Science.gov

Sample records for active hurricane season

  1. Assessing hurricane season

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    With the official conclusion of the Atlantic hurricane season on 29 November, Irene was the only hurricane to strike the United States this year and the first one since Hurricane Ike made landfall in Texas in 2008, according to the National Oceanic and Atmospheric Administration (NOAA). Irene “broke the ‘hurricane amnesia’ that can develop when so much time lapses between landfalling storms,” indicated Jack Hayes, director of NOAA's National Weather Service. “This season is a reminder that storms can hit any part of our coast and that all regions need to be prepared each and every season.” During the season, there were 19 tropical storms, including 7 that became hurricanes; 3 of those were major hurricanes, of category 3 or above. The activity level was in line with NOAA predictions. The agency stated that Hurricane Irene was an example of improved accuracy in forecasting storm tracks: NOAA National Hurricane Center had accurately predicted the hurricane's landfall in North Carolina and its path northward more than 4 days in advance.

  2. Weatherwords: The Hurricane Season.

    ERIC Educational Resources Information Center

    Buckley, Jim

    1991-01-01

    Information and anecdotes are provided for the following topics: the typical length of the hurricane season for the North Atlantic, Caribbean, and Gulf of Mexico; specifics related to the practice of naming hurricanes; and categorical details related to the Saffir/Simpson scale for rating hurricane magnitude. (JJK)

  3. An Estimate of the North Atlantic Basin Tropical Cyclone Activity for the 2011 Hurricane Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2011-01-01

    Estimates are presented for the expected level of tropical cyclone activity for the 2011 North Atlantic Basin hurricane season. It is anticipated that the frequency of tropical cyclones for the North Atlantic Basin during the 2011 hurricane season will be near to above the post-1995 means. Based on the Poisson distribution of tropical cyclone frequencies for the current more active interval 1995-2010, one computes P(r) = 63.7% for the expected frequency of the number of tropical cyclones during the 2011 hurricane season to be 14 plus or minus 3; P(r) = 62.4% for the expected frequency of the number of hurricanes to be 8 plus or minus 2; P(r) = 79.3% for the expected frequency of the number of major hurricanes to be 3 plus or minus 2; and P(r) = 72.5% for the expected frequency of the number of strikes by a hurricane along the coastline of the United States to be 1 plus or minus 1. Because El Nino is not expected to recur during the 2011 hurricane season, clearly, the possibility exists that these seasonal frequencies could easily be exceeded. Also examined are the effects of the El Nino-Southern Oscillation phase and climatic change (global warming) on tropical cyclone seasonal frequencies, the variation of the seasonal centroid (latitude and longitude) location of tropical cyclone onsets, and the variation of the seasonal peak wind speed and lowest pressure for tropical cyclones.

  4. In Brief: NOAA predicts busy hurricane season

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2007-06-01

    Scientists at NOAA's Climate Prediction Center estimate that there is a 75% chance that the 2007 Atlantic hurricane season will be more active than average, with 13-17 named storms, 7-10 hurricanes, and 3-5 hurricanes reaching Category 3 or higher. An average hurricane season has 11 named storms, 6 hurricanes, and 2 major hurricanes. According to Gerry Bell, NOAA's lead seasonal hurricane forecaster, the 2007 season could be in the higher range of predicted activity if a La Niña forms, or even higher if the La Niña is particularly strong. Last year, NOAA also predicted an above-normal Atlantic season; the actual season, however, was quiet, to which NOAA scientists credit an unexpected El Ni~o that developed rapidly and created an environment hostile to storm formation and strengthening.

  5. An Estimate of the North Atlantic Basin Tropical Cyclone Activity for the 2010 Hurricane Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2010-01-01

    Estimates are presented for the tropical cyclone activity expected for the 2010 North Atlantic basin hurricane season. It is anticipated that the 2010 season will be more active than the 2009 season, reflecting increased frequencies more akin to that of the current more active phase that has been in vogue since 1995. Averages (+/- 1 sd) during the current more active phase are 14.5+/-4.7, 7.8+/-3.2, 3.7+/-1.8, and 2+/- 2, respectively, for the number of tropical cyclones (NTC), the number of hurricanes (NH), the number of major hurricanes (NMH), and the number of United States (U.S.) land-falling hurricanes (NUSLFH). Based on the "usual" behavior of the 10-yma parametric first differences, one expects NTC = 19+/-2, NH = 14+/-2, NMH = 7+/-2, and NUSLFH = 4+/-2 for the 2010 hurricane season; however, based on the "best guess" 10-yma values of surface-air temperature at the Armagh Observatory (Northern Ireland) and the Oceanic Nino Index, one expects NTC > or equals 16, NH > or equals 14, NMH > or equals 7, and NUSLFH > or equals 6.

  6. Predicting Atlantic seasonal hurricane activity using outgoing longwave radiation over Africa

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.; Li, Laifang

    2016-07-01

    Seasonal hurricane activity is a function of the amount of initial disturbances (e.g., easterly waves) and the background environment in which they develop into tropical storms (i.e., the main development region). Focusing on the former, a set of indices based solely upon the meridional structure of satellite-derived outgoing longwave radiation (OLR) over the African continent are shown to be capable of predicting Atlantic seasonal hurricane activity with very high rates of success. Predictions of named storms based on the July OLR field and trained only on the time period prior to the year being predicted yield a success rate of 87%, compared to the success rate of NOAA's August outlooks of 53% over the same period and with the same average uncertainty range (±2). The resulting OLR indices are statistically robust, highly detectable, physically linked to the predictand, and may account for longer-term observed trends.

  7. A predictive relationship between early season North Atlantic hurricane activity and the upcoming winter North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Boyd, Jessica; Saunders, Mark

    2016-04-01

    The winter North Atlantic Oscillation (NAO) is linked strongly to European winter climate including windstorms. Predicting the winter NAO is key to making successful seasonal predictions of European winter climate. We observe that in recent decades there are many instances of an inverse relationship between the strength of the North Atlantic hurricane season and the strength of the subsequent European winter windstorm season. Stormy European winter seasons often follow quiet Atlantic hurricane seasons and calm European winters follow active hurricane seasons. We explore the strength and temporal stability of this inverse relationship, consider a facilitating physical mechanism, and briefly discuss the implications of our findings for end users, in particular global reinsurers. We find there is a statistically significant link between North Atlantic hurricane activity and the upcoming winter NAO. The relationship is established by the midway point of the hurricane season in early September. The link is strongest when hurricane activity is in the upper or lower tercile and when summer ENSO (El Niño Southern Oscillation) is neutral. The relationship works well going back 40 years to the mid 1970s. The early winter (October-November-December) NAO is predicted best but since the early 1980s the predictive link extends to the main winter (December-January-February) NAO. The inverse link can be facilitated by a persistence and slow evolution of atmospheric circulation patterns and sea surface temperature anomalies over the North Atlantic between the summer and the winter. This persistence is best when hurricane seasons are more extreme and when summer ENSO is neutral. Our findings offer the potential for predicting the early winter and winter NAO from early September. The implied inverse relationship between US hurricane activity and European windstorm activity may enable more effective offsetting of risks between territories.

  8. Hurricane Season 2005: Katrina

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Seventeen days after Hurricane Katrina flooded New Orleans, much of the city is still under water. In this pair of images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer on NASA's Terra satellite, the affected areas can clearly be seen. The top image mosaic was acquired in April and September 2000, and the bottom image was acquired September 13, 2005. The flooded parts of the city appear dark blue, such as the golf course in the northeast corner, where there is standing water. Areas that have dried out appear light blue gray, such as the city park in the left middle. On the left side of the image, the failed 17th street canal marks a sharp boundary between flooded city to the east, and dry land to the west.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 10.4 by 7.1 kilometers Location: 30 degrees North latitude, 90.1 degrees West longitude Orientation: North at top Image Data: ASTER bands 1, 2, and 3 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: September 13, 2005

  9. In Brief: Atlantic seasonal hurricane forecast

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-12-01

    Two hurricane forecasters are predicting that 2008 will be an above-average Atlantic basin tropical cyclone season with an above-average probability of a major hurricane making landfall in the United States. During 2008, there could be about seven hurricanes (the annual average is 5.9) and 13 named storms (the average is 9.6), according to a 7 December report by Philip Klotzbach, research scientist at Colorado State University in Fort Collins, and William Gray, university professor emeritus of atmospheric sciences. The forecasters indicate that they believe the Atlantic basin is in an active hurricane cycle that is associated with a strong thermohaline circulation and an active phase of the Atlantic Multidecadal Oscillation. The report notes that, ``real-time operational early December forecasts have not shown forecast skill over climatology during this 16-year period [1992-2007]. This has occurred despite the fact that the skill over the hindcast period...showed appreciable skill.'' For more information, visit the Web site: http://hurricane.atmos.colostate.edu/Forecasts/2007/dec2007/dec2007.pdf.

  10. Highlights of the 2009 Hurricane Season

    NASA Video Gallery

    Picture yourself sitting in space watching the highlights of the 2009's Atlantic Ocean hurricane season in fast-forward. This latest animation from NASA and the National Oceanic and Atmospheric Adm...

  11. Statistical Aspects of Intense Hurricanes in the Atlantic Basin during the Past 49 Hurricane Seasons (1950-1998): Implications for the Current Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1999-01-01

    Statistical aspects of intense hurricanes (those of category 3 or higher) in the Atlantic basin during the interval of 1950-1998 are investigated in relation to the ENSO cycle and to the postulated 'more versus less' activity modes for intense hurricane activity. Because the 1999 hurricane season likely will be classified as a 'non-El Nino-related' (NENR) season and that the more active mode appears to be in vogue, an above average seasonal rate of greater than or equal to 2 intense hurricanes is to be expected (probably, about 4 +/- 1, or higher). Based on Poisson statistics, when the hurricane season is classified as NENR the probability of greater than or equal to 2 events is about 77%, whereas when the season is classified as NENR and the more active mode is operative it is about 87%. The probability of greater than or equal to 4 events is about 31 % and 48 %, respectively, for these two activity classes.

  12. Statistical Aspects of Major (Intense) Hurricanes in the Atlantic Basin During the Past 49 Hurricane Seasons (1950-1998): Implications for the Current Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1999-01-01

    Statistical aspects of major (intense) hurricanes, those of category 3 or higher on the Saffir-Simpson scale (e.g., having a maximum sustained wind speed of greater than or equal to 50 M s (exp -1)), in the Atlantic basin during the interval of 1950-1998 are investigated in relation to the El Nino-Southern Oscillation cycle and to the postulated "more" versus "less" activity modes for intense hurricane activity. Based on Poisson statistics, when the hurricane season is simply classified as "non-El Nino-related" (NENR), the probability of having three or more intense hurricanes is approx. 53%, while it is only approx. 14% when it is classified as "El Nino-related" (ENR). Including the activity levels ("more" versus "less"), the probability of having three or more intense hurricanes is computed to be approx. 71% for the "more-NENR" season, 30% for the "less-NENR" season, 17% for the "more-ENR" season, and 12% for the "less-ENR" season. Because the 1999 hurricane season is believed to be a "more-NENR" season, the number of intense hurricanes forming in the Atlantic basin should be above average in number, probably about 4 plus or minus 1 or higher.

  13. Statistical Aspects of Intense Hurricanes in the Atlantic Basin during the Past 49 Hurricane Seasons (1950-1998)

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    Statistical aspects of intense hurricanes (those of category 3 or higher) in the Atlantic basin for the interval of 1950-1998 are investigated with respect to the ENSC, cycle and the postulated 'more versus less' activity modes for intense hurricane activity. This is accomplished in order to evaluate the statistical basis for these specific groupings and to presage a forecast for the number of expected intense hurricanes during the forthcoming 1999 hurricane season. Statistically speaking, because the 1998-1999 La Nina (onset presumed to be September 1998) should persist longer than about a year - the average duration for La Nina events based on the 10 previously occurring La Nina, each having a duration in the range of 7-22 months - it seems likely that the 1999 season will be classified as a 'non-El Nino-related' (NENR) season. If true, then, greater than or equal to 2 intense hurricanes are to be expected. Based on Poisson statistics, the probability of greater than or equal to 2 events is about 77% when the season is classified as NENR, and it is about 87% when the season is classified as NENR and the 'more active' phase is in fashion; likewise, the probability of greater than or equal to 4 events is about 31% and 48%, respectively, for the two cases. Therefore, an above average rate (possibly, as many as 4 +/- 1, or higher) of intense hurricanes forming in the Atlantic basin seems a very distinct possibility during the 1999 season.

  14. Above-normal Atlantic basin hurricane season forecast

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-05-01

    Between three and six major hurricanes with winds of 111 miles per hour and greater could whip across the Atlantic basin during what is forecast to be an above-normal 2011 hurricane season, according to the U.S. National Oceanic and Atmospheric Administration's Climate Prediction Center (NOAA CPC). Including those, there could be a total of 6-10 hurricanes with winds of 74 miles per hour or greater and 12-18 named storms with winds of 39 miles per hour or greater during the hurricane season, which officially begins on 1 June and lasts for 6 months, NOAA administrator Jane Lubchenco said at a 19 May briefing. There is a 70% likelihood for these ranges occurring, according to NOAA.

  15. Evaluation of Real-time Hurricane Forecasts Using the Advanced Hurricane WRF Model for the 2007 Atlantic Hurricane Season.

    NASA Astrophysics Data System (ADS)

    Done, J. M.

    2007-12-01

    Real-time forecasts have been conducted with the Advanced Hurricane WRF Model (AHW) for named storms of the 2007 Atlantic hurricane season. Taking advantage of increased computational power over previous years, 5- day forecasts are conducted daily using three domains; two nests of 4km and 1.3km grid-spacing track the vortex within a fixed parent domain of 12km grid-spacing. In this presentation, forecast accuracy in terms of track and intensity will be presented. The quality of the forecast storm intensity can vary dramatically between storms, and sometimes between successive forecasts of a given storm. This variability in model performance is explored by analyzing the statistics of the observed and model storm intensities for the 2007 hurricane season. Conditions under which the model performs poorly are identified and a series of sensitivity simulations highlight aspects of the modeling system to which the forecast intensity is most sensitive.

  16. Comparative impacts of two major hurricane seasons on the Neuse River and western Pamlico Sound ecosystems.

    PubMed

    Burkholder, JoAnn; Eggleston, David; Glasgow, Howard; Brownie, Cavell; Reed, Robert; Janowitz, Gerald; Posey, Martin; Melia, Greg; Kinder, Carol; Corbett, Reide; Toms, David; Alphin, Troy; Deamer, Nora; Springer, Jeffrey

    2004-06-22

    Ecosystem-level impacts of two hurricane seasons were compared several years after the storms in the largest lagoonal estuary in the U.S., the Albemarle-Pamlico Estuarine System. A segmented linear regression flow model was developed to compare mass-water transport and nutrient loadings to a major artery, the Neuse River Estuary (NRE), and to estimate mean annual versus storm-related volume delivery to the NRE and Pamlico Sound. Significantly less water volume was delivered by Hurricane Fran (1996), but massive fish kills occurred in association with severe dissolved oxygen deficits and high contaminant loadings (total nitrogen, total phosphorus, suspended solids, and fecal bacteria). The high water volume of the second hurricane season (Hurricanes Dennis, Floyd, and Irene in 1999) delivered generally comparable but more dilute contaminant loads, and no major fish kills were reported. There were no discernable long-term adverse impacts on water quality. Populations of undesirable organisms, such as toxic dinoflagellates, were displaced down-estuary to habitats less conducive for growth. The response of fisheries was species-dependent: there was no apparent impact of the hurricanes on commercial landings of bivalve molluscs or shrimp. In contrast, interacting effects of hurricane floodwaters in 1999 and intensive fishing pressure led to striking reductions in blue crabs. Overall, the data support the premise that, in shallow estuaries frequently disturbed by hurricanes, there can be relatively rapid recovery in water quality and biota, and benefit from the scouring activity of these storms. PMID:15199179

  17. Comparative impacts of two major hurricane seasons on the Neuse River and western Pamlico Sound ecosystems

    PubMed Central

    Burkholder, JoAnn; Eggleston, David; Glasgow, Howard; Brownie, Cavell; Reed, Robert; Janowitz, Gerald; Posey, Martin; Melia, Greg; Kinder, Carol; Corbett, Reide; Toms, David; Alphin, Troy; Deamer, Nora; Springer, Jeffrey

    2004-01-01

    Ecosystem-level impacts of two hurricane seasons were compared several years after the storms in the largest lagoonal estuary in the U.S., the Albemarle–Pamlico Estuarine System. A segmented linear regression flow model was developed to compare mass-water transport and nutrient loadings to a major artery, the Neuse River Estuary (NRE), and to estimate mean annual versus storm-related volume delivery to the NRE and Pamlico Sound. Significantly less water volume was delivered by Hurricane Fran (1996), but massive fish kills occurred in association with severe dissolved oxygen deficits and high contaminant loadings (total nitrogen, total phosphorus, suspended solids, and fecal bacteria). The high water volume of the second hurricane season (Hurricanes Dennis, Floyd, and Irene in 1999) delivered generally comparable but more dilute contaminant loads, and no major fish kills were reported. There were no discernable long-term adverse impacts on water quality. Populations of undesirable organisms, such as toxic dinoflagellates, were displaced down-estuary to habitats less conducive for growth. The response of fisheries was species-dependent: there was no apparent impact of the hurricanes on commercial landings of bivalve molluscs or shrimp. In contrast, interacting effects of hurricane floodwaters in 1999 and intensive fishing pressure led to striking reductions in blue crabs. Overall, the data support the premise that, in shallow estuaries frequently disturbed by hurricanes, there can be relatively rapid recovery in water quality and biota, and benefit from the scouring activity of these storms. PMID:15199179

  18. Development of a Statistical Model for Seasonal Prediction of North Atlantic Hurricane Numbers

    NASA Astrophysics Data System (ADS)

    Davis, K.; Zeng, X.

    2014-12-01

    Tropical cyclones cause more financial distress to insurance companies than any other natural disaster. From 1970-2002, it is estimated that hurricanes caused 44 billion dollars in damage, greater than 2.5 times the the next costliest catastrophe. Theses damages do not go without effect. A string of major catastrophes from 1991-1994 caused nine property firms to bankrupt and caused serious financial strain on others. The public was not only affected by the loss of life and property, but the increase in tax dollars for disaster relief. Providing better seasonal predictions of North Atlantic hurricane activity farther in advance will help alleviate some of the financial strains these major catastrophes put on the nation. A statistical model was first developed by Bill Gray's team to predict the total number of hurricanes over the North Atlantic in 1984, followed by other statistical methods, dynamic modeling, and hybrid methods in recent years. However, all these methods showed little to no skill with forecasts made by June 1 in recent years. In contrast to the relatively small year-to-year change in seasonal hurricane numbers pre-1980, there has been much greater interannual changes since, especially since the year 2000. For instance, while there were very high hurricane numbers in 2005 and 2010, 2013 was one of the lowest in history. Recognizing these interdecadal changes in the dispersion of hurricane numbers, we have developed a new statistical model to more realistically predict (by June 1 each year) the seasonal hurricane number over the North Atlantic. It is based on the Multivariate ENSO Index (MEI) conditioned by the Atlantic Multidecadal Oscillation (AMO) index, the zonal wind stress and sea surface temperature over the Atlantic. It provides both the deterministic number and the range of hurricane numbers. The details of the model and its performance from 1950-2014 in comparison with other methods will be presented in our presentation.

  19. In Brief: U.K. Met Office forecast for Atlantic hurricane season

    NASA Astrophysics Data System (ADS)

    2007-07-01

    GloSea, the U.K. Meteorological Office's computer model of the global atmosphere-ocean system, has predicted a cooling trend in sea surface temperatures in the tropical North Atlantic that will result in a less active hurricane season. The Met Office has predicted that there is a 70% chance of a less active hurricane season in the North Atlantic this year, with only 7-13 named storms occurring within the remaining five months of the season (July through November). There have already been two named storms this year-Andrea and Barry. From 1990-2005, there were an average of 12.4 storms during July-November. The U.K. Met Office forecast contrasts with NOAA's, which was released in May and predicted a busier season than average, with 13-17 named storms.

  20. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  1. Estimating the Length of the North Atlantic Basin Hurricane Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2012-01-01

    For the interval 1945-2011, the length of the hurricane season in the North Atlantic basin averages about 130 +/- 42 days (the +/-1 standard deviation interval), having a range of 47 to 235 days. Runs-testing reveals that the annual length of season varies nonrandomly at the 5% level of significance. In particular, its trend, as described using 10-yr moving averages, generally has been upward since about 1979, increasing from about 113 to 157 days (in 2003). Based on annual values, one finds a highly statistically important inverse correlation at the 0.1% level of significance between the length of season and the occurrence of the first storm day of the season. For the 2012 hurricane season, based on the reported first storm day of May 19, 2012 (i.e., DOY = 140), the inferred preferential regression predicts that the length of the current season likely will be about 173 +/- 23 days, suggesting that it will end about November 8 +/- 23 days, with only about a 5% chance that it will end either before about September 23, 2012 or after about December 24, 2012.

  2. Observations and Modeling of the Atlantic Meridional Mode during the Atlantic hurricane season

    NASA Astrophysics Data System (ADS)

    Smirnov, D.; Vimont, D. J.

    2009-12-01

    An observational and modeling study is conducted to investigate the vertical structure of the Atlantic Meridional Mode (AMM) during the Atlantic hurricane season months based on an AMM index derived by Chiang and Vimont (2004). The analysis shows that the SST anomaly structure that is typically associated with the AMM is accompanied by a slackening (intensification) of trade winds in the Northern (Southern) Hemisphere where SST anomalies are positive (negative). However, the accompanying air temperature anomalies are limited to the boundary layer. Furthermore, the AMM is shown to be associated with an anomalous baroclinic circulation in the northern subtropical Atlantic, with an anomalous lower-level cyclonic circulation residing under an anomalous upper-level anticyclone during a positive AMM. Initializing the atmospheric GCM CAM3.1 coupled to a slab ocean with AMM-like SST anomalies yields an atmospheric circulation that is highly similar to observational analyses. This suggests that the SST anomalies are forcing the atmospheric anomalies, and not vice versa. The anomalous atmospheric circulations of the lower and upper-levels act in tandem to reduce shear over the main development region (MDR), reiterating that a positive AMM favors increased hurricane activity in the MDR. A closer inspection of the monthly evolution of shear shows that the response increases three-fold from September to November within the MDR. However, the origin of the SST anomalies, which is vital in improving seasonal hurricane activity predictions, remains unclear.

  3. Atlantic hurricane activity during the last millennium

    NASA Astrophysics Data System (ADS)

    Burn, Michael J.; Palmer, Suzanne E.

    2015-08-01

    Hurricanes are a persistent socio-economic hazard for countries situated in and around the Main Development Region (MDR) of Atlantic tropical cyclones. Climate-model simulations have attributed their interdecadal variability to changes in solar and volcanic activity, Saharan dust flux, anthropogenic greenhouse gas and aerosol emissions and heat transport within the global ocean conveyor belt. However, the attribution of hurricane activity to specific forcing factors is hampered by the short observational record of Atlantic storms. Here, we present the Extended Hurricane Activity (EHA) index, the first empirical reconstruction of Atlantic tropical cyclone activity for the last millennium, derived from a high-resolution lake sediment geochemical record from Jamaica. The EHA correlates significantly with decadal changes in tropical Atlantic sea surface temperatures (SSTs; r = 0.68 1854-2008), the Accumulated Cyclone Energy index (ACE; r = 0.90 1851-2010), and two annually-resolved coral-based SST reconstructions (1773-2008) from within the MDR. Our results corroborate evidence for the increasing trend of hurricane activity during the Industrial Era; however, we show that contemporary activity has not exceeded the range of natural climate variability exhibited during the last millennium.

  4. Atlantic hurricane activity during the last millennium.

    PubMed

    Burn, Michael J; Palmer, Suzanne E

    2015-01-01

    Hurricanes are a persistent socio-economic hazard for countries situated in and around the Main Development Region (MDR) of Atlantic tropical cyclones. Climate-model simulations have attributed their interdecadal variability to changes in solar and volcanic activity, Saharan dust flux, anthropogenic greenhouse gas and aerosol emissions and heat transport within the global ocean conveyor belt. However, the attribution of hurricane activity to specific forcing factors is hampered by the short observational record of Atlantic storms. Here, we present the Extended Hurricane Activity (EHA) index, the first empirical reconstruction of Atlantic tropical cyclone activity for the last millennium, derived from a high-resolution lake sediment geochemical record from Jamaica. The EHA correlates significantly with decadal changes in tropical Atlantic sea surface temperatures (SSTs; r = 0.68; 1854-2008), the Accumulated Cyclone Energy index (ACE; r = 0.90; 1851-2010), and two annually-resolved coral-based SST reconstructions (1773-2008) from within the MDR. Our results corroborate evidence for the increasing trend of hurricane activity during the Industrial Era; however, we show that contemporary activity has not exceeded the range of natural climate variability exhibited during the last millennium. PMID:26243340

  5. Atlantic hurricane activity during the last millennium

    PubMed Central

    Burn, Michael J.; Palmer, Suzanne E.

    2015-01-01

    Hurricanes are a persistent socio-economic hazard for countries situated in and around the Main Development Region (MDR) of Atlantic tropical cyclones. Climate-model simulations have attributed their interdecadal variability to changes in solar and volcanic activity, Saharan dust flux, anthropogenic greenhouse gas and aerosol emissions and heat transport within the global ocean conveyor belt. However, the attribution of hurricane activity to specific forcing factors is hampered by the short observational record of Atlantic storms. Here, we present the Extended Hurricane Activity (EHA) index, the first empirical reconstruction of Atlantic tropical cyclone activity for the last millennium, derived from a high-resolution lake sediment geochemical record from Jamaica. The EHA correlates significantly with decadal changes in tropical Atlantic sea surface temperatures (SSTs; r = 0.68; 1854–2008), the Accumulated Cyclone Energy index (ACE; r = 0.90; 1851–2010), and two annually-resolved coral-based SST reconstructions (1773–2008) from within the MDR. Our results corroborate evidence for the increasing trend of hurricane activity during the Industrial Era; however, we show that contemporary activity has not exceeded the range of natural climate variability exhibited during the last millennium. PMID:26243340

  6. Atlantic Hurricane Activity: 1851-1900

    NASA Astrophysics Data System (ADS)

    Landsea, C. W.

    2001-12-01

    This presentation reports on the second year's work of a three year project to re-analyze the North Atlantic hurricane database (or HURDAT). The original database of six-hourly positions and intensities were put together in the 1960s in support of the Apollo space program to help provide statistical track forecast guidance. In the intervening years, this database - which is now freely and easily accessible on the Internet from the National Hurricane Center's (NHC's) Webpage - has been utilized for a wide variety of uses: climatic change studies, seasonal forecasting, risk assessment for county emergency managers, analysis of potential losses for insurance and business interests, intensity forecasting techniques and verification of official and various model predictions of track and intensity. Unfortunately, HURDAT was not designed with all of these uses in mind when it was first put together and not all of them may be appropriate given its original motivation. One problem with HURDAT is that there are numerous systematic as sell as some random errors in the database which need correction. Additionally, analysis techniques have changed over the years at NHC as our understanding of tropical cyclones has developed, leading to biases in the historical database that have not been addressed. Another difficulty in applying the hurricane database to studies concerned with landfalling events is the lack exact location, time and intensity at hurricane landfall. Finally, recent efforts into uncovering undocumented historical hurricanes in the late 1800s and early 1900s led by Jose Fernandez-Partagas have greatly increased our knowledge of these past events, which are not yet incorporated into the HURDAT database. Because of all of these issues, a re-analysis of the Atlantic hurricane database is being attempted that will be completed in three years. As part of the re-analyses, three files will be made available: {* } The revised Atlantic HURDAT (with six hourly intensities

  7. Hurricanes

    MedlinePlus

    ... suddenly reexperience all the emotions, fears, thoughts, and perceptions they experienced at the time of the hurricane. ... have about the hurricane, as you may share perceptions, feelings, and memories in ways that make children ...

  8. Hurricanes

    MedlinePlus

    ... of tropical storm. Hurricanes produce high winds, heavy rains and thunderstorms. Hurricanes can cause tremendous damage. Winds ... lead to flooding. The high winds and heavy rains can destroy buildings, roads and bridges, and knock ...

  9. Using Three Global Climate Indices to Forecast Hurricane Activity in the Pacific and Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Giovannettone, J. P.

    2014-12-01

    one variable that provides a rough estimate of hurricane activity for the upcoming hurricane season.

  10. Statistical Aspects of ENSO Events (1950-1997) and the El Nino-Atlantic Intense Hurricane Activity Relationship

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    On the basis of Trenberth's quantitative definition for marking the occurrence of an El Nino (or La Nina), one can precisely identify by month and year the starts and ends of some 15 El Nino and 10 La Nina events during the interval of 1950-1997, an interval corresponding to the most reliable for cataloging intense hurricane activity in the Atlantic basin (i.e., those of category 3-5 on the Saffir-Simpson hurricane scale). The main purpose of this investigation is primarily two-fold: First, the statistical aspects of these identified extremes and the intervening periods between them (called "interludes") are examined and, second, the statistics of the seasonal frequency of intense hurricanes in comparison to the extremes and interludes are determined. This study clearly demonstrates that of the last 48 hurricane seasons, 20 (42 percent) can be described as being "El Nino-related" (i.e., an El Nino was in progress during all, or part, of the yearly hurricane season--June-November), 13 (27 percent) as "La Nina-related" (i.e., a La Nina was in progress during all, or part, of the yearly hurricane season), and 15 (31 percent) as "interlude-related" (i.e., neither an El Nino nor a La Nina was in progress during any portion of the yearly hurricane season). Combining the latter two subgroups into a single grouping called "non-El Nino-related" seasons, one finds that they have had a mean frequency of intense hurricanes measuring 2.8 events per season, while the El Nino-related seasons have had a mean frequency of intense hurricanes measuring 1.3 events per season, where the observed difference in the means is inferred to be statistically important at the 99.8-percent level of confidence. Therefore, as previously shown more than a decade ago using a different data set, there undeniably exists an El Nino-Atlantic hurricane activity relationship, one which also extends to the class of intense hurricanes. During the interval of 1950-1997, fewer intense hurricanes occurred

  11. What controls early or late onset of tropical North Atlantic hurricane season?

    NASA Astrophysics Data System (ADS)

    Zuo, Heng; Li, Tim; Liu, Jia; Peng, Melinda

    2016-06-01

    The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season. The interannual variation of this hurricane onset date is examined for the period 1979-2013. It is found that the onset date has a marked interannual variation. The standard deviation of the interannual variation of the onset day is 17.5 days, with the climatological mean onset happening on July 23. A diagnosis of tropical cyclone (TC) genesis potential index (GPI) indicates that the major difference between an early and a late onset group lies in the maximum potential intensity (MPI). A further diagnosis of the MPI shows that it is primarily controlled by the local SST anomaly (SSTA). Besides the SSTA, vertical shear and mid-tropospheric relative humidity anomalies also contribute significantly to the GPI difference between the early and late onset groups. It is found that the anomalous warm (cold) SST over the tropical Atlantic, while uncorrelated with the Niño3 index, persists from the preceding winter to concurrent summer in the early (late) onset group. The net surface heat flux anomaly always tends to damp the SSTA, which suggests that ocean dynamics may play a role in maintaining the SSTA in the tropical Atlantic. The SSTA pattern with a maximum center in northeastern tropical Atlantic appears responsible for generating the observed wind and moisture anomalies over the main TC development region. A further study is needed to understand the initiation mechanism of the SSTA in the Atlantic.

  12. Hurricanes

    MedlinePlus

    ... and heavy rains can destroy buildings, roads and bridges, and knock down power lines and trees. In coastal areas, very high tides called storm surges cause extensive damage. Although there are no guarantees of safety during a hurricane, you can take actions to ...

  13. The Recent Increase in North Atlantic Hurricane Activity: Is it a Cycle or is it due to Global Warming?

    NASA Astrophysics Data System (ADS)

    Chelliah, M.; Bell, G.

    2006-12-01

    There has been a noticeable increase in North Atlantic hurricane activity since 1995. The devastating 2005 hurricane season broke many records with 27 tropical storms (TS), 15 hurricanes (H) and four category-5 major hurricanes (MH). This season also featured a record 15 landfalling storms in the Atlantic basin and four landfalling US major hurricanes (MH, defined as categories 3-5 on the Saffir-Simpson scale). Since 1995, North Atlantic hurricane seasons have averaged 13.1 TS, 7.4 H and 3.7 MH and according to NOAA, 9 of the 11 seasons have been termed above normal (active) seasons except for the two El Nino years 1997 and 2002. Prior to 1995, the North Atlantic basin experienced an overall inactive hurricane era from about 1971 to 1994 with an average 7.8 TS, 4.5H and 1.5 MH. But, prior to this inactive era (1971-1994) during the decades of the 1950's and 1960's (and in fact back to 1930's but with less reliable data) a typical season averaged about 8.0 TS, 5.4 H and 2.8 MH. As can be seen from these numbers, the seasonal averages for the number of TS, H, and MH during the recent active period since 1995 are overall higher than those during the earlier active decades of the 1950's and 1960's. These are no major disputes in these numbers. But there are differing views in the scientific community on the causal mechanisms (attribution) behind the recent increase in the North Atlantic hurricane activity. One view suggests that the recent increase is a return of the active hurricane cycle experienced in the past (such as the 1950's and 60's) and the other view suggesting that the increase could be due to global warming. This talk will focus on explaining, at least an attempt to explain, why there has been an increase in the overall hurricane activity since 1995. Based on recent published studies conducted at the Climate Prediction Center and elsewhere, it will be demonstrated that the answers to the ongoing debate, at least in the North Atlantic basin, is not as

  14. NOAA HRD's HEDAS Data Assimilation System's performance for the 2010 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Sellwood, K.; Aksoy, A.; Vukicevic, T.; Lorsolo, S.

    2010-12-01

    The Hurricane Ensemble Data Assimilation System (HEDAS) was developed at the Hurricane Research Division (HRD) of NOAA, in conjunction with an experimental version of the Hurricane Weather and Research Forecast model (HWRFx), in an effort to improve the initial representation of the hurricane vortex by utilizing high resolution in-situ data collected during NOAA’s Hurricane Field Program. HEDAS implements the “ensemble square root “ filter of Whitaker and Hamill (2002) using a 30 member ensemble obtained from NOAA/ESRL’s ensemble Kalman filter (EnKF) system and the assimilation is performed on a 3-km nest centered on the hurricane vortex. As part of NOAA’s Hurricane Forecast Improvement Program (HFIP), HEDAS will be run in a semi-operational mode for the first time during the 2010 Atlantic hurricane season and will assimilate airborne Doppler radar winds, dropwindsonde and flight level wind, temperature, pressure and relative humidity, and Stepped Frequency Microwave Radiometer surface wind observations as they become available. HEDAS has been implemented in an experimental mode for the cases of Hurricane Bill, 2009 and Paloma, 2008 to confirm functionality and determine the optimal configuration of the system. This test case demonstrates the importance of assimilating thermodynamic data in addition to wind observations and the benefit of increasing the quantity and distribution of observations. Applying HEDAS to a larger sample of storm forecasts would provide further insight into the behavior of the model when inner core aircraft observations are assimilated. The main focus of this talk will be to present a summary of HEDAS performance in the HWRFx model for the inaugural season. The HEDAS analyses and the resulting HWRFx forecasts will be compared with HWRFx analyses and forecasts produced concurrently using the HRD modeling group’s vortex initialization which does not employ data assimilation. The initial vortex and subsequent forecasts will be

  15. Deciphering the Long-Term Trend of Atlantic Basin Intense Hurricanes: More Active Versus Less Active During the Present Epoch

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    During the interval of 1944-1997, 120 intense hurricanes (i.e., those of category 3 or higher on the Saffir-Simpson hurricane damage potential scale) were observed in the Atlantic basin, having an annual frequency of 0-7 events per year, being more active prior to the mid 1960's than thereafter (hence a possible two-state division: more active versus less active), and being preferentially lower during El Nino years as compared to non-El Nino years. Because decadal averages of the frequency of intense hurricanes closely resemble those of average temperature anomalies for northern hemispheric and global standards and of the average temperature at the Armagh Observatory (Northern Ireland), a proxy for climatic change, it is inferred that the long-term trends of the annual frequency of intense hurricanes and temperature may be statistically related. Indeed, on the basis of 4- and 10-yr moving averages, one finds that there exists strong linear associations between the annual frequency of intense hurricanes in the Atlantic basin and temperature (specially, when temperature slightly leads). Because the long-term leading trends of temperature are now decidedly upward, beginning about the mid 1980's, it is inferred that the long-term consequential trends of the annual frequency of intense hurricanes should now also be upward, having begun near 1990, suggesting that a return to the more active state probably has already occurred. However, because of the anomalous El Nino activity of the early to mid 1990's, the switch from the less active to the more active state essentially went unnoticed (a marked increase in the number of intense hurricanes was not observed until the 1995 and 1996 hurricane seasons, following the end of the anomalous El Nino activity). Presuming that a return to the more active state has, indeed, occurred, one expects the number of seasonal intense hurricanes during the present epoch (continuing through about 2012) to usually be higher than average (i

  16. Active Atlantic Basin Hurricane Forecast Adds to Concerns About Gulf Oil Spill

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-06-01

    During the 6-month Atlantic Basin hurricane season that began on 1 June, there could be between 14 and 23 named storms with top winds of at least 39 miles per hour (mph) in the Gulf of Mexico and Caribbean Sea, according to a forecast issued in late May by the Climate Prediction Center of the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service. The forecast indicates that the named storms could include eight to 14 hurricanes with top winds of at least 74 mph and three to seven major hurricanes with top winds of at least 111 mph. In comparison, the seasonal average is 11 named storms, six hurricanes, and two major hurricanes. The busiest hurricane season on record was 2005, with 28 named storms, including hurricanes Katrina and Rita.

  17. Is Hurricane Activity in One Basin Tied to Another?

    NASA Astrophysics Data System (ADS)

    Wang, Chunzai; Lee, Sang-Ki

    2010-03-01

    Each year, tropical cyclones and hurricanes leave millions homeless worldwide and account for, on average, over $100 billion of damage in the United States alone [Schmidt et al., 2009]. In 2005, a record-breaking 15 hurricanes formed in the North Atlantic, four of which reached category 5 strength. Over the course of that season, more than 3000 hurricane-related deaths occurred and fiscal damage reached $157 billion. Because a better understanding of when and where tropical cyclones and hurricanes will form and strike will help societies better prepare for adverse effects, improving the understanding of these storms is very important. In the Western Hemisphere, tropical cyclones can form and develop in both the tropical North Atlantic and eastern North Pacific oceans, which are separated by the landmass of Central America. From the point of view of large-scale atmospheric circulation and its influence on tropical cyclones [e.g., Bell and Chelliah, 2006], it is not surprising that tropical cyclone variabilities in these two basins are related, because of their geographic proximity. But several questions remain: How they are related? What physical mechanisms drive this relation?

  18. 'Hurricane Season' in the Inner Heliosphere: Observations of Coronal Mass

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.

    2013-09-01

    The current solar cycle, albeit low in sunspot numbers, is not lacking in coronal explosive activity. The solar corona has produced several spectacular Coronal Mass Ejections (CMEs) directed at Earth and other planets. In addition, this is the first time in human history that we are able to image continuously the full 360 degree corona and the full inner heliosphere from the Sun to Earth, and beyond. In addition, a host of inner heliospheric spacecraft can directly probe the quiescent and transient solar wind at several locations around Mercury, Venus, Earth, and Mars. These unprecedented observational capabilities offer us a unique opportunity to study the solar maximum activity and in particular CMEs and their impact on Earth and the other planets. The new field of Interplanetary Space Weather is being born. In this talk, I review our progress (sometimes) and befuddlement (more often) towards understanding the evolution of CMEs in the inner heliosphere. I discuss how this knowledge is shaping Space Weather efforts around the world, including a comprehensive approach from a large group of Greek solar and space physicists under the THALIS aegis. I will also present ideas for future missions and instrumentation to improve our Space Weather predictive capabilities.

  19. A spatial correlation of the flow distribution on the outer continental shelf of Louisiana during the major hurricanes in the Gulf of Mexico during the 2005 season

    NASA Astrophysics Data System (ADS)

    Coor, J. L.; Li, C. Y.; Rouse, L. J.

    2007-12-01

    The 2005 hurricane season was unusually active, producing 31 named storms in the Atlantic, Caribbean, and Gulf of Mexico. Of these 31 storms, 11 entered the Gulf of Mexico, the most notable of which were Hurricanes Cindy, Dennis, Katrina, and Rita. Data were collected during these storms by acoustic Doppler current profilers (ADCPs) based on 58 oil and gas platforms scattered across the outer continental shelf (OCS) region of the northern Gulf of Mexico. Nine to 31 ADCPs were active and recording data during each major storm passage through the Gulf of Mexico. Data were recorded from depths of 60 to 70m down to 1100 to 1200m, with a few extending to depths around 2000m. From these data, the flow distribution of the OCS region was studied with the use of time series and spectrum analysis. Preliminary analysis has shown temporal variations in the vertical structure, increased diurnal oscillation current velocities (by a factor of approximately two), near-inertial oscillations, and variations in the overall direction of the flow before, during, and after the passage of the hurricanes. Methods of harmonic analysis and rotary spectra were implemented in this study. These data and results provide an estimate of the spatial extent to which a hurricane influences subsurface currents.

  20. Hurricane Recovery Report 2004

    NASA Technical Reports Server (NTRS)

    Gordon, Joseph P.

    2005-01-01

    During August and September 2004, four hurricanes tested the mettle of Space Coast residents and the Kennedy Space Center (KSC) leadership and workforce. These threats underscored two important points: the very real vulnerability of KSC and its valuable space program assets to the devastating power of a hurricane, and the planning required to effectively deal with such threats. The damage was significant even though KSC did not experience sustained hurricane-force winds. To better understand and appreciate these points, this report provides an overview of the meteorological history of the Space Coast and what is involved in the planning, preparation, and recovery activities, as well as addressing the impacts of the 2004 hurricane season.

  1. A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R.

    2016-06-01

    This review provides a summary of work in the area of ensemble forecasts for weather, climate, oceans, and hurricanes. This includes a combination of multiple forecast model results that does not dwell on the ensemble mean but uses a unique collective bias reduction procedure. A theoretical framework for this procedure is provided, utilizing a suite of models that is constructed from the well-known Lorenz low-order nonlinear system. A tutorial that includes a walk-through table and illustrates the inner workings of the multimodel superensemble's principle is provided. Systematic errors in a single deterministic model arise from a host of features that range from the model's initial state (data assimilation), resolution, representation of physics, dynamics, and ocean processes, local aspects of orography, water bodies, and details of the land surface. Models, in their diversity of representation of such features, end up leaving unique signatures of systematic errors. The multimodel superensemble utilizes as many as 10 million weights to take into account the bias errors arising from these diverse features of multimodels. The design of a single deterministic forecast models that utilizes multiple features from the use of the large volume of weights is provided here. This has led to a better understanding of the error growths and the collective bias reductions for several of the physical parameterizations within diverse models, such as cumulus convection, planetary boundary layer physics, and radiative transfer. A number of examples for weather, seasonal climate, hurricanes and sub surface oceanic forecast skills of member models, the ensemble mean, and the superensemble are provided.

  2. NASA's Hurricane Hunters

    NASA Video Gallery

    During the 2010 hurricane season, NASA deployed its piloted DC-8 and WB-57, and unmanned Global Hawk aircraft in a massive effort to collect as much data as possible, arming hurricane researchers w...

  3. Heightened hurricane activity on the Little Bahama Bank from 1350 to 1650 AD

    NASA Astrophysics Data System (ADS)

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Toomey, Michael R.; Albury, Nancy A.; Lane, Philip; Kakuk, Brian

    2014-09-01

    Deciphering how the climate system has controlled North Atlantic tropical cyclone activity through the Holocene will require a larger observational network of prehistoric hurricane activity. Problematically, the tropical North Atlantic is dominated by carbonate landscapes that typically preserve poorer quality coastal sediment records in comparison to their temperate-region counterparts (e.g., sedimentation continuity and rate). Coastal karst basins (CKBs), such as sinkholes, blueholes, and underwater caves, are widely distributed on carbonate platforms and contain overlooked sedimentary records. Here we present a millennium of hurricane deposits on the Little Bahama Bank archived in a 165 cm core that was extracted from 69 m below sea level in a bluehole on Great Abaco Island, The Bahamas. The coarse-grained overwash deposits associated with both hurricanes Jeanne (2004) and Floyd (1999) were identified using radioisotopes (137Cs, 14C, 210Pb), and indicate that the bluehole is sensitive to hurricane-induced sedimentation. Over the last millennium, the Little Bahama Bank experienced heightened hurricane activity from 1350 to 1650 AD. The simplest explanation for this active interval is that favorable climate conditions (El Niño, West African Monsoon, and sea surface temperatures) encouraged North Atlantic hurricane activity at that time. However, asynchronous hurricane activity at similar latitudes in the North Atlantic and Gulf of Mexico suggest that regional oceanography has modulated or amplified regional hurricane activity over the last millennium.

  4. Toward a unified system for understanding, predicting and projecting regional hurricane activity

    NASA Astrophysics Data System (ADS)

    Vecchi, G. A.; Delworth, T. L.; Yang, X.; Murakami, H.; Zhang, W.; Underwood, S.; Zeng, F. J.; Jia, L.; Kapnick, S. B.; Paffendorf, K.; Krishnamurthy, L.; Wittenberg, A. T.; Msadek, R.; Villarini, G.; Chen, J. H.; Lin, S. J.; Harris, L.; Gudgel, R.; Stern, B.; Zhang, S.

    2015-12-01

    A family of high-resolution (50km and 25km atmospheric/land resolution) global coupled climate models provide a unified framework towards the understanding, intraseasonal-to-decadal prediction and decadal to multi-decadal projection of regional and extreme climate, including tropical cyclones. Initialized predictions of global hurricane activity show skill on regional scales, comparable to the skill on basin-wide scales, suggesting that regional seasonal TC predictions may be a feasible forecast target. The 25km version of the model shows skill at seasonal predictions of the frequency of the most intense hurricanes (Cat. 3-4-5 and Cat. 4-5). It is shown that large-scale systematic errors in the mean-state are a key constraint on the simulation and prediction of variations of regional climate and extremes, and methodologies for overcoming model biases are explored. Improvements in predictions of regional climate are due both to improved representation of local processes, and to improvements in the large-scale climate and variability from improved process representation. These models are used to explore the the response of tropical cyclones, both globally and regionally, to increasing greenhouse gases and to internal climate variations. The 25km model in generally shows a more faithful representation of the impact of climate variability on hurricane activity than the 50km model. The response of the total number and the total power dissipation index of tropical cyclones to increasing greenhouse gases can differ substantially between models of two atmospheric resolutions, 50km and 25km - with the 25km version of the model showing a larger increase in power dissipation from increasing greenhouse gases, principally because - in contrast to that of the 50km model - its global hurricane frequency does not decrease with increasing CO2. Some thoughts on the reasons behind those differences will be offered. The 25km model shows an increase in the frequency of intense tropical

  5. Hurricane Erin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The first Atlantic hurricane of the 2001 season narrowly missed Bermuda yesterday (September 9) as it churned north-northwestward at a rate of 19 km per hour (12 miles per hour). Packing sustained winds of 195 km per hour (120 miles per hour), Hurricane Erin was located just east of Bermuda at the time NASA's Terra satellite acquired this image. The true-color image was produced using data from the Moderate-resolution Imaging Spectroradiometer (MODIS). The U.S. National Hurricane Center predicts that tonight the storm will shift to a more northerly path. The Center says there is still the possibility that Hurricane Erin could impact Canada, somewhere along the coast of Newfoundland, within three to four days. Hurricane Erin was upgraded from a tropical storm to hurricane status on September 8, and was listed as a Category 3 hurricane on September 10 on the Saffir-Simpson scale. The storm's hurricane-force winds extend outward in a 75-km (45-mile) radius from its center, with tropical storm force winds extending to 280 km (175 miles) from center. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  6. Evaluation of Active Mortality Surveillance System Data for Monitoring Hurricane-Related Deaths—Texas, 2008

    PubMed Central

    Choudhary, Ekta; Zane, David F.; Beasley, Crystal; Jones, Russell; Rey, Araceli; Noe, Rebecca S.; Martin, Colleen; Wolkin, Amy F.; Bayleyegn, Tesfaye M.

    2015-01-01

    Introduction The Texas Department of State Health Services (DSHS) implemented an active mortality surveillance system to enumerate and characterize hurricane-related deaths during Hurricane Ike in 2008. This surveillance system used established guidelines and case definitions to categorize deaths as directly, indirectly, and possibly related to Hurricane Ike. Objective The objective of this study was to evaluate Texas DSHS’ active mortality surveillance system using US Centers for Disease Control and Prevention’s (CDC) surveillance system evaluation guidelines. Methods Using CDC’s Updated Guidelines for Surveillance System Evaluation, the active mortality surveillance system of the Texas DSHS was evaluated. Data from the active mortality surveillance system were compared with Texas vital statistics data for the same time period to estimate the completeness of reported disaster-related deaths. Results From September 8 through October 13, 2008, medical examiners (MEs) and Justices of the Peace (JPs) in 44 affected counties reported deaths daily by using a one-page, standardized mortality form. The active mortality surveillance system identified 74 hurricane-related deaths, whereas a review of vital statistics data revealed only four deaths that were hurricane-related. The average time of reporting a death by active mortality surveillance and vital statistics was 14 days and 16 days, respectively. Conclusions Texas’s active mortality surveillance system successfully identified hurricane-related deaths. Evaluation of the active mortality surveillance system suggested that it is necessary to collect detailed and representative mortality data during a hurricane because vital statistics do not capture sufficient information to identify whether deaths are hurricane-related. The results from this evaluation will help improve active mortality surveillance during hurricanes which, in turn, will enhance preparedness and response plans and identify public health

  7. Understanding and predicting the regional sun-hurricane count relationship

    NASA Astrophysics Data System (ADS)

    Hodges, Robert Edward

    North Atlantic hurricanes constitute a threat to both life and property. The warm seas found in tropical low-latitudes provide a breeding ground for hurricanes, with nearly continuous heat and moisture fluxes into near-surface air. Traditionally, the sun's role in hurricane climate studies is acknowledged as a time-marker for ocean heat content, with calendar date predicting hurricane frequency and intensity. However, a series of investigations into a different type of sun-hurricane relationship has uncovered a link between solar activity and hurricane intensity and frequency. High solar activity at a daily timescale is understood to weaken hurricanes in the southwest Atlantic yet correspond to increased hurricane intensity in the southeast Atlantic. At a seasonal timescale, high solar activity is shown to correspond with fewer U.S.-landfalling hurricanes. A gap in the knowledge exists on how and where solar activity influences seasonal hurricane frequency over and within the North Atlantic basin. This study is quantitative featuring exploratory analysis and inferential modeling, with diagnosis and prediction of the sun-hurricane count relationship over space being the primary contribution to science and society. It is carried out via exploratory data analysis and statistical modeling. Hurricane and climate data are binned in equal-area hexagon regions. Count differences for periods of high solar activity (i.e, high sunspot number) feature fewer hurricanes across the Caribbean, Gulf of Mexico, and along the eastern seaboard of the United States when sunspots are numerous. In contrast, fewer hurricanes are observed in the central North Atlantic when sunspots are few. The sun-hurricane connection is as important as the El Nino Southern Oscillation toward statistically explaining regional hurricane occurrences. Regression results indicate a 30% reduction in probability of annual hurricane occurrence for southeastern Cuba, the southern Bahama islands, Haiti, and

  8. Direct and indirect mortality in Florida during the 2004 hurricane season

    NASA Astrophysics Data System (ADS)

    McKinney, Nathan; Houser, Chris; Meyer-Arendt, Klaus

    2011-07-01

    Previous studies have shown that natural disasters, and hurricanes in particular, have led to more deaths than those usually documented in short post-storm surveys. Such indirect deaths, thought to be related to dietary, stress or pre-existing medical conditions, can exceed the number of direct deaths and may persist for weeks or even months beyond the event itself. In the present study, cumulative sum of deviations plots are used to quantify the number of direct and indirect deaths resulting from Hurricanes Charley, Frances, Ivan and Jeanne that made landfall in Florida in 2004. Results suggest that there was an elevated mortality for up to 2 months following each storm, resulting in a total of 624 direct and indirect deaths attributable to the storm. Trauma-related deaths that can be associated directly with the storm account for only ˜4% of the total storm-related mortality, while indirect mortality accounts for most storm-related deaths. Specifically, a large percentage of the elevated mortality was associated with heart (34%) and cancer-related deaths (19%), while diabetes (5%) and accident-related deaths (9%) account for a smaller but still significant percentage of the elevated mortality. The results further suggest that the elevated mortality was the result of additional deaths that would not have otherwise occurred within that 5 month period, and not simply a clustering of deaths that were inevitable between 1 August and 31 December 2004. The elevated mortality identified in this study is significantly greater than the official count of 31 direct and 113 indirect deaths resulting from the four hurricanes combined. This suggests a need for improved mortality counts and surveillance in order to better evaluate and identify effective prevention policies, and to identify preventable deaths.

  9. Remaining Uncertainties in the Causes of Past and Future Atlantic Hurricane Activity

    NASA Astrophysics Data System (ADS)

    Kossin, J. P.

    2014-12-01

    There is no debate that hurricane activity in the North Atlantic has increased substantially since the relatively quiescent period of the 1970s and 1980s, but there is still uncertainty in the dominant cause of the increase. Increases in anthropogenic greenhouse gases (aGHG) have contributed to the observed increase in tropical sea surface temperatures (SST) over the past century, while shorter-term decadal variability in regions where hurricanes form and track is generally dominated by 1) internal variability, 2) natural factors such as volcanic eruptions and mineral aerosol variability, and 3) changes in anthropogenic aerosols. Direct SST warming from globally well-mixed aGHG is understood to have a much smaller effect on hurricane formation and intensification compared to the effect of regional warming due to changes in the three factors noted above. While most recent papers implicate both internal and external anthropogenic causes for the presently heightened Atlantic hurricane activity, some show that internal variability dominates and others show that anthropogenic factors dominate. In the Atlantic, model projection-based consensus indicates no change in storm frequency over the next century but the uncertainty is large and spans -50% to +50%. Mean storm intensity and rainfall rates are projected to increase with continued warming, and the models tend to agree better when projecting these measures of activity. Models that are capable of producing very strong hurricanes usually project increases in the frequency of the most intense hurricanes. This measure is highly relevant to physical and societal impacts. In the Atlantic, model-based consensus indicates substantial increases in the strongest hurricanes, but the uncertainty is large and spans -100% to +200% change over the next century.

  10. Gulf Coast hurricane activity and climate variability during the last half of the Holocene

    NASA Astrophysics Data System (ADS)

    Lane, P.; Donnelly, J. P.

    2011-12-01

    The dominant timescales of variability in a 4500-year sediment-based storm chronology from the northeastern Gulf of Mexico are identified, and relationships between storm frequency and climate are explored. Changes in the frequency of large storm surge deposits in the record likely represent variability in the intensity distribution of hurricanes impacting the site during the late Holocene. Significant variability at approximately 200 and 1000-year timescales that was detected in the storm record is shared by numerous Holocene climate records including reconstructions of Loop Current penetration into the Gulf of Mexico. Intense storm landfalls were most frequent around 3.7 ka, between 2.7 and 2.4 ka, and around 0.7 ka when foraminiferal proxies of mixed layer depth indicate a more permanent residence of the Loop Current within the northeastern Gulf. Migrations of the Loop Current would exercise control over regional hurricane activity by changing the thermal structure of the upper ocean and influencing the role of storm-induced upwelling on hurricane intensification. Other factors that influenced regional and Atlantic basin-wide hurricane activity include the El Niño/Southern Oscillation and the position of the Inter-Tropical Convergence Zone. Many authors have suggested that bicentennial and millennial-scale climate variability may have been driven ultimately by changes in solar irradiance. Thus, low-frequency variability in Atlantic hurricane activity may be an expression of the climate system's response to exogenous forcing.

  11. An Organic Molecular Approach towards the Reconstruction of Past Hurricane Activity

    NASA Astrophysics Data System (ADS)

    Lammers, J. M.; van Soelen, E.; Liebrand, D.; Donders, T.; Reichart, G. J.

    2009-04-01

    The relationship between global warming and hurricane activity is the focus of considerable interest and intensive research. The available instrumental record, however, is still too short to document and understand the long term climatic controls on hurricane generation. Only by extending the records of past hurricane activity using paleo-data, can we capture the full range of natural variability in hurricane generation and investigate the climatic context in which such variability occurs. Hurricane activity is partly related to sea surface temperatures (SST's) due to the temperature dependence of evaporation rates at the sea surface. When SST's lie below a critical threshold, insufficient moisture is generated to ‘feed' a potential hurricane and it remains as a lower energy tropical storm. The reconstruction of SST's, precipitation and runoff over the past 300 years from the same core, will allow for a comparison between marine SST records and reconstructed hurricane activity. The core was recovered from Rookery Bay, a shallow, non-stratified, subtropical estuary on the western shelf of Florida and has already been studied using micropaleontological proxies for relative changes in runoff, habitat change and human impact [1]. The frequent hurricane impacts over the past 150 years are well documented, which makes Florida a suitable location for this research. Due to their large convective cells, hurricanes fractionate water molecules several times more strongly than tropical storms, resulting in the depletion of deuterium (2H) in hurricane precipitation. This deuterium-depleted precipitation is then incorporated in the leaf waxes of plants. Compound specific hydrogen analyses on derivatives of leaf waxes, like long chain n-alkanes with a strong odd-over-even predominance, can therefore be used to reconstruct past changes in the isotopic composition of precipitation. Consequently, stable hydrogen isotope analyses can be used as a direct proxy for past hurricane

  12. Climate forcing of unprecedented intense-hurricane activity in the last 2000 years

    NASA Astrophysics Data System (ADS)

    Donnelly, Jeffrey P.; Hawkes, Andrea D.; Lane, Philip; MacDonald, Dana; Shuman, Bryan N.; Toomey, Michael R.; van Hengstum, Peter J.; Woodruff, Jonathan D.

    2015-02-01

    How climate controls hurricane variability has critical implications for society is not well understood. In part, our understanding is hampered by the short and incomplete observational hurricane record. Here we present a synthesis of intense-hurricane activity from the western North Atlantic over the past two millennia, which is supported by a new, exceptionally well-resolved record from Salt Pond, Massachusetts (USA). At Salt Pond, three coarse grained event beds deposited in the historical interval are consistent with severe hurricanes in 1991 (Bob), 1675, and 1635 C.E., and provide modern analogs for 32 other prehistoric event beds. Two intervals of heightened frequency of event bed deposition between 1400 and 1675 C.E. (10 events) and 150 and 1150 C.E. (23 events), represent the local expression of coherent regional patterns in intense-hurricane-induced event beds. Our synthesis indicates that much of the western North Atlantic appears to have been active between 250 and 1150 C.E., with high levels of activity persisting in the Caribbean and Gulf of Mexico until 1400 C.E. This interval was one with relatively warm sea surface temperatures (SSTs) in the main development region (MDR). A shift in activity to the North American east coast occurred ca. 1400 C.E., with more frequent severe hurricane strikes recorded from The Bahamas to New England between 1400 and 1675 C.E. A warm SST anomaly along the western North Atlantic, rather than within the MDR, likely contributed to the later active interval being restricted to the east coast.

