Sample records for active hurricane seasons

  1. Statistical Aspects of Major (Intense) Hurricanes in the Atlantic Basin During the Past 49 Hurricane Seasons (1950-1998): Implications for the Current Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1999-01-01

    Statistical aspects of major (intense) hurricanes, those of category 3 or higher on the Saffir-Simpson scale (e.g., having a maximum sustained wind speed of greater than or equal to 50 M s (exp -1)), in the Atlantic basin during the interval of 1950-1998 are investigated in relation to the El Nino-Southern Oscillation cycle and to the postulated "more" versus "less" activity modes for intense hurricane activity. Based on Poisson statistics, when the hurricane season is simply classified as "non-El Nino-related" (NENR), the probability of having three or more intense hurricanes is approx. 53%, while it is only approx. 14% when it is classified as "El Nino-related" (ENR). Including the activity levels ("more" versus "less"), the probability of having three or more intense hurricanes is computed to be approx. 71% for the "more-NENR" season, 30% for the "less-NENR" season, 17% for the "more-ENR" season, and 12% for the "less-ENR" season. Because the 1999 hurricane season is believed to be a "more-NENR" season, the number of intense hurricanes forming in the Atlantic basin should be above average in number, probably about 4 plus or minus 1 or higher.

  2. An Estimate of the North Atlantic Basin Tropical Cyclone Activity for the 2010 Hurricane Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2010-01-01

    Estimates are presented for the tropical cyclone activity expected for the 2010 North Atlantic basin hurricane season. It is anticipated that the 2010 season will be more active than the 2009 season, reflecting increased frequencies more akin to that of the current more active phase that has been in vogue since 1995. Averages (+/- 1 sd) during the current more active phase are 14.5+/-4.7, 7.8+/-3.2, 3.7+/-1.8, and 2+/- 2, respectively, for the number of tropical cyclones (NTC), the number of hurricanes (NH), the number of major hurricanes (NMH), and the number of United States (U.S.) land-falling hurricanes (NUSLFH). Based on the "usual" behavior of the 10-yma parametric first differences, one expects NTC = 19+/-2, NH = 14+/-2, NMH = 7+/-2, and NUSLFH = 4+/-2 for the 2010 hurricane season; however, based on the "best guess" 10-yma values of surface-air temperature at the Armagh Observatory (Northern Ireland) and the Oceanic Nino Index, one expects NTC > or equals 16, NH > or equals 14, NMH > or equals 7, and NUSLFH > or equals 6.

  3. An Estimate of the North Atlantic Basin Tropical Cyclone Activity for the 2011 Hurricane Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2011-01-01

    Estimates are presented for the expected level of tropical cyclone activity for the 2011 North Atlantic Basin hurricane season. It is anticipated that the frequency of tropical cyclones for the North Atlantic Basin during the 2011 hurricane season will be near to above the post-1995 means. Based on the Poisson distribution of tropical cyclone frequencies for the current more active interval 1995-2010, one computes P(r) = 63.7% for the expected frequency of the number of tropical cyclones during the 2011 hurricane season to be 14 plus or minus 3; P(r) = 62.4% for the expected frequency of the number of hurricanes to be 8 plus or minus 2; P(r) = 79.3% for the expected frequency of the number of major hurricanes to be 3 plus or minus 2; and P(r) = 72.5% for the expected frequency of the number of strikes by a hurricane along the coastline of the United States to be 1 plus or minus 1. Because El Nino is not expected to recur during the 2011 hurricane season, clearly, the possibility exists that these seasonal frequencies could easily be exceeded. Also examined are the effects of the El Nino-Southern Oscillation phase and climatic change (global warming) on tropical cyclone seasonal frequencies, the variation of the seasonal centroid (latitude and longitude) location of tropical cyclone onsets, and the variation of the seasonal peak wind speed and lowest pressure for tropical cyclones.

  4. Increased Accuracy in Statistical Seasonal Hurricane Forecasting

    NASA Astrophysics Data System (ADS)

    Nateghi, R.; Quiring, S. M.; Guikema, S. D.

    2012-12-01

    Hurricanes are among the costliest and most destructive natural hazards in the U.S. Accurate hurricane forecasts are crucial to optimal preparedness and mitigation decisions in the U.S. where 50 percent of the population lives within 50 miles of the coast. We developed a flexible statistical approach to forecast annual number of hurricanes in the Atlantic region during the hurricane season. Our model is based on the method of Random Forest and captures the complex relationship between hurricane activity and climatic conditions through careful variable selection, model testing and validation. We used the National Hurricane Center's Best Track hurricane data from 1949-2011 and sixty-one candidate climate descriptors to develop our model. The model includes information prior to the hurricane season, i.e., from the last three months of the previous year (Oct. through Dec.) and the first five months of the current year (January through May). Our forecast errors are substantially lower than other leading forecasts such as that of the National Oceanic and Atmospheric Administration (NOAA).

  5. Seasonal prediction of hurricane activity reaching the coast of the United States.

    PubMed

    Saunders, Mark A; Lea, Adam S

    2005-04-21

    Much of the property damage from natural hazards in the United States is caused by landfalling hurricanes--strong tropical cyclones that reach the coast. For the southeastern Atlantic coast of the US, a statistical method for forecasting the occurrence of landfalling hurricanes for the season ahead has been reported, but the physical mechanisms linking the predictor variables to the frequency of hurricanes remain unclear. Here we present a statistical model that uses July wind anomalies between 1950 and 2003 to predict with significant and useful skill the wind energy of US landfalling hurricanes for the following main hurricane season (August to October). We have identified six regions over North America and over the east Pacific and North Atlantic oceans where July wind anomalies, averaged between heights of 925 and 400 mbar, exhibit a stationary and significant link to the energy of landfalling hurricanes during the subsequent hurricane season. The wind anomalies in these regions are indicative of atmospheric circulation patterns that either favour or hinder evolving hurricanes from reaching US shores.

  6. Weatherwords: The Hurricane Season.

    ERIC Educational Resources Information Center

    Buckley, Jim

    1991-01-01

    Information and anecdotes are provided for the following topics: the typical length of the hurricane season for the North Atlantic, Caribbean, and Gulf of Mexico; specifics related to the practice of naming hurricanes; and categorical details related to the Saffir/Simpson scale for rating hurricane magnitude. (JJK)

  7. Forecast calls for continued period of active hurricane seasons in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    “I have been designated as a representative of Chicken Little to tell you the sky is falling with regard to hurricanes.” So said William Gray professor of atmospheric science at Colorado State University at a July 26 briefing on Capitol Hill. The briefing, sponsored by the Congressional Natural Hazards Caucus, the (U.S.) University Corporation for Atmospheric Research, and the American Meteorological Society highlighted a new report about the current active hurricane period in the North Atlantic, as well as funding needs for hurricane research. “It is amazing the threat we appear to be in for in the next two to three decades, and how little realization of this [there] is with the government and with the general public,” said Gray a long-time forecaster of seasonal hurricane activity and co-author of a July 19 article in Science, “The Recent Increase in Atlantic Hurricane Activity: Causes and Implications.”

  8. Modes of hurricane activity variability in the eastern Pacific: Implications for the 2016 season

    NASA Astrophysics Data System (ADS)

    Boucharel, Julien; Jin, Fei-Fei; England, Matthew H.; Lin, I. I.

    2016-11-01

    A gridded product of accumulated cyclone energy (ACE) in the eastern Pacific is constructed to assess the dominant mode of tropical cyclone (TC) activity variability. Results of an empirical orthogonal function decomposition and regression analysis of environmental variables indicate that the two dominant modes of ACE variability (40% of the total variance) are related to different flavors of the El Niño-Southern Oscillation (ENSO). The first mode, more active during the later part of the hurricane season (September-November), is linked to the eastern Pacific El Niño through the delayed oceanic control associated with the recharge-discharge mechanism. The second mode, dominant in the early months of the hurricane season, is related to the central Pacific El Niño mode and the associated changes in atmospheric variability. A multilinear regression forecast model of the dominant principal components of ACE variability is then constructed. The wintertime subsurface state of the eastern equatorial Pacific (characterizing ENSO heat discharge), the east-west tilt of the thermocline (describing ENSO phase transition), the anomalous ocean surface conditions in the TC region in spring (portraying atmospheric changes induced by persistence of local surface anomalies), and the intraseasonal atmospheric variability in the western Pacific are found to be good predictors of TC activity. Results complement NOAA's official forecast by providing additional spatial and temporal information. They indicate a more active 2016 season ( 2 times the ACE mean) with a spatial expansion into the central Pacific associated with the heat discharge from the 2015/2016 El Niño.

  9. Replicating annual North Atlantic hurricane activity 1878-2012 from environmental variables

    NASA Astrophysics Data System (ADS)

    Saunders, Mark A.; Klotzbach, Philip J.; Lea, Adam S. R.

    2017-06-01

    Statistical models can replicate annual North Atlantic hurricane activity from large-scale environmental field data for August and September, the months of peak hurricane activity. We assess how well the six environmental fields used most often in contemporary statistical modeling of seasonal hurricane activity replicate North Atlantic hurricane numbers and Accumulated Cyclone Energy (ACE) over the 135 year period from 1878 to 2012. We find that these fields replicate historical hurricane activity surprisingly well, showing that contemporary statistical models and their seasonal physical links have long-term robustness. We find that August-September zonal trade wind speed over the Caribbean Sea and the tropical North Atlantic is the environmental field which individually replicates long-term hurricane activity the best and that trade wind speed combined with the difference in sea surface temperature between the tropical Atlantic and the tropical mean is the best multi-predictor model. Comparing the performance of the best single-predictor and best multi-predictor models shows that they exhibit little difference in hindcast skill for predicting long-term ACE but that the best multipredictor model offers improved skill for predicting long-term hurricane numbers. We examine whether replicated real-time prediction skill 1983-2012 increases as the model training period lengthens and find evidence that this happens slowly. We identify a dropout in hurricane replication centered on the 1940s and show that this is likely due to a decrease in data quality which affects all data sets but Atlantic sea surface temperatures in particular. Finally, we offer insights on the implications of our findings for seasonal hurricane prediction.

  10. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  11. NOAA predicts near-normal or below-normal 2014 Atlantic hurricane season

    Science.gov Websites

    Related link: Atlantic Basin Hurricane Season Outlook Discussion El Niño/Southern Oscillation (ENSO predicts near-normal or below-normal 2014 Atlantic hurricane season El Niño expected to develop and . The main driver of this year's outlook is the anticipated development of El Niño this summer. El NiÃ

  12. Statistical Aspects of ENSO Events (1950-1997) and the El Nino-Atlantic Intense Hurricane Activity Relationship

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    On the basis of Trenberth's quantitative definition for marking the occurrence of an El Nino (or La Nina), one can precisely identify by month and year the starts and ends of some 15 El Nino and 10 La Nina events during the interval of 1950-1997, an interval corresponding to the most reliable for cataloging intense hurricane activity in the Atlantic basin (i.e., those of category 3-5 on the Saffir-Simpson hurricane scale). The main purpose of this investigation is primarily two-fold: First, the statistical aspects of these identified extremes and the intervening periods between them (called "interludes") are examined and, second, the statistics of the seasonal frequency of intense hurricanes in comparison to the extremes and interludes are determined. This study clearly demonstrates that of the last 48 hurricane seasons, 20 (42 percent) can be described as being "El Nino-related" (i.e., an El Nino was in progress during all, or part, of the yearly hurricane season--June-November), 13 (27 percent) as "La Nina-related" (i.e., a La Nina was in progress during all, or part, of the yearly hurricane season), and 15 (31 percent) as "interlude-related" (i.e., neither an El Nino nor a La Nina was in progress during any portion of the yearly hurricane season). Combining the latter two subgroups into a single grouping called "non-El Nino-related" seasons, one finds that they have had a mean frequency of intense hurricanes measuring 2.8 events per season, while the El Nino-related seasons have had a mean frequency of intense hurricanes measuring 1.3 events per season, where the observed difference in the means is inferred to be statistically important at the 99.8-percent level of confidence. Therefore, as previously shown more than a decade ago using a different data set, there undeniably exists an El Nino-Atlantic hurricane activity relationship, one which also extends to the class of intense hurricanes. During the interval of 1950-1997, fewer intense hurricanes occurred

  13. Refinements to Atlantic basin seasonal hurricane prediction from 1 December

    NASA Astrophysics Data System (ADS)

    Klotzbach, Philip J.

    2008-09-01

    Atlantic basin seasonal hurricane predictions have been issued by the Tropical Meteorology Project at Colorado State University since 1984, with early December forecasts being issued every year since early December 1991. These forecasts have yet to show real-time forecast skill, despite several statistical models that have shown considerable hindcast skill. In an effort to improve both hindcast skill and hopefully real-time forecast skill, a modified forecast scheme has been developed using data from 1950 to 2007. Predictors were selected based upon how much variance was explained over the 1950-1989 subperiod. These predictors were then required to explain similar amounts of variance over a latter subperiod from 1990 to 2007. Similar amounts of skill were demonstrated for each of the three predictors selected over the 1950-1989 period, the 1990-2007 period, and the full 1950-2007 period. In addition, significant correlations between individual predictors and physical features known to affect hurricanes during the following August-October (i.e., tropical Atlantic wind shear and sea level pressure changes, ENSO phase changes) were obtained. This scheme uses a new methodology where hindcasts were obtained using linear regression and then ranked to generate final hindcast values. Fifty-four percent of the variance was explained for seasonal Net Tropical Cyclone (NTC) activity over the 1950-2007 period. These hindcasts show considerable differences in landfalling U.S. tropical cyclones, especially for the Florida Peninsula and East Coast. Seven major hurricanes made Florida Peninsula and East Coast landfall during the top 15 largest NTC hindcasts compared with only two major hurricane landfalls in the bottom 15 smallest NTC hindcasts.

  14. Estimating the Length of the North Atlantic Basin Hurricane Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2012-01-01

    For the interval 1945-2011, the length of the hurricane season in the North Atlantic basin averages about 130 +/- 42 days (the +/-1 standard deviation interval), having a range of 47 to 235 days. Runs-testing reveals that the annual length of season varies nonrandomly at the 5% level of significance. In particular, its trend, as described using 10-yr moving averages, generally has been upward since about 1979, increasing from about 113 to 157 days (in 2003). Based on annual values, one finds a highly statistically important inverse correlation at the 0.1% level of significance between the length of season and the occurrence of the first storm day of the season. For the 2012 hurricane season, based on the reported first storm day of May 19, 2012 (i.e., DOY = 140), the inferred preferential regression predicts that the length of the current season likely will be about 173 +/- 23 days, suggesting that it will end about November 8 +/- 23 days, with only about a 5% chance that it will end either before about September 23, 2012 or after about December 24, 2012.

  15. Deciphering the Long-Term Trend of Atlantic Basin Intense Hurricanes: More Active Versus Less Active During the Present Epoch

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    During the interval of 1944-1997, 120 intense hurricanes (i.e., those of category 3 or higher on the Saffir-Simpson hurricane damage potential scale) were observed in the Atlantic basin, having an annual frequency of 0-7 events per year, being more active prior to the mid 1960's than thereafter (hence a possible two-state division: more active versus less active), and being preferentially lower during El Nino years as compared to non-El Nino years. Because decadal averages of the frequency of intense hurricanes closely resemble those of average temperature anomalies for northern hemispheric and global standards and of the average temperature at the Armagh Observatory (Northern Ireland), a proxy for climatic change, it is inferred that the long-term trends of the annual frequency of intense hurricanes and temperature may be statistically related. Indeed, on the basis of 4- and 10-yr moving averages, one finds that there exists strong linear associations between the annual frequency of intense hurricanes in the Atlantic basin and temperature (specially, when temperature slightly leads). Because the long-term leading trends of temperature are now decidedly upward, beginning about the mid 1980's, it is inferred that the long-term consequential trends of the annual frequency of intense hurricanes should now also be upward, having begun near 1990, suggesting that a return to the more active state probably has already occurred. However, because of the anomalous El Nino activity of the early to mid 1990's, the switch from the less active to the more active state essentially went unnoticed (a marked increase in the number of intense hurricanes was not observed until the 1995 and 1996 hurricane seasons, following the end of the anomalous El Nino activity). Presuming that a return to the more active state has, indeed, occurred, one expects the number of seasonal intense hurricanes during the present epoch (continuing through about 2012) to usually be higher than average (i

  16. Comparative impacts of two major hurricane seasons on the Neuse River and western Pamlico Sound ecosystems.

    PubMed

    Burkholder, JoAnn; Eggleston, David; Glasgow, Howard; Brownie, Cavell; Reed, Robert; Janowitz, Gerald; Posey, Martin; Melia, Greg; Kinder, Carol; Corbett, Reide; Toms, David; Alphin, Troy; Deamer, Nora; Springer, Jeffrey

    2004-06-22

    Ecosystem-level impacts of two hurricane seasons were compared several years after the storms in the largest lagoonal estuary in the U.S., the Albemarle-Pamlico Estuarine System. A segmented linear regression flow model was developed to compare mass-water transport and nutrient loadings to a major artery, the Neuse River Estuary (NRE), and to estimate mean annual versus storm-related volume delivery to the NRE and Pamlico Sound. Significantly less water volume was delivered by Hurricane Fran (1996), but massive fish kills occurred in association with severe dissolved oxygen deficits and high contaminant loadings (total nitrogen, total phosphorus, suspended solids, and fecal bacteria). The high water volume of the second hurricane season (Hurricanes Dennis, Floyd, and Irene in 1999) delivered generally comparable but more dilute contaminant loads, and no major fish kills were reported. There were no discernable long-term adverse impacts on water quality. Populations of undesirable organisms, such as toxic dinoflagellates, were displaced down-estuary to habitats less conducive for growth. The response of fisheries was species-dependent: there was no apparent impact of the hurricanes on commercial landings of bivalve molluscs or shrimp. In contrast, interacting effects of hurricane floodwaters in 1999 and intensive fishing pressure led to striking reductions in blue crabs. Overall, the data support the premise that, in shallow estuaries frequently disturbed by hurricanes, there can be relatively rapid recovery in water quality and biota, and benefit from the scouring activity of these storms.

  17. The influence of an extended Atlantic hurricane season on inland flooding potential in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Stone, Monica H.; Cohen, Sagy

    2017-03-01

    Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20 % more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the southeastern United States that are frequently impacted by tropical cyclones. An analysis of the timing of tropical cyclones that impact these river basins found that most occur during the low-discharge season and thus rarely produce riverine flooding conditions. However, an extension of the current hurricane season of June-November could encroach upon the high-discharge seasons in these basins, increasing the susceptibility for riverine hurricane-induced flooding. Our results indicate that 28-180 % more days would be at risk of flooding from an average tropical cyclone with an extension of the hurricane season to May-December (just 2 months longer). Future research should aim to extend this analysis to all river basins in the United States that are impacted by tropical cyclones in order to provide a bigger picture of which areas are likely to experience the worst increases in flooding risk due to a probable extension of the hurricane season with expected global climate change in the near future.

  18. Fleeing The Storm(s): An Examination of Evacuation Behavior During Florida’s 2004 Hurricane Season

    PubMed Central

    SMITH, STANLEY K.; MCCARTY, CHRIS

    2009-01-01

    The 2004 hurricane season was the worst in Florida’s history, with four hurricanes causing at least 47 deaths and some $45 billion in damages. To collect information on the demographic impact of those hurricanes, we surveyed households throughout the state and in the local areas that sustained the greatest damage. We estimate that one-quarter of Florida’s population evacuated prior to at least one hurricane; in some areas, well over one-half of the residents evacuated at least once, and many evacuated several times. Most evacuees stayed with family or friends and were away from home for only a few days. Using logistic regression analysis, we found that the strength of the hurricane and the vulnerability of the housing unit had the greatest impact on evacuation behavior; additionally, several demographic variables had significant effects on the probability of evacuating and the choice of evacuation lodging (family/friends, public shelters, or hotels/motels). With continued population growth in coastal areas and the apparent increase in hurricane activity caused by global warming, threats posed by hurricanes are rising in the United States and throughout the world. We believe the present study will help government officials plan more effectively for future hurricane evacuations. PMID:19348112

  19. Hurricane intensification along United States coast suppressed during active hurricane periods

    NASA Astrophysics Data System (ADS)

    Kossin, James P.

    2017-01-01

    The North Atlantic ocean/atmosphere environment exhibits pronounced interdecadal variability that is known to strongly modulate Atlantic hurricane activity. Variability in sea surface temperature (SST) is correlated with hurricane variability through its relationship with the genesis and thermodynamic potential intensity of hurricanes. Another key factor that governs the genesis and intensity of hurricanes is ambient environmental vertical wind shear (VWS). Warmer SSTs generally correlate with more frequent genesis and greater potential intensity, while VWS inhibits genesis and prevents any hurricanes that do form from reaching their potential intensity. When averaged over the main hurricane-development region in the Atlantic, SST and VWS co-vary inversely, so that the two factors act in concert to either enhance or inhibit basin-wide hurricane activity. Here I show, however, that conditions conducive to greater basin-wide Atlantic hurricane activity occur together with conditions for more probable weakening of hurricanes near the United States coast. Thus, the VWS and SST form a protective barrier along the United States coast during periods of heightened basin-wide hurricane activity. Conversely, during the most-recent period of basin-wide quiescence, hurricanes (and particularly major hurricanes) near the United States coast, although substantially less frequent, exhibited much greater variability in their rate of intensification, and were much more likely to intensify rapidly. Such heightened variability poses greater challenges to operational forecasting and, consequently, greater coastal risk during hurricane events.

  20. Unique Datasets Collected by NOAA Hurricane Hunter Aircraft during the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Zawislak, J.; Reasor, P.

    2017-12-01

    Each year, NOAA's Atlantic Oceanographic & Meteorological Laboratory (AOML) Hurricane Research Division (HRD), in partnership with the National Hurricane Center (NHC) and NOAA's Environmental Modeling Center (EMC), operates a hurricane field program, the Intensity Forecast Experiment (IFEX). The experiment leverages the NOAA P-3 and G-IV hurricane hunter aircraft, based at NOAA's Office of Marine and Aviation Operations (OMAO) Aircraft Operations Center (AOC). The goals of IFEX are to improve understanding of physical processes in tropical cyclones (TCs), improve operational forecasts of TC intensity, structure, and rainfall by providing data into operational numerical modeling systems, and to develop and refine measurement technologies. This season the IFEX program, leveraging mainly operationally tasked EMC and NHC missions, sampled extensively Hurricanes Harvey, Irma, Jose, Maria, and Nate, as well as Tropical Storm Franklin. We will contribute to this important session by providing an overview of aircraft missions into these storms, guidance on the datasets made available from instruments onboard the P-3 and G-IV, and will offer some perspective on the science that can be addressed with these unique datasets, such as the value of those datasets towards model forecast improvement. NOAA aircraft sampled these storms during critical periods of intensification, and for Hurricanes Harvey and Irma, just prior to the devastating landfalls in the Caribbean and United States. The unique instrument suite on the P-3 offers inner core observations of the three-dimensional precipitation and vortex structure, lower troposphere (boundary layer) thermodynamic properties, and surface wind speed. In contrast, the G-IV flies at higher altitudes, sampling the environment surrounding the storms, and provides deep-tropospheric soundings from dropsondes.

  1. NOAA predicts active 2013 Atlantic hurricane season

    Science.gov Websites

    procedure for post-tropical cyclones. In July, NOAA plans to bring online a new supercomputer that will run hurricane warnings to remain in effect, or to be newly issued, for storms like Sandy that have become post

  2. The 2017 Hurricane Season: A Revolution in Geostationary Weather Satellite Imaging and Data Processing

    NASA Astrophysics Data System (ADS)

    Weiner, A. M.; Gundy, J.; Brown-Bertold, B.; Yates, H.; Dobler, J. T.

    2017-12-01

    Since their introduction, geostationary weather satellites have enabled us to track hurricane life-cycle movement from development to dissipation. During the 2017 hurricane season, the new GOES-16 geostationary satellite demonstrated just how far we have progressed technologically in geostationary satellite imaging, with hurricane imagery showing never-before-seen detail of the hurricane eye and eyewall structure and life cycle. In addition, new ground system technology, leveraging high-performance computing, delivered imagery and data to forecasters with unprecedented speed—and with updates as often as every 30 seconds. As additional satellites and new products become operational, forecasters will be able to track hurricanes with even greater accuracy and assist in aftermath evaluations. This presentation will present glimpses into the past, a look at the present, and a prediction for the future utilization of geostationary satellites with respect to all facets of hurricane support.

  3. NOAA HRD's HEDAS Data Assimilation System's performance for the 2010 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Sellwood, K.; Aksoy, A.; Vukicevic, T.; Lorsolo, S.

    2010-12-01

    The Hurricane Ensemble Data Assimilation System (HEDAS) was developed at the Hurricane Research Division (HRD) of NOAA, in conjunction with an experimental version of the Hurricane Weather and Research Forecast model (HWRFx), in an effort to improve the initial representation of the hurricane vortex by utilizing high resolution in-situ data collected during NOAA’s Hurricane Field Program. HEDAS implements the “ensemble square root “ filter of Whitaker and Hamill (2002) using a 30 member ensemble obtained from NOAA/ESRL’s ensemble Kalman filter (EnKF) system and the assimilation is performed on a 3-km nest centered on the hurricane vortex. As part of NOAA’s Hurricane Forecast Improvement Program (HFIP), HEDAS will be run in a semi-operational mode for the first time during the 2010 Atlantic hurricane season and will assimilate airborne Doppler radar winds, dropwindsonde and flight level wind, temperature, pressure and relative humidity, and Stepped Frequency Microwave Radiometer surface wind observations as they become available. HEDAS has been implemented in an experimental mode for the cases of Hurricane Bill, 2009 and Paloma, 2008 to confirm functionality and determine the optimal configuration of the system. This test case demonstrates the importance of assimilating thermodynamic data in addition to wind observations and the benefit of increasing the quantity and distribution of observations. Applying HEDAS to a larger sample of storm forecasts would provide further insight into the behavior of the model when inner core aircraft observations are assimilated. The main focus of this talk will be to present a summary of HEDAS performance in the HWRFx model for the inaugural season. The HEDAS analyses and the resulting HWRFx forecasts will be compared with HWRFx analyses and forecasts produced concurrently using the HRD modeling group’s vortex initialization which does not employ data assimilation. The initial vortex and subsequent forecasts will be

  4. The Roles of Climate Change and Climate Variability in the 2017 Atlantic Hurricane Season

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Schubert, Siegfried D.; Kovach, Robin; Molod, Andrea M.; Pawson, Steven

    2018-01-01

    The 2017 hurricane season was extremely active with six major hurricanes, the third most on record. The sea-surface temperatures (SSTs) over the eastern Main Development Region (EMDR), where many tropical cyclones (TCs) developed during active months of August/September, were approximately 0.96 degrees Centigrade above the 1901-2017 average (warmest on record): about 0.42 degrees Centigrade from a long-term upward trend and the rest (around 80 percent) attributed to the Atlantic Meridional Mode (AMM). The contribution to the SST from the North Atlantic Oscillation over the EMDR was a weak warming, while that from ENSO was negligible. Nevertheless, ENSO, the NAO, and the AMM all contributed to favorable wind shear conditions, while the AMM also produced enhanced atmospheric instability. Compared with the strong hurricane years of 2005-2010, the ocean heat content (OHC) during 2017 was larger across the tropics, with higher SST anomalies over the EMDR and Caribbean Sea. On the other hand, the dynamical/thermodynamical atmospheric conditions, while favorable for enhanced TC activity, were less prominent than in 2005-2010 across the tropics. The results suggest that unusually warm SST in the EMDR together with the long fetch of the resulting storms in the presence of record-breaking OHC were key factors in driving the strong TC activity in 2017.

  5. The Historical Context of the 2017 Hurricane Season's Ocean Warmth

    NASA Astrophysics Data System (ADS)

    Jacobs, P.; Akella, S.; Trenberth, K. E.; Lijing, C.; Abraham, J. P.

