26251309

  4. Activity, Energy Intake, Obesity, and the Risk of Incident Kidney Stones in Postmenopausal Women: A Report from the Women’s Health Initiative

    PubMed Central

    Chi, Thomas; Shara, Nawar M.; Wang, Hong; Hsi, Ryan S.; Orchard, Tonya; Kahn, Arnold J.; Jackson, Rebecca D.; Miller, Joe; Reiner, Alex P.; Stoller, Marshall L.

    2014-01-01

    Obesity is a strong risk factor for nephrolithiasis, but the role of physical activity and caloric intake remains poorly understood. We evaluated this relationship in 84,225 women with no history of stones as part of the Women’s Health Initiative Observational Study, a longitudinal, prospective cohort of postmenopausal women enrolled from 1993 to 1998 with 8 years’ median follow-up. The independent association of physical activity (metabolic equivalents [METs]/wk), calibrated dietary energy intake, and body mass index (BMI) with incident kidney stone development was evaluated after adjustment for nephrolithiasis risk factors. Activity intensity was evaluated in stratified analyses. Compared with the risk in inactive women, the risk of incident stones decreased by 16% in women with the lowest physical activity level (adjusted hazard ratio [aHR], 0.84; 95% confidence interval [95% CI], 0.74 to 0.97). As activity increased, the risk of incident stones continued to decline until plateauing at a decrease of approximately 31% for activity levels ≥10 METs/wk (aHR, 0.69; 95% CI, 0.60 to 0.79). Intensity of activity was not associated with stone formation. As dietary energy intake increased, the risk of incident stones increased by up to 42% (aHR, 1.42; 95% CI, 1.02 to 1.98). However, intake <1800 kcal/d did not protect against stone formation. Higher BMI category was associated with increased risk of incident stones. In summary, physical activity may reduce the risk of incident kidney stones in postmenopausal women independent of caloric intake and BMI, primarily because of the amount of activity rather than exercise intensity. Higher caloric intake further increases the risk of incident stones. PMID:24335976

  5. The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?

    PubMed

    Hertoghe, T

    2005-12-01

    In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often

  6. Different effects of bifeprunox, aripiprazole, and haloperidol on body weight gain, food and water intake, and locomotor activity in rats.

    PubMed

    De Santis, Michael; Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2014-09-01

    Following on the success of Aripiprazole with its high clinical efficacy and minimal side effects, further antipsychotic drugs (such as Bifeprunox) have been developed based on the same dopamine D2 partial agonist pharmacological profile as Aripiprazole. However clinical trials of Bifeprunox have found differing results to that of its predecessor, without the same significant clinical efficacy. This study has therefore investigated the different effects of 10 week treatment with Aripiprazole (0.75 mg/kg, 3 times per day), Bifeprunox (0.8 mg/kg, 3 times per day) and Haloperidol (0.1mg/kg, 3 times per day) on body weight gain, food and water intake, white fat mass, and 8 week treatment on locomotor activity. Treatment with Bifeprunox was found to significantly reduce all of the measured parameters except white fat mass compared to the control group. However, Aripiprazole and Haloperidol treatment reduced water intake compared to the control, without any significant effects on the other measured parameters. These findings further demonstrate the potential pharmacological differences between Aripiprazole and Bifeprunox, and identify potential weight loss side effects and increased anxiety behaviour with Bifeprunox treatment.

  7. Biological regulation of receptor-hormone complex concentrations in relation to dose-response assessments for endocrine-active compounds.

    PubMed

    Andersen, M E; Barton, H A

    1999-03-01

    Some endocrine-active compounds (EACs) act as agonists or antagonists of specific hormones and may interfere with cellular control processes that regulate gene transcription. Many mechanisms controlling gene expression are universal to organisms ranging from unicellular bacteria to more complex plants and animals. One mechanism, coordinated control of batteries of gene products, is critical in adaptation of bacteria to new environments and for development and tissue differentiation in multi-cellular organisms. To coordinately activate sets of genes, all living organisms have devised molecular modules to permit transitions, or switching, between different functional states over a small range of hormone concentration, and other modules to stabilize the new state through homeostatic interactions. Both switching and homeostasis are regulated by controlling concentrations of hormone-receptor complexes. Molecular control processes for switching and homeostasis are inherently nonlinear and often utilize autoregulatory feedback loops. Among the biological processes contributing to switching phenomena are receptor autoinduction, induction of enzymes for ligand synthesis, mRNA stabilization/activation, and receptor polymerization. This paper discusses a variety of molecular switches found in animal species, devises simple quantitative models illustrating roles of specific molecular interactions in creating switching modules, and outlines the impact of these switching processes and other feedback loops for risk assessments with EACs. Quantitative simulation modeling of these switching mechanisms made it apparent that highly nonlinear dose-response curves for hormones and EACs readily arise from interactions of several linear processes acting in concert on a common control point. These nonlinear mechanisms involve amplification of response, rather than multimeric molecular interactions as in conventional Hill relationships. PMID:10330682

  8. Activators of the nuclear hormone receptors PPARalpha and FXR accelerate the development of the fetal epidermal permeability barrier.

    PubMed Central

    Hanley, K; Jiang, Y; Crumrine, D; Bass, N M; Appel, R; Elias, P M; Williams, M L; Feingold, K R

    1997-01-01

    Members of the superfamily of nuclear hormone receptors which are obligate heterodimeric partners of the retinoid X receptor may be important in epidermal development. Here, we examined the effects of activators of the receptors for vitamin D3 and retinoids, and of the peroxisome proliferator activated receptors (PPARs) and the farnesoid X-activated receptor (FXR), on the development of the fetal epidermal barrier in vitro. Skin explants from gestational day 17 rats (term is 22 d) are unstratified and lack a stratum corneum (SC). After incubation in hormone-free media for 3-4 d, a multilayered SC replete with mature lamellar membranes in the interstices and a functionally competent barrier appear. 9-cis or all-trans retinoic acid, 1,25 dihydroxyvitamin D3, or the PPARgamma ligands prostaglandin J2 or troglitazone did not affect the development of barrier function or epidermal morphology. In contrast, activators of the PPARalpha, oleic acid, linoleic acid, and clofibrate, accelerated epidermal development, resulting in mature lamellar membranes, a multilayered SC, and a competent barrier after 2 d of incubation. The FXR activators, all-trans farnesol and juvenile hormone III, also accelerated epidermal barrier development. Activities of beta-glucocerebrosidase and steroid sulfatase, enzymes previously linked to barrier maturation, also increased after treatment with PPARalpha and FXR activators. In contrast, isoprenoids, such as nerolidol, cis-farnesol, or geranylgeraniol, or metabolites in the cholesterol pathway, such as mevalonate, squalene, or 25-hydroxycholesterol, did not alter barrier development. Finally, additive effects were observed in explants incubated with clofibrate and farnesol together in suboptimal concentrations which alone did not affect barrier development. These data indicate a putative physiologic role for PPARalpha and FXR in epidermal barrier development. PMID:9239419

  9. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    PubMed Central

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations

  10. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    PubMed

    Bridgham, Jamie T; Keay, June; Ortlund, Eric A; Thornton, Joseph W

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations to

  11. Increased physical activity has a greater effect than reduced energy intake on lifestyle modification-induced increases in testosterone

    PubMed Central

    Kumagai, Hiroshi; Zempo-Miyaki, Asako; Yoshikawa, Toru; Tsujimoto, Takehiko; Tanaka, Kiyoji; Maeda, Seiji

    2016-01-01

    Obesity has reached epidemic proportions worldwide. Obesity results in reduced serum testosterone levels, which causes many disorders in men. Lifestyle modifications (increased physical activity and calorie restriction) can increase serum testosterone levels. However, it is unknown whether increased physical activity or calorie restriction during lifestyle modifications has a greater effects on serum testosterone levels. Forty-one overweight and obese men completed a 12-week lifestyle modification program (aerobic exercise training and calorie restriction). We measured serum testosterone levels, the number of steps, and the total energy intake. We divided participants into two groups based on the median change in the number of steps (high or low physical activities) or that in calorie restriction (high or low calorie restrictions). After the program, serum testosterone levels were significantly increased. Serum testosterone levels in the high physical activity group were significantly higher than those in the low activity group. This effect was not observed between the groups based on calorie restriction levels. We found a significant positive correlation between the changes in serum testosterone levels and the number of steps. Our results suggested that an increase in physical activity greatly affected the increased serum testosterone levels in overweight and obese men during lifestyle modification. PMID:26798202

  12. Control by Ethylene of Arginine Decarboxylase Activity in Pea Seedlings and Its Implication for Hormonal Regulation of Plant Growth 1

    PubMed Central

    Apelbaum, Akiva; Goldlust, Arie; Icekson, Isaac

    1985-01-01

    Activity of arginine decarboxylase in etiolated pea seedlings appears 24 hours after seed imbibition, reaches its highest level on the 4th day, and levels off until the 7th day. This activity was found in the apical and subapical tissue of the roots and shoots where intensive DNA synthesis occurs. Exposure of the seedlings to ethylene greatly reduced the specific activity of this enzyme. The inhibition was observed within 30 min of the hormone application, and maximal effect—90% inhibition—after 18 hours. Ethylene at physiological concentrations affected the enzyme activity; 50% inhibitory rate was recorded at 0.12 microliters per liter ethylene and maximal response at 1.2 microliters per liter. Ethylene provoked a 5-fold increase in the Kmapp of arginine decarboxylase for its substrate and reduced the Vmaxapp by 10-fold. However, the enzyme recovered from the inhibition and regained control activity 7 hours after transferral of the seedlings to ethylene-free atmosphere. Reducing the endogenous level of ethylene in the tissue by hypobaric pressure, or by exposure to light, as well as interfering with ethylene action by treatment with silver thiosulfate or 2,5-norbornadiene, caused a gradual increase in the specific activity of arginine decarboxylase in the apical tissue of the etiolated seedlings. On the basis of these findings, the possible control of arginine decarboxylase activity by endogenous ethylene, and its implication for the hormone effect on plant growth, are discussed. PMID:16664464

  13. Epigenetic influences on food intake and physical activity level: review of animal studies.

    PubMed

    Levin, Barry E

    2008-12-01

    Epidemiological studies suggest that the perinatal environment can predispose human offspring to develop obesity and type 2 diabetes. Animal models provide a means of assessing the consequences of manipulating the perinatal environment in ways that cannot be done in humans. During the gestational period, maternal malnutrition, obesity, type 1 and type 2 diabetes, and psychological and pharmacological stressors can all promote, while early-onset exercise can ameliorate, offspring obesity and diabetes, especially in genetically predisposed offspring. Many of these perinatal manipulations are associated with reorganization of the central neural pathways which regulate food intake, energy expenditure, and storage in ways that enhance the development of obesity and diabetes in offspring. Both leptin and insulin have strong neurotrophic properties, so altered availability of either during the perinatal period can underlie some of these adverse developmental changes. Because perinatal manipulations can permanently alter the systems which regulate energy homeostasis, it behooves us to identify the responsible factors as a means of stemming the tide of the emerging worldwide obesity epidemic.