  13. A 1,000-year, annually-resolved record of hurricane activity from Boston, Massachusetts

    NASA Astrophysics Data System (ADS)

    Besonen, Mark R.; Bradley, Raymond S.; Mudelsee, Manfred; Abbott, Mark B.; Francus, Pierre

    2008-07-01

    The annually-laminated (i.e., varved) sediment record from the Lower Mystic Lake (near Boston, MA), contains a series of anomalous graded beds deposited by strong flooding events that have affected the basin over the last millennium. From the historic portion of the record, 10 out of 11 of the most prominent graded beds correspond with years in which category 2-3 hurricanes are known to have struck the Boston area. Thus, we conclude that the graded beds represent deposition related to intense hurricane precipitation combined with wind-driven vegetation disturbance that exposes fresh, loose sediment. The hurricane signal shows strong, centennial-scale variations in frequency with a period of increased activity between the 12th-16th centuries, and decreased activity during the 11th and 17th-19th centuries. These frequency changes are consistent with other paleoclimate indicators from the tropical North Atlantic, in particular, sea surface temperature variations.

  14. Hurricane activity and the large-scale pattern of spread of an invasive plant species.

    PubMed

    Bhattarai, Ganesh P; Cronin, James T

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6-35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  15. Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species

    PubMed Central

    Bhattarai, Ganesh P.; Cronin, James T.

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  16. Recovering from Hurricane Katrina

    ERIC Educational Resources Information Center

    Coleman, Nadine

    2006-01-01

    The Gulf Coast region suffered an unusually severe hurricane season in 2005: Hurricane Katrina (August 28-29, 2005) devastated much of southern Mississippi and Louisiana. Approximately 2,700 licensed early care and education facilities in those states and in Alabama were affected by Katrina, in addition to an unknown number of family child care…

  17. Climatic Forcing of Intense North Atlantic Hurricane Activity over the Last Two Millennia (Invited)

    NASA Astrophysics Data System (ADS)

    Donnelly, J. P.; Lane, P.; Toomey, M.; Rodysill, J. R.; Hawkes, A. D.; van Henstum, P. J.; Wallace, D. J.; MacDonald, D.

    2013-12-01

    With a series of high-resolution reconstructions of hurricane-induced overwash from across the western North Atlantic we document patterns of event occurrence dating back more than 2000 years. The records suggest that while the frequency of hurricane landfall has not changed dramatically, the frequency of intense hurricanes has varied considerably. The sedimentary evidence indicates that the entire western North Atlantic experienced historically unprecedented levels of intense hurricane activity between 500 and 900 AD. This was likely forced by the relatively northern position of the intertropical convergence zone at this time resulting in more tropical cyclone genesis in the deep tropics, similar to what is seen in the modern climate during a positive Atlantic Meridional Mode, and La Niña-like conditions in the eastern tropical Pacific. Intense hurricane activity along the eastern seaboard of the United States was significantly reduced between 900 and 1400 AD when sea surface temperatures decreased in the western North Atlantic and El Niño-like conditions persisted in the eastern tropical Pacific. However, elevated intense tropical cyclone activity in the Gulf of Mexico continued through this interval, perhaps as a result of continued Loop Current penetration into the Gulf resulting in a deeper reservoir of warm water to fuel intense tropical cyclones. Intense tropical cyclone activity in the Gulf abruptly declined at 1400 AD as Loop Current penetration was reduced. However, the eastern seaboard of the United States experienced a period of elevated intense hurricane activity from 1400 to 1675 AD. This interval of increased intense hurricane activity had significant impacts on coastal landforms and ecosystems, including more frequent and widespread inlet formation, erosion of coastal marshes, and forest disturbance. Warming sea surface temperatures along the eastern seaboard of the United States at this time, related to more Gulf Stream transport and a reduction

  18. On the Relationship Between the Length of Season and Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2013

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    later and with both being related to global warming. In this study, the relationship between the LOS and tropical cyclone activity and climate is examined for the weather satellite era, 1960-2013. Estimates are also given for the LOS and LSD, as well as for the expected number of tropical cyclones (NTC), the total number of storm days (NSD), the total accumulated cyclone energy (ACE), and the net tropical cyclone activity (NTCA) index for the 2014 hurricane season.

  19. University of Miami Hurricane Football Team Off-Season Strength Training Program.

    ERIC Educational Resources Information Center

    Ganong, Ray

    The off-season football strength training and conditioning program at the University of Miami was developed to emphasize commitment and continued intensity of effort on the part of the individual player. The program emphasizes the intrinsic rewards of physical conditioning, positive reinforcement for effort, and individual responsibility for…

  20. Oceanic Control of Northeast Pacific Hurricane Activity at Interannual Timescales

    SciTech Connect

    Balaguru, Karthik; Leung, Lai-Yung R.; Yoon, Jin-Ho

    2013-10-16

    Despite the strong dependence of the Power Dissipation Index (PDI), which is a measure of the intensity of Tropical Cyclone (TC) activity, on tropical sea-surface temperatures (SSTs), the variations in PDI are not completely explained by SST. Here we show, using an analysis of a string of observational data sets, that the variability of the thermocline depth (TD) in the east Pacific exerts a significant degree of control on the variability of PDI in that region. On average, a deep thermocline with a larger reservoir of heat favors TC intensification by reducing SST cooling while a shallow thermocline with a smaller heat reservoir promotes enhanced SST cooling that contributes to TC decay. At interannual time scales, the variability of basin-mean TD accounts for nearly 30% of the variability in the PDI during the TC season. Also, about 20% of the interannual variability in the east Pacific basin-mean TD is due to the El Niño and the Southern Oscillation (ENSO), a dominant climate signal in this region. This study suggests that a better understanding of the factors governing the interannual variability of the TD conditions in the east Pacific and how they may change over time, may lead to an improved projection of future east Pacific TC activity.

  1. Observation of the Young-Bedard Effect using Infrasonic Observations from the 2010 and 2011 Atlantic Hurricane Seasons

    NASA Astrophysics Data System (ADS)

    Blom, P.; Waxler, R.; Frazier, W. G.; Talmadge, C. L.

    2012-12-01

    Infrasonic acoustic energy is known to be generated by collisions of counter propagating ocean surface waves of like periods. The acoustic signals produced by such collisions are known as microbaroms. One significant source of microbarom radiation is the interaction of ocean surface waves produced by large maritime storms with the background ocean swell. The region in which the microbaroms associated with a large storm are produced tends to be hundreds of kilometers from the eye of the storm. It has been suggested by Young and Bedard that, when observed along propagation paths that pass through the storm, the microbarom signal can be strongly refracted by the storm winds. Such refraction has been observed in data from the 2010 and 2011 Atlantic hurricane seasons. A data processing algorithm has been developed and implemented using the Multiple Signal Classification (MUSIC) spatial spectra and Akaike Information Criterion. The results of this analysis will be presented and compared with predictions of the refraction using a geometric acoustics propagation model.

  2. Active and passive microwave measurements in Hurricane Allen

    NASA Technical Reports Server (NTRS)

    Delnore, V. E.; Bahn, G. S.; Grantham, W. L.; Harrington, R. F.; Jones, W. L.

    1985-01-01

    The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods.

  3. Attitudinal Determinants of Local Public Health Workers' Participation in Hurricane Sandy Recovery Activities.

    PubMed

    Errett, Nicole A; Egan, Shannon; Garrity, Stephanie; Rutkow, Lainie; Walsh, Lauren; Thompson, Carol B; Strauss-Riggs, Kandra; Altman, Brian; Schor, Kenneth; Barnett, Daniel J

    2015-01-01

    Local health departments play a critical role in short-, intermediate-, and long-term recovery activities after a public health emergency. However, research has not explored attitudinal determinants of health department workers' participation in the recovery phase following a disaster. Accordingly, this qualitative investigation aims to understand perceived facilitators and barriers to performing recovery-related activities following Hurricane Sandy among local health department workers. In January 2014, 2 focus groups were conducted in geographically representative clusters of local health departments affected by Hurricane Sandy (1 cluster in Maryland and 1 cluster in New Jersey). Focus groups were recorded, transcribed verbatim, and analyzed to qualitatively assess attitudes toward Hurricane Sandy recovery activities. This analysis identified 5 major thematic categories as facilitators and barriers to participation in recovery activities: training, safety, family preparedness, policies and planning, and efficacy. Systems that support engagement of health department personnel in recovery activities may endeavor to develop and communicate intra- and interjurisdictional policies that minimize barriers in these areas. Development and implementation of evidence-informed curricular interventions that explain recovery roles may also increase local health department worker motivation to participate in recovery activities. PMID:26173013

  4. Caribbean hurricanes: interannual variability and prediction

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.; Rodríguez, Ernesto

    2011-11-01

    Climatic conditions that affect the interannual variability of Caribbean hurricanes are studied. Composite meteorological and oceanographic reanalysis fields are constructed for active and inactive seasons since 1979, and differences are calculated for spring and summer periods to provide guidance in statistical analysis. Predictors are extracted for areas exhibiting high contrast between active and inactive seasons, and intercomparisons are made. Zonal winds north of Venezuela exhibit westerly anomalies prior to active years, so coastal upwelling and the north Brazil current are diminished. Rainfall increases in the Orinoco River basin, creating a fresh warm plume north of Trinidad. The predictor time series are regressed onto an index of Caribbean hurricanes, and multivariate algorithms are formulated. It is found that atmospheric kinematic and convective predictors explain only ˜20% of hurricane variance at 3-5-month lead time. Subsurface ocean predictors offer higher levels of explained hurricane variance (42%) at 3-5-month lead time, using 1-200-m-depth-averaged temperatures in the east Pacific and southern Caribbean. We place the statistical results in a conceptual framework to better understand climatic processes anticipating Caribbean hurricanes.

  5. NASA Gets 'GRIP' on Hurricane Formation

    NASA Video Gallery

    NASA's GRIP 2010 hurricane mission is in full force. During this year's Atlantic hurricane season, researchers using powerful instruments onboard three aircraft will be able to "see"" below the clo...

  6. The Atlantic multidecadal oscillation and extreme daily precipitation over the US and Mexico during the hurricane season

    NASA Astrophysics Data System (ADS)

    Curtis, Scott

    2008-03-01

    The tail of the distribution of daily precipitation for August-September-October was examined over the United States and Mexico in relation to the Atlantic Multidecadal Oscillation (AMO). As expected from previous studies linking the AMO to hurricane activity, Florida and the coastal Southeast US showed an increase in precipitation intensity when the Atlantic was in a warm phase (AMO+). Also during AMO+ Northwest Mexico was dry and exhibited a reduction of extreme events and the Mid-Atlantic Appalachian Mountains showed evidence of an increase in heavy precipitation compared to when the Atlantic was cool. It is proposed that the aforementioned decadal variations in extreme rainfall are forced by changes in the large-scale surface winds and air temperature in conjunction with the AMO. Namely, an anomalous cyclonic circulation is observed off the Southeast coast, leading to a reduction of moisture flux into the decaying North American monsoon, and an increase in moisture flux into the Mid-Atlantic. Further, the Mid-Atlantic shows a relatively strong increase in the mid-tropospheric lapse rate. Thus, the unique combination of low-level humidity, potential instability, and elevated topography are consistent with an enhanced risk of intense rainfall during AMO+.

  7. Seasonal variation in muscle sympathetic nerve activity.

    PubMed

    Cui, Jian; Muller, Matthew D; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2015-08-01

    Epidemiologic data suggest there are seasonal variations in the incidence of severe cardiac events with peak levels being evident in the winter. Whether autonomic indices including muscle sympathetic nerve activity (MSNA) vary with season remains unclear. In this report, we tested the hypothesis that resting MSNA varies with the seasons of the year with peak levels evident in the winter. We analyzed the supine resting MSNA in 60 healthy subjects. Each subject was studied during two, three, or four seasons (total 237 visits). MSNA burst rate in the winter (21.0 ± 6.8 burst/min, mean ± SD) was significantly greater than in the summer (13.5 ± 5.8 burst/min, P < 0.001), the spring (17.1 ± 9.0 burst/min, P = 0.03), and the fall (17.9 ± 7.7 burst/min, P = 0.002). There was no significant difference in MSNA for other seasonal comparisons. The results suggest that resting sympathetic nerve activity varies along the seasons, with peak levels evident in the winter. We speculate that the seasonal changes in sympathetic activity may be a contribution to the previously observed seasonal variations in cardiovascular morbidity and mortality. PMID:26265752

  8. Seasonal variation in muscle sympathetic nerve activity

    PubMed Central

    Cui, Jian; Muller, Matthew D; Blaha, Cheryl; Kunselman, Allen R; Sinoway, Lawrence I

    2015-01-01

    Epidemiologic data suggest there are seasonal variations in the incidence of severe cardiac events with peak levels being evident in the winter. Whether autonomic indices including muscle sympathetic nerve activity (MSNA) vary with season remains unclear. In this report, we tested the hypothesis that resting MSNA varies with the seasons of the year with peak levels evident in the winter. We analyzed the supine resting MSNA in 60 healthy subjects. Each subject was studied during two, three, or four seasons (total 237 visits). MSNA burst rate in the winter (21.0 ± 6.8 burst/min, mean ± SD) was significantly greater than in the summer (13.5 ± 5.8 burst/min, P < 0.001), the spring (17.1 ± 9.0 burst/min, P = 0.03), and the fall (17.9 ± 7.7 burst/min, P = 0.002). There was no significant difference in MSNA for other seasonal comparisons. The results suggest that resting sympathetic nerve activity varies along the seasons, with peak levels evident in the winter. We speculate that the seasonal changes in sympathetic activity may be a contribution to the previously observed seasonal variations in cardiovascular morbidity and mortality. PMID:26265752

  9. New Challenges in High-Resolution Modeling of Hurricanes

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2006-12-01

    The extreme active Atlantic hurricane seasons in recent years have highlighted the urgent need for a better understanding of the factors that contribute to hurricane intensity and for development of the corresponding advanced hurricane prediction models to improve intensity forecasts. The lack of skill in present forecasts of hurricane structure and intensity may be attributed in part to deficiencies in the current prediction models: insufficient grid resolution, inadequate surface and boundary layer formulations, and the lack of full coupling to a dynamic ocean. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The recent modeling effort is to develop and test a fully coupled atmosphere-wave-ocean modeling system that is capable of resolving the eye and eyewall in a hurricane at ~1 km grid resolution. The new challenges for these very high resolution models are the corresponding physical representations at 1-km scale, including microphysics, sub-grid turbulence parameterization, atmospheric boundary layer, physical processes at the air-sea interface with surface waves among others. The lack of accurate initial conditions for high-resolution hurricane modeling presents another major challenge. Improvements in initial conditions rest on the use of more airborne and remotely sensed observations in high-resolution assimilation systems and on the application of advanced assimilation schemes to hurricanes. This study aimed to provide an overview of these new challenges using high-resolution model simulations of Hurricanes Isabel (2003), Frances (2004), Katrina and Rita (2005) that were observed extensively by two recent field programs, namely, the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-Hurricane in 2003-2004 and the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005.

  10. A Hurricane!

    ERIC Educational Resources Information Center

    Pampe, William R.

    1986-01-01

    Describes the formation and development of hurricanes and discusses the disasters associated with them. Reviews the warning signals used for tropical storms and provides an overview of the hurricane naming process. (ML)

  11. Seasonal variation in leisure time physical activity.

    PubMed

    Uitenbroek, D G

    1993-06-01

    In this paper seasonal variation in leisure time physical activity for exercise is studied and quantified with regard to several popular exercise activities and taking the respondents gender, occupational status, and age into consideration. The analysis concerns data collected by telephone in Scotland between January 1989 and March 1992. Data from 7,202 male and 9,284 female respondents is used in the analysis; cosinor analysis using GLIM is applied. Considerable seasonal variation was found affecting both outdoor and indoor activities. During the peak phase in July, 32% of the respondents reported exercising for at least 20 min three or more times during the previous week, in the winter period this decreased to 23%. Older respondents were found to exercise more later in the year and also showed seasonal variation to a larger extent than younger respondents. This is particularly so for those respondents who exercise at a relatively high frequency. PMID:8321115

  12. Tracking 2012 Atlantic Hurricanes Using NASA's GEOS-5 AGCM

    NASA Astrophysics Data System (ADS)

    Cordero-Fuentes, M.; Partyka, G. S.; Smith, E. B.

    2014-12-01

    On average, the Atlantic Hurricane Season consists of 11 named storms, including six hurricanes. However, the 2012 hurricane season tied with the 1887, 1995, 2010, and 2011 seasons for having the third-most named storms on record, with 19 named storms, 10 of which were hurricanes. Seven of these systems made landfall in North America, including Hurricane Isaac and "Super-Storm" Sandy. This active season also included Hurricane Nadine, the fourth longest-lived Atlantic hurricane on record. The structure and life cycle of these severe storms can be viewed through the detailed meteorological analyses and forecasts that the Global Modeling and Assimilation Office (GMAO) conducts on a routine basis with our GEOS-5 Atmospheric General Circulation Model (AGCM) system. GMAO routinely produces five-day forecasts twice daily, at 0000 and 1200 UTC, using the GEOS-5 AGCM. The GEOS-5 atmospheric data assimilation system is used to generate near real-time analyses of the atmosphere over the globe every six hours. These analyses provide the initial conditions for the GEOS-5 forecasts. Following the abnormally active 2012 Atlantic hurricane season, one focus has been on the skill of the GEOS-5 forecasts of tropical storms in the Atlantic, East Pacific, and West Pacific. In this presentation it's shown the results for two of the most destructive storms of the Atlantic season: Hurricanes Isaac and Sandy, and the 2012 Season's Track Forecast Error. The primary impetus for investigating these two storms was the opportunity to test the ability of the model to reproduce their track and intensity forecast. We observe several features associated with the morphology and inner core of these storms indicative of the capability of the model to reproduce these tropical systems. GEOS-5 predicted Sandy's intensity to within a few hectopascals over much of the life of the storm. The model also predicted some of the finer details of Sandy's evolution. The forecast from 12z 26Oct2012 appeared to

  13. The Seasons Explained by Refutational Modeling Activities

    ERIC Educational Resources Information Center

    Frede, Valerie

    2008-01-01

    This article describes the principles and investigation of a small-group laboratory activity based on refutational modeling to teach the concept of seasons to preservice elementary teachers. The results show that these teachers improved significantly when they had to refute their initial misconceptions practically. (Contains 8 figures and 1 table.)

  14. TRMM Hurricane Heat Engine

    NASA Video Gallery

    TRMM provides a closer look at hurricanes using a unique combination of passive and active microwave instruments designed to peer inside cloud systems and measure rainfall. TRMM allows scientists t...

  15. Coastal change from Hurricane Sandy and the 2012-13 winter storm season: Fire Island, New York

    USGS Publications Warehouse

    Hapke, Cheryl J.; Brenner, Owen; Hehre, Rachel; Reynolds, B.J.

    2013-01-01

    The U.S. Geological Survey (USGS) mounted a substantial effort in response to Hurricane Sandy including an assessment of the morphological impacts to the beach and dune system at Fire Island, New York. Field surveys of the beach and dunes collected just prior to and after landfall were used to quantify change in several focus areas. In order to quantify morphologic change along the length of the island, pre-storm (May 2012) and post-storm (November 2012) lidar and aerial photography were used to assess changes to the shoreline and beach, and to measure volumetric changes. The extent and thicknesses of overwash deposits were mapped in the field, and measurements were used to determine volume, distribution, and characteristics of the deposits. The beaches and dunes on Fire Island were severely eroded during Hurricane Sandy, and the island breached in three locations on the eastern segment of the island. Landward shift of the upper portion of the beach averaged 19.7 meters (m) but varied substantially along the coast. Shoreline change was also highly variable, but the shoreline prograded during the storm by an average of 11.4 m, due to the deposition of material eroded from the upper beach and dunes onto the lower portion of the beach. The beaches and dunes lost 54.4 percent of their pre-storm volume, and the dunes experienced overwash along 46.6 percent of the island. The inland overwash deposits account for 14 percent of the volume lost from the beaches and dunes, indicating that the majority of material was moved offshore. In the winter months following Hurricane Sandy, seven storm events with significant wave heights greater than four m were recorded at a wave buoy 30 nautical miles south of Fire Island. Monthly shoreline and profile surveys indicate that the beach continued to erode dramatically. The shoreline, which exhibited a progradational trend immediately after Sandy, eroded an average of 21.4 m between November 2012 and mid-March 2013, with a maximum

  16. Global scale climate trends associated with variable Atlantic thermohaline transport as inferred from changes in intense hurricane activity

    SciTech Connect

    Gray, W.M.; Sheaffer, J.D.

    1996-12-31

    This paper presents a review of the most recent 100 years of data of hurricane activity in the tropical Atlantic, and proposes that decadal variations of hurricane activity are but one of a host of observed concurrent global climate trends which may all link to multi-decadal scale variations of the Atlantic thermohaline circulation. The data reviews shows that long term multi-decadal variations in hurricane activity appear to be linked (1) to mode-like variations of regional and global sea surface temperatures (SSTs) and (2) to concurrent trends in global air temperature, pressure anomalies, and atmospheric circulations. Many of these effects extend well beyond the tropical Atlantic. The pre-eminent effect which seems to dominate all others as a unifying process for these multi-decadal changes is variations in the Atlantic thermohaline circulation. A synthesis process is suggested for specifying physically consistent global interactions linking the Atlantic conveyor and decadal trend associations in global climate data. In this way, some of the global data may yield factors which are useful for forecasting the onset and termination of new decadal trends of hurricane activity. 30 refs., 4 figs.

  17. New Challenges in High-Resolution Modeling and Data Assimilation of Hurricanes

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2007-12-01

    The extreme active Atlantic hurricane seasons in recent years have highlighted the urgent need for a better understanding of the factors that contribute to hurricane intensity and for development of the corresponding advanced hurricane prediction models to improve intensity forecasts. The lack of skill in present forecasts of hurricane structure and intensity may be attributed in part to deficiencies in the current prediction models: insufficient grid resolution, inadequate surface and boundary layer formulations, and the lack of full coupling to a dynamic ocean. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The recent modeling effort is to develop and test a fully coupled atmosphere-wave-ocean modeling system that is capable of resolving the eye and eyewall in a hurricane at ~1 km grid resolution. The new challenges for these very high resolution models are the corresponding physical representations at 1-km scale, including microphysics, sub-grid turbulence parameterization, atmospheric boundary layer, physical processes at the air-sea interface with surface waves among others. The lack of accurate initial conditions for high-resolution hurricane modeling presents another major challenge. Improvements in initial conditions rest on the use of more airborne and remotely sensed observations in high-resolution data assimilation systems and on the application of advanced assimilation schemes to hurricanes. This study aimed to provide an overview of these new challenges using high-resolution model simulations of Hurricanes Isabel (2003), Frances (2004), Katrina and Rita (2005) that were observed extensively by two recent field programs, namely, the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-Hurricane in 2003-2004 and the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005. Data assimilation

  18. Hurricane Katrina disaster diplomacy.

    PubMed

    Kelman, Ilan

    2007-09-01

    Hurricane Katrina struck the United States at the end of August 2005. The consequent devastation appeared to be beyond the US government's ability to cope with and aid was offered by several states in varying degrees of conflict with the US. Hurricane Katrina therefore became a potential case study for 'disaster diplomacy', which examines how disaster-related activities do and do not yield diplomatic gains. A review of past disaster diplomacy work is provided. The literature's case studies are then categorised using a new typology: propinquity, aid relationship, level and purpose. Hurricane Katrina and its aftermath are then placed in the context of the US government's foreign policy, the international response to the disaster and the US government's reaction to these responses. The evidence presented is used to discuss the potential implications of Hurricane Katrina disaster diplomacy, indicating that factors other than disaster-related activities generally dominate diplomatic relations and foreign policy. PMID:17714169

  19. Hurricane Preparedness

    MedlinePlus

    ... one app. Text GETEMERGENCY to 90999 or search "Red Cross Emergency" in the Apple App Store or Google Play Store . Prepare for Hurricanes Are You Ready for a Hurricane? Ruben Brown of the American Red Cross helps a family assemble a preparedness kit ...

  20. Hurricane Earl

    Atmospheric Science Data Center

    2013-04-19

    ... shown on the right. The lengths of the arrows indicate the wind speeds and their orientation shows wind direction. The altitude of a given ... flow of air into the hurricane. This warm, moist air is the power source for the hurricane. Mid- and high-level clouds (green and ...

  1. Tuberculosis control activities before and after Hurricane Sandy--northeast and mid-Atlantic states, 2012.

    PubMed

    2013-03-22

    On October 29, 2012, Hurricane Sandy struck the U.S. northeast and mid-Atlantic seaboard; the effects of the storm extended to southeastern and midwestern states and to eastern Canada. At the time, 1,899 residents in the most affected areas were undergoing treatment for tuberculosis (TB) disease or infection. To ascertain the operational abilities of state and local TB programs during and after the storm and to determine whether lessons learned from a previous hurricane were effective in ensuring continuity of TB patient care, CDC interviewed staff members at all of the affected state and city TB control programs, including those in areas with power outages and flooded streets, tunnels, and subway lines. The interviews determined that continuity of care for TB patients in programs affected by Hurricane Sandy was better preserved than it had been during and after Hurricane Katrina in August 2005. This improvement might be attributed to 1) preparedness measures learned from Hurricane Katrina (e.g., preparing line lists of patients, providing patients with as-needed medications, and making back-up copies of patient records in advance of the storm) and 2) less widespread displacement of persons after Hurricane Sandy than occurred after Hurricane Katrina. Maintaining readiness among clinicians and TB control programs to respond to natural disasters remains essential to protecting public health and preserving TB patients' continuity of care. PMID:23515057

  2. Earth Science Week 2010 - Hurricane Energy

    NASA Video Gallery

    NASA hurricane scientist Dr. Jeff Halverson explains how hurricanes draw energy from the ocean surface. The video also provides an example of a classroom activity that allows students to map the ch...

  3. Rapid Hurricane Intensity Change: Results using High-Resolution Fully Coupled Atmosphere-Wave-Ocean Model

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2008-12-01

    The extreme active Atlantic hurricane seasons in recent years have highlighted the urgent need for a better understanding of the factors that contribute to rapid hurricane intensity and for development of the corresponding advanced hurricane prediction models to improve intensity forecasts. The lack of skill in present forecasts of hurricane structure and intensity may be attributed in part to deficiencies in the current prediction models: insufficient grid resolution, inadequate surface and boundary layer formulations, and the lack of full coupling to a dynamic ocean. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The recent modeling effort at the University of Miami is to develop and test a fully coupled atmosphere-wave-ocean modeling system (UMCM) that is capable of resolving the eye and eyewall in a hurricane at ~1 km grid resolution. The new challenges for these very high resolution models are the corresponding physical representations at 1-km scale, including microphysics, sub-grid turbulence parameterization, atmospheric boundary layer, physical processes at the air-sea interface with surface waves among others. The lack of accurate initial conditions for high-resolution hurricane modeling presents another major challenge. Improvements in initial conditions rest on the use of airborne and remotely sensed observations (e.g., QuikSCAT and other satellite data) in high-resolution assimilation systems and on the application of advanced assimilation schemes to hurricanes. This study aimed to provide an overview of these new challenges using high-resolution coupled model simulations of hurricanes in 2003-2008. Several cases were observed extensively by two recent field programs, namely, the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-Hurricane in 2003-2004 and the Hurricane Rainbands and Intensity Change

  4. Seasonality in Children's Pedometer-Measured Physical Activity Levels

    ERIC Educational Resources Information Center

    Beighle, Aaron; Alderman, Brandon; Morgan, Charles F.; Le Masurier, Guy

    2008-01-01

    Seasonality appears to have an impact on children's physical activity levels, but equivocal findings demand more study in this area. With the increased use of pedometers in both research and practice, collecting descriptive data in various seasons to examine the impact of seasonality on pedometer-measured physical activity among children is…

  5. Hurricane tracking

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New hurricane forecasting that provides more accurate pictures of storms and their movement through the atmosphere could increase warning time and cut down on false alarms that cost millions of dollars in unnecessary evacuations, according to the National Oceanic and Atmospheric Administration (NOAA).NOAA's new Gulfstream-IV jet produced “the most complete and detailed portrait of a hurricane ever seen” when it flew near Hurricane Guillermo in a test-run last August, according to the agency. Since then, the plane — that can fly to the upper troposphere at an altitude of 13,716 m (45,000 ft) — has helped to dramatically improve the forecasts for Hurricanes Erika and Linda.

  6. Hurricane Carlotta

    Atmospheric Science Data Center

    2013-04-19

    ... near the hurricane's center, and are made up of individual cells that are typically less than 20 km in diameter. This image shows a number of these cells, some fairly isolated, and others connected together. Their ...

  7. Hurricane Katrina

    Atmospheric Science Data Center

    2014-05-15

    article title:  Flooding in the Aftermath of Hurricane Katrina   ... River that was not apparent before Katrina. The post-Katrina flooding along the edges of Lake Pontchartrain and the city of New Orleans is ...

  8. Hurricane Jeanne

    Atmospheric Science Data Center

    2013-04-19

    ... article title:  Hurricane Jeanne Cloud Height and Motion     View Larger Image ... field pictured here is uncorrected for the effects of cloud motion. Wind-corrected heights have higher accuracy but sparser spatial ...

  9. Hurricane Humberto

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hurricane Humberto spirals just north of Bermuda on September 24, 2001. A strong jet stream has prevented any hurricanes from landing on the Atlantic coast of the U.S. and Canada so far this year. The true-color image was aqcuired by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  10. Overview of Proposal on High Resolution Climate Model Simulations of Recent Hurricane and Typhoon Activity: The Impact of SSTs and the Madden Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Kang, In-Sik; Reale, Oreste

    2009-01-01

    This talk gives an update on the progress and further plans for a coordinated project to carry out and analyze high-resolution simulations of tropical storm activity with a number of state-of-the-art global climate models. Issues addressed include, the mechanisms by which SSTs control tropical storm. activity on inter-annual and longer time scales, the modulation of that activity by the Madden Julian Oscillation on sub-seasonal time scales, as well as the sensitivity of the results to model formulation. The project also encourages companion coarser resolution runs to help assess resolution dependence, and. the ability of the models to capture the large-scale and long-terra changes in the parameters important for hurricane development. Addressing the above science questions is critical to understanding the nature of the variability of the Asian-Australian monsoon and its regional impacts, and thus CLIVAR RAMP fully endorses the proposed tropical storm simulation activity. The project is open to all interested organizations and investigators, and the results from the runs will be shared among the participants, as well as made available to the broader scientific community for analysis.

  11. Tropical cyclone wind speed constraints from resultant storm surge deposition: A 2500 year reconstruction of hurricane activity from St. Marks, FL

    NASA Astrophysics Data System (ADS)

    Brandon, Christine M.; Woodruff, Jonathan D.; Lane, D. Phil; Donnelly, Jeffrey P.

    2013-08-01

    Recent work suggests that the patterns of intense (≥category 3 on the Saffir-Simpson scale) hurricane strikes over the last few millennia might differ from that of overall hurricane activity during this period. Prior studies typically rely on assigning a threshold storm intensity required to produce a sedimentological overwash signal at a particular coastal site based on historical analogs. Here, we improve on this approach by presenting a new inverse-model technique that constrains the most likely wind speeds required to transport the maximum grain size within resultant storm deposits. As a case study, the technique is applied to event layers observed in sediments collected from a coastal sinkhole in northwestern Florida. We find that (1) simulated wind speeds for modern deposits are consistent with the intensities for historical hurricanes affecting the site, (2) all deposits throughout the ˜2500 year record are capable of being produced by hurricanes, and (3) a period of increased intense hurricane frequency is observed between ˜1700 and ˜600 years B.P. and decreased intense storm frequency is observed from ˜2500 to ˜1700 and ˜600 years B.P. to the present. This is consistent with prior reconstructions from nearby sites. Changes in the frequency of intense hurricane strikes may be related to the degree of penetration of the Loop Current in the Gulf of Mexico.

  12. GPM Satellite Video of Hurricane Joaquin's Movements

    NASA Video Gallery

    Joaquin became a tropical storm Monday evening (EDT) midway between the Bahamas and Bermuda and has now formed into a hurricane, the 3rd of the season--the difference is Joaquin could impact the US...

  13. Effects of Hurricane Georges on habitat use by captive-reared Hispaniolan Parrots (Amazona ventralis) released in the Dominican Republic

    USGS Publications Warehouse

    White, T.H., Jr.; Collazo, J.A.; Vilella, F.J.; Guerrero, S.A.

    2005-01-01

    We radio-tagged and released 49 captive-reared Hispaniolan Parrots (Amazona ventralis) in Parque Nacional del Este (PNE), Dominican Republic, during 1997 and 1998. Our primary objective was to develop a restoration program centered on using aviary-reared birds to further the recovery of the critically endangered Puerto Rican Parrot (A. vittata). Hurricane Georges made landfall over the release area on 22 September 1998 with sustained winds of 224 km/h, providing us with a unique opportunity to quantify responses of parrots to such disturbances. Quantitative data on such responses by any avian species are scarce, particularly for Amazona species, many of which are in peril and occur in hurricane-prone areas throughout the Caribbean. Mean home ranges of 18 parrots monitored both before and after the hurricane increased (P = 0.08) from 864 ha (CI = 689-1039 ha) pre-hurricane to 1690 ha (CI = 1003-2377 ha) post-hurricane. The total area traversed by all parrots increased > 300%, from 4884 ha pre-hurricane to 15,490 ha post-hurricane. Before Hurricane Georges, parrot activity was concentrated in coastal scrub, tall broadleaf forest, and abandoned agriculture (conucos). After the hurricane, parrots concentrated their activities in areas of tall broadleaf forest and abandoned conucos. Topographic relief, primarily in the form of large sinkholes, resulted in "resource refugia" where parrots and other frugivores foraged after the hurricane. Habitat use and movement patterns exhibited by released birds highlight the importance of carefully considering effects of season, topography, and overall size of release areas when planning psittacine restorations in hurricane-prone areas. ?? The Neotropical Ornithological Society.

  14. Female hurricanes are deadlier than male hurricanes

    PubMed Central

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M.

    2014-01-01

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents’ preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness. PMID:24889620

  15. Female hurricanes are deadlier than male hurricanes.

    PubMed

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness. PMID:24889620

  16. Hurricane Juliette

    Atmospheric Science Data Center

    2013-04-19

    ... since 1973. According to the National Hurricane Center, deep convection surrounding Juliette's eye began to weaken on the morning of ... It travelled in a north-northwest direction over the Pacific Ocean until reaching the tip of Baja Peninsula, where the heaviest rainfall and ...

  17. Hurricane Irene

    Atmospheric Science Data Center

    2013-04-19

    ... Terra and measures cloud top temperatures. Higher clouds are colder, and the highest clouds in Hurricane Irene on August 25 had temperatures ... provide different insights into the behavior of clouds near the core of the storm. Researchers are studying how the two measurements ...

  18. Hurricane Preparedness

    MedlinePlus

    ... Edit Zip Code Edit Zip Code Shop the Red Cross Store Home Get Help Types of Emergencies Hurricane Preparedness Download the FREE Emergency App Find our Emergency App in the Apple Store or Google Play Aplicación de Emergencias - ahora ...

  19. Hurricane Sandy

    Atmospheric Science Data Center

    2015-03-05

    ... over Hurricane Sandy as the storm approached the U.S. east coast on October 28, 2012. The image at left covers an area 250 miles (400 ... are readily apparent in the low-level winds off the eastern coast of Florida, with speeds exceeding 45 mph (20 meters per second). The ...

  20. Hurricane Ida

    Atmospheric Science Data Center

    2013-04-18

    ... at 15:00 UTC, the hurricane had an estimated minimum central pressure of 983 millibars, with maximum sustained winds of 148 kilometers per ... the time of the satellite overpass, Ida's eye was "closed," meaning that it was covered by clouds, so the typical dark eye caused by ...

  1. Hurricane Isadore

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: AIRS channel 2333 (2616 cm-1)Figure 2: HSB channel 2 (150 GHz)

    Three different Views of Hurricane Isidore from the Atmospheric Infrared Sounding System (AIRS) on Aqua.

    At the time Aqua passed over Isidore, it was classified as a Category 3 (possibly 4) hurricane, with minimum pressure of 934 mbar, maximum sustained wind speeds of 110 knots (gusting to 135) and an eye diameter of 20 nautical miles. Isidore was later downgraded to a Tropical Storm before gathering strength again.

    This is a visible/near-infrared image, made with the AIRS instrument. Its 2 km resolution shows fine details of the cloud structure, and can be used to help interpret the other images. For example, some relatively cloud-free regions in the eye of the hurricane can be distinguished. This image was made with wavelengths slightly different than those seen by the human eye, causing plants to appear very red.

    Figure 1 shows high and cold clouds in blue. Figure 2 shows heavy rain cells over Alabama in blue. This image shows the swirling clouds in white and the water of the Gulf of Mexico in blue. The eye of the hurricane is apparent in all three images.

    Figure 1 shows how the hurricane looks through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in clear regions. The lowest temperatures are over Alabama and are associated with high, cold cloud tops at the end of the cloud band streaming from the hurricane. Although the eye is visible, it does not appear to be completely cloud free.

    Figure 2 shows the hurricane as seen through a microwave channel of the Humidity Sounder for Brazil (HSB). This channel is sensitive to humidity, clouds and rain. Unlike the AIRS infrared channel, it can penetrate through cloud layers and therefore reveals some of the internal structure of the hurricane. In this

  2. Seasonal prevalence of MS disease activity(Podcast)

    PubMed Central

    Meier, D.S.; Balashov, K.E.; Healy, B.; Weiner, H.L.; Guttmann, C.R.G.

    2010-01-01

    Objective: This observational cohort study investigated the seasonal prevalence of multiple sclerosis (MS) disease activity (likelihood and intensity), as reflected by new lesions from serial T2-weighted MRI, a sensitive marker of subclinical disease activity. Methods: Disease activity was assessed from the appearance of new T2 lesions on 939 separate brain MRI examinations in 44 untreated patients with MS. Likelihood functions for MS disease activity were derived, accounting for the temporal uncertainty of new lesion occurrence, individual levels of disease activity, and uneven examination intervals. Both likelihood and intensity of disease activity were compared with the time of year (season) and regional climate data (temperature, solar radiation, precipitation) and among relapsing and progressive disease phenotypes. Contrast-enhancing lesions and attack counts were also compared for seasonal effects. Results: Unlike contrast enhancement or attacks, new T2 activity revealed a likelihood 2–3 times higher in March–August than during the rest of the year, and correlated strongly with regional climate data, in particular solar radiation. In addition to the likelihood or prevalence, disease intensity was also elevated during the summer season. The elevated risk season appears to lessen for progressive MS and occur about 2 months earlier. Conclusion: This study documents evidence of a strong seasonal pattern in subclinical MS activity based on noncontrast brain MRI. The observed seasonality in MS disease activity has implications for trial design and therapy assessment. The observed activity pattern is suggestive of a modulating role of seasonally changing environmental factors or season-dependent metabolic activity. GLOSSARY CEL = contrast-enhancing lesions; MS = multiple sclerosis. PMID:20805526

  3. Hurricane Iris Hits Belize

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hurricane Iris hit the small Central American country of Belize around midnight on October 8, 2001. At the time, Iris was the strongest Atlantic hurricane of the season, with sustained winds up to 225 kilometers per hour (140 mph). The hurricane caused severe damage-destroying homes, flooding streets, and leveling trees-in coastal towns south of Belize City. In addition, a boat of American recreational scuba divers docked along the coast was capsized by the storm, leaving 20 of the 28 passengers missing. Within hours the winds had subsided to only 56 kph (35 mph), a modest tropical depression, but Mexico, Guatemala, El Salvador, and Honduras were still expecting heavy rains. The above image is a combination of visible and thermal infrared data (for clouds) acquired by a NOAA Geostationary Operational Environmental Satellite (GOES-8) on October 8, 2001, at 2:45 p.m., and the Moderate-resolution Imaging Spectroradiometer (MODIS) (for the color of the ground). The three-dimensional view is from the south-southeast (north is towards the upper left). Belize is off the image to the left. Image courtesy Marit Jentoft-Nilsen, NASA GSFC Visualization Analysis Lab

  4. A climatology of intense (or major) Atlantic hurricanes

    NASA Technical Reports Server (NTRS)

    Landsea, Christopher W.

    1993-01-01

    The variability of intense (or major) hurricanes in the Atlantic basin is investigated on both intraseasonal and interannual time scales. Differences are highlighted in characteristics between intense hurricanes and the weaker minor hurricanes and tropical storms. Intense hum canes show a much more peaked annual cycle than do weaker tropical cyclones. Ninety-five percent of all intense hurricane activity occurs during August to October. Of all classes of Atlantic basin tropical cyclones, the intense hurricanes display the greatest year-to-year variability. The incidence of intense hurricanes also has decreased during the last two decades. After adjusting for this bias, however, a substantial downward trend in intense hurricane activity during recent years is still apparent. Given that intense hurricanes are responsible for more than 70 percent of all destruction caused by tropical cyclones in the United States, an understanding is needed of the physical mechanisms for these observed variations of intense hurricane activity.

  5. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  6. Hurricane Lili

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This photo of hurricane Lili, captured during the Expedition Five mission, shows the compact storm system and the structure of its estimated 15 nautical mile wide eye. After strengthening to a Category 4 storm (125 knots with the central pressure of 940 millibars), Lili weakened to a Category 2 before slamming into the central coast of Louisiana just south of Lafayette. This is one of many photos that stem form the Crew Observation (CEO) experiment that has been a part of every Space Station expedition.

  7. Medium term hurricane catastrophe models: a validation experiment

    NASA Astrophysics Data System (ADS)

    Bonazzi, Alessandro; Turner, Jessica; Dobbin, Alison; Wilson, Paul; Mitas, Christos; Bellone, Enrica

    2013-04-01

    Climate variability is a major source of uncertainty for the insurance industry underwriting hurricane risk. Catastrophe models provide their users with a stochastic set of events that expands the scope of the historical catalogue by including synthetic events that are likely to happen in a defined time-frame. The use of these catastrophe models is widespread in the insurance industry but it is only in recent years that climate variability has been explicitly accounted for. In the insurance parlance "medium term catastrophe model" refers to products that provide an adjusted view of risk that is meant to represent hurricane activity on a 1 to 5 year horizon, as opposed to long term models that integrate across the climate variability of the longest available time series of observations. In this presentation we discuss how a simple reinsurance program can be used to assess the value of medium term catastrophe models. We elaborate on similar concepts as discussed in "Potential Economic Value of Seasonal Hurricane Forecasts" by Emanuel et al. (2012, WCAS) and provide an example based on 24 years of historical data of the Chicago Mercantile Hurricane Index (CHI), an insured loss proxy. Profit and loss volatility of a hypothetical primary insurer are used to score medium term models versus their long term counterpart. Results show that medium term catastrophe models could help a hypothetical primary insurer to improve their financial resiliency to varying climate conditions.

  8. Learning Activities for the Growth Season.

    ERIC Educational Resources Information Center

    Darby, Linda, Ed.

    This poster, illustrated with a graphic of a caterpillar changing to a cocoon and emerging as a butterfly, presents learning activities for 7 weeks based on the seven stages of growth in the President's "Call to Action." Each week includes 5 days of activities based on seven themes: (1) "Reading on Your Own"; (2) "Getting Ready for Algebra"; (3)…

  9. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; James, Mark W.; Roberts, J. Brent; Bisawas, Sayak K.; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; Black, Peter G.

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiement in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. Hurricane flights are expected for HIRAD in 2013 during HS3. This presentation will describe the HIRAD instrument, its results from the 2010 hurricane flights, and hopefully results from hurricane flights in August and September 2013.

  10. Seasonal variations in physical activity and implications for human health.

    PubMed

    Shephard, Roy J; Aoyagi, Yukitoshi

    2009-10-01

    This review explores the implications of seasonal changes in physical activity for fitness and human health. Photosensitivity and nutrient shortages mediate animal hibernation via the hypothalamus and changes in leptin and ghrelin concentrations. Opportunities for hunting and crop cultivation determine seasonal activity in under-developed human societies, but in developed societies temperature and rainfall are dominant influences, usually over-riding innate rhythms. Both questionnaire data and objective measurements show that many groups from children to the elderly increase their physical activity from winter to spring or summer. Measurements of maximal oxygen intake and muscle strength commonly show parallel seasonal changes. However, potential effects upon body mass and body fat may be counteracted by changes of food intake; subsistence agriculturists sometimes maintain or increase physical activity at the expense of a decrease in body mass. In developed societies, body fat commonly increases during the winter, with parallel changes in blood lipids, blood pressure and blood coagulability; moreover, these changes are not always fully reversed the following summer. Most developed societies show increased all-cause and cardiac mortalities in the winter. Health consequences of seasonal variations in physical activity including an increased vulnerability to cardiac catastrophe and a year-by-year increase in total body fat seem most likely if the average level of physical activity for the year is low. Public health recommendations should underline the importance of maintaining physical activity during adverse environmental conditions by adapting clothing, modifying behaviour and exploiting any available air-conditioned indoor facilities. PMID:19609553

  11. Electrification in Hurricanes over the Tropical Americas: Implication for Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Chronis, Themis G.; Robertson, Franklin R.; Miller, Timothy L.

    2007-01-01

    This study explores the relation between lightning activity and water vapor in the Tropical Tropopause Layer (TTL) over hurricane systems in the Tropical Americas. The hypothesis herein is that hurricanes that exhibit enhanced lightning activity are associated with stronger updrafts that can transport more moisture directly into the TTL (and subsequently into the tropical stratosphere) or even directly into the tropical stratosphere over this region. The TTL over the Tropical Americas, which includes the Caribbean and Gulf of Mexico, is of particular interest, because summertime cold point tropopause is the lowest in height and thus the warmest in temperature over the tropics. The latter condition implies higher saturation values and thus potential for more water vapor to enter the stratosphere. Climate forecast is very sensitive to stratospheric water vapor abundance, because of the key role that water vapor plays in regulating the chemical and radiative properties of the stratosphere. Given the potential for increases in hurricane intensity and frequency under predicted warmer conditions, it becomes essential to understand the effect of hurricanes on stratospheric water vapor. In this study, we use a combination of ground and space-borne observations as well as trajectory calculations. The observations include: cloud-to-ground (CG) lightning data from the U.S. National Lightning Detection Network (NLDN), geostationary infrared observations from the National Climatic Data Center Hurricane Satellite (HURSAT) data set, cloud properties from Aqua-MODIS, and water vapor from Aura-MLS. We analyze hurricanes from the 2005 season when Aura-MLS data are available, namely: Dennis, Emily, Katrina, Rita, and Wilma. Our analysis consists of examining CG lightning, cloud-top properties, and TTL water vapor (i.e., 100 and 147 mb) over the hurricane while it remains over water in the Tropical Americas region. We investigate daily as well as diurnal statistical properties. The

  12. Hurricane Isabel

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1: AIRS infrared channel 2333 (2616 cm-1)

    [figure removed for brevity, see original site] Figure 2: Total Water Vapor retrieved from AIRS infrared and AMSU-A microwave data

    September 18, 2003 These two false-color images show Hurricane Isabel viewed by the AIRS and AMSU-A instruments at 1:30 EDT in the morning of Thursday September 18, 2003. Isabel will be ashore within 12 hours, bringing widespread flooding and destructive winds. In figure 1 on the left, data retrieved by the AIRS infrared sensor shows the hurricane's eye as the small ring of pale blue near the upper left corner of the image. The dark blue band around the eye shows the cold tops of hundreds of powerful thunderstorms. These storms are embedded in the 120 mile per hour winds swirling counterclockwise around Isabel's eye. Cape Hatteras is the finger of land north-northwest of the eye. Isabel's winds will soon push ashore a 4- to 8-foot high mound of 'storm surge' and accompanying high surf, leading to flooding of Cape Hatteras and other islands of North Carolina's Outer Banks. Also seen in the image are several organized bands of cold, (blue) thunderstorm tops being pulled into the storm center. Other thunderstorm are forming north of the islands of Jamaica, Cuba, Hispaniola and Puerto Rico near the bottom of the picture.

    Figure 2 shows the geographical distribution and total amount of atmospheric water vapor associated with Isabel as inferred by AIRS and AMSU-A. Very humid areas appear deep red and surround the storm's eye in the ring of thunderstorms, as seen above. The enhancement of atmospheric water vapor in the storm is maintained by evaporation from the wind-churned sea surface. In turn, the water vapor powers the thunderstorms by condensing as rain and releasing the ocean's warmth into the atmosphere to drive strong convection. This makes Isabel and other hurricanes 'heat engines,' converting ocean water's warmth into

  13. Seasonal changes in ovarian activity: lessons learnt from the horse.

    PubMed

    Donadeu, F X; Watson, E D

    2007-08-01

    The annual reproductive cycle in the horse involves a reduction in ovarian activity during short days. The absence of ovulatory activity during winter has important consequences for an equine industry eager to breed mares early during the year. The anovulatory season results from a reduction in the secretion of pituitary gonadotropin that is in turn triggered by the inhibitory effects of short photoperiod on the hypothalamus-pituitary axis. Recent studies have provided evidence that the response of the ovaries to endocrine stimuli during the anovulatory season is affected not only by circulating concentrations of trophic hormones but also by locally produced growth factors that are putative modulators of follicular responses to gonadotropins. The present review summarises current knowledge on ovarian dynamics during the equine anovulatory season and the regulatory mechanisms involved at both systemic and local levels. PMID:17207590

  14. Regulation of Seasonal Reproduction by Hypothalamic Activation of Thyroid Hormone

    PubMed Central

    Shinomiya, Ai; Shimmura, Tsuyoshi; Nishiwaki-Ohkawa, Taeko; Yoshimura, Takashi

    2014-01-01

    Organisms living outside the tropics measure the changes in the length of the day to adapt to seasonal changes in the environment. Animals that breed during spring and summer are called long-day breeders, while those that breed during fall are called short-day breeders. Although the influence of thyroid hormone in the regulation of seasonal reproduction has been known for several decades, its precise mechanism remained unknown. Recent studies revealed that the activation of thyroid hormone within the mediobasal hypothalamus plays a key role in this phenomenon. This localized activation of the thyroid hormone is controlled by thyrotropin (thyroid-stimulating hormone) secreted from the pars tuberalis of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal production, genes involved in photoperiodic signal transduction pathway could emerge as potential targets to facilitate domestication. PMID:24600435

  15. 3 CFR 8523 - Proclamation 8523 of May 20, 2010. National Hurricane Preparedness Week, 2010

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Hurricane Preparedness Week, 2010 8523 Proclamation 8523 Presidential Documents Proclamations Proclamation 8523 of May 20, 2010 Proc. 8523 National Hurricane Preparedness Week, 2010By the President of the United States of America A Proclamation Each year during hurricane season, Americans living in...

  16. Teaching Writing. Three Seasonal Activities to Hone Kids' Observation Skills.

    ERIC Educational Resources Information Center

    Power, Brenda

    1997-01-01

    The seasonal activities presented are: observing herbs to encourage use of the senses in writing; watching a jack-o'-lantern wither to learn skills in writing details; and building snowmen to learn to explain a string of events in writing. (SM)

  17. Hurricanes Frances and Ivan

    Atmospheric Science Data Center

    2014-05-15

    ... hurricane intensification and dissipation, and the various physical processes that affect hurricane intensity and rainfall distributions. ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  18. GPM Captures Hurricane Odile

    NASA Video Gallery

    Animation revealing a swath of GPM/GMI precipitation rates over Hurricane Odile. The camera then moves down closer to the Hurricane to reveal DPR's volumetric view of Odile. As the camera rotates a...

  19. An Extended Forecast of the Frequencies of North Atlantic Basin Tropical Cyclone Activity for 2009

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    An extended forecast of the frequencies for the 2009 North Atlantic basin hurricane season is presented. Continued increased activity during the 2009 season with numbers of tropical cyclones, hurricanes, and major hurricanes exceeding long-term averages are indicated. Poisson statistics for the combined high-activity intervals (1950-1965 and 1995-2008) give the central 50% intervals to be 9-14, 5-8, and 2-4, respectively, for the number of tropical cyclones, hurricanes, and major hurricanes, with a 23.4% chance of exceeding 14 tropical cyclones, a 28% chance of exceeding 8 hurricanes, and a 31.9% chance of exceeding 4 major hurricanes. Based strictly on the statistics of the current high-activity interval (1995-2008), the central 50% intervals for the numbers of tropical cyclones, hurricanes, and major hurricanes are 12-18, 6-10, and 3-5, respectively, with only a 5% chance of exceeding 23, 13, or 7 storms, respectively. Also examined are the first differences in 10-yr moving averages and the effects of global warming and decadal-length oscillations on the frequencies of occurrence for North Atlantic basin tropical cyclones. In particular, temperature now appears to be the principal driver of increased activity and storm strength during the current high-activity interval, with near-record values possible during the 2009 season.

  20. Seasonal variations in daily rhythms of activity in athletic horses.

    PubMed

    Bertolucci, C; Giannetto, C; Fazio, F; Piccione, G

    2008-07-01

    Circadian rhythms reflect extensive programming of biological activity that meets and exploits the challenges and opportunities offered by the periodic nature of the environment. In the present investigation, we recorded the total activity of athletic horses kept at four different times of the year (vernal equinox, summer solstice, autumn equinox and winter solstice), to evaluate the presence of seasonal variations of daily activity rhythms. Athletic Thoroughbred horses were kept in individual boxes with paddock. Digitally integrated measure of total activity of each mare was continuously recorded by actigraphy-based data loggers. Horse total activities were not evenly distributed over the day, but they were mainly diurnal during the year. Daily activity rhythms showed clear seasonal variations, with the highest daily amount of activity during the vernal equinox and the lowest during the winter solstice. Interestingly, the amount of activity during either photophase or scotophase changed significantly throughout the year. Circadian analysis of horse activities showed that the acrophase, the estimated time at which the peak of the rhythm occurs, did not change during the year, it always occurred in the middle of the photoperiod. Analysing the time structure of long-term and continuously measured activity and feeding could be a useful method to critically evaluate athletic horse management systems in which spontaneous locomotor activity and feeding are severely limited. Circadian rhythms are present in several elements of sensory motor and psychomotor functions and these would be taken into consideration to plan the training schedules and competitions in athletic horses. PMID:22443706

  1. Trends in the Annual Frequency of Atlantic Basin Intense Hurricanes: Implications for the Near-Term

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    During the interval of 1944-1997, 120 intense hurricanes (category 3, 4, or 5 on the Saffir-Simpson hurricane scale) have been observed in the Atlantic basin. These intense hurricanes have had an observed annual frequency of 0-7 events per year (having a mean, mode, and median equal to about 2 events per year), being preferentially lower during El Ninio years and higher during non-El Ninio years. Also, it has recently been established that a long-term downward trend in the annual frequency of intense hurricanes, spanning about five decades, has taken place, although this trend can, alternatively, be explained as a shift from a more active state prior to the mid 1960's to a less active state thereafter (rather than as a simple linear decline). In this paper, on the basis of 10-yr moving averages, the long4erm trend of the frequency of intense hurricanes is compared against one for the annual mean temperature at Armagh Observatory, Northern Ireland (which serves as a proxy for climatic change). Interestingly, the two sets of 10-yr moving averages correlate extremely well, especially, when incorporating a slight 6-yr lag between them (with temperature leading; r = 0.90). This suggests that the current leading trend of temperature, which had been downward, but now is upward, may portend a return to the more active state for intense hurricanes. Thus, the 1998 season (presuming the abatement of El Ninio prior to the start of the hurricane season), and for several years thereafter (at least, into the early years of the next millennium), may have an annual frequency of intense hurricanes that is commensurate with the previously observed active state that was seen prior to the mid 1960's. If true, then, the shift to the more active state, probably, occurred in the mid-to-late 1980's, apparently, having gone undetected because of the masking, or modulating, effect of El Ninio, which has been rampant since the mid-to-late 1980's.

  2. Hurricane Katrina impact on water quality in the East Pearl River, Mississippi

    NASA Astrophysics Data System (ADS)

    Shiller, Alan M.; Shim, Moo-Joon; Guo, Laodong; Bianchi, Thomas S.; Smith, Richard W.; Duan, Shuiwang

    2012-01-01

    SummaryHurricanes and other intense storms have previously been reported to cause short-term changes in surface water quality. We examined the water quality of the East Pearl River in southern Mississippi both before and after Hurricane Katrina caused extensive damage to the watershed in 2005. Our post-storm sampling began two months after the hurricane, and thus we missed any immediate short-term consequences. However, sampling over the following two years allowed us to examine whether damage to the watershed resulted in significant longer-term effects on water quality. Interpretation of the time series data is complicated by the natural seasonal and climatic variability of the system. Thus, we utilized chemical property-property plots as well as semi-empirical relationships to compare pre- and post-storm water quality. Our analysis suggests that hurricane-induced vegetative destruction within this river basin has not substantially changed the concentrations of DOC, POC, SPM, pH, or dissolved Fe. However, lignin-phenol analysis of colloidal organic matter did show some significant changes in carbon-normalized concentration as well as in some degradation and source parameters. Nonetheless, even these changes were small and likely temporary. This lack of change may be partly due to the slow degradation of woody materials that occurs only over a period of a few years, even in the sub-tropical climate of this region. Also, transport of DOC material from the land, through the soils, and into the river is not always instantaneous because DOC may stay in soils for a long time. Our work can be examined in the context of other research focused on hurricane effects on different time scales. For instance, shorter term hurricane influences, such as immediate flooding, can cause concurrent, short-lived water quality changes. Likewise, if increased hurricane activity (as might result from climate change) results in permanent landscape or ecosystem changes, then significant long

  3. Seasonal Activity Budget of Adult Baltic Ringed Seals

    PubMed Central

    Harkonen, Tero; Jüssi, Mart; Jüssi, Ivar; Verevkin, Michail; Dmitrieva, Lilia; Helle, Eero; Sagitov, Roustam; Harding, Karin C.

    2008-01-01

    Although ringed seals are important components in oceanic and fresh water ecosystems at high latitudes, little is known about how they exploit these harsh environments. Seasonal activity and diving behaviour of 19 adult Baltic ringed seals were studied by satellite telemetry. We elaborated an activity budget for ten months of the year, extending over the period from moult to the breeding season. Seals from three main regions showed explicit site fidelity and the distributions of animals tagged from different areas did not overlap, suggesting separate stocks. Both the mean duration and the mean depth of dives peaked in June and July. Seals spent 70% (females) to 85% (males) of their time diving in June and July which decreased to 50% in late autumn. Less than one percent of dives exceeded 10 min in females, while 10% of male dives lasted longer than 10 min in June to September. Less than one percent of dives lasted for more than 25 min. Both females and males were most active during day time and hauled out predominantly during the night. Activity patterns during the summer are suggested to be correlated to energy accumulation and prey availability. The information on seasonal activity budget is crucial for developing population energetic models where interactions between ringed seals and other trophic levels can be evaluated. PMID:18414676

  4. Hurricane Superintensity.

    NASA Astrophysics Data System (ADS)

    Persing, John; Montgomery, Michael T.