    2017-12-01

    Public discussion of the unusually active 2017 North Atlantic Hurricane Season quickly focused on the role of sea surface temperatures (SSTs) in the North Atlantic. Some meteorologists characterized them as near-normal, while climate-focused voices tended to characterize them as warmer than average, placing them in the context of anthropogenic warming. Much of this divergence in views can be explained by the relatively recent, relatively warm baseline (1981-2010) used for daily SST information, such as provided by OISSTv2. Longer term records of SSTs, such as HadISST, HadSST, and ERSST only attempt to provide monthly averages, while tropical cyclones have lifetimes on the timescale of days. Further, hurricanes create a cold wake which can impact storm movement and intensity, as well as subsequent storms, but is gradually wiped out by the sun. This process is further complicated by the role of ocean heat content (OHC), an increase in which can mitigate the impact of upwelled water. Here we examine the statistical characteristics of daily SSTs and OHC during the satellite record, including their temporal autocorrelation, and use this information in conjunction with longer term monthly records to bound what we can and cannot confidently say about the longer term historical context of the storms Harvey, Irma, and Maria.

  6. Hurricane Recovery Report 2004

    NASA Technical Reports Server (NTRS)

    Gordon, Joseph P.

    2005-01-01

    During August and September 2004, four hurricanes tested the mettle of Space Coast residents and the Kennedy Space Center (KSC) leadership and workforce. These threats underscored two important points: the very real vulnerability of KSC and its valuable space program assets to the devastating power of a hurricane, and the planning required to effectively deal with such threats. The damage was significant even though KSC did not experience sustained hurricane-force winds. To better understand and appreciate these points, this report provides an overview of the meteorological history of the Space Coast and what is involved in the planning, preparation, and recovery activities, as well as addressing the impacts of the 2004 hurricane season.

  7. Satellite Altimetry Outreach During Hurricane Rita: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Leben, R.; Born, G. H.; Srinivasan, M.

    2006-07-01

    The 2005 hurricane season was th e most costly on record with estimated d amages in th e U.S. of over 100 billion. What may hav e been lost in the signif icant after math of these storms is the pr imary role th at Gulf of Mexico oceanography played in this very active hurricane season. The four most destructive storms - Dennis (1.84 B), Katrin a (80B), Rita (9.4B) , and Wilma ($14.4 B) - all interacted w ith deep warm ocean currents in th e Gulf contributing to the intensity of these storms and their destructive po ten tial. In the aftermath of Hurrican e K atr ina and during Hurricane Rita we made a concer ted effort to tell this story through satellite altimetry ou treach activ ities at the Un iversity of Colorado, Boulder .

  8. Central Pacific Hurricane Center - Honolulu, Hawai`i

    Science.gov Websites

    Department of Commerce Central Pacific Hurricane Center National Oceanic and Atmospheric Administration Blank Tracking Maps ▾ Educational Resources Be Prepared! NWS Hurricane Prep Week Preparedness Weather Hurricane Season Outlook for 2018 2017-18 Hawaii Wet Season Summary and 2018 Dry Season Outlook USGS and

  9. Hurricane Watch

    NASA Astrophysics Data System (ADS)

    Hobgood, Jay S.

    Hurricanes, the strongest form of tropical cyclones over the Atlantic Ocean, are among the most deadly and destructive natural hazards. Population growth along the eastern and southern coasts of the United States places millions of people who have never experienced a major hurricane in harm's way during each hurricane season. A successful evacuation requires accurate forecasts and public education about the hazards associated with these violent storms. Bob Heets and Jack Williams' Hurricane Watch informs readers without formal training in meteorology about hurricanes and the dangers they present. Although the authors make some references to tropical cyclones in other parts of the world, the book's primary focus is on hurricanes over the Atlantic Ocean.

  10. Toward Skillful Subseasonal Prediction of North Atlantic Hurricanes with regionally-refined GFDL HiRAM

    NASA Astrophysics Data System (ADS)

    Gao, K.; Harris, L.; Chen, J. H.; Lin, S. J.

    2017-12-01

    Skillful subseasonal prediction of hurricane activity (from two weeks to less than a season) is important for early preparedness and reducing the hurricane damage in coastal regions. In this study, we will present evaluations of the performance of GFDL HiRAM (High-Resolution Atmospheric Model) for the simulation and prediction of the North Atlantic hurricane activity on the sub-seasonal time scale. A series of sub-seasonal (30-day duration) retrospective predictions were performed over the years 2000-2014 using two configurations of HiRAM: a) global uniform 25km-resolution grid and b) two-way nested grid with a 8km-resolution nest over North Atlantic. The analysis of hurricane structure from the two sets of simulations indicates the two-way-nesting method is an efficient way to improve the representation of hurricanes in global models: the two-way nested configuration produces realistic hurricane inner-core size and structure, which leads to improved lifetime maximum intensity distribution. Both configurations show very promising performance in the subseasonal hurricane genesis prediction, but the two-way nested configuration shows better performance in the prediction of major hurricane (Categories 3-5) activity because of the improved intensity simulation. We will also present the analysis of how the phase and magnitude of MJO, as well as the initial SST anomaly affect the model's prediction skill.

  11. Atlantic Hurricane Activity: 1851-1900

    NASA Astrophysics Data System (ADS)

    Landsea, C. W.

    2001-12-01

    This presentation reports on the second year's work of a three year project to re-analyze the North Atlantic hurricane database (or HURDAT). The original database of six-hourly positions and intensities were put together in the 1960s in support of the Apollo space program to help provide statistical track forecast guidance. In the intervening years, this database - which is now freely and easily accessible on the Internet from the National Hurricane Center's (NHC's) Webpage - has been utilized for a wide variety of uses: climatic change studies, seasonal forecasting, risk assessment for county emergency managers, analysis of potential losses for insurance and business interests, intensity forecasting techniques and verification of official and various model predictions of track and intensity. Unfortunately, HURDAT was not designed with all of these uses in mind when it was first put together and not all of them may be appropriate given its original motivation. One problem with HURDAT is that there are numerous systematic as sell as some random errors in the database which need correction. Additionally, analysis techniques have changed over the years at NHC as our understanding of tropical cyclones has developed, leading to biases in the historical database that have not been addressed. Another difficulty in applying the hurricane database to studies concerned with landfalling events is the lack exact location, time and intensity at hurricane landfall. Finally, recent efforts into uncovering undocumented historical hurricanes in the late 1800s and early 1900s led by Jose Fernandez-Partagas have greatly increased our knowledge of these past events, which are not yet incorporated into the HURDAT database. Because of all of these issues, a re-analysis of the Atlantic hurricane database is being attempted that will be completed in three years. As part of the re-analyses, three files will be made available: {* } The revised Atlantic HURDAT (with six hourly intensities

  12. Is Hurricane Activity in One Basin Tied to Another?

    NASA Astrophysics Data System (ADS)

    Wang, Chunzai; Lee, Sang-Ki

    2010-03-01

    Each year, tropical cyclones and hurricanes leave millions homeless worldwide and account for, on average, over $100 billion of damage in the United States alone [Schmidt et al., 2009]. In 2005, a record-breaking 15 hurricanes formed in the North Atlantic, four of which reached category 5 strength. Over the course of that season, more than 3000 hurricane-related deaths occurred and fiscal damage reached $157 billion. Because a better understanding of when and where tropical cyclones and hurricanes will form and strike will help societies better prepare for adverse effects, improving the understanding of these storms is very important. In the Western Hemisphere, tropical cyclones can form and develop in both the tropical North Atlantic and eastern North Pacific oceans, which are separated by the landmass of Central America. From the point of view of large-scale atmospheric circulation and its influence on tropical cyclones [e.g., Bell and Chelliah, 2006], it is not surprising that tropical cyclone variabilities in these two basins are related, because of their geographic proximity. But several questions remain: How they are related? What physical mechanisms drive this relation?

  13. Water-level measurements in Dauphin Island, Alabama, from the 2013 Hurricane Season

    USGS Publications Warehouse

    Dickhudt, Patrick J.; Sherwood, Christopher R.; DeWitt, Nancy T.

    2015-01-01

    This report describes the instrumentation, field measurements, and processing methods used by the U.S. Geological Survey to measure atmospheric pressure, water levels, and waves on Dauphin Island, Alabama, in 2013 at part of the Barrier Island Evolution Research project. Simple, inexpensive pressure sensors mounted in shallow wells were buried in the beach and left throughout the hurricane season. Additionally, an atmospheric pressure sensor was mounted on the porch of a private residence to provide a local atmospheric pressure measurement for correcting the submerged pressure records.

  14. On the Relationship Between the Length of Season and Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2013

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    later and with both being related to global warming. In this study, the relationship between the LOS and tropical cyclone activity and climate is examined for the weather satellite era, 1960-2013. Estimates are also given for the LOS and LSD, as well as for the expected number of tropical cyclones (NTC), the total number of storm days (NSD), the total accumulated cyclone energy (ACE), and the net tropical cyclone activity (NTCA) index for the 2014 hurricane season.

  15. Risks, Health Consequences, and Response Challenges for Small-Island-Based Populations: Observations From the 2017 Atlantic Hurricane Season.

    PubMed

    Shultz, James M; Kossin, James P; Shepherd, J Marshall; Ransdell, Justine M; Walshe, Rory; Kelman, Ilan; Galea, Sandro

    2018-04-06

    ABSTRACTThe intensely active 2017 Atlantic basin hurricane season provided an opportunity to examine how climate drivers, including warming oceans and rising seas, exacerbated tropical cyclone hazards. The season also highlighted the unique vulnerabilities of populations residing on Small Island Developing States (SIDS) to the catastrophic potential of these storms. During 2017, 22 of the 29 Caribbean SIDS were affected by at least one named storm, and multiple SIDS experienced extreme damage. This paper aims to review the multiplicity of storm impacts on Caribbean SIDS throughout the 2017 season, to explicate the influences of climate drivers on storm formation and intensity, to explore the propensity of SIDS to sustain severe damage and prolonged disruption of essential services, to document the spectrum of public health consequences, and to delineate the daunting hurdles that challenged emergency response and recovery operations for island-based, disaster-affected populations. (Disaster Med Public Health Preparedness. 2018;page 1 of 13).

  16. Recovering from Hurricane Katrina

    ERIC Educational Resources Information Center

    Coleman, Nadine

    2006-01-01

    The Gulf Coast region suffered an unusually severe hurricane season in 2005: Hurricane Katrina (August 28-29, 2005) devastated much of southern Mississippi and Louisiana. Approximately 2,700 licensed early care and education facilities in those states and in Alabama were affected by Katrina, in addition to an unknown number of family child care…

  17. Data and Geocomputation: Time Critical Mission Support for the 2017 Hurricane Season

    NASA Astrophysics Data System (ADS)

    Bhaduri, B. L.; Tuttle, M.; Rose, A.; Sanyal, J.; Thakur, G.; White, D.; Yang, H. H.; Laverdiere, M.; Whitehead, M.; Taylor, H.; Jacob, M.

    2017-12-01

    A strong spatial data infrastructure and geospatial analysis capabilities are nucleus to the decision-making process during emergency preparedness, response, and recovery operations. For over a decade, the U.S. Department of Energy's Oak Ridge National Laboratory has been developing critical data and analytical capabilities that provide the Federal Emergency Management Agency (FEMA) and the rest of the federal response community assess and evaluate impacts of natural hazards on population and critical infrastructures including the status of the national electricity and oil and natural gas networks. These capabilities range from identifying structures or buildings from very high-resolution satellite imagery, utilizing machine learning and high-performance computing, to daily assessment of electricity restoration highlighting changes in nighttime lights for the impacted region based on the analysis of NOAA JPSS VIIRS Day/Night Band (DNB) imagery. This presentation will highlight our time critical mission support efforts for the 2017 hurricane season that witnessed unprecedented devastation from hurricanes Harvey, Irma, and Maria. ORNL provided 90m resolution LandScan USA population distribution data for identifying vulnerable population as well as structure (buildings) data extracted from 1m imagery for damage assessment. Spatially accurate data for solid waste facilities were developed and delivered to the response community. Human activity signatures were assessed from large scale collection of open source social media data around points of interests (POI) to ascertain level of destruction. The electricity transmission system was monitored in real time from data integration from hundreds of utilities and electricity outage information were provided back to the response community via standardized web-services.

  18. Hurricane plenty

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    If new predictions for above-average hurricane activity in 1997 materialize, the Atlantic Basin will have its most active 3-year hurricane span ever recorded. Colorado State University hurricane forecasters, led by professor William Gray, predict that 11 tropical storms will form in 1997, and that seven will be hurricanes—three of them intense. If the team's prediction unfolds, the period between 1995-1997 will be the most active 3-year period in the last 120 years of hurricane tracking—in contrast with 1991-1994, which was one of the calmest 4-year periods.

  19. Evaluation of active mortality surveillance system data for monitoring hurricane-related deaths-Texas, 2008.

    PubMed

    Choudhary, Ekta; Zane, David F; Beasley, Crystal; Jones, Russell; Rey, Araceli; Noe, Rebecca S; Martin, Colleen; Wolkin, Amy F; Bayleyegn, Tesfaye M

    2012-08-01

    The Texas Department of State Health Services (DSHS) implemented an active mortality surveillance system to enumerate and characterize hurricane-related deaths during Hurricane Ike in 2008. This surveillance system used established guidelines and case definitions to categorize deaths as directly, indirectly, and possibly related to Hurricane Ike. The objective of this study was to evaluate Texas DSHS' active mortality surveillance system using US Centers for Disease Control and Prevention's (CDC) surveillance system evaluation guidelines. Using CDC's Updated Guidelines for Surveillance System Evaluation, the active mortality surveillance system of the Texas DSHS was evaluated. Data from the active mortality surveillance system were compared with Texas vital statistics data for the same time period to estimate the completeness of reported disaster-related deaths. From September 8 through October 13, 2008, medical examiners (MEs) and Justices of the Peace (JPs) in 44 affected counties reported deaths daily by using a one-page, standardized mortality form. The active mortality surveillance system identified 74 hurricane-related deaths, whereas a review of vital statistics data revealed only four deaths that were hurricane-related. The average time of reporting a death by active mortality surveillance and vital statistics was 14 days and 16 days, respectively. Texas's active mortality surveillance system successfully identified hurricane-related deaths. Evaluation of the active mortality surveillance system suggested that it is necessary to collect detailed and representative mortality data during a hurricane because vital statistics do not capture sufficient information to identify whether deaths are hurricane-related. The results from this evaluation will help improve active mortality surveillance during hurricanes which, in turn, will enhance preparedness and response plans and identify public health interventions to reduce future hurricane-related mortality rates.

  20. NASA CYGNSS Ocean Wind Observations in the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Balasubramaniam, R.; Mayers, D.; McKague, D. S.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit to measure ocean surface wind speed in the inner core of tropical cyclones with better than 12 hour refresh rates. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification, made possible by the large number of satellites. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Results of measurements made during the 2017 Atlantic hurricane season, including frequent overpasses of Hurricanes Harvey, Irma and Maria, will be presented.

  1. Evaluation of Active Mortality Surveillance System Data for Monitoring Hurricane-Related Deaths—Texas, 2008

    PubMed Central

    Choudhary, Ekta; Zane, David F.; Beasley, Crystal; Jones, Russell; Rey, Araceli; Noe, Rebecca S.; Martin, Colleen; Wolkin, Amy F.; Bayleyegn, Tesfaye M.

    2015-01-01

    Introduction The Texas Department of State Health Services (DSHS) implemented an active mortality surveillance system to enumerate and characterize hurricane-related deaths during Hurricane Ike in 2008. This surveillance system used established guidelines and case definitions to categorize deaths as directly, indirectly, and possibly related to Hurricane Ike. Objective The objective of this study was to evaluate Texas DSHS’ active mortality surveillance system using US Centers for Disease Control and Prevention’s (CDC) surveillance system evaluation guidelines. Methods Using CDC’s Updated Guidelines for Surveillance System Evaluation, the active mortality surveillance system of the Texas DSHS was evaluated. Data from the active mortality surveillance system were compared with Texas vital statistics data for the same time period to estimate the completeness of reported disaster-related deaths. Results From September 8 through October 13, 2008, medical examiners (MEs) and Justices of the Peace (JPs) in 44 affected counties reported deaths daily by using a one-page, standardized mortality form. The active mortality surveillance system identified 74 hurricane-related deaths, whereas a review of vital statistics data revealed only four deaths that were hurricane-related. The average time of reporting a death by active mortality surveillance and vital statistics was 14 days and 16 days, respectively. Conclusions Texas’s active mortality surveillance system successfully identified hurricane-related deaths. Evaluation of the active mortality surveillance system suggested that it is necessary to collect detailed and representative mortality data during a hurricane because vital statistics do not capture sufficient information to identify whether deaths are hurricane-related. The results from this evaluation will help improve active mortality surveillance during hurricanes which, in turn, will enhance preparedness and response plans and identify public health

  2. High Resolution Modeling of Hurricanes in a Climate Context

    NASA Astrophysics Data System (ADS)

    Knutson, T. R.

    2007-12-01

    Modeling of tropical cyclone activity in a climate context initially focused on simulation of relatively weak tropical storm-like disturbances as resolved by coarse grid (200 km) global models. As computing power has increased, multi-year simulations with global models of grid spacing 20-30 km have become feasible. Increased resolution also allowed for simulation storms of increasing intensity, and some global models generate storms of hurricane strength, depending on their resolution and other factors, although detailed hurricane structure is not simulated realistically. Results from some recent high resolution global model studies are reviewed. An alternative for hurricane simulation is regional downscaling. An early approach was to embed an operational (GFDL) hurricane prediction model within a global model solution, either for 5-day case studies of particular model storm cases, or for "idealized experiments" where an initial vortex is inserted into an idealized environments derived from global model statistics. Using this approach, hurricanes up to category five intensity can be simulated, owing to the model's relatively high resolution (9 km grid) and refined physics. Variants on this approach have been used to provide modeling support for theoretical predictions that greenhouse warming will increase the maximum intensities of hurricanes. These modeling studies also simulate increased hurricane rainfall rates in a warmer climate. The studies do not address hurricane frequency issues, and vertical shear is neglected in the idealized studies. A recent development is the use of regional model dynamical downscaling for extended (e.g., season-length) integrations of hurricane activity. In a study for the Atlantic basin, a non-hydrostatic model with grid spacing of 18km is run without convective parameterization, but with internal spectral nudging toward observed large-scale (basin wavenumbers 0-2) atmospheric conditions from reanalyses. Using this approach, our

  3. Influence of hurricane-related activity on North American extreme precipitation

    NASA Astrophysics Data System (ADS)

    Barlow, Mathew

    2010-05-01

    Individual hurricanes and their remnants can produce exceptionally intense rainfall, and the associated flooding, even independent of storm surge, is one of the leading causes of hurricane-related death in the U.S. Despite the catastrophic societal costs of hurricanes and the considerable recent attention to possible trends in strength and number, little is known about the general contribution of hurricane-related activity to extreme precipitation over North America and the underlying dynamical mechanisms. Here we show, based on a 25-year observational analysis, that there are important contributions to the occurrence of extreme precipitation events over more than half of North America, including a pronounced signal over northern and inland areas, associated with an average span of influence that extends to several hundred kilometers. Large-scale vertical velocity, maximum wind speed, and tropical/extratropical character are important factors in the strength and range of influence, and the pattern of influence depends on whether an absolute or relative measure of precipitation is considered. Associated changes in stability, moisture, and vertical motion are analyzed to investigate the dynamics of the influence: the largest changes are in vertical motion, with the hurricane-related activity bringing deep tropical values even to inland and high latitude areas, consistent with the occurrence of very heavy, tropical-like precipitation. While the maximum contribution of hurricane-related activity to mean precipitation is generally less than 25% even for the most-affected coastal regions, the contribution to extreme events is much larger: well over 50% for several regions and exceeding 25% for large swaths of the continent. Typical track density plots do not capture the activity's influence on extreme precipitation.

  4. 3 CFR 8679 - Proclamation 8679 of May 20, 2011. National Hurricane Preparedness Week, 2011

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... hurricane season. Hurricanes are powerful storms that can create severe flooding, dangerous storm surges, high winds, and tornadoes. The effects of these storms can be devastating to entire communities and can... storms, and we must not let our guard down as we prepare for this year’s hurricane season. With tens of...

  5. Climate Prediction Center - Expert Assessments: East Pacific Hurricane

    Science.gov Websites

    influence seasonal eastern Pacific hurricane activity, along with climate model forecasts. The outlook also National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map Administration (NOAA) Climate Prediction Center (CPC), and is produced in collaboration with scientists from the

  6. Recent Atlantic Hurricanes, Pacific Super Typhoons, and Tropical Storm Awareness in Underdeveloped Island and Coastal Regions

    NASA Astrophysics Data System (ADS)

    Plondke, D. L.

    2017-12-01

    Hurricane Harvey was the first major hurricane to make landfall in the continental U.S. in 12 years. The next tropical storm in the 2017 Atlantic Hurricane Season was Hurricane Irma, a category 5 storm and the strongest storm to strike the U.S. mainland since Hurricane Wilma in 2005. These two storms were the third and fourth in a sequence of 10 consecutive storms to reach hurricane status in this season that ranks at least seventh among the most active seasons as measured by the Accumulate Cyclone Energy (ACE) index. Assessment of damage from Harvey may prove it to be the costliest storm in U.S. history, approaching $190 billion. Irma was the first category 5 hurricane to hit the Leeward Islands, devastating island environments including Puerto Rico, the Virgin Islands, Barbuda, Saint Barthelemy, and Anguilla with sustained winds reaching at times 185 mph. Together with the two super typhoons of the 2017 Pacific season, Noru and Lan, the two Atlantic hurricanes rank among the strongest, longest-lasting tropical cyclones on record. How many more billions of dollars will be expended in recovery and reconstruction efforts following future mega-disasters comparable to those of Hurricanes Harvey and Irma? Particularly on Caribbean and tropical Pacific islands with specialized and underdeveloped economies, aging and substandard infrastructure often cannot even partially mitigate against the impacts of major hurricanes. The most frequently used measurements of storm impact are insufficient to assess the economic impact. Analysis of the storm tracks and periods of greatest storm intensity of Hurricanes Harvey and Irma, and Super Typhoons Lan and Noru, in spatial relationship with island and coastal administrative regions, shows that rainfall totals, flooded area estimates, and property/infrastructure damage dollar estimates are all quantitative indicators of storm impact, but do not measure the costs that result from lack of storm preparedness and education of residents

  7. Synoptic and Climatological Analysis of the 1933 Trinidad Hurricane

    NASA Astrophysics Data System (ADS)

    Studwell, A.; Jiang, X.; Li, L.

    2017-12-01

    In June 1933, a Category One hurricane made landfall on the southeastern coast of Trinidad. This was the first and only hurricane to make landfall on the island during modern climate records, i.e., since the middle 19th century. The storm caused thirteen fatalities on Trinidad and yielded $55.1 million (in 2016 dollars) in damage. With twenty named tropical systems, 1933 was the second most active tropical season on record for the Atlantic basin. This is not entirely surprising since there were a developing La Niña over the equatorial Pacific and there was a positive phase on the Atlantic Multidecadal Oscillation in place, both of which are positive factors for an active season for the tropical Atlantic. However, neither of these factors would yield such a southerly track. A preliminary examination of reanalysis data indicated the 500 mb geopotential heights across tropical Atlantic during late June 1933 were well above the 1921-1950 climate normal. This uncharacteristic feature may have contributed to this southerly track and the cyclone's landfall on Trinidad, as the 500 mb winds are a proxy for the hurricane steering flow. Further research is being conducted by examining reanalysis data to determine the statistical likelihood of the anomalous ridge, both in its contemporaneous era, as well as the Climate Change (1981-2010) era.

  8. Land Area Change and Overview of Major Hurricane Impacts in Coastal Louisiana, 2004-08

    USGS Publications Warehouse

    Barras, John A.

    2009-01-01

    The U.S. Geological Survey (USGS) assessed changes in land and water coverage in coastal Louisiana within 2 months of Hurricane Gustav (September 1, 2008) and Hurricane Ike (September 13, 2008) by using Landsat Thematic Mapper (TM) satellite imagery. The purpose of this study was twofold: (1) to provide preliminary information on land-water area changes in coastal Louisiana shortly after Hurricanes Ike and Gustav made landfall and (2) to contrast these changes with prior, widespread land area changes caused by Hurricane Katrina (August 29, 2005) and Hurricane Rita (September 24, 2005) 3 years earlier. Hurricane Gustav's physical surge impacts were not as severe as those observed from Hurricane Katrina. The largest observed changes were the reversion of recovery vegetation in Upper Breton Sound to an immediate post-Katrina appearance. Hurricane Ike's surge impacts were similar, although of somewhat lesser magnitude than Hurricane Rita's surge impacts. Major surge-removed marsh occurred in similar locations with similar morphologies from the two westward tracking storms. Although the net reduction in land from 2004 to 2008 (849.5 km2) exceeded that from 1978 to 2004 (743.3 km2), it is likely that the 2004-08 estimate will decrease, given time for the coast to recover from those hurricane seasons. Nevertheless, it is likely that the cumulative loss from these hurricane seasons will remain significant. Estimation of permanent losses cannot be made until several growing seasons have passed and the transitory impacts of the hurricanes are accounted for.

  9. Hurricane Joaquin 9/30/15

    NASA Image and Video Library

    2017-12-08

    NOAA's GOES-East satellite captured this visible image of Hurricane Joaquin east of the Bahamas on Sept. 30 at 1745 UTC (1:45 p.m. EDT). Credit: NASA/NOAA GOES Project At 11 a.m. EDT (1500 UTC) on Wednesday, September 30, 2015 the center of Hurricane Joaquin was located near latitude 24.7 North, longitude 72.6 West. That puts the center of Joaquin about 215 miles (345 km) east-northeast of the Central Bahamas. Joaquin became a tropical storm Monday evening (EDT), September 29 when it was midway between the Bahamas and Bermuda. By 8 a.m. EDT on September 30, it strengthened into a hurricane and has become the third hurricane of the Atlantic Hurricane season. On September 30, the National Hurricane Center issued a Hurricane Warning for the central Bahamas including Cat Island, the Exumas, Long Island, Rum Cay, and San Salvador. A Hurricane Watch is in effect for the northwestern Bahamas including the Abacos, Berry Islands, Bimini, Eleuthera, Grand Bahama Island, and New Providence, but excluding Andros Island. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Hurricane Joaquin 9/30/15

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument on NASA's Terra satellite captured Hurricane Joaquin off the Bahamas at 15:45 UTC (11:45 a.m. EDT) on September 30, 2015. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team At 11 a.m. EDT (1500 UTC) on Wednesday, September 30, 2015 the center of Hurricane Joaquin was located near latitude 24.7 North, longitude 72.6 West. That puts the center of Joaquin about 215 miles (345 km) east-northeast of the Central Bahamas. Joaquin became a tropical storm Monday evening (EDT), September 29 when it was midway between the Bahamas and Bermuda. By 8 a.m. EDT on September 30, it strengthened into a hurricane and has become the third hurricane of the Atlantic Hurricane season. On September 30, the National Hurricane Center issued a Hurricane Warning for the central Bahamas including Cat Island, the Exumas, Long Island, Rum Cay, and San Salvador. A Hurricane Watch is in effect for the northwestern Bahamas including the Abacos, Berry Islands, Bimini, Eleuthera, Grand Bahama Island, and New Providence, but excluding Andros Island. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Climate Prediction Center - Atlantic Hurricane Outlook

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Seasonal Climate Summary Archive The 2018 Atlantic hurricane season outlook is an official product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC). The outlook is

  12. NOAA expects below-normal Central Pacific hurricane season

    Science.gov Websites

    Hurricane Preparedness Week El Niño/Southern Oscillation (ENSO) Diagnostic Discussion FEMA Media Contact based upon the continuation of neutral El Niño - Southern Oscillation conditions. The Central Pacific

  13. Impact on Hurricane Track and Intensity Forecasts of GPS Dropwindsonde Observations from the First-Season Flights of the NOAA Gulfstream-IV Jet Aircraft.

    NASA Astrophysics Data System (ADS)

    Aberson, Sim D.; Franklin, James L.