  14. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    SciTech Connect

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.; Batalhão, Marcelo E.; Carnio, Evelin C.; Antunes-Rodrigues, José; Queiroz, Regina H.; Touyz, Rhian M.; Tirapelli, Carlos R.

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  15. In vitro, ex vivo, and in vivo determination of thyroid hormone modulating activity of benzothiazoles

    EPA Science Inventory

    As in vitro assays are increasingly used to screen chemicals for their potential to produce endocrine disrupting adverse effects, it is important to understand their predictive capacity. The potential for a set of six benzothiazoles to affect endpoints related to thyroid hormone ...

  16. Mammographic parenchymal texture as an imaging marker of hormonal activity: a comparative study between pre- and post-menopausal women

    NASA Astrophysics Data System (ADS)

    Daye, Dania; Bobo, Ezra; Baumann, Bethany; Ioannou, Antonios; Conant, Emily F.; Maidment, Andrew D. A.; Kontos, Despina

    2011-03-01

    Mammographic parenchymal texture patterns have been shown to be related to breast cancer risk. Yet, little is known about the biological basis underlying this association. Here, we investigate the potential of mammographic parenchymal texture patterns as an inherent phenotypic imaging marker of endogenous hormonal exposure of the breast tissue. Digital mammographic (DM) images in the cranio-caudal (CC) view of the unaffected breast from 138 women diagnosed with unilateral breast cancer were retrospectively analyzed. Menopause status was used as a surrogate marker of endogenous hormonal activity. Retroareolar 2.5cm2 ROIs were segmented from the post-processed DM images using an automated algorithm. Parenchymal texture features of skewness, coarseness, contrast, energy, homogeneity, grey-level spatial correlation, and fractal dimension were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance in distinguishing between 72 pre- and 66 post-menopausal women. Logistic regression was performed to assess the independent effect of each texture feature in predicting menopause status. ROC analysis showed that texture features have inherent capacity to distinguish between pre- and post-menopausal statuses (AUC>0.5, p<0.05). Logistic regression including all texture features yielded an ROC curve with an AUC of 0.76. Addition of age at menarche, ethnicity, contraception use and hormonal replacement therapy (HRT) use lead to a modest model improvement (AUC=0.78) while texture features maintained significant contribution (p<0.05). The observed differences in parenchymal texture features between pre- and post- menopausal women suggest that mammographic texture can potentially serve as a surrogate imaging marker of endogenous hormonal activity.

  17. In vitro assessment of thyroid hormone disrupting activities in drinking water sources along the Yangtze River.

    PubMed

    Hu, Xinxin; Shi, Wei; Zhang, Fengxian; Cao, Fu; Hu, Guanjiu; Hao, Yingqun; Wei, Si; Wang, Xinru; Yu, Hongxia

    2013-02-01

    The thyroid hormone disrupting activities of drinking water sources from the lower reaches of Yangtze River were examined using a reporter gene assay based on African green monkey kidney fibroblast (CV-1) cells. None of the eleven tested samples showed thyroid receptor (TR) agonist activity. Nine water samples exhibited TR antagonist activities with the equivalents referring to Di-n-butyl phthalate (DNBP) (TR antagonist activity equivalents, ATR-EQ(50)s) ranging from 6.92 × 10(1) to 2.85 × 10(2) μg DNBP/L. The ATR-EQ(50)s and TR antagonist equivalent ranges (ATR-EQ(30-80) ranges) for TR antagonist activities indicated that the water sample from site WX-8 posed the greatest health risks. The ATR-EQ(80)s of the water samples ranging from 1.56 × 10(3) to 6.14 × 10(3) μg DNBP/L were higher than the NOEC of DNBP. The results from instrumental analysis showed that DNBP might be responsible for the TR antagonist activities in these water samples. Water sources along Yangtze River had thyroid hormone disrupting potential.

  18. Effects of zinc-fortified drinking skim milk (as functional food) on cytokine release and thymic hormone activity in very old persons: a pilot study.

    PubMed

    Costarelli, Laura; Giacconi, Robertina; Malavolta, Marco; Basso, Andrea; Piacenza, Francesco; DeMartiis, MariLuisa; Giannandrea, Elvio; Renieri, Carlo; Busco, Franco; Galeazzi, Roberta; Mocchegiani, Eugenio

    2014-06-01

    Zinc is a relevant nutritional factor for the whole life of an organism because it affects the inflammatory/immune response and antioxidant activity, leading to a healthy state. Despite its important function, the dietary intake of zinc is inadequate in elderly. Possible interventions include food fortification because it does not require changes in dietary patterns, the cost is low and it can reach a large portion of the elderly population, including very old subjects. Studies evaluating the impact of Zn-fortified foods on functional parameters in elderly, in particular, in very old individuals, are missing. The objective of this study was to evaluate the efficacy of consumption of a zinc-fortified drinking skim milk (Zn-FMilk) for a period of 2 months in comparison to standard non-fortified milk (No-FMilk) on some biochemical parameters, zinc status, inflammatory/immune response and on a key parameter of the T cell-mediated immunity (thymulin hormone) in healthy very old subjects. The treatment with zinc-fortified milk (Zn-FMilk) is a good omen to increase the cell-mediated immunity in very old age represented by thymulin activity and some cytokine (IL-12p70, IFN-γ) release. At clinical level, a good healthy state occurs in 70 % of the subjects with no hospitalization after 1 year of the follow-up in comparison to very old control subjects that did not participate to crossover design. In conclusion, the Zn-FMilk can be considered a good functional food for elderly, including older people. It might be a good replacement to the zinc tablets or lozenges taking into account the attitude of old people to uptake milk as a preferential food.

  19. Fiber intake and plasminogen activator inhibitor-1 in type 2 diabetes: Look AHEAD (Action for Health in Diabetes) trial findings at baseline and year 1.

    PubMed

    Belalcazar, L Maria; Anderson, Andrea M; Lang, Wei; Schwenke, Dawn C; Haffner, Steven M; Yatsuya, Hiroshi; Rushing, Julia; Vitolins, Mara Z; Reeves, Rebecca; Pi-Sunyer, F Xavier; Tracy, Russell P; Ballantyne, Christie M

    2014-11-01

    Plasminogen activator inhibitor 1 (PAI-1) is elevated in obese individuals with type 2 diabetes and may contribute, independently of traditional factors, to increased cardiovascular disease risk. Fiber intake may decrease PAI-1 levels. We examined the associations of fiber intake and its changes with PAI-1 before and during an intensive lifestyle intervention (ILI) for weight loss in 1,701 Look AHEAD (Action for Health in Diabetes) participants with dietary, fitness, and PAI-1 data at baseline and 1 year. Look AHEAD was a randomized cardiovascular disease trial in 5,145 overweight/obese patients with type 2 diabetes, comparing ILI (goal of ≥7% reduction in baseline weight) with a control arm of diabetes support and education. ILI participants were encouraged to consume vegetables, fruits, and grain products low in sugar and fat. At baseline, median fiber intake was 17.9 g/day. Each 8.3 g/day higher fiber intake was associated with a 9.2% lower PAI-1 level (P=0.008); this association persisted after weight and fitness adjustments (P=0.03). Higher baseline intake of fruit (P=0.019) and high-fiber grain and cereal (P=0.029) were related to lower PAI-1 levels. Although successful in improving weight and physical fitness at 1 year, the ILI in Look AHEAD resulted in small increases in fiber intake (4.1 g/day, compared with -2.35 g/day with diabetes support and education) that were not related to PAI-1 change (P=0.34). Only 31.3% of ILI participants (39.8% of women, 19.1% of men) met daily fiber intake recommendations. Increasing fiber intake in overweight/obese individuals with diabetes interested in weight loss is challenging. Future studies evaluating changes in fiber consumption during weight loss interventions are warranted.