    2003-10-01

    High spatial and temporal resolution simulations using the Rotunno and Emanuel axisymmetric, cloud-resolving, hurricane model are found to greatly exceed Emanuel's energetically based upper bound for maximum potential intensity (E-MPI).Using a control simulation similar to that of Rotunno and Emanuel with a sea surface temperature (SST) of 26.13°C, the E-MPI is exceeded after 15 simulation days, after the warming of the eye is able to extend down to the ocean surface. At still higher resolution, the modeled storm greatly exceeds E-MPI more quickly, during initial spinup, and the resulting intensity for the standard numerical and microphysical parameters is found to converge with, respectively, radial and vertical grid spacing of 3.75 km and 312.5 m with maximum tangential winds (Vmax) of 90 m s-1. This is notably greater than the energetically based upper bound of Vmax = 55 m s-1. This `superintensity' occurs only in the presence of an enhancement of low-level eye entropy. The high-entropy air is entrained into the eyewall primarily by a breakdown of an azimuthal vortex sheet at the inner edge of the eyewall. Among the many underlying assumptions of E-MPI, only the violation of the related assumptions that the eyewall is neutral to moist ascent and that no entropy is fluxed from the eye to the eyewall can explain the degree of superintensity observed; other assumptions may be individually violated but their impacts on the intensity estimates are much smaller. The impact of the entrainment of heat from the eye to the eyewall on E-MPI theory is estimated through an ad hoc increase in the effective SST as a way of accounting for a second source of heat. This procedure produces a close estimate of the modeled intensity, but the problem is not closed since the degree of eyewall heating is not known a priori.Published observations and recent three-dimensional, cloud-resolving modeling studies are reviewed that appear to present various aspects of the observed entropy

  5. NASA's Three Pronged Approach to Hurricane Research

    NASA Astrophysics Data System (ADS)

    Kakar, R. K.

    2006-12-01

    The direct question: How can weather forecast duration and reliability be improved and guide research within NASA's Weather Focus Area? A mandate of the Weather Focus Area is to investigate high impact weather events, such as severe tropical storms, through a combination of new and improved space-based observations, high-altitude research aircraft and sophisticated numerical models. The field experiments involving the NASA research aircraft are vital components of this three-pronged approach. The Convection and Moisture Experiment (CAMEX) - 3 studied inner core dynamics, synoptic flow environment, land falling intensity change and the genesis environment for several hurricanes in a field experiment carried out during the 1998 season. CAMEX-4 studied rapid intensification, storm structure and dynamics, scale interactions and intercomparison of remote sensing techniques during the 2001 hurricane season. Several state of the art remote sensing instruments were used in these studies from the NASA DC-8 and ER-2 aircraft. During July 2005, NASA conducted its Tropical Cloud Systems and Processes (TCSP) experiment from San Jose, Costa Rica. The purpose of TCSP was to investigate the genesis and intensification of tropical cyclones primarily in the eastern North Pacific. This ocean basin was chosen because climatologically it represents the most concentrated region of cyclone formation on the planet and is within range of research aircraft deploying from Costa Rica. In 2005, however, the Caribbean was particularly active instead. We were greeted by two of the strongest July hurricanes on record for the Caribbean. The NASA ER-2 high altitude research aircraft flew twelve separate missions, carrying a payload of several remote sensing instruments. Many of these missions were flown in coordination with the NOAA Hurricane Research Division (HRD) P-3 Orion research aircraft as part of NOAA's 2005 Intensity Forecast Experiment. TCSP's successor program, the NAMMA-06 (NASA African

  6. Hurricane Dean

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Location: The coast of Mexico from Manzanillo to Mazatlan Categorization: Tropical Depression Sustained Winds: 35 mph (56 km/hr)

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Infrared ImageMicrowave Image

    [figure removed for brevity, see original site] Click on the image to access AIRS Weather Snapshot for Hurricane Dean

    Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity.

    Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is

  7. Hurricane Wave Power Extremes Along the U.S. Atlantic and Gulf Coasts

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Kossin, J. P.

    2007-12-01

    Extremes in wave power generated by tropical cyclones (TCs) will have an increasingly greater coastal impact as mean sea level rises. The Gulf 98th percentile (3 m) deep-water significant wave height, HS, measured at four open ocean NOAA buoys along the U.S. Atlantic coast and three Gulf buoys identifies extreme TC-generated wave events during the June-November hurricane season. Since 1978, there were substantially more significant HS events along the Atlantic coast than in the Gulf, with almost three times as many extreme wave events during September. The monthly distribution along both coasts peaks in September, with an equally likely chance of a significant TC wave event occurring during October as during August over the 1978-2006 data record. However, no clear trend in TC-generated extreme wave heights is observed. In general, the Atlantic buoys show a significant increase in seasonal wave power, PW, since 1995. PW during six of the hurricane seasons since 1995 exceeds all prior years at at least one of the Atlantic group buoys. In contrast to the Atlantic buoys, the Gulf buoys show exceptional seasonal PW levels only during the 2005 hurricane season when major Hurricanes Dennis, Emily, Katrina, Rita, and Wilma tracked trough the Gulf. The exceptional PW levels observed in the Gulf during 2005 were exceeded in the Atlantic during 1999, and approached during 1995 and 1996, attesting to a greater frequency of extreme TC-associated extreme wave events along the East Coast compared to the Gulf during the last four decades. A TC wave power index (WPI) increases significantly in the Atlantic during the mid-1990s, resulting largely from an increase in mid-to-late hurricane season TCs. The WPI is related to TC strength, size, duration, and frequency, and is highly correlated with the TC power dissipation index (PDI, Emanuel 2005). The close association of the WPI to hurricane activity implies that significant coastal impacts will increase as the PDI increases

  8. Response of Seasonal Atlantic Tropical Cyclone Activity to Suppression of African Easterly Waves in a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Patricola, C. M.; Saravanan, R.; Chang, P.

    2014-12-01

    Atlantic tropical cyclones and African easterly waves (AEWs) are strongly linked on the synoptic timescale, with about 85% of observed major Atlantic hurricanes originating from AEWs (e.g., Landsea et al. 1993). However, the influence of variability in AEWs on seasonal Atlantic tropical cyclone activity is not fully understood; a positive correlation between AEW activity and Atlantic tropical cyclone activity exists on the interannual timescale during just some periods of the observational record (e.g., Thorncroft and Hodges, 2001; Hopsch et al. 2007). This study investigates the impact of AEWs on seasonal Atlantic tropical cyclone activity using regional climate model simulations in which AEWs were either prescribed or removed through the lateral boundary condition (LBC). The control simulation (10-member ensemble) was run at 27 km resolution and used 6-hourly LBCs from the NCEP CFS Reanalysis and daily NOAA Optimum Interpolation (OI) V2 sea surface temperature (SST) from the year 2005. In the experiment AEWs were suppressed by filtering 2-10 day variability over tropical latitudes from the eastern LBC, located along the west coast of the Sahel. The difference in Atlantic tropical cyclone frequency was insignificant between the simulations in which AEWs were prescribed versus suppressed, indicating that AEWs are not necessary to maintain climatological tropical cyclone frequency even though tropical cyclones readily originate from these features. This further implies that seasonal Atlantic tropical cyclone frequency is uninfluenced by variability in AEWs, and that the value of AEW variability as a predictor of Atlantic tropical cyclones is limited to the weekly timescale. However in response to filtering AEWs, accumulated cyclone energy significantly increased by about 15% of the control simulation mean and the spatial pattern of track density shifted in association with changes in steering winds. This suggests the importance of AEWs in impacting tropical cyclone

  9. NASA GES DISC Hurricane Web Portal

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Leptoukh, G.; Ostrenga, D.; Rui, H.; Hulka, J.; Carlaw, L.

    2006-12-01

    This presentation will describe recent activities at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) to support hurricane monitoring, research and outreach activities. A newly developed web portal (URL: http://disc.sci.gsfc.nasa.gov/hurricane/) is designed for viewing and studying hurricanes by utilizing various measurements by NASA remote-sensing instruments. The portal consists of five main components: - Current conditions (in pre-selected regions and updated daily): the latest maps, animation and profiles from NASA satellites. At present, images or plots created using data from TRMM, AIRS, MODIS, MLS and CloudSat are available. Later, data from OMI and other instruments will be added. A new feature will be added to allow users to easily download/subset data associated with these images. - Past hurricane archive: maps, animation and profiles of past hurricanes were created using data from TRMM, AIRS, MODIS, MLS and CloudSat, allowing users to explore past hurricanes and download/subset data if necessary. - Science focus: examples/stories describing data usage in hurricane monitoring and research - Tools: descriptions and links of a number of in-house developed tools for hurricane exploration and event-based data ordering. For example, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, URL: http://giovanni.gsfc.nasa.gov), a series of online visualization and analysis systems, allows users to access data ranging from near-real-time to historical archives and generate customized analysis maps, plots and data on the fly over the Internet. A hurricane instance of Giovanni is under development. Mirador (URL: http://g0dup05u.ecs.nasa.gov/OPS/mirador/) is another in-house developed tool that offers a simplified interface for searching, browsing, and ordering Earth science data at NASA GES DICS. Users can do event based (e.g., entering a hurricane name) search and order data. - Hurricane viewer: provides

  10. Seasonal activity and morphological changes in martian gullies

    USGS Publications Warehouse

    Dundas, Colin M.; Diniega, Serina; Hansen, Candice J.; Byrne, Shane; McEwen, Alfred S.

    2012-01-01

    Recent studies of martian dune and non-dune gullies have suggested a seasonal control on present-day gully activity. The timing of current gully activity, especially activity involving the formation or modification of channels (which commonly have been taken as evidence of fluvial processes), has important implications regarding likely gully formation processes and necessary environmental conditions. In this study, we describe the results of frequent meter-scale monitoring of several active gully sites by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO). The aim is to better assess the scope and nature of current morphological changes and to provide improved constraints on timing of gully activity on both dune and non-dune slopes. Our observations indicate that (1) gully formation on Mars is ongoing today and (2) the most significant morphological changes are strongly associated with seasonal frost and defrosting activity. Observed changes include formation of all major components of typical gully landforms, although we have not observed alcove formation in coherent bedrock. These results reduce the need to invoke recent climate change or present-day groundwater seepage to explain the many martian gullies with pristine appearance.

  11. Seasonal Pacing - Match Importance Affects Activity in Professional Soccer.

    PubMed

    Link, Daniel; de Lorenzo, Michael F

    2016-01-01

    This research explores the influence of match importance on player activity in professional soccer. Therefore, we used an observational approach and analyzed 1,211 matches of German Bundesliga and 2nd Bundesliga. The importance measurement employed is based on post season consequences of teams involved in a match. This means, if a match result could potentially influence the final rank, and this rank would lead to different consequences for a team, such as qualification for Champions League opposed to qualification for Europe League, then this match is classified as important; otherwise not. Activity was quantified by TOTAL DISTANCE COVERED, SPRINTS, FAST RUNS, DUELS, FOULS and ATTEMPTS. Running parameters were recorded using a semi-automatic optical tracking system, while technical variables were collected by professional data loggers. Based on our importance classification, low important matches occurred at the beginning of round 29. A two-way ANOVA indicates significantly increased FAST RUNS (+4%, d = 0.3), DUELS (+16%, d = 1.0) and FOULS (+36%, d = 1.2) in important matches compared to low important ones. For FAST RUNS and FOULS, this effect only exists in Bundesliga. A comparison of the two leagues show that TOTAL DISTANCE COVERED (+3%, d = 0.9), SPRINTS (+25%, d = 1.4) and FAST RUNS (+15%, d = 1.4) are higher compared to 2nd Bundesliga, whilst FOULS is less in Bundesliga (-7%, d = 0.3). No difference in player activity was found between matches at the beginning of a season (round 1-6) and at the end of a season (round 29-34). We conclude that match importance influences player activity in German professional soccer. The most reasonable explanation is a conscious or unconscious pacing strategy, motivated by preserving abilities or preventing injury. Since this tendency mainly exists in Bundesliga, this may suggest that more skilled players show a higher awareness for the need of pacing. PMID:27281051

  12. Seasonal Pacing - Match Importance Affects Activity in Professional Soccer

    PubMed Central

    Link, Daniel; de Lorenzo, Michael F.

    2016-01-01

    This research explores the influence of match importance on player activity in professional soccer. Therefore, we used an observational approach and analyzed 1,211 matches of German Bundesliga and 2nd Bundesliga. The importance measurement employed is based on post season consequences of teams involved in a match. This means, if a match result could potentially influence the final rank, and this rank would lead to different consequences for a team, such as qualification for Champions League opposed to qualification for Europe League, then this match is classified as important; otherwise not. Activity was quantified by TOTAL DISTANCE COVERED, SPRINTS, FAST RUNS, DUELS, FOULS and ATTEMPTS. Running parameters were recorded using a semi-automatic optical tracking system, while technical variables were collected by professional data loggers. Based on our importance classification, low important matches occurred at the beginning of round 29. A two-way ANOVA indicates significantly increased FAST RUNS (+4%, d = 0.3), DUELS (+16%, d = 1.0) and FOULS (+36%, d = 1.2) in important matches compared to low important ones. For FAST RUNS and FOULS, this effect only exists in Bundesliga. A comparison of the two leagues show that TOTAL DISTANCE COVERED (+3%, d = 0.9), SPRINTS (+25%, d = 1.4) and FAST RUNS (+15%, d = 1.4) are higher compared to 2nd Bundesliga, whilst FOULS is less in Bundesliga (-7%, d = 0.3). No difference in player activity was found between matches at the beginning of a season (round 1–6) and at the end of a season (round 29–34). We conclude that match importance influences player activity in German professional soccer. The most reasonable explanation is a conscious or unconscious pacing strategy, motivated by preserving abilities or preventing injury. Since this tendency mainly exists in Bundesliga, this may suggest that more skilled players show a higher awareness for the need of pacing. PMID:27281051

  13. Predicting Hurricanes with Supercomputers

    SciTech Connect

    2010-01-01

    Hurricane Emily, formed in the Atlantic Ocean on July 10, 2005, was the strongest hurricane ever to form before August. By checking computer models against the actual path of the storm, researchers can improve hurricane prediction. In 2010, NOAA researchers were awarded 25 million processor-hours on Argonne's BlueGene/P supercomputer for the project. Read more at http://go.usa.gov/OLh

  14. Impacts of non-canonical El Niño patterns on Atlantic hurricane activity

    NASA Astrophysics Data System (ADS)

    Larson, Sarah; Lee, Sang-Ki; Wang, Chunzai; Chung, Eui-Seok; Enfield, David

    2012-07-01

    The impact of non-canonical El Niño patterns, typically characterized by warmer than normal sea surface temperatures (SSTs) in the central tropical Pacific, on Atlantic tropical cyclone (TC) is explored by using composites of key Atlantic TC indices and tropospheric vertical wind shear over the Atlantic main development region (MDR). The highlight of our major findings is that, while the canonical El Niño pattern has a strong suppressing influence on Atlantic TC activity, non-canonical El Niño patterns considered in this study, namely central Pacific warming, El Niño Modoki, positive phase Trans-Niño, and positive phase Pacific meridional mode, all have insubstantial impact on Atlantic TC activity. This result becomes more conclusive when the impact of MDR SST is removed from the Atlantic TC indices and MDR wind shear by using the method of linear regression. Further analysis suggests that the tropical Pacific SST anomalies associated with the non-canonical El Niño patterns are not strong enough to cause a substantial warming of the tropical troposphere in the Atlantic region, which is the key factor that increases the wind shear and atmospheric static stability over the MDR. During the recent decades, the non-canonical El Niños have been more frequent while the canonical El Niño has been less frequent. If such a trend continues in the future, it is expected that the suppressing effect of El Niño on Atlantic TC activity will diminish and thus the MDR SST will play a more important role in controlling Atlantic TC activity in the coming decades.

  15. Impacts of non-canonical El Niño patterns on Atlantic hurricane activity

    NASA Astrophysics Data System (ADS)

    Larson, S.; Lee, S.; Wang, C.; Chung, E.; Enfield, D. B.

    2012-12-01

    The impact of non-canonical El Niño patterns, typically characterized by warmer than normal sea surface tempera- tures (SSTs) in the central tropical Pacific, on Atlantic tropical cyclone (TC) is explored by using composites of key Atlantic TC indices and tropospheric vertical wind shear over the Atlantic main development region (MDR). The highlight of our major findings is that, while the canonical El Niño pattern has a strong suppressing influence on Atlantic TC activity, non-canonical El Niño patterns con- sidered in this study, namely central Pacific warming, El Niño Modoki, positive phase Trans-Niño, and positive phase Pacific meridional mode, all have insubstantial impact on Atlantic TC activity. This result becomes more conclu- sive when the impact of MDR SST is removed from the Atlantic TC indices and MDR wind shear by using the method of linear regression. Further analysis suggests that the tropical Pacific SST anomalies associated with the non- canonical El Niño patterns are not strong enough to cause a substantial warming of the tropical troposphere in the Atlantic region, which is the key factor that increases the wind shear and atmospheric static stability over the MDR. During the recent decades, the non-canonical El Niños have been more frequent while the canonical El Niño has been less frequent. If such a trend continues in the future, it is expected that the suppressing effect of El Niño on Atlantic TC activity will diminish and thus the MDR SST will play a more important role in controlling Atlantic TC activity in the coming decades.

  16. Hurricanes : get prepared !

    NASA Astrophysics Data System (ADS)

    Nauroy, Maëlle

    2013-04-01

    Living in France, near Paris, we have the chance not to be exposed to natural hazards. But on TV we can see, almost every year, geological disasters affecting people from all around the world. Sometimes it also affects us indirectly. For example, the Icelandic volcanic eruption of 2010 prevented some of my students to go on holidays because of the air travel disruption. Since then, every year, we study a natural disaster that has just made the headlines. This topic is of great interest for students because it is connected with their everyday life, with what they see on the news at that time. This year, they were amazed that a city as New York could be struck so violently by a hurricane. Understanding the formation of a hurricane and the consequences of such an event made them think about how to educate people and warn them in case of a hurricane. As a matter of fact, history teaches that a lack of hurricane awareness and preparation are common threads among all major hurricane disasters. By knowing the vulnerability and what actions people should take, it is possible to reduce the effects of a hurricane disaster. They designed posters, showing how a hurricane form, the risks and what to do in case of a hurricane alert. They used TV news broadcasts and educational videos as well as videos from the National Hurricane Center [of the United-States]. Later, they tried to model the formation of a hurricane and the consequences of storm surge, high winds and inland flooding on a coastal area. They filmed their experiments in order to create an interactive exhibition on hurricanes, to be displayed in the school library for other students.

  17. Changes in mid-late Holocene hurricane activity influence coastal dynamics in northeastern Gulf of Mexico - A case study in the Choctawhatchee Bay, Destin FL

    NASA Astrophysics Data System (ADS)

    Ranasinghage, P. N.; Donnelly, J. P.; Evans, R. L.; Ashton, A. D.; Condon, K.; Sullivan, R.; Beltzer, A.; Coastal Systems Group

    2011-12-01

    Hurricanes greatly influence coastal changes in the northern Gulf of Mexico. Sedimentological, geochemical, and productivity indicators show that Choctawhatchee Bay, Destin, FL underwent a series of hydrological changes during the mid-late Holocene period. Sedimentological evidence suggests that these changes were, at least in part, driven by variations in the frequency of intense hurricane landfalls in the area. Based on CHIRP seismic reflectance images, a total of 12 sediment cores, ranging in length from 2-5 m, were extracted from Choctawhatchee Bay. Stratigraphy of these cores was studied using X radiograph and elemental composition was measured at 1mm resolution using an XRF core scanner. Grain size and color reflectance were measured at 0.5-1 cm resolution. Principal component analysis (PCA) was performed on the first derivatives of the combined visible - nIR color reflectance data base to derive compositional data. Environmental proxies (Ca/Ti, Sr/Ti and grain size) indicate that Choctawhatchee Bay was a high energy environment with marine influence between ~6000 yrs BP and ~ 3200 yrs BP and also between ~ 2500 - ~1000 yrs BP. Decreases in gain size, Ca/Ti, and Sr/Ti ratios and an increase in blue-green and eukaryotic algae, as shown by the PCA, indicate gradual isolation and greater freshwater influence in the bay between ~3200 - ~2500 yrs BP. Since sea level has been relatively stable during the mid-late Holocene in the Gulf of Mexico, these changes are most likely related to changes in barrier morphology across the mouth of the bay. During periods of higher hurricane activity, frequent barrier breaching opens the bay, whereas barrier growth during quiescent periods isolates the bay from direct marine influence. The high energy environment between ~2500 - ~ 1000 yrs BP begins with a coarse storm sand layer, This period is also marked by an unconformity, formed by the erosion of a possible strong storm event occurred ~1000 yrs BP . The presence of a number

  18. Atlantic Hurricanes in Future Scenarios and Associated Insurance Losses

    NASA Astrophysics Data System (ADS)

    Kleppek, S.; Wüest, M.; Raible, C. C.; Kitoh, A.; Murakami, H.; Stocker, T. F.; Muccione, V.; Bresch, D. N.

    2009-04-01

    The hurricane season 2005 in the Atlantic was the most intense season since the first records with 28 tropical storms of which 15 reached hurricane character (Trenberth and Shea, 2006). Although this year is considered to be an outlier, a substantial increase of the activity of tropical cyclones (TCs) in the tropical Atlantic over the last decades is documented (Sriver and Huber, 2006; Hoyos et al., 2006; Webster et al. 2005; Emanuel, 2005). The role of the sea surface temperatures in the tropical Atlantic for the tropical storm activity was discussed already in Emanuel (2005) and Hoyos et al. (2006). Future changes of TC activity is currently under debate (e. g. Bengston et al., 2007). We contribute to this by applying our TC detection and tracking method which was developed for ERA-40 data (Kleppek et al., 2008) to time-slice experiments of two models: The ECHAM5 atmospheric model (MPI, Hamburg, Germany) and the 20 km-mesh, high resolution AGCM (MRI, Tsukuba-city, Japan). From each model two climate simulations are available: For the ECHAM5 a control run for the period 1960-90 and a SRES A2 scenario run for the period 2070-2100 and for the Mesh-AGCM a 20 years run with present day conditions and a 20 years run with end-of-21-century A2 conditions. To estimate losses of the ECHAM5- and Mesh-model hurricanes on the US coast, we have developed probabilistic hurricane event sets which are used as input for catXos, the loss model of the Swiss Reinsurance Company. Preliminary results show higher wind speeds of the ECHAM5 scenario run hurricanes than in the control run, but the numbers of the hurricanes of Saffir-Simpson-scale 2 to 4 show no clear difference between the control and scenario run of ECHAM5. Even though the resolution of the simulation is rather high no hurricanes of Saffir-Simpson-scale 5 are detected. The total number of TCs decreases for the scenario run. This applies as much to the TCs over the Atlantic as over the US-coast. References: Bengston L., K

  19. Mangrove forest recovery in the Everglades following Hurricane Wilma

    USGS Publications Warehouse

    Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J., III; Zieman, Jay C.

    2009-01-01

    On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.

  20. The strong association between western Sahelian monsoon rainfall and intense atlantic hurricanes

    SciTech Connect

    Landsea, C.W.; Gray, W.M. )

    1992-05-01

    Seasonal variability of Atlantic basin tropical cyclones is examined with respect to the monsoon rainfall over West Africa. Variations of intense hurricanes are of the most interest, as they are responsible for over three-quarters of United States tropical cyclone spawned destruction, though they account for only one-fifth of all landfalling cyclones. Intense hurricanes have also shown a strong downward trend during the last few decades. It is these storms that show the largest concurrent association with Africa's western Sahelian June-September rainfall for the years 1949-90. Though the Sahel is currently experiencing a multidecadal drought, the relationship between Atlantic tropical cyclones and western Sahelian rainfall is not dependent on the similar downward trends in both datasets. A detrended analysis confirms that a strong association still exists, though reduced somewhat in variance explained. Additionally, independent data from the years 1899 to 1948 substantiate the existence of the tropical cyclone-western Sahelian rainfall association. The fact that the Sahel periodically experiences multidecadal wet and dry regimes suggests that the current Sahelian drought, which began in the late 1960s, could be a temporary condition that may end in the near future. When this occurs, the Atlantic hurricane basin-especially the Caribbean islands and the United States East Coast-will likely see a large increase in intense hurricane activity associated with abundant Sahelian rainfall similar to the period of the late 1940s through the 1960s.

  1. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; Black, Peter G.

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  2. Hurricane! Coping With Disaster

    NASA Astrophysics Data System (ADS)

    Lifland, Jonathan

    A new AGU book, Hurricane! Coping With Disaster, analyzes the progress made in hurricane science and recounts how advances in the field have affected the public's and the scientific community's understanding of these storms. The book explores the evolution of hurricane study, from the catastrophic strike in Galveston, Texas in 1900—still the worst natural disaster in United States history—to today's satellite and aircraft observations that track a storm's progress and monitor its strength. In this issue, Eos talks with Robert Simpson, the books' senior editor.Simpson has studied severe storms for more than 60 years, including conducting one of the first research flights through a hurricane in 1945. He was the founding director of the (U.S.) National Hurricane Research Project and has served as director of the National Hurricane Center. In collaboration with Herbert Saffir, Simpson helped design and implement the Saffir/Simpson damage potential scale that is widely used to identify potential damage from hurricanes.

  3. New Hurricane Exhibit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  4. Track-pattern-based seasonal prediction model for intense tropical cyclone activities over the North Atlantic and the western North Pacific basins

    NASA Astrophysics Data System (ADS)

    Choi, W.; Ho, C. H.

    2015-12-01

    Intense tropical cyclones (TCs) accompanying heavy rainfall and destructive wind gusts sometimes cause incredible socio-economic damages in the regions near their landfall. This study aims to analyze intense TC activities in the North Atlantic (NA) and the western North Pacific (WNP) basins and develop their track propensity seasonal prediction model. Considering that the number of TCs in the NA basin is much smaller than that in the WNP basin, different intensity criteria are used; category 1 and above for NA and category 3 and above for WNP based on Saffir-Simpson hurricane wind scale. By using a fuzzy clustering method, intense TC tracks in the NA and the WNP basins are classified into two and three representative patterns, respectively. Each pattern shows empirical relationships with climate variabilities such as sea surface temperature distribution associated with El Niño/La Niña or Atlantic Meridional Mode, Pacific decadal oscillation, upper and low level zonal wind, and strength of subtropical high. The hybrid statistical-dynamical method has been used to develop the seasonal prediction model for each pattern based on statistical relationships between the intense TC activity and seasonal averaged key predictors. The model performance is statistically assessed by cross validation for the training period (1982-2013) and has been applied for the 2014 and 2015 prediction. This study suggests applicability of this model to real prediction work and provide bridgehead of attempt for intense TC prediction.

  5. Analyzing Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Convertino, Angelyn; Meyer, Stephan; Edwards, Becca

    2015-03-01

    Post-tropical Storm Sandy underwent extratropical transition shortly before making landfall in southern New Jersey October 29 2012. Data from this system was compared with data from Hurricane Ike (2008) which represents a classic hurricane with a clear eye wall and symmetry after landfall. Storm Sandy collided with a low pressure system coming in from the north as the hurricane made landfall on the US East coast. This contributed to Storm Sandy acting as a non-typical hurricane when it made landfall. Time histories of wind speed and wind direction were generated from data provided by Texas Tech's StickNet probes for both storms. The NOAA Weather and Climate program were used to generate radar loops of reflectivity during the landfall for both storms; these loops were compared with time histories for both Ike and Sandy to identify a relationship between time series data and storm-scale features identified on radar.

  6. Hurricanes benefit bleached corals.

    PubMed

    Manzello, Derek P; Brandt, Marilyn; Smith, Tyler B; Lirman, Diego; Hendee, James C; Nemeth, Richard S

    2007-07-17

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community. PMID:17606914

  7. Hurricane Irene Over Bahamas

    NASA Video Gallery

    Video of Hurricane Irene compiled from a series of Astronaut Photography still images taken from the International Space Station on Aug. 24, 2011 (2:12-2:15PM EST). These frames were taken as the I...

  8. NASA Hurricane Mission - GRIP

    NASA Video Gallery

    This is an overview of NASA's hurricane research campaign called Genesis and Rapid Intensification Processes (GRIP). The six-week mission was conducted in coordination with NOAA and the National Sc...

  9. Hurricanes benefit bleached corals

    PubMed Central

    Manzello, Derek P.; Brandt, Marilyn; Smith, Tyler B.; Lirman, Diego; Hendee, James C.; Nemeth, Richard S.

    2007-01-01

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community. PMID:17606914

  10. Hurricane risk assessment: Rollback or ride out

    NASA Technical Reports Server (NTRS)

    Wohlman, Richard A.

    1993-01-01

    Winds in excess of 74.5 knots could cause severe damage to a space shuttle on the launch pad. Current plans exist for rollback to the Vehicle Assembly Building, but require 48 hour leadtime to implement. Decisions based upon cost/loss are evaluated to ascertain whether predetermined forecast probabilities for rollback/rideout decisions can be made far in advance of hurricane seasons for use in decision making.

  11. Lagrangian coherent structures in hurricanes

    NASA Astrophysics Data System (ADS)

    Lipinski, Doug; Mohseni, Kamran

    2011-11-01

    We present the results of a ``surface tracking'' algorithm for efficiently computing Lagrangian coherent structure (LCS) surfaces in three dimensions. The algorithm is applied to data from a Weather Research and Forecasting simulation of hurricane Rita. The highly complicated LCS surfaces reveal complex dynamics and transport in the hurricane, particularly in the lower atmosphere boundary layer and the upper level outflow. The lower level transport in the hurricane is of particular importance for accurate intensity prediction in hurricane forecasts due to the uncertainty in the ocean-atmosphere interaction. Understanding the lower level transport and mixing behavior in hurricanes could lead to significant advances in hurricane intensity prediction.

  12. Seasonality in circadian locomotor activity and serum testosterone level in the subtropical tree sparrow (Passer montanus).

    PubMed

    Dixit, Anand S; Singh, Namram S

    2016-05-01

    Seasonality in daily locomotor activity pattern was investigated in the subtropical tree sparrow by exposing a group of birds to natural day lengths (NDL) for 30days and another group to 12L/12D for 14days followed by transfer to constant dim light (LLdim) for another 15days in four different seasons of the year. Serum testosterone levels were also measured during different seasons. Sparrows, under NDL, exhibited distinct circadian rhythmicity in their locomotor activity with almost similar general pattern in different seasons that restricted mainly to the light hours. However, they showed season-dependent differences in the characteristics of circadian locomotor activity rhythm. Birds, when exposed to 12L/12D, showed entrainment of their locomotor activity rhythm with the activity confined mainly during the light phase. Though, tau (τ) under free run conditions did not show any significant difference, the activity period varied significantly in different seasons. The highest level of testosterone was recorded in the spring season that corresponded with the maximum locomotor activity in spring months. The seasonality in daily locomotor activity correlates with the seasonal changes in testosterone levels suggesting the influence of gonadal steroids on endogenous circadian system which is indicative of adaptation of tree sparrow to local photoperiodic conditions. PMID:26945648

  13. Hurricane Data Analysis Tool

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    In order to facilitate Earth science data access, the NASA Goddard Earth Sciences Data Information Services Center (GES DISC) has developed a web prototype, the Hurricane Data Analysis Tool (HDAT; URL: http://disc.gsfc.nasa.gov/HDAT), to allow users to conduct online visualization and analysis of several remote sensing and model datasets for educational activities and studies of tropical cyclones and other weather phenomena. With a web browser and few mouse clicks, users can have a full access to terabytes of data and generate 2-D or time-series plots and animation without downloading any software and data. HDAT includes data from the NASA Tropical Rainfall Measuring Mission (TRMM), the NASA Quick Scatterometer(QuikSCAT) and NECP Reanalysis, and the NCEP/CPC half-hourly, 4-km Global (60 N - 60 S) IR Dataset. The GES DISC archives TRMM data. The daily global rainfall product derived from the 3-hourly multi-satellite precipitation product (3B42 V6) is available in HDAT. The TRMM Microwave Imager (TMI) sea surface temperature from the Remote Sensing Systems is in HDAT as well. The NASA QuikSCAT ocean surface wind and the NCEP Reanalysis provide ocean surface and atmospheric conditions, respectively. The global merged IR product, also known as, the NCEP/CPC half-hourly, 4-km Global (60 N -60 S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged pixel-resolution IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The GES DISC has collected over 10 years of the data beginning from February of 2000. This high temporal resolution (every 30 minutes) dataset not only provides additional background information to TRMM and other satellite missions, but also allows observing a wide range of meteorological phenomena from space, such as, hurricanes, typhoons, tropical cyclones, mesoscale convection system, etc. Basic functions include selection of area of

  14. The Unusual Evolution of Hurricane Arthur 2014

    NASA Technical Reports Server (NTRS)

    Folmer, Michael; Line, William; Cangialosi, John; Halverson, Jeffery; Berndt, Emily; Sienkiewicz, Joseph; Goodman, Steve; Goldberg, Mitch

    2015-01-01

    Hurricane Arthur (2014) was an early season hurricane that had its roots in a convective complex in the Southern Plains of the U.S. As the complex moved into northern Texas, a Mesoscale Convective Vortex (MCV) formed and drifted towards the east of the southern U.S. for a few days before emerging over the southwest Atlantic near South Carolina. The MCV drifted south and slowly acquired tropical characteristics, eventually becoming a Category 2 hurricane that would affect much of eastern North Carolina prior to the 4th of July holiday weekend. Arthur continued up the coast, brushing portions of southeast New England and merged with an upper-level low, completing a full tropical to extratropical-transition in the process, producing damaging wind gusts in portions of the Canadian Maritimes. As part of the GOES-R and JPSS Satellite Proving Grounds, multiple proxy and operational products were available to analyze and forecast this complex evolution. The Storm Prediction Center had products available to monitor the initial severe thunderstorm aspect, while the National Hurricane Center and Ocean Prediction Center were able to monitor the tropical and extratropical transition of Arthur using various convective and red, green, blue (RGB) products that have been introduced in recent years. This paper will discuss Arthur's evolution through the eyes of the various Satellite Proving Ground demonstrations.

  15. Dual Hurricanes in the Atlantic

    NASA Video Gallery

    Cameras on the International Space Station show views of Hurricane Julia and Hurricane Igor, both moving west-northwest across the Atlantic on Sept. 14, 2010. At the time the video was captured, Ju...

  16. IMERG Video of Hurricane Sandra

    NASA Video Gallery

    NASA IMERG Data Hurricane Sandra's Heavy Rainfall This IMERG rainfall analysis indicates that moisture flowing from Hurricane Sandra caused heavy rainfall totals of over 700 mm (28 inches) in an ar...

  17. Cold Season Ground Validation Activities in support of GPM

    NASA Astrophysics Data System (ADS)

    Hudak, D. R.; Petersen, W. A.

    2012-12-01

    A fundamental component of the next-generation global precipitation data products that will be addressed by the GPM mission is the hydrologic cycle at higher latitudes. In this respect, falling snow represents a primary contribution to regional atmospheric and terrestrial water budgets. The current study provides provide information on the precipitation microphysics and processes associated with cold season precipitation and precipitating cloud systems across multiple scales. It also addresses the ability of in-situ ground-based sensors as well as multi-frequency active and passive microwave sensors to detect and estimate falling snow, and more generally to contribute to our knowledge and understanding of the complete global water cycle. The work supports the incorporation of appropriate physics into GPM snowfall retrieval algorithms and the development of improved ground validation techniques for GPM product evaluation. Important information for developing GPM falling snow retrieval algorithms will be provided by a field campaign that took place in the winter of 2011/12 in the Great Lakes area of North America, termed the GPM Cold Season Precipitation Experiment (GCPEx). GCPEx represented a collaboration among the NASA, Environment Canada (EC), the Canadian Space Agency and several US, Canadian and European universities. The data collection strategy for GCPEx was coordinated, stacked high-altitude and in-situ cloud aircraft missions sampling within a broader network of ground-based volumetric observations and measurements. The NASA DSC-8 research aircraft provided a platform for the downward-viewing dual-frequency radar and multi-frequency radiometer observations. The University of North Dakota Citation and the Canadian NRC Convair-580 aircraft provided in-situ profiles of cloud and precipitation microphysics using a suite of optical array probes and bulk measurement instrumentation. Ground sampling was focused about a densely-instrumented central location that is

  18. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  19. Hurricane Katrina: A Teachable Moment

    ERIC Educational Resources Information Center

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  20. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  1. Seasonal Activity of Gullies in South Polar Pits

    NASA Astrophysics Data System (ADS)

    Raack, Jan; Reiss, Dennis; Vincendon, Mathieu; Ruesch, Ottaviano; Appéré, Thomas; Hiesinger, Harald

    2013-04-01

    Seasonal activity of gullies under current climatic conditions on Mars was observed by [1-6]. These observations were made on mountain and/or crater slopes [2-4], on dune slopes at mid-latitudes [2,5,6], and on slopes of polar pits [1,2]. The suggested mechanisms to form new gully deposits are melting of H2O ice [3,5] or sublimation/removal of CO2 ice [2,4,6]. With high-resolution imaging, temperature, and spectral data we analyzed gully changes in a polar pit north of Sisyphi Cavi at ~68.5°S and ~1.5°E. One investigated gully shows dark material within the channel in martian years (MY) 28, 29, and 30. The dark material results to the formation of new dark deposits (dark flow-like features) at LS ~223° in MY 28, between LS 209° and 226° (beginning of spring) in MY 29, and between LS 218° and LS 249° in MY 30. We observed a new deposition of material at the channel termini, which shortens the channel by about 40 m in MY 29. Maximum surface temperature data of the area indicate that temperatures in autumn and winter are ~150 K. In mid-spring (between LS ~220° and ~250°) temperatures increase rapidly up to ~270 K due to solar insolation and ice sublimation. To better understand the temporal evolution of H2O and CO2, we processed near infrared spectral data and analyzed the strengths of absorption bands caused by these volatiles (ices). These investigations show that CO2 and H2O ices sublimate between LS ~225° and ~240°. This is also the time range when temperatures rise rapidly and when gully changes occurred. More detailed analyses show that the spectral signatures of ice are generally lower on the dark flow features within the gully channel / above the gully apron compared to the surrounding terrain. Our investigations either imply 1) a generally lower value of volatiles within gully channels due to non uniform volatile deposition on the slope, 2) a faster sublimation of volatiles within gully channels, or 3) deposition of debris above ice from the

  2. Hurricane Gilbert briefing

    NASA Astrophysics Data System (ADS)

    Bush, Susan M.

    Hurricane Gilbert has been called one of the most monstrous hurricanes of the 20th century, cutting a nearly 2000-mile swath across Jamaica, Mexico's Yucatan Peninsula, and along the border of Texas and Mexico September 10-17. Death toll was about 200, and damage estimates were above $8 billion.A briefing on the effects of Gilbert was held in Washington, D.C., on October 24. It was sponsored by the Committee on Natural Disasters of the National Academy of Sciences, with the Office of U.S. Foreign Disaster Assistance and the National Oceanic and Atmospheric Administration.

  3. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N.

    2013-08-01

    Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels ("araneiform" terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.

  4. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes

    USGS Publications Warehouse

    Hansen, C.J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N.

    2013-01-01

    Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels (“araneiform” terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.

  5. Uncertainty Analysis of Historical Hurricane Data

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2007-01-01

    An analysis of variance (ANOVA) study was conducted for historical hurricane data dating back to 1851 that was obtained from the U. S. Department of Commerce National Oceanic and Atmospheric Administration (NOAA). The data set was chosen because it is a large, publicly available collection of information, exhibiting great variability which has made the forecasting of future states, from current and previous states, difficult. The availability of substantial, high-fidelity validation data, however, made for an excellent uncertainty assessment study. Several factors (independent variables) were identified from the data set, which could potentially influence the track and intensity of the storms. The values of these factors, along with the values of responses of interest (dependent variables) were extracted from the data base, and provided to a commercial software package for processing via the ANOVA technique. The primary goal of the study was to document the ANOVA modeling uncertainty and predictive errors in making predictions about hurricane location and intensity 24 to 120 hours beyond known conditions, as reported by the data set. A secondary goal was to expose the ANOVA technique to a broader community within NASA. The independent factors considered to have an influence on the hurricane track included the current and starting longitudes and latitudes (measured in degrees), and current and starting maximum sustained wind speeds (measured in knots), and the storm starting date, its current duration from its first appearance, and the current year fraction of each reading, all measured in years. The year fraction and starting date were included in order to attempt to account for long duration cyclic behaviors, such as seasonal weather patterns, and years in which the sea or atmosphere were unusually warm or cold. The effect of short duration weather patterns and ocean conditions could not be examined with the current data set. The responses analyzed were the storm

  6. Detection of low frequency hurricane emissions using a ring laser interferometer

    NASA Astrophysics Data System (ADS)

    Dunn, Robert W.; Slaton, William V.; Kendall, Lauren M.

    2012-10-01

    Over the last decade, large horizontally mounted ring laser interferometers have demonstrated the capacity to measure numerous geophysical effects. In this paper, responses from large ring laser interferometers to low frequency hurricane emissions are presented. Hurricanes create a broad spectrum of noise that extends into the millihertz range. In addition to microseisms, hurricanes with established eyewalls were found to create distinct frequency peaks close to 7 mHz as they came ashore or moved over shallow water. Selected emissions from Hurricanes Katrina, Wilma, and Dean are presented. The exact coupling mechanism between the ˜7 mHz hurricane emissions and the ring lasers remains under active investigation.

  7. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel

    PubMed Central

    Huestis, Diana L.; Yaro, Alpha S.; Traoré, Adama I.; Dieter, Kathryne L.; Nwagbara, Juliette I.; Bowie, Aleah C.; Adamou, Abdoulaye; Kassogué, Yaya; Diallo, Moussa; Timbiné, Seydou; Dao, Adama; Lehmann, Tovi

    2012-01-01

    SUMMARY Malaria in Africa is vectored primarily by the Anopheles gambiae complex. Although the mechanisms of population persistence during the dry season are not yet known, targeting dry season mosquitoes could provide opportunities for vector control. In the Sahel, it appears likely that M-form A. gambiae survive by aestivation (entering a dormant state). To assess the role of eco-physiological changes associated with dry season survival, we measured body size, flight activity and metabolic rate of wild-caught mosquitoes throughout 1 year in a Sahelian locality, far from permanent water sources, and at a riparian location adjacent to the Niger River. We found significant seasonal variation in body size at both the Sahelian and riparian sites, although the magnitude of the variation was greater in the Sahel. For flight activity, significant seasonality was only observed in the Sahel, with increased flight activity in the wet season when compared with that just prior to and throughout the dry season. Whole-organism metabolic rate was affected by numerous biotic and abiotic factors, and a significant seasonal component was found at both locations. However, assay temperature accounted completely for seasonality at the riparian location, while significant seasonal variation remained after accounting for all measured variables in the Sahel. Interestingly, we did not find that mean metabolic rate was lowest during the dry season at either location, contrary to our expectation that mosquitoes would conserve energy and increase longevity by reducing metabolism during this time. These results indicate that mosquitoes may use mechanisms besides reduced metabolic rate to enable survival during the Sahelian dry season. PMID:22623189

  8. On hurricane energy

    NASA Astrophysics Data System (ADS)

    Michaud, Louis M.

    2012-10-01

    Warm seawater is the energy source for hurricanes. Interfacial sea-to-air heat transfer without spray ranges from 100 W m-2 in light wind to 1,000 W m-2 in hurricane force wind. Spray can increase sea-to-air heat transfer by two orders of magnitude and result in heat transfers of up to 100,000 W m-2. Drops of spray falling back in the sea can be 2-4 °C colder than the drops leaving the sea, thus transferring a large quantity of heat from sea to air. The heat of evaporation is taken from the sensible heat of the remainder of the drop; evaporating approximately 0.3 % of a drop is sufficient to reduce its temperature to the wet bulb temperature of the air. The heat required to evaporate hurricane precipitation is roughly equal to the heat removed from the sea indicating that sea cooling is due to heat removal from above and not to the mixing of cold water from below. The paper shows how case studies of ideal thermodynamic processes can help explain hurricane intensity.

  9. Hurricane Proof This!

    ERIC Educational Resources Information Center

    Sterling, Donna R.

    2010-01-01

    While learning about the types of weather events that occur in the local area, students in grades 4-6 were asked to consider how structures can be built to withstand extreme weather conditions. Teams of students designed, constructed, and tested buildings to withstand hurricanes and designed the tests they would use to evaluate their structures.…

  10. Seasonal and Daily Variation in Physical Activity among Three-Year-Old Finnish Preschool Children

    ERIC Educational Resources Information Center

    Soini, Anne; Tammelin, Tuija; Sääkslahti, Arja; Watt, Anthony; Villberg, Jari; Kettunen, Tarja; Mehtälä, Anette; Poskiparta, Marita

    2014-01-01

    The purposes of this study were to assess seasonal, daily, and gender variations in children's physical activity (PA). ActiGraph GT3X accelerometers were used to record the three-year-old children's PA levels for five consecutive days in autumn and winter. Complete data for both seasons were obtained for 47 children. Despite a…

  11. Hurricane Properties for KSC and Mid-Florida Coastal Sites

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Rawlins, Michael A.; Kross, Dennis A.

    2000-01-01

    Hurricane information and climatologies are needed at Kennedy Space Center (KSC) Florida for launch operational planning purposes during the late summer and early fall Atlantic hurricane season. Also these results are needed to be used in estimating the potential magnitudes of hurricane and tropical storm impact on coastal Florida sites when passing within 50, 100 and 400 nm of that site. Roll-backs of the Space Shuttle and other launch vehicles, on pad, are very costly when a tropical storm approaches. A decision for the vehicle to roll-back or ride-out needs to be made. Therefore the historical Atlantic basin hurricane climatological properties were generated to be used for operational planning purposes and in the estimation of potential damage to launch vehicles, supporting equipment, buildings, etc.. The historical 1885-1998 Atlantic basin hurricane data were compiled and analyzed with respect to the coastal Florida site of KSC. Statistical information generated includes hurricane and tropical storm probabilities for path, maximum wind, and lowest pressure, presented for the areas within 50, 100 and 400 nm of KSC. These statistics are then compared to similar parametric statistics for the entire Atlantic basin.

  12. Associations of season and region on objectively assessed physical activity and sedentary behaviour.

    PubMed

    Hagströmer, Maria; Rizzo, Nico S; Sjöström, Michael

    2014-01-01

    Seasonal and regional variation may influence physical activity (PA) patterns. These associations are in need of further investigation. The objective of the current study was to examine the association of season and region on objectively measured PA. The study was designed as a cross-sectional study with 1172 participants living in Sweden. Data on PA were collected throughout a calendar year using accelerometry. Regions were categorised as south (Götaland), central (Svealand) and north (Norrland). Outcome variables included accelerometer-measured mean counts per minute, sedentary time and time in low intensity and moderate-intensity physical activity (MVPA) or greater. ANCOVA was used to determine the associations of season and region with PA, adjusting for sex, age, body mass index (BMI) and education. The results showed that during the Spring season more time was spent in MVPA than during the Autumn. For participants living in the south of Sweden, a significant trend for season was found for MVPA, with Spring having the highest MVPA (P = 0.025). Season had a borderline significant association with MVPA or higher intensity activities (P = 0.051). No significant effects of region or season on total PA, low-intensity PA and sedentary periods of time were observed. The results indicate that studies conducted in a population living in high latitudes, may not be significantly affected by seasonality or region when assessing PA. PMID:24102558

  13. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... COMMISSION 10 CFR Parts 50 and 52 Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... Hurricane and Hurricane Missiles for Nuclear Power Plants.'' This regulatory guide provides licensees and...- basis hurricane and design-basis hurricane-generated missiles that a nuclear power plant should...

  14. Possible influence of dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Lohmann, Ulrike

    2014-05-01

    Tropical Cyclones (TCs) belong to the most extreme events in nature. In the past decade, the possible impact of dust on Atlantic hurricanes receives growing interest. As mineral dust is able to absorb incoming solar radiation and therefore warm the surrounding air, the presence of dust can lead to a reduction of sea surface temperature (SST) and an increase in atmospheric stability. Furthermore, resulting baroclinic effects and the dry Saharan easterly jet lead to an enhanced vertical shear of the horizontal winds. SST, stability, moisture and vertical wind shear are known to potentially impact hurricane activity. But how Saharan dust influences these prerequisites for hurricane formation is not yet clear. Some dynamical mechanisms induced by the SAL might even strengthen hurricanes. An adequate framework for investigating the possible impact of dust on hurricanes is comparing high resolution simulations (~0.5°x0.5°, 31 vertical levels) with and without radiatively active dust aerosols. To accomplish this task, we are using the general circulation model ECHAM6 coupled to a modified version of the aerosol model HAM, ECHAM6-HAM-Dust. Instead of the five aerosol species HAM normally contains, the modified version takes only insoluble dust into account, but modifies the scavenging parameters in order to have a similar lifetime of dust as in the full ECHAM6-HAM. All remaining aerosols are prescribed. To evaluate the effects of dust on hurricanes, a TC detection and tracking method is applied on the results. ECHAM6-HAM-Dust was used in two configurations, one with radiatively active dust aerosols and one with dust being not radiatively active. For both set-ups, 10 Monte-Carlo simulations of the year 2005 were performed. A statistical method which identifies controlling parameters of hurricane genesis was applied on North Atlantic developing and non-developing disturbances in all simulations, comparing storms in the two sets of simulations. Hereby, dust can be assigned

  15. Thermal Modeling and Analysis of the Hurricane Imaging Radiometer (HIRad)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2013-01-01

    The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.

  16. Modeling and Analysis of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2013-01-01

    The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.

  17. ENVIRONMENTAL SAMPLING AND ANALYSIS IN THE AFTERMATH OF HURRICANE KATRINA

    EPA Science Inventory

    This presentation describes the environmental sampling completed by EPA in southeastern Louisiana after Hurricane Katrina caused major catastrophic damage. Presentation also describes EPA's Environmental Unit activities in Baton Rouge and New Orleans, LA, and Dallas, TX.

  18. Kidney patient care in disasters: lessons from the hurricanes and earthquake of 2005.

    PubMed

    Kopp, Jeffrey B; Ball, Lynda K; Cohen, Andrew; Kenney, Robert J; Lempert, Kenneth D; Miller, Paul E; Muntner, Paul; Qureshi, Nauman; Yelton, Sarah A

    2007-07-01

    The active 2005 hurricane season alerted Americans to the pressing need for a more effective response to mass casualty incidents. The kidney patient community was particularly affected. Ninety-four dialysis facilities in the Gulf Coast states closed for at least 1 wk in the aftermath of Hurricane Katrina, and additional units were affected by evacuation of dialysis patients. Dialysis units along the Gulf Coast were also affected by Hurricanes Rita and Wilma. Existing emergency response plans were inadequate in providing continuity of care for kidney patients. The Kashmir, South Asia, earthquake of October 2005 killed 97,000 individuals. Building collapse was associated with widespread crush injury, and many patients required temporary hemodialysis. Several regions of the United States have the potential for catastrophic earthquakes. The Kidney Community Emergency Response Coalition has recently issued recommendations for patients, dialysis facilities, and providers, with a goal to improve care of kidney patients in future domestic disasters. With suitable planning, the nephrology community can do much to ensure the continuity of medical care for kidney patients in the face of a wide range of possible natural and human-made disasters. PMID:17699499

  19. MISR Views Hurricane Carlotta

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With winds reaching 155 mph, this year's Hurricane Carlotta became the second strongest eastern Pacific June hurricane on record. These images from MISR show the hurricane on June 21, the day of its peak intensity. The pictures are oriented so that the spacecraft's flight path is from left to right; north is at the left.

    The top image is a color view from MISR's vertical (nadir) camera, showing Carlotta's location in the eastern Pacific Ocean, about 500 km south of Puerto Vallarta, Mexico.

    The middle image is a stereoscopic 'anaglyph' created using MISR's nadir camera plus one of its aftward-viewing cameras, and shows a closer view of the area around the hurricane. Viewing with red/blue glasses (red filter over the left eye) is required to obtain a 3-D stereo effect.

    Near the center of the storm, the eye is about 25 km in diameter and partially obscured by a thin cloud. About 50 km to the left of the eye, the sharp drop-off from high-level to low-level cloud gives a sense of the vertical extent of the hidden eye wall. The low-level cloud is spiraling counterclockwise into the center of the cyclone. It then rises in the vicinity of the eye wall and emerges with a clockwise rotation at high altitude. Maximum surface winds are found near the eye wall.

    The bottom stereo image is a zoomed-in view of convective clouds in the hurricane's spiral arms. The arms are breeding grounds for severe thunderstorms, with associated heavy rain and flooding, frequent lightning, and tornadoes. Thunderstorms rise in dramatic fashion to about the same altitude as the high cloud near the hurricane's center, and are made up of individual cells that are typically less than 20 km in diameter. This image shows a number of these cells, some fairly isolated, and others connected together. Their three-dimensional structure is clearly apparent in this stereo view.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science

  20. The condition of neighborhood parks following hurricane katrina: development of a post-hurricane assessment instrument.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parks provide environments for physical activity, yet, little is known about how natural disasters affect them or how these disasters alter physical activity. Objectives: 1) describe the development of an instrument to assess park conditions following a hurricane; and 2) document the conditions of ...

  1. The HFIP High Resolution Hurricane Forecast Test

    NASA Astrophysics Data System (ADS)

    Nance, L. B.; Bernardet, L.; Bao, S.; Brown, B.; Carson, L.; Fowler, T.; Halley Gotway, J.; Harrop, C.; Szoke, E.; Tollerud, E. I.; Wolff, J.; Yuan, H.

    2010-12-01

    Tropical cyclones are a serious concern for the nation, causing significant risk to life, property and economic vitality. The National Oceanic and Atmospheric Administration (NOAA) National Weather Service has a mission of issuing tropical cyclone forecasts and warnings, aimed at protecting life and property and enhancing the national economy. In the last 10 years, the errors in hurricane track forecasts have been reduced by about 50% through improved model guidance, enhanced observations, and forecaster expertise. However, little progress has been made during this period toward reducing forecasted intensity errors. To address this shortcoming, NOAA established the Hurricane Forecast Improvement Project (HFIP) in 2007. HFIP is a 10-year plan to improve one to five day tropical cyclone forecasts, with a focus on rapid intensity change. Recent research suggests that prediction models with grid spacing less than 1 km in the inner core of the hurricane may provide a substantial improvement in intensity forecasts. The 2008-09 staging of the High Resolution Hurricane (HRH) Test focused on quantifying the impact of increased horizontal resolution in numerical models on hurricane intensity forecasts. The primary goal of this test was an evaluation of the effect of increasing horizontal resolution within a given model across a variety of storms with different intensity, location and structure. The test focused on 69 retrospectives cases from the 2005 and 2007 hurricane seasons. Six modeling groups participated in the HRH test utilizing a variety of models, including three configurations of the Weather Research and Forecasting (WRF) model, the operational GFDL model, the Navy’s tropical cyclone model, and a model developed at the University of Wisconsin-Madison (UWM). The Development Testbed Center (DTC) was tasked with providing objective verification statistics for a variety of metrics. This presentation provides an overview of the HRH Test and a summary of the standard

  2. Geologic record of Hurricane impacts on the New Jersey coast

    NASA Astrophysics Data System (ADS)

    Nikitina, Daria; Horton, Benjamin; Khan, Nicole; Clear, Jennifer; Shaw, Timothy; Enache, Mihaela; Frizzera, Dorina; Procopio, Nick; Potapova, Marina

    2016-04-01

    Hurricanes along the US Atlantic coast have caused significant damage and loss of human life over the last century. Recent studies suggest that intense-hurricane activity is closely related to changes of sea surface temperatures and therefore the risk of hurricane strikes may increase in the future. A clear understanding of the role of recent warming on tropical cyclone activity is limited by the shortness of the instrumental record. However, the sediment preserved beneath coastal wetlands is an archive of when hurricanes impacted the coast. We present two complimenting approaches that help to extend pre-historic record and assess frequency and intensity of hurricane landfalls along the New Jersey cost; dating overwash deposits and hurricane-induced salt-marsh erosion documented at multiple sites. The stratigraphic investigation of estuarine salt marshes in the southern New Jersey documented seven distinctive erosion events that correlate among different sites. Radiocarbon dates suggest the prehistoric events occurred in AD 558-673, AD 429-966, AD 558-673, Ad 1278-1438, AD 1526-1558 or AD 1630-1643 (Nikitina et al., 2014). Younger sequences correspond with historical land-falling hurricanes in AD 1903 and AD 1821 or AD 1788. Four events correlate well with barrier overwash deposits documented along the New Jersey coast (Donnelley et al., 2001 and 2004). The stratigraphic sequence of salt High resolution sedimentary-based reconstructions of past intense-hurricane landfalls indicate that significant variability in the frequency of intense hurricanes occurred over the last 2000 years.

  3. Sexually active males prevent the display of seasonal anestrus in female goats.

    PubMed

    Delgadillo, J A; Flores, J A; Hernández, H; Poindron, P; Keller, M; Fitz-Rodríguez, G; Duarte, G; Vielma, J; Fernández, I G; Chemineau, P

    2015-03-01

    A well-defined season of sexual rest controlled by photoperiod is observed in female sheep and goats during spring and summer, delineating their "anestrous season"; bucks also decrease sexual activity at about the same time. Nutrition and/or socio-sexual stimuli play only secondary roles. However, the presence of sexually active males can reduce the length of seasonal anestrus. Whether it can also completely suppress anestrus has not been investigated. Here we tested this in goats in 3 experiments, using bucks rendered sexually active out of season by exposure to long days. The continuous presence of these males prevented goats to display seasonal anestrus: 12/14 females cycled the year round, vs. 0/13 and 0/11 for females with un-treated bucks or without bucks (experiment 1). When active bucks were removed, females immediately entered anestrus (7/7 stopped ovulating vs. 1/7 if maintained with active bucks; experiment 2). Finally, 7/7 anestrous does with bucks in sexual rest since 1.5months commenced cycling rapidly during mid-anestrous, when these bucks became sexually active following a treatment with artificial long days, vs. 0/7 with un-treated bucks or no bucks (experiment 3). The presence/withdrawal of active bucks had a highly significant effect in the three experiments (P≤0.002). Therefore, the presence of a mating opportunity can completely override the photoperiodic inhibition of reproduction of females throughout the anestrous season. Results suggest that we must re-evaluate the relative contributions of photoperiod vs. other external cues in controlling seasonal reproduction, thus offering new non-pharmaceutical ways for controlling out-of-season reproduction in small ruminants. PMID:25497417

  4. An Oxygen-18 Proxy Record of Recent Hurricanes in Belize: Speleothems as a new Tool for Paleotempestology

    NASA Astrophysics Data System (ADS)

    Frappier, A.; Sahagian, D.

    2004-05-01

    The high winds, storm surge, and extreme precipitation produced by landfalling tropical cyclones (hurricanes and tropical storms) generate some of the most deadly and destructive natural disasters faced by coastal populations. Stakeholders such as coastal planners and developers, property owners, emergency planners, and (re)insurers are concerned about future risk from the most devastating events, particularly because significant changes in climatic boundary conditions have been projected for this century. However, historical tropical cyclone records are not sufficient to address the sensitivity of hurricane intensity to projected changes, and modeling exercises have as yet been unable to settle the debate. Consequently, paleotempestologists have turned to the geologic record for more information about past hurricane activity that could be used to improve forward models. Toward that end, we have developed a new proxy for individual tropical cyclone rainfall events using very high-resolution δ 18O analyses of speleothem calcite. This proxy is based on the depleted isotopic signature of tropical cyclone rainfall compared to other summer season meteoric waters. We applied recent developments in microsampling techniques to a rapidly growing speleothem from Belize, Central America. The resulting record (20 micron sampling interval, yielding ~weekly temporal resolution) allowed us to detect individual, historical tropical cyclone events over the last three decades. The speleothem δ 18O paleotempestology proxy facilitates very accurate estimates of the time between tropical cyclone events: the proxy was able to resolve two hurricanes that struck Belize in the same year. The recurrence interval (RI) we estimated using the speleothem hurricane record agrees closely with the RI published for the same period by the Belize Meteorological Service. Preliminary work indicates that the δ 18O storm signal preserved in speleothem calcite carries some information about the local

  5. The persistence of equatorial spread F - an analysis on seasonal, solar activity and geomagnetic activity aspects

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Devasia, C. V.; Ravindran, Sudha; Sridharan, R.