    1999-03-01

    In 1997, the Tropical Prediction Center (TPC) began operational Gulfstream-IV jet aircraft missions to improve the numerical guidance for hurricanes threatening the continental United States, Puerto Rico, and the Virgin Islands. During these missions, the new generation of Global Positioning System dropwindsondes were released from the aircraft at 150-200-km intervals along the flight track in the environment of the tropical cyclone to obtain profiles of wind, temperature, and humidity from flight level to the surface. The observations were ingested into the global model at the National Centers for Environmental Prediction, which subsequently serves as initial and boundary conditions to other numerical tropical cyclone models. Because of a lack of tropical cyclone activity in the Atlantic basin, only five such missions were conducted during the inaugural 1997 hurricane season.Due to logistical constraints, sampling in all quadrants of the storm environment was accomplished in only one of the five cases during 1997. Nonetheless, the dropwindsonde observations improved mean track forecasts from the Geophysical Fluid Dynamics Laboratory hurricane model by as much as 32%, and the intensity forecasts by as much as 20% during the hurricane watch period (within 48 h of projected landfall). Forecasts from another dynamical tropical cyclone model (VICBAR) also showed modest improvements with the dropwindsonde observations. These improvements, if confirmed by a larger sample, represent a large step toward the forecast accuracy goals of TPC. The forecast track improvements are as large as those accumulated over the past 20-25 years, and those for forecast intensity provide further evidence that better synoptic-scale data can lead to more skillful dynamical tropical cyclone intensity forecasts.

  14. A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R.

    2016-06-01

    This review provides a summary of work in the area of ensemble forecasts for weather, climate, oceans, and hurricanes. This includes a combination of multiple forecast model results that does not dwell on the ensemble mean but uses a unique collective bias reduction procedure. A theoretical framework for this procedure is provided, utilizing a suite of models that is constructed from the well-known Lorenz low-order nonlinear system. A tutorial that includes a walk-through table and illustrates the inner workings of the multimodel superensemble's principle is provided. Systematic errors in a single deterministic model arise from a host of features that range from the model's initial state (data assimilation), resolution, representation of physics, dynamics, and ocean processes, local aspects of orography, water bodies, and details of the land surface. Models, in their diversity of representation of such features, end up leaving unique signatures of systematic errors. The multimodel superensemble utilizes as many as 10 million weights to take into account the bias errors arising from these diverse features of multimodels. The design of a single deterministic forecast models that utilizes multiple features from the use of the large volume of weights is provided here. This has led to a better understanding of the error growths and the collective bias reductions for several of the physical parameterizations within diverse models, such as cumulus convection, planetary boundary layer physics, and radiative transfer. A number of examples for weather, seasonal climate, hurricanes and sub surface oceanic forecast skills of member models, the ensemble mean, and the superensemble are provided.

  15. Hurricanes 2004: An overview of their characteristics and coastal change

    USGS Publications Warehouse

    Sallenger, Asbury H.; Stockdon, Hilary; Fauver, Laura A.; Hansen, Mark; Thompson, David; Wright, C. Wayne; Lillycrop, Jeff

    2006-01-01

    Four hurricanes battered the state of Florida during 2004, the most affecting any state since Texas endured four in 1884. Each of the storms changed the coast differently. Average shoreline change within the right front quadrant of hurricane force winds varied from 1 m of shoreline advance to 20 m of retreat, whereas average sand volume change varied from 11 to 66 m3 m−1 of net loss (erosion). These changes did not scale simply with hurricane intensity as described by the Saffir-Simpson Hurricane Scale. The strongest storm of the season, category 4 Hurricane Charley, had the least shoreline retreat. This was likely because of other factors like the storm's rapid forward speed and small size that generated a lower storm surge than expected. Two of the storms, Hurricanes Frances and Jeanne, affected nearly the same area on the Florida east coast just 3 wk apart. The first storm, Frances, although weaker than the second, caused greater shoreline retreat and sand volume erosion. As a consequence, Hurricane Frances may have stripped away protective beach and exposed dunes to direct wave attack during Jeanne, although there was significant dune erosion during both storms. The maximum shoreline change for all four hurricanes occurred during Ivan on the coasts of eastern Alabama and the Florida Panhandle. The net volume change across a barrier island within the Ivan impact zone approached zero because of massive overwash that approximately balanced erosion of the beach. These data from the 2004 hurricane season will prove useful in developing new ways to scale and predict coastal-change effects during hurricanes.

  16. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  17. Real-Time Upper-Ocean Temperature Observations from Aircraft during Operational Hurricane Reconnaissance Missions: AXBT Demonstration Project Year One Results

    DTIC Science & Technology

    2013-12-01

    Demonstration Project beginning in the 2011 North Atlantic hurricane season (WG/HWSOR 2011). The primary objectives of the first year of the demon- stration...after Atlantic hurricanes from WP-3D hur- ricane research flights conducted jointly by the NOAA AircraftOperationsCenter (AOC), theNOAA/Hurricane... Atlantic hurricane season; 3) to present an initial set of results from the inclusion of AXBT data in both statistical and dynamical numerical prediction

  18. A Near-Annual Record of Hurricane Activity From the Little Bahama Bank Over the Last 700 Years

    NASA Astrophysics Data System (ADS)

    Winkler, T. S.; van Hengstum, P. J.; Donnelly, J. P.; Sullivan, R.; Albury, N. A.

    2016-12-01

    Long-term and high-resolution records of hurricane activity that extend past the short observational record (<150 years) can help inform the drivers of regional hurricane activity. Blueholes in the tropical North Atlantic often provide oxygen limited environments that promote excellent sediment preservation through time, recording coarse-grained hurricane overwash deposits. Here we further develop a previous hurricane reconstruction from Thatchpoint Bluehole on Abaco Island using additional >8m vibracores collected with a Rossfelder P-3. The previous core analyzed (TPBH-C1, Continental Shelf Research, 2014) was likely obtained from the cave-area of the bluehole, and previous radiocarbon-dated bivalves deeper in the core were likely impacted by an old-carbon effect, casting doubt on the veracity of the previous age-model at this site. Recent overwash beds from Hurricane Jeanne (2004) and Hurricane Floyd (1999) are present at all coretops, and additional radiocarbon dating that includes terrestrial organic matter fragments indicates a near-annual sedimentation rate in the bluehole (>1cm yr-1), with the record spanning the last 700 years. Since 1866 CE, 12 hurricanes with wind speeds exceeding Category 2 on the Saffir-Simpson Scale (wind speeds 154-177 km hr-1) have passed within a 50 km radius of TPBH, many of which can be associated with coarse-grained overwash deposits in the top 200 cm of TPBH-C3. It appears from this high-resolution record that 1500-1650 CE and 1750-1800 CE were active intervals for hurricanes near Abaco, which were previously identified in a lower-resolution (multi-decadal) hurricane reconstruction from Abaco (Blackwood Sinkhole). Additionally, these active intervals coincide with evidence of regional storminess from multiple reconstructions based on historical archives (e.g.: Archivo General de Indias, newspapers, ships' logbooks, meteorological journals), and the 1500-1650 CE active interval falls within a previously identified 1400-1675 CE

  19. Forecasted Flood Depth Grids Providing Early Situational Awareness to FEMA during the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Jones, M.; Longenecker, H. E., III

    2017-12-01

    The 2017 hurricane season brought the unprecedented landfall of three Category 4 hurricanes (Harvey, Irma and Maria). FEMA is responsible for coordinating the federal response and recovery efforts for large disasters such as these. FEMA depends on timely and accurate depth grids to estimate hazard exposure, model damage assessments, plan flight paths for imagery acquisition, and prioritize response efforts. In order to produce riverine or coastal depth grids based on observed flooding, the methodology requires peak crest water levels at stream gauges, tide gauges, high water marks, and best-available elevation data. Because peak crest data isn't available until the apex of a flooding event and high water marks may take up to several weeks for field teams to collect for a large-scale flooding event, final observed depth grids are not available to FEMA until several days after a flood has begun to subside. Within the last decade NOAA's National Weather Service (NWS) has implemented the Advanced Hydrologic Prediction Service (AHPS), a web-based suite of accurate forecast products that provide hydrograph forecasts at over 3,500 stream gauge locations across the United States. These forecasts have been newly implemented into an automated depth grid script tool, using predicted instead of observed water levels, allowing FEMA access to flood hazard information up to 3 days prior to a flooding event. Water depths are calculated from the AHPS predicted flood stages and are interpolated at 100m spacing along NHD hydrolines within the basin of interest. A water surface elevation raster is generated from these water depths using an Inverse Distance Weighted interpolation. Then, elevation (USGS NED 30m) is subtracted from the water surface elevation raster so that the remaining values represent the depth of predicted flooding above the ground surface. This automated process requires minimal user input and produced forecasted depth grids that were comparable to post

  20. An Extended Forecast of the Frequencies of North Atlantic Basin Tropical Cyclone Activity for 2009

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    An extended forecast of the frequencies for the 2009 North Atlantic basin hurricane season is presented. Continued increased activity during the 2009 season with numbers of tropical cyclones, hurricanes, and major hurricanes exceeding long-term averages are indicated. Poisson statistics for the combined high-activity intervals (1950-1965 and 1995-2008) give the central 50% intervals to be 9-14, 5-8, and 2-4, respectively, for the number of tropical cyclones, hurricanes, and major hurricanes, with a 23.4% chance of exceeding 14 tropical cyclones, a 28% chance of exceeding 8 hurricanes, and a 31.9% chance of exceeding 4 major hurricanes. Based strictly on the statistics of the current high-activity interval (1995-2008), the central 50% intervals for the numbers of tropical cyclones, hurricanes, and major hurricanes are 12-18, 6-10, and 3-5, respectively, with only a 5% chance of exceeding 23, 13, or 7 storms, respectively. Also examined are the first differences in 10-yr moving averages and the effects of global warming and decadal-length oscillations on the frequencies of occurrence for North Atlantic basin tropical cyclones. In particular, temperature now appears to be the principal driver of increased activity and storm strength during the current high-activity interval, with near-record values possible during the 2009 season.

  1. Hurricane Joaquin on 9/29/15

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite captured this image of Joaquin near the Bahamas on Sept. 29 at 18:10 UTC (2:10 p.m. EDT). Credit: NASA Goddard MODIS Rapid Response Team At 11 a.m. EDT (1500 UTC) on Wednesday, September 30, 2015 the center of Hurricane Joaquin was located near latitude 24.7 North, longitude 72.6 West. That puts the center of Joaquin about 215 miles (345 km) east-northeast of the Central Bahamas. Joaquin became a tropical storm Monday evening (EDT), September 29 when it was midway between the Bahamas and Bermuda. By 8 a.m. EDT on September 30, it strengthened into a hurricane and has become the third hurricane of the Atlantic Hurricane season. On September 30, the National Hurricane Center issued a Hurricane Warning for the central Bahamas including Cat Island, the Exumas, Long Island, Rum Cay, and San Salvador. A Hurricane Watch is in effect for the northwestern Bahamas including the Abacos, Berry Islands, Bimini, Eleuthera, Grand Bahama Island, and New Providence, but excluding Andros Island. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. The Importance of Hurricane Research to Life, Property, the Economy, and National Security.

    NASA Astrophysics Data System (ADS)

    Busalacchi, A. J.

    2017-12-01

    The devastating 2017 Atlantic hurricane season has brought into stark relief how much hurricane forecasts have improved - and how important it is to make them even better. Whereas the error in 48-hour track forecasts has been reduced by more than half, according to the National Hurricane Center, intensity forecasts remain challenging, especially with storms such as Harvey that strengthened from a tropical depression to a Category 4 hurricane in less than three days. The unusually active season, with Hurricane Irma sustaining 185-mph winds for a record 36 hours and two Atlantic hurricanes reaching 150-mph winds simultaneously for the first time, also highlighted what we do, and do not, know about how tropical cyclones will change as the climate warms. The extraordinary toll of Hurricanes Harvey, Irma, and Maria - which may ultimately be responsible for hundreds of deaths and an estimated $200 billion or more in damages - underscores why investments into improved forecasting must be a national priority. At NCAR and UCAR, scientists are working with their colleagues at federal agencies, the private sector, and the university community to advance our understanding of these deadly storms. Among their many projects, NCAR researchers are making experimental tropical cyclone forecasts using an innovative Earth system model that allows for variable resolution. We are working with NOAA to issue flooding, inundation, and streamflow forecasts for areas hit by hurricanes, and we have used extremely high-resolution regional models to simulate successfully the rapid hurricane intensification that has proved so difficult to predict. We are assessing ways to better predict the damage potential of tropical cyclones by looking beyond wind speed to consider such important factors as the size and forward motion of the storm. On the important question of climate change, scientists have experimented with running coupled climate models at a high enough resolution to spin up a hurricane

  3. A Look Inside Hurricane Alma

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  4. Modeling and Analysis of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2013-01-01

    The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.

  5. Electrification in Hurricanes over the Tropical Americas: Implication for Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Chronis, Themis G.; Robertson, Franklin R.; Miller, Timothy L.

    2007-01-01

    This study explores the relation between lightning activity and water vapor in the Tropical Tropopause Layer (TTL) over hurricane systems in the Tropical Americas. The hypothesis herein is that hurricanes that exhibit enhanced lightning activity are associated with stronger updrafts that can transport more moisture directly into the TTL (and subsequently into the tropical stratosphere) or even directly into the tropical stratosphere over this region. The TTL over the Tropical Americas, which includes the Caribbean and Gulf of Mexico, is of particular interest, because summertime cold point tropopause is the lowest in height and thus the warmest in temperature over the tropics. The latter condition implies higher saturation values and thus potential for more water vapor to enter the stratosphere. Climate forecast is very sensitive to stratospheric water vapor abundance, because of the key role that water vapor plays in regulating the chemical and radiative properties of the stratosphere. Given the potential for increases in hurricane intensity and frequency under predicted warmer conditions, it becomes essential to understand the effect of hurricanes on stratospheric water vapor. In this study, we use a combination of ground and space-borne observations as well as trajectory calculations. The observations include: cloud-to-ground (CG) lightning data from the U.S. National Lightning Detection Network (NLDN), geostationary infrared observations from the National Climatic Data Center Hurricane Satellite (HURSAT) data set, cloud properties from Aqua-MODIS, and water vapor from Aura-MLS. We analyze hurricanes from the 2005 season when Aura-MLS data are available, namely: Dennis, Emily, Katrina, Rita, and Wilma. Our analysis consists of examining CG lightning, cloud-top properties, and TTL water vapor (i.e., 100 and 147 mb) over the hurricane while it remains over water in the Tropical Americas region. We investigate daily as well as diurnal statistical properties. The

  6. A Multi-season Investigation of Microbial Extracellular Enzyme Activities in Two Temperate Coastal North Carolina Rivers: Evidence of Spatial but Not Seasonal Patterns.

    PubMed

    Bullock, Avery; Ziervogel, Kai; Ghobrial, Sherif; Smith, Shannon; McKee, Brent; Arnosti, Carol

    2017-01-01

    Riverine systems are important sites for the production, transport, and transformation of organic matter. Much of the organic matter processing is carried out by heterotrophic microbial communities, whose activities may be spatially and temporally variable. In an effort to capture and evaluate some of this variability, we sampled four sites-two upstream and two downstream-at each of two North Carolina rivers (the Neuse River and the Tar-Pamlico River) ca. twelve times over a time period of 20 months from 2010 to 2012. At all of the sites and dates, we measured the activities of extracellular enzymes used to hydrolyze polysaccharides and peptides, and thus to initiate heterotrophic carbon processing. We additionally measured bacterial abundance, bacterial production, phosphatase activities, and dissolved organic carbon (DOC) concentrations. Concurrent collection of physical data (stream flow, temperature, salinity, dissolved oxygen) enabled us to explore possible connections between physiochemical parameters and microbial activities throughout this time period. The two rivers, both of which drain into Pamlico Sound, differed somewhat in microbial activities and characteristics: the Tar-Pamlico River showed higher β-glucosidase and phosphatase activities, and frequently had higher peptidase activities at the lower reaches, than the Neuse River. The lower reaches of the Neuse River, however, had much higher DOC concentrations than any site in the Tar River. Both rivers showed activities of a broad range of polysaccharide hydrolases through all stations and seasons, suggesting that the microbial communities are well-equipped to access enzymatically a broad range of substrates. Considerable temporal and spatial variability in microbial activities was evident, variability that was not closely related to factors such as temperature and season. However, Hurricane Irene's passage through North Carolina coincided with higher concentrations of DOC at the downstream sampling

  7. Impact of Hurricane Exposure on Reproductive Health Outcomes, Florida, 2004.

    PubMed

    Grabich, Shannon C; Robinson, Whitney R; Konrad, Charles E; Horney, Jennifer A

    2017-08-01

    Prenatal hurricane exposure may be an increasingly important contributor to poor reproductive health outcomes. In the current literature, mixed associations have been suggested between hurricane exposure and reproductive health outcomes. This may be due, in part, to residual confounding. We assessed the association between hurricane exposure and reproductive health outcomes by using a difference-in-difference analysis technique to control for confounding in a cohort of Florida pregnancies. We implemented a difference-in-difference analysis to evaluate hurricane weather and reproductive health outcomes including low birth weight, fetal death, and birth rate. The study population for analysis included all Florida pregnancies conceived before or during the 2003 and 2004 hurricane season. Reproductive health data were extracted from vital statistics records from the Florida Department of Health. In 2004, 4 hurricanes (Charley, Frances, Ivan, and Jeanne) made landfall in rapid succession; whereas in 2003, no hurricanes made landfall in Florida. Overall models using the difference-in-difference analysis showed no association between exposure to hurricane weather and reproductive health. The inconsistency of the literature on hurricane exposure and reproductive health may be in part due to biases inherent in pre-post or regression-based county-level comparisons. We found no associations between hurricane exposure and reproductive health. (Disaster Med Public Health Preparedness. 2017;11:407-411).

  8. Disaster preparedness of dialysis patients for Hurricanes Gustav and Ike 2008.

    PubMed

    Kleinpeter, Myra A

    2009-01-01

    Hurricanes Katrina and Rita resulted in massive devastation of the Gulf Coast at Mississippi, Louisiana, and Texas during 2005. Because of those disasters, dialysis providers, nephrologists, and dialysis patients used disaster planning activities to work to mitigate the morbidity and mortality associated with the 2005 hurricane season for future events affecting dialysis patients. As Hurricane Gustav approached, anniversary events for Hurricane Katrina were postponed because of evacuation orders for nearly the entire Louisiana Gulf Coast. As part of the hurricane preparation, dialysis units reviewed the disaster plans of patients, and patients made preparation for evacuation. Upon evacuation, many patients returned to the dialysis units that had provided services during their exile from Hurricane Katrina; other patients went to other locations as part of their evacuation plan. Patients uniformly reported positive experiences with dialysis providers in their temporary evacuation communities, provided that those communities did not experience the effects of Hurricane Gustav. With the exception of evacuees to Baton Rouge, patients continued to receive their treatments uninterrupted. Because of extensive damage in the Baton Rouge area, resulting in widespread power losses and delayed restoration of power to hospitals and other health care facilities, some patients missed one treatment. However, as a result of compliance with disaster fluid and dietary recommendations, no adverse outcomes occurred. In most instances, patients were able to return to their home dialysis unit or a nearby unit to continue dialysis treatments within 4 - 5 days of Hurricane Gustav. Hurricane Ike struck the Texas Gulf Coast near Galveston, resulting in devastation of that area similar to the devastation seen in New Orleans after Katrina. The storm surge along the Louisiana Gulf Coast resulted in flooding that temporarily closed coastal dialysis units. Patients were prepared and experienced

  9. A Space-Based Perspective of the 2017 Hurricane Season from the Global Precipitation Measurement (GPM) Mission

    NASA Astrophysics Data System (ADS)

    Skofronick Jackson, G.; Petersen, W. A.; Huffman, G. J.; Kirschbaum, D.; Wolff, D. B.; Tan, J.; Zavodsky, B.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission collected unique, near real time 3-D satellite-based views of hurricanes in 2017 together with estimated precipitation accumulation using merged satellite data for scientific studies and societal applications. Central to GPM is the NASA-JAXA GPM Core Observatory (CO). The GPM-CO carries an advanced dual-frequency precipitation radar (DPR) and a well-calibrated, multi-frequency passive microwave radiometer that together serve as an on orbit reference for precipitation measurements made by the international GPM satellite constellation. GPM-CO overpasses of major Hurricanes such as Harvey, Irma, Maria, and Ophelia revealed intense convective structures in DPR radar reflectivity together with deep ice-phase microphysics in both the eyewalls and outer rain bands. Of considerable scientific interest, and yet to be determined, will be DPR-diagnosed characteristics of the rain drop size distribution as a function of convective structure, intensity and microphysics. The GPM-CO active/passive suite also provided important decision support information. For example, the National Hurricane Center used GPM-CO observations as a tool to inform track and intensity estimates in their forecast briefings. Near-real-time rainfall accumulation from the Integrated Multi-satellitE Retrievals for GPM (IMERG) was also provided via the NASA SPoRT team to Puerto Rico following Hurricane Maria when ground-based radar systems on the island failed. Comparisons between IMERG, NOAA Multi-Radar Multi-Sensor data, and rain gauge rainfall accumulations near Houston, Texas during Hurricane Harvey revealed spatial biases between ground and IMERG satellite estimates, and a general underestimation of IMERG rain accumulations associated with infrared observations, collectively illustrating the difficulty of measuring rainfall in hurricanes.GPM data continue to advance scientific research on tropical cyclone intensification and structure, and contribute to

  10. Thermal Modeling and Analysis of the Hurricane Imaging Radiometer (HIRad)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2013-01-01

    The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.

  11. Effects of Hurricane Georges on habitat use by captive-reared Hispaniolan Parrots (Amazona ventralis) released in the Dominican Republic

    USGS Publications Warehouse

    White, T.H.; Collazo, J.A.; Vilella, F.J.; Guerrero, S.A.

    2005-01-01

    We radio-tagged and released 49 captive-reared Hispaniolan Parrots (Amazona ventralis) in Parque Nacional del Este (PNE), Dominican Republic, during 1997 and 1998. Our primary objective was to develop a restoration program centered on using aviary-reared birds to further the recovery of the critically endangered Puerto Rican Parrot (A. vittata). Hurricane Georges made landfall over the release area on 22 September 1998 with sustained winds of 224 km/h, providing us with a unique opportunity to quantify responses of parrots to such disturbances. Quantitative data on such responses by any avian species are scarce, particularly for Amazona species, many of which are in peril and occur in hurricane-prone areas throughout the Caribbean. Mean home ranges of 18 parrots monitored both before and after the hurricane increased (P = 0.08) from 864 ha (CI = 689-1039 ha) pre-hurricane to 1690 ha (CI = 1003-2377 ha) post-hurricane. The total area traversed by all parrots increased > 300%, from 4884 ha pre-hurricane to 15,490 ha post-hurricane. Before Hurricane Georges, parrot activity was concentrated in coastal scrub, tall broadleaf forest, and abandoned agriculture (conucos). After the hurricane, parrots concentrated their activities in areas of tall broadleaf forest and abandoned conucos. Topographic relief, primarily in the form of large sinkholes, resulted in "resource refugia" where parrots and other frugivores foraged after the hurricane. Habitat use and movement patterns exhibited by released birds highlight the importance of carefully considering effects of season, topography, and overall size of release areas when planning psittacine restorations in hurricane-prone areas. ?? The Neotropical Ornithological Society.

  12. Hurricane Season 2005: Katrina

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Seventeen days after Hurricane Katrina flooded New Orleans, much of the city is still under water. In this pair of images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer on NASA's Terra satellite, the affected areas can clearly be seen. The top image mosaic was acquired in April and September 2000, and the bottom image was acquired September 13, 2005. The flooded parts of the city appear dark blue, such as the golf course in the northeast corner, where there is standing water. Areas that have dried out appear light blue gray, such as the city park in the left middle. On the left side of the image, the failed 17th street canal marks a sharp boundary between flooded city to the east, and dry land to the west.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 10.4 by 7.1 kilometers Location: 30 degrees North latitude, 90.1 degrees West longitude Orientation: North at top Image Data: ASTER bands 1, 2, and 3 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: September 13, 2005

  13. Development of the AOML Hurricane Research System

    NASA Astrophysics Data System (ADS)

    Yeh, K.; Gopalakrishnan, S.; Zhang, X.; Bao, J.; Quirino, T.; Sainani, V.; Rogers, R.; Aberson, S.; Marks, F.; Atlas, R.

    2008-12-01

    NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) has committed to the development of a modeling and data-assimilation system recently. This Hurricane Research System (HRS) aims to improve hurricane forecast by developing innovative modeling techniques, and by assimilating the hurricane inner-core data that is timely collected with aircrafts by the scientists at the AOML Hurricane Research Division (HRD), in addition to the data collected by other channels. We have started the development of the HRS by implementing a moving nest within a regional domain on the Weather Research and Forecasting (WRF) Nonhydrostatic Mesoscale Model (NMM). The dynamically moving nest is used to track the hurricane with an enhanced resolution to better simulate the hurricane structure with more accurate dynamical and physical processes. Combining with the diagnostic expertise at the HRD, and benefiting from the community efforts, we have quickly composed the HRS with excellent ingredients from various organizations. This baseline system has been in experimental operation for this hurricane season, and early result with these experiments seems quite promising. We have also developed a new visualization tool and an efficient post-processor emphasizing diagnostic functionality to facilitate hurricane research. Further development of the HRS includes the implementation of a third, moving nest to advance the model resolution to 1 km or higher with the limited computing resource. Innovative model initialization techniques and versatile hurricane-diagnostic tools are undergoing development. An Ensemble Kalman Filter is being constructed for the HRS to assimilate observation data. Physical parameterizations are being refined to improve the forcing and heating mechanisms, and ocean model coupling is to be implemented for realistic air-sea interactions. We will report the status up to date.

  14. Landslides triggered by Hurricane Mitch in Tegucigalpa, Honduras

    USGS Publications Warehouse

    Harp, Edwin L.; Castaneda, Mario; Held, Matthew D.

    2002-01-01

    The arrival of Hurricane Mitch in Honduras in the latter part of the 1998 hurricane season produced effects that were unprecedented in their widespread nature throughout Central America. After winds from the storm had blown down more than 70 percent of the conifer forest on the Bay Island of Guanaja, the hurricane turned inland and stalled over the mainland of Honduras for 3 days. The resulting deluge of rainfall produced devastating flooding and landslides that resulted in more than 9,000 fatalities and 3 million people displaced. Although the eye of Hurricane Mitch passed through the northern part of Honduras, the greatest rainfall totals and intensities occurred in the southern part of the country near Choluteca. For the three days October 29-31, 1998, total rainfall at Choluteca exceeded 900 mm. Not surprisingly, it was in this area that the highest landslide concentrations occurred.

  15. Increasing magnitude of Hurricane Rapid Intensification in the central-eastern Atlantic over the past 30 years

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Balaguru, K.; Foltz, G. R.

    2017-12-01

    During the 2017 Atlantic hurricane season, several hurricanes underwent rapid intensification (RI) in the central-eastern Atlantic. This motivates an analysis of trends in the strength of hurricane RI during the 30-year post-satellite period of 1986-2015. Our results show that in the eastern tropical Atlantic, to the east of 60W, the mean RI magnitude averaged during 2001-2015 was 3.8 kt per 24 hr higher than during 1986-2000. However, in the western tropical Atlantic, to the west of 60W, changes in RI magnitude over the same period were not statistically significant. We examined the large-scale environment to understand the causes behind these changes in RI magnitude and found that various oceanic and atmospheric parameters that play an important role in RI changed favorably in the eastern tropical Atlantic. More specifically, changes in SST, Potential Intensity, upper-ocean heat content, wind shear, relative humidity and upper-level divergence enhanced the ability for hurricanes to undergo RI in the eastern tropical Atlantic. In contrast, changes in the same factors are inconsistent in the western tropical Atlantic. While changes in SST and Potential Intensity were positive, changes in upper-ocean heat content, wind shear and upper-level divergence were either insignificant or unfavorable for RI. Finally, we examined the potential role of various climate phenomena, which are well-known to impact Atlantic hurricane activity, in causing the changes in the large-scale environment. Our analysis reveals that changes in the Atlantic Multidecadal Oscillation over the 30-year period are predominantly responsible. These results provide important aspects of the large-scale context to understand the Atlantic hurricane season of 2017.