  20. FTO variant rs9939609 is associated with body mass index and waist circumference, but not with energy intake or physical activity in European- and African-American youth

    PubMed Central

    2010-01-01

    Background Genome-wide association studies found common variants in the fat mass and obesity-associated (FTO) gene associated with adiposity in Caucasians and Asians but the association was not confirmed in African populations. Association of FTO variants with insulin resistance and energy intake showed inconsistent results in previous studies. This study aimed to assess the influence of FTO variant rs9939609 on adiposity, insulin resistance, energy intake and physical activity in European - (EA) and African-American (AA) youth. Methods We conducted a cross-sectional study in EA and AA youths. One thousand, nine hundred and seventy-eight youths (48.2% EAs, 47.1% male, mean age 16.5 years) had measures of anthropometry. Percent body fat (%BF) was measured by dual-energy X-ray absorptiometry, visceral adipose tissue (VAT) and subcutaneous abdominal adipose tissue (SAAT) by magnetic resonance imaging. Energy intake and physical activity were based on self report from up to 7 24-hour recalls. Physical activity was also measured by accelerometry. Results FTO rs9939609 was significantly associated with body mass index (BMI) (P = 0.01), weight (P = 0.03) and waist circumference (P = 0.04), with per-allele effects of 0.4 kg/m2, 1.3 kg and 0.8 cm, respectively. No significant association was found between rs9939609 and %BF, VAT, SAAT or insulin resistance (P > 0.05), or between rs9939609 and energy intake or vigorous physical activity (P > 0.05). No significant interactions of rs9939609 with ethnicity, gender, energy intake or physical activity were observed (P > 0.05). Conclusions The FTO variant rs9939609 is modestly associated with BMI and waist circumference, but not with energy intake or physical activity. Moreover, these effects were similar for EAs and AAs. Improved understanding of the effect of the FTO variant will offer new insights into the etiology of excess adiposity. PMID:20377915

  1. Effect of three day bed-rest on circulatory and hormonal responses to active orthostatic test in endurance trained athletes and untrained subjects

    NASA Technical Reports Server (NTRS)

    Kubala, P.; Smorawinski, J.; Kaciuba-Uscilko, H.; Nazar, K.; Bicz, B.; Greenleaf, J. E.

    1996-01-01

    Circulatory and hormonal parameters were measured in endurance-trained athletes and control subjects during orthostatic tolerance tests conducted prior to and after three days of bed rest. Heart rate and blood pressure changes due to bed rest appeared to be the same in both groups. Hormonal changes, however, were different between the two groups, with the athletes having decreased sympathoadrenal activity and increased plasma renin activity. Untrained subjects had changes in cortisol secretion only.

  2. Serum hepatic enzyme activity in relation to semen quality and serum reproductive hormone levels among Estonian fertile Men.

    PubMed

    Ehala-Aleksejev, K; Punab, M

    2016-01-01

    The aim of this study was to investigate the relations of basic semen parameters and reproductive hormones with alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT). In addition, to examine possible interaction between adiposity, alcohol consumption, and liver tests in relation to male reproductive health, standard semen analysis was performed and serum levels of reproductive hormones and liver tests were measured in 245 male partners of pregnant women at a University Hospital Andrology Centres in Estonia. Quartile analysis revealed that after adjustment for covariates GGT was negatively related to sperm concentration and total sperm count. These significant changes appeared from a GGT >35.5 U/L. Next to these changes ALT was not related to sperm parameters. Both enzymes, GGT and ALT, were not related to reproductive hormones. Alcohol consumption was positively related to GGT and in cases with elevated GGT alcohol use was negatively related to sperm concentration and total sperm count. Alcohol consumption was positively related to body mass index (BMI) and waist circumference (WC). Our findings also confirm results of previous studies that BMI and WC are associated positively with ALT and GGT. According to the study, increased GGT activity might represent a possible connection between adiposity, alcohol consumption, and semen quality.

  3. Consequences of Lower Food Intake on the Digestive Enzymes Activities, the Energy Reserves and the Reproductive Outcome in Gammarus fossarum

    PubMed Central

    Charron, Laetitia; Geffard, Olivier; Chaumot, Arnaud; Coulaud, Romain; Jaffal, Ali; Gaillet, Véronique; Dedourge-Geffard, Odile; Geffard, Alain

    2015-01-01

    Digestive enzyme activity is often used as a sensitive response to environmental pollution. However, only little is known about the negative effects of stress on digestive capacities and their consequences on energy reserves and reproduction, although these parameters are important for the maintenance of populations. To highlight if changes in biochemical responses (digestive enzymes and reserves) led to impairments at an individual level (fertility), Gammarus fossarum were submitted to a lower food intake throughout a complete female reproductive cycle (i.e. from ovogenesis to offspring production). For both males and females, amylase activity was inhibited by the diet stress, whereas trypsin activity was not influenced. These results underline similar sensitivity of males and females concerning their digestive capacity. Energy reserves decreased with food starvation in females, and remained stable in males. The number of embryos per female decreased with food starvation. Lower digestive activity in males and females therefore appears as an early response. These results underline the ecological relevance of digestive markers, as they make it possible to anticipate upcoming consequences on reproduction in females, a key biological variable for population dynamics. PMID:25880985

  4. Diurnal variations in response of rat liver tyrosine aminotransferase activity to food intake.

    PubMed

    Kato, H; Saito, M

    1980-01-01

    Effects of fasting and refeeding on the hepatic tyrosine aminotransferase activity were examined in rats that had been fed during the night. The tyrosine aminotransferase activity showed clear diurnal variations, with a maximal activity after the feeding time. The tyrosine aminotransferase rhythm persisted even under starvation, though the amplitude decreased remarkably. When the starved rats were refed at night, the tyrosine aminotransferase activity increased rapidly to a high level, but it increased slowly to a rather lower level when they were refed in daytime.

  5. High-salt intake induces cardiomyocyte hypertrophy in rats in response to local angiotensin II type 1 receptor activation.

    PubMed

    Katayama, Isis A; Pereira, Rafael C; Dopona, Ellen P B; Shimizu, Maria H M; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C

    2014-10-01

    Many studies have shown that risk factors that are independent of blood pressure (BP) can contribute to the development of cardiac hypertrophy (CH). Among these factors, high-salt (HS) intake was prominent. Although some studies have attempted to elucidate the role of salt in the development of this disease, the mechanisms by which salt acts are not yet fully understood. Thus, the aim of this study was to better understand the mechanisms of CH and interstitial fibrosis (IF) caused by HS intake. Male Wistar rats were divided into 5 groups according to diet [normal salt (NS; 1.27% NaCl) or HS (8% NaCl)] and treatment [losartan (LOS) (HS+LOS group), hydralazine (HZ) (HS+HZ group), or N-acetylcysteine (NAC) (HS+NAC group)], which was given in the drinking water. Tail-cuff BP, transverse diameter of the cardiomyocyte, IF, angiotensin II type 1 receptor (AT1) gene and protein expression, serum aldosterone, cardiac angiotensin II, cardiac thiobarbituric acid-reactive substances, and binding of conformation-specific anti-AT1 and anti-angiotensin II type 2 receptor (AT2) antibodies in the 2 ventricles were measured. Based on the left ventricle transverse diameter data, the primary finding was the occurrence of significant BP-independent CH in the HS+HZ group (96% of the HS group) and a partial or total prevention of such hypertrophy via treatment with NAC or LOS (81% and 67% of the HS group, respectively). The significant total or partial prevention of IF using all 3 treatments (HS+HZ, 27%; HS+LOS, 27%; and HS+NAC, 58% of the HS group, respectively), and an increase in the AT1 gene and protein expression and activity in groups that developed CH, confirmed that CH occurred via the AT1 in this experimental model. Thus, this study unveiled some relevant previously unknown mechanisms of CH induced by chronic HS intake in Wistar rats. The link of oxidative stress with CH in our experimental model is very interesting and stimulates further evaluation for its full comprehension.

  6. Hypothalamic roles of mTOR complex I: Integration of nutrient and hormone signals to regulate energy homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight...

  7. Fruit/Vegetable Intake and Physical Activity among Adults with High Cholesterol

    ERIC Educational Resources Information Center

    Fang, Jing; Keenan, Nora L.; Dai, Shifan

    2011-01-01

    Objectives: To determine whether hypercholesterolemic adults followed healthy eating and appropriate physical activity. Methods: Using the 2007 Behavioral Risk Factor Surveillance System, we measured greater than or equal to 5 servings of fruits and vegetables/day and "Healthy People 2010" recommended physical activity. Results: Of 363,667 adults…

  8. Differences in Overweight and Obesity among Children from Migrant and Native Origin: The Role of Physical Activity, Dietary Intake, and Sleep Duration.

    PubMed

    Labree, Wim; van de Mheen, Dike; Rutten, Frans; Rodenburg, Gerda; Koopmans, Gerrit; Foets, Marleen

    2015-01-01

    A cross-sectional survey was performed to examine to what degree differences in overweight and obesity between native Dutch and migrant primary school children could be explained by differences in physical activity, dietary intake, and sleep duration among these children. Subjects (n=1943) were primary school children around the age of 8-9 years old and their primary caregivers: native Dutch children (n=1546), Turkish children (n=93), Moroccan children (n=66), other non-western children (n=105), and other western children (n=133). Multivariate regressions and logistic regressions were used to examine the relationship between migrant status, child's behavior, and BMI or prevalence of overweight, including obesity (logistic). Main explanatory variables were physical activity, dietary intake, and sleep duration. We controlled for age, sex, parental educational level, and parental BMI. Although sleep duration, dietary intake of fruit, and dietary intake of energy-dense snacks were associated with BMI, ethnic differences in sleep duration and dietary intake did not have a large impact on ethnic differences in overweight and obesity among children from migrant and native origin. It is suggested that future preventive strategies to reduce overweight and obesity, in general, consider the role of sleep duration. Also, cross-cultural variation in preparation of food among specific migrant groups, focusing on fat, sugar, and salt, deserves more attention. In order to examine which other variables may clarify ethnic differences in overweight and obesity, future research is needed.