    2009-02-01

    The persistence (duration) of Equatorial Spread F (ESF), which has significant impact on communication systems, is addressed. Its behavior during different seasons and geomagnetic activity levels under the solar maximum (2001) and minimum (2006) conditions, is reported using the data from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip 0.5° N) in India. The study reveals that the persistence of the irregularities can be estimated to a reasonable extent by knowing the post sunset F region vertical drift velocity (Vz) and the magnetic activity index Kp. Any sort of advance information on the possible persistence of the ionospheric irregularities responsible for ESF is important for understanding the scintillation morphology, and the results which form the first step in this direction are presented and discussed.

  6. On the Current Trend of Tropical Cyclone Activity and the Lengthening of the Tropical Cyclone Season in the North Atlantic Basin

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    In this TP, the trend in North Atlantic basin TC activity, especially as related to the determination of the length of season (LOS) and its possible association with warming surface-air and sea-surface temperature, is revisited. In particular, examined are: (1) the trend in TC activity for the yearly intervals 1945-1965, 1966-1994, and 1995-2012 for TCs having duration NSD greater or equal to 0.25 day, less than 2 days, greater than or equal to 2 days, greater than or equal to 4 days, and greater than or equal to 8 days; (2) the latitudinal and longitudinal genesis locations of the short-lived TC (defined herein as those TCs having duration NSD less than 2 days) for the three yearly intervals; (3) the first storm day (FSD), last storm day (LSD), and LOS based on TCs having duration NSD greater than or equal to 0.25 day and NSD greater than or equal to 2 days; (4) the relationship between FSD, LSD, and LOS for TCs having duration NSD greater than or equal to 0.25 day and NSD greater than or equal to 2 days; (5) the surface-air and sea-surface temperature, wind, and North Atlantic Oscillation (NAO) during the interval 1945-2012; (6) the relationship of FSD, LSD, and LOS against surface-air and sea-surface temperature, wind, and the NAO; (7) the relationship of TC activity against surface-air and sea-surface temperature, wind, and the NAO; and (8) the relationship of TC activity against FSD and LOS. This TP represents an update to an earlier study by Wilson concerning the length of the yearly hurricane season.

  7. Implications of climatic seasonality on activity patterns and resource use by sympatric peccaries in northern Pantanal

    NASA Astrophysics Data System (ADS)

    Hofmann, Gabriel Selbach; Coelho, Igor Pfeifer; Bastazini, Vinicius Augusto Galvão; Cordeiro, José Luís Passos; de Oliveira, Luiz Flamarion Barbosa

    2016-03-01

    We evaluated the effects of climate seasonality from a thermal and water availability perspective on the activity patterns and resource use of Pecari tajacu and Tayassu pecari during wet and dry seasons in the northeastern Brazilian Pantanal. We used camera traps and temperature sensors to record species activity patterns in relation to temperature, established five habitat categories based on flooding intensity and local vegetation characteristics, assessed the activity patterns of each species in dry and wet periods and in artificial water bodies using circular statistical metrics, and calculated niche amplitude and overlap on three axes (temperature, time, and habitat) in both periods. Peccaries shared a strong resemblance in resource use and in their responses to seasonal variations in the tested gradients. The activity patterns of both species exhibited a significant correlation with air temperature on all the evaluated measures, and both species strongly reduced their activity when the air temperature exceeded 35 °C. High temperatures associated with low water availability were most likely responsible for the changes in species activity patterns, which resulted in an increased temporal overlap in habitat use throughout the dry season. However, the peccaries avoided intensively flooded habitats; therefore, the habitat gradient overlap was greater during the wet period. Our results show that an increase in niche overlap on the environmental gradient as a result of climatic seasonality may be partially compensated by a reduction in other niche dimensions. In this case, temporal partitioning appears to be an important, viable mechanism to reduce competition by potentially competing species.

  8. Hurricane Katrina as a "teachable moment"

    NASA Astrophysics Data System (ADS)

    Glantz, M. H.

    2008-04-01

    By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily

  9. Optical properties of a hurricane

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander A.; von Hoyningen-Huene, W.

    2004-01-01

    This paper is devoted to study of the distribution of the reflection function, spherical albedo, and optical thickness for a hurricane Erin, located in the western Atlantic (39.3°N, 60.4°W) on September 13th, 2001(16:21 UTC). The limitations and possibilities of using SeaWiFS imagery for remote sensing of hurricanes are discussed. In particular, it is found that the mode of the hurricane spherical albedo spatial distribution is equal to 0.86 and the transport optical thickness is in the range 4-10 on average for the central core of a hurricane. A simple analytical method to derive the hurricane optical thickness distribution is proposed.

  10. JLAB Hurricane recovery

    SciTech Connect

    A. Hutton; D. Arenius; J. Benesch; S. Chattopadhyay; E. F. Daly; O. Garza; R. Kazimi; R. Lauzi; L. Merminga; W. Merz; R. Nelson; W. Oren; M. Poelker; P. Powers; J. Preble; V. Ganni; C. R. Reece; R. Rimmer; M. Spata; S. Suhring

    2004-07-01

    Hurricane Isabel, originally a Category 5 storm, arrived at Jefferson Lab on September 18, 2003 with winds of only 75 mph, creating little direct damage to the infrastructure. However, electric power was lost for four days allowing the superconducting cryomodules to warm up and causing a total loss of the liquid helium. The subsequent recovery of the cryomodules and the impact of the considerable amount of opportunistic preventive maintenance provides important lessons for all accelerator complexes, not only those with superconducting elements. The details of how the recovery process was structured and the resulting improvement in accelerator availability will be discussed in detail.

  11. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world

    PubMed Central

    Dowdy, Andrew J.

    2016-01-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431

  12. Seasonal Dynamics of Enzymatic Activities and Functional Diversity in Soils under Different Organic Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial activity and diversity fluctuate seasonally under annual organic amendment for improving soil quality. We investigated the effects of municipal compost (MC), poultry litter (PL), and cover crops of spring oats and red clover (RC) on soil enzyme activities, and soil bacterial community...

  13. Seasonal activity of the small hive beetle, Aethina tumida, as estimated by baited flight traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal variation in flight activity of the small hive beetle was monitored at two sites in north-central Florida, one near colonies of the European honeybee and the other far removed from bee colonies. Activity was monitored by flight traps baited with fermenting pollen dough that had been inocul...

  14. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world

    NASA Astrophysics Data System (ADS)

    Dowdy, Andrew J.

    2016-02-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  15. Using an active sensor to make in-season nitrogen recommendations for corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An active crop canopy reflectance sensor could increase N-use efficiency in corn (Zea mays L.), if temporal and spatial variability in soil N availability and plant demand are adequately accounted for with an in-season application. Our objective was to evaluate the success of using an active sensor ...

  16. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    PubMed

    Dowdy, Andrew J

    2016-01-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431

  17. The activity of recent anti-allergic drugs in the treatment of seasonal allergic rhinitis.

    PubMed

    Wang, D; Clement, P; Smitz, J; De Waele, M

    1996-01-01

    Two experiments were performed during the pollen season to study the activity of different antiallergic drugs in the treatment of seasonal allergic rhinitis. Nasal allergen challenge (NAC) was performed to mimic an acute attack of allergic rhinitis and to objectively evaluate the effect of the drugs on the early-phase reaction during the season. The first study assessed the effect of H1 (Cetirizine 10 mg a day) and of a combination of H1 (Cetirizine 10 mg) plus H2 (Cimetidine 800 mg a day) antagonists on nasal symptoms, mediator release and eosinophil count in a group of 16 patients with seasonal allergic rhinitis. During the same season a second study compared in a randomized way (2 parallel groups) the effect of Budesonide (Rhinocort Aqua) and Azelastine (Allergodil nasal spray) in a group of 14 patients. Results showed that both antihistamines, applied topically of dosed orally, reduced sneezing even when significant increases of histamine concentration in nasal secretions were evidenced immediately after NAC. When a combination of Cetirizine and Cimetidine was administered, a significant (p < 0.01) reduction of nasal airway resistance and increase of nasal airflow after NAC were demonstrated as well. In addition, topical application of Budesonide showed a strong (p < 0.01) effect on the infiltration and activation of eosinophils during the season, and on tryptase release after NAC. These effects lasted at least for one week after therapy. PMID:8669268

  18. Intense Southwest Florida hurricane landfalls over the past 1000 years

    NASA Astrophysics Data System (ADS)

    Ercolani, Christian; Muller, Joanne; Collins, Jennifer; Savarese, Michael; Squiccimara, Louis

    2015-10-01

    Recent research has proposed that human-induced sea surface temperature (SST) warming has led to an increase in the intensity of hurricanes over the past 30 years. However, this notion has been challenged on the basis that the instrumental record is too short and unreliable to reveal long-term trends in hurricane activity. This study addresses this limitation by investigating hurricane-induced overwash deposits (paleotempestites) behind a barrier island in Naples, FL, USA. Paleotempestologic proxies including grain size, percent calcium carbonate, and fossil shells species were used to distinguish overwash events in two sediment cores spanning the last one thousand years. Two prominent paleotempestites were observed in the top 20 cm of both cores: the first identified as Hurricane Donna in 1960 whereas an older paleotempestite (1900-1930) could represent one of three documented storms in the early 1900s. An active period of hurricane overwash from 1000 to 500 yrs. BP and an inactive period from 500 to 150 yrs. BP correlate with reconstructed SSTs from the Main Development Region (MDR) of the North Atlantic Ocean. We observe an increased number of paleotempestites when MDR SSTs are warmer, coinciding with the Medieval Warm Period, and very few paleotempestites when MDR SSTs are cooler, coinciding with the Little Ice Age. Results from this initial Southwest Florida study indicate that MDR SSTs have been a key long-term climate driver of intense Southwest Florida hurricane strikes.

  19. Hurricane Economic Damage and Climate Change: Considering Hurricane Climatology and Regional Resilience

    NASA Astrophysics Data System (ADS)

    Yonekura, E.; Lin, N.; Chavas, D. R.; Emanuel, K.; Oppenheimer, M.

    2014-12-01

    The growing economic damage incurred by U.S.-landfalling hurricanes is arguably due to a mixture of changing hurricane activity with climate change, increased wealth and population exposure along the coast, and changes in vulnerability to landfall events. Considering the multiple contributing factors, we aim to develop a U.S. hurricane economic damage model and connect the climate effects on hurricanes to the resulting expected economic damage. First, we normalize total damages by an estimate of economic exposure, the wealth of the effected counties. This allows us to focus on the relationship between the physical storm landfall attributes and damage. The normalized quantity is called the Damage Fraction. Second, the record of U.S. hurricane economic damage from 1900-2012 is analyzed using a peaks-over-threshold approach in which the generalized Pareto distribution (GPD) is applied to model the probability distribution of Damage Fraction extremes. Two covariates are incorporated into the GPD model to represent multiple hazards, the normalized maximum sustained wind at landfall and the bathymetric slope at the landfall location. The latter represents storm surge risk. The former, which is the storm maximum wind normalized by the local 100-year return period wind from the ASCE 7-10 wind map, serves to incorporate a proxy for regional vulnerability, or resilience. The new GPD model is applied to datasets of synthetic hurricane tracks downscaled from 20th century and future (RCP 8.5 scenario) CMIP5 model climates using a statistical-deterministic hurricane model. Using Monte Carlo Simulations, it is shown that across the range of six different CMIP5 model inputs, there is an expected increase of annual Damage Fraction in the future climate. Then we test possible effects of varying levels of future national adaptation by increasing the 100-year return period wind by 5, 10, and 20%. Using the future hurricane climatology, it is shown that the adaptation can help reduce

  20. The occurrence and seasonal variation of accelerant-related burn injuries in central Florida.

    PubMed

    Rainey, Susan; Cruse, C Wayne; Smith, Jackie S; Smith, Kirk R; Jones, Dawn; Cobb, Sarah

    2007-01-01

    Accidental burn injuries result in significant economic and public health burdens. The inappropriate use of gasoline and other accelerants has been identified in many studies as dangerous, yet it remains an all-too-common practice resulting in a significant number of injuries annually. Florida's unique climate permits outdoor recreational and maintenance activities, such as burning yard debris and other trash, throughout the year. Additionally, the hurricane season, lasting from June 1 though November 30, produces large amounts of waste in its wake. The purpose of this study was to examine the seasonal pattern of occurrence and develop an understanding of factors related to accelerant-related burn injuries with the goal of prevention. This nonexperimental research involved a retrospective quantitative observational study of data stored in the National Trauma Registry database. All burn patients admitted to the Tampa General Regional Burn Center as inpatients between January 1, 2001, and December 31, 2005, were included. As with previous studies on the occurrence of accelerant related injuries, young men were much more likely to suffer this type of injury. The hurricane season correlates with an increased number of accelerant related burn injuries, which differs somewhat from the seasonal variations in other regions. The size and severity of accelerant-related injuries varies significantly, as does the length of hospital stay. Accelerant use is frequently associated with trash/brush-related accidents. Hurricane seasons can produce an inordinately large amount of debris and therefore are related with an increased incident in this type of burn injury. The results of this study support the development of a community-based educational program directed at burn injury prevention, with special attention to the implications of the hurricane season. PMID:17667487

  1. Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region

    NASA Astrophysics Data System (ADS)

    Zhong, Xi; Qi, Jianhua; Li, Hongtao; Dong, Lijie; Gao, Dongmei

    2016-09-01

    Microbial activities in the atmosphere can indicate the physiological processes of microorganisms and can indirectly affect cloud formation and environmental health. In this study, the microbial activity in bioaerosols collected in the Qingdao coastal region was investigated using the fluorescein diacetate (FDA) hydrolysis method to detect the enzyme activity of microorganisms. The results showed that the microbial activity ranged from 5.49 to 102 ng/m3 sodium fluorescein from March 2013 to February 2014; the average value was 34.4 ng/m3. Microbial activity has no statistical correlation with total microbial quantity. Multiple linear regression analysis showed that meteorological factors such as atmospheric temperature, relative humidity and wind speed accounted for approximately 35.7% of the variation of the microbial activity, although their individual impacts on microbial activity varied. According to the correlation analysis, atmospheric temperature and wind speed had a significant positive and negative influence on microbial activity, respectively, whereas relative humidity and wind direction had no significant influence. The seasonal distribution of microbial activity in bioaerosols was in the order of summer > autumn > winter > spring, with high fluctuations in the summer and autumn. Microbial activity in bioaerosols differed in different weather conditions such as the sunny, foggy, and hazy days of different seasons. Further in situ observations in different weather conditions at different times and places are needed to understand the seasonal distribution characteristics of microbial activity in bioaerosols and the influence factors of microbial activity.

  2. Impact of 1985 hurricanes on Isles Dernieres, Louisiana: Temporal and spatial analysis of coastal geomorphic changes

    SciTech Connect

    Debusshere, K.; Westphal, K.; Penland, S.; McBride, R. )

    1989-09-01

    Catastrophic geomorphic changes occurred in the Isles Dernieres barrier island arc as a result of the direct impact of three hurricanes in 1985. The severity of the impact of hurricanes Danny, Elena, and Juan had not been equaled since the landfall of hurricanes Betsy and Camille in the late 1960s. The Isles Dernieres had not been subjected to a direct hurricane landfall since hurricane Bob in 1979. The recent hurricane impacts provided the USGS/LGS Louisiana Cooperative Barrier Island and Land Loss Study the opportunity to examine the process-response characteristics of this low-profile transgressive barrier island arc to multiple hurricane impacts in a single hurricane season. The geomorphic changes along the Isles Dernieres were determined using four sequential airborne videotape surveys acquired in July 1984, July 1985 (pre-storm), August 1985 (post-Danny) and November 1985 (post-Juan) and mapped on 1:24,000 base maps produced from concurrent vertical aerial photography. A coastal geomorphic classification was developed to describe, quantify, and map the alongshore geomorphic, sedimentologic , and vegetative character of this barrier shoreline. The classification consists of three levels of descriptors: (1) primary morphology to define the predominant longshore morphology, (2) modifiers to depict the small-scale longshore features, and (3) variants to locate and quantify important coastal features, not mappable at the scale used.

  3. A Virtual National Laboratory for Predicting Hurricane Impacts

    NASA Astrophysics Data System (ADS)

    Bogden, Philip

    2006-11-01

    The 2005 Atlantic hurricane season was the most active in recorded history. Collectively, the 2005 hurricanes caused more than 2,280 deaths and record damages of over 100 billion dollars. Of the storms that made landfall, Dennis, Emily, Katrina, Rita, and Wilma caused most of the destruction. Accurate predictions of water level, wave height, and inundation can save lives and reduce recovery costs, provided the information gets to emergency responders in a timely manner. The information must be received well in advance of a storm making landfall, so that responders can weigh the costs of unnecessary evacuation (estimated at over 1 million dollars per mile of coastline) against the costs of inadequate preparation. Tracking large storms is already challenging; predicting the impacts days before the storm makes landfall imposes enormous new challenges. This requires an entirely different approach than is usually involved in producing the single best forecast for a specific event. Hazard planning requires an estimate of the uncertainty in the forecast. Calculating such probabilities requires that computer simulations be run not once, but many hundreds or thousands of times---once for each plausible outcome---creating huge computational demands. Add the requirement for real-time observations needed to increase predictive capability and the complexity of the information flow grows to include a wide variety of ocean-based sensor platforms. From ocean-bound sensors to supercomputers to the decision-maker's desk, the predictions must be turned around in a matter of hours if they are to affect decision-making. Scientists from universities across the Southeast are creating a cyberinfrastructure---a virtual and distributed laboratory -- that combines the knowledge, data-integration capacity, and computational power necessary for real-time environmental prediction and hazard planning. This vision supports a national, multi-agency initiative called the Integrated Ocean Observing

  4. New Proxy for Recent Hurricane Events Using Stalagmite Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Frappier, A.; Sahagian, D.

    2002-12-01

    Using recently developed micro-sampling techniques for stable isotope analyses, we obtained monthly to weekly temporal resolution in a fast growing stalagmite from Belize that recorded the last 3 decades of carbonate deposition. The stable oxygen isotope record (O-18 values) varies at interannual to sub-seasonal scales. The largest variations in O-18 values are interannual (corresponding to El Nino events) and annual (corresponding to the strong wet-dry seasonality of the region). Smaller amplitude O-18 variations related to short-term weather fluctuations are also apparent. Brief, low excursions in O-18 values can be identified with hurricane events that impacted Belize in recent decades. This dataset demonstrates that at least some stalagmites can record measurable, low stable oxygen isotope excursions from individual hurricane rainfall events. The proxy is sensitive to storm intensity and distance of storm track to the cave site. This paleotempestology proxy allows estimates of individual storm rainfall amounts and recurrence interval. Pre-historic hurricane events should be detectable using this technique; however, cave sites and individual stalagmites must be selected carefully to recover samples with measurable hurricane records.

  5. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils.

    PubMed

    Siles, José A; Cajthaml, Tomas; Minerbi, Stefano; Margesin, Rosa

    2016-03-01

    In the current context of climate change, the study of microbial communities along altitudinal gradients is especially useful. Only few studies considered altitude and season at the same time. We characterized four forest sites located in the Italian Alps, along an altitude gradient (545-2000 m a.s.l.), to evaluate the effect of altitude in spring and autumn on soil microbial properties. Each site in each season was characterized with regard to soil temperature, physicochemical properties, microbial activities (respiration, enzymes), community level physiological profiles (CLPP), microbial abundance and community structure (PLFA). Increased levels of soil organic matter (SOM) and nutrients were found at higher altitudes and in autumn, resulting in a significant increase of (soil dry-mass related) microbial activities and abundance at higher altitudes. Significant site- and season-specific effects were found for enzyme production. The significant interaction of the factors site and incubation temperature for soil microbial activities indicated differences in microbial communities and their responses to temperature among sites. CLPP revealed site-specific effects. Microbial community structure was influenced by altitudinal, seasonal and/or site-specific effects. Correlations demonstrated that altitude, and not season, was the main factor determining the changes in abiotic and biotic characteristics at the sites investigated. PMID:26787774

  6. Numerical simulations of Hurricane Bertha using a mesoscale atmospheric model

    SciTech Connect

    Buckley, R.L.

    1996-08-01

    The Regional Atmospheric Model System (RAMS) has been used to simulate Hurricane Bertha as it moved toward and onto shore during the period July 10--12, 1996. Using large-scale atmospheric data from 00 UTC, 11 July (Wednesday evening) to initialize the model, a 36-hour simulation was created for a domain centered over the Atlantic Ocean east of the Florida coast near Jacksonville. The simulated onshore impact time of the hurricane was much earlier than observed (due to the use of results from the large-scale model, which predicted early arrival). However, the movement of the hurricane center (eye) as it approached the North Carolina/South Carolina coast as simulated in RAMS was quite good. Observations revealed a northerly storm track off the South Carolina coast as it moved toward land. As it approached landfall, Hurricane Bertha turned to the north-northeast, roughly paralleling the North Carolina coast before moving inland near Wilmington. Large-scale model forecasts were unable to detect this change in advance and predicted landfall near Myrtle Beach, South Carolina; RAMS, however, correctly predicted the parallel coastal movement. For future hurricane activity in the southeast, RAMS is being configured to run in an operational model using input from the large-scale pressure data in hopes of providing more information on predicted hurricane movement and landfall location.

  7. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S A; Huang, Yongmei

    2016-01-01

    Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature (Tmax) in ~22-25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer Tmax, particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24-26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth. PMID:26751166

  8. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate

    PubMed Central

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S. A.; Huang, Yongmei

    2016-01-01

    Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature () in ~22–25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer , particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24–26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth. PMID:26751166

  9. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate

    NASA Astrophysics Data System (ADS)

    Wu, Xiuchen; Liu, Hongyan; Li, Xiaoyan; Liang, Eryuan; Beck, Pieter S. A.; Huang, Yongmei

    2016-01-01

    Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature () in ~22-25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer , particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24-26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth.

  10. Implications of climatic seasonality on activity patterns and resource use by sympatric peccaries in northern Pantanal.

    PubMed

    Hofmann, Gabriel Selbach; Coelho, Igor Pfeifer; Bastazini, Vinicius Augusto Galvão; Cordeiro, José Luís Passos; de Oliveira, Luiz Flamarion Barbosa

    2016-03-01

    We evaluated the effects of climate seasonality from a thermal and water availability perspective on the activity patterns and resource use of Pecari tajacu and Tayassu pecari during wet and dry seasons in the northeastern Brazilian Pantanal. We used camera traps and temperature sensors to record species activity patterns in relation to temperature, established five habitat categories based on flooding intensity and local vegetation characteristics, assessed the activity patterns of each species in dry and wet periods and in artificial water bodies using circular statistical metrics, and calculated niche amplitude and overlap on three axes (temperature, time, and habitat) in both periods. Peccaries shared a strong resemblance in resource use and in their responses to seasonal variations in the tested gradients. The activity patterns of both species exhibited a significant correlation with air temperature on all the evaluated measures, and both species strongly reduced their activity when the air temperature exceeded 35 °C. High temperatures associated with low water availability were most likely responsible for the changes in species activity patterns, which resulted in an increased temporal overlap in habitat use throughout the dry season. However, the peccaries avoided intensively flooded habitats; therefore, the habitat gradient overlap was greater during the wet period. Our results show that an increase in niche overlap on the environmental gradient as a result of climatic seasonality may be partially compensated by a reduction in other niche dimensions. In this case, temporal partitioning appears to be an important, viable mechanism to reduce competition by potentially competing species. PMID:26219606

  11. Improving in-season nitrogen recommendations for maize using an active sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An active crop canopy reflectance sensor could be used to increase N-use efficiency in corn (Zea mays L.), if temporal and spatial variability in soil N availability and plant demand are adequately accounted for with an in-season N application. Our objective was to evaluate the success of using an a...

  12. Hurricane slams gulf operations

    SciTech Connect

    Not Available

    1992-09-07

    This paper reports that reports of damage by Hurricane Andrew escalated last week as operators stepped up inspections of oil and gas installations in the Gulf of Mexico. By midweek, companies operating in the gulf and South Louisiana were beginning to agree that earlier assessments of damage only scratched the surface. Damage reports included scores of lost, toppled, or crippled platforms, pipeline ruptures, and oil slicks. By midweek the U.S. coast Guard had received reports of 79 oil spills. Even platforms capable of resuming production in some instances were begin curtailed because of damaged pipelines. Offshore service companies the another 2-4 weeks could be needed to fully assess Andrew's wrath. Lack of personnel and equipment was slowing damage assessment and repair.

  13. Observed ocean thermal response to Hurricanes Gustav and Ike

    NASA Astrophysics Data System (ADS)

    Meyers, Patrick C.; Shay, Lynn K.; Brewster, Jodi K.; Jaimes, Benjamin

    2016-01-01

    The 2008 Atlantic hurricane season featured two hurricanes, Gustav and Ike, crossing the Gulf of Mexico (GOM) within a 2 week period. Over 400 airborne expendable bathythermographs (AXBTs) were deployed in a GOM field campaign before, during, and after the passage of Gustav and Ike to measure the evolving upper ocean thermal structure. AXBT and drifter deployments specifically targeted the Loop Current (LC) complex, which was undergoing an eddy-shedding event during the field campaign. Hurricane Gustav forced a 50 m deepening of the ocean mixed layer (OML), dramatically altering the prestorm ocean conditions for Hurricane Ike. Wind-forced entrainment of colder thermocline water into the OML caused sea surface temperatures to cool by over 5°C in GOM common water, but only 1-2°C in the LC complex. Ekman pumping and a near-inertial wake were identified by fluctuations in the 20°C isotherm field observed by AXBTs and drifters following Hurricane Ike. Satellite estimates of the 20° and 26°C isotherm depths and ocean heat content were derived using a two-layer model driven by sea surface height anomalies. Generally, the satellite estimates correctly characterized prestorm conditions, but the two-layer model inherently could not resolve wind-forced mixing of the OML. This study highlights the importance of a coordinated satellite and in situ measurement strategy to accurately characterize the ocean state before, during, and after hurricane passage, particularly in the case of two consecutive storms traveling through the same domain.

  14. Gordon Becomes a Hurricane, Weakens

    NASA Video Gallery

    In this animation of satellite observations from August 17-20, 2012, Tropical Storm Gordon strengthens into a hurricane as an eye became visible on Aug. 18 just before Gordon affected the Azores Is...

  15. GPM: Hurricanes Beyond the Tropics

    NASA Video Gallery

    NASA's Global Precipitation Measurement mission, or GPM, a joint NASA/JAXA mission, will provide rainfall data on storms and hurricanes like Irene that move out of the tropics. The data will be ava...

  16. Climate change: Unattributed hurricane damage

    NASA Astrophysics Data System (ADS)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  17. Effects of a hurricane on fish parasites.

    PubMed

    Overstreet, R M

    2007-09-01

    Hurricanes, also called tropical cyclones, can dramatically affect life along their paths, including a temporary losing or reducing in number of parasites of fishes. Hurricane Katrina in the northern Gulf of Mexico in August 2005 provides many examples involving humans and both terrestrial and aquatic animals and plants. Fishes do not provide much of an indicator of hurricane activity because most species quickly repopulate the area. Fish parasites, however, serve as a good indicator of the overall biodiversity and environmental health. The reasons for the noted absence or reduction of parasites in fishes are many, and specific parasites provide indications of different processes. The powerful winds can produce perturbations of the sediments harboring intermediate hosts. The surge of high salinity water can kill or otherwise affect low salinity intermediate hosts or free-living stages. Both can introduce toxicants into the habitat and also interfere with the timing and processes involved with host-parasite interrelationships. All these have had a major influence on fish parasite populations of fishes in coastal Mississippi, especially for those parasites incorporating intermediate hosts in their life cycles. The length of time for a parasite to become re-established can vary considerably, depending on its life cycle as well as the associated biota, habitat, and environmental conditions, and each parasite provides a special indicator of environmental health. PMID:18410074

  18. Influence of harvest season on antioxidant activity and constituents of rabbiteye blueberry ( Vaccinium ashei ) leaves.

    PubMed

    Zhu, Liancai; Liu, Xi; Tan, Jun; Wang, Bochu

    2013-11-27

    To select rabbiteye blueberry leaves from an appropriate harvest season to develop functional foods, this paper studied the bioactive secondary metabolites and the antioxidant capacity of rabbiteye blueberry leaves from May, September, and November. The results showed the leaves from May had the highest content of total flavonoids (114.21 mg/g) and the leaves from November had the highest content of total polyphenols and proanthocyanidins (425.24 and 243.29 mg/g, respectively). It was further found that blueberry leaves from different seasons have similar bioactive constituents, but their contents are obviously different by HPLC. The rabbiteye blueberry leaves from November had the highest antioxidant capacity, which was well correlated with their highest proanthocyanidin content. The results clarify that the blueberry leaves from different seasons have different contents of bioactive secondary metabolites and different antioxidant activities, which implied that leaves from November should be selected first for utilization in functional foods. PMID:24175648

  19. Galanin immunoreactivity in the brain of the desert lizard Uromastyx acanthinura during activity season.

    PubMed

    Hammouche, Sadjia Benmansour; Bennis, Mohammed

    2013-01-01

    The distribution of galanin immunoreactive perikarya and nerve fibers in the brain of the desert lizard U. acanthinura was studied by means of immunofluorescence using an antiserum against rabbit galanin. The animals were captured during the activity season in March (wet season) just before reproduction period and in June (arid season) after ovulation period. Immunoreactive neurons were mostly detected in the mediobasal and the infundibular recess nuclei, the nucleus of the paraventricular organ, the paraventricular organ, the periventricular nucleus and in the anterior hypothalamus at the level of the periventricular nucleus, the paraventricular nucleus and the supraoptic nucleus. The differences in brain galanin expression between animals collected under both sets of environmental conditions indicated changes which occur during the annual and reproductive cycles. The wide hypothalamic and extrahypothalamic distribution of galanin immunoreactive fibers suggests that this peptide may have hypophysiotropic, neuromodulator and neurotransmitter roles in the lizard U. acanthinura. PMID:23690217

  20. Peripheral chemoreflex sensitivity and sympathetic nerve activity are normal in apnea divers during training season.

    PubMed

    Breskovic, Toni; Ivancev, Vladimir; Banic, Ivana; Jordan, Jens; Dujic, Zeljko

    2010-04-19

    Apnea divers are exposed to repeated massive arterial oxygen desaturation, which could perturb chemoreflexes. An earlier study suggested that peripheral chemoreflex regulation of sympathetic vasomotor tone and ventilation may have recovered 4 or more weeks into the off season. Therefore, we tested the hypothesis that peripheral chemoreflex regulation of ventilation and sympathetic vasomotor tone is present during the training season. We determined ventilation, heart rate, blood pressure, cardiac stroke volume, and muscle sympathetic nerve activity (MSNA) during isocapnic hypoxia in 10 breath hold divers and 11 matched control subjects. The study was carried out at the end of the season of intense apnea trainings. Baseline MSNA frequency was 30+/-4bursts/min in control subjects and 25+/-4bursts/min in breath hold divers (P=0.053). During hypoxia burst frequency and total sympathetic activity increased similarly in both groups. Sympathetic activity normalized during the 30-minute recovery. Hypoxia-induced stimulation of minute ventilation was similar in both groups, although in divers it was maintained by higher tidal volumes and lower breathing frequency compared with control subjects. In both groups, hypoxia increased heart rate and cardiac output whereas total peripheral resistance decreased. Blood pressure remained unchanged. We conclude that peripheral chemoreflex regulation of ventilation and sympathetic vasomotor tone is paradoxically preserved in apnea divers, both, during the off and during the training season. The observation suggests that repeated arterial oxygen desaturation may not be sufficient explaining sympathetic reflex abnormalities similar to those in obstructive sleep apnea patients. PMID:19926535

  1. Antileishmanial activity of the essential oil from Tetradenia riparia obtained in different seasons.

    PubMed

    Cardoso, Bruna Muller; de Mello, Tatiane França Perles; Lopes, Sara Negrão; Demarchi, Izabel Galhardo; Lera, Daniele Stefani Lopes; Pedroso, Raíssa Bocchi; Cortez, Diogenes Aparício; Gazim, Zilda Cristiani; Aristides, Sandra Mara Alessi; Silveira, Thais Gomes Verzignassi; Lonardoni, Maria Valdrinez Campana

    2015-12-01

    The herbaceous shrub Tetradenia riparia has been traditionally used to treat inflammatory and infectious diseases. Recently, a study showed that T. riparia essential oil (TrEO) obtained in summer has antileishmanial effects, although these results could be influenced by seasonal variation. This study evaluated the activity of the TrEO obtained in different seasons against Leishmania (Leishmania) amazonensis, in vitro and in vivo. The compounds in the TrEO were analysed by gas chromatography-mass spectrometry; terpenoids were present and oxygenated sesquiterpenes were the majority compounds (55.28%). The cytotoxicity and nitric oxide (NO) production were also tested after TrEO treatment. The TrEO from all seasons showed a 50% growth inhibitory concentration for promastigotes of about 15 ng/mL; at 30 ng/mL and 3 ng/mL, the TrEO reduced intracellular amastigote infection, independently of season. The TrEO from plants harvested in summer had the highest 50% cytotoxic concentration, 1,476 ng/mL for J774.A1 macrophages, and in spring (90.94 ng/mL) for murine macrophages. NO production did not change in samples of the TrEO from different seasons. The antileishmanial effect in vivo consisted of a reduction of the parasite load in the spleen. These results suggest that the TrEO has potential effects on L. (L.) amazonensis, consonant with its traditional use to treat parasitic diseases. PMID:26602873

  2. Antileishmanial activity of the essential oil from Tetradenia riparia obtained in different seasons

    PubMed Central

    Cardoso, Bruna Muller; de Mello, Tatiane França Perles; Lopes, Sara Negrão; Demarchi, Izabel Galhardo; Lera, Daniele Stefani Lopes; Pedroso, Raíssa Bocchi; Cortez, Diogenes Aparício; Gazim, Zilda Cristiani; Aristides, Sandra Mara Alessi; Silveira, Thais Gomes Verzignassi; Lonardoni, Maria Valdrinez Campana

    2015-01-01

    The herbaceous shrub Tetradenia riparia has been traditionally used to treat inflammatory and infectious diseases. Recently, a study showed that T. riparia essential oil (TrEO) obtained in summer has antileishmanial effects, although these results could be influenced by seasonal variation. This study evaluated the activity of the TrEO obtained in different seasons against Leishmania (Leishmania) amazonensis, in vitro and in vivo. The compounds in the TrEO were analysed by gas chromatography-mass spectrometry; terpenoids were present and oxygenated sesquiterpenes were the majority compounds (55.28%). The cytotoxicity and nitric oxide (NO) production were also tested after TrEO treatment. The TrEO from all seasons showed a 50% growth inhibitory concentration for promastigotes of about 15 ng/mL; at 30 ng/mL and 3 ng/mL, the TrEO reduced intracellular amastigote infection, independently of season. The TrEO from plants harvested in summer had the highest 50% cytotoxic concentration, 1,476 ng/mL for J774.A1 macrophages, and in spring (90.94 ng/mL) for murine macrophages. NO production did not change in samples of the TrEO from different seasons. The antileishmanial effect in vivo consisted of a reduction of the parasite load in the spleen. These results suggest that the TrEO has potential effects on L. (L.) amazonensis, consonant with its traditional use to treat parasitic diseases. PMID:26602873

  3. The Hurricane and Its Impact

    NASA Astrophysics Data System (ADS)

    Burpee, Robert W.

    Recent population increases in coastal regions of the tropics and subtropics have greatly enhanced man's vulnerability to tropical cyclones. Thus, this book on hurricanes by Robert H. Simpson and Herbert Riehl, two of the leading contributors to hurricane research during the last 35 years, comes along when people of differing backgrounds want to learn more about hurricanes. In the 20 years since Dunn and Miller published Atlantic Hurricanes, technical advances in weather satellites, computer modeling and data processing, and research aircraft have substantially increased the tropical meteorologist's understanding of hurricane structure and dynamics. During this same time, field experiments have led to detailed knowledge of the atmospheric environment within which tropical cyclones are initiated. The authors have attempted to describe many aspects of hurricanes for readers that range from students of meteorology to those concerned with planning for natural hazards in the coastal zone. Because Simpson and Riehl have addressed such a wide audience, many readers with a knowledge of atmospheric science will find that the book is overly descriptive, while readers without some background in physics will find it is too technical.

  4. Factors Affecting Hurricane Evacuation Intentions.

    PubMed

    Lazo, Jeffrey K; Bostrom, Ann; Morss, Rebecca E; Demuth, Julie L; Lazrus, Heather

    2015-10-01

    Protective actions for hurricane threats are a function of the environmental and information context; individual and household characteristics, including cultural worldviews, past hurricane experiences, and risk perceptions; and motivations and barriers to actions. Using survey data from the Miami-Dade and Houston-Galveston areas, we regress individuals' stated evacuation intentions on these factors in two information conditions: (1) seeing a forecast that a hurricane will hit one's area, and (2) receiving an evacuation order. In both information conditions having an evacuation plan, wanting to keep one's family safe, and viewing one's home as vulnerable to wind damage predict increased evacuation intentions. Some predictors of evacuation intentions differ between locations; for example, Florida respondents with more egalitarian worldviews are more likely to evacuate under both information conditions, and Florida respondents with more individualist worldviews are less likely to evacuate under an evacuation order, but worldview was not significantly associated with evacuation intention for Texas respondents. Differences by information condition also emerge, including: (1) evacuation intentions decrease with age in the evacuation order condition but increase with age in the saw forecast condition, and (2) evacuation intention in the evacuation order condition increases among those who rely on public sources of information on hurricane threats, whereas in the saw forecast condition evacuation intention increases among those who rely on personal sources. Results reinforce the value of focusing hurricane information efforts on evacuation plans and residential vulnerability and suggest avenues for future research on how hurricane contexts shape decision making. PMID:26299597

  5. Seismic tracking of Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wen, L.

    2013-12-01

    Very weak, narrow band seismic signals excited by Hurricane Sandy are detected in cross-correlations of continuous waveforms recorded by stations in eastern United States, at the end of October 2012. We analyze propagational properties of the signal and track the source locations using travel-time difference residual projection, from 26 October to 1 November 2012. We find that (1) the seismic signals driven by Hurricane Sandy are azimuthal dependent. Signals are correlated only within close azimuths from the source, (2) seismic signals propagate as Rayleigh surface wave with an average velocity of about 3.3 km/s, and (3) the inferred seismic source locations follow the path of Sandy before UTC 2012.10.30 12:00:00(about half a day after its landfall in New Jersey), but then deviate from the hurricane center and stay in the coastal area near New England for another 12 hours after the hurricane dissipated. Our research discovers the properties of seismic source excited by Hurricane Sandy and demonstrates the capability of using seismic data to real-time track a hurricane and estimate its direct impacts and the subsequent disasters after it dissipates.

  6. Seasonal variation in American black bear Ursus americanus activity patterns: Quantification via remote photography

    USGS Publications Warehouse

    Bridges, A.S.; Vaughan, M.R.; Klenzendorf, S.

    2004-01-01

    Activity pattern plasticity may serve as an evolutionary adaptation to optimize fitness in an inconstant environment, however, quantifying patterns and demonstrating variation can be problematic. For American black bears Ursus americanus, wariness and habitat inaccessibility further complicate quantification. Radio telemetry has been the primary technique used to examine activity, however, interpretation error and limitation on numbers of animals available to monitor prevent extrapolation to unmarked or untransmittered members of the population. We used remote cameras to quantify black bear activity patterns and examined differences by season, sex and reproductive class in the Alleghany Mountains of western Virginia, USA. We used 1,533 pictures of black bears taken during 1998-2002 for our analyses. Black bears generally were diurnal in summer and nocturnal in autumn with a vespertine activity peak during both seasons. Bear-hound training seasons occurred during September and may offer explanation for the observed shift towards nocturnal behaviour. We found no substantial differences in activity patterns between sex and reproductive classes. Use of remote cameras allowed us to efficiently sample larger numbers of individual animals and likely offered a better approximation of population-level activity patterns than individual-level, telemetry-based methodologies.

  7. Seasonal changes in glacial polynya activity inferred from Weddell Sea varves

    NASA Astrophysics Data System (ADS)

    Sprenk, D.; Weber, M. E.; Kuhn, G.; Wennrich, V.; Hartmann, T.; Seelos, K.

    2014-06-01

    The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottom-water production today. However, little is known about bottom-water production under different climate and ice-sheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium-to-coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, Fe, Ti, Rb, and K are elevated. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity during the LGM. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. Under these conditions, lighter coarser-grained layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom-water formation and increased sediment transport. Vice versa, darker finer-grained layers were then deposited during less windier season, mainly during summer, when coastal polynya activity was likely

  8. Hurricane-induced failure of low salinity wetlands

    PubMed Central

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  9. Environmental Influences on Hurricane Intensification

    NASA Astrophysics Data System (ADS)

    Merrill, Robert T.

    Though qualitatively similar in structure, different hurricanes can attain different peak intensities during their lifetimes. Forecasters and empiricists relate the intensity to the sea surface temperature and the "effectiveness" of the upper tropospheric outflow, but offer no clear explanation of how the latter operates. Numerical modelers usually ignore the surrounding flow and emphasize interaction between the convective and vortex scales exclusively. This dissertation examines more closely the observed upper-tropospheric environmental flow differences between hurricanes which intensify and those which fail to do so, and combines them with previously published empirical and modeling results into a general conceptual model of environmental influences on hurricane intensification. Upper tropospheric wind observations (from satellite cloud tracking, aircraft reports, and rawinsondes) are composited for 28 hurricanes according to intensity tendency. A rotated coordinate system based on the outflow jet location is used so that the asymmetric flow structure is preserved. Little difference is observed in total outflow on the synoptic scale. However, intensifying hurricanes have a less constricted outflow with evidence of lateral connections with the surrounding flow. The asymmetric flow consists of a wave thought to be associated with barotropic instability of the anticyclonic flow above the hurricane and the juxtaposition of surrounding flow features. A quasi-equilibrium balance between hurricane convection and the upper tropospheric environment is proposed. The moist-neutral stratification of the vortex core is a balance between the convection which acts to increase stability and the outflow which acts to reduce it. Reduce the outflow layer cooling and the core stabilizes convective buoyancy is reduced, and a new balance with less vigorous convection is established. If vertically sheared, the environmental flow can also regulate intensity by inducing asymmetric

  10. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils

    NASA Astrophysics Data System (ADS)

    Brzostek, Edward R.; Finzi, Adrien C.

    2012-03-01

    Increasing soil temperature has the potential to alter the activity of the extracellular enzymes that mobilize nitrogen (N) from soil organic matter (SOM) and ultimately the availability of N for primary production. Proteolytic enzymes depolymerize N from proteinaceous components of SOM into amino acids, and their activity is a principal driver of the within-system cycle of soil N. The objectives of this study were to investigate whether the soils of temperate forest tree species differ in the temperature sensitivity of proteolytic enzyme activity over the growing season and the role of substrate limitation in regulating temperature sensitivity. Across species and sampling dates, proteolytic enzyme activity had relatively low sensitivity to temperature with a mean activation energy (Ea) of 33.5 kJ mol-1. Ea declined in white ash, American beech, and eastern hemlock soils across the growing season as soils warmed. By contrast, Eain sugar maple soil increased across the growing season. We used these data to develop a species-specific empirical model of proteolytic enzyme activity for the 2009 calendar year and studied the interactive effects of soil temperature (ambient or +5°C) and substrate limitation (ambient or elevated protein) on enzyme activity. Declines in substrate limitation had a larger single-factor effect on proteolytic enzyme activity than temperature, particularly in the spring. There was, however, a large synergistic effect of increasing temperature and substrate supply on proteolytic enzyme activity. Our results suggest limited increases in N availability with climate warming unless there is a parallel increase in the availability of protein substrates.

  11. Influenza Activity - United States, 2015-16 Season and Composition of the 2016-17 Influenza Vaccine.

    PubMed

    Davlin, Stacy L; Blanton, Lenee; Kniss, Krista; Mustaquim, Desiree; Smith, Sophie; Kramer, Natalie; Cohen, Jessica; Cummings, Charisse Nitura; Garg, Shikha; Flannery, Brendan; Fry, Alicia M; Grohskopf, Lisa A; Bresee, Joseph; Wallis, Teresa; Sessions, Wendy; Garten, Rebecca; Xu, Xiyan; Elal, Anwar Isa Abd; Gubareva, Larisa; Barnes, John; Wentworth, David E; Burns, Erin; Katz, Jacqueline; Jernigan, Daniel; Brammer, Lynnette

    2016-01-01

    During the 2015-16 influenza season (October 4, 2015-May 21, 2016) in the United States, influenza activity* was lower and peaked later compared with the previous three seasons (2012-13, 2013-14, and 2014-15). Activity remained low from October 2015 until late December 2015 and peaked in mid-March 2016. During the most recent 18 influenza seasons (including this season), only two other seasons have peaked in March (2011-12 and 2005-06). Overall influenza activity was moderate this season, with a lower percentage of outpatient visits for influenza-like illness (ILI),(†) lower hospitalization rates, and a lower percentage of deaths attributed to pneumonia and influenza (P&I) compared with the preceding three seasons. Influenza A(H1N1)pdm09 viruses predominated overall, but influenza A(H3N2) viruses were more commonly identified from October to early December, and influenza B viruses were more commonly identified from mid-April through mid-May. The majority of viruses characterized this season were antigenically similar to the reference viruses representing the recommended components of the 2015-16 Northern Hemisphere influenza vaccine (1). This report summarizes influenza activity in the United States during the 2015-16 influenza season (October 4, 2015-May 21, 2016)(§) and reports the vaccine virus components recommended for the 2016-17 Northern Hemisphere influenza vaccines. PMID:27281364

  12. Hurricane Katrina at Tulane.

    NASA Astrophysics Data System (ADS)

    McGuire, Jim

    2008-03-01

    After hurricane Katrina struck New Orleans on August 29, 2005, Tulane University closed for the fall semester. Buildings on campus were closed and armed guards were hired to protect the campus. Faculty members were not allowed access to their offices and laboratories, except for exceptional cases when a Dean went with them. Many faculty members took their research groups to other universities accepting much welcomed invitations from colleagues. Undergraduates went to other colleges and universities, which accepted the without cost and a promise not to recruit them. The university email system went down for months. Collecting information on the welfare of faculty and students was difficult. The university was run from Houston by a small handful of senior administrators. Setting up the schedule of classes for the spring 2006 semester was done without records. Most faculty returned to New Orleans after several weeks. 80% of the city was flooded. Small trailers were provided. Some lived in the FEMA trailers for two years or more. When Tulane reopened, a wide reaching Renewal Plan, worked out by the upper administration, was implemented. A new emergency preparedness plan was also developed and put in place.

  13. Seasonality and daily flight activity of stable flies (Diptera: Muscidae) on dairy farms in Saraburi Province, Thailand

    PubMed Central

    Phasuk, Jumnongjit; Prabaripai, Atchariya; Chareonviriyaphap, Theeraphap

    2013-01-01

    Knowledge of seasonal abundance and flight activity patterns are required to design effective management programs for insect pests of humans and livestock. In this study, the seasonality and daily flight activity of Stomoxys species were observed on two dairy farms in Saraburi Province, Thailand. Data were assessed throughout 1 year using Vavoua traps from September 2010 to August 2011. A total of 2,520 individuals belonging to four species were collected. Most Stomoxys species peaked in September (rainy season) and gradually decreased in number toward February (dry season); a second peak occurred between March and April (hot season). Stomoxys calcitrans was caught throughout the year and was the most abundant species in this study. The total number of males and females of S. calcitrans differed significantly among seasons and time intervals. The weather parameters of relative humidity and light intensity were significantly correlated with S. calcitrans abundance. PMID:23673316

  14. Hurricane Isaac Moving Towards Northern Gulf Coast

    NASA Video Gallery

    This is an animation of GOES-13 satellite imagery from Aug. 26-28, 2012 of Hurricane Isaac's track through the Gulf of Mexico. Isaac is headed for New Orleans, exactly 7 years after hurricane Katri...

  15. Seasonal prediction of lightning activity in North Western Venezuela: Large-scale versus local drivers

    NASA Astrophysics Data System (ADS)

    Muñoz, Á. G.; Díaz-Lobatón, J.; Chourio, X.; Stock, M. J.

    2016-05-01

    The Lake Maracaibo Basin in North Western Venezuela has the highest annual lightning rate of any place in the world (~ 200 fl km- 2 yr- 1), whose electrical discharges occasionally impact human and animal lives (e.g., cattle) and frequently affect economic activities like oil and natural gas exploitation. Lightning activity is so common in this region that it has a proper name: Catatumbo Lightning (plural). Although short-term lightning forecasts are now common in different parts of the world, to the best of the authors' knowledge, seasonal prediction of lightning activity is still non-existent. This research discusses the relative role of both large-scale and local climate drivers as modulators of lightning activity in the region, and presents a formal predictability study at seasonal scale. Analysis of the Catatumbo Lightning Regional Mode, defined in terms of the second Empirical Orthogonal Function of monthly Lightning Imaging Sensor (LIS-TRMM) and Optical Transient Detector (OTD) satellite data for North Western South America, permits the identification of potential predictors at seasonal scale via a Canonical Correlation Analysis. Lightning activity in North Western Venezuela responds to well defined sea-surface temperature patterns (e.g., El Niño-Southern Oscillation, Atlantic Meridional Mode) and changes in the low-level meridional wind field that are associated with the Inter-Tropical Convergence Zone migrations, the Caribbean Low Level Jet and tropical cyclone activity, but it is also linked to local drivers like convection triggered by the topographic configuration and the effect of the Maracaibo Basin Nocturnal Low Level Jet. The analysis indicates that at seasonal scale the relative contribution of the large-scale drivers is more important than the local (basin-wide) ones, due to the synoptic control imposed by the former. Furthermore, meridional CAPE transport at 925 mb is identified as the best potential predictor for lightning activity in the Lake

  16. Seasonal brain acetylcholinesterase activity in three species of shorebirds overwintering in Texas

    USGS Publications Warehouse

    Mitchell, C.A.; White, D.H.

    1982-01-01

    There was no seasonal variation in average brain AChE activity for the 3 species of wild birds collected between October and February. Further work needs to be done, however, covering an even broader time frame which includes the reproductive cycle. It appears that some birds feeding at the mouth of an agricultural drain, at some distance from the nearest pesticide applications, were affected by AChE inhibitors.

  17. Storm activity in North Atlantic and precipitation anomalies in European region during winter seasons

    NASA Astrophysics Data System (ADS)

    Vyazilova, N. A.; Vyazilova, A. E.

    2009-09-01

    The purpose of this paper is to show the storm activity influence on the formation of wet and dry zone in North Atlantic and European region during winter seasons 1994/95, 2006/07 and 2007/08 years with positive mode of NAO, 1995/96, 2000/01 and 2005/06 years with negative mode of NAO. The study of storm activity includes the analyses of cyclonic intensity and cyclone track number. Analyses of cyclonic intensity based on calculation cyclone centers number (CCN) and sum of cyclone centers MSLP anomalies (CCMA). This analyses based on automated cyclone tracking algorithm and the 6-hourly MSLP from the NCEP/NCAR reanalyses 2 from 1979 to 2009. Precipitation anomalies were calculated from CMAP archive. Analyses had included the calculation of cyclone track number in all region [30°N-80°N, 50°W-70°E]and selected latitude zone for long cyclones (with lifetime more 2 day) and short cyclones (with lifetime less 2 day). The study had shown the special features of CCN and CCMA patterns in region for long and short cyclones. The study shows, that every winter season short cyclone track number twice as much long cyclone track number. However, the contribution of long cyclones in main determines the CCMA in region. Study had shown that winter seasons with positive NAO mode Nord Europe were outstanding by strong positive precipitation anomalies and strong cyclonic intensity, and during winter seasons with negative NAO mode in this region were observed negative precipitation anomalies and weak cyclonic activity. Standartizide anomalies of integral CCMA for selected latitude zone [55°N-80°N, 50°W-70°E] had shown the intensification of cyclonic activity over North Atlantic and North European region in last years.

  18. Atlantic hurricane response to geoengineering

    NASA Astrophysics Data System (ADS)

    Moore, John; Grinsted, Aslak; Ji, Duoying; Yu, Xiaoyong; Guo, Xiaoran

    2015-04-01

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase - perhaps by a factor of 5 for a 2°C mean global warming. Geoengineering by sulphate aerosol injection preferentially cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 6 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use aerosols to reduce the radiative forcing under the RCP4.5 scenario. We find that although temperatures are ameliorated by geoengineering, the numbers of storm surge events as big as that caused the 2005 Katrina hurricane are only slightly reduced compared with no geoengineering. As higher levels of sulphate aerosol injection produce diminishing returns in terms of cooling, but cause undesirable effects in various regions, it seems that stratospheric aerosol geoengineering is not an effective method of controlling hurricane damage.

  19. 7 CFR 701.50 - 2005 hurricanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false 2005 hurricanes. 701.50 Section 701.50 Agriculture... ADMINISTERED UNDER THIS PART § 701.50 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§...

  20. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157....

  1. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157....

  2. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157....

  3. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157....

  4. Leisure time physical activity in the Framingham Offspring Study. Description, seasonal variation, and risk factor correlates.

    PubMed

    Dannenberg, A L; Keller, J B; Wilson, P W; Castelli, W P

    1989-01-01

    Self-reported leisure time physical activity was analyzed for 1,598 men and 1,762 women aged 20-69 years in the Framingham Offspring Cycle 2 exam in 1979-1983. Walking for pleasure was generally the most common physical activity for both sexes throughout the year. Substantial seasonal variation was noted for the most common activities: gardening, carpentry, lawn mowing, golf, and running for men; and gardening, swimming, health club exercise, dancing, and bicycling for women. Both sexes expended more kilocalories in physical activities in summer than in winter (p less than 0.001). Frequency of participation in activities sufficient to induce perspiration was associated with frequency of participation in at least one hour of conditioning (greater than or equal to 7.5 kilocal/minute) activities per week (p less than 0.001). Based on age-adjusted mean levels, higher high density lipoprotein cholesterol, lower heart rate, lower body mass index and fewer cigarettes smoked per day were consistently observed across four quartiles of increasing physical activity levels (p less than 0.01). Men who participated in at least one hour of conditioning activities per week had significantly different mean levels for these four risk factors than men who reported less than one hour of such activities per week (p less than 0.001). Results substantiate previous reports of an inverse relation between physical activity levels and cardiovascular risk, and suggest seasonal variation in activity levels should be considered in future studies which explore the relation between physical activity and cardiovascular disease. PMID:2910074

  5. Sexually active bucks are efficient to stimulate female ovulatory activity during the anestrous season also under temperate latitudes.

    PubMed

    Chasles, Manon; Chesneau, Didier; Moussu, Chantal; Delgadillo, José Alberto; Chemineau, Philippe; Keller, Matthieu

    2016-05-01

    Goats are seasonal breeders and photoperiod is the main cue controlling the onset and offset of the breeding season. Nevertheless introducing a sexually active buck in a group of females during anestrous can stimulate their reproductive function and induce ovulation. This "male-effect" is very efficient under subtropical latitudes, when using sexually active males previously stimulated by a photoperiodic treatment. However, there is less evidence of its feasibility under temperate latitudes where the more important variation in day length could be responsible for a stronger inhibition of female sexual activity. The aim of this study was therefore to determine whether intense sexual activity can be induced in alpine bucks during the non-breeding season by a long-day treatment under temperate latitude and if these males could be used to produce an efficient male-effect. Bucks (n=21) were divided in two groups, one submitted to a photoperiodic treatment from November 1st to January 15th and then switched to natural photoperiod, while the other group remained entirely under the natural photoperiod. The ones submitted to this light treatment exhibit higher testicular volume and testosterone level 6 weeks after the end of the treatment. At the end of March, bucks were used to stimulate anestrous does (n=41) continuously for 15 days. We showed that (a) light treatment was efficient to induce an increase of sexual activity in bucks and (b) that the introduction of stimulated bucks among females induced a significantly higher proportion of ovulation in anestrous does than control bucks (86% vs 5%). Our results indicate that under temperate latitudes induction of ovulation in females during the anestrous season is feasible using bucks treated with long-days during winter. PMID:27006331

  6. Seasonal distribution of systemic lupus erythematosus activity and its correlation with climate factors.

    PubMed

    Yang, Jie; Lu, Yu-Wei; Pan, Hai-Feng; Tao, Jin-Hui; Zou, Yan-Feng; Bao, Wei; Ye, Dong-Qing

    2012-08-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a variety of clinical manifestations. Although inter-individual variations exist with respect to susceptibility to develop SLE, no study has been carried out to determine the role of different climate conditions in predisposing the susceptible individuals to SLE. The objective of this study was to investigate the role of different seasons and climate factors on SLE activity. From 2000 to 2009, the seasonal distribution of 2,802 active SLE patients recruited from Anhui Provincial Hospital and the First Affiliated Hospital of Anhui Medical University was analyzed retrospectively. The climate data were provided by the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences. The correlation between climate factors and SLE activity was also analyzed. The proportion of active SLE patients in winter, spring, summer, and autumn was 10.06, 10.31, 9.74, and 8.66‰, respectively. In autumn, the proportion was much lower than that in winter and spring (P < 0.05). The proportion among winter, spring, and summer had no statistical difference (P > 0.05). The number of active SLE patients had no correlation with air temperature (r = 0.483, P > 0.05), relative humidity (r = -0.294, P > 0.05), and sunshine percentage (r = 0.503, P > 0.05), but it had positive correlation with amount of precipitation (r = 0.601, P < 0.05), wind velocity (r = 0.713, P < 0.01), and sunshine duration (r = 0.769, P < 0.01) and negative correlation with barometric pressure (r = -0.664, P < 0.05). The disease activity of patients with SLE is affected by seasons and climate factors. PMID:21667078

  7. Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA.

    PubMed

    Johnson, Joshua B; Gates, J Edward; Zegre, Nicolas P

    2011-02-01

    Research on effects of wind turbines on bats has increased dramatically in recent years because of significant numbers of bats killed by rotating wind turbine blades. Whereas most research has focused on the Midwest and inland portions of eastern North America, bat activity and migration on the Atlantic Coast has largely been unexamined. We used three long-term acoustic monitoring stations to determine seasonal bat activity patterns on the Assateague Island National Seashore, a barrier island off the coast of Maryland, from 2005 to 2006. We recorded five species, including eastern red bats (Lasiurus borealis), big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), tri-colored bats (Perimyotis subflavus), and silver-haired bats (Lasionycteris noctivagans). Seasonal bat activity (number of bat passes recorded) followed a cosine function and gradually increased beginning in April, peaked in August, and declined gradually until cessation in December. Based on autoregressive models, inter-night bat activity was autocorrelated for lags of seven nights or fewer but varied among acoustic monitoring stations. Higher nightly temperatures and lower wind speeds positively affected bat activity. When autoregressive model predictions were fitted to the observed nightly bat pass totals, model residuals>2 standard deviations from the mean existed only during migration periods, indicating that periodic increases in bat activity could not be accounted for by seasonal trends and weather variables alone. Rather, the additional bat passes were attributable to migrating bats. We conclude that bats, specifically eastern red, hoary, and silver-haired bats, use this barrier island during migration and that this phenomenon may have implications for the development of near and offshore wind energy. PMID:20364316

  8. Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice.