  16. Medium term hurricane catastrophe models: a validation experiment

    NASA Astrophysics Data System (ADS)

    Bonazzi, Alessandro; Turner, Jessica; Dobbin, Alison; Wilson, Paul; Mitas, Christos; Bellone, Enrica

    2013-04-01

    Climate variability is a major source of uncertainty for the insurance industry underwriting hurricane risk. Catastrophe models provide their users with a stochastic set of events that expands the scope of the historical catalogue by including synthetic events that are likely to happen in a defined time-frame. The use of these catastrophe models is widespread in the insurance industry but it is only in recent years that climate variability has been explicitly accounted for. In the insurance parlance "medium term catastrophe model" refers to products that provide an adjusted view of risk that is meant to represent hurricane activity on a 1 to 5 year horizon, as opposed to long term models that integrate across the climate variability of the longest available time series of observations. In this presentation we discuss how a simple reinsurance program can be used to assess the value of medium term catastrophe models. We elaborate on similar concepts as discussed in "Potential Economic Value of Seasonal Hurricane Forecasts" by Emanuel et al. (2012, WCAS) and provide an example based on 24 years of historical data of the Chicago Mercantile Hurricane Index (CHI), an insured loss proxy. Profit and loss volatility of a hypothetical primary insurer are used to score medium term models versus their long term counterpart. Results show that medium term catastrophe models could help a hypothetical primary insurer to improve their financial resiliency to varying climate conditions.

  17. Female hurricanes are deadlier than male hurricanes.

    PubMed

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M

    2014-06-17

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents' preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness.

  18. Female hurricanes are deadlier than male hurricanes

    PubMed Central

    Jung, Kiju; Shavitt, Sharon; Viswanathan, Madhu; Hilbe, Joseph M.

    2014-01-01

    Do people judge hurricane risks in the context of gender-based expectations? We use more than six decades of death rates from US hurricanes to show that feminine-named hurricanes cause significantly more deaths than do masculine-named hurricanes. Laboratory experiments indicate that this is because hurricane names lead to gender-based expectations about severity and this, in turn, guides respondents’ preparedness to take protective action. This finding indicates an unfortunate and unintended consequence of the gendered naming of hurricanes, with important implications for policymakers, media practitioners, and the general public concerning hurricane communication and preparedness. PMID:24889620

  19. Carbon monoxide poisoning in Florida during the 2004 hurricane season.

    PubMed

    Van Sickle, David; Chertow, Daniel S; Schulte, Joann M; Ferdinands, Jill M; Patel, Prakash S; Johnson, David R; Harduar-Morano, Laurel; Blackmore, Carina; Ourso, Andre C; Cruse, Kelly M; Dunn, Kevin H; Moolenaar, Ronald L

    2007-04-01

    During August-September 2004, four major hurricanes hit Florida, resulting in widespread power outages affecting several million households. Carbon monoxide (CO) poisonings during this period were investigated to identify ways to prevent future poisoning. Medical records from ten hospitals (two with hyperbaric oxygen chambers) were reviewed to identify individuals diagnosed with unintentional CO poisoning between August 13 and October 15, 2004. Multiple attempts were made to interview one person from each nonfatal incident. Medical examiner records and reports of investigations conducted by the U.S. Consumer Product Safety Commission of six fatal poisonings from five additional incidents were also reviewed. A total of 167 people treated for nonfatal CO poisoning were identified, representing 51 incidents. A portable, gasoline-powered generator was implicated in nearly all nonfatal incidents and in all fatal poisonings. Generators were most often located outdoors, followed by inside the garage, and inside the home. Telephone interviews with representatives of 35 (69%) incidents revealed that concerns about theft or exhaust most often influenced the choice of location. Twenty-six (74%) households did not own a generator before the hurricanes, and 86% did not have a CO detector at the time of the poisoning. Twenty-one (67%) households reported reading or hearing CO education messages before the incident. Although exposure to public education messages may have encouraged more appropriate use of generators, a substantial number of people were poisoned even when the devices were operated outdoors. Additional educational efforts and engineering solutions that reduce CO emission from generators should be the focus of public health activities.

  20. Hurricane Celia off the Pacific Coast of Mexico

    NASA Image and Video Library

    2004-07-23

    Hurricane Celia as observed by NASA's spaceborne Atmospheric Infrared Sounder (AIRS). This image shows Celia on July 23 in visible light, as you would perceive it from space. Located in the eastern north Pacific Ocean off the coast of Mexico, Celia's winds have now dissipated to highs of 40 mph. Celia was the first hurricane of the eastern north Pacific season. Figure 1 is a daylight snapshot taken on July 19; Celia as tropical storm, winds at 50mph. Figure 2 is a daylight snapshot taken on July 21; Celia has a small eye with an 80-90% closed eyewall; sustained winds at 75mph with gusts reaching 92mph; Celia is upgraded to hurricane status. http://photojournal.jpl.nasa.gov/catalog/PIA00438

  1. NASA's Three Pronged Approach to Hurricane Research

    NASA Astrophysics Data System (ADS)

    Kakar, R. K.

    2006-12-01

    The direct question: How can weather forecast duration and reliability be improved and guide research within NASA's Weather Focus Area? A mandate of the Weather Focus Area is to investigate high impact weather events, such as severe tropical storms, through a combination of new and improved space-based observations, high-altitude research aircraft and sophisticated numerical models. The field experiments involving the NASA research aircraft are vital components of this three-pronged approach. The Convection and Moisture Experiment (CAMEX) - 3 studied inner core dynamics, synoptic flow environment, land falling intensity change and the genesis environment for several hurricanes in a field experiment carried out during the 1998 season. CAMEX-4 studied rapid intensification, storm structure and dynamics, scale interactions and intercomparison of remote sensing techniques during the 2001 hurricane season. Several state of the art remote sensing instruments were used in these studies from the NASA DC-8 and ER-2 aircraft. During July 2005, NASA conducted its Tropical Cloud Systems and Processes (TCSP) experiment from San Jose, Costa Rica. The purpose of TCSP was to investigate the genesis and intensification of tropical cyclones primarily in the eastern North Pacific. This ocean basin was chosen because climatologically it represents the most concentrated region of cyclone formation on the planet and is within range of research aircraft deploying from Costa Rica. In 2005, however, the Caribbean was particularly active instead. We were greeted by two of the strongest July hurricanes on record for the Caribbean. The NASA ER-2 high altitude research aircraft flew twelve separate missions, carrying a payload of several remote sensing instruments. Many of these missions were flown in coordination with the NOAA Hurricane Research Division (HRD) P-3 Orion research aircraft as part of NOAA's 2005 Intensity Forecast Experiment. TCSP's successor program, the NAMMA-06 (NASA African

  2. Hurricane Iris Hits Belize

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hurricane Iris hit the small Central American country of Belize around midnight on October 8, 2001. At the time, Iris was the strongest Atlantic hurricane of the season, with sustained winds up to 225 kilometers per hour (140 mph). The hurricane caused severe damage-destroying homes, flooding streets, and leveling trees-in coastal towns south of Belize City. In addition, a boat of American recreational scuba divers docked along the coast was capsized by the storm, leaving 20 of the 28 passengers missing. Within hours the winds had subsided to only 56 kph (35 mph), a modest tropical depression, but Mexico, Guatemala, El Salvador, and Honduras were still expecting heavy rains. The above image is a combination of visible and thermal infrared data (for clouds) acquired by a NOAA Geostationary Operational Environmental Satellite (GOES-8) on October 8, 2001, at 2:45 p.m., and the Moderate-resolution Imaging Spectroradiometer (MODIS) (for the color of the ground). The three-dimensional view is from the south-southeast (north is towards the upper left). Belize is off the image to the left. Image courtesy Marit Jentoft-Nilsen, NASA GSFC Visualization Analysis Lab

  3. Geologic effects of hurricanes

    NASA Astrophysics Data System (ADS)

    Coch, Nicholas K.

    1994-08-01

    Hurricanes are intense low pressure systems of tropical origin. Hurricane damage results from storm surge, wind, and inland flooding from heavy rainfall. Field observations and remote sensing of recent major hurricanes such as Hugo (1989), Andrew (1992) and Iniki (1992) are providing new insights into the mechanisms producing damage in these major storms. Velocities associated with hurricanes include the counterclockwise vortex winds flowing around the eye and the much slower regional winds that steer hurricane and move it forward. Vectorial addition of theseof these two winds on the higher effective wind speed than on the left side. Coast-parallel hurricane tracks keep the weaker left side of the storm against the coast, whereas coast-normal tracks produce a wide swath of destruction as the more powerful right side of the storm cuts a swath of destruction hundreds of kilometers inland. Storm surge is a function of the wind speed, central pressure, shelf slope, shoreline configuration, and anthropogenic alterations to the shoreline. Maximum surge heights are not under the eye of the hurricane, where the pressure is lowest, but on the right side of the eye at the radius of maximum winds, where the winds are strongest. Flood surge occurs as the hurricane approaches land and drives coastal waters, and superimposed waves, across the shore. Ebb surge occurs when impounded surface water flows seaward as the storm moves inland. Flood and ebb surge damage have been greatly increased in recent hurricanes as a result of anthropogenic changes along the shoreline. Hurricane wind damage occurs on three scales — megascale, mesoscale and microscale. Local wind damage is a function of wind speed, exposure and structural resistance to velocity pressure, wind drag and flying debris. Localized extreme damage is caused by gusts that can locally exceed sustained winds by a factor of two in areas where there is strong convective activity. Geologic changes occuring in hurricanes

  4. Hurricane Charley Exposure and Hazard of Preterm Delivery, Florida 2004.

    PubMed

    Grabich, Shannon C; Robinson, Whitney R; Engel, Stephanie M; Konrad, Charles E; Richardson, David B; Horney, Jennifer A

    2016-12-01

    Objective Hurricanes are powerful tropical storm systems with high winds which influence many health effects. Few studies have examined whether hurricane exposure is associated with preterm delivery. We aimed to estimate associations between maternal hurricane exposure and hazard of preterm delivery. Methods We used data on 342,942 singleton births from Florida Vital Statistics Records 2004-2005 to capture pregnancies at risk of delivery during the 2004 hurricane season. Maternal exposure to Hurricane Charley was assigned based on maximum wind speed in maternal county of residence. We estimated hazards of overall preterm delivery (<37 gestational weeks) and extremely preterm delivery (<32 gestational weeks) in Cox regression models, adjusting for maternal/pregnancy characteristics. To evaluate heterogeneity among racial/ethnic subgroups, we performed analyses stratified by race/ethnicity. Additional models investigated whether exposure to multiples hurricanes increased hazard relative to exposure to one hurricane. Results Exposure to wind speeds ≥39 mph from Hurricane Charley was associated with a 9 % (95 % CI 3, 16 %) increase in hazard of extremely preterm delivery, while exposure to wind speed ≥74 mph was associated with a 21 % (95 % CI 6, 38 %) increase. Associations appeared greater for Hispanic mothers compared to non-Hispanic white mothers. Hurricane exposure did not appear to be associated with hazard of overall preterm delivery. Exposure to multiple hurricanes did not appear more harmful than exposure to a single hurricane. Conclusions Hurricane exposure may increase hazard of extremely preterm delivery. As US coastal populations and hurricane severity increase, the associations between hurricane and preterm delivery should be further studied.

  5. NASA Sees Quick Development of Hurricane Dora

    NASA Image and Video Library

    2017-12-08

    The fourth tropical cyclone of the Eastern Pacific Ocean season formed on June 25 and by June 26 it was already a hurricane. NASA-NOAA's Suomi NPP satellite passed over Dora on June 25 when it was a tropical storm and the next day it became the first hurricane of the season. Tropical Depression Dora developed around 11 p.m. EDT on Saturday, June 24 about 180 miles (290 km) south of Acapulco, Mexico. By 5 a.m. EDT on June 25, the depression had strengthened into a tropical storm and was named Dora. At 19:36 UTC (3:36 p.m. EDT), the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi NPP satellite provided a visible-light image of the storm. The VIIRS imagery showed well-defined convective spiral bands of thunderstorms with a developing central dense overcast or CDO cloud feature. Seven and a half hours later, Dora showed signs of better organization. At 11 p.m. EDT, the National Hurricane Center or NHC noted "Dora's cloud pattern has continued to quickly improve this evening. Several well-defined spiral bands wrap around the center and the CDO has become more symmetric and expanded since the previous advisory." At 5 a.m. EDT on Monday, June 26, Dora became the first hurricane of the Eastern Pacific Ocean hurricane season. Satellite data indicate that maximum sustained winds have increased to near 80 mph (130 kph) with higher gusts. The NHC said the eye of Hurricane Dora was located near latitude 16.7 degrees North and longitude 105.3 degrees West. That's about 170 miles (275 km) south-southwest of Manzanillo, Mexico. Dora was moving toward the west-northwest near 13 mph (20 kph), and the NHC forecast said that general motion with some decrease in forward speed is expected over the next 48 hours. On the forecast track, the center of Dora is expected to remain offshore of the coast of southwestern Mexico. Some strengthening is likely today before weakening is forecast to begin on Tuesday, June 27. For updated forecasts, visit: www

  6. Hurricane Properties for KSC and Mid-Florida Coastal Sites

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Rawlins, Michael A.; Kross, Dennis A.

    2000-01-01

    Hurricane information and climatologies are needed at Kennedy Space Center (KSC) Florida for launch operational planning purposes during the late summer and early fall Atlantic hurricane season. Also these results are needed to be used in estimating the potential magnitudes of hurricane and tropical storm impact on coastal Florida sites when passing within 50, 100 and 400 nm of that site. Roll-backs of the Space Shuttle and other launch vehicles, on pad, are very costly when a tropical storm approaches. A decision for the vehicle to roll-back or ride-out needs to be made. Therefore the historical Atlantic basin hurricane climatological properties were generated to be used for operational planning purposes and in the estimation of potential damage to launch vehicles, supporting equipment, buildings, etc.. The historical 1885-1998 Atlantic basin hurricane data were compiled and analyzed with respect to the coastal Florida site of KSC. Statistical information generated includes hurricane and tropical storm probabilities for path, maximum wind, and lowest pressure, presented for the areas within 50, 100 and 400 nm of KSC. These statistics are then compared to similar parametric statistics for the entire Atlantic basin.

  7. External factors impacting hospital evacuations caused by Hurricane Rita: the role of situational awareness.

    PubMed

    Downey, Erin L; Andress, Knox; Schultz, Carl H

    2013-06-01

    The 2005 Gulf Coast hurricane season was one of the most costly and deadly in US history. Hurricane Rita stressed hospitals and led to multiple, simultaneous evacuations. This study systematically identified community factors associated with patient movement out of seven hospitals evacuated during Hurricane Rita. This study represents the second of two systematic, observational, and retrospective investigations of seven acute care hospitals that reported off-site evacuations due to Hurricane Rita. Participants from each hospital included decision makers that comprised the Incident Management Team (IMT). Investigators applied a standardized interview process designed to assess evacuation factors related to external situational awareness of community activities during facility evacuation due to hurricanes. The measured outcomes were responses to 95 questions within six sections of the survey instrument. Investigators identified two factors that significantly impacted hospital IMT decision making: (1) incident characteristics affecting a facility's internal resources and challenges; and (2) incident characteristics affecting a facility's external evacuation activities. This article summarizes the latter and reports the following critical decision making points: (1) Emergency Operations Plans (EOP) were activated an average of 85 hours (3 days, 13 hours) prior to Hurricane Rita's landfall; (2) the decision to evacuate the hospital was made an average of 30 hours (1 day, 6 hours) from activation of the EOP; and (3) the implementation of the evacuation process took an average of 22 hours. Coordination of patient evacuations was most complicated by transportation deficits (the most significant of the 11 identified problem areas) and a lack of situational awareness of community response activities. All evacuation activities and subsequent evacuation times were negatively impacted by an overall lack of understanding on the part of hospital staff and the IMT regarding how to

  8. Extreme Wind, Rain, Storm Surge, and Flooding: Why Hurricane Impacts are Difficult to Forecast?

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2017-12-01

    The 2017 hurricane season is estimated as one of the costliest in the U.S. history. The damage and devastation caused by Hurricane Harvey in Houston, Irma in Florida, and Maria in Puerto Rico are distinctly different in nature. The complexity of hurricane impacts from extreme wind, rain, storm surge, and flooding presents a major challenge in hurricane forecasting. A detailed comparison of the storm impacts from Harvey, Irma, and Maria will be presented using observations and state-of-the-art new generation coupled atmosphere-wave-ocean hurricane forecast model. The author will also provide an overview on what we can expect in terms of advancement in science and technology that can help improve hurricane impact forecast in the near future.

  9. Mangrove forest recovery in the Everglades following Hurricane Wilma

    USGS Publications Warehouse

    Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J.; Zieman, Jay C.

    2009-01-01

    On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.

  10. The condition of neighborhood parks following Hurricane Katrina: development of a Post-Hurricane Assessment instrument.

    PubMed

    Bedimo-Rung, Ariane L; Thomson, Jessica L; Mowen, Andrew J; Gustat, Jeanette; Tompkins, Bradley J; Strikmiller, Patricia K; Sothern, Melinda S

    2008-01-01

    Parks provide environments for physical activity, yet little is known about how natural disasters affect them or how these disasters alter physical activity. Our objectives were to (1) describe the development of an instrument to assess park conditions following a hurricane and (2) document the conditions of New Orleans' parks 3 and 6 months after Hurricane Katrina. A Post-Hurricane Assessment (PHA) instrument was developed and implemented in 54 parks 3 and 6 months post-hurricane. Summary scores of the Park Damage Index and the Neighborhood Damage Index showed improvement between 3 and 6 months of data collection. Parks and neighborhoods most affected by the hurricane were located in the most- and least-affluent areas of the city. The PHA proved to be a promising tool for assessing park conditions in a timely manner following a natural disaster and allowed for the creation of summary damage scores to correlate to community changes.

  11. Hurricanes

    MedlinePlus

    A hurricane is a severe type of tropical storm. Hurricanes produce high winds, heavy rains and thunderstorms. ... exceed 155 miles per hour. Hurricanes and tropical storms can also spawn tornadoes and lead to flooding. ...

  12. Hurricanes, Storms, and Tornadoes: Geographic Characteristics and Geological Activity

    NASA Astrophysics Data System (ADS)

    Cadet, D. L.

    This book is very disappointing. From the presentation the potential reader might expect to obtain a clear view of the origin of hurricanes, storms, and tornados. Except for some aspects, such as the effect of these phenomena on geological activity, for which some interesting ideas are discussed, the book is a long catalog of destructive weather systems and just describes the different aspects of the phenomena without physical explanations. For example, in the part discussing tornados, it looks like the author put together newspaper clips from some county in Oklahoma, except that the collection is worldwide. The interest lies, maybe, in the large number of illustrations: some of them are reproductions of paintings and drawings dating from the last century. A large number of events are thoroughly described. Another interesting part is the description of tornados that affected the Soviet Union and Europe. Throughout the book there is a large number of duplicate material. Some words are misused: for example, sandstorms originating in the Sahara desert and crossing the Mediterranean Sea are often called hurricanes. A tornado that hit Moscow in May 1937 is referred to as a hurricane. In defense of the author, it must be noted that the book was written in 1969 and only translated in 1983. Another title would be more appropriate.

  13. Bayesian analysis of U.S. hurricane climate

    USGS Publications Warehouse

    Elsner, James B.; Bossak, Brian H.

    2001-01-01

    Predictive climate distributions of U.S. landfalling hurricanes are estimated from observational records over the period 1851–2000. The approach is Bayesian, combining the reliable records of hurricane activity during the twentieth century with the less precise accounts of activity during the nineteenth century to produce a best estimate of the posterior distribution on the annual rates. The methodology provides a predictive distribution of future activity that serves as a climatological benchmark. Results are presented for the entire coast as well as for the Gulf Coast, Florida, and the East Coast. Statistics on the observed annual counts of U.S. hurricanes, both for the entire coast and by region, are similar within each of the three consecutive 50-yr periods beginning in 1851. However, evidence indicates that the records during the nineteenth century are less precise. Bayesian theory provides a rational approach for defining hurricane climate that uses all available information and that makes no assumption about whether the 150-yr record of hurricanes has been adequately or uniformly monitored. The analysis shows that the number of major hurricanes expected to reach the U.S. coast over the next 30 yr is 18 and the number of hurricanes expected to hit Florida is 20.

  14. Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species

    PubMed Central

    Bhattarai, Ganesh P.; Cronin, James T.

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  15. Hurricane Katrina Impact on Water Quality in the East Pearl River, Mississippi

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.; Shim, M.; Guo, L.; Bianchi, T. S.; Smith, R. W.; Duan, S.

    2010-12-01

    Hurricanes and other intense storms have previously been reported to cause short term changes in surface water quality. We examined the water quality of the East Pearl River in southern Mississippi both before and after Hurricane Katrina caused extensive damage to the watershed in 2005. Our post-storm sampling began two months after the hurricane, and thus we missed any immediate short-term consequences. However, sampling over the following two years allowed us to examine whether damage to watershed resulted in significant longer term effects on water quality. Interpretation of the time series data is complicated by the natural seasonal and climatic variability of the system. Thus, we utilized property-property plots as well as empirical relationships to compare pre- and post-storm water quality. Based on the variability of our empirical relationships, we estimate that to within 20%, the hurricane-induced vegetative destruction within this river basin has not changed the concentrations of DOC, POC, SPM, pH, or dissolved Fe. Nor has the quality of the DOC, as inferred from lignin-phenol analysis and the Fe-DOC relationship, been significantly changed either. This may be partly due to the slow degradation of woody materials that occurs only over a period of a few years, even in the sub-tropical climate of this region. Also, transport of DOC material from the land, through the soils, and into the river is not always instantaneous because DOC may stay in soils for a long time. Our work can be examined in the context of other research focused on hurricane effects on different time scales. For instance, shorter term hurricane influences, such as immediate flooding, can cause concurrent, short-lived water quality changes. Likewise, if increased hurricane activity (as might result from climate change) results in permanent landscape or ecosystem changes, then significant long-term water quality changes might be expected.

  16. Geography & Weather: Hurricanes.

    ERIC Educational Resources Information Center

    Mogil, H. Michael; Collins, H. Thomas

    1989-01-01

    Background information using Hurricane Gilbert (1988) is provided. Ideas for 27 activities including a mapping activity are discussed. The 5 themes of geography are listed and a glossary is given. (CW)

  17. Hurricane Safety and Information - Central Pacific Hurricane Center -

    Science.gov Websites

    NOAA NWS United States Department of Commerce Central Pacific Hurricane Center National Oceanic and Distance Calculator Blank Tracking Maps ▾ Educational Resources Be Prepared! NWS Hurricane Prep Week Search For Go NWS All NOAA ▾ Hurricane Safety Hurricane Awareness Week Information from CPHC Red Cross

  18. Uncertainty Analysis of Historical Hurricane Data

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2007-01-01

    An analysis of variance (ANOVA) study was conducted for historical hurricane data dating back to 1851 that was obtained from the U. S. Department of Commerce National Oceanic and Atmospheric Administration (NOAA). The data set was chosen because it is a large, publicly available collection of information, exhibiting great variability which has made the forecasting of future states, from current and previous states, difficult. The availability of substantial, high-fidelity validation data, however, made for an excellent uncertainty assessment study. Several factors (independent variables) were identified from the data set, which could potentially influence the track and intensity of the storms. The values of these factors, along with the values of responses of interest (dependent variables) were extracted from the data base, and provided to a commercial software package for processing via the ANOVA technique. The primary goal of the study was to document the ANOVA modeling uncertainty and predictive errors in making predictions about hurricane location and intensity 24 to 120 hours beyond known conditions, as reported by the data set. A secondary goal was to expose the ANOVA technique to a broader community within NASA. The independent factors considered to have an influence on the hurricane track included the current and starting longitudes and latitudes (measured in degrees), and current and starting maximum sustained wind speeds (measured in knots), and the storm starting date, its current duration from its first appearance, and the current year fraction of each reading, all measured in years. The year fraction and starting date were included in order to attempt to account for long duration cyclic behaviors, such as seasonal weather patterns, and years in which the sea or atmosphere were unusually warm or cold. The effect of short duration weather patterns and ocean conditions could not be examined with the current data set. The responses analyzed were the storm

  19. Hurricane Ida

    Atmospheric Science Data Center

    2013-04-18

    article title:  Hurricane Ida Cross-Track Winds       ... (MISR) instrument on NASA's Terra satellite passed over Hurricane Ida while it was situated between western Cuba and the Yucatan Peninsula. According to the National Hurricane Center, at 15:00 UTC, the hurricane had an estimated minimum central ...

  20. Hurricane-induced failure of low salinity wetlands

    PubMed Central

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  1. Hurricane Alex

    Atmospheric Science Data Center

    2013-04-19

    article title:  Hurricane Alex Disrupts Gulf Cleanup     View Larger Image This view of Hurricane Alex in the western Gulf of Mexico was acquired by the Multi-angle ... Time on June 30, 2010. Around this time NOAA's National Hurricane Center reported Alex to be a strengthening Category 1 hurricane with ...

  2. Significant Wave Height under Hurricane Irma derived from SAR Sentinel-1 Data

    NASA Astrophysics Data System (ADS)

    Lehner, S.; Pleskachevsky, A.; Soloviev, A.; Fujimura, A.

    2017-12-01

    The 2017 Atlantic hurricane season was with three major hurricanes a particular active one. The Category 4 hurricane Irma made landfall on the Florida Keys on September 10th 2017 and was imaged several times by ESAs Sentinel-1 satellites in C-band and the TerraSAR-X satellite in X-band. The high resolution TerraSAR-X imagery showed the footprint of individual tornadoes on the sea surface together with their turbulent wake imaged as a dark line due to increased turbulence. The water-cloud structures of the tornadoes are analyzed and their sea surface structure is compared to optical and IR cloud imagery. An estimate of the wind field using standard XMOD algorithms is provided, although saturating under the strong rain and high wind speed conditions. Imaging the hurricanes by space radar gives the opportunity to observe the sea surface and thus measure the wind field and the sea state under hurricane conditions through the clouds even in this severe weather, although rain features, which are usually not observed in SAR become visible due to damping effects. The Copernicus Sentinel-1 A and B satellites, which are operating in C-band provided several images of the sea surface under hurricane Irma, Jose and Maria. The data were acquired daily and converted into measurements of sea surface wind field u10 and significant wave height Hs over a swath width of 280km about 1000 km along the orbit. The wind field of the hurricanes as derived by CMOD is provided by NOAA operationally on their web server. In the hurricane cases though the wind speed saturates at 20 m/sec and is thus too low in the area of hurricane wind speed. The technique to derive significant wave height is new though and does not show any calibration issues. This technique provides for the first time measurements of the areal coverage and distribution of the ocean wave height as caused by a hurricane on SAR wide swath images. Wave heights up to 10 m were measured under the forward quadrant of the hurricane

  3. Hurricane shuts down gulf activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koen, A.D.

    1992-08-31

    This paper reports that producers in the Gulf of Mexico and plant operators in South Louisiana last week were checking for damage wrought by Hurricane Andrew. In its wake Andrew left evacuated rigs and platforms in the gulf and shuttered plants across a wide swath of the Gulf Coast. Operations were beginning to return to normal late last week. Not all gulf operators, especially in the central gulf, expected to return to offshore facilities. And even producers able to book helicopters did not expect to be able to fully assess damage to all offshore installations before the weekend. MMS officialsmore » in Washington estimated that 37,500 offshore workers were evacuated from 700 oil and gas installations on the gulf's Outer Continental Shelf. Gulf oil and gas wells account for about 800,000 b/d of oil and one fourth of total U.S. gas production. MMS was awaiting an assessment of hurricane damage before estimating how soon and how much gulf oil and gas production would be restored.« less

  4. Hurricane Katrina as a "teachable moment"

    NASA Astrophysics Data System (ADS)

    Glantz, M. H.