  9. Physical Activity, Fruit and Vegetable Intake, and Health-Related Quality of Life Among Older Chinese, Hispanics, and Blacks in New York City

    PubMed Central

    Wyatt, Laura C.; Kranick, Julie A.; Islam, Nadia S.; Devia, Carlos; Horowitz, Carol; Trinh-Shevrin, Chau

    2015-01-01

    Objectives. We explored the relationship between health-related quality of life (HRQOL) and adequate physical activity (PA) and fruit and vegetable (F&V) intake among racial/ethnic minority groups aged 60 years or older living in New York City (NYC). Methods. Survey data from 2009 to 2012 targeted minority groups in NYC ethnic enclaves; we analyzed 3594 individuals (Blacks, Hispanics, and Chinese) aged 60 years or older. Descriptive statistics were run; unadjusted and adjusted logistic regression evaluated the relationship of HRQOL with PA and F&V intake. Results. Hispanics were most likely to engage in sufficient PA and eat recommended F&Vs and had significantly worse HRQOL. After multivariable adjustment, significant associations were found between PA and self-reported health, activity limitation and physical health days for all groups, and PA and mental health days for Hispanics. Significant associations were found between F&V intake and physical health days for Hispanics and F&V intake and self-reported health for Chinese. Conclusions. Findings indicated variations between HRQOL and PA by racial/ethnic subgroup. Despite being highly insured, recommendations for PA and F&V intake were not met. There is a need to promote healthy living behaviors among aging NYC racial/ethnic populations. PMID:25905844

  10. New strigolactone analogs as plant hormones with low activities in the rhizosphere.

    PubMed

    Boyer, François-Didier; de Saint Germain, Alexandre; Pouvreau, Jean-Bernard; Clavé, Guillaume; Pillot, Jean-Paul; Roux, Amélie; Rasmussen, Amanda; Depuydt, Stephen; Lauressergues, Dominique; Frei Dit Frey, Nicolas; Heugebaert, Thomas S A; Stevens, Christian V; Geelen, Danny; Goormachtig, Sofie; Rameau, Catherine

    2014-04-01

    Strigolactones (SLs) are known not only as plant hormones, but also as rhizosphere signals for establishing symbiotic and parasitic interactions. The design of new specific SL analogs is a challenging goal in understanding the basic plant biology and is also useful to control plant architectures without favoring the development of parasitic plants. Two different molecules (23 (3'-methyl-GR24), 31 (thia-3'-methyl-debranone-like molecule)) already described, and a new one (AR36), for which the synthesis is presented, are biologically compared with the well-known GR24 and the recently identified CISA-1. These different structures emphasize the wide range of parts attached to the D-ring for the bioactivity as a plant hormone. These new compounds possess a common dimethylbutenolide motif but their structure varies in the ABC part of the molecules: 23 has the same ABC part as GR24, while 31 and AR36 carry, respectively, an aromatic ring and an acyclic carbon chain. Detailed information is given for the bioactivity of such derivatives in strigolactone synthesis or in perception mutant plants (pea rms1 and rms4, Arabidopsis max2 and, max4) for different hormonal functions along with their action in the rhizosphere on arbuscular mycorrhizal hyphal growth and parasitic weed germination.

  11. Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor.

    PubMed

    Carbone, D L; Handa, R J

    2013-06-01

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of CNS ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in CNS development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of CNS physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids (GCs), have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor Tropomyosin-Related Kinase B by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but also in mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and GCs, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the CNS. PMID:23211562

  12. CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells

    PubMed Central

    Wright, Roni H.G.; Castellano, Giancarlo; Bonet, Jaume; Le Dily, Francois; Font-Mateu, Jofre; Ballaré, Cecilia; Nacht, A. Silvina; Soronellas, Daniel; Oliva, Baldo; Beato, Miguel

    2012-01-01

    Eukaryotic gene regulation implies that transcription factors gain access to genomic information via poorly understood processes involving activation and targeting of kinases, histone-modifying enzymes, and chromatin remodelers to chromatin. Here we report that progestin gene regulation in breast cancer cells requires a rapid and transient increase in poly-(ADP)-ribose (PAR), accompanied by a dramatic decrease of cellular NAD that could have broad implications in cell physiology. This rapid increase in nuclear PARylation is mediated by activation of PAR polymerase PARP-1 as a result of phosphorylation by cyclin-dependent kinase CDK2. Hormone-dependent phosphorylation of PARP-1 by CDK2, within the catalytic domain, enhances its enzymatic capabilities. Activated PARP-1 contributes to the displacement of histone H1 and is essential for regulation of the majority of hormone-responsive genes and for the effect of progestins on cell cycle progression. Both global chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) and gene expression analysis show a strong overlap between PARP-1 and CDK2. Thus, progestin gene regulation involves a novel signaling pathway that connects CDK2-dependent activation of PARP-1 with histone H1 displacement. Given the multiplicity of PARP targets, this new pathway could be used for the pharmacological management of breast cancer. PMID:22948662

  13. Activation of a cryptic splice site in the growth hormone receptor associated with growth hormone insensitivity syndrome in a genetic isolate of Laron Syndrome

    SciTech Connect

    Schiavi, A.; Bartlett, R.; Brown, M.

    1994-09-01

    Laron syndrome (LS) is a rare, autosomal recessive disease found worldwide. Despite various ethnic differences, all patients with LS described display classic dysmorphic features and extreme short stature due to defects in the growth hormone receptor (GHR). The vast majority of these patients are sporadic occurrences resulting from consanguineous matings; however, an Ecuadorian genetic isolate of LS has been reported. Our investigations have identified a genetic isolate of LS of Anglo Saxon origin. Seven individuals, by all clinical and biochemical criteria, have LS. As a result of extensive review of family and medical histories we have constructed a pedigree tracing the lineage of our affected patients through the 17th century. No GHR gross deletions were detected using an exon-specific PCR assay developed in our laboratory. Previous molecular analyses have identified mutations in exons 2-7 in numerous patients with classical LS. Single strand conformational polymorphism (SSCP) analysis was performed on GHR exons 2-7, and a marked conformational shift was noted in exon 7. Cycle sequencing of exon 7 from three affected individuals, and from four first-degree relatives, revealed a C{r_arrow}T transition at position 766 of the cDNA, and a heterozygous C{r_arrow}T transition at the identical position in the obligate carriers studied. This mutation is predicted to activate a cryptic donor splice site 63 base pairs upstream from the 3{prime} end of exon 7, effectively truncating the GHR cDNA without changing the reading frame. The resultant GHR protein is shortened by a proposed 21 amino acids. The identification and conformation of this mutation not only identifies a novel mutation in the GHR, and the first to be described in LS patients of English descent, but also allows for comparisons between genotypes and phenotypes in an inbred population.

  14. Molecular cloning of growth hormone-releasing hormone/pituitary adenylyl cyclase-activating polypeptide in the frog Xenopus laevis: brain distribution and regulation after castration.

    PubMed

    Hu, Z; Lelievre, V; Tam, J; Cheng, J W; Fuenzalida, G; Zhou, X; Waschek, J A

    2000-09-01

    Pituitary adenylyl cyclase-activating peptide (PACAP) appears to regulate several neuroendocrine functions in the frog, but its messenger RNA (mRNA) structure and brain distribution are unknown. To understand the potential role of PACAP in the male frog hypothalamic-pituitary-gonadal axis, we cloned the frog Xenopus laevis PACAP mRNA and determined its distribution in the brain. We then analyzed the castration-induced alterations of mRNA expression for PACAP and its selective type I receptor (PAC1) in the hypothalamic anterior preoptic area, a region known to regulate reproductive function. The PACAP mRNA encodes a peptide precursor predicted to give rise to both GH-releasing hormone and PACAP. The deduced peptide sequence of PACAP-38 was nearly identical to that of human PACAP with one amino acid substitution. Abundant PACAP mRNA was detected in the brain, but not several other tissues, including the testis. In situ hybridization revealed strong expression of the PACAP gene in the dorsal pallium, ventral hypothalamus, and nuclei of cerebellum. PACAP mRNA signals were weak to moderate in the hypothalamic anterior preoptic area and were absent in the pituitary. Castration induced an increase in the expression of PACAP and PAC1 receptor mRNAs in the hypothalamic anterior preoptic area after 3 days. Replacement with testosterone prevented the castration-induced changes. These results provide a molecular basis for studying the physiological functions of PACAP in frog brain and suggest that PACAP may be involved in the feedback regulation of hypothalamic-pituitary-gonadal axis.

  15. Disruption of parathyroid hormone and parathyroid hormone-related peptide receptor phosphorylation prolongs ERK1/2 MAPK activation and enhances c-fos expression

    PubMed Central

    Abou-Samra, Abdul B.

    2012-01-01

    Previous studies have demonstrated that parathyroid hormone (PTH) binding to the PTH/PTH-related peptide receptor (PPR) stimulates G protein coupling, receptor phosphorylation, β-arrestin translocation, and internalization of the ligand/receptor complex. The extracellular signal-regulated mitogen-activated protein kinases 1/2 (ERK1/2 MAPK) are downstream effectors of PPR. In the current study, we investigated the role of PPR phosphorylation in the PTH regulation of the ERK1/2 MAPK pathway. Short treatment with PTH (0–40 min) of LLCP-K1 cells stably expressing a wild-type (WT) or a phosphorylation-deficient (PD) PPR (WT-PPR or PD-PPR cells, respectively) results in similar activation of ERK1/2. Interestingly, PTH stimulation of ERK1/2 in the WT-PPR cells then decreases as a result of longer PTH (60 min) treatment, and inhibition of ERK1/2 by PTH is observed at 90 min. Strikingly, the PD-PPR cells exhibit prolonged ERK1/2 activation up to 90 min of PTH treatment. An ERK1/2-dependent increase in c-fos expression is observed in the PD-PPR cells. Subsequently, c-fos expression in the WT-PPR and PD-PPR cells was markedly attenuated by a specific ERK1/2 pathway inhibitor. Further investigations revealed that PTH treatment causes a robust recruitment of a green fluorescent protein-tagged β-arrestin2 (β-arrestin2-GFP) in the WT-PPR cells. In contrast, β-arrestin2 recruitment was reduced in the PD-PPR cells. Importantly, expression of a receptor phosphorylation-independent β-arrestin2 (R169E) in the PD-PPR cells restored the biphasic effect of PTH on ERK1/2 as in the WT-PPR cells. The study reports a novel role for receptor phosphorylation and β-arrestin2 in the subsequent inhibition of the ERK1/2 pathway and in control of gene expression. PMID:22414806

  16. Puberty and Gonadal Hormones: Role in Adolescent-typical Behavioral Alterations

    PubMed Central

    Varlinskaya, Elena I.; Vetter-O’Hagen, Courtney S.; Spear, Linda P.