    PubMed

    Kronfeld-Schor, N; Haim, A; Dayan, T; Zisapel, N; Klingenspor, M; Heldmaier, G

    2000-01-01

    Diurnally active golden spiny mice (Acomys russatus) and nocturnal common spiny mice (Acomys cahirinus) coexist in hot rocky deserts of Israel. Diurnal and nocturnal activities expose these species to different climatic conditions. Nonshivering thermogenesis (NST) capacity of individuals of both species immediately upon removal from the field exhibited seasonal changes, with no significant interspecific difference. Colony-reared mice of either species transferred in the laboratory from long to short photoperiod increased NST capacity, though to a lesser extent than observed in the seasonal acclimatization. The underlying biochemical mechanisms of short photoperiod acclimation differed between the species. In both Cytochrome-c oxidase (Cox) activity was higher in short as compared to long photoperiod. In short-photoperiod-acclimated A. cahirinus uncoupling protein (UCP) content in brown adipose tissue (BAT) was significantly higher than in long photoperiod, while in A. russatus there was no significant change. In A. russatus there was a significant increase in lipoprotein lipase (LPL) activity in BAT in short-photoperiod-acclimated individuals, while in A. cahirinus LPL activity was high under both acclimations. The low LPL activity in brown adipose tissue of desert-adapted A. russatus may facilitate lipid uptake in white adipose tissue, an advantage in desert conditions where food is scarce and irregularly distributed in space and time. PMID:10685905

  9. Increasing hurricane wave power along the U.S. Atlantic and Gulf coasts

    NASA Astrophysics Data System (ADS)

    Bromirski, Peter D.; Kossin, James P.

    2008-07-01

    Although no clear trend in tropical cyclone (TC) generated wave height is observed, a TC wave power index (WPI) increases significantly in the Atlantic during the mid-1990s, resulting largely from an increase in the frequency of middle-to-late season TCs. The WPI is related to TC strength, size, duration, and frequency and is highly correlated with the TC power dissipation index (PDI). Differences between the Atlantic and Gulf of Mexico WPIs reflect systematic changes in TC genesis regions and subsequent tracks, characterized by their relationship with the regional circulation patterns described by the Atlantic Meridional Mode. The annual wave power at near-coastal locations is closely associated with open ocean WPI. The close association of the WPI to hurricane activity implies that under rising sea level, significant coastal impacts will increase as the PDI increases, regardless of TC landfall frequency.

  10. Emergency department syndromic surveillance providing early warning of seasonal respiratory activity in England.

    PubMed

    Hughes, H E; Morbey, R; Hughes, T C; Locker, T E; Pebody, R; Green, H K; Ellis, J; Smith, G E; Elliot, A J

    2016-04-01

    Seasonal respiratory infections place an increased burden on health services annually. We used a sentinel emergency department syndromic surveillance system to understand the factors driving respiratory attendances at emergency departments (EDs) in England. Trends in different respiratory indicators were observed to peak at different points during winter, with further variation observed in the distribution of attendances by age. Multiple linear regression analysis revealed acute respiratory infection and bronchitis/bronchiolitis ED attendances in patients aged 1-4 years were particularly sensitive indicators for increasing respiratory syncytial virus activity. Using near real-time surveillance of respiratory ED attendances may provide early warning of increased winter pressures in EDs, particularly driven by seasonal pathogens. This surveillance may provide additional intelligence about different categories of attendance, highlighting pressures in particular age groups, thereby aiding planning and preparation to respond to acute changes in EDs, and thus the health service in general. PMID:26415918

  11. Hurricane Sandy beach response and recovery at Fire Island, New York: Shoreline and beach profile data, October 2012 to October 2014

    USGS Publications Warehouse

    Hehre Henderson, Rachel; Hapke, Cheryl J.; Brenner, Owen T.; Reynolds, Billy J.

    2015-01-01

    Overall, Hurricane Sandy substantially altered the morphology of Fire Island. However, the coastal system rapidly began to recover after the 2012-13 winter storm season and continues to recover in the form of volume gains and shoreline adjustment.

  12. [Seasonal peculiarities of the ground squirrel (Spermophilus undulatus) and Wistar rats circadian activity].

    PubMed

    Semenova, T P; Spiridonova, L A; Zakharova, N M

    2014-09-01

    The seasonal peculiarities of the circadian activity of hibernator, Yakutian long tail ground squirrels (S. undulatus) (n = 35) and non hibernator, Wistar rats (n = 35), were studied. The locomotor activity was registered in each subject individually during 5-17 days by means of "Animex" in the different periods of annual cycle. It was shown that ground squirrels were animals with daily type of activity. On the contrary, the Wistar rats demonstrated nocturne type of locomotors activity. The active period in rats was longer than in ground squirrels. It included not only at night, but morning time in spring, and daytime--in summer. The circadian differences between hibernators and non-hibernators were kept during all annual cycle at night time, but in daytime--only in spring and summer time. PMID:25697015

  13. Hurricane Influences on Vegetation Community Change in Coastal Louisiana

    USGS Publications Warehouse

    Steyer, Gregory D.; Cretini, Kari Foster; Piazza, Sarai C.; Sharp, Leigh Anne; Snedden, Gregg A.; Sapkota, Sijan

    2010-01-01

    The impacts of Hurricanes Katrina and Rita in 2005 on wetland vegetation were investigated in Louisiana coastal marshes. Vegetation cover, pore-water salinity, and nutrients data from 100 marsh sites covering the entire Louisiana coast were sampled for two consecutive growing seasons after the storms. A mixed-model nested ANOVA with Tukey's HSD test for post-ANOVA multiple comparisons was used to analyze the data. Significantly (p<0.05) lower vegetation cover was observed within brackish and fresh marshes in the west as compared to the east and central regions throughout 2006, but considerable increase in vegetation cover was noticed in fall 2007 data. Marshes in the west were stressed by prolonged saltwater logging and increased sulfide content. High salinity levels persisted throughout the study period for all marsh types, especially in the west. The marshes of coastal Louisiana are still recovering after the hurricanes; however, changes in the species composition have increased in these marshes.

  14. Melatonin concentrations in the two jugular veins, and relationship with the seasonal reproductive activity in goats.

    PubMed

    Zarazaga, L A; Celi, I; Guzmán, J L; Malpaux, B

    2010-07-15

    The authors investigated whether melatonin concentrations vary between the two jugular veins and whether absolute (nocturnal) or relative (nocturnal/diurnal ratio) plasma melatonin concentrations are associated with seasonal reproductive activity measured by oestrus or ovulatory activity in Payoya goats. Thirty-two adult Payoya goats were penned under natural photoperiod. Oestrus activity was tested daily using aproned males-twice a week plasma was sampled for progesterone. Melatonin plasma concentrations were studied at each equinox and solstice of the year in jugular samples taken simultaneously by venipuncture. Nocturnal and diurnal plasma melatonin concentrations from each jugular vein were assessed in 3 and 2 plasma samples per goat, respectively, taken at hourly intervals in each period. No differences in melatonin concentrations between the two veins were observed, but there was a significant interaction (P < 0.001) between jugular vein and animal in nocturnal melatonin concentrations. There was no effect of sampling period on melatonin concentrations and the coefficient of correlation between sampling periods was very high. The analyses performed indicated that neither absolute nor relative melatonin concentrations were related with the dates of onset or end of ovulatory/oestrus activity. Therefore, we concluded that in goats (1) melatonin concentrations are highly variable between jugular veins in the same individual but not in the general population, (2) melatonin concentrations are highly repeatable for each individual, and (3) absolute and relative amplitudes of melatonin concentrations are not linked to the seasonal breeding activity in Mediterranean goats. PMID:20451998

  15. Using a Geographic Information System to Assess the Risk of Hurricane Hazards on the Maya Civilization

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Sever, T.

    2014-12-01

    The extent of the Maya civilization spanned across portions of modern day Mexico, Belize, Guatemala, El Salvador and Honduras. Paleoclimatic studies suggest this region has been affected by strong hurricanes for the past six thousand years, reinforced by archeological evidence from Mayan records indicating they experienced strong storms. It is theorized hurricanes aided in the collapse of the Maya, damaging building structures, agriculture, and ceasing industry activities. Today, this region is known for its active tropical climatology, being hit by numerous strong storms including Hurricane Dean, Iris, Keith, and Mitch. This research uses a geographic information system (GIS) to model hurricane hazards, and assess the risk posed on the Maya civilization. GIS has the ability to handle various layer components making it optimal for combining parameters necessary for assessing the risk of experiencing hurricane related hazards. For this analysis, high winds, storm surge flooding, non-storm surge related flooding, and rainfall triggered landslides were selected as the primary hurricane hazards. Data sets used in this analysis include the National Climatic Data Center International Best Track Archive for Climate Stewardships (IBTrACS) hurricane tracks, Shuttle Radar Topography Mission Digital Elevation Model, WorldClim monthly accumulated precipitation, USGS HydroSHEDS river locations, Harmonized World Soil Database soil types, and known Maya site locations from the Electronic Atlas of Ancient Maya Sites. ArcGIS and ENVI software were utilized to process data and model hurricane hazards. To assess locations at risk of experiencing high winds, a model was created using ArcGIS Model Builder to map each storm's temporal wind profile, and adapted to simulate forward storm velocity, and storm frequency. Modeled results were then combined with physical land characteristics, meteorological, and hydrologic data to identify areas likely affected. Certain areas along the eastern

  16. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters

    PubMed Central

    Hugoni, Mylène; Taib, Najwa; Debroas, Didier; Domaizon, Isabelle; Jouan Dufournel, Isabelle; Bronner, Gisèle; Salter, Ian; Agogué, Hélène; Mary, Isabelle; Galand, Pierre E.

    2013-01-01

    Marine Archaea are important players among microbial plankton and significantly contribute to biogeochemical cycles, but details regarding their community structure and long-term seasonal activity and dynamics remain largely unexplored. In this study, we monitored the interannual archaeal community composition of abundant and rare biospheres in northwestern Mediterranean Sea surface waters by pyrosequencing 16S rDNA and rRNA. A detailed analysis of the rare biosphere structure showed that the rare archaeal community was composed of three distinct fractions. One contained the rare Archaea that became abundant at different times within the same ecosystem; these cells were typically not dormant, and we hypothesize that they represent a local seed bank that is specific and essential for ecosystem functioning through cycling seasonal environmental conditions. The second fraction contained cells that were uncommon in public databases and not active, consisting of aliens to the studied ecosystem and representing a nonlocal seed bank of potential colonizers. The third fraction contained Archaea that were always rare but actively growing; their affiliation and seasonal dynamics were similar to the abundant microbes and could not be considered a seed bank. We also showed that the major archaeal groups, Thaumarchaeota marine group I and Euryarchaeota group II.B in winter and Euryarchaeota group II.A in summer, contained different ecotypes with varying activities. Our findings suggest that archaeal diversity could be associated with distinct metabolisms or life strategies, and that the rare archaeal biosphere is composed of a complex assortment of organisms with distinct histories that affect their potential for growth. PMID:23536290

  17. Tornadoes & Hurricanes. The Natural Disaster Series. Grades 4-8.

    ERIC Educational Resources Information Center

    Deery, Ruth

    The topics of tornadoes and hurricanes are important to children but are often missing from elementary textbooks. This document is a part of "The Natural Disaster Series" and is an attempt to supplement elementary science and social studies programs with lessons and student activities. Reasoning skills are emphasized throughout the booklet. Three…

  18. Fires, Floods, and Hurricanes: Is ENSO to Blame?

    ERIC Educational Resources Information Center

    Mjelde, James W.; Litzenberg, Kerry K.; Hoyle, Julie E.; Holochwost, Sharon R.; Funkhouser, Sarah

    2007-01-01

    Scientists have associated the El Nino/Southern Oscillation (ENSO) phenomenon with extreme climate events such as flooding in California, droughts in Australia, fires in Indonesia, and increased hurricane activity in the Atlantic Ocean. The popular media is constantly attributing individual storms to the ENSO phenomenon. The reality is that a…

  19. Hurricane Sandy: An Educational Bibliography of Key Research Studies

    ERIC Educational Resources Information Center

    Piotrowski, Chris

    2013-01-01

    There, undoubtedly, will be a flurry of research activity in the "Superstorm" Sandy impact area on a myriad of disaster-related topics, across academic disciplines. The purpose of this study was to review the disaster research related specifically to hurricanes in the educational and social sciences that would best serve as a compendium…

  20. Seasonal variations in Be-7 activity in the sediments of Cape Lookout Bight, North Carolina

    NASA Technical Reports Server (NTRS)

    Canuel, E. A.; Martens, C. S.; Benninger, L. K.

    1990-01-01

    The short-term sediment-accumulation rates in the interior of the Cape Lookout Bight (North Caroline) were determined using data on Be-7 activity distribution in the surface of sediments of the bight. Lack of a significant bioturbation in this lagoon made it possible to interpret variations in depth-integrated activity profiles of Be-7 as short-term accumulation events. The accumulation rates calculated from Be-7 activity profiles indicate that the delivery of particulate matter to the sediments of Cape Lookout Bight is not constant throughout an annual cycle, with the highest monthly accumulation rates being associated with north/northeast storm activity. Inputs were found to be highest during the late winter/early spring season, when the storm frequency is greatest.

  1. The patterns of seasonal activity of Ixodes vespertilionis (Acari: Ixodidae) on Rhinolophus hipposideros in nursery colonies.

    PubMed

    Piksa, Krzysztof; Górz, Andrzej; Nowak-Chmura, Magdalena; Siuda, Krzysztof

    2014-02-01

    The aim of this study was to describe the dynamics of the long-legged bat tick Ixodes vespertilionis infestation on the lesser horseshoe bat Rhinolophus hipposideros in 2 nursery colonies roosting in attics. Out of a total of 810 lesser horseshoe bats examined, 217 (26.8%) were found to be infested with a total of 464 I. vespertilionis individuals. The developmental stage most frequently found was the larva, followed by the nymph, and the adult female. Bats were significantly more frequently infested with I. vespertilionis ticks in the period April to May than in other months. In these months, all tick developmental stages were observed. During summer and autumn, only immature developmental stages were recorded, whilst in September and October larvae predominated. Considerable differences in tick load between nursery colonies were observed. The length of seasonal presence on bats, prevalence, and infestation intensity of I. vespertilionis on lesser horseshoe bats were higher in the nursery colony situated in close vicinity of a cave than in the colony situated far from the caves. The results suggest that the pattern of seasonal infestation of ticks on bats roosting in nursery colonies coincides with the seasonal activity of Rh. hipposideros in the caves. The first case of mixed infestation of the lesser horseshoe bat with I. vespertilionis and I. ricinus were also recorded. PMID:24252260

  2. Petroleum industry assists hurricane relief

    SciTech Connect

    Not Available

    1992-09-14

    This paper reports that the petroleum industry is aiding victims of last month's Hurricane Andrew with cash, clothing, food, water, and other supplies. Cash contributions announced as of last week totaled more than $2.7 million for distribution in South Florida and South Louisiana. Petroleum industry employees were collecting relief items such as bottled water and diapers for distribution in those areas.

  3. Hurricane Irene on the Move

    NASA Video Gallery

    GOES-13 satellite imagery in 15 minute intervals from August 25, 2011, at 9:40 a.m. EDT to August 27 at 9:40 a.m. EDT. The animations show Hurricane Irene moving through the Bahamas and making land...

  4. A Hurricane for Physics Students.

    ERIC Educational Resources Information Center

    Mayo, Ned

    1994-01-01

    Describes how the study of a hurricane can be used to provide integrated basic mechanics in a first-year college course in engineering mechanics. Presents models that predict wind speed given surface eye pressure and several radial dimensions of the storm and calculate total kinetic energy once the wind speed is determined. (ZWH)

  5. The High Resolution Hurricane Test

    NASA Astrophysics Data System (ADS)

    Tripoli, G. J.

    2009-09-01

    It has been suggested that an answer to the hurricane intensity forecast problem is to use very high cloud-resolving resolution in operational forecast models. In consideration of this hypothesis, the United States National Atmospheric and Oceanic Administration commissioned a major study to take place over the past 1.5 years whereby the hypothesis would be tested with 6 different hurricane models featuring different dynamics cores and different physics. These models included the GFDL hurricane, Navy COAMPS, the WRF-ARW, WRF-AHW, WRF-NMM, and the UW-NMS. The experiment design was to choose and optimal mix of historic hurricanes where good observations of intensity at land fall existed and run 5 day model forecasts with 3 different resolutions of about 9-12 km (low resolution), 3-4 km (medium resolution) and 1-1.5 km (high resolution) and document how much the forecast improved in each case. The project focused on 10 storms over 2-12, 1-5 day forecast periods, for a total of 67 simulations. Not all groups completed all 67 simulations, but there were sufficient results to reach a stunning conclusion. The results of these tests suggested that little or no improvement in intensity prediction was achieved with high resolution.

  6. Hurricane Rina Headed to Mexico

    NASA Video Gallery

    An animation of NOAA GOES-13 satellite observations from October 23 at 2:45 p.m. EDT through Oct. 25 at 1:30 p.m. EDT shows a strengthening Hurricane Rina in the western Caribbean Sea and headed fo...

  7. Hurricane Irene at Category 3

    NASA Video Gallery

    Video sequence taken by the crew of the ISS on Aug. 23, 2011 at approximately 2:15PM EST. At that time, Hurricane Irene was a Category 3 storm with peak winds estimated at 115mph, moving west-north...

  8. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  9. Seasonal variation in daily activity patterns of free-ranging European ground squirrels (Spermophilus citellus).

    PubMed

    Everts, Lammina G; Strijkstra, Arjen M; Hut, Roelof A; Hoffmann, Ilse E; Millesi, Eva

    2004-01-01

    Daily aboveground activity of European ground squirrels (Spermophilus citellus) in their natural habitat was recorded with a visual scanning procedure during the active seasons of 1992 and 1993. Activity patterns were analyzed with respect to time of year and to the animal's reproductive state. Aboveground activity started on average 3.9 h (SD 0.6 h, n = 37 days) after civil twilight at dawn and ended on average 3.2 h (SD 0.9 h, n = 37 days) before civil twilight at dusk. Between onset and offset of activity, 54% was spent aboveground, of which 73% was spent foraging. Activity patterns were influenced by photoperiod, rainfall, and by reproductive state. During mating, reproductively active males started activity earlier than females and reproductively inactive males. For females, time spent foraging was high during lactation. The midpoint of daily activity was at 12:16 h (SD 0.37 h, n = 37 days). Activity patterns of European ground squirrels thus appear robustly positioned in the middle of the photoperiod. PMID:15129824

  10. Seasonal prediction of tropical cyclone activity over the north Indian Ocean using three artificial neural networks

    NASA Astrophysics Data System (ADS)

    Nath, Sankar; Kotal, S. D.; Kundu, P. K.

    2016-03-01

    Three artificial neural network (ANN) methods, namely, multilayer perceptron (MLP), radial basis function (RBF) and generalized regression neural network (GRNN) are utilized to predict the seasonal tropical cyclone (TC) activity over the north Indian Ocean (NIO) during the post-monsoon season (October, November, December). The frequency of TC and large-scale climate variables derived from NCEP/NCAR reanalysis dataset of resolution 2.5° × 2.5° were analyzed for the period 1971-2013. Data for the years 1971-2002 were used for the development of the models, which were tested with independent sample data for the year 2003-2013. Using the correlation analysis, the five large-scale climate variables, namely, geopotential height at 500 hPa, relative humidity at 500 hPa, sea-level pressure, zonal wind at 700 hPa and 200 hPa for the preceding month September, are selected as potential predictors of the post-monsoon season TC activity. The result reveals that all the three different ANN methods are able to provide satisfactory forecast in terms of the various metrics, such as root mean-square error (RMSE), standard deviation (SD), correlation coefficient (r), and bias and index of agreement (d). Additionally, leave-one-out cross validation (LOOCV) method is also performed and the forecast skill is evaluated. The results show that the MLP model is found to be superior to the other two models (RBF, GRNN). The (MLP) is expected to be very useful to operational forecasters for prediction of TC activity.

  11. Locomotor micro-activities associated with therapeutic responses in patients with seasonal affective disorders

    PubMed Central

    Ohashi, Kyoko; Yamamoto, Yoshiharu; Teicher, Martin H.

    2015-01-01

    Background Psychomotor retardation, leaden paralysis and fatigue are often used to describe patients with depressive disorders. However, there is limited understanding of their meaning and how they are objectively manifested in the physical world. Patients with seasonal affective disorder (SAD) are characteristically hypoactive, and experience restoration in energy during effective treatment with bright light. In this study, we attempt to identify quantitative metrics of psychomotor activity that correspond to the clinical perceptions of hypoactivity and to the early activating effects of treatment. Methods Novel means of assessing the microstructure of activity was employed using wavelets and Hurst exponents to indicate the proclivity of subjects to persist at higher and lower levels of activity. This was assesed using actigraphs in 16 unmedicated patients with SAD before and following two weeks of bright light therapy. Results Two weeks of phototherapy had no significant effect on mean levels of diurnal activity, but altered the microstructure of the activity. Specifically, phototherapy produced a significant reduction in inertial resistance in patients who had a 50% or greater reduction in Hamilton Depression scores (n=8), as reflected in reduced tendency to persist at low levels of activity. There was also a strong correlation between ratings of fatigue and measures of persistence at high versus low activity in initial responders, but not in initial non-responders. Conclusion These findings suggest that light therapy alters the nature of diurnal activity troughs in early responsive patients, reducing their tendency to persist at low levels, possibly reflecting an alleviation of psychomotor retardation. PMID:27135034

  12. Antimycoplasmic activity and seasonal variation of essential oil of Eugenia hiemalis Cambess. (Myrtaceae).

    PubMed

    Zatelli, Gabriele Andressa; Zimath, Priscila; Tenfen, Adrielli; Mendes de Cordova, Caio Maurício; Scharf, Dilamara Riva; Simionatto, Edésio Luiz; Alberton, Michele Debiasi; Falkenberg, Miriam

    2016-09-01

    The purpose of this work was to study the chemical composition and antimycoplasmic and anticholinesterase activities of the essential oil of Eugenia hiemalis leaves collected throughout the year. A total of 42 compounds were identified by CG, and are present in almost every seasons. Sesquiterpenes were dominant (86.01-91.48%), and non-functionalised sesquiterpenes comprised the major fraction, which increased in the summer; monoterpenes were not identified. The major components were spathulenol (5.36-16.06%), δ-cadinene (7.50-15.93%), bicyclogermacrene (5.70-14.24%) and β-caryophyllene (4.80-9.43%). The highest oil yield was obtained in summer and autumn. Essential oils presented activity against three evaluated Mycoplasma strains, but no activity was observed in the anticholinesterase assay. PMID:26428391

  13. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    PubMed

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia. PMID:26503008

  14. Hurricane Katrina Wind Investigation Report

    SciTech Connect

    Desjarlais, A. O.

    2007-08-15

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures

  15. Effect of age and season on the thyroid hormone activity of Mizoram strain female mithun (Bos frontalis)

    PubMed Central

    Lalsangpuii; Ali, M. Ayub; Devi, L. Inaotombi; Behera, Parthasarathi; Ralte, Lalsanglura

    2015-01-01

    Aim: The aim of the present study was to generate baseline data on the normal values of the thyroidhormone (TH) activity as well as their correlation with age and season. Materials and Methods: Blood samples (10 ml) were collected from jugular vein of 30 female mithun’s of three different age groups viz. Calves (6 months to 1 year), heifer (1-3 years) and adult (above 3 years) during the three season’s viz. Monsoon, winter and spring of a year. The serum was analyzed for thyroid stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4) activity. Result: The result showed a significantly (p<0.05) a higher T3 level in heifers followed by adults and calves and higher T4 level in adults followed by heifers and calves in all the seasons. The TSH level was higher in heifers in all the seasons. The winter season recorded higher level of T3, T4, and TSH as compared to the other seasons of a year. Conclusion: The TSH and T3 level were the highest for aheifer, whereas T4 level was the highest for adults inall the season. Furthermore, the higher level of TH was observed in winter season. The increased level of the TH during the winter season signifies their calorigenic effect. Similarly in heifers, the increased T3 concentrations show its importance in reproductive physiology and its association with ovarian activity. This indicates that age and season have aprofound effect on TH activity of Mizoram strain female mithun. PMID:27047046

  16. Forecasting hurricane impact on coastal topography: Hurricane Ike

    USGS Publications Warehouse

    Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger,, Asbury H., Jr.; Turco, Michael J.; East, Jeffery W.; Taylor, Arthur A.; Shaffer, Wilson A.

    2010-01-01

    Extreme storms can have a profound impact on coastal topography and thus on ecosystems and human-built structures within coastal regions. For instance, landfalls of several recent major hurricanes have caused significant changes to the U.S. coastline, particularly along the Gulf of Mexico. Some of these hurricanes (e.g., Ivan in 2004, Katrina and Rita in 2005, and Gustav and Ike in 2008) led to shoreline position changes of about 100 meters. Sand dunes, which protect the coast from waves and surge, eroded, losing several meters of elevation in the course of a single storm. Observations during these events raise the question of how storm-related changes affect the future vulnerability of a coast.

  17. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... COMMISSION Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles AGENCY....221 on Design-Basis Hurricane and Hurricane Missiles.'' The purpose of this ISG is to supplement the guidance regarding the application of Regulatory Guide 1.221, ``Design-Basis Hurricane and...

  18. Seasonal development of cambial activity in relation to xylem formation in Chinese fir.

    PubMed

    Wu, Hongyang; Xu, Huimin; Li, Hanyin; Wei, Dongmei; Lin, Jinxing; Li, Xiaojuan

    2016-05-20

    The vascular cambium is a lateral meristem which can differentiate into secondary phloem and xylem. The secondary growth of woody plants resulting from vascular cambium activity has been a focus of considerable attention, but the quantitative relationships between cambial activity and secondary xylem formation have been little studied. Our analysis of cytological changes in the cambium of Chinese fir (Cunninghamia lanceolata), revealed a significant positive correlation between vascular cambium cell numbers and cambium zone width through the seasonal cycle. Cambium cell numbers and the cambium cell radial diameter were closely related to xylem formation. Immuno-labeling showed that de-esterified homogalacturonan and (1-4)-β-d-galactan epitopes were highly abundant in cell walls of dormant-stage cambium, whereas high methylesterified homogalacturonan was strongly labeled in the active stage. Raman spectroscopy detected significant changes in the chemical composition of cell walls during the active-dormant stage transition. More pectin and less monolignols occurred in radial cell walls than in tangential walls during the dormant stage, but no significant changes were found in other stages, indicating that pectin accumulation facilitates cell wall expansion, with cambium activity transition. Our quantitative analysis of the relationship between cambial activity and xylem formation, as well as the cell wall modification during the active stage provides useful information about cambial characteristics and xylogenesis. PMID:26986869

  19. Let Nature Be the Teacher: Seasonal Natural History Activities for Parents and Other Educators To Share with Young Children.

    ERIC Educational Resources Information Center

    Gertz, Lucille N.

    This book is designed to provide parents and other adult companions with activities to do with children on outdoor walks. The activities offer adults and children a shared learning experience and have been adapted from the children's education program at Habitat Institute for the Environment (Massachusetts). The activities are arranged seasonally,…

  20. Influence of season on daytime behavioral activities of donkeys in the Northern Guinea Savanna zone of Nigeria

    PubMed Central

    ZAKARI, Friday Ocheja; AYO, Joseph Olusegun; REKWOT, Peter Ibrahim; KAWU, Mohammed Umar

    2016-01-01

    ABSTRACT The present experiment was performed with the aim of investigating the effect of season on behavioral activities of donkeys during the rainy and harmattan seasons in the Northern Guinea zone of Nigeria. Sixteen apparently healthy donkeys were used as subjects and divided into four groups based on age. During each season, behavioral activities of each donkey were evaluated for three weeks using the focal animal sampling technique. The dry-bulb temperature (DBT), relative humidity (RH), and temperature-humidity index (THI) were obtained three times each day during the experimental period using standard procedures. In the rainy season, the mean DBT (31.65 ± 0.49°C), RH (73.63 ± 1.09%), and THI (84.39 ± 0.71) were significantly (P<0.0001) higher than the corresponding values of 24.00 ± 0.44°C, 36.80 ± 0.92%, and 64.80 ± 0.62 in the harmattan season. During the rainy season, the donkeys spent 60.00 ± 0.77%, 25.40 ± 0.69%, and 2.94 ± 0.21% on grazing, resting, and grooming, respectively. During the harmattan season, the donkeys spent the most time on grazing (76.76 ± 0.43%), less time on resting (11.97 ± 0.38%), and the least time on grooming (0.89 ± 0.05%). In conclusion, season and seasonal variations affect the daytime behavioral activities of donkeys in the zone, and this should be considered in husbandry practices for donkeys. PMID:26858575

  1. Influence of season on daytime behavioral activities of donkeys in the Northern Guinea Savanna zone of Nigeria.

    PubMed

    Zakari, Friday Ocheja; Ayo, Joseph Olusegun; Rekwot, Peter Ibrahim; Kawu, Mohammed Umar

    2015-01-01

    The present experiment was performed with the aim of investigating the effect of season on behavioral activities of donkeys during the rainy and harmattan seasons in the Northern Guinea zone of Nigeria. Sixteen apparently healthy donkeys were used as subjects and divided into four groups based on age. During each season, behavioral activities of each donkey were evaluated for three weeks using the focal animal sampling technique. The dry-bulb temperature (DBT), relative humidity (RH), and temperature-humidity index (THI) were obtained three times each day during the experimental period using standard procedures. In the rainy season, the mean DBT (31.65 ± 0.49°C), RH (73.63 ± 1.09%), and THI (84.39 ± 0.71) were significantly (P<0.0001) higher than the corresponding values of 24.00 ± 0.44°C, 36.80 ± 0.92%, and 64.80 ± 0.62 in the harmattan season. During the rainy season, the donkeys spent 60.00 ± 0.77%, 25.40 ± 0.69%, and 2.94 ± 0.21% on grazing, resting, and grooming, respectively. During the harmattan season, the donkeys spent the most time on grazing (76.76 ± 0.43%), less time on resting (11.97 ± 0.38%), and the least time on grooming (0.89 ± 0.05%). In conclusion, season and seasonal variations affect the daytime behavioral activities of donkeys in the zone, and this should be considered in husbandry practices for donkeys. PMID:26858575

  2. SEASONAL EFFECTS ON COMET NUCLEI EVOLUTION: ACTIVITY, INTERNAL STRUCTURE, AND DUST MANTLE FORMATION

    SciTech Connect

    De Sanctis, M. C.; Capria, M. T.; Lasue, J.

    2010-07-15

    Rotational properties can strongly influence a comet's evolution in terms of activity, dust mantling, and internal structure. In this paper, we investigate the effects of various rotation axis directions on the activity, internal structure, and dust mantling of cometary nuclei. The numerical code developed is able to reproduce different shapes and spin axis inclinations, taking into account both the latitudinal and the longitudinal variations of illumination, using a quasi-three-dimensional approach. The results obtained show that local variations in the dust and gas fluxes can be induced by the different spin axis directions and completely different behaviors of the comet evolution can result in the same cometary shape by using different obliquities of the models. The internal structures of cometary nuclei are also influenced by comet obliquity, as well as dust mantling. Gas and dust production rates show diversities related to the comet seasons.

  3. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea

    PubMed Central

    Salter, Ian; Galand, Pierre E; Fagervold, Sonja K; Lebaron, Philippe; Obernosterer, Ingrid; Oliver, Matthew J; Suzuki, Marcelino T; Tricoire, Cyrielle

    2015-01-01

    A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time<5 h). We propose a conceptual framework in which physical mixing of the water column periodically resets SAR11 communities to a high diversity state and the seasonal evolution of phosphate limitation competitively excludes deeper-dwelling ecotypes to promote low diversity states dominated (>80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study. PMID:25238399

  4. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests

    NASA Astrophysics Data System (ADS)

    Bi, Jian; Knyazikhin, Yuri; Choi, Sungho; Park, Taejin; Barichivich, Jonathan; Ciais, Philippe; Fu, Rong; Ganguly, Sangram; Hall, Forrest; Hilker, Thomas; Huete, Alfredo; Jones, Matthew; Kimball, John; Lyapustin, Alexei I.; Mõttus, Matti; Nemani, Ramakrishna R.; Piao, Shilong; Poulter, Benjamin; Saleska, Scott R.; Saatchi, Sassan S.; Xu, Liang; Zhou, Liming; Myneni, Ranga B.

    2015-06-01

    Resolving the debate surrounding the nature and controls of seasonal variation in the structure and metabolism of Amazonian rainforests is critical to understanding their response to climate change. In situ studies have observed higher photosynthetic and evapotranspiration rates, increased litterfall and leaf flushing during the Sunlight-rich dry season. Satellite data also indicated higher greenness level, a proven surrogate of photosynthetic carbon fixation, and leaf area during the dry season relative to the wet season. Some recent reports suggest that rainforests display no seasonal variations and the previous results were satellite measurement artefacts. Therefore, here we re-examine several years of data from three sensors on two satellites under a range of sun positions and satellite measurement geometries and document robust evidence for a seasonal cycle in structure and greenness of wet equatorial Amazonian rainforests. This seasonal cycle is concordant with independent observations of solar radiation. We attribute alternative conclusions to an incomplete study of the seasonal cycle, i.e. the dry season only, and to prognostications based on a biased radiative transfer model. Consequently, evidence of dry season greening in geometry corrected satellite data was ignored and the absence of evidence for seasonal variation in lidar data due to noisy and saturated signals was misinterpreted as evidence of the absence of changes during the dry season. Our results, grounded in the physics of radiative transfer, buttress previous reports of dry season increases in leaf flushing, litterfall, photosynthesis and evapotranspiration in well-hydrated Amazonian rainforests.

  5. Sunlight Mediated Seasonality in Canopy Structure and Photosynthetic Activity of Amazonian Rainforests

    NASA Astrophysics Data System (ADS)

    Bi, J.; Knyazikhin, Y.; CHOI, S.; Park, T.; Barichivich, J.; Ciais, P.; Fu, R.; Ganguly, S.; Hall, F. G.; Hilker, T.; Huete, A. R.; Jones, M. O.; Kimball, J. S.; Lyapustin, A.; Mottus, M.; Nemani, R. R.; Piao, S.; Poulter, B.; Saleska, S. R.; Saatchi, S. S.; Xu, L.; Zhou, L.; Myneni, R.

    2015-12-01

    Resolving the debate about the nature and controls of seasonal variation in structure and metabolism of Amazonian rainforests is critical to understanding their response to climate change. In situ studies have observed higher photosynthetic and evapotranspiration rates, increased litterfall and leaf flushing during the sunlight-rich dry season. Satellite data also indicated higher greenness level, a proven surrogate of photosynthetic carbon fixation, and leaf area during the dry season relative to the wet season. Some recent reports suggest that rainforests display no seasonal variations and the previous results were satellite measurement artefacts. Therefore, we re-examine here several years of data from three sensors on two satellites under a range of sun positions and satellite measurement geometries and document robust evidence for a seasonal cycle in structure and greenness of wet equatorial Amazonian rainforests. This seasonal cycle is concordant with independent observations of solar radiation. We attribute alternative conclusions to an incomplete study of the seasonal cycle, i.e. the dry season only, and to prognostications based on a biased radiative transfer model. Consequently, evidence of dry season greening in geometry corrected satellite data was ignored and the absence of evidence for seasonal variation in lidar data due to noisy and saturated signals was misinterpreted as evidence of absence of changes during the dry season. Our results, grounded in the physics of radiative transfer, buttress previous reports of dry season increases in leaf flushing, litterfall, photosynthesis and evapotranspiration in well-hydrated Amazonian rainforests.

  6. Seasonal changes in the invertebrate community of granular activated carbon filters and control technologies.

    PubMed

    Wang, Qing; You, Wei; Li, Xiaowei; Yang, Yufeng; Liu, Lijun

    2014-03-15

    Invertebrate colonization of granular activated carbon (GAC) filters in the waterworks is one of the most frequently occurring and least studied biological problems of water processing in China. A survey of invertebrate colonization of GAC filters was carried out weekly from October 2010 to December 2011 at a reservoir water treatment works in South China. Twenty-six kinds of invertebrates were observed. The abundance was as high as 5600ind.m(-3) with a mean of 860ind.m(-3). Large variations in abundance were observed among different seasons and before and after GAC filtration. The dominant organisms were rotifers and copepods. The average invertebrate abundance in the filtrate was 12-18.7 times of that in the pre-filtered water. Results showed that the GAC filters were colonized by invertebrates which may lead to a higher output of organisms in the filtrate than in the pre-filtered water. The invertebrate abundance in the GAC filters was statistically correlated with the water temperature. Seasonal patterns were observed. The invertebrate abundance grew faster in the spring and summer. Copepods were dominant in the summer while rotifers dominated in all other seasons of the year. There was a transition of small invertebrates (rotifers) gradually being substituted by larger invertebrates (copepods) from spring to summer. Control measures such as backwashing with chloric water, drying filter beds and soaking with saliferous water were implemented in the waterworks to reduce invertebrate abundances in the GAC filters. The results showed that soaking with saliferous water (99%, reduction in percent) was best but drying the filter beds (84%) was more economical. Soaking filter beds with 20g/L saliferous water for one day can be implemented in case of emergency. In order to keep invertebrate abundance in the acceptable range, some of these measures should be adopted. PMID:24268057

  7. The influence of absorbed solar radiation by Saharan dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Poberaj, Christina Schnadt; Revell, Laura E.; Lohmann, Ulrike

    2015-03-01

    To date, the radiative impact of dust and the Saharan air layer (SAL) on North Atlantic hurricane activity is not yet known. According to previous studies, dust stabilizes the atmosphere due to absorption of solar radiation but thus shifts convection to regions more conducive for hurricane genesis. Here we analyze differences in hurricane genesis and frequency from ensemble sensitivity simulations with radiatively active and inactive dust in the aerosol-climate model ECHAM6-HAM. We investigate dust burden and other hurricane-related variables and determine their influence on disturbances which develop into hurricanes (developing disturbances, DDs) and those which do not (nondeveloping disturbances, NDDs). Dust and the SAL are found to potentially have both inhibiting and supporting influences on background conditions for hurricane genesis. A slight southward shift of DDs is determined when dust is active as well as a significant warming of the SAL, which leads to a strengthening of the vertical circulation associated with the SAL. The dust burden of DDs is smaller in active dust simulations compared to DDs in simulations with inactive dust, while NDDs contain more dust in active dust simulations. However, no significant influence of radiatively active dust on other variables in DDs and NDDs is found. Furthermore, no substantial change in the DD and NDD frequency due to the radiative effects of dust can be detected.

  8. Lessons Learnt From Hurricane Katrina.

    NASA Astrophysics Data System (ADS)

    Akundi, Murty

    2008-03-01

    Hurricane Katrina devastated New Orleans and its suburbs on Monday August 29^th, 2005. The previous Friday morning, August 26, the National Hurricane Center indicated that Katrina was a Category One Hurricane, which was expected to hit Florida. By Friday afternoon, it had changed its course, and neither the city nor Xavier University was prepared for this unexpected turn in the hurricane's path. The university had 6 to 7 ft of water in every building and Xavier was closed for four months. Students and university personnel that were unable to evacuate were trapped on campus and transportation out of the city became a logistical nightmare. Email and all electronic systems were unavailable for at least a month, and all cell phones with a 504 area code stopped working. For the Department, the most immediate problem was locating faculty and students. Xavier created a list of faculty and their new email addresses and began coordinating with faculty. Xavier created a web page with advice for students, and the chair of the department created a separate blog with contact information for students. The early lack of a clear method of communication made worse the confusion and dismay among the faculty on such issues as when the university would reopen, whether the faculty would be retained, whether they should seek temporary (or permanent) employment elsewhere, etc. With the vision and determination of President Dr. Francis, Xavier was able to reopen the university in January and ran a full academic year from January through August. Since Katrina, the university has asked every department and unit to prepare emergency preparedness plans. Each department has been asked to collect e-mail addresses (non-Xavier), cell phone numbers and out of town contact information. The University also established an emergency website to communicate. All faculty have been asked to prepare to teach classes electronically via Black board or the web. Questions remain about the longer term issues of

  9. Hurricane Preparedness and Control Plan

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This plan establishes policy and sets forth guidance, responsibilities and procedures utilized by Federal Electric Corp., communications department in support of the KSC Emergency Preparedness Plan, Annex A, Hurricane Control Plan (GP-355) dated 27 May 1971. This plan covers all FEC communications department personnel, facilities, and equipment situated at the Kennedy Space Center that are the responsibility of FEC contract NAS 10-4967.

  10. Impact of Hurricane Isabel on Hypoxia in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, M.

    2008-12-01

    Episodic forcing by tropical storms and hurricanes often consists of high winds, heavy precipitation, increased freshwater flow, strong vertical mixing, and intense pulses of nutrients, leading to enhanced plankton biomass and temporary relief or termination of hypoxic condition in estuaries and coastal oceans. The U.S. East and Gulf Coasts have experienced elevated tropical storm and hurricane activity in recent years, a pattern expected to persist for several more decades and that may increase due to global warming. Therefore, there is an urgent need to understand the mechanisms governing the response of a coastal ecosystem to extreme weather events. Here we present a preliminary modeling investigation into Chesapeake Bay's response to Hurricane Isabel which made landfall at the Outer Banks of North Carolina and moved past the Bay on 18 and 19 Sept 2003. Strong storm winds eroded stratification and produced strong turbulent mixing which injected bottom nutrients to the surface euphotic layer and aerated the hypoxic bottom water. After the passage of the storm, however, the horizontal salinity gradient drove restratification and return to hypoxia in bottom water as well as producing a post-storm phytoplankton bloom. Using a coupled hydrodynamic-biogeochemical model, we conduct numerical experiments to investigate how the hurricane-induced destratification and restratification cycle affects the distribution of dissolved oxygen in Chesapeake Bay and explore the mechanisms responsible for the observed rapid return of hypoxia after the storm.

  11. Prestorm estimation of hurricane damage to electric power distribution systems.

    PubMed

    Guikema, Seth D; Quiring, Steven M; Han, Seung-Ryong

    2010-12-01

    Hurricanes frequently cause damage to electric power systems in the United States, leading to widespread and prolonged loss of electric service. Restoring service quickly requires the use of repair crews and materials that must be requested, at considerable cost, prior to the storm. U.S. utilities have struggled to strike a good balance between over- and underpreparation largely because of a lack of methods for rigorously estimating the impacts of an approaching hurricane on their systems. Previous work developed methods for estimating the risk of power outages and customer loss of power, with an outage defined as nontransitory activation of a protective device. In this article, we move beyond these previous approaches to directly estimate damage to the electric power system. Our approach is based on damage data from past storms together with regression and data mining techniques to estimate the number of utility poles that will need to be replaced. Because restoration times and resource needs are more closely tied to the number of poles and transformers that need to be replaced than to the number of outages, this pole-based assessment provides a much stronger basis for prestorm planning by utilities. Our results show that damage to poles during hurricanes can be assessed accurately, provided that adequate past damage data are available. However, the availability of data can, and currently often is, the limiting factor in developing these types of models in practice. Opportunities for further enhancing the damage data recorded during hurricanes are also discussed. PMID:21039701

  12. Quantifying the hurricane catastrophe risk to offshore wind power.

    PubMed

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. PMID:23763387

  13. Observed and Modeled Stratospheric Gravity Waves above Hurricane Humberto

    NASA Astrophysics Data System (ADS)

    Kuester, M.; Alexander, J.; Ray, E.

    2004-05-01

    A three-dimensional model can be a very powerful tool to the study of various properties of hurricanes including areas of deep convection as possible sources of internal gravity waves. Data collected by aircraft, although extremely useful, does not give a full picture of the dynamics of the system because only a few slices through the storm can be sampled within the limitations of the campaign. A validated model can help to fill in the gaps where the sampled data cannot. In this study, a three-dimensional MM5 model is used to study the characteristics of Hurricane Humberto, a category 2 hurricane observed in September 2001 during the the fourth field campaign in the Convection and Moisture Experiment series (CAMEX4). Of particular interest to this study are internal gravity waves induced by the convective activity within the rain bands of the hurricane. Further understanding of the sources for these waves and their effects on the large-scale circulation is an ongoing topic of research. Vertical velocity perturbations and potential temperature contours are used to pinpoint vertically propagating gravity waves in the stratosphere. Possible correlations between areas of deep convection as gravity wave sources within the storm and observed vertically propagating gravity waves are presented. Comparison of model results to data collected during the CAMEX4 on board the high-altitude NASA ER-2 aircraft with the ER-2 Doppler Radar (EDOP) and Microwave Temperature Profiler (MTP) will also be presented.

  14. One Typhoon and Two Hurricanes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The powerful super Typhoon Bilis hit Taiwan with 161 mph (260 kmh) winds on August 22, 2000. At times, the winds were strong enough to shake concrete buildings. In addition to the wind, heavy rains may bring flooding and mudslides to the island. Mudslides particularly threaten areas hit by 1999's powerful earthquake. This image (above) shows Bilis as the outer arms of the storm swept over Taiwan near noon local time on August 22, 2000. The true color image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Meanwhile, in the Atlantic ... On the other side of the globe there were two relatively small hurricanes. Hurricane Alberto sat in the center of the North Atlantic, hanging on in its third week of life. Hurricane Debby was approaching Puerto Rico with sustained winds of only 75 mph (120 kph). NOAA's Geostationary Operational Environmental Satellite (GOES) acquired this image (below) of the Western Hemisphere, showing both Alberto and Debby, at 2:30 PM EDT August 22, 2000. Typhoon Bilis provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE. GOES imagery courtesy GOES Project Science Office, NASA GSFC.

  15. Dynamic Hurricane Data Analysis Tool

    NASA Technical Reports Server (NTRS)

    Knosp, Brian W.; Li, Peggy; Vu, Quoc A.

    2009-01-01

    A dynamic hurricane data analysis tool allows users of the JPL Tropical Cyclone Information System (TCIS) to analyze data over a Web medium. The TCIS software is described in the previous article, Tropical Cyclone Information System (TCIS) (NPO-45748). This tool interfaces with the TCIS database to pull in data from several different atmospheric and oceanic data sets, both observed by instruments. Users can use this information to generate histograms, maps, and profile plots for specific storms. The tool also displays statistical values for the user-selected parameter for the mean, standard deviation, median, minimum, and maximum values. There is little wait time, allowing for fast data plots over date and spatial ranges. Users may also zoom-in for a closer look at a particular spatial range. This is version 1 of the software. Researchers will use the data and tools on the TCIS to understand hurricane processes, improve hurricane forecast models and identify what types of measurements the next generation of instruments will need to collect.

  16. Seasonal variation of pharmaceutically active compounds in surface (Tagus River) and tap water (Central Spain).

    PubMed

    Valcárcel, Y; Alonso, S González; Rodríguez-Gil, J L; Castaño, A; Montero, J C; Criado-Alvarez, J J; Mirón, I J; Catalá, M

    2013-03-01

    Numerous studies have shown the presence of pharmaceutically active compounds (PhACs) in different environmental compartments, for example, in surface water or wastewater ranging from nanograms per litre to micrograms per litre. Likewise, some recent studies have pointed to seasonal variability, thus indicating that PhAcs concentrations in the aquatic environment may depend on the time of year. This work intended to find out (1) whether Tagus fluvial and drinking water were polluted with different groups of PhACs and (2) if their concentrations differed between winter and summer seasons. From the 58 substances analysed, 41 were found belonging to the main therapeutic groups. Statistical differences were seen for antibacterials, antidepressants, anxiolytics, antiepileptics, and cardiovascular drugs, with higher concentrations being detected in winter than in summer. These results might indicate that the PhACs analysed in this study undergo lower environmental degradation in winter than in summer. In order to confirm these initial results, a continuous monitoring should be performed especially on those PhACs that either because of an elevated consumption or an intrinsic chemical persistence are poorly degraded during winter months due to low temperatures and solar irradiation. It is especially important to identify which of these specific PhACs are in order to recommend their substitution by equally effective and safe substances but also environmentally friendly. PMID:22847337

  17. Lightning and radar observations of hurricane Rita landfall

    SciTech Connect

    Henderson, Bradley G; Suszcynsky, David M; Hamlin, Timothy E; Jeffery, C A; Wiens, Kyle C; Orville, R E

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  18. Seasons on Saturn. II. Influence of solar activity on variation of methane absorption

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2015-10-01

    Methane and ammonia in the atmosphere of Saturn are in the form of impurities at the level of less than tenths of a percentage. They take part in photochemical processes, the main products of which are hydrocarbons and ammonia NH3. Polyacetylenes absorb sunlight almost to 400 nm, and hydrocarbons <180 nm. Therefore, the solar activity cycle, the slope of the equator to the plane of the orbit, the orbital motion and the presence of the rings induce change in composition of the upper atmosphere. Radiation constants in the atmosphere depend on the physical and chemical conditions, decreasing from ~10 years at the visible clouds level, to months in tropopause, and days in stratosphere. The observed seasonal effects may be associated also with condensation and convection, and the dynamic time scale may be only tens of hours. The data analysis on the methane absorption distribution over the disk of Saturn for 1964-2012 showed a significant seasonal changes in the levels of visible clouds and above clouds haze. Changes of methane absorption along the meridian in the equinox 1966 and 1995, had the opposite course to the results in equinox 1980. But the expected differences in the change of methane absorption at the equinox 2009, similar to 1980, did not happen. Although all the physical and orbital characteristics of Saturn at equinoxes in these moments repeated, but the response to them were received various. A few years before the equinox in 1966, 1980 and 1995, the number of R, characterizing solar activity, varied from 40 to 180. Before equinox 2009 the Sun has minimal activity and the R value was practically zero. According to observations at the time of equinox 2009, convection in the Saturn's atmosphere stayed at a minimal level. After exiting of rings shadows in winter northern hemisphere deep cloud layer was "frozen" at the same low level at absence of active processes on the Sun. This allowed easily to register a thick layer of methane and ammonia gas. So how

  19. Seasonal trends in the composition and ROS activity of fine particulate matter in Baghdad, Iraq

    NASA Astrophysics Data System (ADS)

    Hamad, Samera Hussein; Shafer, Martin Merrill; Kadhim, Ahmed K. H.; Al-Omran, Sabah M.; Schauer, James Jay

    2015-01-01

    Baghdad suffers from severe atmospheric particulate matter (PM) pollution and has limited infrastructure to monitor and control PM-pollution. To help better understand the nature of particulate matter in Baghdad, daily PM2.5 samples were collected every 6th day from September, 2012 to September, 2013. The samples were analyzed for chemical composition and cellular oxidative stress activity using a macrophage-based assay. The annual average PM2.5 concentration was 50 ± 19 μg m-3, and was comprised of approximately 28% crustal materials, 26% organic carbon (OC), 17% sulfate, 12% elemental carbon (EC), and 8.0% ammonium ion. No clear seasonal trend was observed for the total PM2.5 mass and PM2.5 OC, but EC exhibited higher concentrations in the warmer months, likely due to the extensive use of electric generators operated by diesel and gasoline for cooling. April showed the lowest levels of both EC and OC compared with other months due to both sand and rainstorm events which led to increased deposition and dispersion of local emissions. Concentrations of nitrate ion were low in all seasons due to the high temperatures and low humidity, but slightly higher levels were observed in the cooler months of winter. The oxidative stress (reactive oxygen species (ROS)) activity (59 ± 35 μg Zymosan equivalents m-3) of the PM was relatively lower than in other studied areas. Association between the water soluble PM constituents and the oxidative activity was investigated using a multi-linear regression model which showed no strong relationships between ROS activity and the water soluble components of PM2.5, but a moderate correlation of water soluble organic carbon from biomass burning (WSOC-BB) was observed (R2 = 0.52). Biomass burning PM has been shown to be an important contributor to ROS activity in other published studies, but additional work is needed to better understand the sources leading to the ROS activity in Baghdad.

  20. Distribution and seasonal variation of global lightning activities observed by ISUAL experiment

    NASA Astrophysics Data System (ADS)

    Chen, A. B.; Chiang, C.; Su, C.; Lee, Y.; Hu, C.; Tsai, L.; Huang, Y.; Chou, J.; Lee, L.; Huang, S.; Hsu, R.; Su, H.; Liu, T.; Chang, Y.; Lee, L.

    2007-12-01

    Lightnings serve as an important charge transporter between cloud and ground, and emit sferics those propagate in the ground-ionosphere cavity. The question on how global lightning activity might change in the future as a result of the global warming has attracted great attention. During the three-year observation of ISUAL/FORMOSAT-2, besides upper atmospheric transient luminous events more than 60,000 lightnings which exceeded the trigger threshold were recorded. In this presentation, the distribution, occurrence rate, and seasonal variation of these lightnings at local time between 22:30 and 23:00 will be reported, and compared with that of the OTD/LIS experiment (Christian, et al., 2003). Our results may suggest that intensive lightnings are possible more efficient to generate elves, and the production efficient is assessed in this presentation.

  1. Seasonal and nocturnal activities of the rhinoceros borer (Coleoptera: Scarabaeidae) in the north Saharan oases ecosystems.

    PubMed

    Ehsine, M'hammed; Belkadhi, Mohamed Sadok; Chaieb, Mohammed

    2014-01-01

    The rhinoceros borer Oryctes agamemnon Burmeister (Coleoptera: Scarabaeidae) is a date palm insect pest that causes damage to trunk and roots of palm trees in several countries, including Tunisia, the United Arab Emirates (UAE), Oman, and Saudi Arabia. The aim of this study was to monitor the seasonal and nocturnal activities of this beetle. Experiments were performed on a date palm of Rjim Maatoug during a 6-yr period (2004-2007, 2009-2010). Field survey using light traps shows that O. agamemnon is a univoltine, with a single population peak. Adults appear in the field around late May-early June and the population continued to build until maximum numbers are reached between the end of July and the beginning of August in the same year. No adults were found after first 10 d of November. This peak was characterized by female dominance in number. The monitoring of nocturnal activity showed that it starts its activities roughly 40 min after the sundown and continues until approximately 1 h before sunrise. The highest number of trapped beetles was remarked in the two first hours of flight activity, with a dominance of female in the first hour and a dominance of male in the second hour. We remarked that the sex ratio (female:male) of the cumulated number of trapped adults in the different years and nights of survey was in favor of females. PMID:25527574

  2. SEASONAL PHOSPHATASE ACTIVITY IN THREE CHARACTERISTIC SOILS OF THE ENGLISH UPLANDS POLLUTED BY LONG-TERM ATMOSPHERIC NITROGEN DEPOSITION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphomonoesterase activities were determined monthly during a seasonal cycle in three characteristic soil types of the English uplands that have been subject to long-term atmospheric nitrogen deposition. Activities (µmol para-nitrophenol per gram soil dry wt per hour) ranged between 83.9 - 307 in...

  3. An Ensemble Numerical Modeling Study of Atlantic Basin Hurricane Intensification

    NASA Astrophysics Data System (ADS)

    Brown, Bonnie R.

    Rapid intensification of tropical cyclones is an active area of research in the atmospheric sciences due to the difficulty of forecasting cyclone intensity and the unclear mechanism by which a hurricane my undergo explosive deepening. Ensemble numerical modeling studies of six tropical cyclones from 2009, 2010 and 2011 which underwent periods of strong intensification are conducted here. The goal is to identify common storm structures in intensifying hurricanes while filling a gap in the current research between case studies of rapid intensification and climatological/statistical type studies of hurricane intensification rates by using a compositing method. A 96-member ensemble is run for a 24 hour forecast using the Weather Research and Forecasting (WRF) model for hurricanes Bill (2009), Earl (2010), Igor (2010), Julia (2010), Katia (2011), and Ophelia (2011). Ensemble sensitivity analysis is used to investigate which patterns in the analysis have a strong influence on the forecast intensity and then a novel sensitivity compositing is used to identify common patterns which affect the forecast intensity. It is found that these hurricanes are all predicted to respond to an increased primary and secondary circulation, an increased warm core, a raised tropopause and moistening of rain bands with an increased forecast intensity. Perturbed initial conditions show a linear model response for small perturbations but also signs of non-linearity at large perturbations, indicating that these sensitivity patterns are robust for limited additional strengthening of the hurricane. When perturbations are partitioned into dry and moist variables, it is seen that most of the model response is achieved by the dry dynamics. Further investigation is conducted into the rapid intensification of Earl (2010) and Igor (2010) but creating ensemble forecasts with additional, high-resolution nested domains which allow explicit convection. When the ensemble sensitivity analysis is repeated

  4. Evaluation of the impacts of the Madden-Julian Oscillation on rainfall and hurricanes in Central and South America and the Atlantic Ocean using ICI-RAFT

    NASA Astrophysics Data System (ADS)

    Giovannettone, J. P.

    2013-12-01

    in Australia (Wheeler et al., 2009). The current study found that similar strong relationships between MJO activity over Africa and the western Indian Ocean and rainfall totals in central Argentina, Nicaragua, and northwestern Venezuela. For example, in Nicaragua, the 20-year event almost doubles depending on the phase of the MJO. A fourth case study attempts to develop a relationship between the annual number of hurricanes in the Atlantic Ocean and Caribbean during the hurricane season (July - October) and the average value of the Madden-Julian Oscillation over Africa during a period 3 - 4 months prior to the hurricane season. Similar work has been performed in the northern Atlantic by Villarini et al. (2010), except the authors focused on other indices, including tropical mean sea-surface temperatures (SST's), the North Atlantic Oscillation (NAO), and the Southern Oscillation Index (SOI). Even though the NAO and SOI show some correlation with hurricane activity, the results of the current study show that there is a stronger link between the MJO prior to hurricane season and the total number of hurricanes that form. The greatest correlation again comes from MJO activity over Africa.