    2008-04-01

    By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily

  5. Hurricane Patricia

    NASA Image and Video Library

    2017-12-08

    Composite image of category 5 Hurricane Patricia, off the Pacific coast of Mexico, from 06:00 UTC on Friday, 23 October 2015. At 8 a.m. EDT on October 23, 2015, the National Hurricane Center said that Hurricane Patricia had grown into a monster hurricane. In fact, it is the strongest eastern north pacific hurricane on record. At 8 a.m. EDT (1200 UTC) on Oct. 23, the eye of Hurricane Patricia was located near latitude 17.3 North, longitude 105.6 West. That's about 145 miles (235 km) southwest of Manzanillo, Mexico and about 215 miles (345 km) south of Cabo Corrientes, Mexico. Patricia was moving toward the north-northwest near 12 mph (19 kph) and a turn toward the north is expected later this morning, followed by a turn toward the north-northeast this afternoon. On the forecast track, the core of Patricia will make landfall in the hurricane warning area today, October 23, 2015 during the afternoon or evening. Maximum sustained winds remain near 200 mph (325 kph) with higher gusts. The National Hurricane Center (NHC) said that Patricia is a category 5 hurricane on the Saffir-Simpson Hurricane Wind Scale. Some fluctuations in intensity are possible today, but Patricia is expected to remain an extremely dangerous category 5 hurricane through landfall. Hurricane force winds extend outward up to 30 miles (45 km) from the center and tropical storm force winds extend outward up to 175 miles (280 km). The estimated minimum central pressure is 880 millibars. Copyright: 2015 EUMETSAT. Infrared data from the geostationary satellites of EUMETSAT and NOAA overlays a computer-generated model of the Earth, containing NASA's Blue Marble Next Generation imagery NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission

  6. Hurricane Patricia

    NASA Image and Video Library

    2017-12-08

    This full-disk image from NOAA’s GOES-13 satellite was captured at 14:45 UTC (10:45 a.m. EDT) and shows Hurricane Patricia off the coast of Mexico on September 23, 2015. At 8 a.m. EDT on October 23, 2015, the National Hurricane Center said that Hurricane Patricia had grown into a monster hurricane. In fact, it is the strongest eastern north pacific hurricane on record. At 8 a.m. EDT (1200 UTC) on Oct. 23, the eye of Hurricane Patricia was located near latitude 17.3 North, longitude 105.6 West. That's about 145 miles (235 km) southwest of Manzanillo, Mexico and about 215 miles (345 km) south of Cabo Corrientes, Mexico. Patricia was moving toward the north-northwest near 12 mph (19 kph) and a turn toward the north is expected later this morning, followed by a turn toward the north-northeast this afternoon. On the forecast track, the core of Patricia will make landfall in the hurricane warning area today, October 23, 2015 during the afternoon or evening. Maximum sustained winds remain near 200 mph (325 kph) with higher gusts. The National Hurricane Center (NHC) said that Patricia is a category 5 hurricane on the Saffir-Simpson Hurricane Wind Scale. Some fluctuations in intensity are possible today, but Patricia is expected to remain an extremely dangerous category 5 hurricane through landfall. Hurricane force winds extend outward up to 30 miles (45 km) from the center and tropical storm force winds extend outward up to 175 miles (280 km). The estimated minimum central pressure is 880 millibars. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph

    2018-03-01

    Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.

  8. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    NASA Astrophysics Data System (ADS)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  9. Hurricane Recovery and Ecological Resilience: Measuring the Impacts of Wetland Alteration Post Hurricane Ike on the Upper TX Coast

    NASA Astrophysics Data System (ADS)

    Reja, Md Y.; Brody, Samuel D.; Highfield, Wesley E.; Newman, Galen D.

    2017-12-01

    Recovery after hurricane events encourages new development activities and allows reconstruction through the conversion of naturally occurring wetlands to other land uses. This research investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to attenuate the impacts of future storm events. Specifically, it explores how and to what extent wetlands are being affected by the CWA Section 404 permitting program in the context of post-Hurricane Ike 2008 recovery. Wetland alteration patterns are examined by selecting a control group (Aransas and Brazoria counties with no hurricane impact) vs. study group (Chambers and Galveston counties with hurricane impact) research design with a pretest-posttest measurement analyzing the variables such as permit types, pre-post Ike permits, land cover classes, and within-outside the 100-year floodplain. Results show that permitting activities in study group have increased within the 100-year floodplain and palustrine wetlands continue to be lost compare to the control group. Simultaneously, post-Ike individual and nationwide permits increased in the Hurricane Ike impacted area. A binomial logistic regression model indicated that permits within the study group, undeveloped land cover class, and individual and nationwide permit type have a substantial effect on post-Ike permits, suggesting that post-Ike permits have significant impact on wetland losses. These findings indicate that recovery after the hurricane is compromising ecological resiliency in coastal communities. The study outcome may be applied to policy decisions in managing wetlands during a long-term recovery process to maintain natural function for future flood mitigation.

  10. Hurricane Recovery and Ecological Resilience: Measuring the Impacts of Wetland Alteration Post Hurricane Ike on the Upper TX Coast.

    PubMed

    Reja, Md Y; Brody, Samuel D; Highfield, Wesley E; Newman, Galen D

    2017-12-01

    Recovery after hurricane events encourages new development activities and allows reconstruction through the conversion of naturally occurring wetlands to other land uses. This research investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to attenuate the impacts of future storm events. Specifically, it explores how and to what extent wetlands are being affected by the CWA Section 404 permitting program in the context of post-Hurricane Ike 2008 recovery. Wetland alteration patterns are examined by selecting a control group (Aransas and Brazoria counties with no hurricane impact) vs. study group (Chambers and Galveston counties with hurricane impact) research design with a pretest-posttest measurement analyzing the variables such as permit types, pre-post Ike permits, land cover classes, and within-outside the 100-year floodplain. Results show that permitting activities in study group have increased within the 100-year floodplain and palustrine wetlands continue to be lost compare to the control group. Simultaneously, post-Ike individual and nationwide permits increased in the Hurricane Ike impacted area. A binomial logistic regression model indicated that permits within the study group, undeveloped land cover class, and individual and nationwide permit type have a substantial effect on post-Ike permits, suggesting that post-Ike permits have significant impact on wetland losses. These findings indicate that recovery after the hurricane is compromising ecological resiliency in coastal communities. The study outcome may be applied to policy decisions in managing wetlands during a long-term recovery process to maintain natural function for future flood mitigation.

  11. Hurricane Katrina impact on water quality in the East Pearl River, Mississippi

    NASA Astrophysics Data System (ADS)

    Shiller, Alan M.; Shim, Moo-Joon; Guo, Laodong; Bianchi, Thomas S.; Smith, Richard W.; Duan, Shuiwang

    2012-01-01

    SummaryHurricanes and other intense storms have previously been reported to cause short-term changes in surface water quality. We examined the water quality of the East Pearl River in southern Mississippi both before and after Hurricane Katrina caused extensive damage to the watershed in 2005. Our post-storm sampling began two months after the hurricane, and thus we missed any immediate short-term consequences. However, sampling over the following two years allowed us to examine whether damage to the watershed resulted in significant longer-term effects on water quality. Interpretation of the time series data is complicated by the natural seasonal and climatic variability of the system. Thus, we utilized chemical property-property plots as well as semi-empirical relationships to compare pre- and post-storm water quality. Our analysis suggests that hurricane-induced vegetative destruction within this river basin has not substantially changed the concentrations of DOC, POC, SPM, pH, or dissolved Fe. However, lignin-phenol analysis of colloidal organic matter did show some significant changes in carbon-normalized concentration as well as in some degradation and source parameters. Nonetheless, even these changes were small and likely temporary. This lack of change may be partly due to the slow degradation of woody materials that occurs only over a period of a few years, even in the sub-tropical climate of this region. Also, transport of DOC material from the land, through the soils, and into the river is not always instantaneous because DOC may stay in soils for a long time. Our work can be examined in the context of other research focused on hurricane effects on different time scales. For instance, shorter term hurricane influences, such as immediate flooding, can cause concurrent, short-lived water quality changes. Likewise, if increased hurricane activity (as might result from climate change) results in permanent landscape or ecosystem changes, then significant long

  12. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; James, Mark W.; Roberts, J. Brent; Bisawas, Sayak K.; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiement in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. Hurricane flights are expected for HIRAD in 2013 during HS3. This presentation will describe the HIRAD instrument, its results from the 2010 hurricane flights, and hopefully results from hurricane flights in August and September 2013.

  13. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  14. The Unusual Evolution of Hurricane Arthur 2014

    NASA Technical Reports Server (NTRS)

    Folmer, Michael; Line, William; Cangialosi, John; Halverson, Jeffery; Berndt, Emily; Sienkiewicz, Joseph; Goodman, Steve; Goldberg, Mitch

    2015-01-01

    Hurricane Arthur (2014) was an early season hurricane that had its roots in a convective complex in the Southern Plains of the U.S. As the complex moved into northern Texas, a Mesoscale Convective Vortex (MCV) formed and drifted towards the east of the southern U.S. for a few days before emerging over the southwest Atlantic near South Carolina. The MCV drifted south and slowly acquired tropical characteristics, eventually becoming a Category 2 hurricane that would affect much of eastern North Carolina prior to the 4th of July holiday weekend. Arthur continued up the coast, brushing portions of southeast New England and merged with an upper-level low, completing a full tropical to extratropical-transition in the process, producing damaging wind gusts in portions of the Canadian Maritimes. As part of the GOES-R and JPSS Satellite Proving Grounds, multiple proxy and operational products were available to analyze and forecast this complex evolution. The Storm Prediction Center had products available to monitor the initial severe thunderstorm aspect, while the National Hurricane Center and Ocean Prediction Center were able to monitor the tropical and extratropical transition of Arthur using various convective and red, green, blue (RGB) products that have been introduced in recent years. This paper will discuss Arthur's evolution through the eyes of the various Satellite Proving Ground demonstrations.

  15. Hurricane risk assessment: Rollback or ride out

    NASA Technical Reports Server (NTRS)

    Wohlman, Richard A.

    1993-01-01

    Winds in excess of 74.5 knots could cause severe damage to a space shuttle on the launch pad. Current plans exist for rollback to the Vehicle Assembly Building, but require 48 hour leadtime to implement. Decisions based upon cost/loss are evaluated to ascertain whether predetermined forecast probabilities for rollback/rideout decisions can be made far in advance of hurricane seasons for use in decision making.

  16. Photo Series for Estimating Post-Hurricane Residues and Fire Behavior in Southern Pine

    Treesearch

    Dale D. Wade; James K. Forbus; James M. Saveland

    1993-01-01

    Following Hurricane Hugo, fuels were sampled on nine 2-acre blocks which were then burned during the spring wildfire season. The study was superimposed on dormant-season fire-interval research plots established in 1958 on the Francis Marion National Forest near Charleston, SC. Photographs of preburn fuel loads, fire behavior, and postburn fuel loads were taken to...

  17. Direct and indirect mortality in Florida during the 2004 hurricane season

    NASA Astrophysics Data System (ADS)

    McKinney, Nathan; Houser, Chris; Meyer-Arendt, Klaus

    2011-07-01

    Previous studies have shown that natural disasters, and hurricanes in particular, have led to more deaths than those usually documented in short post-storm surveys. Such indirect deaths, thought to be related to dietary, stress or pre-existing medical conditions, can exceed the number of direct deaths and may persist for weeks or even months beyond the event itself. In the present study, cumulative sum of deviations plots are used to quantify the number of direct and indirect deaths resulting from Hurricanes Charley, Frances, Ivan and Jeanne that made landfall in Florida in 2004. Results suggest that there was an elevated mortality for up to 2 months following each storm, resulting in a total of 624 direct and indirect deaths attributable to the storm. Trauma-related deaths that can be associated directly with the storm account for only ˜4% of the total storm-related mortality, while indirect mortality accounts for most storm-related deaths. Specifically, a large percentage of the elevated mortality was associated with heart (34%) and cancer-related deaths (19%), while diabetes (5%) and accident-related deaths (9%) account for a smaller but still significant percentage of the elevated mortality. The results further suggest that the elevated mortality was the result of additional deaths that would not have otherwise occurred within that 5 month period, and not simply a clustering of deaths that were inevitable between 1 August and 31 December 2004. The elevated mortality identified in this study is significantly greater than the official count of 31 direct and 113 indirect deaths resulting from the four hurricanes combined. This suggests a need for improved mortality counts and surveillance in order to better evaluate and identify effective prevention policies, and to identify preventable deaths.

  18. Observed ocean thermal response to Hurricanes Gustav and Ike

    NASA Astrophysics Data System (ADS)

    Meyers, Patrick C.; Shay, Lynn K.; Brewster, Jodi K.; Jaimes, Benjamin

    2016-01-01

    The 2008 Atlantic hurricane season featured two hurricanes, Gustav and Ike, crossing the Gulf of Mexico (GOM) within a 2 week period. Over 400 airborne expendable bathythermographs (AXBTs) were deployed in a GOM field campaign before, during, and after the passage of Gustav and Ike to measure the evolving upper ocean thermal structure. AXBT and drifter deployments specifically targeted the Loop Current (LC) complex, which was undergoing an eddy-shedding event during the field campaign. Hurricane Gustav forced a 50 m deepening of the ocean mixed layer (OML), dramatically altering the prestorm ocean conditions for Hurricane Ike. Wind-forced entrainment of colder thermocline water into the OML caused sea surface temperatures to cool by over 5°C in GOM common water, but only 1-2°C in the LC complex. Ekman pumping and a near-inertial wake were identified by fluctuations in the 20°C isotherm field observed by AXBTs and drifters following Hurricane Ike. Satellite estimates of the 20° and 26°C isotherm depths and ocean heat content were derived using a two-layer model driven by sea surface height anomalies. Generally, the satellite estimates correctly characterized prestorm conditions, but the two-layer model inherently could not resolve wind-forced mixing of the OML. This study highlights the importance of a coordinated satellite and in situ measurement strategy to accurately characterize the ocean state before, during, and after hurricane passage, particularly in the case of two consecutive storms traveling through the same domain.

  19. New records of Atlantic hurricanes from Spanish documentary sources

    NASA Astrophysics Data System (ADS)

    GarcíA-Herrera, Ricardo; Gimeno, Luis; Ribera, Pedro; HernáNdez, Emiliano

    2005-02-01

    Spanish historical documents from the Archivo General de Indias (General Archive of the Indies) have been used to identify Caribbean hurricanes and storms from the sixteenth to the nineteenth centuries. These sources provide previously unrecorded information on hurricanes useful to complete preexisting chronologies and cyclone tracks. Our work adds 10 hurricanes not previously identified, which can now be freely accessed through the World Wide Web. The results suggest that the seventeenth century may have been less active than the sixteenth and eighteenth centuries, with the most active period occurring between 1766 and 1780. Additionally, the study is the first compilation of information about storms (different from hurricanes) in the Caribbean basin.

  20. Hurricane Lilli

    Atmospheric Science Data Center

    2014-05-15

    article title:  Hurricane Lili Heads for Louisiana Landfall     ... Image Characteristics of a strengthening Category 3 Hurricane Lili are apparent in these images from the Multi-angle Imaging ... (MISR), including a well-developed clearing at the hurricane eye. When these views were acquired on October 2, 2002, Lili was ...

  1. Hurricane Isabel

    Atmospheric Science Data Center

    2013-04-19

    article title:  Aspects of Hurricane Isabel     View Larger Image Cloud-top radiance and height characteristics of Hurricane Isabel are depicted in these data products and animations from the ... Imaging SpectroRadiometer (MISR). Isabel was upgraded to hurricane status a few hours after the top image panels in this set were ...

  2. Hurricane Products

    Science.gov Websites

    HOME PAGE Image of NCEP Logo WHERE AMERICA'S CLIMATE AND WEATHER SERVICES BEGIN NCEP Products Inventory Image of horizontal rule Hurricane Products Updated: 6/09/2015 Geophysical fluid dynamics laboratory Hurricane Model (GHM) Hurricane Weather Research and Forecast System (HWRF) * Products Information

  3. Land Area Changes in Coastal Louisiana After the 2005 Hurricanes: A Series of Three Maps

    USGS Publications Warehouse

    Barras, John A.

    2006-01-01

    This report includes three posters with analyses of net land area changes in coastal Louisiana after the 2005 hurricanes (Katrina and Rita). The first poster presents a basic analysis of net changes from 2004 to 2005; the second presents net changes within marsh communities from 2004 to 2005; and the third presents net changes from 2004 to 2005 within the historical perspective of change in coastal Louisiana from 1956 to 2004. The purpose of this analysis was to provide preliminary information on land area changes shortly after Hurricanes Katrina and Rita and to serve as a regional baseline for monitoring wetland recovery following the 2005 hurricane season. Estimation of permanent losses cannot be made until several growing seasons have passed and the transitory impacts of the hurricanes are minimized, but this preliminary analysis indicates an approximate 217-mi2 (562.03-km2) decrease in land/increase in water across coastal Louisiana. These posters are presented in high-resolution PDF format that is not Section 508 compliant. For ease in accessibility, viewing, and printing, each poster is accompanied by PDF files that contain the corresponding methodology, tables, and figures. Funding for this project was provided by the Louisiana Coastal Area (LCA) Science & Technology Office.

  4. Hurricanes : get prepared !

    NASA Astrophysics Data System (ADS)

    Nauroy, Maëlle

    2013-04-01

    Living in France, near Paris, we have the chance not to be exposed to natural hazards. But on TV we can see, almost every year, geological disasters affecting people from all around the world. Sometimes it also affects us indirectly. For example, the Icelandic volcanic eruption of 2010 prevented some of my students to go on holidays because of the air travel disruption. Since then, every year, we study a natural disaster that has just made the headlines. This topic is of great interest for students because it is connected with their everyday life, with what they see on the news at that time. This year, they were amazed that a city as New York could be struck so violently by a hurricane. Understanding the formation of a hurricane and the consequences of such an event made them think about how to educate people and warn them in case of a hurricane. As a matter of fact, history teaches that a lack of hurricane awareness and preparation are common threads among all major hurricane disasters. By knowing the vulnerability and what actions people should take, it is possible to reduce the effects of a hurricane disaster. They designed posters, showing how a hurricane form, the risks and what to do in case of a hurricane alert. They used TV news broadcasts and educational videos as well as videos from the National Hurricane Center [of the United-States]. Later, they tried to model the formation of a hurricane and the consequences of storm surge, high winds and inland flooding on a coastal area. They filmed their experiments in order to create an interactive exhibition on hurricanes, to be displayed in the school library for other students.

  5. Assessment of Risk of Cholera in Haiti following Hurricane Matthew.

    PubMed

    Khan, Rakib; Anwar, Rifat; Akanda, Shafqat; McDonald, Michael D; Huq, Anwar; Jutla, Antarpreet; Colwell, Rita

    2017-09-01

    Damage to the inferior and fragile water and sanitation infrastructure of Haiti after Hurricane Matthew has created an urgent public health emergency in terms of likelihood of cholera occurring in the human population. Using satellite-derived data on precipitation, gridded air temperature, and hurricane path and with information on water and sanitation (WASH) infrastructure, we tracked changing environmental conditions conducive for growth of pathogenic vibrios. Based on these data, we predicted and validated the likelihood of cholera cases occurring past hurricane. The risk of cholera in the southwestern part of Haiti remained relatively high since November 2016 to the present. Findings of this study provide a contemporary process for monitoring ground conditions that can guide public health intervention to control cholera in human population by providing access to vaccines, safe WASH facilities. Assuming current social and behavioral patterns remain constant, it is recommended that WASH infrastructure should be improved and considered a priority especially before 2017 rainy season.

  6. NASA Earth Science Disasters Program Response Activities During Hurricanes Harvey, Irma, and Maria in 2017

    NASA Astrophysics Data System (ADS)

    Bell, J. R.; Schultz, L. A.; Molthan, A.; Kirschbaum, D.; Roman, M.; Yun, S. H.; Meyer, F. J.; Hogenson, K.; Gens, R.; Goodman, H. M.; Owen, S. E.; Lou, Y.; Amini, R.; Glasscoe, M. T.; Brentzel, K. W.; Stefanov, W. L.; Green, D. S.; Murray, J. J.; Seepersad, J.; Struve, J. C.; Thompson, V.

    2017-12-01

    The 2017 Atlantic hurricane season included a series of storms that impacted the United States, and the Caribbean breaking a 12-year drought of landfalls in the mainland United States (Harvey and Irma), with additional impacts from the combination of Irma and Maria felt in the Caribbean. These storms caused widespread devastation resulting in a significant need to support federal partners in response to these destructive weather events. The NASA Earth Science Disasters Program provided support to federal partners including the Federal Emergency Management Agency (FEMA) and the National Guard Bureau (NGB) by leveraging remote sensing and other expertise through NASA Centers and partners in academia throughout the country. The NASA Earth Science Disasters Program leveraged NASA mission products from the GPM mission to monitor cyclone intensity, assist with cyclone center tracking, and quantifying precipitation. Multispectral imagery from the NASA-NOAA Suomi-NPP mission and the VIIRS Day-Night Band proved useful for monitoring power outages and recovery. Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 satellites operated by the European Space Agency were used to create flood inundation and damage assessment maps that were useful for damage density mapping. Using additional datasets made available through the USGS Hazards Data Distribution System and the activation of the International Charter: Space and Major Disasters, the NASA Earth Science Disasters Program created additional flood products from optical and radar remote sensing platforms, along with PI-led efforts to derive products from other international partner assets such as the COSMO-SkyMed system. Given the significant flooding impacts from Harvey in the Houston area, NASA provided airborne L-band SAR collections from the UAVSAR system which captured the daily evolution of record flooding, helping to guide response and mitigation decisions for critical infrastructure and public safety. We

  7. Hurricanes, climate change and the cholera epidemic in Puerto Rico of 1855-1856.

    PubMed

    Christenson, Bernard

    2008-01-01

    Hurricanes and global climate changes may affect the environmental factors of cholera dynamics in warm coastal areas, vulnerable to seasonal or sporadic outbreaks. The cholera epidemic of Puerto Rico in 1855-1856 had a profound effect on the Puerto Rican society; but it was not influenced by any climatic events, such as preceding hurricanes or storms based on past documentary sources. Particularly, the environmental non-toxigenic strains of Vibrio Cholerae in Puerto Rican water sources can maintain their pathogenic potential for sporadic or erratic toxigenic cholera outbreaks--if a "perfect storm" ever occurs.

  8. Hurricane tracking

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New hurricane forecasting that provides more accurate pictures of storms and their movement through the atmosphere could increase warning time and cut down on false alarms that cost millions of dollars in unnecessary evacuations, according to the National Oceanic and Atmospheric Administration (NOAA).NOAA's new Gulfstream-IV jet produced “the most complete and detailed portrait of a hurricane ever seen” when it flew near Hurricane Guillermo in a test-run last August, according to the agency. Since then, the plane — that can fly to the upper troposphere at an altitude of 13,716 m (45,000 ft) — has helped to dramatically improve the forecasts for Hurricanes Erika and Linda.

  9. El Niño-Southern Oscillation and the seasonal predictability of

    Science.gov Websites

    relationships and can be utilized to provide seasonal forecasts of tropical cyclones. Details of methodologies thunderstorm systems (called mesoscale convective complexes [MCCs]) often produce an inertially stable, warm , they considered hurricanes and intense hurricanes that occurred anywhere within these water boundaries

  10. Possible influence of dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Lohmann, Ulrike

    2014-05-01

    Tropical Cyclones (TCs) belong to the most extreme events in nature. In the past decade, the possible impact of dust on Atlantic hurricanes receives growing interest. As mineral dust is able to absorb incoming solar radiation and therefore warm the surrounding air, the presence of dust can lead to a reduction of sea surface temperature (SST) and an increase in atmospheric stability. Furthermore, resulting baroclinic effects and the dry Saharan easterly jet lead to an enhanced vertical shear of the horizontal winds. SST, stability, moisture and vertical wind shear are known to potentially impact hurricane activity. But how Saharan dust influences these prerequisites for hurricane formation is not yet clear. Some dynamical mechanisms induced by the SAL might even strengthen hurricanes. An adequate framework for investigating the possible impact of dust on hurricanes is comparing high resolution simulations (~0.5°x0.5°, 31 vertical levels) with and without radiatively active dust aerosols. To accomplish this task, we are using the general circulation model ECHAM6 coupled to a modified version of the aerosol model HAM, ECHAM6-HAM-Dust. Instead of the five aerosol species HAM normally contains, the modified version takes only insoluble dust into account, but modifies the scavenging parameters in order to have a similar lifetime of dust as in the full ECHAM6-HAM. All remaining aerosols are prescribed. To evaluate the effects of dust on hurricanes, a TC detection and tracking method is applied on the results. ECHAM6-HAM-Dust was used in two configurations, one with radiatively active dust aerosols and one with dust being not radiatively active. For both set-ups, 10 Monte-Carlo simulations of the year 2005 were performed. A statistical method which identifies controlling parameters of hurricane genesis was applied on North Atlantic developing and non-developing disturbances in all simulations, comparing storms in the two sets of simulations. Hereby, dust can be assigned

  11. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; hide

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  12. Distribution Patterns of Land Surface Water from Hurricanes Katrina and Rita

    NASA Image and Video Library

    2005-10-12

    The above images, derived from NASA QuikScat satellite data, show the extensive pattern of rain water deposited by Hurricanes Katrina and Rita on land surfaces over several states in the southern and eastern United States. These results demonstrate the capability of satellite scatterometers to monitor changes in surface water on land. The color scale depicts increases in radar backscatter (in decibels) between the current measurement and the mean of measurements obtained during the previous two weeks. The backscatter can be calibrated to measure increases in surface soil moisture resulting from rainfall. The yellow color corresponds to an increase of approximately 10 percent or more in surface soil moisture according to the calibration site of Lonoke, Ark. The two hurricanes deposited excessive rainfall over extensive regions of the Mississippi River basin. Basins the size of the Mississippi can take up to several weeks before such excess rainfall significantly increases the amount of river discharge in large rivers such as the Mississippi. With hurricane season not over until November 30, the potential exists for significant flooding, particularly if new rain water is deposited by new hurricanes when river discharge peaks up as a result of previous rainfalls. River discharge should be closely monitored to account for this factor in evaluating potential flood conditions in the event of further hurricanes. http://photojournal.jpl.nasa.gov/catalog/PIA03029

  13. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  14. Impact of 1985 hurricanes on Isles Dernieres, Louisiana: Temporal and spatial analysis of coastal geomorphic changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debusshere, K.; Westphal, K.; Penland, S.

    1989-09-01

    Catastrophic geomorphic changes occurred in the Isles Dernieres barrier island arc as a result of the direct impact of three hurricanes in 1985. The severity of the impact of hurricanes Danny, Elena, and Juan had not been equaled since the landfall of hurricanes Betsy and Camille in the late 1960s. The Isles Dernieres had not been subjected to a direct hurricane landfall since hurricane Bob in 1979. The recent hurricane impacts provided the USGS/LGS Louisiana Cooperative Barrier Island and Land Loss Study the opportunity to examine the process-response characteristics of this low-profile transgressive barrier island arc to multiple hurricane impactsmore » in a single hurricane season. The geomorphic changes along the Isles Dernieres were determined using four sequential airborne videotape surveys acquired in July 1984, July 1985 (pre-storm), August 1985 (post-Danny) and November 1985 (post-Juan) and mapped on 1:24,000 base maps produced from concurrent vertical aerial photography. A coastal geomorphic classification was developed to describe, quantify, and map the alongshore geomorphic, sedimentologic , and vegetative character of this barrier shoreline. The classification consists of three levels of descriptors: (1) primary morphology to define the predominant longshore morphology, (2) modifiers to depict the small-scale longshore features, and (3) variants to locate and quantify important coastal features, not mappable at the scale used.« less

  15. Sleep disturbance and its relationship to psychiatric morbidity after Hurricane Andrew.

    PubMed

    Mellman, T A; David, D; Kulick-Bell, R; Hebding, J; Nolan, B

    1995-11-01

    Sleep disturbance is an important dimension of posttraumatic stress disorder (PTSD), but most of the limited available data were obtained years after the original traumatic event. This study provides information on sleep disturbance and its relationship to posttraumatic morbidity from evaluations done within a year after the trauma. Sleep and psychiatric symptoms of 54 victims (12 men and 42 women) of Hurricane Andrew who had no psychiatric illness in the 6 months before the hurricane were evaluated. A subset of hurricane victims with active psychiatric morbidity (N = 10) and nine comparison subjects who were unaffected by the hurricane were examined in a sleep laboratory. A broad range of sleep-related complaints were rated as being greater after the hurricane, and psychiatric morbidity (which was most commonly PTSD, followed by depression) had a significant effect on most of the subjective sleep measures. In addition, subjects with active morbidity endorsed greater frequencies of "bad dreams" and general sleep disturbances before the hurricane. Polysomnographic results for the hurricane victims revealed a greater number of arousals and entries into stage 1 sleep. REM density correlated positively with both the PTSD symptom of reexperiencing trauma and global distress. Subjects affected by Hurricane Andrew reported sleep disturbances, particularly those subjects with psychiatric morbidity. Tendencies to experience bad dreams and interrupted sleep before a trauma appear to mark vulnerability to posttraumatic morbidity. Results of sleep laboratory evaluations suggested brief shifts toward higher arousal levels during sleep for PTSD subjects and a relationship of REM phasic activity and symptom severity.