    2012-01-01

    Adolescence is characterized by a variety of behavioral alterations, including elevations in novelty-seeking and experimentation with alcohol and other drugs of abuse. Some adolescent-typical neurobehavioral alterations may depend upon pubertal rises in gonadal hormones, whereas others may be unrelated to puberty. Using a variety of approaches, studies in laboratory animals have not revealed clear relationships between pubertal-related changes and adolescent- or adult-typical behaviors that are not strongly sexually dimorphic. Data reviewed suggest surprisingly modest influences of gonadal hormones on alcohol intake, alcohol preference and novelty-directed behaviors. Gonadectomy in males (but not females) increased ethanol intake in adulthood following surgery either pre-pubertally or in adulthood, with these increases in intake largely reversed by testosterone replacement in adulthood, supporting an activational role of androgens in moderating ethanol intake in males. In contrast, neither pre-pubertal nor adult gonadectomy influenced sensitivity to the social inhibitory or aversive effects of ethanol when indexed via conditioned taste aversions, although gonadectomy at either age altered the microstructure of social behavior of both males and females. Unexpectedly, the pre-pubertal surgical manipulation process itself was found to increase later ethanol intake, decrease sensitivity to ethanol’s social inhibitory effects, attenuate novelty-directed behavior and lower social motivation, with gonadal hormones being necessary for these long-lasting effects of early surgical perturbations. PMID:23998677

  17. Puberty and gonadal hormones: role in adolescent-typical behavioral alterations.

    PubMed

    Varlinskaya, Elena I; Vetter-O'Hagen, Courtney S; Spear, Linda P

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". Adolescence is characterized by a variety of behavioral alterations, including elevations in novelty-seeking and experimentation with alcohol and other drugs of abuse. Some adolescent-typical neurobehavioral alterations may depend upon pubertal rises in gonadal hormones, whereas others may be unrelated to puberty. Using a variety of approaches, studies in laboratory animals have not revealed clear relationships between pubertal-related changes and adolescent- or adult-typical behaviors that are not strongly sexually dimorphic. Data reviewed suggest surprisingly modest influences of gonadal hormones on alcohol intake, alcohol preference and novelty-directed behaviors. Gonadectomy in males (but not females) increased ethanol intake in adulthood following surgery either pre-pubertally or in adulthood, with these increases in intake largely reversed by testosterone replacement in adulthood, supporting an activational role of androgens in moderating ethanol intake in males. In contrast, neither pre-pubertal nor adult gonadectomy influenced sensitivity to the social inhibitory or aversive effects of ethanol when indexed via conditioned taste aversions, although gonadectomy at either age altered the microstructure of social behavior of both males and females. Unexpectedly, the pre-pubertal surgical manipulation process itself was found to increase later ethanol intake, decrease sensitivity to ethanol's social inhibitory effects, attenuate novelty-directed behavior and lower social motivation, with gonadal hormones being necessary for these long-lasting effects of early surgical perturbations.

  18. Correct disulfide pairing is required for the biological activity of crustacean androgenic gland hormone (AGH): synthetic studies of AGH.

    PubMed

    Katayama, Hidekazu; Hojo, Hironobu; Ohira, Tsuyoshi; Ishii, Akira; Nozaki, Takamichi; Goto, Kiyomi; Nakahara, Yuko; Takahashi, Tetsuo; Hasegawa, Yuriko; Nagasawa, Hiromichi; Nakahara, Yoshiaki

    2010-03-01

    Androgenic gland hormone (AGH) of the woodlouse, Armadillidium vulgare, is a heterodimeric glycopeptide. In this study, we synthesized AGH with a homogeneous N-linked glycan using the expressed protein ligation method. Unexpectedly, disulfide bridge arrangement of a semisynthetic peptide differed from that of a recombinant peptide prepared in a baculovirus expression system, and the semisynthetic peptide showed no biological activity in vivo. To confirm that the loss of biological activity resulted from disulfide bond isomerization, AGH with a GlcNAc moiety was chemically synthesized by the selective disulfide formation. This synthetic AGH showed biological activity in vivo. These results indicate that the native conformation of AGH is not the most thermodynamically stable form, and correct disulfide linkages are important for conferring AGH activity. PMID:20092253

  19. Correct disulfide pairing is required for the biological activity of crustacean androgenic gland hormone (AGH): synthetic studies of AGH.

    PubMed

    Katayama, Hidekazu; Hojo, Hironobu; Ohira, Tsuyoshi; Ishii, Akira; Nozaki, Takamichi; Goto, Kiyomi; Nakahara, Yuko; Takahashi, Tetsuo; Hasegawa, Yuriko; Nagasawa, Hiromichi; Nakahara, Yoshiaki

    2010-03-01

    Androgenic gland hormone (AGH) of the woodlouse, Armadillidium vulgare, is a heterodimeric glycopeptide. In this study, we synthesized AGH with a homogeneous N-linked glycan using the expressed protein ligation method. Unexpectedly, disulfide bridge arrangement of a semisynthetic peptide differed from that of a recombinant peptide prepared in a baculovirus expression system, and the semisynthetic peptide showed no biological activity in vivo. To confirm that the loss of biological activity resulted from disulfide bond isomerization, AGH with a GlcNAc moiety was chemically synthesized by the selective disulfide formation. This synthetic AGH showed biological activity in vivo. These results indicate that the native conformation of AGH is not the most thermodynamically stable form, and correct disulfide linkages are important for conferring AGH activity.

  20. [Effect of orexin-A and orexin-1 receptor antagonist injected into the fourth ventricle of rats on food-intake and spontaneous physical activity].

    PubMed

    Peng, Xiao-Yan; Guo, Fei-Fei; Sun, Xiang-Rong; Gong, Yan-Ling; Xu, Luo

    2015-08-25

    The present study was aimed to investigate the effects of orexin-A and orexin-1 receptor (OX1R) antagonist injected into the fourth ventricle of rats on food-intake and spontaneous physical activity (SPA). Obese rat model was induced by high fat diet. Different doses of orexin-A or SB334867, an OX1R antagonist, were injected into the fourth ventricle of obese and normal rats respectively. SPA and food intake were monitored for 4 h after injection in both light and dark environment. In the light measurement cycle, different doses of orexin-A significantly stimulated feeding and SPA in all injected rats, and the animals' responses showed a dose-dependent manner (P < 0.05-0.01), and compared with those of normal rats, the orexin-A induced food intake and SPA were more pronounced in obese rats. In the dark measurement cycle, different doses of orexin-A had no obvious effect on food intake and SPA in both normal and obese rats (P > 0.05). In the light cycle, different doses of SB334867 significantly decreased food intake and SPA in all rats during 0-2 h and 2-4 h after injection (P < 0.05), but the food intake and SPA in obese rats were significantly greater than those of normal rats. In the dark cycle, different doses of SB334867 showed no obvious effect on food intake and SPA of normal and obese rats (P > 0.05). These results suggest that fourth cerebral ventricle nuclei may be one target for orexin-A and light condition may play an important role in orexin-A and OX1R physiological functional processes.

  1. Relationship between disease activity and serum levels of vitamin D metabolites and parathyroid hormone in ankylosing spondylitis.

    PubMed

    Lange, U; Jung, O; Teichmann, J; Neeck, G

    2001-12-01

    Vertebral fractures due to osteoporosis are a common but frequently unrecognized complication of ankylosing spondylitis (AS) and various factors may contribute to the development of osteoporosis in AS. It is known that inflammatory activity in rheumatic disease (i.e., proinflammatory cytokines) itself plays a possible role in the pathophysiology of bone loss. 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) seems to be another possible candidate for mediatory function in regulating both the inflammatory process and bone turnover. The aim of this study was to evaluate the relation between disease activity, bone turnover and calciotropic hormones. In 70 patients with established AS and an age- and sex-matched control group, the relation between disease activity (erythrocyte sedimentation rate, C-reactive protein, Bath Ankylosing Spondylitis Disease Activity Index), and serum levels of vitamin D metabolites, parathyroid hormone (PTH), bone alkaline phosphatase (bAP) and urinary pyridinium cross-links were determined. Serum levels of 1,25(OH)2D3 (p<0.01) and PTH (p<0.01) were negatively correlated with disease activity, the excretion of urinary pyridinium crosslinks showed a positive correlation with disease activity (p<0.01), and 1,25(OH)2D3 and PTH were positively correlated with bAP (p<0.01). These results indicate that high disease activity in AS is associated with an alteration in vitamin D metabolism and increased bone resorption. Furthermore, the decreased levels of 1,25(OH)2D3 may contribute to a negative calcium balance and inhibition of bone formation. Our results suggest further research is necessary to determine whether low levels of 1,25(OH)2D3 as an endogenous immune modulator suppressing activated T cells and cell proliferation may accelerate the inflammation process in AS. PMID:11846329

  2. [Vitamin D hormone system and diabetes mellitus: lessons from selective activators of vitamin D receptor and diabetes mellitus].

    PubMed

    Jódar-Gimeno, Esteban; Muñoz-Torres, Manuel

    2013-02-01

    The vitamin D hormone system has significant skeletal and extra-skeletal effects. Vitamin D receptor occurs in different tissues, and several cells other than renal cells are able to locally produce active vitamin D, which is responsible for transcriptional control of hundreds of genes related to its pleiotropic effects. There is increasing evidence relating vitamin D to development and course of type 1 and 2 diabetes mellitus. Specifically, influence of vitamin D on the renin-angiotensin-aldosterone system, inflammatory response, and urinary albumin excretion could explain the relevant impact of vitamin D status on diabetic nephropathy. Selective vitamin D receptor activators are molecules able to reproduce agonistic or antagonistic effects of active vitamin D depending on the tissue or even on the cell type. Specifically, paricalcitol has a beneficial profile because of its potency to reduce parathyroid hormone, with lower effects on serum calcium or phosphate levels. Moreover, in patients with diabetes and renal disease, paricalcitol decreases microalbuminuria, hospitalization rates, and cardiovascular mortality. Therefore, these molecules represent an attractive new option to improve prognosis of renal disease in patients with diabetes.