  5. An assessment of change in risk perception and optimistic bias for hurricanes among Gulf Coast residents.

    PubMed

    Trumbo, Craig; Meyer, Michelle A; Marlatt, Holly; Peek, Lori; Morrissey, Bridget

    2014-06-01

    This study focuses on levels of concern for hurricanes among individuals living along the Gulf Coast during the quiescent two-year period following the exceptionally destructive 2005 hurricane season. A small study of risk perception and optimistic bias was conducted immediately following Hurricanes Katrina and Rita. Two years later, a follow-up was done in which respondents were recontacted. This provided an opportunity to examine changes, and potential causal ordering, in risk perception and optimistic bias. The analysis uses 201 panel respondents who were matched across the two mail surveys. Measures included hurricane risk perception, optimistic bias for hurricane evacuation, past hurricane experience, and a small set of demographic variables (age, sex, income, and education). Paired t-tests were used to compare scores across time. Hurricane risk perception declined and optimistic bias increased. Cross-lagged correlations were used to test the potential causal ordering between risk perception and optimistic bias, with a weak effect suggesting the former affects the latter. Additional cross-lagged analysis using structural equation modeling was used to look more closely at the components of optimistic bias (risk to self vs. risk to others). A significant and stronger potentially causal effect from risk perception to optimistic bias was found. Analysis of the experience and demographic variables' effects on risk perception and optimistic bias, and their change, provided mixed results. The lessening of risk perception and increase in optimistic bias over the period of quiescence suggest that risk communicators and emergency managers should direct attention toward reversing these trends to increase disaster preparedness. PMID:24286290

  6. Seasonal Transition of Active Bacterial and Archaeal Communities in Relation to Water Management in Paddy Soils

    PubMed Central

    Itoh, Hideomi; Ishii, Satoshi; Shiratori, Yutaka; Oshima, Kenshiro; Otsuka, Shigeto; Hattori, Masahira; Senoo, Keishi

    2013-01-01

    Paddy soils have an environment in which waterlogging and drainage occur during the rice growing season. Fingerprinting analysis based on soil RNA indicated that active microbial populations changed in response to water management conditions, although the fundamental microbial community was stable as assessed by DNA-based fingerprinting analysis. Comparative clone library analysis based on bacterial and archaeal 16S rRNAs (5,277 and 5,436 clones, respectively) revealed stable and variable members under waterlogged or drained conditions. Clones related to the class Deltaproteobacteria and phylum Euryarchaeota were most frequently obtained from the samples collected under both waterlogged and drained conditions. Clones related to syntrophic hydrogen-producing bacteria, hydrogenotrophic methanogenic archaea, rice cluster III, V, and IV, and uncultured crenarchaeotal group 1.2 appeared in greater proportion in the samples collected under waterlogged conditions than in those collected under drained conditions, while clones belonging to rice cluster VI related to ammonia-oxidizing archaea (AOA) appeared at higher frequency in the samples collected under drained conditions than in those collected under waterlogged conditions. These results suggested that hydrogenotrophic methanogenesis may become active under waterlogged conditions, whereas ammonia oxidation may progress by rice cluster VI becoming active under drained conditions in the paddy field. PMID:24005888

  7. Empowering Prospective Teachers to Become Active Sense-Makers: Multimodal Modeling of the Seasons

    NASA Astrophysics Data System (ADS)

    Kim, Mi Song

    2015-10-01

    Situating science concepts in concrete and authentic contexts, using information and communications technologies, including multimodal modeling tools, is important for promoting the development of higher-order thinking skills in learners. However, teachers often struggle to integrate emergent multimodal models into a technology-rich informal learning environment. Our design-based research co-designs and develops engaging, immersive, and interactive informal learning activities called "Embodied Modeling-Mediated Activities" (EMMA) to support not only Singaporean learners' deep learning of astronomy but also the capacity of teachers. As part of the research on EMMA, this case study describes two prospective teachers' co-design processes involving multimodal models for teaching and learning the concept of the seasons in a technology-rich informal learning setting. Our study uncovers four prominent themes emerging from our data concerning the contextualized nature of learning and teaching involving multimodal models in informal learning contexts: (1) promoting communication and emerging questions, (2) offering affordances through limitations, (3) explaining one concept involving multiple concepts, and (4) integrating teaching and learning experiences. This study has an implication for the development of a pedagogical framework for teaching and learning in technology-enhanced learning environments—that is empowering teachers to become active sense-makers using multimodal models.

  8. Seasonal activity and host associations of Ixodes scapularis (Acari: Ixodidae) in southeastern Missouri.

    PubMed

    Kollars, T M; Oliver, J H; Kollars, P G; Durden, L A

    1999-11-01

    Based on tick collections recovered from wild vertebrates and by dragging, the seasonal occurrence of adult blacklegged ticks, Ixodes scapularis Say, extended from October through May in southeastern Missouri. Adult activity was bimodal with the higher peak occurring in November followed by a lower peak in February. The activity of immature I. scapularis had the general pattern of that found in the Northeast where Lyme disease is hyperendemic, with larval activity (July) peaking after that of nymphs (May and June). Vertebrates varied in their importance as hosts of I. scapularis. White-tailed deer, Odocoileus virginanus (Zimmerman), and coyotes, Canis latrans Say, were the primary hosts of adult I. scapularis. Broad-headed skinks, Eumeces laticeps (Schneider), and eastern fence lizards, Sceloporus undulatus (Latreille), were the primary hosts of nymphal I. scapularis. The broad-headed skink, 5-lined skink, Eumeces fasciatus (L.), and Carolina wren, Thryothorus ludovicianus (Latham), were the primary hosts of larval I. scapularis. Homeotherms were important hosts of immature I. scapularis, accounting for 30% of nymphs and 39% of larvae collected. The eastern cottontail rabbit, Sylvilagus floridanus (Allen), may play an important role in the epidemiology of Lyme disease in Missouri. Isolates of Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner were made from ticks recovered from rabbits, making the cottontail rabbit a key species for further study of the epidemiology of Lyme borreliosis in Missouri. PMID:10593072

  9. Characterization of Gulf sturgeon diel and seasonal activity in the Pensacola Bay system, Florida

    NASA Astrophysics Data System (ADS)

    Wrege, Beth Marie

    2009-12-01

    We assess temporal and spatial distribution and diel variability in activity of Gulf of Mexico sturgeon Acipenser oxyrinchus desotoi in the Pensacola Bay system, Florida, using stationary ultrasonic telemetry. Gulf of Mexico sturgeon (n = 54) migrated through the bay system in fall to wintering areas in the Gulf of Mexico and Santa Rosa Sound. In spring, sturgeon migrated back through the bay system to summering habitats in rivers. Gulf of Mexico sturgeon use East Bay and Escambia Bay primarily as migration routes between riverine areas used in spring and summer and the Gulf of Mexico used in winter. North Central Pensacola Bay was not routinely frequented. Gulf of Mexico sturgeon used specific areas within the Pensacola Bay system in summer and winter not previously documented as essential sturgeon habitat. Areas in southeastern Pensacola were used heavily during winter by a portion of the population. Gulf of Mexico sturgeon also exhibited long-term winter residency in Santa Rosa Sound. Interestingly, an area in northeastern Escambia Bay supported Gulf of Mexico sturgeon in summer. This observation was unexpected; however, the identification of Gulf of Mexico sturgeon in this area at this time has important ecological and management implications. Gulf of Mexico sturgeon exhibited a strong diel activity pattern. Gulf of Mexico sturgeon were more active at night than during day in all seasons but summer. The use of prepositioned arrays of acoustic receivers not only provides continuous data within a defined area, but provides insights into nocturnal behavior not previously examined.

  10. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    NASA Astrophysics Data System (ADS)

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-02-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  11. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    PubMed Central

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval. PMID:26906670

  12. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    PubMed

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval. PMID:26906670

  13. Seasonal and Diel Variability in Dissolved DNA and in Microbial Biomass and Activity in a Subtropical Estuary

    PubMed Central

    Paul, John H.; DeFlaun, Mary F.; Jeffrey, Wade H.; David, Andrew W.

    1988-01-01

    Dissolved DNA and microbial biomass and activity parameters were measured over a 15-month period at three stations along a salinity gradient in Tampa Bay, Fla. Dissolved DNA showed seasonal variation, with minimal values in December and January and maximal values in summer months (July and August). This pattern of seasonal variation followed that of particulate DNA and water temperature and did not correlate with bacterioplankton (direct counts and [3H]thymidine incorporation) or phytoplankton (chlorophyll a and 14CO2 fixation) biomass and activity. Microautotrophic populations showed maxima in the spring and fall, whereas microheterotrophic activity was greatest in late summer (September). Both autotrophic and heterotrophic microbial activity was greatest at the high estuarine (low salinity) station and lowest at the mouth of the bay (high salinity station), irrespective of season. Dissolved DNA carbon and phosphorus constituted 0.11 ± 0.05% of the dissolved organic carbon and 6.6 ± 6.5% of the dissolved organic phosphorus, respectively. Strong diel periodicity was noted in dissolved DNA and in microbial activity in Bayboro Harbor during the dry season. A noon maximum in primary productivity was followed by an 8 p.m. maximum in heterotrophic activity and a midnight maximum in dissolved DNA. This diel periodicity was less pronounced in the wet season, when microbial parameters were strongly influenced by episodic inputs of freshwater. These results suggest that seasonal and diel production of dissolved DNA is driven by primary production, either through direct DNA release by phytoplankton, or more likely, through growth of bacterioplankton on phytoplankton exudates, followed by excretion and lysis. PMID:16347583

  14. Airborne Laser Scanning Quantification of Disturbances from Hurricanes and Lightning Strikes to Mangrove Forests in Everglades National Park, USA

    PubMed Central

    Zhang, Keqi; Simard, Marc; Ross, Michael; Rivera-Monroy, Victor H.; Houle, Patricia; Ruiz, Pablo; Twilley, Robert R.; Whelan, Kevin R. T.

    2008-01-01

    Airborne light detection and ranging (LIDAR) measurements derived before and after Hurricanes Katrina and Wilma (2005) were used to quantify the impact of hurricanes and lightning strikes on the mangrove forest at two sites in Everglades National Park (ENP). Analysis of LIDAR measurements covering 61 and 68 ha areas of mangrove forest at the Shark River and Broad River sites showed that the proportion of high tree canopy detected by the LIDAR after the 2005 hurricane season decreased significantly due to defoliation and breakage of branches and trunks, while the proportion of low canopy and the ground increased drastically. Tall mangrove forests distant from tidal creeks suffered more damage than lower mangrove forests adjacent to the tidal creeks. The hurricanes created numerous canopy gaps, and the number of gaps per square kilometer increased from about 400∼500 to 4000 after Katrina and Wilma. The total area of gaps in the forest increased from about 1∼2% of the total forest area to 12%. The relative contribution of hurricanes to mangrove forest disturbance in ENP is at least 2 times more than that from lightning strikes. However, hurricanes and lightning strikes disturb the mangrove forest in a related way. Most seedlings in lightning gaps survived the hurricane impact due to the protection of trees surrounding the gaps, and therefore provide an important resource for forest recovery after the hurricane. This research demonstrated that LIDAR is an effective remote sensing tool to quantify the effects of disturbances such as hurricanes and lightning strikes in the mangrove forest.

  15. Seasonal variations of the ovarian activity and pregnancy rate in the Egyptian buffalo cows (Bubalus bubalis).

    PubMed

    Ali, Ahmed

    2015-06-01

    The objective of this study was to investigate the effect of season on the follicular and luteal dynamics and pregnancy rate in Egyptian buffaloes. A total of 327 genital tracts and 596 animals were used. The genital tracts were examined in winter (n = 58), spring (n = 179), summer (n = 49), and autumn (n = 41) for follicular population, incidence of presence of developed or mature corpus luteum (CL), and diameters of the preovulatory follicle (OF) and the mature CL. Buffaloes were mated in winter (n = 297) and summer (n = 299) and examined for pregnancy rate. Results showed that the mean number of the large follicles was higher in winter (1.21 ± 0.08 mm) and spring (1.04 ± 0.05 mm) than in summer (0.64 ± 0.1 mm) and autumn (0.78 ± 0.1 mm) (P = 0.0001). Likewise, the mean diameter of the OF was greater in winter (14.71 ± 0.7 mm) and spring (14.36 ± 0.5 mm) than in summer (12.4 ± 0.8 mm) and autumn (12 ± 0.8 mm) (P = 0.02). In addition, the mean diameter of the mature CL was higher in winter (15.8 ± 0.4 mm) and spring (15.5 ± 1.1 mm) than in summer (14.2 ± 1 mm) and autumn (13.2 ± 0.7 mm) (P = 0.003). The incidence of presence of developed or mature CL was lower in summer (69.4 %) than in winter (74.1 %), spring (87.2 %), or autumn (85.4 %) (P = 0.01). Double CLs (0.9 %) were observed only in spring. Ovarian cysts (2.5 %) were detected in winter and spring. The pregnancy rate was higher in buffaloes mated in winter (75.4 %) than in those mated in summer (61.9 %) (P = 0.0004). In conclusion, season affects the ovarian activity and reproductive efficiency of buffaloes, where winter and spring are the optimum seasons for breeding. PMID:25778728

  16. The Greatest Storm on Earth: Hurricane.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This publication, produced by the National Oceanic and Atmospheric Administration (NOAA), is an illustrated non-technical description of the meteorology of hurricanes and their effects on the land areas they hit. As an information source for students and teachers alike, this publication also describes the damage done in the past by hurricanes, the…

  17. Hurricane Emilia Chases Tropical Storm Daniel

    NASA Video Gallery

    An animation of satellite observations from July 8 (6:00 p.m. EDT) to July 11 (1:30 p.m. EDT), 2012, shows Hurricane Daniel as it loses its hurricane eye and become a tropical storm as it heads tow...

  18. Schooling the Forgotten Kids of Hurricane Katrina

    ERIC Educational Resources Information Center

    Cook, Glenn

    2006-01-01

    In this article, the author talks about students being taking in public schools in Houston and Dallas, as well as other states, after evacuating from New Orleans which was struck by Hurricane Katrina and Hurricane Rita. For students displaced by the storm, mobility is as constant as stability is elusive. Already traumatized and faced with the loss…

  19. Gulf Coast Hurricanes Situation Report #39

    SciTech Connect

    2005-11-09

    There are 49,300 customers without power in Florida as of 7:00 AM EST 11/9 due to Hurricane Wilma, down from a peak of about 3.6 million customers. Currently, less than 1 percent of the customers are without power in the state. This is the last report we will due on outages due to Hurricane Wilma.

  20. Teaching and Learning Mathematics through Hurricane Tracking

    ERIC Educational Resources Information Center

    Fernandez, Maria L.; Schoen, Robert C.

    2008-01-01

    Mathematics teachers can tap into students' curiosity about hurricanes to develop their understanding of mathematical ideas within a real-life context. This article discusses hurricane-based mathematics tasks involving cooperative learning that were found to help students enhance their understanding of patterns, graphs, and rates of change. For…

  1. Flocs, turbulence, and biological activity: The seasonal mood-swings of a UK estuary

    NASA Astrophysics Data System (ADS)

    Todd, David; Souza, Alejandro; Jago, Colin

    2014-05-01

    Both turbulence and biological activity have been shown to be important mediators of floc characteristics. Low turbulence promotes collisions and flocculation, while high levels may result in shear-induced rupture, literally tearing flocs apart. Because of this, turbulence parameterisation is key to understanding the relationship between turbulence and particle size. In addition, biological polysaccharides and other substances have been shown to increase collision efficiency, collision strength, and the strength of the resultant flocs. The results of a measurement campaign undertaken in a hypertidal UK estuary from February-March and May-June 2009 are presented utilising a combination of acoustic and optical instruments, moorings, and CTD stations. The data displays a seasonally varying flocculation signal in which a seasonal regime shift occurs: winter is turbulence-controlled with evidence of flocculation at high and low water under low turbulence conditions and breakup occurring during the higher turbulence conditions of the flood and ebb tides. Conversely, the summer regime is biologically-controlled and dominated by stronger, more shear-resistant flocs that do not break up under the high-turbulence conditions of the peak flood and ebb tides. Instead, the summer regime is dominated by a resuspension signal in which both particle size and concentration increase during the flood and ebb tides. This shift appears to be the result of the presence of biological polysaccharides during the summer months which increase both the floc size, and floc strength through an increase in the collision strength and collision efficiency of the particles, making them more resistant to turbulence-induced shear effects.

  2. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; Simmons, David; Uhlhorn, Eric

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  3. Seasonal Changes in Testes Vascularisation in the Domestic Cat (Felis domesticus): Evaluation of Microvasculature, Angiogenic Activity, and Endothelial Cell Expression

    PubMed Central

    Alexandre-Pires, Graça; Mateus, Luísa; Martins, Catarina; Ferreira-Dias, Graça

    2012-01-01

    Some male seasonal breeders undergo testicular growth and regression throughout the year. The objective of this study was to understand the effect of seasonality on: (i) microvasculature of cat testes; (ii) angiogenic activity in testicular tissue in vitro; and (iii) testicular endothelial cells expression throughout the year. Testicular vascular areas increased in March and April, June and July, being the highest in November and December. Testes tissue differently stimulated in vitro angiogenic activity, according to seasonality, being more evident in February, and November and December. Even though CD143 expression was higher in December, smaller peaks were present in April and July. As changes in angiogenesis may play a role on testes vascular growth and regression during the breeding and non-breeding seasons, data suggest that testicular vascularisation in cats is increased in three photoperiod windows of time, November/December, March/April and June/July. This increase in testicular vascularisation might be related to higher seasonal sexual activity in cats, which is in agreement with the fact that most queens give birth at the beginning of the year, between May and July, and in September. PMID:22567311

  4. Genesis of tornadoes associated with hurricanes

    NASA Technical Reports Server (NTRS)

    Gentry, R. C.

    1983-01-01

    The climatological history of hurricane-tornadoes is brought up to date through 1982. Most of the tornadoes either form near the center of the hurricane, from the outer edge of the eyewall outward, or in an area between north and east-southeast of the hurricane center. The blackbody temperatures of the cloud tops which were analyzed for several hurricane-tornadoes that formed in the years 1974, 1975, and 1979, did not furnish strong precursor signals of tornado formation, but followed one of two patterns: either the temperatures were very low, or the tornado formed in areas of strong temperature gradients. Tornadoes with tropical cyclones most frequently occur at 1200-1800 LST, and although most are relatively weak, they can reach the F3 intensity level. Most form in association with the outer rainbands of the hurricane.

  5. Model estimates hurricane wind speed probabilities

    NASA Astrophysics Data System (ADS)

    Mumane, Richard J.; Barton, Chris; Collins, Eric; Donnelly, Jeffrey; Eisner, James; Emanuel, Kerry; Ginis, Isaac; Howard, Susan; Landsea, Chris; Liu, Kam-biu; Malmquist, David; McKay, Megan; Michaels, Anthony; Nelson, Norm; O Brien, James; Scott, David; Webb, Thompson, III

    In the United States, intense hurricanes (category 3, 4, and 5 on the Saffir/Simpson scale) with winds greater than 50 m s -1 have caused more damage than any other natural disaster [Pielke and Pielke, 1997]. Accurate estimates of wind speed exceedance probabilities (WSEP) due to intense hurricanes are therefore of great interest to (re)insurers, emergency planners, government officials, and populations in vulnerable coastal areas.The historical record of U.S. hurricane landfall is relatively complete only from about 1900, and most model estimates of WSEP are derived from this record. During the 1899-1998 period, only two category-5 and 16 category-4 hurricanes made landfall in the United States. The historical record therefore provides only a limited sample of the most intense hurricanes.

  6. Possible seasonal activity of gullies on an sand dune (Russell crater, Mars)

    NASA Astrophysics Data System (ADS)

    Jouannic, Gwénaël.; Gargani, Julien; Costard, François

    2010-05-01

    Recent work has shown that gullies are among the most youthful features on Mars (Malin and Edgett, 2000; Costard et al., 2002; Reiss and Jaumann, 2003, Malin et al., 2006). Here we show that the gullies located on the Russell Crater dune are not only extremely youthful but also seem to be still actives. Various geomorphological features consistent with a seasonal activity suggest reactivated flows over the last three terrestrial years. Moreover, using an assemblage of 26 HiRISE images over a 31 month period (November 2006-May 2009) and superposed with MOLA tracks, we performed a quantitative analysis of the sinuosity and branching of the gullies on the shallow slope of the Russell crater. These geomorphologicals features suggest that debris flow have been formed by a fluid flow. As pure water generally is not thought to be stable on the surface of Mars under current conditions, these gullies could be indicative of a highly localized zone of meta-stability heretofore unidentified in the literature or by a highly mineralized water. Equally, the occurrence of the gullies on a dune may point to a near-surface source, i.e. near surface permafrost (Vedie et al. 2008), that could have been emplaced under conditions associated with late Amazonian obliquity excursions (Costard et al., 2002). Nevertheless, the precise composition of the fluid (CO2, mineralized water,…) is still unknown. Costard, F., Forget, F., Mangold, N., Peulvast, J.P., 2002. Formation of recent martian debris flow by melting of near-surface ground ice at high obliquity. Science, 295, 110-113. Malin, M.C., Edgett, K.E., 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330-2335. Malin, M.C., Edgett, K.E., Posiolova, L.V., McColley, S.M., Dobrea, E.Z., 2006. Present day impact crater rate and contemporary gully activity on Mars. Science, 314, 1573-1577. Reiss, D., Jaumann, R., 2003. Recent debris flows on Mars : Seasonal observations of the Russell Crater dune field

  7. Physical Meaning of the Equinoctial Effect for Seasonal Variation of Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Yoshida, A.

    2008-12-01

    The general tendency for magnetic disturbances to be more stormy at equinoxes than at solstices has been recognised for more than 150 years. To explain the seasonal variation three principal hypotheses have been proposed; the axial hypothesis (Cortie, 1912), the equinoctial hypothesis (Bartels, 1932; McIntosh, 1959), and the Russell and McPherron (RM) hypothesis (Russell and McPherron, 1973). The RM hypothesis, which is based on the recognition that the magnetic field in the solar equatorial plane tends to have the largest southward component in geocentric solar magnetospheric (GSM) coordinates in early April and October, has been largely accepted for many years. However, recent studies have confirmed that the RM effect accounts for only a subordinate proportion of the seasonal variation of geomagnetic activity, and that the larger part of the phenomenon is attributable to the equinoctial effect in which the angle between the solar wind flow and the dipole axis of the Earth plays an essential role (Cliver, Kamide and Ling, 2000; Cliver, Kamide, Ling and Yokoyama, 2001; O'Brien and McPherron, 2002). In this paper physical meaning of the equinoctial effect is investigated based on the data of three-hourly am index and solar wind parameters acquired by the ACE satellite. The am indices are well correlated with BsVxVx, where Bs is the southward component of the interplanetary magnetic field (IMF) and Vx is the solar wind velocity in the sun-earth direction. It is found, however, that the am - BsVxVx relation depends on the range of VxVx: The am in higher ranges of VxVx tends to be larger than am in lower ranges of VxVx for both equinoctial and solstitial epochs for the same value of BsVxVx. Using the data sets of the same VxVx range, it is shown that distribution of points in the am - BsVxVx diagram at the solstitial epochs overlaps with that at the equinoctial epochs and the average am values in each BsVxVx bin in solstitial epochs are almost equal to those in

  8. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  9. A new insight into the nature of seasonal variations in coordinate time series of GPS sites located near active faults

    NASA Astrophysics Data System (ADS)

    Trofimenko, Sergey V.; Bykov, Victor G.; Shestakov, Nikolay V.; Grib, Nikolay N.; Takahashi, Hiroaki

    2016-09-01

    This study provides new insights into the nature of seasonal variations in coordinate time series of GPS sites located near active faults and methods of their modeling. Monthly averaged coordinate time series were analyzed for several pairs of collocated GPS sites situated near the active fault intersection area, in close proximity to the central part of the northern boundary of the Amurian plate and the vicinity of the San Andreas Fault zone. It is concluded that the observed seasonal variations are best described by a breather function which is one of the solutions of the well-known sine-Gordon equation. The obtained results suggest that, in this case, the source of seasonal variations may be caused by the appearance of solitary strain waves in the fault intersection system, which may be qualitatively treated as standing waves of compression-extension of the geological medium. Based on statistical testing, the limits of applicability of the suggested model have been established.

  10. A new insight into the nature of seasonal variations in coordinate time series of GPS sites located near active faults

    NASA Astrophysics Data System (ADS)

    Trofimenko, Sergey V.; Bykov, Victor G.; Shestakov, Nikolay V.; Grib, Nikolay N.; Takahashi, Hiroaki

    2016-05-01

    This study provides new insights into the nature of seasonal variations in coordinate time series of GPS sites located near active faults and methods of their modeling. Monthly averaged coordinate time series were analyzed for several pairs of collocated GPS sites situated near the active fault intersection area, in close proximity to the central part of the northern boundary of the Amurian plate and the vicinity of the San Andreas Fault zone. It is concluded that the observed seasonal variations are best described by a breather function which is one of the solutions of the well-known sine-Gordon equation. The obtained results suggest that, in this case, the source of seasonal variations may be caused by the appearance of solitary strain waves in the fault intersection system, which may be qualitatively treated as standing waves of compression-extension of the geological medium. Based on statistical testing, the limits of applicability of the suggested model have been established.

  11. Titan's cloud seasonal activity from winter to spring with Cassini/VIMS

    USGS Publications Warehouse

    Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Sotin, C.; Brown, R.H.; Barnes, J.W.; Griffith, C.A.; Burgalat, J.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2011-01-01

    Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002-August 2009) and the beginning of spring, allowing a detailed monitoring of Titan's cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan's clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60??N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4. years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1. year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30??S and 60??S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached. We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid

  12. Seasonal variation of the chemical composition and antimicrobial and cytotoxic activities of the essential oils from Inga laurina (Sw.) Willd.

    PubMed

    Furtado, Fabiana B; de Aquino, Francisco J T; Nascimento, Evandro A; de M Martins, Carla; de Morais, Sérgio A L; Chang, Roberto; Cunha, Luís C S; Leandro, Luís F; Martins, Carlos H G; Martins, Mário M; da Silva, Claudio V; Machado, Fabrício C; de Oliveira, Alberto

    2014-01-01

    The seasonal chemical composition of essential oils from Inga laurina was determined by GC/MS. In the stem bark's essential oil extracted during the dry season, the presence of terpenoids (30.05%) stood out, and phytol (9.76%) was the major compound identified. For the stem bark oil obtained during the rainy season, in addition to terpenoids (26.63%), a large amount of fatty acids (46.84%) were identified, in particular palmitic acid (25.40%). Regarding the leaves' essential oil obtained in the dry season, esters (42.35%) were the main components. The main ester present was (Z)-hex-3-enyl benzoate (10.15%) and the major compound of this oil was (Z)-hex-3-en-1-ol (14.23%). Terpenoids (33.84%), long-chain alkanes (27.04%) and fatty acids (21.72%) were the main components of the essential oil from leaves in the rainy season. Phytol (33.21%), nonacosane (21.95%) and palmitic acid (15.20%) were the major compounds identified. The antimicrobial activity against aerobic and anaerobic oral bacteria was evaluated by the microdilution broth method and cytotoxic activity was carried out with Vero cells. The essential oils from the rainy season showed a better inhibition of the bacterial growth with Minimal Inhibitory Concentrations (MIC) values of 25 or 50 µg·mL⁻¹ for aerobic bacteria, and high selectivity against bacteria was observed. The large amount of fatty acids in rainy season oils may be related to the better inhibitory effects observed. PMID:24731985

  13. 48 CFR 1852.236-73 - Hurricane plan.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Hurricane plan. 1852.236... 1852.236-73 Hurricane plan. As prescribed in 1836.570(c), insert the following clause: Hurricane Plan (DEC 1988) In the event of a hurricane warning, the Contractor shall— (a) Inspect the area and...

  14. 48 CFR 1852.236-73 - Hurricane plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Hurricane plan. 1852.236-73... Hurricane plan. As prescribed in 1836.570(c), insert the following clause: Hurricane Plan (DEC 1988) In the event of a hurricane warning, the Contractor shall— (a) Inspect the area and place all...

  15. 48 CFR 1852.236-73 - Hurricane plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Hurricane plan. 1852.236... 1852.236-73 Hurricane plan. As prescribed in 1836.570(c), insert the following clause: Hurricane Plan (DEC 1988) In the event of a hurricane warning, the Contractor shall— (a) Inspect the area and...

  16. 48 CFR 1852.236-73 - Hurricane plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Hurricane plan. 1852.236... 1852.236-73 Hurricane plan. As prescribed in 1836.570(c), insert the following clause: Hurricane Plan (DEC 1988) In the event of a hurricane warning, the Contractor shall— (a) Inspect the area and...

  17. 48 CFR 1852.236-73 - Hurricane plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Hurricane plan. 1852.236... 1852.236-73 Hurricane plan. As prescribed in 1836.570(c), insert the following clause: Hurricane Plan (DEC 1988) In the event of a hurricane warning, the Contractor shall— (a) Inspect the area and...

  18. Newton's Apple Teachers Guides. Seasons 9-10-11-12: A Collection of Lessons and Activities.

    ERIC Educational Resources Information Center

    Twin Cities Public Television, St. Paul, MN.

    Newton's Apple is a PBS family science program that explores basic science through high-energy, hands-on demonstrations. This volume is a collection of the teacher's guides from four seasons of Newton's Apple which were originally broadcast from 1991 through 1994. Each of the four seasons in the volume contains 26 lessons and a combination of…

  19. Granger causality and Atlantic hurricanes

    NASA Astrophysics Data System (ADS)

    Elsner, James B.

    2007-08-01

    Atlantic tropical cyclones have been getting stronger recently with a trend that is related to an increase in the late summer/early fall sea-surface temperature over the North Atlantic. Some studies attribute the increasing ocean warmth and hurricane intensity to a natural climate fluctuation, known as the Atlantic Multidecadal Oscillation; others suggest that climate change related to anthropogenic greenhouse gases emissions is the cause. Noting that the only difference between these two hypotheses is the causal connection between global mean near-surface air temperature (GT) and Atlantic sea-surface temperature (SST), the author previously showed how to use statistical tests to examine this hypothesis. Here the author expands on this research. In particular, a more comprehensive explanation of the techniques and additional tests and checks against misspecification are provided. The earlier results are confirmed in showing that preceding GT anomalies have a significant statistical relationship to current SST anomalies but not conversely so that if causality exists between Atlantic SST and global temperature, the causal direction likely goes from GT to SST. The result is robust against a small amount of noise added to the data. Identical tests applied to surrogate time series fail to identify causality as expected. The work underscores the importance of using data models to understand relationships between hurricanes and climate.

  20. Active crop canopy sensor optimal spatial scale for in-season variable-rate nitrogen application in corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active crop canopy reflectance sensors have shown to be an efficient method for assessing spatially-variable crop nitrogen (N) need and controlling remedial in-season N applications in wheat. Recently, these sensors have been studied for N application in corn. This study will be conducted during the...

  1. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea)

    PubMed Central

    Lipsewers, Yvonne A.; Bale, Nicole J.; Hopmans, Ellen C.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2014-01-01

    Microbial processes such as nitrification and anaerobic ammonium oxidation (anammox) are important for nitrogen cycling in marine sediments. Seasonal variations of archaeal and bacterial ammonia oxidizers (AOA and AOB) and anammox bacteria, as well as the environmental factors affecting these groups, are not well studied. We have examined the seasonal and depth distribution of the abundance and potential activity of these microbial groups in coastal marine sediments of the southern North Sea. This was achieved by quantifying specific intact polar lipids as well as the abundance and gene expression of their 16S rRNA gene, the ammonia monooxygenase subunit A (amoA) gene of AOA and AOB, and the hydrazine synthase (hzsA) gene of anammox bacteria. AOA, AOB, and anammox bacteria were detected and transcriptionally active down to 12 cm sediment depth. In all seasons, the abundance of AOA was higher compared to the AOB abundance suggesting that AOA play a more dominant role in aerobic ammonia oxidation in these sediments. Anammox bacteria were abundant and active even in oxygenated and bioturbated parts of the sediment. The abundance of AOA and AOB was relatively stable with depth and over the seasonal cycle, while anammox bacteria abundance and transcriptional activity were highest in August. North Sea sediments thus seem to provide a common, stable, ecological niche for AOA, AOB, and anammox bacteria. PMID:25250020

  2. Dogwood Borer (Lepidoptera: Sesiidae) Abundance and Seasonal Flight Activity in Apple Orchards, Urban Landscapes and Woodlands in Five Eastern States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relative abundance and seasonal flight activity of dogwood borer, Synanthedon scitula Harris (Lepidoptera: Sesiidae) was measured using weekly records from traps baited with its sex pheromone and deployed in apple orchards, urban landscapes and native woodland sites in New York, West Virginia, V...

  3. Triggering of the 2010 Haiti earthquake by hurricanes and possibly deforestation

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Tsukanov, I.; Hong, S.; Amelung, F.

    2010-12-01

    The January 12th, 2010, M = 7.0 Haiti earthquake was one of the worst natural disasters of the past century. This devastating earthquake caused the death of more than 200,000 people, the injury of about 300,000 people, and left about two million people homeless. Just a year and a half prior to the earthquake, Haiti was subjected to another severe disaster, flooding induced by two hurricanes and two tropical storms (Fay, Gustav, Hanna and Ike). Both natural disasters results in death and destruction, but because their origins are very different, they are generally considered to be unrelated phenomena. We suggest a physical link between these two destructive events, in which the 2010 Haiti earthquake was triggered by rapid erosion induced by hurricane activity. The suggested denudation triggering mechanism is consistent with seismic and geodetic analysis on the earthquake rupture, indicating an initial oblique motion on a southward dipping fault followed by intense reverse faulting on a northward dipping fault (Hayes et al., 2010). Our triggering analysis is based on interdisciplinary research using satellite imagery, bathymetric charts, detailed DEM, and 3-D mesh-free finite element modeling. Remote sensing analysis of the nearby Leogane Delta’s growth over the past 35 years indicates a rapid delta build up due to a mean erosion rate of 6 mm/yr. Theoretical calculations based on finite element modeling and Coulomb failure stress criterion suggest that denudation-induced stress changes at the hypocenter reached the earthquake’s triggering threshold (3 kPa) after 60-80 years at the present day erosion rate. Our results also suggest that the rapid sediment deposition in the delta kept clamping the northward dipping fault allowing a continuous stress build up on the fault, which explains the large amount of seismic energy released by this fault during the earthquake. Haiti’s massive deforestation most likely contributed to the rapid erosion in the past several

  4. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    ERIC Educational Resources Information Center

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  5. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... August 31, 2010 (75 FR 53352), the U.S. Nuclear Regulatory Commission (NRC) published a notice of issuance and availability of Draft Regulatory Guide (DG)--1247, ``Design-Basis Hurricane and Hurricane... COMMISSION Draft Regulatory Guide, DG-1247, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear...

  6. 78 FR 31614 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... 2007 (ML070630003). On October 22, 2012 (77 FR 64564), the staff issued the proposed DC/COL-ISG-024... COMMISSION Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles AGENCY....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants,'' in support of...

  7. Potential signals mediating the maintenance of reproductive activity during the non-breeding season of the mare.

    PubMed

    Fitzgerald, B P; Reedy, S E; Sessions, D R; Powell, D M; McManus, C J

    2002-01-01

    The seasonal nature of reproductive activity in mares is widely accepted and considerable attention has focused on the mechanisms that lead to the initiation of the breeding season. In contrast, considerably less information is available about the termination of the breeding season. It is interesting to note that each winter a sub-population of mares continues to undergo oestrous cyclicity during the non-breeding season. Continuation of reproductive activity during the winter occurs most frequently in mares that maintain a non-pregnant condition in successive years. The maintenance of a non-pregnant condition in successive years leads to an increase in the percentage of total body fat and it has been proposed that the degree of adiposity may be a determinant of reproductive activity during the winter months. To investigate this hypothesis we have manipulated fat stores by either pharmacological treatments or feed restriction. The studies described in this review demonstrate that manipulation of body fat during the autumn months fails to modify the mechanisms that lead to anoestrus or the proportion of mares that continues to show oestrous cyclicity during the winter months. On the basis of these and related studies two hypotheses are presented that may serve as a template for future work. The first hypothesis proposes that one aspect of the long-term regulation of seasonal reproductive rhythms in mares, specifically anoestrus, may reflect recognition of the availability of metabolic fuels before perception of a change in photoperiod. Alternatively, energy availability may need to reach a critical value before a presumptive inhibitory daylength signal initiates termination of the breeding season. This review describes previous and current studies that have led to development of these proposals. PMID:12698977

  8. Life of a Six-Hour Hurricane

    NASA Technical Reports Server (NTRS)

    Shelton, Kay L.; Molinari, John

    2009-01-01

    Hurricane Claudette developed from a weak vortex in 6 h as deep convection shifted from downshear into the vortex center, despite ambient vertical wind shear exceeding 10 m/s. Six hours later it weakened to a tropical storm, and 12 h after the hurricane stage a circulation center could not be found at 850 hPa by aircraft reconnaissance. At hurricane strength the vortex contained classic structure seen in intensifying hurricanes, with the exception of 7-12 C dewpoint depressions in the lower troposphere upshear of the center. These extended from the 100-km radius to immediately adjacent to the eyewall, where equivalent potential temperature gradients reached 6 K/km. The dry air was not present prior to intensification, suggesting that it was associated with vertical shear-induced subsidence upshear of the developing storm. It is argued that weakening of the vortex was driven by cooling associated with the mixing of dry air into the core, and subsequent evaporation and cold downdrafts. Evidence suggests that this mixing might have been enhanced by eyewall instabilities after the period of rapid deepening. The existence of a fragile, small, but genuinely hurricane-strength vortex at the surface for 6 h presents difficult problems for forecasters. Such a "temporary hurricane" in strongly sheared flow might require a different warning protocol than longer-lasting hurricane vortices in weaker shear.

  9. Seasonal activity of nymphal Ixodes scapularis (Acari: Ixodidae) in different habitats in New Jersey.

    PubMed

    Lord, C C

    1995-01-01

    Activity patterns of nymphal Ixodes scapularis Say were compared between habitat types (dominant tree types: mixed deciduous, oak, white pine, red cedar, sassafras, and spicebush). Both the time of peak abundance and the relative abundance of questing nymphs at the peak were compared. Several smoothing algorithms were tested with the data to determine if they could be used to estimate the time of peak abundance more accurately. Determination of the time of peak abundance using the raw data or simple moving averages was susceptible to outliers. Weighted averages were less susceptible to outliers. The seasonal pattern of nymphal abundance was similar in all habitat types. Variation in the time of peak abundance between habitats was low. Peak densities were lower in deciduous habitats (0.24 +/- 0.05 nymphs per square meter) than in nondeciduous habitats (0.85 +/- 0.15 nymphs per square meter); this could have resulted from higher host use of the nondeciduous areas. These data suggest that there are differences in the population dynamics of nymphs found in different habitats. PMID:7869344

  10. New data and capabilities in the NASA Goddard Hurricane Data Portal

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Leptoukh, G.; Ostrenga, D.; Savtchenko, C.; Kempler, S.

    2007-12-01

    .ecs.nasa.gov/OPS/mirador/) is another in-house developed tool that offers a simplified interface for searching, browsing, and ordering Earth science data at NASA GES DICS. Users can do event based (e.g., entering a hurricane name) search and order data. · Hurricane viewer: provides users with a view of the hurricane track that overlays TRMM 3-hourly precipitation data. The interface provides users with the storm track, wind speeds, pressure, intensity and view of the data of the lifespan of the storm in an animated series. The Hurricane Viewer will be enhanced to allow users to select from multiple data parameters to view in the background of the track. · There are a number of other resources for hurricane related activities at the DISC, such as, viewing and exploring NASA 2-D and 3-D data (TRMM, CloudSat, AIRS, etc.) via Google Earth. Details and examples will be presented.

  11. [GLUCOSE CONTENT FLUCTUATION IN BLOOD OF NEWBORN RATS DEPENDING ON SEASON AND PATTERN OF SPONTANEOUS MOTOR ACTIVITY].

    PubMed

    Kuznetsova, N N; Selina, E N

    2015-01-01

    Earlier we have shown that in newborn rats the glucose level in blood serum changes depending on the pattern of spontaneous periodic motor activity (SPMA). During rest periods, both under dominant decasecond rhythm and under dominant minute rhythm, the glucose level in blood serum is higher than during activity periods. We have also shown that the glucose level in the blood serum rises with age reaching the level of adult animals by day 10. In the present study carried out on 3-10-day-old rats under conditions of free behavior the blood glucose content was investigated in different periods of <activity-rest> cycle during different seasons. It is found that in newborn rats of all ages studied (3-, 5-, 7-, and 10-day-old ones) the lowest glucose concentration in the blood is observed in the winter period. In spring its level increases and in summer reaches the maximum different significantly from the winter and spring levels in all age groups except day 5. In autumn the glucose level decreases and approaches the spring values but it is still different from the winter indices. In 5-day-old rats statistically significant differences of glucose levels in different seasons were not observed. The data obtained provide evidence of seasonal fluctuations of the glucose level in blood serum of newborn rats. At the same time during all seasons except spring the dependence of glucose level on the pattern of motor activity persists. In spring these differences are smoothed. Key words: ontogenesis, motor activity, metabolic factors, glucose, seasonal variations. PMID:26856074

  12. Suggested hurricane operational scenario for GOES I-M

    NASA Technical Reports Server (NTRS)

    Menzel, W. P.; Merrill, R. T.; Shenk, W. E.

    1987-01-01

    Improvements in tropical cyclone forecasts require optimum use of remote sensing capabilities, because conventional data sources cannot provide the necessary spatial and temporal data density over tropical and subtropical oceanic regions. In 1989, the first of a series of geostationary weather satellites, GOES 1-M, will be launched with the capability for simultaneous imaging and sounding. Careful scheduling of the GOES 1-M will enable measurements of both the wind and mass fields over the entire tropical cyclone activity area. The document briefly describes the GOES 1-M imager and sounder, surveys the data needs for hurricane forecasting, discusses how geostationary satellite observations help to meet them, and proposes a GOES 1-M schedule of observations and hurricane relevant derived products.

  13. Observing Natural Hazards: Tsunami, Hurricane, and El Niño Observations from the NDBC Ocean Observing System of Systems

    NASA Astrophysics Data System (ADS)

    O'Neil, K.; Bouchard, R.; Burnett, W. H.; Aldrich, C.

    2009-12-01

    The National Oceanic and Atmospheric Administration’s (NOAA) National Data Buoy Center (NDBC) operates and maintains the NDBC Ocean Observing Systems of Systems (NOOSS), comprised of 3 networks that provide critical information before and during and after extreme hazards events, such as tsunamis, hurricanes, and El Niños. While each system has its own mission, they have in common the requirement to remain on station in remote areas of the ocean to provide reliable and accurate observations. After the 2004 Sumatran Tsunami, NOAA expanded its network of tsunameters from six in the Pacific Ocean to a vast network of 39 stations providing information to Tsunami Warning Centers to enable faster and more accurate tsunami warnings for coastal communities in the Pacific, Atlantic, Caribbean and the Gulf of Mexico. The tsunameter measurements are used to detect the amplitude and period of the tsunamis, and the data can be assimilated into models for the prediction and impact of the tsunamis to coastal communities. The network has been used for the detection of tsunamis generated by earthquakes, including the 2006 and 2007 Kuril Islands, 2007 Peru, and Solomon Islands, and most recently for the 2009 Dusky Sound, New Zealand earthquake. In August 2009, the NOAA adjusted its 2009 Atlantic Hurricane Seasonal Outlooks from above normal to near or below normal activity, primarily due to a strengthening El Niño. A key component in the detection of that El Niño was the Tropical Atmosphere Ocean Array (TAO) operated by NDBC. TAO provides real-time data for improved detection, understanding, and prediction of El Niño and La Niña. The 55-buoy TAO array spans the central and eastern equatorial Pacific providing real-time and post-deployment recovery data to support climate analysis and forecasts. Although, in this case, the El Niño benefits the tropical Atlantic, the alternate manifestation, La Niña typically enhances hurricane activity in the Atlantic. The various phases of

  14. Hurricane Ivan Photographed by Expedition 9 Crew

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image hosts a look at the eye of Hurricane Ivan, one of the strongest hurricanes on record, as the storm topped the western Caribbean Sea on Saturday, September 11, 2004. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the International Space Station (ISS) at an altitude of approximately 230 miles. At the time, the category 5 storm sustained winds in the eye of the wall that were reported at about 160 mph. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  15. Hurricane Ivan Photographed by Expedition 9 Crew

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Except for a small portion of the International Space Station (ISS) in the foreground, Hurricane Ivan, one of the strongest hurricanes on record, fills this image over the northern Gulf of Mexico. As the downgraded category 4 storm approached landfall on the Alabama coast Wednesday afternoon on September 15, 2004, sustained winds in the eye of the wall were reported at about 135 mph. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the ISS at an altitude of approximately 230 miles. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  16. Do seasonal patterns of rat snake (Pantherophis obsoletus) and black racer (Coluber constrictor) activity predict avian nest predation?

    PubMed

    DeGregorio, Brett A; Weatherhead, Patrick J; Ward, Michael P; Sperry, Jinelle H

    2016-04-01

    Avian nest success often varies seasonally and because predation is the primary cause of nest failure, seasonal variation in predator activity has been hypothesized to explain seasonal variation in nest success. Despite the fact that nest predator communities are often diverse, recent evidence from studies of snakes that are nest predators has lent some support to the link between snake activity and nest predation. However, the strength of the relationship has varied among studies. Explaining this variation is difficult, because none of these studies directly identified nest predators, the link between predator activity and nest survival was inferred. To address this knowledge gap, we examined seasonal variation in daily survival rates of 463 bird nests (of 17 bird species) and used cameras to document predator identity at 137 nests. We simultaneously quantified seasonal activity patterns of two local snake species (N = 30 individuals) using manual (2136 snake locations) and automated (89,165 movements detected) radiotelemetry. Rat snakes (Pantherophis obsoletus), the dominant snake predator at the site (~28% of observed nest predations), were most active in late May and early June, a pattern reported elsewhere for this species. When analyzing all monitored nests, we found no link between nest predation and seasonal activity of rat snakes. When analyzing only nests with known predator identities (filmed nests), however, we found that rat snakes were more likely to prey on nests during periods when they were moving the greatest distances. Similarly, analyses of all monitored nests indicated that nest survival was not linked to racer activity patterns, but racer-specific predation (N = 17 nests) of filmed nests was higher when racers were moving the greatest distances. Our results suggest that the activity of predators may be associated with higher predation rates by those predators, but that those effects can be difficult to detect when nest predator communities

  17. Effect of Changes in Seasonal Rain Regime on Coastal Ecosystem Structure and Aquaculture Activities

    NASA Astrophysics Data System (ADS)

    Cosimo, S.; Melaku Canu, D.; Libralato, S.; Cossarini, G.; Giorgi, F.

    2008-12-01

    A downscaling experiment linked climate forcing produced by a Regional Climate Model for Europe to a 3D high resolution coupled transport biogeochemical model for the Lagoon of Venice, which in turn forced: a) a food web model for evaluation of cascading effects on ecosystem structure and b) a population dynamic bioenergetic filter feeders bivalvae model for evaluation of effects on aquaculture activities. The hierarchy of models was used to compare result for a reference situation (RF, 1961-1990) with results for two future IPCC scenarios (2071-2100), representing market oriented and local sustainability policies (scenarios A2 and B2, respectively). Future climate projections suggest that, locally, annual mean rain will not change much but the seasonal patterns will likely do so. Summer and spring will be more dry and winter and autumn more rainy. This will potentially increase winter nutrient concentrations but -because of unfavourable timing - primary and secondary productions will decrease, and nutrient surplus will be exported from the Lagoon of Venice to the Adriatic Sea. The impacts on higher trophic levels could be softened thanks to presence of alternative energy pathways and role of omnivory. However, in our future scenario of the lagoon food web the suitability for higher trophic level organisms seems lower. A more detailed analysis on clam aquaculture indicates that this activity will suffer the decrease of primary productivity, and point to the need of implementation of proper aquaculture management policies. In the light of adaptive management. These policies cannot be a straightfoward extrapolation of present practises, but need to be defined basing on future conditions.

  18. Reproductive phenology of the American Bullfrog in subtropical Brazil: photoperiod as a main determinant of seasonal activity.

    PubMed

    Medeiros, Camila I; Both, Camila; Kaefer, Igor L; Cechin, Sonia Z

    2016-07-11

    The North American bullfrog Lithobates catesbeianus continues to invade ecosystems worldwide, potentially causing population declines and even extinctions. Within its native distribution, bullfrogs show prolonged reproductive seasons and high fertility. However, data on breeding biology of bullfrogs ex-situ in invaded localities mainly comes from anecdotal reports. Understanding how invasive species are adjusting their life histories to new colonized environments is important for conservation purposes. Here we describe temporal and spatial abundance, calling activity, spawning and tadpole distribution of bullfrogs in southern Brazil. Eighteen samplings occurred during one year. The abundance of individuals was positively related to longer photoperiods and higher temperatures. Reproductive activity was also positively associated with longer photoperiods. Calling sites, spawning and tadpoles were associated with microhabitats presenting hydrophytes, which may provide shelter and thermal stability to bullfrogs. The reproductive seasonal activity of bullfrogs can be highly variable across its growing geographical range, but in subtropical Brazil it is associated with photoperiod, a highly predictable abiotic determinant. In our study area, bullfrogs presented a breeding season twice as long as that observed in some native localities. We suggest that management strategies directed to bullfrog populations must consider the habitat structures and seasonal regimes determined by each invaded environment. PMID:27411069

  19. Effects of seasonal variations on antioxidant activity of pink guava fruits

    NASA Astrophysics Data System (ADS)

    Ahmad, Haniza; Abdullah, Aminah

    2014-09-01

    This study aimed to evaluate the effects of seasonal variations during rainy and hot season on antioxidant activity of pink guava fruits in approximately one year duration specifically on November 2012, December 2012, January 2013, March 2013, April 2013, May 2013, July 2013, August 2013 and November 2013. Fruit samples (Sungkai and Semenyih variants) were collected from Sime Darby Beverages plantation located in Sitiawan. The fruits were samples for 9 times from Nov 2012 to Nov 2013 except Feb 2013, Jun 2013, Sept 2013 and Oct 2013. Fruits were peeled, seeded and blended into uniform puree. Samples were then extracted for its antioxidant activity determination using 50% acetone. Antioxidant activity was evaluated using total phenolic compounds (TPC) assay, ferric-reducing antioxidant power assay (FRAP) and 1,1-diphenyl1-2-picrylhydrazyl free radical-scavenging capacity (DPPH). Analysis was conducted using 96-well microplate spectrophotometer UV. The highest TPC result was Semenyih var recorded 2192.80 mg GAE/100g FW whilst Sungkai var 1595.98 mg GAE/100g FW both on July 2013 with rainfall was at the least (45mm) and the lowest for Sungkai var was 792.75 mg GAE/100g FW and 1032.41 mg GAE/100g FW for Semenyih var, both on Nov 2012 with 185mm rainfall. There were significant negative correlation between TPC and rainfall (mm) for both Semenyih var (r = - 0.699, p<0.005, r2 = 0.489) and Sungkai var (r = -0.72, p<0.05, r2 = 0.531). The highest FRAP result (mg TE/100g FW) was 1677.74 for Semenyih var (Aug 2013, rainfall = 160.5mm) and the highest FRAP for Sungkai var was 1104.60 (Jul 2013, rainfall = 45.0mm) whereas the lowest for Semenyih and Sungkai var was 1090.22 (Mar 2013, rainfall = 97.5mm) and 767.88 (Nov 2012, rainfall = 185.50) respectively. There was weak negative correlation between FRAP and rainfall(mm) for both Sungkai var (r = - 0.324, p<0.05, r2 = 0.105) and Semenyih var (r = - 0.362, p<0.05, r2 = 0.132). The highest DPPH for Semenyih var was 88.40% (Aug

  20. Bouncing back from Hurricane Floyd

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Hurricane Floyd swamped much of coastal North Carolina in October, and many residents are still drying off. In Floyd's aftermath, as the state faces the largest property buyout program in its history U.S. Federal Emergency Management Agency (FEMA) Director James Lee Witt says that people should turn the damage into an opportunity to make their communities disaster-resistant and better-planned.“As you prepare for this buyout, I hope North Carolina will become a model for the rest of the country for converting disaster prevention into an opportunity for community-wide planning,” Witt said at an October 26 meeting of the North Carolina League of Municipalities in Greensboro.

  1. A Coordinated USGS Science Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    In late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection and Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term networks and rapid-deployment real-time streamgages and water-quality monitors tracked river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm-related information from many agencies on the Internet on a daily basis. Immediately following Hurricane Sandy the USGS developed a science plan, 'Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-A U.S. Geological Survey Science Plan for Support of Restoration and Recovery'. The plan will ensure continuing coordination of internal USGS activities as well as

  2. Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity.

    PubMed

    Bujor, Oana-Crina; Le Bourvellec, Carine; Volf, Irina; Popa, Valentin I; Dufour, Claire

    2016-12-15

    The seasonal variations of the content and diversity of phenolic compounds, as well as the antioxidant activity of leaves, stems and fruits of bilberry collected in May, July and September, were evaluated for two consecutive years. UPLC/MS(n) analyses showed the predominance of anthocyanins in fruits, caffeic acid derivatives in leaves whereas flavanol oligomers represented more than half of the phenolic compounds in stems. Thioacidolysis revealed degrees of polymerization between 2 and 4 and (-)-epicatechin as the main flavanol unit. The sum of the phenolic compounds by UPLC was highly correlated with the total polyphenol content and the antioxidant activity in the DPPH test for all the extracts except for May leaves. The latter were relatively rich in p-coumaric acid derivatives. Seasonal effects were more marked for leaves, which exhibited higher antioxidant activities and phenolic contents in July and September when these parameters were at their highest in July for stems. PMID:27451155

  3. Seasonal variations in the activity budget of Japanese macaques in the coniferous forest of Yakushima: effects of food and temperature.

    PubMed

    Hanya, Goro

    2004-07-01

    Seasonal variations in the activity budget of Japanese macaques in the coniferous forest of Yakushima were studied over the course of 1 year. On an annual basis, they spent 38% of the daytime feeding, 16% traveling, 14% in social interactions, and 32% engaged in resting. The effects of temperature and food-related factors (i.e., food distribution, feeding speed, and food abundance) on the seasonal variations of activity budget were examined by stepwise multiple regression analysis. When the temperature was low, the macaques decreased traveling and feeding time, in accordance with the prediction that endothermal animals save energy under severe thermoregulatory cost. When the feeding speed of available foods was slow, they spent more time feeding. When high-quality foods were abundant, they decreased feeding time. These macaques did not respond to fluctuations in food distribution. The present results indicate the importance of temperature, in addition to food-related factors, as a determinant of activity budgets. PMID:15258960

  4. Development, Capabilities, and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, T.; Amarin, R.; Atlas, R.; Bailey, M.; Black, P.; Buckley, C.; Chen, S.; El-Nimri, S.; Hood, R.; James, M.; Johnson, J.; Jones, W.; Ruf, C.; Simmons, D.; Uhlhorn, E.; Inglish, C.

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is being designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude) with approximately 2 km resolution. This paper describes the HIRAD instrument and the physical basis for its operations, including chamber test data from the instrument. The potential value of future HIRAD observations will be illustrated with a summary of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct simulated H*Wind analyses. Evaluations will be presented on the impact on H*Wind analyses of using the HIRAD instrument observations to replace those of the SFMR instrument, and also on the impact of a future satellite-based HIRAD in comparison to instruments with more limited capabilities for observing strong winds through heavy

  5. Biological impact of Hurricane Ignacio (2003) in the eastern Pacific Ocean as observed through MODIS data

    NASA Astrophysics Data System (ADS)

    Fuentes-Yaco, César; Valdez-Holguín, José Eduardo; Platt, Trevor; Sathyendranath, Shubha; Halfar, Jochen; Godinez Orta, Lucio; Borges, José Manuel; Devred, Emmanuel

    2006-12-01

    Strong winds associated with hurricanes generate upwelling of cold water and transfer nutrients to the sea surface, supporting the development of significant phytoplankton blooms. Here we study the effect of the passage of hurricanes on the fields of sea surface temperature and chlorophyll-a in the pelagic ocean. A case-study is given for Hurricane Ignacio, the first storm of the 2003 season in the Eastern Tropical Pacific Ocean, on the south-eastern waters of Baja California Peninsula. The net reduction of in situ water temperature was -10° C and the phytoplankton pigment increase was 10 fold. Detailed features of the distribution of both characteristics of the sea surface are evident in the synoptic satellite imagery (MODIS/Aqua), with extreme thermal changes of -6 °C and increases up to 25 fold in chlorophyll-a. The satellite-derived averaged changes computed in the area of impact (~45,000 km^2) show temperature reduction of -1.3 °C and 1.5 fold increase of phytoplankton biomass. The physical and biological features studied for Hurricane Ignacio are crucial for understanding the ecosystem function around the southern Baja California peninsula, a region with strong dynamics in the carbon cycle. The study demonstrates how hurricanes induce phytoplankton blooms, a critical resource in the food chain, in particular for the pelagic fisheries. Systematic use of satellite remote-sensing may be advantageous to quantify at short, middle and long term, the impact of hurricanes on ocean biology at spatial and temporal scales of local and regional interest.

  6. Seasonal activity patterns of Ixodes pacificus nymphs in relation to climatic conditions.

    PubMed

    Eisen, L; Eisen, R J; Lane, R S

    2002-09-01

    In western North America, the tick Ixodes pacificus Cooley & Kohls (Acari: Ixodidae) is the primary vector to humans and domestic animals of the disease agents causing Lyme disease and granulocytic ehrlichiosis. We examined the seasonal activity patterns of I. pacificus nymphs over a 4-year period, including the wet and cold El Niño winter/spring of 1998, in a dry oak/madrone woodland, and for one year in a cooler and moister redwood/tanoak woodland in Mendocino County, California. Linear regressions were used to estimate when nymphal densities first exceeded and then fell below 25, 50 and 75% of the recorded yearly peak densities. In oak/madrone woodland, nymphs typically were active by mid-March, reached 50% of their yearly peak densities in early to mid-April, peaked by early May, fell below 50% of their peak densities by early to mid-June, and were absent by late July to mid-August. The lengths of the periods with nymphal densities exceeding 50 and 75% of the recorded yearly peaks in oak/madrone woodland were associated positively with rainfall and negatively with maximum air temperatures during April-May. Moreover, nymphal numbers typically reached 50% of their peak 10-15 days later, remained at levels above 50% of the peak 1.3-1.5 times longer, and started declining 4-6 weeks later under cooler, moister climatic conditions (oak/madrone woodland in 1998 and redwood/tanoak woodland in 2000) relative to warmer, drier conditions (oak/madrone woodland in 2000-2001). In oak/madrone woodland, nymphal densities typically started to decline when mean maximum daily air temperatures exceeded 23 degrees C. Nymphal densities were higher in dry oak/madrone relative to moist redwood/tanoak woodland from mid-March to late May 2000, similar in both habitat types in early June, but higher in redwood/tanoak woodland from late June onwards. We conclude that large-scale studies of the density of I. pacificus nymphs in California need to consider spatial variation in the length

  7. Satellite Tracks Double Eastern Pacific Hurricanes

    NASA Video Gallery

    This animation of NOAA's GOES-West satellite imagery from Aug. 27 to Aug. 30, 2016, shows the movement of Category 4 Hurricane Madeline approaching Hawaii in the Central Pacific Ocean and Category ...

  8. Hurricane Prediction: Progress and Problem Areas

    ERIC Educational Resources Information Center

    Simpson, R. H.

    1973-01-01

    Describes progress made in recent decades in predicting the track and landfall of hurricanes. Examines the problems of detecting, tracking, and describing tropical cyclones, and the difficulties which continue to complicate the matter of warning and evacuating coastal residents. (JR)

  9. GOES-West Movie of Hurricane Newton

    NASA Video Gallery

    This animation of infrared and visible images from NOAA's GOES-West satellite shows the development and movement of Hurricane Newton from Sept. 4 through Sept. 6 at 10 a.m. EDT (1400 UTC) toward Ba...

  10. Hurricane Sandy From the International Space Station

    NASA Video Gallery

    The International Space Station flew high above Hurricane Sandy just before 12 p.m. CDT Thursday. The storm was located about 85 miles south-southeast of Great Exuma Island. The storm’s maximum s...