  16. Tuberculosis control activities before and after Hurricane Sandy--northeast and mid-Atlantic states, 2012.

    PubMed

    2013-03-22

    On October 29, 2012, Hurricane Sandy struck the U.S. northeast and mid-Atlantic seaboard; the effects of the storm extended to southeastern and midwestern states and to eastern Canada. At the time, 1,899 residents in the most affected areas were undergoing treatment for tuberculosis (TB) disease or infection. To ascertain the operational abilities of state and local TB programs during and after the storm and to determine whether lessons learned from a previous hurricane were effective in ensuring continuity of TB patient care, CDC interviewed staff members at all of the affected state and city TB control programs, including those in areas with power outages and flooded streets, tunnels, and subway lines. The interviews determined that continuity of care for TB patients in programs affected by Hurricane Sandy was better preserved than it had been during and after Hurricane Katrina in August 2005. This improvement might be attributed to 1) preparedness measures learned from Hurricane Katrina (e.g., preparing line lists of patients, providing patients with as-needed medications, and making back-up copies of patient records in advance of the storm) and 2) less widespread displacement of persons after Hurricane Sandy than occurred after Hurricane Katrina. Maintaining readiness among clinicians and TB control programs to respond to natural disasters remains essential to protecting public health and preserving TB patients' continuity of care.

  17. Are recent hurricane (Harvey, Irma, Maria) disasters natural?

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.; Lijing, C.; Jacobs, P.; Abraham, J. P.

    2017-12-01

    Yes and no! Hurricanes are certainly natural, but human-caused climate change is supersizing them, and unbridled growth is exacerbating risk of major damages. The addition of heat-trapping gases to the atmosphere has led to observed increases in upper ocean heat content (OHC). This human-caused increase in OHC supports higher sea surface temperatures (SSTs) and atmospheric moisture. These elevated temperatures and increased moisture availability fuel tropical storms, allowing them to grow larger, longer lasting, and more intense, and with widespread heavy rainfalls. Our preliminary analysis of OHC through the August of 2017 shows not only was it by far the highest on record globally, but it was also the highest on record in the Gulf of Mexico prior to hurricane Harvey occurring. The human influence on the climate is also evident in rising sea levels, which increases risks from storm surges. These climatic changes are taking place against a background of growing habitation along coasts, which further increases the risk storms pose to life and property. This combination of planning choice and climatic change illustrates the tragedy of global warming, as evidenced by Harvey in Houston, Irma in the Caribbean and Florida, and Maria in Puerto Rico. However, future damages and loss of life can be mitigated, by stopping or slowing human-caused climate change, and through proactive planning (e.g., better building codes, increased-capacity drainage systems, shelters, and evacuation plans). We discuss the climatic and planning contexts of the unnatural disasters of the 2017 Atlantic Hurricane season, including novel indices of climate-hurricane influence.

  18. Public perceptions of hurricane modification.

    PubMed

    Klima, Kelly; Bruine de Bruin, Wändi; Morgan, M Granger; Grossmann, Iris

    2012-07-01

    If hurricane modification were to become a feasible strategy for potentially reducing hurricane damages, it would likely generate public discourse about whether to support its implementation. To facilitate an informed and constructive discourse, policymakers need to understand how people perceive hurricane modification. Here, we examine Florida residents' perceptions of hurricane modification techniques that aim to alter path and wind speed. Following the mental models approach, we conducted a survey study about public perceptions of hurricane modification that was guided by formative interviews on the topic. We report a set of four primary findings. First, hurricane modification was perceived as a relatively ineffective strategy for damage reduction, compared to other strategies for damage reduction. Second, hurricane modification was expected to lead to changes in projected hurricane path, but not necessarily to the successful reduction of projected hurricane strength. Third, more anger was evoked when a hurricane was described as having changed from the initially forecasted path or strength after an attempted modification. Fourth, unlike what we expected, participants who more strongly agreed with statements that recognized the uncertainty inherent in forecasts reported more rather than less anger at scientists across hurricane modification scenarios. If the efficacy of intensity-reduction techniques can be increased, people may be willing to support hurricane modification. However, such an effort would need to be combined with open and honest communications to members of the general public. © 2011 Society for Risk Analysis.

  19. Hurricane hazards: a national threat

    USGS Publications Warehouse

    ,

    2005-01-01

    Hurricanes bring destructive winds, storm surge, torrential rain, flooding, and tornadoes. A single storm can wreak havoc on coastal and inland communities and on natural areas over thousands of square miles. In 2005, Hurricanes Katrina, Rita, and Wilma demonstrated the devastation that hurricanes can inflict and the importance of hurricane hazards research and preparedness. More than half of the U.S. population lives within 50 miles of a coast, and this number is increasing. Many of these areas, especially the Atlantic and Gulf coasts, will be in the direct path of future hurricanes. Hawaii is also vulnerable to hurricanes.

  20. Evaluation of the impacts of the Madden-Julian Oscillation on rainfall and hurricanes in Central and South America and the Atlantic Ocean using ICI-RAFT

    NASA Astrophysics Data System (ADS)

    Giovannettone, J. P.

    2013-12-01

    in Australia (Wheeler et al., 2009). The current study found that similar strong relationships between MJO activity over Africa and the western Indian Ocean and rainfall totals in central Argentina, Nicaragua, and northwestern Venezuela. For example, in Nicaragua, the 20-year event almost doubles depending on the phase of the MJO. A fourth case study attempts to develop a relationship between the annual number of hurricanes in the Atlantic Ocean and Caribbean during the hurricane season (July - October) and the average value of the Madden-Julian Oscillation over Africa during a period 3 - 4 months prior to the hurricane season. Similar work has been performed in the northern Atlantic by Villarini et al. (2010), except the authors focused on other indices, including tropical mean sea-surface temperatures (SST's), the North Atlantic Oscillation (NAO), and the Southern Oscillation Index (SOI). Even though the NAO and SOI show some correlation with hurricane activity, the results of the current study show that there is a stronger link between the MJO prior to hurricane season and the total number of hurricanes that form. The greatest correlation again comes from MJO activity over Africa.

  1. Hurricane disturbance benefits nesting American Oystercatchers (Haematopus palliatus)

    USGS Publications Warehouse

    Simons, Theodore R.; Schulte, Shiloh A.

    2016-01-01

    Coastal ecosystems are under increasing pressure from human activity, introduced species, sea level rise, and storm activity. Hurricanes are a powerful destructive force, but can also renew coastal habitats. In 2003, Hurricane Isabel altered the barrier islands of North Carolina, flattening dunes and creating sand flats. American Oystercatchers (Haematopus palliatus) are large shorebirds that inhabit the coastal zone throughout the year. Alternative survival models were evaluated for 699 American Oystercatcher nests on North Core Banks and South Core Banks, North Carolina, USA, from 1999–2007. Nest survival on North Core Banks increased from 0.170 (SE = 0.002) to 0.772 (SE = 0.090) after the hurricane, with a carry-over effect lasting 2 years. A simple year effects model described nest survival on South Core Banks. Habitat had no effect on survival except when the overall rate of nest survival was at intermediate levels (0.300–0.600), when nests on open flats survived at a higher rate (0.600; SE = 0.112) than nests in dune habitat (0.243; SE = 0.094). Predator activity declined on North Core Banks after the hurricane and corresponded with an increase in nest survival. Periodic years with elevated nest survival may offset low annual productivity and contribute to the stability of American Oystercatcher populations.

  2. Hurricane Matthew

    NASA Image and Video Library

    2017-12-08

    This is a visible image of Major Hurricane Matthew taken from NASA's Terra satellite on Oct. 7 at 12 p.m. EDT as it continued moving along Florida's East Coast. Matthew was a Category 3 hurricane at the time of this image. Credit: NASA's Goddard MODIS Rapid Response Team

  3. Seasonally Resolved Oxygen Isotope Paleoclimate Proxy in Tree-Ring Cellulose from the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Miller, D. L.; Mora, C. I.; Grissino-Mayer, H. D.; Mock, C. J.

    2004-12-01

    Stable isotopes in precipitation reflect changes in climate, moisture source, and extreme events such as tropical cyclones, and an oxygen isotope proxy record of these changes through time and space is preserved in tree-ring cellulose. Extreme climate events such as droughts and hurricanes are formidable natural disasters in the southeastern United States, and considerable efforts have been made to understand factors controlling their frequency, whether natural or anthropogenic. Tree rings offer an unusually well-resolved, dateable record of climate events extending beyond modern or historical (documentary) records. Oxygen isotopes in alpha-cellulose of shallowly-rooted conifers predominately reflect the composition of precipitation. Tropical storm convection results in marked 18O depletion in storm precipitation, to -15‰ relative to source seawater (~0‰ ). The depletion increases towards the eyewall of the cyclone, however, isotopically depleted precipitation may extend outward many 100's of km. Storm water 18O depletion translates to soil water 18O depletion that may persist for many weeks until ameliorated by soil water evaporation. Tree growth during that time will take up the anomalous isotopic compositions. Distinctive earlywood (EW ~March-June) versus latewood (LW ~July-October) growth allows the rings to be resolved at an intra-annual (seasonal) scale. By comparison to average soil water, droughts result in 18O-enriched soil water compositions. Seasonal drought or years of continued drought will be similarly captured in the isotope compositions of tree-ring cellulose. A 227-year (1770-1997) seasonally-resolved record of tropical cyclone and drought activity was obtained from cross-sections of felled slash pines (Pinus elliottii Engelm.) and remnant longleaf pines (Pinus palustris Mill.) from southern Georgia. Interpretations of drought or hurricane events were tested by comparison with recent, detailed meteorological records. The 227-year record reveals

  4. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    , waves and currents in hurricanes can be useful for intensity prediction, which has had relatively few improvements in the past 25 years. In 2018 RADARSAT Constellation Mission will be launched, increasing SAR coverage by 10×, allowing increased observations during the next hurricane season.

  5. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... regulatory guide, (RG) 1.221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... missiles that a nuclear power plant should be designed to withstand to prevent undue risk to the health and...

  6. An Estimate of North Atlantic Basin Tropical Cyclone Activity for 2008

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2008-01-01

    The statistics of North Atlantic basin tropical cyclones for the interval 1945-2007 are examined and estimates are given for the frequencies of occurrence of the number of tropical cyclones, number of hurricanes, number of major hurricanes, number of category 4/5 hurricanes, and number of U.S. land-falling hurricanes for the 2008 hurricane season. Also examined are the variations of peak wind speed, average peak wind speed per storm, lowest pressure, average lowest pressure per storm, recurrence rate and duration of extreme events (El Nino and La Nina), the variation of 10-yr moving averages of parametric first differences, and the association of decadal averages of frequencies of occurrence of North Atlantic basin tropical cyclones against decadal averages of Armagh Observatory, Northern Ireland, annual mean temperature (found to be extremely important for number of tropical cyclones and number of hurricanes). Because the 2008 hurricane season seems destined to be one that is non-El Nino-related and is a post-1995 season, estimates of the frequencies of occurrence for the various subsets of storms should be above long-term averages.

  7. Hurricane Maria's Strengthening Winds Seen in NASA SMAP Image

    NASA Image and Video Library

    2017-09-19

    The radiometer instrument on NASA's Soil Moisture Active Passive (SMAP) spacecraft captured this image of Hurricane Maria at 6:27 a.m. EDT on Sept. 19, 2017 (10:27 UTC), showing an estimated maximum surface wind speed of 126.6 miles per hour (56.6 meters per second). While Maria was already a Category 5 hurricane at the time of this observation, it is an extremely tightly organized hurricane and SMAP cannot fully resolve its highest winds due to the 25-mile (40-kilometer) resolution of SMAP. https://photojournal.jpl.nasa.gov/catalog/PIA21960

  8. 3 CFR 8523 - Proclamation 8523 of May 20, 2010. National Hurricane Preparedness Week, 2010

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... coastal and inland communities face the danger of these powerful storms. From high winds and storm surges... Preparedness Week, I urge individuals, families, communities, and businesses to take time to plan for the storm season before it begins. While hurricane forecasting has improved, storms may still develop with little...

  9. New Hurricane Exhibit

    NASA Image and Video Library

    2007-08-29

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  10. New Hurricane Exhibit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  11. Recovery from PTSD following Hurricane Katrina

    PubMed Central

    McLaughlin, Katie A.; Berglund, Patricia; Gruber, Michael J.; Kessler, Ronald C.; Sampson, Nancy A.; Zaslavsky, Alan M.

    2011-01-01

    Background We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. Method A probability sample of pre-hurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months post-hurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included socio-demographics, pre-hurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to post-hurricane stressors and course of estimated PTSD were assessed in a follow-up interview. Results An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other socio-demographics, history of psychopathology, social support, social competence, and post-hurricane stressors were unrelated to recovery from estimated PTSD. Conclusions The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and post-trauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. PMID:21308887

  12. Intense hurricane strikes in southeastern New England since A.D. 1000

    NASA Astrophysics Data System (ADS)

    Donnelly, J. P.; Ettinger, R.; Cleary, P.

    2001-05-01

    Intense, category 3, 4, and 5 landfalling hurricanes pose a significant threat to lives and resources in coastal areas. Intense hurricane strikes also play a significant role in transporting sediments and shaping coastal landforms. Potential links between human-induced climate change and the frequency and intensity of tropical cyclones and the recent concentration of resources and population in areas where intense hurricanes may strike necessitate examination of decadal-to-millennial-scale variability in hurricane activity. The National Oceanic and Atmospheric Administration hurricane activity records for the western Atlantic Ocean only go back to the late 19th century. In the northeast United States historical records of hurricanes date back 370 years. We use stratigraphic evidence from coastal wetlands to extend the record of intense hurricane strikes into the prehistoric period in southeastern New England. Storm surge and wave action associated with intense storms can overtop barrier islands, remove sand and gravel from the beach and nearshore environment and deposit these sediments across the surface of coastal wetlands. In a regime of rising sea level, organic wetland sediments accumulate on top of these storm-induced deposits, preserving a record of past storms. We reconstructed storm deposition records within coastal marshes from eastern Connecticut to Cape Cod, Massachusetts. We matched these records to the historic record of storms and established the age of prehistoric storm deposits dating back about 1000 years with isotopic and stratigraphic dating techniques. The ages of storm deposits at all sites correlate to historic intense hurricane strikes. Prehistoric storm deposits can repeatedly be correlated among multiple sites and are of similar character and extent to the more recent deposits that we attribute to historic intense hurricane strikes. Therefore these older storm deposits were also likely deposited during prehistoric intense hurricanes. We

  13. The effect of proximity to hurricanes Katrina and Rita on subsequent hurricane outlook and optimistic bias.

    PubMed

    Trumbo, Craig; Lueck, Michelle; Marlatt, Holly; Peek, Lori

    2011-12-01

    This study evaluated how individuals living on the Gulf Coast perceived hurricane risk after Hurricanes Katrina and Rita. It was hypothesized that hurricane outlook and optimistic bias for hurricane risk would be associated positively with distance from the Katrina-Rita landfall (more optimism at greater distance), controlling for historically based hurricane risk and county population density, demographics, individual hurricane experience, and dispositional optimism. Data were collected in January 2006 through a mail survey sent to 1,375 households in 41 counties on the coast (n = 824, 60% response). The analysis used hierarchal regression to test hypotheses. Hurricane history and population density had no effect on outlook; individuals who were male, older, and with higher household incomes were associated with lower risk perception; individual hurricane experience and personal impacts from Katrina and Rita predicted greater risk perception; greater dispositional optimism predicted more optimistic outlook; distance had a small effect but predicted less optimistic outlook at greater distance (model R(2) = 0.21). The model for optimistic bias had fewer effects: age and community tenure were significant; dispositional optimism had a positive effect on optimistic bias; distance variables were not significant (model R(2) = 0.05). The study shows that an existing measure of hurricane outlook has utility, hurricane outlook appears to be a unique concept from hurricane optimistic bias, and proximity has at most small effects. Future extension of this research will include improved conceptualization and measurement of hurricane risk perception and will bring to focus several concepts involving risk communication. © 2011 Society for Risk Analysis.

  14. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades

    USGS Publications Warehouse

    Barr, Jordan G.; Engel, Vic; Smith, Thomas J.; Fuentes, Jose D.

    2012-01-01

    Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004–2005. Dry season CO2

  15. Hurricane Research Division of AOML/NOAA

    Science.gov Websites

    Statement The mission of NOAA's Hurricane Research Division (HRD) is to advance the understanding and Learn More. What's New Links of Interest Hurricane Field Program Current Hurricane Data Hurricane FAQ

  16. Predicting Hurricanes with Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Hurricane Emily, formed in the Atlantic Ocean on July 10, 2005, was the strongest hurricane ever to form before August. By checking computer models against the actual path of the storm, researchers can improve hurricane prediction. In 2010, NOAA researchers were awarded 25 million processor-hours on Argonne's BlueGene/P supercomputer for the project. Read more at http://go.usa.gov/OLh

  17. Hurricane Influences on Vegetation Community Change in Coastal Louisiana

    USGS Publications Warehouse

    Steyer, Gregory D.; Cretini, Kari Foster; Piazza, Sarai C.; Sharp, Leigh A.; Snedden, Gregg A.; Sapkota, Sijan

    2010-01-01

    The impacts of Hurricanes Katrina and Rita in 2005 on wetland vegetation were investigated in Louisiana coastal marshes. Vegetation cover, pore-water salinity, and nutrients data from 100 marsh sites covering the entire Louisiana coast were sampled for two consecutive growing seasons after the storms. A mixed-model nested ANOVA with Tukey's HSD test for post-ANOVA multiple comparisons was used to analyze the data. Significantly (p<0.05) lower vegetation cover was observed within brackish and fresh marshes in the west as compared to the east and central regions throughout 2006, but considerable increase in vegetation cover was noticed in fall 2007 data. Marshes in the west were stressed by prolonged saltwater logging and increased sulfide content. High salinity levels persisted throughout the study period for all marsh types, especially in the west. The marshes of coastal Louisiana are still recovering after the hurricanes; however, changes in the species composition have increased in these marshes.

  18. ISS Pass Over Hurricane Jose and Hurricane Irma 9/8/17

    NASA Image and Video Library

    2017-09-08

    The International Space Station passed over two major Atlantic hurricanes on Friday, Sept. 8. First, the station flew approximately 250 miles over Hurricane Jose at approximately 10:10 a.m. EDT while the Category 3 storm was in the Atlantic just east of the Caribbean. One orbit of the Earth later, the station flew over Hurricane Irma at approximately 11:40 a.m. EDT. The powerful Category 4 storm had already brought destructive wind and rain to islands across the Caribbean and is forecast to impact the Florida peninsula.

  19. Hurricane Earl Multi-level Winds

    NASA Image and Video Library

    2010-09-02

    NASA Multi-angle Imaging SpectroRadiometer instrument captured this image of Hurricane Earl Aug. 30, 2010. At this time, Hurricane Earl was a Category 3 storm. The hurricane eye is just visible on the right edge of the MISR image swath.

  20. Real-time Monitoring of 2017 Hurricanes and Typhoons with Lightning

    NASA Astrophysics Data System (ADS)

    Solorzano, N. N.; Thomas, J. N.; Bracy, C.; Holzworth, R. H., II

    2017-12-01

    The 2017 Atlantic season had the highest number of major hurricanes since 2005. To tackle the demand of real-time tropical cyclone (TC) monitoring, our group has developed a unique "storm-following" satellite and ground-based lightning product known as WWLLN-TC (World Wide Lightning Location Network - Tropical Cyclones; http://wwlln.net/storms/). In the present study, we explore this tool and other datasets, combining lightning and microwave data to quantify areas of intense convection in 2017 TCs Harvey, Hato, Irma, Maria, Nate, Ophelia and others. For each storm, the temporal distribution of discharges outside and within the inner core is compared to the changes in TC intensity. The intensification processes, monitored in near real-time by WWLLN-TC, are quantified in terms of pressure and/or wind speed changes. A peak in lightning activity is often observed in the inner core of TCs before and during rapid weakening, such as in Hurricanes Irma and Maria and Typhoon Hato. The microwave frequencies investigated include the 37 to 183 GHz channels of the satellite sensors DMSP/SSMIS and GPM/GMI. We reconstruct brightness temperatures from lightning data, providing more detailed pictures of the evolution of TCs at moments when satellite passes are missing or incomplete. This study also compares lightning activity in the inner core with convective and environmental parameters. Examples of environmental parameters discussed are sea surface temperature, wind shear, and sea surface height anomalies. We conclude by considering possible implications of WWLLN-TC on forecasts of rapid intensity change and rainfall.

  1. High-Resolution Measurement of Beach Morphological Response to Hurricane-Induced Wave Dynamics

    NASA Astrophysics Data System (ADS)

    Starek, M.; Slatton, K. C.; Adams, P.

    2005-12-01

    During the Atlantic hurricane season of 2004, the Florida Pan Handle, Gulf Coast region, was impacted directly by three major hurricanes within approximately a one-month time period. The short temporal span between impacts coupled with the sudden increase in wave energy delivered to the coast resulted in drastic changes to the coastal morphology. The purpose of this study was to investigate the direct effects of deep-water wave climate and energy setups induced by the hurricanes and relate those processes to the observed change in shoreline morphology. The availability of research-grade Airborne Laser Swath Mapping (ALSM) altimetry data, often referred to as Light Detection and Ranging (LiDAR) data, enabled sub-meter spatial sampling of the coastal topography. The ALSM data were acquired by the University of Florida's Geosensing Engineering and Mapping (GEM) Center. Offshore wave measurements were obtained from the NOAA NDBC buoy network for the Gulf Coast region. The ALSM data acquired shortly before and after the three major hurricane landfalls near the Phillips Inlet barrier island region of Bay County, Florida, were used to calculate changes in the shoreline position and identify regions of erosion and deposition. Time series data of offshore wave height, period, and direction were transformed, through shoaling and refraction calculations, to nearshore wave conditions which were correlated to observed changes in beach morphology. Hurricane wave conditions drove severe shoreline retreat on the west-side of the inlet (~15+ meters) but affected the east-side shoreline minimally. The eastern backside of the inlet, however, witnessed a significant volume of washover sediment.

  2. Seasonal Extratropical Storm Activity Potential Predictability and its Origins during the Cold Seasons

    NASA Astrophysics Data System (ADS)

    Pingree-Shippee, K. A.; Zwiers, F. W.; Atkinson, D. E.

    2016-12-01

    Extratropical cyclones (ETCs) often produce extreme hazardous weather conditions, such as high winds, blizzard conditions, heavy precipitation, and flooding, all of which can have detrimental socio-economic impacts. The North American east and west coastal regions are both strongly influenced by ETCs and, subsequently, land-based, coastal, and maritime economic sectors in Canada and the USA all experience strong adverse impacts from extratropical storm activity from time to time. Society would benefit if risks associated with ETCs and storm activity variability could be reliably predicted for the upcoming season. Skillful prediction would enable affected sectors to better anticipate, prepare for, manage, and respond to storm activity variability and the associated risks and impacts. In this study, the potential predictability of seasonal variations in extratropical storm activity is investigated using analysis of variance to provide quantitative and geographical observational evidence indicative of whether it may be possible to predict storm activity on the seasonal timescale. This investigation will also identify origins of the potential predictability using composite analysis and large-scale teleconnections (Southern Oscillation, Pacific Decadal Oscillation, and North Atlantic Oscillation), providing the basis upon which seasonal predictions can be developed. Seasonal potential predictability and its origins are investigated for the cold seasons (OND, NDJ, DJF, JFM) during the 1979-2015 time period using daily mean sea level pressure, absolute pressure tendency, and 10-m wind speed from the ECMWF ERA-Interim reanalysis as proxies for extratropical storm activity. Results indicate potential predictability of seasonal variations in storm activity in areas strongly influenced by ETCs and with origins in the investigated teleconnections. For instance, the North Pacific storm track has considerable potential predictability and with notable origins in the SO and PDO.

  3. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    NASA Astrophysics Data System (ADS)

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-02-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  4. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    PubMed

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-02-24

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  5. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    USGS Publications Warehouse

    van Hengstrum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  6. Intensive longleaf pine management for hurricane recovery: fourth-year results

    Treesearch

    David S. Dyson; Dale G. Brockway

    2015-01-01

    The frequency and intensity of hurricanes affecting the United States has been projected to increase during coming decades, and this rising level of cyclonic storm activity is expected to substantially damage southeastern forests. Although hurricane damage to forests in this region is not new, recent emphasis on longleaf pine (Pinus palustris Mill...

  7. Hurricane Impacts on Small Island Communities: Case study of Hurricane Matthew on Great Exuma, The Bahamas

    NASA Astrophysics Data System (ADS)

    Sullivan Sealey, Kathleen; Bowleg, John

    2017-04-01

    Great Exuma has been a UNESCO Eco-hydrology Project Site with a focus on coastal restoration and flood management. Great Exuma and its largest settlement, George Town, support a population of just over 8.000 people on an island dominated by extensive coastal wetlands. The Victoria Pond Eco-Hydrology project restored flow and drainage to highly-altered coastal wetlands to reduce flooding of the built environment as well as regain ecological function. The project was designed to show the value of a protected wetland and coastal environment within a populated settlement; demonstrating that people can live alongside mangroves and value "green" infrastructure for flood protection. The restoration project was initiated after severe storm flooding in 2007 with Tropical Storm Noel. In 2016, the passing of Hurricane Matthew had unprecedented impacts on the coastal communities of Great Exuma, challenging past practices in restoration and flood prevention. This talk reviews the loss of natural capital (for example, fish populations, mangroves, salt water inundation) from Hurricane Matthew based on a rapid response survey of Great Exuma. The surprisingly find was the impact of storm surge on low-lying areas used primarily for personal farms and small-scale agriculture. Although women made up the overwhelming majority of people who attended Coastal Restoration workshops, women were most adversely impacted by the recent hurricane flooding with the loss of their small low-lying farms and gardens. Although increasing culverts in mangrove creeks in two areas did reduce building flood damage, the low-lying areas adjacent to mangroves, mostly ephemeral freshwater wetlands, were inundated with saltwater, and seasonal crops in these areas were destroyed. These ephemeral wetlands were designed as part of the wetland flooding system, it was not known how important these small areas were to artisanal farming on Great Exuma. The size and scope of Hurricane Matthew passing through the

  8. COMMUNITY COLLEGE RE-ENROLLMENT AFTER HURRICANE KATRINA

    PubMed Central

    LOWE, SARAH R.; RHODES, JEAN E.