  3. The "Power Play! Campaign's School Idea & Resource Kits" Improve Determinants of Fruit and Vegetable Intake and Physical Activity among Fourth- and Fifth-Grade Children

    ERIC Educational Resources Information Center

    Keihner, Angie Jo; Meigs, Reba; Sugerman, Sharon; Backman, Desiree; Garbolino, Tanya; Mitchell, Patrick

    2011-01-01

    Objective: Examine the effect of the "California Children's Power Play! Campaign's School Idea & Resource Kits" for fourth/fifth grades on the psychosocial determinants of fruit and vegetable (FV) intake and physical activity (PA). Methods: Randomized, controlled trial (n = 31 low-resource public schools; 1,154 children). Ten grade-specific,…

  4. Association of circulating active and total ghrelin concentrations with dry matter intake, growth, and carcass characteristics of finishing beef cattle.

    PubMed

    Foote, A P; Hales, K E; Lents, C A; Freetly, H C

    2014-12-01

    Ghrelin is a gut peptide that when acylated is thought to stimulate appetite. Circulating ghrelin concentrations could potentially be used as a predictor of DMI in cattle. The objective of this experiment was to determine the association of circulating ghrelin concentrations with DMI and other production traits. Steers and heifers were fed a finishing diet, and individual intake was recorded for 84 d. Blood samples were collected via jugular venipuncture following the DMI and ADG measurement period. Plasma active ghrelin and total ghrelin were quantified using commercial RIA. Active ghrelin was not correlated to DMI (P=0.36), but when DMI was modeled using a multivariate analysis including plasma metabolites and sex, active ghrelin was shown to be positively associated with DMI (P<0.01) and accounted for 6.2% of the variation accounted for by the regression model (R2=0.33). Total ghrelin was negatively correlated to DMI (P<0.01), but was not significant in a multivariate regression analysis (P=0.13). The ratio of active:total ghrelin was positively associated with DMI (P<0.01) and accounted for 10.2% of the variation in the model (R2=0.35). Active ghrelin was positively associated with ADG (P<0.05), while total ghrelin was negatively associated with ADG (P<0.01), and the ratio of active:total ghrelin was positively associated with ADG (P<0.01). Active ghrelin was not associated with G:F (P=0.88), but total ghrelin concentrations were negatively associated with G:F (P<0.01) and accounted for 10.24% of the variation (R2=0.25). Heifers consumed less feed than steers (P<0.01), tended to have greater active ghrelin concentrations (P=0.06), and had greater total ghrelin concentrations than steers (P=0.04). Total ghrelin concentrations were not different between sire breeds (P=0.80), but active ghrelin concentrations and the ratio of active:total ghrelin differed between breeds (P<0.01), indicating that genetics have an effect on the amount and form of circulating ghrelin

  5. Angiotensin II stimulates water and NaCl intake through separate cell signalling pathways in rats.

    PubMed

    Daniels, Derek; Mietlicki, Elizabeth G; Nowak, Erica L; Fluharty, Steven J

    2009-01-01

    Angiotensin II (AngII) stimulation of water and NaCl intake is a classic model of the behavioural effects of hormones. In vitro studies indicate that the AngII type 1 (AT(1)) receptor stimulates intracellular pathways that include protein kinase C (PKC) and mitogen-activated protein (MAP) kinase activation. Previous studies support the hypotheses that PKC is involved in AngII-induced water, but not NaCl intake and that MAP kinase plays a role in NaCl consumption, but not water intake, after injection of AngII. The present experiments test these hypotheses in rats using central injections of AngII in the presence or absence of a PKC inhibitor or a MAP kinase inhibitor. Pretreatment with the PKC inhibitor chelerythrine attenuated AngII-induced water intake, but NaCl intake was unaffected. In contrast, pretreatment with U0126, a MAP kinase inhibitor, had no effect on AngII-induced water intake, but attenuated NaCl intake. These data support the working hypotheses and significantly extend our earlier findings and those of others. Perhaps more importantly, these experiments demonstrate the remarkable diversity of peptide receptor systems and add support for the surprising finding that intracellular signalling pathways can have divergent behavioural relevance.

  6. Partnering with School Nutrition Professionals to Promote Fruit and Vegetable Intake through Taste-Testing Activities

    ERIC Educational Resources Information Center

    Cirignano, Sherri M.; Hughes, Luanne J.; Wu-Jung, Corey J.; Morgan, Kathleen; Grenci, Alexandra; Savoca, LeeAnne

    2013-01-01

    The Healthy, Hunger-Free Kids Act (HHFKA) of 2010 sets new nutrition standards for schools, requiring them to serve a greater variety and quantity of fruits and vegetables. Extension educators in New Jersey partnered with school nutrition professionals to implement a school wellness initiative that included taste-testing activities to support…

  7. Limbic activation to novel versus familiar food cues predicts food preference and alcohol intake.

    PubMed

    Michaelides, Michael; Miller, Michael L; Subrize, Mike; Kim, Ronald; Robison, Lisa; Hurd, Yasmin L; Wang, Gene-Jack; Volkow, Nora D; Thanos, Panayotis K

    2013-05-28

    Expectation of salient rewards and novelty seeking are processes implicated in substance use disorders but the neurobiological substrates underlying these associations are not well understood. To better understand the regional circuitry of novelty and reward preference, rats were conditioned to pair unique cues with bacon, an initially novel food, or chow, a familiar food. In the same animals, after training, cue-induced brain activity was measured, and the relationships between activity and preference for three rewards, the conditioned foods and ethanol (EtOH), were separately determined. Activity in response to the food paired cues was measured using brain glucose metabolism (BGluM). Rats favoring bacon-paired (BAP) cues had increased BGluM in mesocorticolimbic brain regions after exposure to these cues, while rats favoring chow-paired (CHP) cues showed relative deactivation in these regions. Rats exhibiting BAP cue-induced activation in prefrontal cortex (PFC) also consumed more EtOH while rats with cortical activation in response to CHP cues showed lower EtOH consumption. Additionally, long-term stable expression levels of PFC Grin2a, a subunit of the NMDA receptor, correlated with individual differences in EtOH preference insomuch that rats with high EtOH preference had enduringly low PFC Grin2a mRNA expression. No other glutamatergic, dopaminergic or endocannabinoid genes studied showed this relationship. Overall, these results suggest that natural variation in mesocorticolimbic sensitivity to reward-paired cues underlies behavioral preferences for and vulnerability to alcohol abuse, and support the notion of common neuronal circuits involved in food- and drug-seeking behavior. The findings also provide evidence that PFC NMDA-mediated glutamate signaling may modulate these associations.

  8. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats.

    PubMed

    Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S

    2015-01-01

    Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure. PMID:26617573

  9. The effect of indomethacin, myeloperoxidase, and certain steroid hormones on bactericidal activity: an ex vivo and in vivo experimental study

    PubMed Central

    2014-01-01

    Background The role of myeloperoxidase (MPO) is essential in the killing of phagocytosed bacteria. Certain steroid hormones increase MPO plasma concentration. Our aim was to test the effect of MPO, its inhibitor indomethacin, and certain steroid hormones on bactericidal activity. Methods Human polymorphonuclear leukocytes (PMN) were incubated with opsonised Escherichia coli and either MPO, indomethacin, estradiol, or hydrocortisone. Intracellular killing capacity was evaluated with UV microscopy after treatment with fluorescent dye. Next, an in vivo experiment was performed with nine groups of rats: in the first phase of the study indomethacin treatment and Pasteurella multocida infection (Ii), indomethacin treatment without infection (I0), untreated control with infection (Mi) and untreated control without infection (M0); in the second phase of the study rats with infection and testosterone treatment (NT), castration, infection and testosterone treatment (CT), castration, infection and estradiol treatment (CE), non-castrated infected control (N0), and castrated infected control (C0). After treatment bacteria were reisolated from the liver and heart blood on agar plates, and laboratory parameters were analyzed. For the comparison of laboratory results ANOVA or Kruskal-Wallis test and LSD post hoc test was used. Results Indomethacin did not have a remarkable effect on the bacterial killing of PMNs, while the other compounds increased bacterial killing to various degrees. In the animal model indomethacin and infection caused a poor clinical state, a great number of reisolated bacteria, elevated white blood cell (WBC) count, decreased C-reactive protein (CRP) and serum albumin levels. Testosterone treatment resulted in less bacterial colony numbers in group NT, but not in group CT compared to respective controls (N0, C0). Estradiol treatment (CE) decreased colony numbers compared to control (C0). Hormone administration resulted in lower WBC counts, and in group CE, a

  10. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats

    PubMed Central

    Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S.

    2015-01-01

    Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP–GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure. PMID:26617573

  11. Oral intake of curcumin markedly activated CYP 3A4: in vivo and ex-vivo studies.

    PubMed

    Hsieh, Yow-Wen; Huang, Ching-Ya; Yang, Shih-Ying; Peng, Yu-Hsuan; Yu, Chung-Ping; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2014-10-10

    Curcumin, a specific secondary metabolite of Curcuma species, has potentials for a variety of beneficial health effects. It is nowadays used as a dietary supplement. Everolimus (EVL) is an immunosuppressant indicated for allograft rejection and cancer therapy, but with narrow therapeutic window. EVL is a substrate of P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4). This study investigated the effect of coadministration of curcumin on the pharmacokinetics of EVL in rats and the underlying mechanisms. EVL (0.5 mg/kg) was orally administered without and with 50 and 100 mg/kg of curcumin, respectively, in rats. Blood samples were collected at specific time points and EVL concentrations in blood were determined by QMS immunoassay. The underlying mechanisms were evaluated using cell model and recombinant CYP 3A4 isozyme. The results indicated that 50 and 100 mg/kg of curcumin significantly decreased the AUC0-540 of EVL by 70.6% and 71.5%, respectively, and both dosages reduced the Cmax of EVL by 76.7%. Mechanism studies revealed that CYP3A4 was markedly activated by curcumin metabolites, which apparently overrode the inhibition effects of curcumin on P-gp. In conclusion, oral intake of curcumin significantly decreased the bioavailability of EVL, a probe substrate of P-gp/CYP 3A4, mainly through marked activation on CYP 3A4.