  11. Hurricane Sandy -- Pass 1, Oct. 29, 2012

    NASA Video Gallery

    Hurricane Sandy was viewed Monday morning from the International Space Station as it orbited 260 miles above the Atlantic Ocean. Sandy had sustained winds of 90 miles an hour as the station passed ...

  12. Hurricane Sandy Prowls the Eastern Seaboard

    NASA Video Gallery

    An animation of satellite observations from Oct. 26-29, 2012, shows Hurricane Sandy move along the U.S. East coast and into the Mid-Atlantic and northeastern U.S. Sandy had still not made landfall ...

  13. View of Hurricane Igor From Space Station

    NASA Video Gallery

    Cameras mounted on the International Space Station captured new views of Hurricane Igor heading westward over the Atlantic Ocean the morning of Sept. 13. Igor was at Category 4 strength with maximu...

  14. Hurricanes, sea level rise, and coastal change

    USGS Publications Warehouse

    Sallenger,, Asbury H., Jr.

    2011-01-01

    Sixteen hurricanes have made landfall along the U.S. east and Gulf coasts over the past decade. For most of these storms, the USGS with our partners in NASA and the U.S. Army Corps of Engineers have flown before and after lidar missions to detect changes in beaches and dunes. The most dramatic changes occurred when the coasts were completely submerged in an inundation regime. Where this occurred locally, a new breach was cut, like during Hurricane Isabel in North Carolina. Where surge inundated an entire island, the sand was stripped off leaving marshy outcrops behind, like during Hurricane Katrina in Louisiana. Sea level rise together with sand starvation and repeated hurricane impacts could increase the probabilities of inundation and degrade coasts more than sea level rise alone.

  15. International Space Station Footage of Hurricane Patricia

    NASA Video Gallery

    Outside the International Space Station, cameras captured dramatic views of Hurricane Patricia at 12:15 p.m. EDT on October 23, 2015 as the mammoth system moved north at about 10 mph, heading for a...

  16. NASA's GRIP Mission Flies Through Hurricane Earl

    NASA Video Gallery

    The eye of Hurricane Earl in the Atlantic Ocean is captured by a videographer aboard NASA’s DC-8 research aircraft on Monday, Aug. 30, 2010. The DC-8 passed through the eye of the storm six times j...

  17. StenniSphere reopens after Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    2006-01-01

    StenniSphere reopened Jan. 18, 2006, almost five months after Hurricane Katrina damaged the basement of the building that houses the visitor center. Thanks to the staff's careful preparations before the storm, no artifacts or exhibits were harmed.

  18. 27: The Death of a Hurricane

    NASA Video Gallery

    This video explains what happens as a hurricane’s life cycle nears itsfinish. Here we learn about an important concept known as the BermudaHigh. This atmospheric phenomenon has a big effect on ...

  19. 3-D TRMM Flyby of Hurricane Amanda

    NASA Video Gallery

    The TRMM satellite flew over Hurricane Amanda on Tuesday, May 27 at 1049 UTC (6:49 a.m. EDT) and captured rainfall rates and cloud height data that was used to create this 3-D simulated flyby. Cred...

  20. Final Gulf Coast Hurricanes Situation Report #46

    SciTech Connect

    2006-01-26

    According to Entergy New Orleans, electricity has been restored to the vast majority of residents and businesses in the city, except in a few isolated areas that sustained severe devastation from Hurricane Katrina.

  1. Seasonal dynamics of prokaryotic abundance and activities in relation to environmental parameters in a transitional aquatic ecosystem (Cape Peloro, Italy).

    PubMed

    Zaccone, R; Azzaro, M; Azzaro, F; Bergamasco, A; Caruso, G; Leonardi, M; La Ferla, R; Maimone, G; Mancuso, M; Monticelli, L S; Raffa, F; Crisafi, E

    2014-01-01

    This study examines the effects of temporal changes on microbial parameters in a brackish aquatic ecosystem. To this aim, the abundances of prokaryotes and vibrios together with the rates of enzymatic hydrolysis of proteins by leucine aminopeptidase (LAP), polysaccharides by β-glucosidase (GLU) and organic phosphates by alkaline phosphatase (AP), heterotrophic prokaryotic production (HPP), respiration (R), were seasonally investigated, during a 2-year period in the coastal area of Cape Peloro (Messina, Italy), constituted by two brackish lakes (Faro and Ganzirri). In addition, physical and chemical parameters (temperature, salinity, nutrients) and particulate organic carbon and nitrogen (POC, PN) were measured. The influence of multiple factors on prokaryotic abundances and activities was analysed. The results showed that Cape Peloro area is characterised by high seasonal variability of the microbial parameters that is higher than the spatial one. Combined changes in particulate matter and temperature (T), could explain the variability in vibrios abundance, GLU and R activities in both lakes, indicating a direct stimulation of the warm season on the heterotrophic prokaryotic metabolism. Positive correlations between T (from 13.3 to 29.6 °C) and HPP, LAP, AP, POC, PN are also observed in Ganzirri Lake. Moreover, the trophic status index and most of the microbial parameters show significant seasonal differences. This study demonstrates that vibrios abundance and microbial activities are responsive to the spatial and seasonal changes of examined area. The combined effects of temperature and trophic conditions on the microbial parameters lead us to suggest their use as potential indicators of the prokaryotic response to climate changes in temperate brackish areas. PMID:24158689

  2. Photometry of Pluto 2008–2014: Evidence of Ongoing Seasonal Volatile Transport and Activity

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Hicks, M. D.; Dalba, P. A.; Chu, Devin; O’Neill, Ariel; Hillier, J. K.; Masiero, J.; Banholzer, Sophianna; Rhoades, H.

    2015-05-01

    The New Horizons spacecraft will encounter Pluto in 2015 July. As this fast flyby will yield a picture of Pluto frozen in time, ground-based observations are key to understanding this dwarf ice planet, especially with regard to the seasonal transport of surface volatiles. This paper reports on changes in Pluto's rotational light curve as evidence for this transport. Historical observations are consistent with a stable frost pattern, but since 2002, changes began to appear in both light curves and Hubble Space Telescope maps. Our BVR observations at Table Mountain Observatory from 2008 to 2014 show evidence for sustained and continued albedo and color changes on Pluto. The B and V albedos are stable, but Pluto is becoming redder in color, particularly on its low-albedo side. This view is consistent with the transport of a bright volatile (nitrogen) with the uncovering of a substrate of red material such as photolyzed methane. As Buie et al. reported a B – V of 0.96 in 2002–2003, and our B – V was higher in 2008–2012, Pluto may have experienced a transient reddening in the 1999–2012 period. We also discovered an opposition supersurge in all three colors at very small solar phase angles (∼0.°10). Explosive geysers have been observed on Triton and Mars, the two other celestial bodies with receding polar caps. Because the physical conditions existing on Pluto are similar to those on Triton, we predict that plume deposits and possibly active plumes will be found on its surface.

  3. Hurricane Bonnie, Northeast of Bermuda, Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Hurricane Bonnie was over the North Atlantic Ocean about 500 miles northeast of Bermuda (39.0N, 56.5W) when this photo was taken. Compare this view with Hurricane Iniki, also photographed on this mission (STS-47-77-058). Bonnie is small but in her prime, having a well defined eye, a tight spiral gyre indicating high wind speeds and numerous thunderheads. Iniki, on the other hand, was decaying when photographed and no longer presented a threat.

  4. Taking precautions at KSC for Hurricane Georges

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers put up plywood barriers on the windows of the Operations Support Building (OSB) as part of a precautionary plan in the event that Hurricane Georges threatens Central Florida. In light of the unpredictable nature of hurricanes, the decision was made to minimize risk and provide protection to KSC personnel and to the Space Shuttle national asset. The Vehicle Assembly Building is reflected (left) in the uncovered windows of the OSB.

  5. The antioxidant activities of seasonings used in Asian cooking. Powerful antioxidant activity of dark soy sauce revealed using the ABTS assay.

    PubMed

    Long, L H; Kwee, D C; Halliwell, B

    2000-02-01

    Scavenging of the ABTS (2,2'-azinobis[3-ethylbenzothiazoline-6-sulphonate])-derived nitrogen-centred radical cation (ABTS*+) was used to compare the total antioxidant activities of several seasonings used in Asian cooking. The results were expressed as Trolox equivalent antioxidant capacity (TEAC). The TEAC activities of dark soy sauces were found to be exceptionally high. In evaluating the TEAC of commercial products, attention must be paid to the addition of preservatives by manufacturers to the seasonings tested. Sodium benzoate (a preservative added to several seasonings) did not react significantly with ABTS*+, but the sulphite content of certain white wines may have led to an over-estimation of their TEAC. PMID:10653488

  6. Isentropic Analysis of a Simulated Hurricane

    NASA Technical Reports Server (NTRS)

    Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing

    2016-01-01

    Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.

  7. ASTER and USGS EROS emergency imaging for hurricane disasters: Chapter 4D in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Duda, Kenneth A.; Abrams, Michael

    2007-01-01

    Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.

  8. Performance of active solar space-heating systems, 1980-1981 heating season

    SciTech Connect

    Welch, K.; Kendall, P.; Pakkala, P.; Cramer, M.

    1981-01-01

    Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphed for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)

  9. Hurricanes: Science and Society - An Online Resource Collaboratively Developed By Scientists, Education and Outreach Professionals, and Educators

    NASA Astrophysics Data System (ADS)

    Scowcroft, G.; Ginis, I.; Knowlton, C. W.; Yablonsky, R. M.; Morin, H.

    2010-12-01

    There are many models for engaging scientists in education and outreach activities that can assist them in achieving broader impacts of their research. Successful models provide the participating scientists with an opportunity to contribute their expertise in such a way that there are long lasting effects and/or useful products from their engagement. These kinds of experiences encourage the scientific community to continue participating in education and outreach activities. Hurricanes: Science and Society is an education and outreach program funded by the National Science Foundation that has successfully assisted scientists in broadening the impacts of their work. It has produced a new online educational resource (the Hurricanes: Science and Society website) that was launched in October 2010. This multi-disciplinary tool has been developed with the guidance and input from a panel of leading U.S. hurricane researchers and the participation of U.S. formal and informal science educators. This educational resource is expected to become a classroom tool for those both teaching and learning hurricane science. It contains information tailored for specific audiences including middle school through undergraduate educators and students, the general public, and the media. In addition to the website, a 12-page publication for policymakers and other stakeholders has been produced along with an accompanying CD-ROM/DVD to assist formal and informal science educators in maximizing the use of this new resource. Hurricanes: Science and Society can play a substantial role in the effort to educate both students and adults about the science and impacts of hurricanes and the importance of pre-hurricane planning and mitigation. The model used for engaging the hurricane scientists in this education and outreach effort and in the production of the Hurricanes: Science and Society educational resources will be discussed. Screen shot from http://www.hurricanescience.org

  10. Seasonality of the activity pattern of Callithrix penicillata (Primates, Callitrichidae) in the cerrado (scrub savanna vegetation).

    PubMed

    Vilela, S L; de Faria, D S

    2004-05-01

    Two wild groups of Callithrix penicillata, the Black Pincelled Marmoset, were observed from January to September 1998, in two areas, one an area of dense scrub savanna vegetation (cerrado) and the other, a semidecidual woodland (cerradão), both within the boundaries of the Ecological Reserve of IBGE (Brazilian Institute of Geography and Statistics), in an environmentally protected area, the APA (Portuguese abbreviation for "environmental protected area") Gama/Cabeça-de-Veado, Brasília, DF. The behavioral data collected during the rainy (January 15 to April 15) and dry season (June 1 to September 15) were compared. Because of the proximity to the Reserve facilities, the group from the dense scrub savanna vegetation (CD) was submitted to antropic impacts different from the group in the semidecidual woodland (CE), which was using as territory an area that had been suffering from man-made fires every two years as part of a long-term experimental project on fire impacts. The behavioral data was quantified by instantaneous cross-section ("scan sampling") every ten minutes with records of locomotion, rest, foraging for insects, use of exudate, and feeding. During the whole year, the greatest percentage of time spent by CE and CD was in foraging for insects, with 44% and 39%, respectively. It was evident when comparing the data for the two seasons that, for both groups, foraging for insects was more intense during the dry season, possibly to complement the shortage of food, and locomotion increased during the rainy season. The greater the availability and distribution of fruit in the areas, the greater the locomotion of the groups to obtain these resources. None of the other behavioral patterns, including the use of exudates, presented significant differences between the two seasons. Both groups foraged more frequently during the dry season and locomoted more during the rainy one. PMID:15462311

  11. Seasonal changes in the white blood cell system, lyzozyme activity and cortisol level in Arabian brood mares and their foals.

    PubMed

    Gill, J; Kompanowska-Jezierska, E; Jakubow, K; Kott, A; Szumska, D

    1985-01-01

    In 34 pure-breed Arabian horses divided into four groups (Gr. I, ten pregnant mares; Gr. II, seven barren mares; Gr. III, ten foals born in 1981; Gr. IV, seven foals born in 1982) seasonal changes in the white blood cell system, cortisol level and lyzozyme activity were studied. Seasonal periodicity was found in all groups for the number of lymphocytes, segmented neutrophils and eosinophils and cortisol level. Leukocyte periodicity was found in three groups, but not in the barren mares. In lyzozyme activity there was periodicity in three groups but not in the youngest foals. In the stab neutrophils, basophils and monocytes no cycle was observed. The behaviour of the indices studied showed the influence of age of the horses (mature vs young) and the physiological state of the mares (pregnancy or barrenness). PMID:2863038

  12. Effect of Season and High Ambient Temperature on Activity Levels and Patterns of Grizzly Bears (Ursus arctos)

    PubMed Central

    McLellan, Michelle L.; McLellan, Bruce N.

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4–27.3°C) and hot (27.9–40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory. PMID:25692979

  13. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos).

    PubMed

    McLellan, Michelle L; McLellan, Bruce N

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C) and hot (27.9-40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory. PMID:25692979

  14. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, T.G.; Wood, N.; Yarnal, B.; Bauer, D.H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir-Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards. ?? 2010 Elsevier Ltd.

  15. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  16. Quantifying the Hurricane Risk to Offshore Wind Power (Invited)

    NASA Astrophysics Data System (ADS)

    Apt, J.; Rose, S.; Jaramillo, P.; Small, M.

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. Whether that risk will grow as a result of climate change is uncertain. Recent years have seen an increase in hurricane activity in the Atlantic basin (1) and, all else being equal, warmer sea surface temperatures can be expected to lead to increased storm intensity. We have developed a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes (2). In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously due to hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. 1. Iris Grossmann and M. Granger Morgan, "Tropical Cyclones, Climate Change, and Scientific Uncertainty: What do we know, what does it mean, and what should be done?," Climatic Change, 108, pp 543-579, 2011. 2. Carnegie Mellon Electricity Industry Center Working Paper CEIC-13-07, http://wpweb2.tepper.cmu.edu/electricity/papers/ceic-13-07.asp This work was supported in part by the EPA STAR fellowship program, a grant from the Alfred P. Sloan Foundation and EPRI to the Carnegie Mellon Electricity Industry Center, and by the Doris Duke Charitable Foundation, the R.K. Mellon Foundation and the Heinz Endowments for support of the RenewElec program at Carnegie Mellon University. This research was also supported in part by the Climate and

  17. First survey of seasonal abundance and daily activity of Stomoxys spp. (Diptera: Muscidae) in Kamphaengsaen Campus, Nakornpathom province, Thailand.

    PubMed

    Masmeatathip, R; Gilles, J; Ketavan, C; Duvallet, G

    2006-09-01

    The seasonal changes and the daily activity of Stomoxyine species (Diptera: Muscidae) were examined, using Vavoua traps, in a dairy and a beef cattle farm in Nakhonpathom province, Thailand during July 2004 to June 2005. Over this period, Stomoxys calcitrans was the most commonly trapped species, followed by S. sitiens and S. indica. For the later species, this is the first report of its presence in Thailand. A total of 80 % of flies were captured during the rainy season from May to October and 20 % during the dry season from November to April. No major difference of fly density was observed between the dairy and the beef cattle farm. The activity pattern of S. calcitrans was diurnal with a peak between 08:00 am to 10:00 am and another less marked one in the afternoon. The activity pattern of S. sitiens and S. indica was mainly crepuscular with 2 peaks, early in the morning (06:00 a.m.) and late in the afternoon (6:00 p.m.). Those species are important pests of livestock in Thailand, where they are known as a mechanical vector of trypanosomes. A better knowledge of their ecology is a prerequisite for more efficient control measures. PMID:17007217

  18. Seasonal changes in the activity of the adrenal medulla of Viscacha (Lagostomus maximus maximus).

    PubMed

    Rodriguez, Hugo; Filippa, Verónica Palmira; Penissi, Alicia; Fogal, Teresa; Domínguez, Susana; Piezzi, Ramón Salvador; Scardapane, Luis

    2013-07-01

    Animals living in nontropical climates modify their physiology and behavior to adapt to seasonal environmental changes. Part of this adaptation involves the release of catecholamine from sympathetic nerve endings and the adrenal medulla, which play a major role in regulating energy balance. The aim of this work was to investigate whether adult male viscachas in their natural habitat exhibits structural changes in the adrenal medulla during the annual seasonal cycle. In August-September, chromaffin granules revealed ultrastructural changes suggestive of piecemeal degranulation. Quantitative morphometric analysis by transmission electron microscopy showed a significantly lower percentage of resting chromaffin granules and a higher percentage of altered granules and empty containers in August-September (late winter) compared to February-March (late summer), suggesting an increased secretory process of catecholamines in August-September. The mechanism of piecemeal degranulation might amplify this process, encouraging the adaptive response to winter environmental conditions. Tissue levels of epinephrine, norepinephrine, and dopamine (analyzed by high-performance liquid chromatography) changed throughout the year, reaching maximum values in February-March and minimum values in August-September. These results demonstrate morphological and biochemical seasonal variations of the adrenal medulla, suggesting that epinephrine might promote energy mobilization, which allow the Lagostomus to cope with adverse environmental conditions and thus to survive during winter season. PMID:23630194

  19. Macroscopic and molecular-scale assessment of soil lead contamination impacted by seasonal dove hunting activities

    SciTech Connect

    Arai, Y.; Tappero, R.; Rick, A.R.; Saylor, T.; Faas, E. & Lanzirotti, A.

    2011-05-24

    Environmental contamination of lead (Pb) in soils and sediments poses serious threats to human and ecological health. The objective of this study is to investigate the effect of seasonal dove sports hunting activities on Pb contamination in acid forest soils. A grid sampling method was used to investigate the spatial distribution of Pb contamination in surface soils. Soils were analyzed for total metal(loid) concentration and characterized for physicochemical properties and mineralogy. Adsorption isotherm experiments were also conducted to understand the reactivity and retention capacity of Pb(II) in soils. Finally, synchrotron-based X-ray microprobe and X-ray absorption spectroscopy were used to understand the chemical speciation of Pb that controls the retention/release mechanisms of Pb in soils. There was no excessive accumulation of Pb at the site. However, the concentration of Pb in surface soils was greater than the background level (<16 mg kg{sup -1}). The contamination level of Pb was as high as 67 mg kg{sup -1} near a patch of corn field where lime was frequently applied. A microfocused X-ray microprobe analysis showed the presence of Pb pellet fragments that predominantly contain oxidized Pb(II), suggesting that oxidative dissolution was occurring in soils. Dissolved Pb(II) can be readily retained in soils up to {approx}3,600 mg kg{sup -1} via inner-sphere and outer-sphere surface complexation on carbon and aluminol functional groups of soil components, suggesting that partitioning reactions control the concentration of Pb in soil solution. The fate of Pb is likely to be controlled by (1) oxidative dissolution process of Pb(0) pellets and (2) the release of outer-sphere and/or inner-sphere Pb surface complexes in humic substances and aluminosilicate/Al oxyhydroxides. Although no remedial actions are immediately required, the long-term accumulation of Pb in soils should be carefully monitored in protecting ecosystem and water quality at the dove hunting

  20. [Role of hormonal and seasonal factors in the effect of vitamin E on cholinesterase activity in the nervous system].

    PubMed

    Teplyĭ, D L; Savich, V F

    1975-01-01

    Tests were set up on 73 Citellus fulvus to study the influence exerted by different doses of vitamin E (4 and 8 mg) introduced per os on the activity of the total cholinesterase in various divisions of the central nervous system and also the part played by the hormonal and seasonal factors in this effect. Each test series lasted 30 days (in spring, summer and autumn). The cholinesterase activity was determined after Vensen and Segonzak (1968). The results of the experiments revealed some characteristic trends in the change of the cholinesterase activity occurring under the effect of vitamin E that depended upon a number of factors, such as: the dose of tocopherol, the sex of the animal, time of the year, the brain division under study and the seasonal dynamics of the initial activity. It is shown that in the brain sectors where a material difference existed in the cholinesterase activity between the control males and females it vanished under the effect of tocopherol. On the other hand, in the brain sectors where no such difference existed, it appeared under the effect of tocopherol. The regular character of changes in the cholinesterase activity of the brain and spinal cord produced by different doses of vitamin E suggest the possibility of the brain cholinesterase activity disorders to a play a part in the development of neuro-muscular pathology in cases of the E vitamin deficiency. PMID:1210181

  1. Aftermath of Hurricane Ike along Texas Coast

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Three weeks after Hurricane Ike came ashore near Galveston, TX, residents returned to find their houses in ruins. From the coast to over 15 km inland, salt water saturated the soil as a result of the 7m storm surge pushed ashore by the force of the hurricane. The right image was acquired on September 28; the left image was acquired August 15, 2006. Vegetation is displayed in red, and inundated areas are in blue-green. Within the inundated area are several small 'red islands' of high ground where salt domes raised the level of the land, and protected the vegetation.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 37 by 49.5 kilometers (22.8 by 30.6 miles) Location: 29.8 degrees North latitude, 94.4 degrees West longitude Orientation: North at top

  2. Post-disaster climatology for hurricanes and tornadoes in the United States: 2000-2009

    NASA Astrophysics Data System (ADS)

    Eakins, Benjamin James

    Natural disasters can be very devastating to the public during their impact phase. After a natural disaster impacts a region, the response and recovery phases begin immediately. Weather conditions may interrupt emergency response and recovery in the days following the disaster. This study analyzes the climatology of weather conditions during the response and recovery phases of hurricanes and tornadoes to understand how weather may impact both environment and societal needs. Using specific criteria, 66 tornadoes and 16 hurricane cases were defined. National Weather Service (NWS) recognized weather stations were used to provide temperature, precipitation, snowfall, relative humidity, wind speed, and wind direction data. Regional and temporal groups were defined for tornado cases, but only one group was defined for hurricanes. By applying statistical analysis to weather observations taken in the week following the disasters, a climatology was developed for the response and recovery phase. Tornado and hurricane post-disaster climate closely mimicked their synoptic climatology with cooler and drier weather prevailing in days 2-4 after a disaster until the next weather system arrived about 5 days later. Winter tornadoes trended to occur in the Southeast and were associated with more extreme temperature differences than in other regions and season. The results of this study may help governmental and non-governmental organizations prepare for weather conditions during the post-disaster phase.

  3. Sensitivity of NCEP GFS Forecast of Hurricane Sandy to Model Biases

    NASA Astrophysics Data System (ADS)

    Yang, F.

    2014-12-01

    Hurricane Sandy was the most destructive hurricane of the 2012 Atlantic hurricane season. It developed from a tropical depression on October 22 and became a Category three storm at its peak intensity on October 25. Early on October 29 Sandy became a post-tropical cyclone with hurricane-force winds and made landfall along the New Jersey seashores. While all NWP models correctly predicted that the storm will strike the New Jersey Seashore within 72 hours of its landfall, most models struggled to predict its path at longer forecast lead times. The United States GFS (Global Forecast Systems) predicted a northeast instead of northwest path from the forecast cycles before October 25 and a path biased toward the north from the cycles before October 27. This study investigates the impact of GFS biases in environmental flow and surface forcing on the predicted Sandy storm path and intensity. A set of sensitivity experiments were carried out to explore the cause of forecast biases. In particular, the sensitivity of forecasts to model resolution and different physics parameterization options were examined.

  4. [Seasonal dynamics of soil active carbon pool in a purple paddy soil in southwest China].

    PubMed

    Wu, Yan; Jiang, Chang-sheng; Hao, Qing-ju

    2012-08-01

    The seasonal dynamics of soil organic carbon (SOC), readily oxidized carbon (ROC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in a purple paddy soil were studied in a long-term field experimental station in Chongqing, China. The results showed that the seasonal variations of the contents of SOC, ROC and MBC had similar trends in the rape growing season. The contents were much higher in the early and late stages than in the middle stage of the rape growth. SOC, ROC and MBC all achieved the highest values of 16.20 g x kg(-1), 3.58 g x kg(-1) and 309.70 mg x kg(-1) at the end of the growing period, respectively. The seasonal change of DOC content presented as a single peak and reached to the highest value of 37.64 mg x kg(-1) at the middle stage of the rape growth. The temporal dynamics of the allocation ratios of ROC, MBC and DOC were similar to that of their contents. The allocation ratios of ROC, MBC and DOC were 15.49%-23.93%, 1.44%-2.06% and 0.11%-0.32% during the rape growing season, respectively. The influencing factors of SOC and ROC contents were the soil temperature at 5 cm soil depth, soil total nitrogen content and pH. MBC content was jointly impacted by the soil temperature at 5 cm soil depth, root biomass and its C and N contents. DOC content was mainly affected by soil moisture. PMID:23213908

  5. Quantifying the severity of hurricanes on extinction probabilities of a primate population: Insights into "Island" extirpations.

    PubMed

    Ameca y Juárez, Eric I; Ellis, Edward A; Rodríguez-Luna, Ernesto

    2015-07-01

    Long-term studies quantifying impacts of hurricane activity on growth and trajectory of primate populations are rare. Using a 14-year monitored population of Alouatta palliata mexicana as a study system, we developed a modeling framework to assess the relative contribution of hurricane disturbance and two types of human impacts, habitat loss, and hunting, on quasi-extinction risk. We found that the scenario with the highest level of disturbance generated a 21% increase in quasi-extinction risk by 40 years compared to scenarios of intermediate disturbance, and around 67% increase relative to that found in low disturbance scenarios. We also found that the probability of reaching quasi-extinction due to human disturbance alone was below 1% by 40 years, although such scenarios reduced population size by 70%, whereas the risk of quasi-extinction ranged between 3% and 65% for different scenarios of hurricane severity alone, in absence of human impacts. Our analysis moreover found that the quasi-extinction risk driven by hunting and hurricane disturbance was significantly lower than the quasi-extinction risk posed by human-driven habitat loss and hurricane disturbance. These models suggest that hurricane disturbance has the potential to exceed the risk posed by human impacts, and, in particular, to substantially increase the speed of the extinction vortex driven by habitat loss relative to that driven by hunting. Early mitigation of habitat loss constituted the best method for reducing quasi-extinction risk: the earlier habitat loss is halted, the less vulnerable the population becomes to hurricane disturbance. By using a well-studied population of A. p. mexicana, we help understand the demographic impacts that extreme environmental disturbance can trigger on isolated populations of taxa already endangered in other systems where long-term demographic data are not available. For those experiencing heavy anthropogenic pressure and lacking sufficiently evolved coping

  6. Sharp rise in hurricane and cyclone count during the last century

    NASA Astrophysics Data System (ADS)

    Varotsos, C. A.; Efstathiou, M. N.; Cracknell, A. P.

    2015-02-01

    In the present analysis, we study the North Atlantic hurricanes and the tropical cyclones over the Atlantic, attempting to statistically contribute to the study of the recently observed rapid shifts of sea surface temperature anomalies (SSTa) and hurricane activity. Indeed, the annual values of hurricane count (HC), during 1900-2012, seem to show two abrupt increasing events which temporally coincide with the SST shifts. Moreover, the superposition of a staircase function on the Southern Oscillation Index (SOI) after removing the effect of the Pacific Decadal Oscillation (PDO) and the quasi-biennial oscillation (QBO) provides a good fit to the observed HC values. In addition, the annual values of the tropical cyclone count (TCC), during 1900-2006, analyzed with the same procedure as that of HC exhibit similar features to those of the HC values, revealing abrupt shifts in the same years. Furthermore, the application of two shift detection statistical methods determines more accurately the intervals where the shifts occur for each of the three parameters (SSTa, HC, and TCC). Nevertheless, the undersampling of hurricane numbers during early and mid-twentieth century due to the observing capabilities may have contributed to the first rapid shift in hurricane activity.

  7. Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperature-Size Rule

    PubMed Central

    Kiełbasa, Anna; Walczyńska, Aleksandra; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kozłowski, Jan

    2014-01-01

    Temperature-Size Rule (TSR) is a phenotypic body size response of ectotherms to changing temperature. It is known from the laboratory studies, but seasonal patterns in the field were not studied so far. We examined the body size changes in time of rotifers inhabiting activated sludge. We hypothesize that temperature is the most influencing parameter in sludge environment, leading sludge rotifers to seasonally change their body size according to TSR, and that oxygen content also induces the size response. The presence of TSR in Lecane inermis rotifer was tested in a laboratory study with two temperature and two food-type treatments. The effect of interaction between temperature and food was significant; L. inermis followed TSR in one food type only. The seasonal variability in the body sizes of the rotifers L. inermis and Cephalodella gracilis was estimated by monthly sampling and analyzed by multiple regression, in relation to the sludge parameters selected as the most influential by multivariate analysis, and predicted to alter rotifer body size (temperature and oxygen). L. inermis varied significantly in size throughout the year, and this variability is explained by temperature as predicted by the TSR, but not by oxygen availability. C. gracilis also varied in size, though this variability was explained by both temperature and oxygen. We suggest that sludge age acts as a mortality factor in activated sludge. It may have a seasonal effect on the body size of L. inermis and modify a possible effect of oxygen. Activated sludge habitat is driven by both biological processes and human regulation, yet its resident organisms follow general evolutionary rule as they do in other biological systems. The interspecific response patterns differ, revealing the importance of taking species-specific properties into account. Our findings are applicable to sludge properties enhancement through optimizing the conditions for its biological component. PMID:25558362

  8. Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperature-Size Rule.

    PubMed

    Kiełbasa, Anna; Walczyńska, Aleksandra; Fiałkowska, Edyta; Pajdak-Stós, Agnieszka; Kozłowski, Jan

    2014-12-01

    Temperature-Size Rule (TSR) is a phenotypic body size response of ectotherms to changing temperature. It is known from the laboratory studies, but seasonal patterns in the field were not studied so far. We examined the body size changes in time of rotifers inhabiting activated sludge. We hypothesize that temperature is the most influencing parameter in sludge environment, leading sludge rotifers to seasonally change their body size according to TSR, and that oxygen content also induces the size response. The presence of TSR in Lecane inermis rotifer was tested in a laboratory study with two temperature and two food-type treatments. The effect of interaction between temperature and food was significant; L. inermis followed TSR in one food type only. The seasonal variability in the body sizes of the rotifers L. inermis and Cephalodella gracilis was estimated by monthly sampling and analyzed by multiple regression, in relation to the sludge parameters selected as the most influential by multivariate analysis, and predicted to alter rotifer body size (temperature and oxygen). L. inermis varied significantly in size throughout the year, and this variability is explained by temperature as predicted by the TSR, but not by oxygen availability. C. gracilis also varied in size, though this variability was explained by both temperature and oxygen. We suggest that sludge age acts as a mortality factor in activated sludge. It may have a seasonal effect on the body size of L. inermis and modify a possible effect of oxygen. Activated sludge habitat is driven by both biological processes and human regulation, yet its resident organisms follow general evolutionary rule as they do in other biological systems. The interspecific response patterns differ, revealing the importance of taking species-specific properties into account. Our findings are applicable to sludge properties enhancement through optimizing the conditions for its biological component. PMID:25558362

  9. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.

    PubMed

    Henneberger, Ruth; Chiri, Eleonora; Bodelier, Paul E L; Frenzel, Peter; Lüke, Claudia; Schroth, Martin H

    2015-05-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body. PMID:25186436

  10. Satellite views of hurricane Camille

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Rodgers, E. B.

    1974-01-01

    Three periods within the life cycle of Hurricane Camille (1969) are studied with radiometric and camera measurements from Nimbus-3 and camera information from ATS-3 in conjunction with conventional information. These periods are the deepening phase, the interaction of Camille with midlatitude westerlies, and the excessive rain producing period when the cyclone was over the central Appalachian Mountain. Just prior to significant deepening, the Nimbus-3 Medium Resolution Infrared Radiometer (MRIR) showed that a pronounced feeder band had formed southeast of the center which was associated with the rapid transport of moisture into the storm circulation. During the rapid deepening phase the MRIR measurements indicated the development of large scale subsidence throughout the troposphere northwest of the center. When Camille was over the lower Mississippi Valley it acted as an obstruction to the envrionmental wind. A region of widespread subsidence was created west and north of the cyclone center. Increased cloud-top elevations, back to the levels reached when Camille was an intense cyclone over the Gulf of Mexico, were estimated from the Nimbus-3 High Resolution Infrared Radiometer (HRIR) measurements on August 20, 1969, when Camille produced rains of major flood proportions near the east slopes of the Appalachians in central Virginia.

  11. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey.

    PubMed

    Fisher, Irene J; Phillips, Patrick J; Colella, Kaitlyn M; Fisher, Shawn C; Tagliaferri, Tristen; Foreman, William T; Furlong, Edward T

    2016-06-30

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24-32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies. PMID:27261279

  12. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey

    USGS Publications Warehouse

    Fisher, Irene; Phillips, Patrick; Colella, Kaitlyn; Fisher, Shawn C.; Tagliaferri, Tristen N.; Foreman, William; Furlong, Edward T.

    2016-01-01

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24–32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies.

  13. Satellite Tracks Hurricanes Madeline and Lester in the Pacific

    NASA Video Gallery

    This animation of NOAA's GOES-West satellite imagery from August 29 to August 31 shows the movement of Hurricane Madeline approaching Hawaii in the Central Pacific Ocean and Hurricane Lester in the...

  14. Satellite Movie Sees Record-Breaking Hurricane Patricia

    NASA Video Gallery

    At 8 a.m. EDT on October 23, 2015, the National Hurricane Center reported Patricia became the strongest eastern north pacific hurricane on record with sustained winds near 200 mph. This animation o...

  15. GOES-14 Sees Hurricane Paul and Rafael - Duration: 34 seconds.

    NASA Video Gallery

    An animation of satellite observations from Oct. 13-16, 2012, shows Hurricane Paul affecting Baja California, Mexico, and Hurricane Rafael moving toward Bermuda. This visualization was created by t...

  16. Satellite Movie Shows Hurricane Joaquin in the Bahamas

    NASA Video Gallery

    This animation of images captured from September 29 to October 1 from NOAA's GOES-East satellite shows Hurricane Joaquin become a major hurricane in the Bahamas. TRT: 00:32Credit: NASA/NOAA GOES Pr...

  17. COMMUNITY COLLEGE RE-ENROLLMENT AFTER HURRICANE KATRINA

    PubMed Central

    LOWE, SARAH R.; RHODES, JEAN E.

    2013-01-01

    In this study, we explored predictors of community college re-enrollment after Hurricane Katrina among a sample of low-income women (N = 221). It was predicted that participants’ pre-hurricane educational optimism would predict community college re-enrollment a year after the hurricane. The influence of various demographic and additional resources (e.g., social support, childcare, hours of employment, psychological well-being) was also explored. High levels of pre- and post-hurricane educational optimism were significant predictors of re-enrollment, as were lower post-hurricane psychological distress and fewer post-hurricane hours employed. In addition, experiencing a greater number of moves since the hurricane was a marginally significant predictor of post-hurricane re-enrollment. PMID:23457425

  18. The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (= Chasmagnathus) granulata

    NASA Astrophysics Data System (ADS)

    Luppi, Tomás; Bas, Claudia; Méndez Casariego, Agustina; Albano, Mariano; Lancia, Juan; Kittlein, Marcelo; Rosenthal, Alan; Farías, Nahuel; Spivak, Eduardo; Iribarne, Oscar

    2013-03-01

    The activity pattern of intertidal crabs is influenced by factors that usually change rhythmically following tidal and/or diel cycles, and is often associated with the use of refuges. The movement activity of the burrowing crab Neohelice granulata was compared among three populations from SW Atlantic coastal areas where they face different tidal regimes, water salinities, substrata and biological factors. At each site, we examined the seasonal activity of the crabs (individuals collected in pitfall traps) in two types of habitat: mudflat and salt marsh. The working hypothesis is that the activity would vary according to the diverse environmental conditions encountered at geographical and local scales. Crab activity varied between sites and seasons showing to be more intense when habitats were covered by water. The most active groups were large males, followed by large non-ovigerous females. Ovigerous females were almost inactive. Most crabs were near or inside burrows at low tides in Mar Chiquita and Bahía Blanca, but they were active at both low and high tides in San Antonio during spring and summer. N. granulata were active in a wide range of temperatures: from 10 to 37 °C at low tides and at temperatures as low as 2 °C when covered by water. Differences of activity between mudflat and salt marsh varied among sites depending on flooding frequencies. Movement activity of N. granulata varied both in space and in time; crabs move under very different abiotic conditions (e.g., low or high tide, daylight or night, low and high temperature) and their movement may also be prevented or elicited by biotic conditions like burrow complexity, food quality and predation pressure. The wide set of conditions under which N. granulata can be active may explain why this is the only semiterrestrial crab inhabiting latitudes higher than 40°S in South America.

  19. Isotopic composition of nitrate in sequential Hurricane Irene precipitation samples: Implications for changing NOx sources

    NASA Astrophysics Data System (ADS)

    Felix, J. David; Elliott, Emily M.; Avery, G. Brooks; Kieber, Robert J.; Mead, Ralph N.; Willey, Joan D.; Mullaugh, Katherine M.

    2015-04-01

    Previous studies have concentrated on adverse ecosystem effects resulting from nitrogen (N) loading from runoff and increased N2O emissions due to hurricane activity but little focus has been placed on N inputs delivered by hurricane precipitation. Understanding these N inputs during extreme rain events is increasingly important since global climate change may alter hurricane activity. In this study, ten sequential Hurricane Irene rain samples were analyzed for isotopic composition of nitrate (NO3-) to investigate NOx (=NO + NO2) sources contributing to NO3- deposited by a hurricane. The samples were divided into three groups (I, II, II) by k-means clustering using rain event back trajectories, δ15N-NO3- values, and NO3- concentrations. Chemical, physical and isotopic analyses, including δ15N- and δ18O-NO3-, anions, cations, H+, H2O2, DOC, acetaldehyde, ethanol and rainfall intensity, were then used to explore similarities in geographic origins and potential relationships with NOx and other emission sources. While it is possible that all samples had contributions from various NOx sources, group I samples had marine back trajectories and a mean δ15N-NO3- value (-0.7 ± 1.9‰) suggesting primarily lightning-sourced NOx contributions to NO3- deposition. As the hurricane made landfall, Group II samples transitioned to reflect more of a terrestrial signature with a higher mean δ15N-NO3- value (+11.0 ± 0.5‰) indicating NOx emission contributions from vehicles and power plants sources. As the hurricane continued to move inland, Group III δ15N-NO3- values (-5.5 and -5.7‰) reflect the potential mixing of biogenic soil NOx emissions with vehicle and power plant sources. Higher concentrations of ethanol, acetaldehyde, NH4+, and carbohydrates in Group III samples support the influence of biogenic sources. The isotopic composition of NO3- in hurricane rain can aid in discerning varying NOx sources contributing to nitrate concentrations in extreme rain events. This

  20. Seasonal variations of antimicrobial activity and chemical composition of essential oils extracted from three Citrus limon L. Burm. cultivars.

    PubMed

    Settanni, L; Randazzo, W; Palazzolo, E; Moschetti, M; Aleo, A; Guarrasi, V; Mammina, C; San Biagio, P L; Marra, F P; Moschetti, G; Germanà, M A

    2014-01-01

    In order to investigate the seasonal variations of antimicrobial properties and chemical composition of essential oils (EOs), three different cultivars of Citrus limon L. Burm. spp. (Femminello Santa Teresa, Monachello and Femminello Continella) were collected at 6-week intervals, from December 2012 to April 2013, for a total of four harvests. The EOs were extracted from lemon peel by hydro-distillation. The antimicrobial activity, tested by paper disc diffusion method, was evaluated against common food-related pathogenic bacteria (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Enterobacter spp.). EOs were more effective against Gram-positive than Gram-negative bacteria at each collection time, but a strong strain dependence was evidenced. Monachello EOs showed the highest inhibition power. The chemical characterisation of the EOs performed by gas chromatography/mass spectrometry identified from 36 to 42 molecules. The chemical difference registered among samples and seasons may explain the different antimicrobial efficacies recorded. PMID:24443967

  1. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil

    PubMed Central

    Shrestha, Pravin Malla; Kammann, Claudia; Lenhart, Katharina; Dam, Bomba; Liesack, Werner

    2012-01-01

    Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH4 m−2 h−1. Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 105–1.9 × 106 copies g−1 of soil. Temperature was positively correlated with CH4 uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH4 uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH4 uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH4 uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade. PMID:22189499

  2. Seasonal Variation of American Indian Children's School-Day Physical Activity

    ERIC Educational Resources Information Center

    Brusseau, Timothy A.; Kulinna, Pamela H.; Kloeppel, Tiffany; Ferry, Matthew

    2012-01-01

    Study aim: To examine the pedometer steps taken during the school-day by American Indian children during all four seasons. Material and methods: Participants included third-sixth grade children (n = 157) aged 9.6 plus or minus 1.07 (boys) and 9.7 plus or minus 1.2 (girls) attending school from one Southwestern US American Indian community.…

  3. Hurricane Formation in Diabatic Ekman Turbulence

    NASA Astrophysics Data System (ADS)

    Schecter, David; Dunkerton, Timothy

    2008-11-01

    This study numerically examines the evolution of Diabatic Ekman Turbulence (DET) under various conditions. DET is quasi 2D turbulence that is modified by surface friction and parameterized cumulus convection. The self-organization of DET is here simulated in a 3-layer troposphere. In our primary model, winds over the ocean elevate the moist entropy of boundary layer air, whose convergence may then generate deep convection. After an incubation period, the influence of deep convection can supercede ideal 2D processes such as vortex merger. A strong cyclone-anticyclone asymmetry can develop, with relatively intense cyclones dominating the system. ``Hurricanes'' form at sufficiently high values of the sea-surface temperature (SST), the Coriolis parameter, and the surface-exchange coefficient for moist entropy CE. Increasing the momentum exchange coefficient CD shortens the incubation period, but decelerates the subsequent intensification of an emerging hurricane. Increasing CE or the SST accelerates all stages of hurricane genesis. As in more complex models, DET hurricanes can exhibit mesovortices and eyewall cycles. Moreover, their intensities increase with the SST and the ratio CE/CD. In some regions of parameter space, low-level noise can evolve into a hurricane or a synoptic scale circulation. The effects of using different representations of cumulus convection or surface friction will be discussed. Supported by NSF-ATM-0750660.

  4. Coastal Change During Hurricane Dennis 2005

    USGS Publications Warehouse

    Morgan, Karen

    2009-01-01

    Hurricane Dennis made landfall as a Category 3 storm on Santa Rosa Island in the Florida Panhandle on July 10, 2005. Exposed to some of the strongest winds, Santa Rosa Island suffered erosion, as well as severe overwash. A storm surge of 2 m was recorded near Navarre Beach. The U.S. Geological Survey (USGS) and U.S. Army Corps of Engineers (USACE) are collaborating in a research project investigating coastal change that occurred as a result of Hurricane Dennis. The USGS acquired still oblique aerial photography both before and after hurricane landfall to better understand the impacts of extreme storms on coastal environments. On Tuesday, July 12, 2005, scientists conducted an aerial photographic survey of Santa Rosa Island, Florida, that was impacted by Hurricane Dennis. The photographs were compared to pre-Dennis photographs taken in July 2001 and after the landfall of Hurricane Ivan in September 2004 to illustrate extreme coastal change. On Santa Rosa Island, the storm eroded dunes and beaches, and overwashed roads. In Navarre Beach, parking lots and roads were covered with sand and dune walkovers damaged or destroyed.

  5. Variation of D-region nitric-oxide density with solar activity and season at the dip equator

    NASA Technical Reports Server (NTRS)

    Chakrabarty, D. K.; Pakhomov, S. V.; Beig, G.

    1989-01-01

    To study the solar control on electron density (N sub e) in the equatorial D region, a program was initiated with Soviet collaboration in 1979. A total of 31 rockets were launched during the high solar activity period, and 47 rockets during the low solar activity period, from Thumba to measure the N sub e profiles. Analysis of the data shows that the average values of N sub e for the high solar activity period are higher by a factor of about 2 to 3 compared to the low solar activity values. It was found that a single nitric oxide density, (NO), profile cannot reproduce all the observed N sub e profiles. An attempt was made to reproduce theoretically the observed N sub e profiles by introducing variation in (NO) for the different solar activity periods and seasons.

  6. Comparison of within hive sampling and seasonal activity of Nosema ceranae in honey bee colonies.

    PubMed

    Traver, Brenna E; Williams, Matthew R; Fell, Richard D

    2012-02-01

    Nosema ceranae is a microsporidian parasite of the European honey bee, Apis mellifera, that is found worldwide and in multiple Apis spp.; however, little is known about the effects of N. ceranae on A. mellifera. Previous studies using spore counts suggest that there is no longer a seasonal cycle for N. ceranae and that it is found year round with little variation in infection intensity among months. Our goal was to determine whether infection levels differ in bees collected from different areas of the hive and if there may be seasonal differences in N. ceranae infections. A multiplex species-specific real-time PCR assay was used for the detection and quantification of N. ceranae. Colonies were sampled monthly from September 2009-2010 by collecting workers from honey supers, the fringe of the brood nest, and the brood nest. We found that all bees sampled were infected with N. ceranae and that there was no significant difference in infection levels among the different groups of bees sampled (P=0.74). However, significant differences in colony infection levels were found at different times of the year (P<0.01) with the highest levels in April-June and lower levels in the fall and winter. While our study was only performed for one year, it sheds light on the fact that there may be a seasonality to N. ceranae infections. Being able to predict future N. ceranae infections can be used to better advise beekeepers on N. ceranae management. PMID:22085836

  7. Male effect in seasonally anovulatory lactating goats depends on the presence of sexually active bucks, but not estrous females.

    PubMed

    Véliz, F G; Moreno, S; Duarte, G; Vielma, J; Chemineau, P; Poindron, P; Malpaux, B; Delgadillo, J A

    2002-08-15

    A study was conducted in subtropical northern Mexico (26 degrees N) to determine whether the presence of estrous females can improve the response of seasonally anovulatory goats to the introduction of bucks in the group. The induction of estrous activity was studied in three groups of anovulatory lactating goats during seasonal anestrus. These females were of the Mexican Creole breed. In the control group (sexually inactive (SI), n = 20), two control (SI) bucks exposed to normal seasonal daylength variations were used. In the second group (SI + E, n = 20 + 3), two control males were also used, but in addition, three females of the group were in estrus at the time of male introduction. In the third group (sexually active, SA + E, n = 19 + 4), anovulatory females were exposed to two bucks made sexually active by exposure to 2.5 months of long days (16L:8D) followed by two subcutaneous 18 mg melatonin implants, and four estrous females were also present when introducing the bucks. In all groups, males were introduced on 15 March and estrous detection was conducted twice daily for 15 days. The sexual activity of the bucks was observed from 08:00 to 10:00 h during the first five days of exposure to females. More females displayed estrous behavior in the first 15 days following the introduction of the males in the SA + E group (18/19) as compared with the SI or SI + E groups (2/20 and 0/20, respectively; P < 0.001). No difference was observed between the two latter groups. Thirteen females of SA + E group showed a second estrus between days 6 and 11 (short estrous cycle duration: 5.4 +/- 0.4 days). By contrast, in the SI group none showed a second estrus. The sexual behavior of the males in the SA + E group was greater as compared with that of the males in SI and SI + E groups (over 80% of the total sexual activity recorded in the three groups; P < 0.001). By contrast, no differences were found between SI and SI + E males. These results indicate that the presence of

  8. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades

    USGS Publications Warehouse

    Barr, Jordan G.; Engel, Vic; Smith, Thomas J., III; Fuentes, Jose D.

    2012-01-01

    Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004–2005. Dry season CO2

  9. Hurricane disturbance and recovery of energy balance, CO 2 fluxes and canopy structure in a mangrove forest of the Florida Everglades

    USGS Publications Warehouse

    Barr, J.G.; Engel, V.; Smith, T.J.; Fuentes, J.D.

    2012-01-01

    Eddy covariance (EC) estimates of carbon dioxide (CO 2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO 2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO 2 uptake remained approximately 250gCm -2yr -1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO 2 uptake

  10. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season.

    PubMed

    Siczek, Anna; Lipiec, Jerzy

    2016-01-01

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5-6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity. PMID:27213363

  11. Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments

    SciTech Connect

    Meyer-Reil, L.

    1987-08-01

    Seasonal and spatial distributions of extracellular enzymatic activities and microbial incorporations of dissolved organic substrates were followed in sediments of the brackish water Kiel Bight (Baltic Sea). Enzymatic hydrolysis of polymeric organic compounds was determined by means of fluorogenic substrates; incorporation of dissolved organic substrates into microbial biomass was measured by using tritiated substances (acetate, leucine, and thymidine). Based on a recently developed core injection technique, substrates were injected in microliter portions into undisturbed sediment cores. Enzymatic and incorporation activities underwent strong seasonal variations related to the enrichment of organic material in the sediment surface following sedimentation events. The input of the phytoplankton bloom during autumn caused stimulation of both enzymatic hydrolysis of polymeric organic compounds and microbial incorporation of dissolved organic substrates. Following input by spring phytoplankton bloom, mainly incorporation activities were stimulated. In late spring the development of the benthic fauna obviously greatly influenced microbial activities. During summer individual periods of high microbial activities were observed which might be traced back to short-term sedimentation events.

  12. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season

    PubMed Central

    Siczek, Anna; Lipiec, Jerzy

    2016-01-01

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5–6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity. PMID:27213363

  13. Estimating hurricane vertical velocity from Doppler radar for high-resolution hurricane model initialization

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2013-12-01

    A mesoscale vorticity method derives the hurricane inner-core vertical velocity from the vorticity variations in space and in time estimated from a deep layer of wind measurements obtained from Doppler radar. The vorticity method derives the hurricane inner core vertical velocity and thus, the divergent wind based on the mesoscale vorticity equation. The inner-core divergent wind inferred dynamically and rotational wind estimated from radar data form the total horizontal wind which is dynamically balanced with the derived vertical velocity. The derived high-resolution balance wind field is suitable for high resolution hurricane models initialization. The vorticity method is tested using a high-resolution non-hydrostatic hurricane model with radar data from Hurricane Danny which made landfall along the Alabama coast in 1997. Numerical experiments with a high resolution non-hydrostatic hurricane model show positive radar data impacts on track and intensity forecasts, in particular, substantial improvements on the hurricane inner core velocity field, can be obtained with the vertical velocity and thus inner-core divergent wind inferred from the mesoscale vorticity method.

  14. Present-Day Seasonal Gully Activity in a South Polar Pit (Sisyphi Cavi) on Mars

    NASA Astrophysics Data System (ADS)

    Raack, Jan; Reiss, Dennis; Appéré, Thomas; Vincendon, Mathieu; Ruesch, Ottaviano; Hiesinger, Harald

    2014-05-01

    Seasonal activity of gullies under current climatic conditions on Mars was observed by [1-7]. Dundas et al. [2] reviewed the present-day activity of classical gullies (including the gully presented in this work), dune gullies, and other mass wasting processes in the southern hemisphere on Mars. Recent polar gullies in Sisyphi Cavi were also analyzed by [8], who estimated ages of about 20 ka to 20 Ma for the gullies. In this study we focus on a single gully in Sisyphi Cavi, located in the south polar region at 1.44° E and 68.54° S. The gully occurs on the gullied equator-facing slope of an isolated polar pit within an infilled impact crater. Multi-temporal high-resolution image data analyses show new deposits at the terminus of the gully channel and on the gully apron within spring (after solar longitudes of 236°) of martian years (MY) 29 and 31. In MY 29 deposition of material shortens the channel by about 40 m; in MY 31 a new deposit at the western flank of the gully apron with approximately 300-600 m3 of material is visible [3]. Our morphological investigations show that the identified new deposits were formed by dark flows through the entire gully deposited on top of the apron between LS ~218° and ~226°. Thermal data show a temperature increase between solar longitudes (LS) ~218° and ~226°. Near-infrared spectral data show relatively constant band strengths of CO2 ice and H2O ice in this time range. After the formation of the dark flows (after LS ~226°), temperatures increase rapidly from ~180 K to >~270 K at LS ~250°. At this time, spectral data indicate that all volatiles on the surface sublimated. However, an earlier beginning of sublimation when the dark flows were observed (between LS ~218° and ~226°) is likely, due to the fact that the instruments can only show the last phase of sublimation (decrease of volatile band strengths) [3]. Spectral modeling shows that from winter to mid-spring, the surface of the studied area is covered by CO2 slab

  15. Community College Re-Enrollment after Hurricane Katrina

    ERIC Educational Resources Information Center

    Lowe, Sarah R.; Rhodes, Jean E.

    2013-01-01

    In this study, we explored predictors of community college re-enrollment after Hurricane Katrina among a sample of low-income women (N = 221). It was predicted that participants' pre-hurricane educational optimism would predict community college re-enrollment a year after the hurricane. The influence of various demographic and additional resources…

  16. Interdisciplinary class on the asymmetric seasonal march from autumn to the next spring around Japan at Okayama University (Joint activity with art and music expressions on the seasonal feeling)

    NASA Astrophysics Data System (ADS)

    Kato, Kuranoshin; Kato, Haruko; Akagi, Rikako; Haga, Yuichi

    2015-04-01

    There are many stages with rapid seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems, resulting in the variety of "seasonal feeling" around there. For example, the "wintertime pressure pattern" begins to prevail already from November due to the seasonal development of the Siberian Air mass and the Siberian High. The intermittent rainfall due to the shallow cumulus clouds in such situation is called "Shi-gu-re" in Japanese (consisting of the two Chinese characters which mean for "sometimes" (or intermittent) and "rain", respectively) and is often used for expression of the "seasonal feeling" in the Japanese classic literature (especially we can see in the Japanese classic poems called "Wa-Ka"). However, as presented by Kato et al. (EGU2014-3708), while the appearance frequency of the "wintertime pressure pattern" around November (early winter) and in early March (early spring) is nearly the same as each other, air temperature is rather lower in early spring. The solar radiation, however, is rather stronger in early spring. Such asymmetric seasonal cycle there would result in rather different "seasonal feeling" between early winter and early spring. Inversely, such difference of the "seasonal feelings" might be utilized for deeper understanding of the seasonal cycle of the climate system around Japan. As such, the present study reports the joint activity of the meteorology with music and art on these topics mainly in the class at the Faculty of Education, Okayama University. In that class, the students tried firstly the expression of the both selected stages in early winter and early spring, respectively, by combination of the 6 colors students selected from the 96 colored papers, based on the Johannes Itten's (1888-1967) exercise of the representation of the four seasons. Next, the students' activity on the music expression of what they firstly presented by the colors was

  17. Effects of Moist Convection on Hurricane Predictability

    NASA Technical Reports Server (NTRS)

    Zhang, Fuqing; Sippel, Jason A.

    2008-01-01

    This study exemplifies inherent uncertainties in deterministic prediction of hurricane formation and intensity. Such uncertainties could ultimately limit the predictability of hurricanes at all time scales. In particular, this study highlights the predictability limit due to the effects on moist convection of initial-condition errors with amplitudes far smaller than those of any observation or analysis system. Not only can small and arguably unobservable differences in the initial conditions result in different routes to tropical cyclogenesis, but they can also determine whether or not a tropical disturbance will significantly develop. The details of how the initial vortex is built can depend on chaotic interactions of mesoscale features, such as cold pools from moist convection, whose timing and placement may significantly vary with minute initial differences. Inherent uncertainties in hurricane forecasts illustrate the need for developing advanced ensemble prediction systems to provide event-dependent probabilistic forecasts and risk assessment.

  18. The Department of Defense and Homeland Security relationship: Hurricane Katrina through Hurricane Irene.

    PubMed

    Weaver, John Michael

    2015-01-01

    This research explored federal intervention with the particular emphasis on examining how a collaborative relationship between Department of Defense (DOD) and Homeland Security (DHS) led to greater effectiveness between these two federal departments and their subordinates (United States Northern Command and Federal Emergency Management Agency, respectively) during the preparation and response phases of the disaster cycle regarding US continental-based hurricanes. Through the application of a two-phased, sequential mixed methods approach, this study determined how their relationship has led to longitudinal improvements in the years following Hurricane Katrina, focusing on hurricanes as the primary unit of analysis. PMID:26150370

  19. Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale wastewater treatment plant over 4 years.

    PubMed

    Ju, Feng; Guo, Feng; Ye, Lin; Xia, Yu; Zhang, Tong

    2014-02-01

    Metagenomic technique was employed to characterize the seasonal dynamics of activated sludge (AS) communities in a municipal wastewater treatment plant (WWTP) over 4 years. The results indicated that contrary to Eukaryota (mainly Rotifera and Nematoda), abundances of Bacteria and Archaea (mainly Euryarchaeota) were significantly higher in winter than summer. Two-way analysis of variance and canonical correspondence analysis revealed that many functionally important genera followed strong seasonal variation patterns driven by temperature and salinity gradients; among them, two nitrifying bacteria, Nitrospira and Nitrosomonas, displayed much higher abundances in summer, whereas phosphate-removing genus Tetrasphaera, denitrifier Paracoccus and potential human faecal bacteria, i.e. Bifidobacterium, Dorea and Ruminococcus, showed significantly higher abundances in winter. Particularly, occurrence of dual variation patterns beyond explanation merely by seasonality indicated that multivariables (e.g. dissolved oxygen, sludge retention time, nutrients) participated in shaping AS community structure. However, SEED subsystems annotation showed that functional categories in AS showed no significant difference between summer and winter, indicating that compared with its microbial components, the functional profiles of AS were much more stable. Taken together, our study provides novel insights into the microbial community variations in AS and discloses their correlations with influential factors in WWTPs. PMID:24596265

  20. Skill of synthetic superensemble hurricane forecasts for the Canadian maritime provinces

    NASA Astrophysics Data System (ADS)

    Szymczak, H. L.; Krishnamurti, T. N.

    2006-08-01

    From 1994 to 2003, fifty-five tropical cyclones entered the Canadian Hurricane Centre (CHC) Response Zone, or about 42% of all named Atlantic tropical cyclones in this ten-year period, and 2003 was the fourth consecutive year for a tropical cyclone to make landfall in Canada. The CHC forecasts all tropical cyclones that enter the CHC Response Zone and assumes the lead in forecasting once the cyclone enters its area of forecast responsibility. This study acknowledges the challenges of forecasting such tropical cyclones at extratropical latitudes. If a tropical cyclone has been declared extratropical, global models may no longer use vortex bogussing to carry the cyclone, and even if it is modeled, large model errors often result. The purpose of this study is to develop a new version of the Florida State University (FSU) hurricane superensemble with greater skill in tracking tropical cyclones, especially at extratropical latitudes. This has been achieved from the development of the synthetic superensemble, which is similar to the operational version of the multi-model superensemble that is used at FSU. The synthetic superensemble differs in that is has a larger set of member models consisting of regular member models, synthetic versions of these models, and the operational superensemble and its synthetic version. This synthetic superensemble is being used here to forecast hurricane tracks from the 2001, 2002, and 2003 hurricane seasons. The track forecasts from this method have generally less error than those of the member models, the operational superensemble, and the ensemble mean. This study shows that the synthetic superensemble performs consistently well and would be an asset to operational hurricane track forecasting.