    2013-01-01

    In this study, we explored predictors of community college re-enrollment after Hurricane Katrina among a sample of low-income women (N = 221). It was predicted that participants’ pre-hurricane educational optimism would predict community college re-enrollment a year after the hurricane. The influence of various demographic and additional resources (e.g., social support, childcare, hours of employment, psychological well-being) was also explored. High levels of pre- and post-hurricane educational optimism were significant predictors of re-enrollment, as were lower post-hurricane psychological distress and fewer post-hurricane hours employed. In addition, experiencing a greater number of moves since the hurricane was a marginally significant predictor of post-hurricane re-enrollment. PMID:23457425

  9. An assessment of change in risk perception and optimistic bias for hurricanes among Gulf Coast residents.

    PubMed

    Trumbo, Craig; Meyer, Michelle A; Marlatt, Holly; Peek, Lori; Morrissey, Bridget

    2014-06-01

    This study focuses on levels of concern for hurricanes among individuals living along the Gulf Coast during the quiescent two-year period following the exceptionally destructive 2005 hurricane season. A small study of risk perception and optimistic bias was conducted immediately following Hurricanes Katrina and Rita. Two years later, a follow-up was done in which respondents were recontacted. This provided an opportunity to examine changes, and potential causal ordering, in risk perception and optimistic bias. The analysis uses 201 panel respondents who were matched across the two mail surveys. Measures included hurricane risk perception, optimistic bias for hurricane evacuation, past hurricane experience, and a small set of demographic variables (age, sex, income, and education). Paired t-tests were used to compare scores across time. Hurricane risk perception declined and optimistic bias increased. Cross-lagged correlations were used to test the potential causal ordering between risk perception and optimistic bias, with a weak effect suggesting the former affects the latter. Additional cross-lagged analysis using structural equation modeling was used to look more closely at the components of optimistic bias (risk to self vs. risk to others). A significant and stronger potentially causal effect from risk perception to optimistic bias was found. Analysis of the experience and demographic variables' effects on risk perception and optimistic bias, and their change, provided mixed results. The lessening of risk perception and increase in optimistic bias over the period of quiescence suggest that risk communicators and emergency managers should direct attention toward reversing these trends to increase disaster preparedness. © 2013 Society for Risk Analysis.

  10. The Impact of Assimilation of GPM Clear Sky Radiance on HWRF Hurricane Track and Intensity Forecasts

    NASA Astrophysics Data System (ADS)

    Yu, C. L.; Pu, Z.

    2016-12-01

    The impact of GPM microwave imager (GMI) clear sky radiances on hurricane forecasting is examined by ingesting GMI level 1C recalibrated brightness temperature into the NCEP Gridpoint Statistical Interpolation (GSI)- based ensemble-variational hybrid data assimilation system for the operational Hurricane Weather Research and Forecast (HWRF) system. The GMI clear sky radiances are compared with the Community Radiative Transfer Model (CRTM) simulated radiances to closely study the quality of the radiance observations. The quality check result indicates the presence of bias in various channels. A static bias correction scheme, in which the appropriate bias correction coefficients for GMI data is evaluated by applying regression method on a sufficiently large sample of data representative to the observational bias in the regions of concern, is used to correct the observational bias in GMI clear sky radiances. Forecast results with and without assimilation of GMI radiance are compared using hurricane cases from recent hurricane seasons (e.g., Hurricane Joaquin in 2015). Diagnoses of data assimilation results show that the bias correction coefficients obtained from the regression method can correct the inherent biases in GMI radiance data, significantly reducing observational residuals. The removal of biases also allows more data to pass GSI quality control and hence to be assimilated into the model. Forecast results for hurricane Joaquin demonstrates that the quality of analysis from the data assimilation is sensitive to the bias correction, with positive impacts on the hurricane track forecast when systematic biases are removed from the radiance data. Details will be presented at the symposium.

  11. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  12. Hurricanes benefit bleached corals

    PubMed Central

    Manzello, Derek P.; Brandt, Marilyn; Smith, Tyler B.; Lirman, Diego; Hendee, James C.; Nemeth, Richard S.

    2007-01-01

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community. PMID:17606914

  13. Hurricanes benefit bleached corals.

    PubMed

    Manzello, Derek P; Brandt, Marilyn; Smith, Tyler B; Lirman, Diego; Hendee, James C; Nemeth, Richard S

    2007-07-17

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community.

  14. "Just-in-Time" Personal Preparedness: Downloads and Usage Patterns of the American Red Cross Hurricane Application During Hurricane Sandy.

    PubMed

    Kirsch, Thomas D; Circh, Ryan; Bissell, Richard A; Goldfeder, Matthew

    2016-10-01

    Personal preparedness is a core activity but has been found to be frequently inadequate. Smart phone applications have many uses for the public, including preparedness. In 2012 the American Red Cross began releasing "disaster" apps for family preparedness and recovery. The Hurricane App was widely used during Hurricane Sandy in 2012. Patterns of download of the application were analyzed by using a download tracking tool by the American Red Cross and Google Analytics. Specific variables included date, time, and location of individual downloads; number of page visits and views; and average time spent on pages. As Hurricane Sandy approached in late October, daily downloads peaked at 152,258 on the day of landfall and by mid-November reached 697,585. Total page views began increasing on October 25 with over 4,000,000 page views during landfall compared to 3.7 million the first 3 weeks of October with a 43,980% increase in views of the "Right Before" page and a 76,275% increase in views of the "During" page. The Hurricane App offered a new type of "just-in-time" training that reached tens of thousands of families in areas affected by Hurricane Sandy. The app allowed these families to access real-time information before and after the storm to help them prepare and recover. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  15. Swamp tours in Louisiana post Hurricane Katrina and Hurricane Rita

    Treesearch

    Dawn J. Schaffer; Craig A. Miller

    2007-01-01

    Hurricanes Katrina and Rita made landfall in southern Louisiana during August and September 2005. Prior to these storms, swamp tours were a growing sector of nature-based tourism that entertained visitors while teaching about local flora, fauna, and culture. This study determined post-hurricane operating status of tours, damage sustained, and repairs made. Differences...

  16. Longwave emission trends over Africa and implications for Atlantic hurricanes

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Rechtman, Thomas; Karnauskas, Kristopher B.; Li, Laifang; Donnelly, Jeffrey P.; Kossin, James P.

    2017-09-01

    The latitudinal gradient of outgoing longwave radiation (OLR) over Africa is a skillful and physically based predictor of seasonal Atlantic hurricane activity. The African OLR gradient is observed to have strengthened during the satellite era, as predicted by state-of-the-art global climate models (GCMs) in response to greenhouse gas forcing. Prior to the satellite era and the U.S. and European clean air acts, the African OLR gradient weakened due to aerosol forcing of the opposite sign. GCMs predict a continuation of the increasing OLR gradient in response to greenhouse gas forcing. Assuming a steady linear relationship between African easterly waves and tropical cyclogenesis, this result suggests a future increase in Atlantic tropical cyclone frequency by 10% (20%) at the end of the 21st century under the RCP 4.5 (8.5) forcing scenario.

  17. Tropical Storm Lowell Becomes 7th Eastern Pacific Hurricane

    NASA Image and Video Library

    2014-08-21

    NOAA's GOES-West satellite watched as Tropical Storm Lowell strengthened into a large hurricane during the morning of August 21 and opened its eye. Hurricane force winds extend outward up to 60 miles (95 km) from the center, while tropical storm force winds extend outward up to 185 miles (295 km). The storm stretches over a greater distance. Lowell became the seventh hurricane of the Eastern Pacific Ocean season today, August 21 at 11 a.m. EDT (1500 UTC). Maximum sustained winds had increased to 75 mph (120 kph) making Lowell a Category One hurricane on the Saffir-Simpson Wind Scale. Little change in intensity is forecast by the National Hurricane Center (NHC) today, and NHC forecasters expect a slow weakening trend later today through August 22. It was centered near latitude 20.0 north and longitude 122.1 west, about 810 miles (1,300 km) west-southwest of the southern tip of Baja California, Mexico. It is moving to the northwest near 3 mph (4 kph) and is expected to move faster in that direction over the next two days. The NHC said that Lowell should begin to slowly weaken by August 22 as it moves over progressively cooler waters and into a drier and more stable air mass. Since Lowell is such a large cyclone, it will likely take longer than average to spin down. The GOES-West image of Lowell was created at the NASA/NOAA GOES Project, located at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. UAS Applications for Hurricane Science, Hurrican and Severe Storm Sentinel (HS3)

    NASA Technical Reports Server (NTRS)

    Braun, Scott

    2014-01-01

    Earth Science Industry Update: UAS Applications for Hurricane Science Unmanned systems can significantly transform hurricane observations and monitoring, improving our knowledge about and ability to forecast storm formation, track, and intensity change. NASA's use of the Global Hawk has demonstrated the scientific value of this platform and provided a proof-of-concept for operational applications. However, science flight operations face several challenges and constraints. In this session, learn about how NASA adapted the Global Hawk to do science; How NASA conducts its hurricane missions, and some of the challenges and constraints they face; Science results from NASA's recent hurricane field campaigns using the Global Hawk. How assimilation of dropsonde and radar data into weather prediction models may improve forecast accuracy; Other Earth science problems that could be addressed with Global Hawks.

  19. Broad-scale response of landbird migration to the immediate effects of Hurricane Katrina: Chapter 6B in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Barrow, Wylie; Buler, J.; Couvillion, Brady R.; Diehl, Robb; Faulkner, Stephen; Moore, F.; Randall, Lori

    2007-01-01

    It was the midst of songbird migration season when Hurricane Katrina hit the Louisiana coast in 2005. Typically these birds fatten up in Gulf Coast river bottomland forest for the long flight to Central and South America. After Katrina stripped plants of leaves, fruits, and insects in the fertile bottomlands of the Pearl River, weather radar indicated that migrant birds increased their use of adjacent pine woodlands.

  20. GPM Captures Hurricane Joaquin

    NASA Image and Video Library

    2017-12-08

    Joaquin became a tropical storm Monday evening (EDT) midway between the Bahamas and Bermuda and has now formed into Hurricane Joaquin, the 3rd of the season--the difference is Joaquin could impact the US East Coast. NASA's GPM satellite captured Joaquin Tuesday, September 29th at 21:39 UTC (5:39 pm EDT). Credit: NASA's Scientific Visualization Studio Data provided by the joint NASA/JAXA GPM mission. Download/read more: svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4367 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Hurricane Katrina: A Teachable Moment

    ERIC Educational Resources Information Center

    Bertrand, Peggy

    2009-01-01

    This article presents suggestions for integrating the phenomenon of hurricanes into the teaching of high school fluid mechanics. Students come to understand core science concepts in the context of their impact upon both the environment and human populations. Suggestions for using information about hurricanes, particularly Hurricane Katrina, in a…

  2. Late Holocene Hurricane Activity in the Gulf of Mexico from a Bayou Sediment Archive

    NASA Astrophysics Data System (ADS)

    Rodysill, J. R.; Donnelly, J. P.; Toomey, M.; Sullivan, R.; MacDonald, D.; Evans, R. L.; Ashton, A. D.

    2012-12-01

    Hurricanes pose a considerable threat to coastal communities along the Atlantic seaboard and in the Gulf of Mexico. The complex role of ocean and atmospheric dynamics in controlling storm frequency and intensity, and how these relationships could be affected by climate change, remains uncertain. To better predict how storms will impact coastal communities, it is vital to constrain their past behavior, in particular how storm frequency and intensity and the pattern of storm tracks have been influenced by past climate conditions. In an effort to characterize past storm behavior, our work contributes to the growing network of storm records along the Atlantic and Gulf coasts by reconstructing storm-induced deposits in the northern Gulf of Mexico during the Late Holocene. Previous work on the northern Gulf coast has shown considerable centennial-scale variability in the occurrence of intense hurricanes, much like the northern Atlantic coast and in the Caribbean Sea. The timing of active and quiet intervals during the last 1000 years amongst the Gulf Coast records appears to be anti-phased with stormy intervals along the North American east coast. The sparse spatial coverage of the existing intense hurricane reconstructions provides a limited view of the natural variability of intense hurricanes. A new, high resolution reconstruction of storms along the northern Gulf Coast would be beneficial in assembling the picture of the patterns of storminess during the Late Holocene. Our study site, Basin Bayou, is situated on the north side of Choctawhatchee Bay in northwest Florida. From 1851 to 2011, 68 storms have struck the coast within 75 miles of Basin Bayou, of which 10 were Category 3 or greater, making it a prime location to reconstruct intense hurricanes. Basin Bayou openly exchanges water with Choctawhatchee Bay through a narrow channel, which acts as a conduit for propagating storm surges, and potentially coarse-grained bay sediments, into the bayou. Our record is

  3. Hurricane Isadore

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: AIRS channel 2333 (2616 cm-1)Figure 2: HSB channel 2 (150 GHz)

    Three different Views of Hurricane Isidore from the Atmospheric Infrared Sounding System (AIRS) on Aqua.

    At the time Aqua passed over Isidore, it was classified as a Category 3 (possibly 4) hurricane, with minimum pressure of 934 mbar, maximum sustained wind speeds of 110 knots (gusting to 135) and an eye diameter of 20 nautical miles. Isidore was later downgraded to a Tropical Storm before gathering strength again.

    This is a visible/near-infrared image, made with the AIRS instrument. Its 2 km resolution shows fine details of the cloud structure, and can be used to help interpret the other images. For example, some relatively cloud-free regions in the eye of the hurricane can be distinguished. This image was made with wavelengths slightly different than those seen by the human eye, causing plants to appear very red.

    Figure 1 shows high and cold clouds in blue. Figure 2 shows heavy rain cells over Alabama in blue. This image shows the swirling clouds in white and the water of the Gulf of Mexico in blue. The eye of the hurricane is apparent in all three images.

    Figure 1 shows how the hurricane looks through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in clear regions. The lowest temperatures are over Alabama and are associated with high, cold cloud tops at the end of the cloud band streaming from the hurricane. Although the eye is visible, it does not appear to be completely cloud free.

    Figure 2 shows the hurricane as seen through a microwave channel of the Humidity Sounder for Brazil (HSB). This channel is sensitive to humidity, clouds and rain. Unlike the AIRS infrared channel, it can penetrate through cloud layers and therefore reveals some of the internal structure of the hurricane. In this

  4. Multi-hazard risk analysis related to hurricanes

    NASA Astrophysics Data System (ADS)

    Lin, Ning

    Hurricanes present major hazards to the United States. Associated with extreme winds, heavy rainfall, and storm surge, landfalling hurricanes often cause enormous structural damage to coastal regions. Hurricane damage risk assessment provides the basis for loss mitigation and related policy-making. Current hurricane risk models, however, often oversimplify the complex processes of hurricane damage. This dissertation aims to improve existing hurricane risk assessment methodology by coherently modeling the spatial-temporal processes of storm landfall, hazards, and damage. Numerical modeling technologies are used to investigate the multiplicity of hazards associated with landfalling hurricanes. The application and effectiveness of current weather forecasting technologies to predict hurricane hazards is investigated. In particular, the Weather Research and Forecasting model (WRF), with Geophysical Fluid Dynamics Laboratory (GFDL)'s hurricane initialization scheme, is applied to the simulation of the wind and rainfall environment during hurricane landfall. The WRF model is further coupled with the Advanced Circulation (AD-CIRC) model to simulate storm surge in coastal regions. A case study examines the multiple hazards associated with Hurricane Isabel (2003). Also, a risk assessment methodology is developed to estimate the probability distribution of hurricane storm surge heights along the coast, particularly for data-scarce regions, such as New York City. This methodology makes use of relatively simple models, specifically a statistical/deterministic hurricane model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, to simulate large numbers of synthetic surge events, and conducts statistical analysis. The estimation of hurricane landfall probability and hazards are combined with structural vulnerability models to estimate hurricane damage risk. Wind-induced damage mechanisms are extensively studied. An innovative windborne debris risk model is

  5. Seasonality in Children's Pedometer-Measured Physical Activity Levels

    ERIC Educational Resources Information Center

    Beighle, Aaron; Alderman, Brandon; Morgan, Charles F.; Le Masurier, Guy

    2008-01-01

    Seasonality appears to have an impact on children's physical activity levels, but equivocal findings demand more study in this area. With the increased use of pedometers in both research and practice, collecting descriptive data in various seasons to examine the impact of seasonality on pedometer-measured physical activity among children is…

  6. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    PubMed

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  7. Overview of Proposal on High Resolution Climate Model Simulations of Recent Hurricane and Typhoon Activity: The Impact of SSTs and the Madden Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Kang, In-Sik; Reale, Oreste

    2009-01-01

    This talk gives an update on the progress and further plans for a coordinated project to carry out and analyze high-resolution simulations of tropical storm activity with a number of state-of-the-art global climate models. Issues addressed include, the mechanisms by which SSTs control tropical storm. activity on inter-annual and longer time scales, the modulation of that activity by the Madden Julian Oscillation on sub-seasonal time scales, as well as the sensitivity of the results to model formulation. The project also encourages companion coarser resolution runs to help assess resolution dependence, and. the ability of the models to capture the large-scale and long-terra changes in the parameters important for hurricane development. Addressing the above science questions is critical to understanding the nature of the variability of the Asian-Australian monsoon and its regional impacts, and thus CLIVAR RAMP fully endorses the proposed tropical storm simulation activity. The project is open to all interested organizations and investigators, and the results from the runs will be shared among the participants, as well as made available to the broader scientific community for analysis.

  8. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    PubMed Central

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval. PMID:26906670

  9. Florida Department of Health Workers’ Response to 2004 Hurricanes: A Qualitative Analysis

    PubMed Central

    Herberman Mash, Holly B.; Fullerton, Carol S.; Kowalski-Trakofler, Kathleen; Reissman, Dori B.; Scharf, Ted; Shultz, James M.; Ursano, Robert J.

    2015-01-01

    Objective Examinations of the demands on public health workers after disaster exposure have been limited. Workers provide emergency care while simultaneously risking injury, damage to personal property, and threats to their own and their family’s safety. We examined the disaster management experiences of 4323 Florida Department of Health workers 9 months after their response to 4 hurricanes and 1 tropical storm during a 7-week period in August and September of 2004. Methods Participants completed a self-report questionnaire focused on work performance, mental and physical health, daily functioning, sleep disturbance, physiological arousal, and injury and work demand at the time of the hurricanes, and answered open-ended questions that described their experiences in more detail. Results A qualitative analysis conducted from the write-in data yielded 4 domains: (1) work/life balance; (2) training for disaster response role; (3) workplace support; and (4) recovery. Conclusions Study findings highlighted a number of concerns that are important to public health workers who provide emergency care after a disaster and, in particular, multiple disasters such as during the 2004 hurricane season. The findings also yielded important recommendations for emergency public health preparedness. PMID:24618166

  10. Florida Department of Health workers' response to 2004 hurricanes: a qualitative analysis.

    PubMed

    Herberman Mash, Holly B; Fullerton, Carol S; Kowalski-Trakofler, Kathleen; Reissman, Dori B; Scharf, Ted; Shultz, James M; Ursano, Robert J

    2013-04-01

    Examinations of the demands on public health workers after disaster exposure have been limited. Workers provide emergency care while simultaneously risking injury, damage to personal property, and threats to their own and their family's safety. We examined the disaster management experiences of 4323 Florida Department of Health workers 9 months after their response to 4 hurricanes and 1 tropical storm during a 7-week period in August and September of 2004. Participants completed a self-report questionnaire focused on work performance, mental and physical health, daily functioning, sleep disturbance, physiological arousal, and injury and work demand at the time of the hurricanes, and answered open-ended questions that described their experiences in more detail. A qualitative analysis conducted from the write-in data yielded 4 domains: (1) work/life balance; (2) training for disaster response role; (3) workplace support; and (4) recovery. Study findings highlighted a number of concerns that are important to public health workers who provide emergency care after a disaster and, in particular, multiple disasters such as during the 2004 hurricane season. The findings also yielded important recommendations for emergency public health preparedness.

  11. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  12. Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Judi, David R.; Leung, L. Ruby

    Coastal populations in the global tropics and sub-tropics are vulnerable to the devastating impacts of hurricane storm surge and this risk is only expected to rise under climate change. In this study, we address this issue for the U.S. Gulf and Florida coasts. Using the framework of Potential Intensity, observations and output from coupled climate models, we show that the future large-scale thermodynamic environment may become more favorable for hurricane intensification. Under the RCP 4.5 emissions scenario and for the peak hurricane season months of August–October, we show that the mean intensities of Atlantic hurricanes may increase by 1.8–4.2 %more » and their lifetime maximum intensities may increase by 2.7–5.3 % when comparing the last two decades of the 20th and 21st centuries. We then combine our estimates of hurricane intensity changes with projections of sea-level rise to understand their relative impacts on future storm surge using simulations with the National Weather Service’s SLOSH (Sea, Lake, and Overland Surges from Hurricanes) model for five historical hurricanes that made landfall in the Gulf of Mexico and Florida. Considering uncertainty in hurricane intensity changes and sea-level rise, our results indicate a median increase in storm surge ranging between 25 and 47 %, with changes in hurricane intensity increasing future storm surge by about 10 % relative to the increase that may result from sea level rise alone, with highly non-linear response of population at risk.« less

  13. Velocity Spectrum Variation in Central Gulf of Mexico: 9Case Studies for the 2005 Hurricanes

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Li, C.

    2012-12-01

    Significant near inertial oscillation caused by hurricanes is common in the ocean. The details of the vertical and temporal variations of hurricane induced near inertial oscillation are usually complicated. We have done a case study of such vertical and temporal variations of velocity spectrum focusing around the inertial frequency for the 2005 hurricane season. Data were from a deep water mooring chain containing a series of current meters and 2 ADCPs from June to November 2005. The velocity spectrum is obtained with a 10-day sliding window at different depths for the 40-hour high-passed data to exclude the low frequency Loop Current variations. This gives a temporal variation of the spectrum at different depths. Such variations in velocity spectrum are resulted from the ocean dynamics influenced by the passage of hurricanes. Our preliminary analysis of the results show that (1) right before the center of the hurricane gets closest to the mooring site, there always exists a 2-peak feature of energy at almost all depths; while during the passage of the hurricane these two peaks will merge Into one peak which has a corresponding period of 30.3 to 25.6 hours, encompassing that corresponding to the inertial frequency in this latitude; (2) after the passage of the hurricane, the decay process of energy is also complicated. It is found that the whole profile can be at least divided into 3 layers: surface to 800m, 800m to 1500m, and 1500m to the bottom, which is consistent with the stratification of the water column. It is also found that shift in the peak frequency to either side of the inertial frequency is very common. The main peak of energy can break into several parts during the decay stage, with blue shift and red shift.; ;

  14. Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests

    NASA Astrophysics Data System (ADS)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.

    2011-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.

  15. Hurricanes Frances and Ivan

    Atmospheric Science Data Center

    2014-05-15

    ... Image NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane ... especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane ...

  16. Track-pattern-based seasonal prediction model for intense tropical cyclone activities over the North Atlantic and the western North Pacific basins

    NASA Astrophysics Data System (ADS)

    Choi, W.; Ho, C. H.

    2015-12-01

    Intense tropical cyclones (TCs) accompanying heavy rainfall and destructive wind gusts sometimes cause incredible socio-economic damages in the regions near their landfall. This study aims to analyze intense TC activities in the North Atlantic (NA) and the western North Pacific (WNP) basins and develop their track propensity seasonal prediction model. Considering that the number of TCs in the NA basin is much smaller than that in the WNP basin, different intensity criteria are used; category 1 and above for NA and category 3 and above for WNP based on Saffir-Simpson hurricane wind scale. By using a fuzzy clustering method, intense TC tracks in the NA and the WNP basins are classified into two and three representative patterns, respectively. Each pattern shows empirical relationships with climate variabilities such as sea surface temperature distribution associated with El Niño/La Niña or Atlantic Meridional Mode, Pacific decadal oscillation, upper and low level zonal wind, and strength of subtropical high. The hybrid statistical-dynamical method has been used to develop the seasonal prediction model for each pattern based on statistical relationships between the intense TC activity and seasonal averaged key predictors. The model performance is statistically assessed by cross validation for the training period (1982-2013) and has been applied for the 2014 and 2015 prediction. This study suggests applicability of this model to real prediction work and provide bridgehead of attempt for intense TC prediction.

  17. Projecting the past and future impacts of hurricanes on the carbon balance of eastern U.S. forests (1851-2100)

    NASA Astrophysics Data System (ADS)

    Fisk, J.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.

    2009-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Estimates of the carbon emissions resulting from single storms range as high as ~100 Tg C, an amount equivalent to the annual U.S. carbon sink in forest trees. Recent studies have estimated the historic regional carbon emissions from hurricane activity using an empirically based approach. Here, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by maps of mortality and damage based on historic hurricane tracks and future scenarios to predict the past and future impacts of hurricanes on the carbon balance of eastern U.S. forests. Model estimates compare well to previous empirically based estimates, with mean annual biomass loss of 26 Tg C yr-1 (range 0 to ~225 Tg C yr-1) resulting from hurricanes during the period 1851-2000. Using the mechanistic model, we are able to include the effects of both disturbance and recovery on the net carbon flux. We find a regional carbon sink throughout much of the 20th century resulting from forest recovery following a peak in hurricane activity during the late 19th century exceeding biomass loss. Recent increased hurricane activity has resulted in the region becoming a net carbon source. For the future, several recent studies have linked increased sea surface temperatures expected with climate change to increased hurricane activity. Based on these relationships, we investigate a range of scenarios of future hurricane activity and find the potential for substantial increases in emissions from hurricane mortality and reductions in regional carbon stocks. In our scenario with the largest increase in hurricane activity, we find a 35% increase in area disturbed by 2100, but due to the reduction of standing biomass, only a 20% increase in biomass loss per year. Developing this kind of predictive modeling capability that tracks disturbance events and

  18. Recovery from PTSD following Hurricane Katrina.

    PubMed

    McLaughlin, Katie A; Berglund, Patricia; Gruber, Michael J; Kessler, Ronald C; Sampson, Nancy A; Zaslavsky, Alan M

    2011-06-01

    We examined patterns and correlates of speed of recovery of estimated posttraumatic stress disorder (PTSD) among people who developed PTSD in the wake of Hurricane Katrina. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey 7-19 months following the hurricane and again 24-27 months posthurricane. The baseline survey assessed PTSD using a validated screening scale and assessed a number of hypothesized predictors of PTSD recovery that included sociodemographics, prehurricane history of psychopathology, hurricane-related stressors, social support, and social competence. Exposure to posthurricane stressors and course of estimated PTSD were assessed in a follow-up interview. An estimated 17.1% of respondents had a history of estimated hurricane-related PTSD at baseline and 29.2% by the follow-up survey. Of the respondents who developed estimated hurricane-related PTSD, 39.0% recovered by the time of the follow-up survey with a mean duration of 16.5 months. Predictors of slow recovery included exposure to a life-threatening situation, hurricane-related housing adversity, and high income. Other sociodemographics, history of psychopathology, social support, social competence, and posthurricane stressors were unrelated to recovery from estimated PTSD. The majority of adults who developed estimated PTSD after Hurricane Katrina did not recover within 18-27 months. Delayed onset was common. Findings document the importance of initial trauma exposure severity in predicting course of illness and suggest that pre- and posttrauma factors typically associated with course of estimated PTSD did not influence recovery following Hurricane Katrina. © 2011 Wiley-Liss, Inc.

  19. Landslides triggered by Hurricane Mitch in Guatemala -- inventory and discussion

    USGS Publications Warehouse

    Bucknam, Robert C.; Coe, Jeffrey A.; Chavarria, Manuel Mota; Godt, Jonathan W.; Tarr, Arthur C.; Bradley, Lee-Ann; Rafferty, Sharon A.; Hancock, Dean; Dart, Richard L.; Johnson, Margo L.

    2001-01-01

    The torrential rains that accompanied Hurricane Mitch in October and November of 1998 triggered thousands of landslides in the moderate to steep terrain bordering the Motagua and Polochic Rivers in eastern Guatemala. Using aerial photographs taken between January and March 2000 we mapped all visible landslides larger than about 15 m in minimum dimension in a study area of 10,000 km2 encompassing twenty 1:50,000-scale topographic map quadrangles. Rainfall from Hurricane Mitch was exceptional because it was geographically widespread, prolonged over a period of about a week, moderate to heavy in intensity, and occurred at the end of the rainy season when the ground already had a high moisture content. As documented in this report, this type of rainfall, on saturated or nearly saturated ground, has the capability to trigger both shallow and deep-seated landslides over a large area. We mapped about 11,500 landslides in the study area. The mapped landslides were of two general types: relatively small, translational and rotational landslides that commonly mobilized into debris flows and covered less than several hectares in area (not including flow paths), and large, commonly translational, landslides that sometimes generated debris flows and covered between 15 ha and 25 ha (not including flow paths). The main concentrations of landslides are on moderate-to-steep hillslopes underlain by diverse geologic units. For the purpose of describing the mapped landslides, we divided the study area into five distinct regions based on differing geologic and geomorphic characteristics. These regions include the upper Polochic valley and surrounding highlands, the central Sierra de las Minas, the hills surrounding La Union and Zacapa, the eastern Sierra de las Minas, and the border region with Honduras. All of these areas received between 200 mm and 600 mm of rain over a 13-day period between October 25 and November 6. The highest rainfall amounts (400 mm to 600 mm) occurred in the

  20. Hurricane Blanca Strengthens

    NASA Image and Video Library

    2015-06-03

    Blanca has rapidly intensified with an increase in wind speed of 60 knots since 1200Z on June 2. The hurricane has developed a distinct pinhole eye in visible images surrounded by very deep convection. There is an opportunity for Blanca to intensify further since the hurricane is located within an ideal environment of low shear and high ocean heat content. Beyond 48 hours, the hurricane will encounter lower SSTs and a gradual weakening should begin. During the next 24 hours, the hurricane should begin a northwestward track with some increase in forward speed becoming a potential threat to Baja California in a few days. This image was taken by GOES East at 1445Z on June 3, 2015. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Upper-ocean Response to Hurricane Gonzalo (2014): Salinity Effects Revealed by Targeted and Sustained Underwater Glider Observation

    NASA Astrophysics Data System (ADS)

    Domingues, R. M.; Goni, G. J.; Bringas, F.; Lee, S. K.; Kim, H. S. S.; Halliwell, G. R., Jr.; Dong, J.; Morell, J. M.; Pomales, L.