  12. Web-Enabled and Improved Software Tools and Data Are Needed to Measure Nutrient Intakes and Physical Activity for Personalized Health Research123

    PubMed Central

    Stumbo, Phyllis J.; Weiss, Rick; Newman, John W.; Pennington, Jean A.; Tucker, Katherine L.; Wiesenfeld, Paddy L.; Illner, Anne-Kathrin; Klurfeld, David M.; Kaput, Jim

    2010-01-01

    Food intake, physical activity (PA), and genetic makeup each affect health and each factor influences the impact of the other 2 factors. Nutrigenomics describes interactions between genes and environment. Knowledge about the interplay between environment and genetics would be improved if experimental designs included measures of nutrient intake and PA. Lack of familiarity about how to analyze environmental variables and ease of access to tools and measurement instruments are 2 deterrents to these combined studies. This article describes the state of the art for measuring food intake and PA to encourage researchers to make their tools better known and more available to workers in other fields. Information presented was discussed during a workshop on this topic sponsored by the USDA, NIH, and FDA in the spring of 2009. PMID:20980656

  13. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: a role for angiotensin type 1 receptor.

    PubMed

    Yogi, Alvaro; Callera, Glaucia E; Mecawi, André S; Batalhão, Marcelo E; Carnio, Evelin C; Antunes-Rodrigues, José; Queiroz, Regina H; Touyz, Rhian M; Tirapelli, Carlos R

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT₁ receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT₁-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage.

  14. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats.

    PubMed

    Choi, Eun-Young; Jang, Jin-Young; Cho, Youn-Ok

    2010-08-01

    This study investigated the effect of coffee intake and exercise on the antioxidative activity and plasma cholesterol profile of physically trained rats while they were exercising. Forty eight rats were under either the control diet with water (C) or control diet with coffee (CF) and at the same time they were given physical training for 4 weeks. In terms of physical training, the rats were exercised on a treadmill for 30 minutes everyday. At the end of 4 weeks, animals in each dietary group were subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). Animals in the DE group were exercised on a treadmill for one hour, immediately before being sacrificed. Animals in the AE group were allowed to take a rest for one hour after exercise. TG levels were significantly high in coffee intake group than in control group. Also TG level of AE group was significantly higher than that of BE group. Exercise and coffee-exercise interaction effects were significant in total cholesterol (P = 0.0004, 0.0170). The AE of coffee intake group showed highest total cholesterol levels. HDL-cholesterol was significantly lower in coffee intake group than in control group. Coffee, exercise, and coffee-exercise interaction effects were significant in SOD (P = 0.0001, 0.0001, and 0.0001). The AE and BE of coffee intake group showed higher SOD levels than the other four groups. Catalase activities were significantly higher in coffee intake group than control group. No significant main effect was found in GSH/GSSG. Coffee, exercise, and coffee-exercise interaction effects were significant in MDA levels (P = 0.0464, 0.0016, and 0.0353). The DE and AE of coffee intake group and the DE of control group showed higher MDA levels than the BE of control group. Therefore, coffee intake can promote activities of antioxidant enzyme but it also increases MDA and decreases HDL-cholesterol in physically trained rats.

  15. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats

    PubMed Central

    Choi, Eun-Young; Jang, Jin-Young

    2010-01-01

    This study investigated the effect of coffee intake and exercise on the antioxidative activity and plasma cholesterol profile of physically trained rats while they were exercising. Forty eight rats were under either the control diet with water (C) or control diet with coffee (CF) and at the same time they were given physical training for 4 weeks. In terms of physical training, the rats were exercised on a treadmill for 30 minutes everyday. At the end of 4 weeks, animals in each dietary group were subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). Animals in the DE group were exercised on a treadmill for one hour, immediately before being sacrificed. Animals in the AE group were allowed to take a rest for one hour after exercise. TG levels were significantly high in coffee intake group than in control group. Also TG level of AE group was significantly higher than that of BE group. Exercise and coffee-exercise interaction effects were significant in total cholesterol (P = 0.0004, 0.0170). The AE of coffee intake group showed highest total cholesterol levels. HDL-cholesterol was significantly lower in coffee intake group than in control group. Coffee, exercise, and coffee-exercise interaction effects were significant in SOD (P = 0.0001, 0.0001, and 0.0001). The AE and BE of coffee intake group showed higher SOD levels than the other four groups. Catalase activities were significantly higher in coffee intake group than control group. No significant main effect was found in GSH/GSSG. Coffee, exercise, and coffee-exercise interaction effects were significant in MDA levels (P = 0.0464, 0.0016, and 0.0353). The DE and AE of coffee intake group and the DE of control group showed higher MDA levels than the BE of control group. Therefore, coffee intake can promote activities of antioxidant enzyme but it also increases MDA and decreases HDL-cholesterol in physically trained rats. PMID:20827343

  16. Influence of hormonal status on enkephalin-degrading aminopeptidase activity in the HPA axis of female mice.

    PubMed

    García-López, M J; Martínez-Martos, J M; Mayas, M D; Carrera, M P; Ramírez-Expósito, M J

    2005-04-01

    Opioids are involved in the regulation of hypothalamus-pituitary-adrenal (HPA) axis activity under physiological conditions. In the present work, we analyzed the influence of ovariectomy and estradiol (E), progesterone (P) or estradiol plus progesterone (E+P) replacement on soluble (S) and membrane-bound (MB) enkephalin-degrading aminopeptidase activity (EDA) in the HPA axis. Female mice (Balb/C) were distributed in 15 groups of 10 animals each: sham-operated controls (C), ovariectomized controls (OV-C), and ovariectomized mice treated with increasing doses of E (10, 20 or 40 mg/kg), P (100, 200 or 400 mg/kg) or E+P (10+100, 20+200 or 40+400 mg/kg). In hypothalamus, ovariectomy increased both S and MB EDA activities, whereas E replacement returned them to control levels, although MB EDA activity increased again after the replacement with 40 mg/kg E. P replacement increased S EDA activity, but returned MB EDA activity to control levels. The replacement of E+P returned both S and MB EDA activities to control levels, although MB EDA activity was lower than control values after the replacement with 10+100 mg/kg E+P. In pituitary, neither ovariectomy nor the replacement of E or E+P changed S EDA, although the highest concentrations of P increased S EDA activity. However, ovariectomy increased MB EDA and E replacement returned the activity to control or below control levels, depending on the concentration used. However, P administration returned the activity to control or below control levels depending on the concentration used, although 200 mg/kg P had no effects on MB EDA. E+P replacement returned pituitary MB EDA activity to control levels. In adrenal glands, ovariectomy did change either S or MB EDA. However, E, P or E+P replacement decreased S EDA activity in different degrees, depending of the dose administrated. No changes were detected in MB EDA after hormone replacement. These results indicate that female steroid hormones influence EDA activity at different

  17. [Transthyretin-binding activity of hexabromocyclododecanes (HBCDs) and its thyroid hormone disrupting effects after developmental exposure].

    PubMed

    Ji, Xiu-Ling; Liu, Yang; Liu, Fang; Lu, Yue; Zhong, Gao-Ren

    2010-09-01

    In vivo and in vitro research approaches were carried out to survey the potential health risk of environmental exposure by hexabromocyclododecanes (HBCDs). Transthyretin-binding assay was designed to test for the potency of HBCDs to compete with thyroxine (T4) for binding to the transport protein. The results showed that the binding of 25I-T4 and T4 was only slightly inhabited even at the highest competitive concentration of HBCDs (75.08%, 80 micromol x L(-1)), indicating the marginally interfere potency of HBCDs in the transportation of T4. Sprague-Dawley rats of 3-days old were exposed to 0.2 mg/kg and 1 mg/kg HBCDs for 21 d to examine the thyroid hormones (THs) disrupting effects of HBCDs after developmental exposure. Compared with the controls, levels of total 3,3',5-triiodothyronine (TT3), free 3,3',5-triiodothyronine (FT3), increased significantly (p < 0.05, p < 0.05) in low- and high-dose exposures, thyroid stimulating hormone (TSH) also increased slightly while the total thyroxine (TT4), free thyroxine (FT4) had a decline about two-fold inversely. Combined both the in vivo and in vitro results, the possible mode of action of HBCDs on THs disruption may through the synergy or substitution effect of T3. The findings support further investigation of the potential THs disrupting effects of HBCDs on public health, especially on children during brain development. PMID:21072945

  18. Brainstem neuronal and behavioral activation by corticotropin-releasing hormone depend on the behavioral state of the animal.

    PubMed

    Hubbard, Catherine S; Rose, James D

    2012-01-01

    Central administration of corticotropin-releasing hormone (CRH) is known to enhance locomotion across a wide range of vertebrates, including the roughskin newt, Taricha granulosa. The present study aimed to identify the CRH effects on locomotor-controlling medullary neurons that underlie the peptide's behavioral stimulating actions. Single neurons were recorded from the rostral medullary reticular formation before and after intraventricular infusion of CRH in freely behaving newts and newts paralyzed with a myoneural blocking agent. In behaving newts, most medullary neurons showed increased firing 3-23 min after CRH infusion. Decreases in firing were less common. Of particular importance was the finding that in behaving newts, medullary neurons showed a cyclic firing pattern that was strongly associated with an increase in the incidence of walking bouts, an effect blocked by pretreatment with the CRH antagonist, alpha-helical CRH and not seen following vehicle administration. In contrast, the majority of medullary neurons sampled in immobilized newts lacked temporal cyclicity in their firing patterns following intraventricular infusion of CRH. That is, there was no evidence for a fictive locomotor activity pattern. Our results indicate that the actual expression of locomotion is a critical factor in regulating the behavior-activating effects of CRH and underscore the importance of using an awake, unrestrained animal for analysis of a hormone's neurobehavioral actions.