  1. Seasonal changes in the activity of antioxidative defense in the kidneys of the euthermic ground squirrel (Citellus citellus).

    PubMed

    Buzadzić, B; Blagojević, D; Korać, B; Saicić, Z S; Spasić, M B; Petrović, V M

    1998-01-01

    The aim of this work was to determine the activity of the antioxidant enzymes: superoxide dismutase (EC 1.15.1.1; SOD), catalase (EC 1.11.1.6; CAT), glutathione peroxidase (EC 1.11.1.9; GSH-Px), glutathione-S-transferase (EC 2.5.1.18; GST), glutathione reductase (EC 1.6.4.2; GR) and the low molecular mass antioxidants: ascorbic acid (ASA) and vitamin E (vit E) in the kidney of ground squirrels during circannual changes. Keeping the ground squirrel at the temperature of thermic neutrality (30 degrees C) provides a stable euthermic state during the whole year and thus any change is due to the circannual rhythm. The highest specific activity of all examined antioxidative defense enzymes in the kidney was found in the spring, when ground squirrels are seasonally the most active. In the summer, lower specific activity of GSH-Px as well as of SOD and CAT were noted and, when expressed per g wet mass, only a decrease in GSH-Px activity was recorded. In the kidney of ground squirrels kept at 30 degrees C, the lowest specific activity of all examined enzymes was found during the winter and, when expressed per g wet mass, only the SOD activity was lower than in the spring and summer. Higher amounts of vitamins C and E were found in the ground squirrel kidneys in the summer. The results obtained in this work demonstrate that circannual regulation of metabolic activity, which is inherent to seasonal hibernators, is also expressed at the level of antioxidative defense in the kidneys. PMID:9726801

  2. Temporal evolution of Saturn lightning activity during Saturn's change of season in spring equinox 2009

    NASA Astrophysics Data System (ADS)

    Pagaran, J. A.; Fischer, G.

    2015-10-01

    Saturn Electrostatic Discharges or SEDs are measured by the Cassini/RPWS (Radio and Plasma Wave Sci- ence) instrument from 1 to 16 MHz. In August 2009,Saturn's northern (southern) hemisphere enters spring (autumn) 7-year-long season. The RPWS instrument,has so far recorded more than a dozen storms since the spacecraft's orbital insertion in 2004. Lasting for several months, each storm consisted of episodes with a periodicity lasting close to one Saturn rotation (about 10 hours and 40 minutes), which start/stop when the SED cloud enters/leaves the radio horizon.

  3. SeaWiFS views hurricane Aletta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The year's first Northeast Pacific hurricane, Aletta, appears in this image from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). On May 24, 2000 the hurricane was spinning 300 miles off the coast of Mexico with sustained winds of 80 miles per hour and gusts up to 100 miles per hour. For more information, see the SeaWiFS Project web site. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  4. Inverse modeling of storm intensity based on grain-size analysis of hurricane-induced event beds

    NASA Astrophysics Data System (ADS)

    Castagno, K. A.; Donnelly, J. P.

    2015-12-01

    As the coastal population continues to grow in size and wealth, increased hurricane frequency and intensity present a growing threat of property damage and loss of life. Recent reconstructions of past intense-hurricane landfalls from sediment cores in southeastern New England identify a series of active intervals over the past 2,000 years, with the last few centuries among the most quiescent intervals. The frequency of intense-hurricane landfalls in southeastern New England is well constrained, but the intensity of these storms, particularly prehistoric events, is not. This study analyzes the grain sizes of major storm event beds along a transect of sediment cores in Salt Pond, Falmouth, MA. Several prehistoric events contain more coarse material than any of the deposits from the historical interval, suggesting that landfalling hurricanes in the northeastern United States may have been more intense than the historically encountered category 2 and 3 storms. The intensity of major storm events is estimated using grain-size analysis with a digital image processing, size, and shape analyzer. Since event deposits in Salt Pond result from a combination of coastal inundation and wave action, a large population of both historical and synthetic storms is used to assess the storm characteristics that could result in the wave heights inversely modeled from grain size trends. Intense-hurricane activity may be closely tied to warming in sea surface temperature. As such, the prehistoric intervals of increased frequency and intensity provide potential analogs for current and future hurricane risk in the northeastern United States.

  5. Hurricane-related air-sea interactions, circulation modifications, and coastal impacts on the eastern Louisiana coastline

    NASA Astrophysics Data System (ADS)

    Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.

    2012-12-01

    Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate air-sea interactions pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20

  6. Relationships between microbial extracellular enzymatic activity and suspended and sinking particulate organic matter: seasonal transformations in the North Water

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Deming, J. W.

    Despite the importance of hydrolytic activities by bacterial extracellular enzymes (EE) in the temperate ocean, little is known about the role of extracellular enzymatic activity (EEA) in determining the fate of particulate organic matter (POM) in polar seas. To explore the issue further, we measured various chemical and bacterial parameters in the near-0°C waters of the North Water during the months of May and July of 1998. Seawater (SW) samples were collected by Niskin bottle at the depth of the chlorophyll fluorescence maximum (8-90 m), while samples of sinking particles and aggregates were collected in short-term (0.5-1.2 d), unpoisoned, floating sediment traps deployed at depths typically below the mixed layer (50-136 m). Samples were analyzed for POC, PON, and abundance of total and actively respiring bacteria. They were also incubated with fluorescently tagged substrate analogs to measure potential maximal rates of three classes of EE (leucine-aminopeptidase, chitobiase, and β-glucosidase) at -1°C. The percentage of actively respiring bacteria was always higher in sediment trap samples than in SW (medians of 38% and 24% versus 10% and 12% in May and July, respectively). Cell-specific rates of EEA were also higher in the trap samples and, for both sample types, similar to published rates from temperate waters. Rates of EEA when scaled to the abundance of actively respiring bacteria, however, did not differ between sample types, suggesting that the elevated EEA associated with sinking material is due to the greater abundance of metabolically active cells supported by such material and not due to enhanced enzyme expression in general, as suggested by previous studies. In this study, leucine-aminopeptidase activity was always much higher than the other classes of EEA, becoming even more dominant later in the season; it always correlated positively with the abundance of both total and actively respiring bacteria. Enzyme ratios indicating protease dominance

  7. Hurricane Ike: Field Investigation Survey (Invited)

    NASA Astrophysics Data System (ADS)

    Ewing, L.

    2009-12-01

    Hurricane Ike made landfall at 2:10 a.m. on September 13, 2008, as a Category 2 hurricane. The eye of the hurricane crossed over the eastern end of Galveston Island and a large region of the Texas and Louisiana coast experienced extreme winds, waves and water levels, resulting in large impacts from overtopping, overwash, wind and wave forces and flooding. Major damage stretched from Freeport to the southwest and to Port Arthur to the northeast. The effects of the hurricane force winds were felt well inland in Texas and Louisiana and the storm continued to the interior of the US, causing more damage and loss of life. Through the support of the Coasts, Oceans, Ports and Rivers Institute (COPRI) of the American Society of Civil Engineers (ASCE) a team of 14 coastal scientists and engineers inspected the upper Texas coast in early October 2008. The COPRI team surveyed Hurricane Ike’s effects on coastal landforms, structures, marinas, shore protection systems, and other infrastructure. Damages ranges from very minor to complete destruction, depending upon location and elevation. Bolivar Peninsula, to the right of the hurricane path, experienced severe damage and three peninsula communities were completely destroyed. Significant flood and wave damage also was observed in Galveston Island and Brazoria County that were both on the left side of the hurricane path. Beach erosion and prominent overwash fans were observed throughout much of the field investigation area. The post-storm damage survey served to confirm expected performance under extreme conditions, as well as to evaluate recent development trends and conditions unique to each storm. Hurricane Ike confirmed many previously reported observations. One of the main conclusions from the inspection of buildings was that elevation was a key determinant for survival. Elevation is also a major factor in the stability and effectiveness of shore protection. The Galveston Seawall was high enough to provide protection from

  8. Hurricane Scientist talks GRIP, Hurricane Earl - Duration: 5 minutes, 29 seconds.

    NASA Video Gallery

    Hurricane Earl, currently a powerful category 4 storm, is barreling north with the potential to batter the East Coast and threaten Labor Day plans for beachgoers from North Carolina to Massachusett...

  9. UAS Applications for Hurricane Science, Hurrican and Severe Storm Sentinel (HS3)

    NASA Technical Reports Server (NTRS)

    Braun, Scott

    2014-01-01

    Earth Science Industry Update: UAS Applications for Hurricane Science Unmanned systems can significantly transform hurricane observations and monitoring, improving our knowledge about and ability to forecast storm formation, track, and intensity change. NASA's use of the Global Hawk has demonstrated the scientific value of this platform and provided a proof-of-concept for operational applications. However, science flight operations face several challenges and constraints. In this session, learn about how NASA adapted the Global Hawk to do science; How NASA conducts its hurricane missions, and some of the challenges and constraints they face; Science results from NASA's recent hurricane field campaigns using the Global Hawk. How assimilation of dropsonde and radar data into weather prediction models may improve forecast accuracy; Other Earth science problems that could be addressed with Global Hawks.

  10. Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Miner, Michael D.; Kulp, Mark A.; Fitzgerald, Duncan M.; Flocks, James G.; Weathers, H. Dallon

    2009-12-01

    A large deficit in the coastal sediment budget, high rates of relative sea-level rise (~0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ~1.6 × 109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ~41,400 m2 to ~139,500 m2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends.

  11. Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA

    USGS Publications Warehouse

    Miner, M.D.; Kulp, M.A.; FitzGerald, D.M.; Flocks, J.G.; Weathers, H.D.

    2009-01-01

    A large deficit in the coastal sediment budget, high rates of relative sea-level rise (???0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ???1.6????????109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ???41,400 m2 to ???139,500 m 2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends. ?? 2009 Springer-Verlag.

  12. Land area changes in coastal Louisiana after Hurricanes Katrina and Rita: Chapter 5B in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Barras, John A.

    2007-01-01

    Comparison of classified Landsat Thematic Mapper (TM) satellite imagery acquired before and after the landfalls of Hurricanes Katrina (August 29, 2005) and Rita (September 24, 2005) demonstrated that water area increased by 217 mi2 (562 km2) in coastal Louisiana. Approximately 82 mi2 (212 km2) of new water areas were in areas primarily impacted by Katrina (Mississippi River Delta basin, Breton Sound basin, Pontchartrain basin, Pearl River basin), whereas 117 mi2 (303 km2) were in areas primarily impacted by Rita (Calcasieu/ Sabine basin, Mermentau basin, Teche/Vermilion basin, Atchafalaya basin, Terrebonne basin). Barataria basin contained new water areas caused by both hurricanes, resulting in some 18 mi2 (46.6 km2) of new water areas. The fresh marsh and intermediate marsh communities' land areas decreased by 122 mi2 (316 km2) and 90 mi2 (233.1 km2), respectively. The brackish marsh and saline marsh communities' land areas decreased by 33 mi2 (85.5 km2) and 28 mi2 (72.5 km2), respectively. These new water areas identify permanent losses caused by direct removal of wetlands. They also indicate transitory water area changes caused by remnant flooding, removal of aquatic vegetation, scouring of marsh vegetation, and water-level variation attributed to normal tidal and meteorological variation between satellite images. Permanent losses cannot be estimated until several growing seasons have passed and the transitory impacts of the hurricanes are minimized. The purpose of this study was to provide preliminary information on water area changes in coastal Louisiana acquired shortly after both hurricanes' landfalls (detectable with Landsat TM imagery) and to serve as a regional baseline for monitoring posthurricane wetland recovery.

  13. Sex Differences in Salivary Cortisol, Alpha-Amylase, and Psychological Functioning Following Hurricane Katrina

    ERIC Educational Resources Information Center

    Vigil, Jacob M.; Geary, David C.; Granger, Douglas A.; Flinn, Mark V.

    2010-01-01

    The study examines group and individual differences in psychological functioning and hypothalamic-pituitary-adrenal and sympathetic nervous system (SNS) activity among adolescents displaced by Hurricane Katrina and living in a U.S. government relocation camp (n = 62, ages 12-19 years) 2 months postdisaster. Levels of salivary cortisol, salivary…

  14. Hurricane Hugo: Emergency Preparedness Planning and Response for Mental Health Services.

    ERIC Educational Resources Information Center

    Carter, Nancy C.; And Others

    This report describes how, in the aftermath of Hurricane Hugo, the South Carolina Department of Mental Health activated its Emergency Preparedness Plan to assist mental health centers and their staff in providing crisis counseling services to the general public. The first section explains the history and structure of the involvement by the…

  15. Adolescent Survivors of Hurricane Katrina: A Pilot Study of Hypothalamic-Pituitary-Adrenal Axis Functioning

    ERIC Educational Resources Information Center

    Pfefferbaum, Betty; Tucker, Phebe; Nitiéma, Pascal

    2015-01-01

    Background: The hypothalamic-pituitary-adrenal (HPA) axis constitutes an important biological component of the stress response commonly studied through the measurement of cortisol. Limited research has examined HPA axis dysregulation in youth exposed to disasters. Objective: This study examined HPA axis activation in adolescent Hurricane Katrina…

  16. Late-seasonal activity and diet of the evening bat (Nycticeius humeralis) in Nebraska

    USGS Publications Warehouse

    Geluso, K.; Damm, J.P.; Valdez, E.W.

    2008-01-01

    In North America, Nebraska represents part of the northwestern edge of the distribution for the evening bat (Nycticeius humeralis). To date, little information on this bat's natural history has been published from the state or from other parts of the Great Plains. Here we report on aspects of its natural history in Nebraska from 2 localities. In late summer and early autumn of 2006, we documented individuals farther west in Nebraska (Harlan County) than previously reported and determined that individuals fed mainly on Coleoptera and Hymenoptera. In 2006, evening bats appeared to migrate from Nebraska during late September-early October, and individuals were extremely fat, about 15 g, prior to migration. Evening bats likely are more widespread and common in south central Nebraska than previously documented. On 6 October 2005, we reported on an individual from eastern Nebraska (Douglas County), which represents the latest seasonal record of N. humeralis from the state.

  17. Mapping Seasonal Inundation of Amazonian Wetlands with Active Microwave Sensors: Current Status and Future Prospects

    NASA Astrophysics Data System (ADS)

    Hess, L. L.; Melack, J. M.; Novo, E. M.; Mertes, L. A.; Barbosa, C. C.; Costa, M. P.; Gastil, M. M.

    2001-12-01

    Japanese Earth Resources Satellite 1 (JERS-1) imagery acquired over the Amazon basin during low- and high-water periods makes it possible to map seasonal inundation and vegetation of wetlands for most of the basin. Dual-season mapping has now been completed for a central Amazon quadrat extending from 72\\deg W,0\\deg S to 54\\deg W,8\\deg S. Imagery was acquired by the JERS-1 L-band, HH-polarized SAR during Sept.-Oct. 1995 and May-June 1996, and mosaicked at the Jet Propulsion Laboratory into low- and high-water mosaics with pixel dimensions of approx. 100 m. Image segmentation software developed at INPE was used to carry out a polygon-based classification of the co-registered mosaics into wetland and non-wetland classes. Wetland areas were classified by inundation state (flooded vs. non-flooded) and vegetation type (non-vegetated, woody, or herbaceous), and classification accuracy was assessed using geo-coded digital videography acquired during aerial surveys of the Brazilian Amazon. Seventeen percent of the study quadrat is occupied by wetlands, which are 96% inundated at high water and 26% inundated at low water (including river and stream channels). Flooded forest constitutes nearly 70% of the wetland area at high water. This mapping methodology is being applied to the entire lowland portion of the basin. In order to map inundation extent at intermediate water stages, and to increase classification accuracy in savanna regions, we are using time series of high-resolution JERS-1 and Radarsat data, and will make extensive use of planned acquisitions from the ENVISAT ASAR and ALOS PALSAR sensors.

  18. Hurricanes, Coral Bleaching, and the Florida Keys Reef Tract: Can Hurricanes Benefit Temperature Stressed Corals?

    NASA Astrophysics Data System (ADS)

    Manzello, D. P.

    2006-12-01

    The Florida reef tract has been impacted by three mass coral bleaching events, two tropical storms, and 12 hurricanes from 1997 to 2005. Decreased sea temperatures associated with high winds from hurricanes or tropical storms were apparent in 1998, 1999, 2001, 2004, and 2005 at the five SEAKEYS C-MAN stations situated on the Florida reef tract. Given the potential for cooler sea temperatures to ameliorate the severity of coral bleaching, the duration and magnitude that sea temperatures cooled from the passage of hurricanes and tropical storms was assessed. The timing of these storms is particularly relevant as 1998 and 2005 were major coral bleaching years, whereas 1999, 2001, and 2004 were not. Sea temperatures decreased from 0.3 to 3.0 degrees Celsius when the track of a hurricane or tropical storm passed within 375 km of any of these five sites. Sea temperature decreased to below the long-term average from one to 26 days when the track of a hurricane or tropical storm was within 275 km. The potential for hurricanes and tropical storms to benefit temperature stressed corals is dependent on several temporal and spatial considerations.

  19. GPM 3D Flyby of Hurricane Lester

    NASA Video Gallery

    This 3-D flyby of Lester was created using GPM's Radar data. NASA/JAXA's GPM core observatory satellite flew over Hurricane Lester on August 29, 2016 at 7:21 p.m. EDT. Rain was measured by GPM's ra...

  20. Hurricanes as Heat Engines: Two Undergraduate Problems

    ERIC Educational Resources Information Center

    Pyykko, Pekka

    2007-01-01

    Hurricanes can be regarded as Carnot heat engines. One reason that they can be so violent is that thermodynamically, they demonstrate large efficiency, [epsilon] = (T[subscript h] - T[subscript c]) / T[subscript h], which is of the order of 0.3. Evaporation of water vapor from the ocean and its subsequent condensation is the main heat transfer…

  1. Hurricanes - Multiple Languages: MedlinePlus

    MedlinePlus

    ... XYZ List of All Topics All Hurricanes - Multiple Languages To use the sharing features on this page, please enable JavaScript. Arabic (العربية) Bosnian (Bosanski) Somali (af Soomaali) Spanish (español) ...

  2. Utilizing Hurricane Data for Classroom Exercises.

    ERIC Educational Resources Information Center

    Kohler, Fred

    This document contains specific exercises designed to help secondary students understand the spatial and temporal characteristics of hurricanes that affect the eastern part of the United States. Selected exercises require students to: (1) use maps; (2) interpret statistics; and (3) perform mathematical calculations. Introductory material is…

  3. SSC marks anniversary of Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    2006-01-01

    At the Hurricane Katrina observance held Aug. 29 in the StenniSphere auditorium, Stennis Space Center Deputy Director David Throckmorton (left) and RAdm. Timothy McGee, Commander, Naval Meteorology and Oceanography Command, unveil a plaque dedicated to SSC employees.

  4. Global Hawk monitors hurricane eye wall development

    NASA Video Gallery

    The Global Hawk UAV flies over Hurricane Karl to reveal a hot tower. Red shows reflectivity that is 12 km from the surface, orange is 10 km, yellow is 7.5 km, green is 6 km, and blue is under 6 km....

  5. Hurricane Ike versus an Atomic Bomb

    ERIC Educational Resources Information Center

    Pearson, Earl F.

    2013-01-01

    The destructive potential of one of nature's most destructive forces, the hurricane, is compared to one of human's most destructive devices, an atomic bomb. Both can create near absolute devastation at "ground zero". However, how do they really compare in terms of destructive energy? This discussion compares the energy, the…

  6. Gulf Coast Hurricanes Situation Report #40

    SciTech Connect

    2005-11-14

    On 11/12 Florida Power & Light (FPL) announced that crews had essentially completed Hurricane Wilma restoration efforts to all 3.2 million customers in South Florida who had been without power. Electricity restoration efforts are now essentially complete in Florida.

  7. The economics and ethics of Hurricane Katrina.

    PubMed

    Rockwell, Llewellyn H; Block, Walter E

    2010-01-01

    How might free enterprise have dealt with Hurricane Katrina and her aftermath. This article probes this question at increasing levels of radicalization, starting with the privatization of several government “services” and ending with the privatization of all of them. PMID:20939132

  8. Dissolved phosphorus export from an animal waste impacted in-stream wetland: response to tropical storm and hurricane disturbance.

    PubMed

    Novak, J M; Szogi, A A; Stone, K C; Watts, D W; Johnson, M H

    2007-01-01

    The ability of wetlands to retain P makes them an important landscape feature that buffers P movement. However, their P retention ability can be compromised through hydrologic disturbances caused by hurricanes and tropical storms (TS). This study had three objectives: (i) to determine the effects of hurricanes and TS on dissolved phosphorus (DP) concentrations and loads discharged from a Coastal Plain in-stream wetland (ISW); (ii) to evaluate shifts in P storage pools that would reflect P accretion/removal patterns; and (iii) to determine if relationships exist between storm characteristics with releases of DP and water volume. From January 1996 to October 1999, the ISW's outflow DP concentrations and flow volumes (Q) were measured and they were used to calculate DP mass export loads. In addition, the sediment total phosphorus (TP) concentrations were measured, and both the water column and sediment pore water DP concentrations were examined using passive samplers. In several instances, TS facilitated greater DP releases than a single hurricane event. The largest release of DP occurred in 1999 after Hurricanes Dennis, Floyd, and Irene. The large differences in DP exports among the storms were explained by Q variations. Storm activity also caused changes in sediment pore water DP and sediment TP concentrations. This study revealed that some TS events caused higher DP releases than a single hurricane; however, multiple hurricanes delivering heavy precipitation totals significantly increased DP export. PMID:17412914

  9. On the genesis and predictability of Hurricane Julia (2010)

    NASA Astrophysics Data System (ADS)

    Cecelski, Stefan Francis

    Tropical cyclogenesis (TCG) continues to be one of the least understood processes in tropical meteorology today. While a robust theoretical frame- work for TCG within African Easterly Waves (AEWs) has recently been developed, little work explores the mesoscale processes and interactions with the AEW during TCG. This study investigates the TCG of Hurricane Julia from the 2010 north Atlantic hurricane season using a series of high-resolution model simulation with the finest grid size of 1 km. In addition to a control simulation used to study the mesoscale processes during TCG, 20 ensemble simulations are conducted to identify key dynamical and thermodynamical processes taking place during TCG. These ensembles also serve to quantify the predictability of TCG while determining the processes responsible for ensemble solution disagreements. It is found that the TCG of Hurricane Julia is triggered by the pronounced upper-tropospheric warming associated with organized deep convection. The upper-level warming is able to intensify and become a meso-α-scale feature due to a storm-scale outflow beyond the Rossby radius of deformation. The simulation confirms previous ideas by demonstrating that the intersection of the AEW's trough axis and critical latitude is a preferred location for TCG, while supplementing such work by illustrating the importance of upper-tropospheric warming and meso-alpha-scale surface pressure falls during TCG. Ensemble simulations further elaborate on the mechanisms by depicting substantial parametric differences between the stronger and weaker members. The dominant pattern of mean sea-level pressure ensemble differences is associated with the intensity of the pre-tropical depression (pre-TD), explaining nearly half of the total variance at the time of TCG. Similar patterns of differences are found for the low-level absolute vorticity and upper-tropospheric temperature anomalies. An additional sensitivity simulation removing the latent heat of fusion

  10. An improved hurricane wind vector retrieval algorithm using SeaWinds scatterometer

    NASA Astrophysics Data System (ADS)

    Laupattarakasem, Peth

    Over the last three decades, microwave remote sensing has played a significant role in ocean surface wind measurement, and several scatterometer missions have flown in space since early 1990's. Although they have been extremely successful for measuring ocean surface winds with high accuracy for the vast majority of marine weather conditions, unfortunately, the conventional scatterometer cannot measure extreme winds condition such as hurricane. The SeaWinds scatterometer, onboard the QuikSCAT satellite is NASA's only operating scatterometer at present. Like its predecessors, it measures global ocean vector winds; however, for a number of reasons, the quality of the measurements in hurricanes are significantly degraded. The most pressing issues are associated with the presence of precipitation and Ku-band saturation effects, especially in extreme wind speed regime such as tropical cyclones (hurricanes and typhoons). Under this dissertation, an improved hurricane ocean vector wind retrieval approach, named as Q-Winds, was developed using existing SeaWinds scatterometer data. This unique data processing algorithm uses combined SeaWinds active and passive measurements to extend the use of SeaWinds for tropical cyclones up to approximately 50 m/s (Hurricane Category-3). Results show that Q-Winds wind speeds are consistently superior to the standard SeaWinds Project Level 2B wind speeds for hurricane wind speed measurement, and also Q-Winds provides more reliable rain flagging algorithm for quality assurance purposes. By comparing to H*Wind, Q-Winds achieves ˜9% of error, while L2B-12.5km exhibits wind speed saturation at ˜30 m/s with error of ˜31% for high wind speed (>40 m/s).

  11. Development and Analysis of a Hurricane Hazard Model for Disaster Risk Assessment in Central America

    NASA Astrophysics Data System (ADS)

    Pita, G. L.; Gunasekera, R.; Ishizawa, O. A.

    2014-12-01

    Hurricane and tropical storm activity in Central America has consistently caused over the past decades thousands of casualties, significant population displacement, and substantial property and infrastructure losses. As a component to estimate future potential losses, we present a new regional probabilistic hurricane hazard model for Central America. Currently, there are very few openly available hurricane hazard models for Central America. This resultant hazard model would be used in conjunction with exposure and vulnerability components as part of a World Bank project to create country disaster risk profiles that will assist to improve risk estimation and provide decision makers with better tools to quantify disaster risk. This paper describes the hazard model methodology which involves the development of a wind field model that simulates the gust speeds at terrain height at a fine resolution. The HURDAT dataset has been used in this study to create synthetic events that assess average hurricane landfall angles and their variability at each location. The hazard model also then estimates the average track angle at multiple geographical locations in order to provide a realistic range of possible hurricane paths that will be used for risk analyses in all the Central-American countries. This probabilistic hurricane hazard model is then also useful for relating synthetic wind estimates to loss and damage data to develop and calibrate existing empirical building vulnerability curves. To assess the accuracy and applicability, modeled results are evaluated against historical events, their tracks and wind fields. Deeper analyses of results are also presented with a special reference to Guatemala. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the

  12. Hurricane Katrina-related maternal stress, maternal mental health, and early infant temperament.

    PubMed

    Tees, Michael T; Harville, Emily W; Xiong, Xu; Buekens, Pierre; Pridjian, Gabriella; Elkind-Hirsch, Karen

    2010-07-01

    To investigate temperament in infants whose mothers were exposed to Hurricane Katrina and its aftermath, and to determine if high hurricane exposure is associated with difficult infant temperament. A prospective cohort study of women giving birth in New Orleans and Baton Rouge, LA (n = 288) in 2006-2007 was conducted. Questionnaires and interviews assessed the mother's experiences during the hurricane, living conditions, and psychological symptoms, 2 months and 12 months postpartum. Infant temperament characteristics were reported by the mother using the activity, adaptability, approach, intensity, and mood scales of the Early Infant and Toddler Temperament Questionnaires, and "difficult temperament" was defined as scoring in the top quartile for three or more of the scales. Logistic regression was used to examine the association between hurricane experience, mental health, and infant temperament. Serious experiences of the hurricane did not strongly increase the risk of difficult infant temperament (association with three or more serious experiences of the hurricane: adjusted odds ratio (aOR) 1.50, 95% confidence interval (CI) 0.63-3.58 at 2 months; 0.58, 0.15-2.28 at 12 months). Maternal mental health was associated with report of difficult infant temperament, with women more likely to report having a difficult infant temperament at 1 year if they had screened positive for PTSD (aOR 1.82, 95% confidence interval (CI) 0.61-5.41), depression, (aOR 3.16, 95% CI 1.22-8.20) or hostility (aOR 2.17, 95% CI 0.81-5.82) at 2 months. Large associations between maternal stress due to a natural disaster and infant temperament were not seen, but maternal mental health was associated with reporting difficult temperament. Further research is needed to determine the effects of maternal exposure to disasters on child temperament, but in order to help babies born in the aftermath of disaster, the focus may need to be on the mother's mental health. PMID:19554438

  13. Cell-free extracellular enzymatic activity is linked to seasonal temperature changes: a case study in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Baltar, Federico; Legrand, Catherine; Pinhassi, Jarone

    2016-05-01

    Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and < 40 % during summer. A significant negative relation was found between the proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.

  14. The steroid hormone of sunlight soltriol (vitamin D) as a seasonal regulator of biological activities and photoperiodic rhythms.

    PubMed

    Stumpf, W E; Privette, T H

    1991-08-01

    Neural and systemic somatotrophic effects of the ultraviolet component of sunlight through the skin-vitamin D endocrine system are considered as alternate or additional to the neuroendocrine effects of the visual component of light through the retino-diencephalic input. The extensive distribution of soltriol nuclear receptor cells, revealed by autoradiography with tritium-labeled 1,25 dihydroxycholecalciferol (vitamin D, soltriol) and related effects, indicate an involvement of vitamin D-soltriol in the actinic induction of seasonal biorhythms. This is considered to be independent of the traditionally assigned effects of vitamin D on systemic calcium regulation. Skin-soltriol mediated seasonal, and to a degree daily, genomic activation involves many target regions in the brain. These include neurons in the central nucleus of the amygdala, in the linked part of the bed nucleus of the stria terminalis, in periventricular hypothalamic neurons, dorsal raphe nucleus, reticular thalamic nucleus and autonomic, endocrine as well as sensory and motor components of the brainstem and spinal cord. Additional to the eye-regulated "suprachiasmatic clock", existence of a soltriol-vitamin D regulated neural "timing circuit(s)" is proposed. Both, activational and organizational effects of soltriol on mature and developing brain regions, respectively are likely to play a role in the regulation of neuronal functions that include the modulation and entrainment of biorhythms. Soltriol's central effects correlate with peripheral effects on elements in skin, bone, teeth, kidney, intestine, heart and blood vessels, endocrine organs, and tissues of the immune and reproductive system. PMID:1888689

  15. Kiss1 neurons drastically change their firing activity in accordance with the reproductive state: insights from a seasonal breeder.

    PubMed

    Hasebe, Masaharu; Kanda, Shinji; Shimada, Hiroyuki; Akazome, Yasuhisa; Abe, Hideki; Oka, Yoshitaka

    2014-12-01

    Kisspeptin (Kiss) neurons show drastic changes in kisspeptin expression in response to the serum sex steroid concentration in various vertebrate species. Thus, according to the reproductive states, kisspeptin neurons are suggested to modulate various neuronal activities, including the regulation of GnRH neurons in mammals. However, despite their reproductive state-dependent regulation, there is no physiological analysis of kisspeptin neurons in seasonal breeders. Here we generated the first kiss1-enhanced green fluorescent protein transgenic line of a seasonal breeder, medaka, for histological and electrophysiological analyses using a whole-brain in vitro preparation in which most synaptic connections are intact. We found histologically that Kiss1 neurons in the nucleus ventralis tuberis (NVT) projected to the preoptic area, hypothalamus, pituitary, and ventral telencephalon. Therefore, NVT Kiss1 neurons may regulate various homeostatic functions and innate behaviors. Electrophysiological analyses revealed that they show various firing patterns, including bursting. Furthermore, we found that their firings are regulated by the resting membrane potential. However, bursting was not induced from the other firing patterns with a current injection, suggesting that it requires some chronic modulations of intrinsic properties such as channel expression. Finally, we found that NVT Kiss1 neurons drastically change their neuronal activities according to the reproductive state and the estradiol levels. Taken together with the previous reports, we here conclude that the breeding condition drastically alters the Kiss1 neuron activities in both gene expression and firing activities, the latter of which is strongly related to Kiss1 release, and the Kiss1 peptides regulate the activities of various neural circuits through their axonal projections. PMID:25247469

  16. Geologic hazards in the region of the Hurricane fault

    USGS Publications Warehouse

    Lund, W.R.

    1997-01-01

    Complex geology and variable topography along the 250-kilometer-long Hurricane fault in northwestern Arizona and southwestern Utah combine to create natural conditions that can present a potential danger to life and property. Geologic hazards are of particular concern in southwestern Utah, where the St. George Basin and Interstate-15 corridor north to Cedar City are one of Utah's fastest growing areas. Lying directly west of the Hurricane fault and within the Basin and Range - Colorado Plateau transition zone, this region exhibits geologic characteristics of both physiographic provinces. Long, potentially active, normal-slip faults displace a generally continuous stratigraphic section of mostly east-dipping late Paleozoic to Cretaceous sedimentary rocks unconformably overlain by Tertiary to Holocene sedimentary and igneous rocks and unconsolidated basin-fill deposits. Geologic hazards (exclusive of earthquake hazards) of principal concern in the region include problem soil and rock, landslides, shallow ground water, and flooding. Geologic materials susceptible to volumetric change, collapse, and subsidence in southwestern Utah include; expansive soil and rock, collapse-prone soil, gypsum and gypsiferous soil, soluble carbonate rocks, and soil and rock subject to piping and other ground collapse. Expansive soil and rock are widespread throughout the region. The Petrified Forest Member of the Chinle Formation is especially prone to large volume changes with variations in moisture content. Collapse-prone soils are common in areas of Cedar City underlain by alluvial-fan material derived from the Moenkopi and Chinle Formations in the nearby Hurricane Cliffs. Gypsiferous soil and rock are subject to dissolution which can damage foundations and create sinkholes. The principal formations in the region affected by dissolution of carbonate are the Kaibab and Toroweap Formations; both formations have developed sinkholes where crossed by perennial streams. Soil piping is

  17. Activity and storage of commercial amylases in the 2013 Louisiana grinding season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current problem in the application of amylases at sugarcane factories is the existence of a wide variation in the activities and activity per unit cost of commercial amylases. The efficiency of amylase action to break down starch in the factory is related to the activity of the amylase used. Until...

  18. Flood Risk Due to Hurricane Flooding

    NASA Astrophysics Data System (ADS)

    Olivera, Francisco; Hsu, Chih-Hung; Irish, Jennifer

    2015-04-01

    In this study, we evaluated the expected economic losses caused by hurricane inundation. We used surge response functions, which are physics-based dimensionless scaling laws that give surge elevation as a function of the hurricane's parameters (i.e., central pressure, radius, forward speed, approach angle and landfall location) at specified locations along the coast. These locations were close enough to avoid significant changes in surge elevations between consecutive points, and distant enough to minimize calculations. The probability of occurrence of a surge elevation value at a given location was estimated using a joint probability distribution of the hurricane parameters. The surge elevation, at the shoreline, was assumed to project horizontally inland within a polygon of influence. Individual parcel damage was calculated based on flood water depth and damage vs. depth curves available for different building types from the HAZUS computer application developed by the Federal Emergency Management Agency (FEMA). Parcel data, including property value and building type, were obtained from the county appraisal district offices. The expected economic losses were calculated as the sum of the products of the estimated parcel damages and their probability of occurrence for the different storms considered. Anticipated changes for future climate scenarios were considered by accounting for projected hurricane intensification, as indicated by sea surface temperature rise, and sea level rise, which modify the probability distribution of hurricane central pressure and change the baseline of the damage calculation, respectively. Maps of expected economic losses have been developed for Corpus Christi in Texas, Gulfport in Mississippi and Panama City in Florida. Specifically, for Port Aransas, in the Corpus Christi area, it was found that the expected economic losses were in the range of 1% to 4% of the property value for current climate conditions, of 1% to 8% for the 2030's and

  19. Did medieval trade activity and a viral etiology control the spatial extent and seasonal distribution of Black Death mortality?

    PubMed

    Bossak, Brian H; Welford, Mark R

    2009-06-01

    Recent research into the world's greatest recorded epidemic, the Medieval Black Death (MBD), has cast doubt on Bubonic Plague as the etiologic agent. Prior research has recently culminated in outstanding advances in our understanding of the spatio-temporal pattern of MBD mortality, and a characterization of the incubation, latent, infectious, and symptomatic periods of the MBD. However, until now, several mysteries remained unexplained, including perhaps the biggest quandary of all: why did the MBD exhibit inverse seasonal peaks in mortality from diseases recorded in modern times, such as seasonal Influenza or the Indian Plague Epidemics of the early 1900 s? Although some have argued that climate changes likely explain the observed differences between modern clinical Bubonic Plague seasonality and MBD mortality accounts, we believe that another factor explains these dissimilarities. Here, we provide a synthetic hypothesis which builds upon previous theories developed in the last ten years or so. Our all-encompassing theory explains the causation, dissemination, and lethality of the MBD. We theorize that the MBD was a human-to-human transmitted virus, originating in East-Central Asia and not Africa (as some recent work has proposed), and that its areal extent during the first great epidemic wave of 1347-1350 was controlled hierarchically by proximity to trade routes. We also propose that the seasonality of medieval trade controlled the warm-weather mortality peaks witnessed during 1347-1350; during the time of greatest market activity, traders, fairgoers, and religious pilgrims served as unintentional vectors of a lethal virus with an incubation period of approximately 32 days, including a largely asymptomatic yet infectious period of roughly three weeks. We include a description of the rigorous research agenda that we have proposed in order to subject our theory to scientific scrutiny and a description of our plans to generate the first publicly available

  20. METHANE AND WATER ON MARS: MAPS OF ACTIVE REGIONS AND THEIR SEASONAL VARIABILITY

    NASA Astrophysics Data System (ADS)

    Villanueva, G. L.; Mumma, M. J.; Novak, R. E.

    2009-12-01

    We have detected methane on Mars, and measured it simultaneously with water using powerful ground-based telescopes [1, 2]. Its presence in such a strongly oxidized atmosphere (CO2: 95.3%) requires recent release; the ultimate origin of this methane is uncertain, but it could either be abiotic or biotic. On Earth, methane is produced primarily by biology, with a small fraction produced by abiotic means. The sources and sinks of hydrogen-bearing species (e.g., H2O and CH4) on Mars are still poorly known. In particular, the roles of the regolith and the sub-surface hydrogen reservoirs in the Martian water cycle have been broadly studied, but have not been conclusively quantified. If water is being released from the sub-surface or shares a common source with other H-bearing species, we might see correlations among them. Previous searches for such correlations have been precluded because of the lack of simultaneity of the measurements and the intrinsic variability of water on Mars, which is a condensable whose total local abundance is partitioned among several competing phases controlled largely by temperature (ensuring its variability on a variety of time scales, from diurnal to seasonal to epochal). We sampled multiple spectral lines of methane and water vapor on Mars in a campaign spanning seven years (three Mars years; 1999-2006) and sampling three seasons on Mars. Data were ac-quired using long-slit infrared spectrometers: CSHELL (Cryogenic Echelle Spectrograph) at NASA-IRTF (Infrared Telescope Facility) and NIRSPEC (Near Infrared Spectrograph) at Keck 2. These instruments offer spatially-resolved spectra with the high spectral resolving power (λ/δλ ~ 40,000) needed to reduce confusion among telluric, Martian, and Fraunhofer lines (in reflected solar radiation). Since 2005, we greatly improved our data processing algorithms and increased the sensitivity of our measurements by an order of magnitude. Using these new techniques, we detected multiple lines of

  1. Tick species (Acari: Ixodida) in Antalya City, Turkey: species diversity and seasonal activity.

    PubMed

    Koc, Samed; Aydın, Levent; Cetin, Huseyin

    2015-07-01

    Ticks (Acari: Ixodida) are an important group of ectoparasites of vertebrates. Most species are known vectors of diseases including Lyme disease, Q fever, and Crimean-Congo hemorrhagic fever. A 3-year research was conducted in Antalya, Turkey, to determine tick species composition, seasonal abundance, and spatial distribution. The study was carried out in five districts (Aksu, Dosemealtı, Kepez, Konyaaltı, and Muratpasa) of Antalya Metropolitan Municipality area in Turkey, between May 2010 and May 2013, where 1393 tick specimens were collected from domestic and wild animals (cattle, goats, sheep, hedgehogs, tortoises, dogs, cats, chickens) and from the environment. The collected ticks were preserved in 70 % alcohol and then were identified. Five genus and eight hard and soft tick species were identified, including Argas persicus, Rhipicephalus annulatus, R. sanguineus, R. turanicus, Hyalomma aegyptium, H. marginatum, Haemaphysalis parva, and Dermacentor niveus. Rhipicephalus sanguineus, R. turanicus, and H. aegyptium were the most common tick species in Antalya city. Rhipicephalus turanicus and R. sanguineus were the most abundant tick species infesting dogs in the city. The hosts of H. aegyptium are primarily tortoises in Antalya. The results of this research will contribute to establishing appropriate measures to control tick infestations on animals and humans and their environment in the city of Antalya. PMID:25869959

  2. Hurricane & Tropical Storm Impacts over the South Florida Metropolitan Area: Mortality & Government

    NASA Astrophysics Data System (ADS)

    Colon Pagan, I. C.

    2007-12-01

    Since 1985, the South Florida Metropolitan area (SFMA), which covers the counties of Miami-Dade, Broward, and Palm Beach, has been directly affected by 9 tropical cyclones: four tropical storms and 5 hurricanes. This continuous hurricane and tropical storm activity has awakened the conscience of the communities, government, and private sector, about the social vulnerability, in terms of age, gender, ethnicity, and others. Several factors have also been significant enough to affect the vulnerability of the South Florida Metropolitan area, like its geographic location which is at the western part of the Atlantic hurricane track, with a surface area of 6,137 square miles, and elevation of 15 feet. And second, from the 2006 Census estimate, this metropolitan area is the 7th most populous area in the United States supporting almost 1,571 individuals per square mile. Mortality levels due to hurricanes and tropical storms have fluctuated over the last 21 years without any signal of a complete reduction, a phenomenon that can be related to both physical characteristics of the storms and government actions. The average annual death count remains almost the same from 4.10 between 1985 and 1995 to 4 from 1996 to 2006. However, the probability of occurrence of a direct impact of an atmospheric disturbance has increase from 0.3 to 0.6, with an average of three hurricane or tropical storm direct impacts for every five. This analysis suggests an increasing problem with regard to atmospheric disturbances-related deaths in the South Florida Metropolitan area. In other words, despite substantial increases in population during the last 21 years, the number of tropical cyclone-related deaths is not declining; it's just being segregated among more storms. Gaps between each impact can be related to mortality levels. When that time increases in five years or more, such as Bob and Andrew or Irene and Katrina, or decreases in weeks or months, such as Harvey and Irene or Katrina and Wilma

  3. Broad-scale response of landbird migration to the immediate effects of Hurricane Katrina: Chapter 6B in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Barrow, Wylie, Jr.; Buler, J.; Couvillion, Brady R.; Diehl, Robb; Faulkner, Stephen; Moore, F.; Randall, Lori

    2007-01-01

    It was the midst of songbird migration season when Hurricane Katrina hit the Louisiana coast in 2005. Typically these birds fatten up in Gulf Coast river bottomland forest for the long flight to Central and South America. After Katrina stripped plants of leaves, fruits, and insects in the fertile bottomlands of the Pearl River, weather radar indicated that migrant birds increased their use of adjacent pine woodlands.

  4. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  5. SEASONAL RELEASE OF ESTROGENICALLY ACTIVE WASTEWATER: AN ASSESSMENT UTILIZING IN SITU BIOMARKERS

    EPA Science Inventory

    The estrogenic activity associated with effluent from two activated sludge municipal wastewater treatment plants (WWTP) was assesesed from 1996 through 1998. Fish were maintained at two sites within each WWTP; sites were located at pre-chlorination and the post-chlorination waste...

  6. Seasonal abundance and activity of pill millipedes ( Arthrosphaera magna) in mixed plantation and semi-evergreen forest of southern India

    NASA Astrophysics Data System (ADS)

    Ashwini, Krishna M.; Sridhar, Kandikere R.

    2006-01-01

    Seasonal occurrence and activity of endemic pill millipedes ( Arthrosphaera magna) were examined in organically managed mixed plantation and semi-evergreen forest reserve in southwest India between November 1996 and September 1998. Abundance and biomass of millipedes were highest in both habitats during monsoon season. Soil moisture, conductivity, organic carbon, phosphate, potassium, calcium and magnesium were higher in plantation than in forest. Millipede abundance and biomass were about 12 and 7 times higher in plantation than in forest, respectively ( P < 0.001). Their biomass increased during post-monsoon, summer and monsoon in the plantation ( P < 0.001), but not in forest ( P > 0.05). Millipede abundance and biomass were positively correlated with rainfall ( P = 0.01). Besides rainfall, millipedes in plantation were positively correlated with soil moisture as well as temperature ( P = 0.001). Among the associated fauna with pill millipedes, earthworms rank first followed by soil bugs in both habitats. Since pill millipedes are sensitive to narrow ecological changes, the organic farming strategies followed in mixed plantation and commonly practiced in South India seem not deleterious for the endangered pill millipedes Arthrosphaera and reduce the risk of local extinctions.

  7. Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota.

    PubMed

    Stevenson, Timothy J; Duddleston, Khrystyne N; Buck, C Loren

    2014-09-01

    We examined the seasonal changes of the cecal microbiota of captive arctic ground squirrels (Urocitellus parryii) by measuring microbial diversity and composition, total bacterial density and viability, and short-chain fatty acid concentrations at four sample periods (summer, torpor, interbout arousal, and posthibernation). Abundance of Firmicutes was lower, whereas abundances of Bacteroidetes, Verrucomicrobia, and Proteobacteria were higher during torpor and interbout arousal than in summer. Bacterial densities and percentages of live bacteria were significantly higher in summer than during torpor and interbout arousal. Likewise, total short-chain fatty acid concentrations were significantly greater during summer than during torpor and interbout arousal. Concentrations of individual short-chain fatty acids varied across sample periods, with butyrate concentrations higher and acetate concentrations lower during summer than at all other sample periods. Characteristics of the gut community posthibernation were more similar to those during torpor and interbout arousal than to those during summer. However, higher abundances of the genera Bacteroides and Akkermansia occurred during posthibernation than during interbout arousal and torpor. Collectively, our results clearly demonstrate that seasonal changes in physiology associated with hibernation and activity affect the gut microbial community in the arctic ground squirrel. Importantly, similarities between the gut microbiota of arctic ground squirrels and thirteen-lined ground squirrels suggest the potential for a core microbiota during hibernation. PMID:25002417

  8. Seasonal variation of pheophorbide a and flavonoid in different organs of two Carpinus species and its correlation with immunosuppressive activity.

    PubMed

    Sheng, Qianqian; Fang, Xianying; Zhu, Zunling; Xiao, Wei; Wang, Zhenzhong; Ding, Gang; Zhao, Linguo; Li, Yujian; Yu, Ping; Ding, Zhibin; Sun, Qinru

    2016-06-01

    The genus Carpinus of Betulaceae is the most widely distributed in the European landscape. This study reports a comparative study based on the pheophorbide a and flavonoid content from the two main species of the genus Carpinus, Carpinus betulus and Carpinus turczaninowii, respectively, in Nanjing, China. The pheophorbide a and flavonoid content depends on the organ, species, and season. HPLC analysis showed that the pheophorbide a and flavonoid levels were the highest in May and June, respectively, from the leaves of C. betulus 'Fastigiata.' In contrast, the content of pheophorbide a and flavonoid in the stems of C. betulus 'Fastigiata' or in other species was low. The immunosuppressive effects of the ethyl acetate extracts and methanol extracts from the two Carpinus species were also evaluated. The ethyl acetate extracts of C. betulus 'Fastigiata' in May and the methanol extracts of C. betulus 'Fastigiata' in June showed better immunosuppressive activity than in other seasons, which coincided with the content of pheophorbide a and flavonoid, respectively. Our findings indicated that C. betulus 'Fastigiata' can serve as a medicinal plant against inflammation because of its pheophorbide a and flavonoid content. PMID:27112162

  9. North-South differences in the Earth's high-latitude upper atmosphere dynamics: Influence of solar activity and seasonal variations

    NASA Astrophysics Data System (ADS)

    Förster, Matthias; Cnossen, Ingrid

    2014-05-01

    Recent observations have shown that the upper thermospheric/ionospheric response to solar wind and IMF dependent drivers of the magnetosphere-ionosphere-thermosphere (M-I-T) system can be very dissimilar in the Northern and Southern Hemisphere. We present statistical studies of the high-latitude upper thermospheric neutral wind circulation patterns obtained from almost a decade of measurements with an accelerometer on board the CHAMP spacecraft. The influence of the solar activity and the dependence on seasonal variations is analysed with respect to average cross-polar wind velocities and high-latitude neutral wind vorticity values. Using the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model, on the other hand, we simulated representative equinox as well as solstice intervals for low and high solar activity conditions. For the simulations, we used on the one hand side symmetric dipole and on the other realistic (IGRF) geomagnetic field configurations. The comparative survey of both the numerical simulation and the statistical observation results show some prominent asymmetries between the two hemispheres, which are caused by the different geographic-geomagnetic offsets and/or the different patterns of geomagnetic flux densities. The average cross-polar neutral wind velocities show a distinct seasonal variation with minimum values during the respective hemispheric winter solstice. The neutral wind vorticity values are generally larger in the Northern than the Southern Hemisphere, except for northern winter solstice conditions. The hemispheric differences become larger for higher solar activity and show a semidiurnal variation. In contrast, the spatial variance of the upper thermospheric neutral wind is usually considerably larger in the polar region of the Southern Hemisphere compared with the Northern, and the hemispheric difference shows a strong semidiurnal variation.

  10. On the Long-Term Trend of Atlantic Basin Intense Hurricanes

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    During the interval of 1944-1997, 120 intense hurricanes were observed in the Atlantic basin, having an annual frequency of 0-7 events per year, being more active prior to the mid 1960s than thereafter, and being preferentially lower during El Nino years as compared to non-El Nino years. Because decadal averages of the frequency of intense hurricanes closely resemble those of average temperature anomalies for northern hemispheric and global standards and of the average temperature at the Armagh Observatory (Northern Ireland), a proxy for climatic change, it is inferred that the long-term trends of the annual frequency of intense hurricanes and temperature are statistically related. Indeed, on the basis of the 4- and 10-yr moving averages, the two are found to be strongly associated (when temperature leads by 6 yr). Because the long-term leading trends of temperature are now upward, beginning about the mid 1980s, it is inferred that the long-term trends of the annual frequency of intense hurricanes should now also be upward, beginning near 1990, suggesting that a return to the more active state probably has already occurred.

  11. Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Zhao, Haikun; Wang, Chunzai

    2016-07-01

    The present study identifies an interdecadal modulation of the Pacific decadal oscillation (PDO) on the relationship between El Niño-Southern oscillation (ENSO) and typhoon activity during the late season (October-December) in the western North Pacific. The PDO is uncorrelated with ENSO during the warm phase of 1979-1997, while the PDO is positively correlated with ENSO during the cold phase of 1998-2012. Further analyses show that the warm phase is associated with the reduced ENSO-typhoon activity relationship and more typhoons, whereas the cold phase is corresponded to the enhanced ENSO-typhoon activity relationship and fewer typhoons. These variations are mainly manifested by a significant difference of typhoon activity in the southeastern part of the western North Pacific. Moreover, the change of ENSO-typhoon relationship is largely due to changes in large-scale environmental conditions especially from low-level vorticity and vertical wind shear between the two phases, which are related to the changes in tropical Indo-Pacific sea surface temperature. The study implies that the phase of the PDO should be taken into account when ENSO is used as a predictor for predicting typhoon activity in the western North Pacific.

  12. Quantifying the hurricane risk to offshore wind turbines.

    PubMed

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Grossmann, Iris; Apt, Jay

    2012-02-28

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures--increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk--can greatly enhance the probability that offshore wind can help to meet the United States' electricity needs. PMID:22331894

  13. Rain, Snow, Hurricanes, and Blizzards: Remote Sensing of Cloud Particles

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick

    2004-01-01

    Hurricanes, blizzards and other weather events are important to understand not only for disaster preparation, but also to track the global energy balance and to improve weather and climate forecasts. For several decades, passive radiometers and active radars on aircraft and satellites have been employed to remotely sense rain rates and the properties of liquid particles. In the past few years the relationships between frozen particles and millimeter-wave observations have become understood well enough to estimate the properties of ice in clouds. This colloquium will start with a broad background of the use of remote sensing of precipitation and then focus on recent research in the estimation of frozen cloud properties, both for ice that will eventually melt into rain and for solid precipitation falling in northern climates. The electromagnetic absorption and scattering properties of liquid rain and frozen particles will be explained. Retrieved cloud particle contents and size distributions for Hurricane Erin (2001 ) and the March 5-6, 2001 New England regional blizzard will be discussed. Future directions and challenges of this work will also be presented.

  14. Fetch-Trapping in Hurricane Isabel

    NASA Astrophysics Data System (ADS)

    Pearse, A. J.; Hanson, J. L.

    2005-12-01

    Hurricane Isabel made landfall near Drum Inlet on the Outer Banks of North Carolina on September 18, 2003, and caused extensive monetary and coastal damage. Storm surge and battering waves were a primary cause of damage, as in most hurricanes. Data collected at the US Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, the National Data Buoy Center (NDBC), and the Coastal Data Information Program (CDIP) suggest that the waves generated by Hurricane Isabel were larger and had longer periods than would be suggested by a traditional semi-empirical wave growth model with similar fetch and wind speed values. It is likely that this enhanced growth was due to the trapping of storm waves within the moving fetch of the hurricane. The purpose of this study was to empirically confirm the enhancement and to identify the degree of fetch-trapping that occurred. Directional wave spectra from 577 individual wave records were collected from buoys in three locations: CDIP station 078 in King's Bay, GA, the FRF Waverider in NC, and NDBC Station 44025 off Long Island, NY. A wave partitioning approach was used to isolate the individual swell components from the evolving wave field at each station. A backward raytrace along great-circle routes was employed to identify the intersection of each swell system with the official National Hurricane Center (NHC) Isabel track. This allowed matching each observed swell component with a generation time, storm translation speed, and peak wind speed. Wave period, rather than amplitude, was used in this study because amplitude is significantly affected by the bottom topography whereas period is conserved. Using the identified wind speeds and an average fetch of 200 km (approximated using NOAA wind field charts), the actual waves showed wave period enhancements up to 60% over predictions using the standard wave growth model. A variety of resonance criteria are applied to evaluate fetch trapping in Hurricane Isabel. The most enhanced

  15. 13C-DEPLETED MICROBIAL LIPIDS INDICATE SEASONAL METHANOTROPHIC ACTIVITY IN SHALLOW ESTUARINE SEDIMENTS

    EPA Science Inventory

    Compound specific isotope analysis was combined with phospholipid fatty acid (PLFA) analysis to identify methanotrophic activity in members of the sedimentary microbial community in the Altamaha and Savannah River estuaries in Georgia. 13C-depleted PLFAs indicate methane utilizat...

  16. Eogenetic karst hydrology: Insights from the 2004 hurricanes, peninsular Florida

    USGS Publications Warehouse

    Florea, L.J.; Vacher, H.L.

    2007-01-01

    Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix - both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous. ?? 2007 National Ground Water Association.

  17. Eogenetic karst hydrology: insights from the 2004 hurricanes, peninsular Florida.

    PubMed

    Florea, Lee J; Vacher, H L

    2007-01-01

    Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix-both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous. PMID:17600574

  18. Predicting the hurricane damage ratio of commercial buildings by claim payout from Hurricane Ike

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Woods, P. K.; Park, Y. J.; Kim, T. H.; Choi, J. S.; Son, K.

    2013-07-01

    The increasing occurrence of natural disaster events and related damages have led to a growing demand for models that predict financial loss. Although considerable research has studied the financial losses related to natural disaster events, and has found significant predictors, there has not yet been a comprehensive study that addresses the relationship among the vulnerabilities, natural disasters, and economic losses of the individual buildings. This study identified hurricanes and their vulnerability indicators in order to establish a metric to predict the related financial loss. We identify hurricane-prone areas by imaging the spatial distribution of the losses and vulnerabilities. This study utilized a Geographical Information System (GIS) to combine and produce spatial data, as well as a multiple linear regression method, to establish a hurricane damage prediction model. As the dependent variable, we utilized the following ratio to predict the real pecuniary loss: the value of the Texas Windstorm Insurance Association (TWIA) claim payout divided by the appraised values of the buildings. As independent variables, we selected the hurricane indicators and vulnerability indicators of the built environment and the geographical features. The developed statistical model and results can be used as important guidelines by insurance companies, government agencies, and emergency planners for predicting hurricane damage.

  19. Constraining flooding conditions for early historic and prehistoric hurricanes from resultant deposits preserved in Florida sinkholes

    NASA Astrophysics Data System (ADS)

    Brandon, C. M.; Woodruff, J. D.; Lane, P.; Donnelly, J. P.

    2011-12-01

    Instrumental records of hurricane strikes in the United States are relatively short, extending back only ~160 years. Sediment deposits created by hurricane-induced coastal inundation serve as valuable proxies of storm activity and can extend these records back several millennia. Here we provide a record of hurricane inundation preserved within the sediments of Callahan Pond, a small coastal sinkhole located within the Florida Panhandle. This 15 m deep pond has remained relatively undisturbed over the last 2000 years allowing it to accumulate fine grained organic-rich sediments punctuated by well-preserved quartz sand layers likely associated with hurricane surges. An event deposit located within surface sediments from the pond likely corresponds to a hurricane that struck the area in 1941, and is used as a modern analogue to help evaluate flooding conditions for older event layers preserved within the depositional record. Grain size analyses are performed on each event-deposit to help constrain flow conditions required for erosion and transport. The Regional Ocean Modeling System (ROMS) is then employed to perform a series of 2-D coastal inundation simulations at the site to assess the near-shore flooding conditions required to produce each of the observed event-deposits. Probability distribution functions are generated to assess the Saffir-Simpson storm category for each event-deposit. Age constraints on the deposits are developed by using carbon-14 and cesium-137 radiometric dating techniques. A period of increased storm activity is observed from ~500 to ~1200 AD, encompassing the Medieval Warm Period and a period of decreased storm activity is observed from ~1450 AD to the present, encompassing the Little Ice Age.

  20. Understanding the Variations in Flood Responses to Tropical-Storms and Hurricanes

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Chen, X.; McGlynn, B. L.

    2014-12-01

    Hurricanes and tropical storms are major geophysical disaster-causing agents, which are responsible for tremendous economic and property losses in the U.S. A large percentage of these losses have been due to flooding from intense storms. In order to minimize flood damages associated with large hurricane-season storms, it is important to be able to predict streamflow amount in response to storms for a range of hydroclimatological conditions. However, this is challenging considering that streamflow response exhibits appreciable variability even for storms that deliver similar precipitation amounts. In order to better understand the sources of this expressed streamflow variability, we use a physics-based, distributed hydrologic model and supporting hydrologic data sets to identify and evaluate dominant hydrologic controls on streamflow amount variability in a southeastern US watershed. Our analyses suggest that the dominant controls on the variability of streamflow amount are antecedent soil moisture condition near the ground surface, and evapotranspirative losses during post-event streamflow recession periods, which are in turn influenced by precipitation history and prevailing vegetation and meteorological conditions. Information regarding dominant controls could help prioritize measurements during observation campaigns and could aid in risk management to quickly evaluate flood responses given prior information about hurricane storm size.