  19. A comparison of timed artificial insemination and automated activity monitoring with hormone intervention in 3 commercial dairy herds.

    PubMed

    Dolecheck, K A; Silvia, W J; Heersche, G; Wood, C L; McQuerry, K J; Bewley, J M

    2016-02-01

    The objective of this study was to compare the reproductive performance of cows inseminated based on automated activity monitoring with hormone intervention (AAM) to cows from the same herds inseminated using only an intensive timed artificial insemination (TAI) program. Cows (n=523) from 3 commercial dairy herds participated in this study. To be considered eligible for participation, cows must have been classified with a body condition score of at least 2.50, but no more than 3.50, passed a reproductive tract examination, and experienced no incidences of clinical, recorded metabolic diseases in the current lactation. Within each herd, cows were balanced for parity and predicted milk yield, then randomly assigned to 1 of 2 treatments: TAI or AAM. Cows assigned to the TAI group were subjected to an ovulation synchronization protocol consisting of presynchronization, Ovsynch, and Resynch for up to 3 inseminations. Cows assigned to the AAM treatment were fitted with a leg-mounted accelerometer (AfiAct Pedometer Plus, Afimilk, Kibbutz Afikim, Israel) at least 10 d before the end of the herd voluntary waiting period (VWP). Cows in the AAM treatment were inseminated at times indicated by the automated alert system for up to 90 d after the VWP. If an open cow experienced no AAM alert for a 39±7-d period (beginning at the end of the VWP), hormone intervention in the form of a single injection of either PGF2α or GnRH (no TAI) was permitted as directed by the herd veterinarian. Subsequent to hormone intervention, cows were inseminated when alerted in estrus by the AAM system. Pregnancy was diagnosed by ultrasound 33 to 46 d after insemination. Pregnancy loss was determined via a second ultrasound after 60 d pregnant. Timed artificial insemination cows experienced a median 11.0 d shorter time to first service. Automated activity-monitored cows experienced a median 17.5-d shorter service interval. No treatment difference in probability of pregnancy to first AI, probability

  20. Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin

    PubMed Central

    Martin, Christine M.; Parthsarathy, Vadivel; Hasib, Annie; Ng, Ming T.; McClean, Stephen; Flatt, Peter R.; Gault, Victor A.; Irwin, Nigel

    2016-01-01

    Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18–25 and xenin 18–25 Gln. In BRIN-BD11 cells, both xenin fragment peptides concentration-dependently stimulated insulin secretion, with similar efficacy as the parent peptide. Neither fragment peptide had any effect on acute feeding behaviour at elevated doses of 500 nmol/kg bw. When administered together with glucose to normal mice at 25 nmol/kg bw, the overall insulin secretory effect was significantly enhanced in both xenin 18–25 and xenin 18–25 Gln treated mice, with better moderation of blood glucose levels. Twice daily administration of xenin 18–25 or xenin 18–25 Gln for 21 days in high fat fed mice did not affect energy intake, body weight, circulating blood glucose or body fat stores. However, circulating plasma insulin concentrations had a tendency to be elevated, particularly in xenin 18–25 Gln mice. Both treatment regimens significantly improved insulin sensitivity by the end of the treatment period. In addition, sustained treatment with xenin 18–25 Gln significantly reduced the overall glycaemic excursion and augmented the insulinotropic response to an exogenous glucose challenge on day 21. In harmony with this, GIP-mediated glucose-lowering and insulin-releasing effects were substantially improved by twice daily xenin 18–25 Gln treatment. Overall, these data provide evidence that C-terminal octapeptide fragments of xenin, such as xenin 18–25 Gln, have potential therapeutic utility for type 2 diabetes. PMID:27032106

  1. Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin.

    PubMed

    Martin, Christine M; Parthsarathy, Vadivel; Hasib, Annie; Ng, Ming T; McClean, Stephen; Flatt, Peter R; Gault, Victor A; Irwin, Nigel

    2016-01-01

    Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18-25 and xenin 18-25 Gln. In BRIN-BD11 cells, both xenin fragment peptides concentration-dependently stimulated insulin secretion, with similar efficacy as the parent peptide. Neither fragment peptide had any effect on acute feeding behaviour at elevated doses of 500 nmol/kg bw. When administered together with glucose to normal mice at 25 nmol/kg bw, the overall insulin secretory effect was significantly enhanced in both xenin 18-25 and xenin 18-25 Gln treated mice, with better moderation of blood glucose levels. Twice daily administration of xenin 18-25 or xenin 18-25 Gln for 21 days in high fat fed mice did not affect energy intake, body weight, circulating blood glucose or body fat stores. However, circulating plasma insulin concentrations had a tendency to be elevated, particularly in xenin 18-25 Gln mice. Both treatment regimens significantly improved insulin sensitivity by the end of the treatment period. In addition, sustained treatment with xenin 18-25 Gln significantly reduced the overall glycaemic excursion and augmented the insulinotropic response to an exogenous glucose challenge on day 21. In harmony with this, GIP-mediated glucose-lowering and insulin-releasing effects were substantially improved by twice daily xenin 18-25 Gln treatment. Overall, these data provide evidence that C-terminal octapeptide fragments of xenin, such as xenin 18-25 Gln, have potential therapeutic utility for type 2 diabetes. PMID:27032106

  2. Substrate Utilization is Influenced by Acute Dietary Carbohydrate Intake in Active, Healthy Females

    PubMed Central

    Gregory, Sara; Wood, Richard; Matthews, Tracey; VanLangen, Deborah; Sawyer, Jason; Headley, Samuel

    2011-01-01

    The present study compared the metabolic responses between a single low-carbohydrate (LC) and low-fat (LF) meal followed by an aerobic exercise bout in females. Subjects included 8 active, premenopausal females. Subjects completed a LC and LF testing session. Respiratory gas exchange (RER) measurements were taken for 20 min fasted, for 55 min postprandial (PP), and during 30 min of exercise. Blood was collected for assessment of glucose (G), insulin (IN), triglycerides (TG), and free fatty acids (FFA) during the final 10 min of each time period. The LF meal provided 396 kcal (78% carbohydrate, 7% fat, and 15% protein). The LC meal provided 392 kcal (15% carbohydrate, 68% fat, and 18% protein). No significant differences existed between test meals for fasting blood measurements. PP IN (μU·mL-1) levels were significantly lower following LC compared to LF [10.7 (6.1) vs. 26.0 (21.0)]. Postexercise (PE) FFA (mEq·L-1) levels were significantly greater following LC [1.1 (0.3) vs. 0.5 (0.3)]. PE TG (mg·dL-1) levels were significantly greater following LC [152.0 (53.1) vs. 114.4 (40.9)]. RER was significantly lower at all time points following LC compared to LF. In moderately active adult females, ingestion of a single LC meal resulted in greater lipid oxidation at rest and during exercise as compared to a single LF meal. Although macronutrient distribution appears to have dictated substrate utilization in the present study, more research is needed regarding the long-term effects of macronutrient redistribution with and without exercise on substrate utilization. Key points The relative carbohydrate content of a single meal has a significant impact on postprandial metabolism and substrate utilization in healthy, active females. A single bout of aerobic exercise performed within an hour of meal ingestion has the potential to modify the postprandial response. Interventions aimed at improving body composition and preventing chronic disease should focus on dietary

  3. Adipocyte iron regulates leptin and food intake

    PubMed Central

    Gao, Yan; Li, Zhonggang; Gabrielsen, J. Scott; Simcox, Judith A.; Lee, Soh-hyun; Jones, Deborah; Cooksey, Bob; Stoddard, Gregory; Cefalu, William T.; McClain, Donald A.

    2015-01-01

    Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression. PMID:26301810

  4. Hormone-sensitive lipase activity and triacylglycerol hydrolysis are decreased in rat soleus muscle by cyclopiazonic acid.

    PubMed

    Watt, Matthew J; Steinberg, Gregory R; Heigenhauser, G J F; Spriet, Lawrence L; Dyck, David J

    2003-08-01

    Cyclopiazonic acid (CPA) is a sarcoplasmic reticulum Ca2+-ATPase inhibitor that increases intracellular calcium. The role of CPA in regulating the oxidation and esterification of palmitate, the hydrolysis of intramuscular lipids, and the activation of hormone-sensitive lipase (HSL) was examined in isolated rat soleus muscles at rest. CPA (40 micro M) was added to the incubation medium to levels that resulted in subcontraction increases in muscle tension, and lipid metabolism was monitored using the previously described pulse-chase procedure. CPA did not alter the cellular energy state, as reflected by similar muscle contents of ATP, phosphocreatine, free AMP, and free ADP. CPA increased total palmitate uptake into soleus muscle (11%, P < 0.05) and was without effect on palmitate oxidation. This resulted in greater esterification of exogenous palmitate into the triacylglycerol (18%, P < 0.05) and phospholipid (89%, P < 0.05) pools. CPA decreased (P < 0.05) intramuscular lipid hydrolysis, and this occurred as a result of reduced HSL activity (20%, P < 0.05). Incubation of muscles with 3 mM caffeine, which is also known to increase Ca2+ without affecting the cellular energy state, reduced HSL activity (24%, P < 0.05). KN-93, a calcium/calmodulin-dependent kinase inhibitor (CaMKII), blocked the effects of CPA and caffeine, and HSL activity returned to preincubation values. The results of the present study demonstrate that CPA simultaneously decreases intramuscular triacylglycerol (IMTG) hydrolysis and promotes lipid storage in isolated, intact soleus muscle. The decreased IMTG hydrolysis is likely mediated by reduced HSL activity, possibly via the CaMKII pathway. These responses are not consistent with the increased hydrolysis and decreased esterification observed in contracting muscle when substrate availability and the hormonal milieu are tightly controlled. It is possible that more powerful signals or a higher [Ca2+] may override the lipid-storage effect of the CPA