    2016-02-01

    In July 2014, two underwater gliders were deployed off Puerto Rico as part of a multi-institutional effort lead by NOAA/AOML funded by the Disaster Appropriations Relief Act of 2013 known as Sandy Supplemental. The goal of this work is to collect ocean observations to: (1) investigate the response of the ocean to tropical cyclone (TC) wind conditions; (2) improve understanding on the role that the ocean plays in the intensification of TCs; and (3) help improve TC seasonal and intensity forecasts. The two gliders were piloted along predetermined tracks in the Caribbean Sea and in the North Atlantic Ocean (Figure 1), where TCs very often travel and intensify. On October 12, 2014, TC Gonzalo developed in the tropical North Atlantic, reaching the status of Category 3 hurricane on October 14 as it travelled 85 km northeast of the location of the glider (site B, Figure 1). The sampling strategy adopted during the passage of Hurricane Gonzalo consisted of carrying out observations: along a repeat section three times between sites A and B, one before and two after the passage of the hurricane; and at a fixed location at site B during the passage of the hurricane. Observations collected before, during, and after the passage of this hurricane were analyzed to improve our understanding of the upper-ocean response to hurricane winds. The main finding in this study is that salinity played an important role on the upper-ocean response to Hurricane Gonzalo; where a near-surface barrier-layer has likely suppressed the hurricane-induced upper-ocean cooling, leading to smaller than expected temperature changes of -0.4°C. Post-storm observations also revealed a partial recovery of the ocean to pre-storm conditions 11 days after the hurricane. Glider observations were further compared with outputs from a numerical coupled atmospheric-ocean model used for hurricane prediction to evaluate the model performance in simulating the upper-ocean response during Hurricane Gonzalo. The

  2. Difficulties in separating hurricane induced effects from natural benthic succession: Hurricane Isabel, a case study from Eastern Virginia, USA

    NASA Astrophysics Data System (ADS)

    Hughes, C.; Richardson, C. A.; Luckenbach, M.; Seed, R.

    2009-11-01

    Hurricane Isabel reached the Eastern seaboard of North America on 18 September 2003 causing estimated damage >3 billion US dollars and the death of ˜50 people. Isabel is considered to be one of the most significant tropical cyclones to affect Virginia, since the Chesapeake Potomac Hurricane of 1933 and Hurricane Hazel in 1954. A study of the temporal changes in the benthic fauna pre- and post-hurricane was conducted on an intertidal sandflat within the dynamic barrier island system near Wachapreague, Eastern Virginia. Replicate sediment cores were collected 3 weeks before Isabel made landfall and further samples were collected on 5 occasions over the following 20 months. An immediate effect of Isabel was a doubling in the number of species, a significant increase in invertebrate species diversity ( H') and a rise in opportunistic species and deposit feeders, but a non-significant increase in the total number of organisms. Changes in infauna occurred such that by the end of the study there were significantly increased numbers of species, faunal abundances and community diversity measures, as compared with pre-hurricane samples, suggesting a potentially positive medium-term effect of this hurricane perturbation. The most notable direct effects of the hurricane were on the relative abundances of feeding guilds with a reduction in interface feeders from 87% pre-hurricane to 64% post-hurricane, and an increase in surface deposit feeders from 7% pre-hurricane to 20% post-hurricane. The study highlights potential problems in interpreting post-perturbation data when insufficient pre-perturbation data exist.

  3. Hurricanes: Are You Prepared?

    PubMed

    Rodriguez, Fred H; Petersen, John; Selvaratnam, Rajeevan; Mann, Peggy; Hoyne, Jonathan B

    2018-03-21

    Severe weather events such as hurricanes have the potential to cause significant disruption of laboratory operations. Comprehensive planning is essential to mitigate the impact of such events. The essential elements of a Hurricane Plan, based on our personal experiences, are detailed in this article.

  4. Hurricane Odile

    NASA Image and Video Library

    2017-12-08

    At about 10:45 p.m. Mountain Daylight Time (MDT) on September 14, 2014, Hurricane Odile made landfall as a Category 3 storm near Cabo San Lucas, Mexico. According to the U.S. National Hurricane Center, Odile arrived with wind speeds of 110 knots (204 kilometers or 127 miles per hour). The storm tied Olivia (1967) as the strongest hurricane to make landfall in the state of Baja California Sur in the satellite era. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color view of the storm at about noon MDT on September 14, when it was still southeast of the Baja California peninsula. Unisys Weather reported that the Category 4 storm had maximum sustained wind speeds of 115 knots (213 kilometers per hour) at the time. Odile had weakened to a Category 2 hurricane by 6 a.m. MDT on September 15. The storm was expected to continue weakening as it moved up the peninsula and over the area’s rough terrain, according to weather blogger Jeff Masters. Meteorologists noted that while damaging winds posed the biggest threat in the short term, inland areas of the U.S. Southwest could face heavy rainfall by September 16. The rain expected from Odile came one week after the U.S. Southwest experienced flash floods from the remnants of Hurricane Norbert. According to weather and climate blogger Eric Holthaus, those floods did little to relieve the area’s ongoing drought. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Kathryn Hansen. Instrument(s): Terra - MODIS Read more: earthobservatory.nasa.gov/IOTD/view.php?id=84378&eocn... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on

  5. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey.

    PubMed

    Fisher, Irene J; Phillips, Patrick J; Colella, Kaitlyn M; Fisher, Shawn C; Tagliaferri, Tristen; Foreman, William T; Furlong, Edward T

    2016-06-30

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24-32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies. Published by Elsevier Ltd.

  6. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey

    USGS Publications Warehouse

    Fisher, Irene; Phillips, Patrick J.; Colella, Kaitlyn; Fisher, Shawn C.; Tagliaferri, Tristen N.; Foreman, William T.; Furlong, Edward T.

    2016-01-01

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24–32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies.

  7. Mapping Hurricane Inland-Storm Tides

    NASA Astrophysics Data System (ADS)

    Turco, M.; East, J. W.; Dorsey, M. E.; McGee, B. D.; McCallum, B. E.; Pearman, J. L.; Sallenger, A. H.; Holmes, R. R.; Berembrock, C. E.; Turnipseed, D. P.; Mason, R. R.

    2008-12-01

    Historically, hurricane-induced storm-tides were documented through analysis of structural or vegetative damage and high-water marks. However, these sources rarely provided quantitative information about the timing of the flooding, the sequencing of multiple paths by which the storm-surge waters arrived, or the magnitude of waves and wave run-up comprising floodwaters. In response to these deficiencies, the U.S. Geological Survey (USGS) developed and deployed an experimental mobile storm-surge network to provide detailed time-series data for selected hurricane landfalls. The USGS first deployed the network in September 2005 as Hurricane Rita approached the Texas and Louisiana coasts. The network for Rita consisted of 32 water-level and 14 barometric-pressure monitoring sites. Sensors were located at distances ranging from a few hundred feet to approximately 30 miles inland and sampled 4,000 square miles. Deployments have also occurred for Hurricanes Wilma, Gustav, and Ike. For Hurricane Gustav, more than 100 water level sensors were deployed. Analysis of the water-level data enable construction of maps depicting surge topography through time and space, essentially rendering elements of a 3-dimensional view of the storm-surge dome as it moves on- shore, as well as a map of maximum water-level elevations. The USGS also acquired LIDAR topographic data from coasts impacted by hurricanes. These data reveal extreme changes to the beaches and barrier islands that arise from hurricane storm surge and waves. By better understanding where extreme changes occur along our coasts, we will be able to position coastal structures away from hazards.

  8. The Department of Defense and Homeland Security relationship: Hurricane Katrina through Hurricane Irene.

    PubMed

    Weaver, John Michael

    2015-01-01

    This research explored federal intervention with the particular emphasis on examining how a collaborative relationship between Department of Defense (DOD) and Homeland Security (DHS) led to greater effectiveness between these two federal departments and their subordinates (United States Northern Command and Federal Emergency Management Agency, respectively) during the preparation and response phases of the disaster cycle regarding US continental-based hurricanes. Through the application of a two-phased, sequential mixed methods approach, this study determined how their relationship has led to longitudinal improvements in the years following Hurricane Katrina, focusing on hurricanes as the primary unit of analysis.

  9. Pre- and Post-Hurricane Fruit Availability: Implications for Puerto Rican Parrots in the Luquillo Mountains.

    Treesearch

    JR WUNDERLE

    1999-01-01

    Fruit availability on 25 plant species, consumed or potentially consumed by the Puerto Rican Parrot (Amazona vittata), was studied to document the seasonal and annual variation in fruit production in the Luquillo Mountains. In the 33 months before Hurricane Hugo, an annual cycle in the number of species with ripe fruit was evident, with a peak in October-February and a...

  10. Hurricane effects on backreef echinoderms of the Caribbean

    NASA Astrophysics Data System (ADS)

    Aronson, R. B.

    1993-11-01

    The impacts of Hurricanes Gilbert (1988) and Hugo (1989) on echinoderm assemblages were assessed in backreef habitats in Jamaica and St. Croix, respectively. One site on each island was censused before the hurricanes. Ophiuroids were monitored at the Jamaican site for three years following Hurricane Gilbert, and ophiuroids and echinoids were monitored at the site on St. Croix for two years following Hurricane Hugo. No hurricane-related changes in ophiuroid abundance were observed at either site. Likewise, there was no evidence that Hurricane Hugo altered echinoid abundance at St. Croix. These negative results correlated with an observed lack of hurricane-generated physical disturbance in the backreef areas, despite 6-m waves that broke on the reef crests at the two sites during the storms. Hurricane impacts on mobile faunas appear to depend directly on physical habitat alterations.

  11. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157. Such...

  12. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157. Such...

  13. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157. Such...

  14. 7 CFR 701.150 - 2005 hurricanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false 2005 hurricanes. 701.150 Section 701.150 Agriculture... 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701.150 through 701.157. Such...

  15. Increases in gonorrhea among high school students following hurricane Katrina.

    PubMed

    Nsuami, M J; Taylor, S N; Smith, B S; Martin, D H

    2009-06-01

    To determine the prevalence of Neisseria gonorrhoeae in a student population before hurricane Katrina and after their residential neighbourhoods were devastated in the wake of the hurricane. Students in a New Orleans public high school were offered urine screening for N gonorrhoeae and Chlamydia trachomatis using nucleic acid amplification tests before (n = 346) and after (n = 333) hurricane Katrina. Based on studies showing gonorrhea clustering in physically deteriorated neighbourhoods, it was hypothesised that the post-Katrina gonorrhea prevalence would be higher among students whose neighbourhoods still showed signs of deterioration in the aftermath of the hurricane. Before and after hurricane Katrina, the prevalence of gonorrhea increased from 2.3% (8/346, 95% CI 1.3% to 4.6%) to 5.1% (17/333, 95% CI 3.1% to 8.2%), respectively (one-sided p = 0.027). In logistic regression of gonorrhea controlling for gender, age, chlamydia infection and exposure to hurricane-affected residential neighbourhood conditions, gonorrhea was significantly associated with female gender (odds ratio (OR) 2.6, 95% CI 1.0 to 6.3; p = 0.04) and with chlamydia infection (OR 9.2, 95% CI 3.9 to 21.7; p<0.001). Although of weak statistical significance, there was a strong independent positive trend toward testing positive for gonorrhea after the hurricane (OR 2.2, 95% CI 0.9 to 5.4; p = 0.09). The analysis indicates that the odds of testing positive for gonorrhea more than doubled among students after the hurricane, indicating that surveillance activities should be restored to monitor sexually transmitted infections (STIs) among at-risk populations. Redoubled efforts should be put into STI screening programmes as soon as possible following natural disasters to prevent resurgent STI incidence rates.

  16. 7 CFR 701.50 - 2005 hurricanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false 2005 hurricanes. 701.50 Section 701.50 Agriculture... ADMINISTERED UNDER THIS PART § 701.50 2005 hurricanes. In addition benefits elsewhere allowed by this part, claims related to calendar year 2005 hurricane losses may be allowed to the extent provided for in §§ 701...

  17. Atlantic hurricane response to geoengineering

    NASA Astrophysics Data System (ADS)

    Moore, John; Grinsted, Aslak; Ji, Duoying; Yu, Xiaoyong; Guo, Xiaoran

    2015-04-01

    Devastating Atlantic hurricanes are relatively rare events. However their intensity and frequency in a warming world may rapidly increase - perhaps by a factor of 5 for a 2°C mean global warming. Geoengineering by sulphate aerosol injection preferentially cools the tropics relative to the polar regions, including the hurricane main development region in the Atlantic, suggesting that geoengineering may be an effective method of controlling hurricanes. We examine this hypothesis using 6 Earth System Model simulations of climate under the GeoMIP G3 and G4 schemes that use aerosols to reduce the radiative forcing under the RCP4.5 scenario. We find that although temperatures are ameliorated by geoengineering, the numbers of storm surge events as big as that caused the 2005 Katrina hurricane are only slightly reduced compared with no geoengineering. As higher levels of sulphate aerosol injection produce diminishing returns in terms of cooling, but cause undesirable effects in various regions, it seems that stratospheric aerosol geoengineering is not an effective method of controlling hurricane damage.

  18. Ocean Model Impact Study for Coupled Hurricane Forecasting: An HFIP Initiative

    NASA Astrophysics Data System (ADS)

    Kim, H. S. S.; Halliwell, G. R., Jr.; Tallapragada, V.; Black, P. G.; Bond, N.; Chen, S.; Cione, J.; Cronin, M. F.; Ginis, I.; Liu, B.; Miller, L.; Jayne, S. R.; Sanabia, E.; Shay, L. K.; Uhlhorn, E.; Zhu, L.

    2016-02-01

    Established in 2009, the NOAA Hurricane Forecast Improvement Project (HFIP) is a ten-year project to promote accelerated improvements hurricane track and intensity forecasts (Gall et al. 2013). The Ocean Model Impact Tiger Team (OMITT) consisting of model developers and research scientists was formed as one of HFIP working groups in December 2014, to evaluate the impact of ocean coupling in tropical cyclone (TC) forecasts. The team investigated the ocean model impact in real cases for Category 3 Hurricane Edouard in 2014, using simulations and observations that were collected for different stages of the hurricane. Two Eastern North Pacific Hurricanes in 2015, Blanca and Dolores, are also of special interest. These two powerful Category 4 storms followed a similar track, however, they produced dramatically different ocean cooling, about 7.2oC for Hurricane Blanca but only about 2.7oC for Hurricane Dolores, and the corresponding intensity changes were negative 40 ms-1 and 20 ms-1, respectively. Two versions of operational HWRF and COAMPS-TC coupled prediction systems are employed in the study. These systems are configured to have 1D and 3D ocean dynamics coupled to the atmosphere. The ocean components are initialized separately with climatology, analysis and nowcast products to evaluate the impact of ocean initialization on hurricane forecasts. Real storm forecast experiments are being designed and performed with different levels of the ocean model complexity and various model configurations to study model sensitivity. In this talk, we report the OMITT activities conducted during the past year, present preliminary results of on-going investigation of air-sea interactions in the simulations, and discuss future plans toward improving coupled TC predictions. Gall, R., J. Franklin, F. Marks, E.N. Rappaport, and F. Toepfer, 2013: THE HURRICANE FORECAST IMPROVEMENT PROJECT. Bull. Amer. Meteor. Soc., 329-343.

  19. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    ERIC Educational Resources Information Center

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  20. Hurricane Katrina impacts on Mississippi forests

    Treesearch

    Sonja N. Oswalt; Christopher Oswalt; Jeffery Turner

    2008-01-01

    Hurricane Katrina triggered public interest and concern for forests in Mississippi that required rapid responses from the scientific community. A uniform systematic sample of 3,590 ground plots were established and measured in 687 days immediately after the impact of Hurricane Katrina on the Gulf Coast. The hurricane damaged an estimated 521 million trees with more...

  1. Coastal change from Hurricane Sandy and the 2012-13 winter storm season: Fire Island, New York

    USGS Publications Warehouse

    Hapke, Cheryl J.; Brenner, Owen; Henderson, Rachel E.; Reynolds, B.J.

    2013-01-01

    The U.S. Geological Survey (USGS) mounted a substantial effort in response to Hurricane Sandy including an assessment of the morphological impacts to the beach and dune system at Fire Island, New York. Field surveys of the beach and dunes collected just prior to and after landfall were used to quantify change in several focus areas. In order to quantify morphologic change along the length of the island, pre-storm (May 2012) and post-storm (November 2012) lidar and aerial photography were used to assess changes to the shoreline and beach, and to measure volumetric changes. The extent and thicknesses of overwash deposits were mapped in the field, and measurements were used to determine volume, distribution, and characteristics of the deposits. The beaches and dunes on Fire Island were severely eroded during Hurricane Sandy, and the island breached in three locations on the eastern segment of the island. Landward shift of the upper portion of the beach averaged 19.7 meters (m) but varied substantially along the coast. Shoreline change was also highly variable, but the shoreline prograded during the storm by an average of 11.4 m, due to the deposition of material eroded from the upper beach and dunes onto the lower portion of the beach. The beaches and dunes lost 54.4 percent of their pre-storm volume, and the dunes experienced overwash along 46.6 percent of the island. The inland overwash deposits account for 14 percent of the volume lost from the beaches and dunes, indicating that the majority of material was moved offshore. In the winter months following Hurricane Sandy, seven storm events with significant wave heights greater than four m were recorded at a wave buoy 30 nautical miles south of Fire Island. Monthly shoreline and profile surveys indicate that the beach continued to erode dramatically. The shoreline, which exhibited a progradational trend immediately after Sandy, eroded an average of 21.4 m between November 2012 and mid-March 2013, with a maximum

  2. Genesis of tornadoes associated with hurricanes

    NASA Technical Reports Server (NTRS)

    Gentry, R. C.

    1983-01-01

    The climatological history of hurricane-tornadoes is brought up to date through 1982. Most of the tornadoes either form near the center of the hurricane, from the outer edge of the eyewall outward, or in an area between north and east-southeast of the hurricane center. The blackbody temperatures of the cloud tops which were analyzed for several hurricane-tornadoes that formed in the years 1974, 1975, and 1979, did not furnish strong precursor signals of tornado formation, but followed one of two patterns: either the temperatures were very low, or the tornado formed in areas of strong temperature gradients. Tornadoes with tropical cyclones most frequently occur at 1200-1800 LST, and although most are relatively weak, they can reach the F3 intensity level. Most form in association with the outer rainbands of the hurricane.

  3. Life of a Six-Hour Hurricane

    NASA Technical Reports Server (NTRS)

    Shelton, Kay L.; Molinari, John

    2009-01-01

    Hurricane Claudette developed from a weak vortex in 6 h as deep convection shifted from downshear into the vortex center, despite ambient vertical wind shear exceeding 10 m/s. Six hours later it weakened to a tropical storm, and 12 h after the hurricane stage a circulation center could not be found at 850 hPa by aircraft reconnaissance. At hurricane strength the vortex contained classic structure seen in intensifying hurricanes, with the exception of 7-12 C dewpoint depressions in the lower troposphere upshear of the center. These extended from the 100-km radius to immediately adjacent to the eyewall, where equivalent potential temperature gradients reached 6 K/km. The dry air was not present prior to intensification, suggesting that it was associated with vertical shear-induced subsidence upshear of the developing storm. It is argued that weakening of the vortex was driven by cooling associated with the mixing of dry air into the core, and subsequent evaporation and cold downdrafts. Evidence suggests that this mixing might have been enhanced by eyewall instabilities after the period of rapid deepening. The existence of a fragile, small, but genuinely hurricane-strength vortex at the surface for 6 h presents difficult problems for forecasters. Such a "temporary hurricane" in strongly sheared flow might require a different warning protocol than longer-lasting hurricane vortices in weaker shear.

  4. The trauma signature of 2016 Hurricane Matthew and the psychosocial impact on Haiti

    PubMed Central

    Shultz, James M.; Cela, Toni; Marcelin, Louis Herns; Espinola, Maria; Heitmann, Ilva; Sanchez, Claudia; Jean Pierre, Arielle; Foo, Cheryl YunnShee; Thompson, Kip; Klotzbach, Philip; Espinel, Zelde; Rechkemmer, Andreas

    2016-01-01

    ABSTRACT Background. Hurricane Matthew was the most powerful tropical cyclone of the 2016 Atlantic Basin season, bringing severe impacts to multiple nations including direct landfalls in Cuba, Haiti, Bahamas, and the United States. However, Haiti experienced the greatest loss of life and population disruption. Methods. An established trauma signature (TSIG) methodology was used to examine the psychological consequences of Hurricane Matthew in relation to the distinguishing features of this event. TSIG analyses described the exposures of Haitian citizens to the unique constellation of hazards associated with this tropical cyclone. A hazard profile, a matrix of psychological stressors, and a “trauma signature” summary for the affected population of Haiti - in terms of exposures to hazard, loss, and change - were created specifically for this natural ecological disaster. Results. Hazard characteristics of this event included: deluging rains that triggered mudslides along steep, deforested terrain; battering hurricane winds (Category 4 winds in the “eye-wall” at landfall) that dismantled the built environment and launched projectile debris; flooding “storm surge” that moved ashore and submerged villages on the Tiburon peninsula; and pummeling wave action that destroyed infrastructure along the coastline. Many coastal residents were left defenseless to face the ravages of the storm. Hurricane Matthew's slow forward progress as it remained over super-heated ocean waters added to the duration and degree of the devastation. Added to the havoc of the storm itself, the risks for infectious disease spread, particularly in relation to ongoing epidemics of cholera and Zika, were exacerbated. Conclusions. Hurricane Matthew was a ferocious tropical cyclone whose meteorological characteristics amplified the system's destructive force during the storm's encounter with Haiti, leading to significant mortality, injury, and psychological trauma. PMID:28321360

  5. Hurricane-related air-sea interactions, circulation modifications, and coastal impacts on the eastern Louisiana coastline

    NASA Astrophysics Data System (ADS)

    Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.

    2012-12-01

    Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate air-sea interactions pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20

  6. Forecasting hurricane impact on coastal topography: Hurricane Ike

    USGS Publications Warehouse

    Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger,, Asbury H.; Turco, Michael J.; East, Jeffery W.; Taylor, Arthur A.; Shaffer, Wilson A.

    2010-01-01

    Extreme storms can have a profound impact on coastal topography and thus on ecosystems and human-built structures within coastal regions. For instance, landfalls of several recent major hurricanes have caused significant changes to the U.S. coastline, particularly along the Gulf of Mexico. Some of these hurricanes (e.g., Ivan in 2004, Katrina and Rita in 2005, and Gustav and Ike in 2008) led to shoreline position changes of about 100 meters. Sand dunes, which protect the coast from waves and surge, eroded, losing several meters of elevation in the course of a single storm. Observations during these events raise the question of how storm-related changes affect the future vulnerability of a coast.

  7. Improved Hurricane Boundary Layer Observations with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Changy, P.; Carswell, J.; Contreras, R.; Chu, T.

    2006-01-01

    During the NOAA/NESDIS 2005 Hurricane Season (HS2005) and the 2006 Winter Experiment, the University of Massachusetts (UMass) installed two instruments on the NOAA N42RF WP-3D research aircraft: the Imaging Wind and Rain Airborne Profiler (IWRAP) and the Simultaneous Frequency Microwave Radiometer (SFMR). IWRAP is a dual-band (C- and Ku), dual-polarized pencil-beam airborne radar that profiles the volume backscatter and Doppler velocity from rain and that also measures the ocean backscatter response. It simultaneously profiles along four separate incidence angles while conically scanning at 60 RPM. SFMR is a C-band nadir viewing radiometer that measures the emission from the ocean surface and intervening atmosphere simultaneously at six frequencies. It is designed to obtain the surface wind speed and the column average rain rate. Both instruments have previously been flown during the 2002, 2003 and 2004 hurricane seasons. For the HS2005, the IWRAP system was modified to implement a raw data acquisition system. The importance of the raw data system arises when trying to profile the atmosphere all the way down to the surface with a non-nadir looking radar system. With this particular geometry, problems arise mainly from the fact that both rain and ocean provide a return echo coincident in time through the antenna s main lobe. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the atmospheric boundary layer (ABL) wind field within the inner core of hurricanes to much lower altitudes than the ones the original system was capable of, and to analyze the spectral response of the ocean backscatter and the rain under different wind and rain conditions.

  8. Latest View of Hurricane Joaquin

    NASA Image and Video Library

    2017-12-08

    Hurricane Joaquin continued to intensify in the Bahamas on October 1 and NASA and NOAA satellites have been providing valuable data on the storm. NASA's GPM and Terra satellites and NOAA's GOES-East satellite provided rainfall, cloud extent, cloud height and other data to forecasters. Joaquin became a major hurricane today, October 1, reaching Category 3 status on the Saffir-Simpson Wind Scale. On October 1 at 1330 UTC (9:30 a.m. EDT) NOAA's GOES-East satellite captured this visible image of Hurricane Joaquin covering the southern Bahamas and extending over southeastern Cuba, and the island of Hispaniola (which includes Haiti and the Dominican Republic). Joaquin's eye had become completely visible now that the storm had reached Category 3 status. On October 1, a Hurricane Warning was in effect for the Central Bahamas, Northwestern Bahamas including the Abacos, Berry Islands, Eleuthera, Grand Bahama Island, and New Providence, The Acklins, Crooked Island, and Mayaguana in the southeastern Bahamas. A Hurricane Watch was in effect for Bimini and Andros Island, and a Tropical Storm Warning was in effect for the remainder of the southeastern Bahamas excluding the Turks and Caicos Islands and Andros Island. According to NHC, at 8 a.m. EDT (1200 UTC), the center of Hurricane Joaquin was located near latitude 23.2 North, longitude 73.7 West. That's just 10 miles (15 km) north of Samana Cays, Bahamas and about 75 miles (120 km) southeast of San Salvador, Bahamas. Joaquin was moving toward the west-southwest near 5 mph (7 kph), and this motion is expected to continue today. NHC noted that a turn toward the west- northwest is forecast tonight (Oct. 1), followed by a turn toward the north and an increase in forward speed on Friday, Oct. 2. On the forecast track, the center of Joaquin will move near or over portions of the central Bahamas today and tonight and pass near or over portions of the northwestern Bahamas on Friday. Maximum sustained winds are near 120 mph (195 km

  9. Asymmetric oceanic response to a hurricane: Deep water observations during Hurricane Isaac

    NASA Astrophysics Data System (ADS)

    Spencer, Laura J.; DiMarco, Steven F.; Wang, Zhankun; Kuehl, Joseph J.; Brooks, David A.

    2016-10-01

    The eye of Hurricane Isaac passed through the center of an array of six deep water water-column current meter moorings deployed in the northern Gulf of Mexico. The trajectory of the hurricane provided for a unique opportunity to quantify differences in the full water-column oceanic response to a hurricane to the left and right of the hurricane trajectory. Prior to the storm passage, relative vorticity on the right side of the hurricane was strongly negative, while on the left, relative vorticity was positive. This resulted in an asymmetry in the near-inertial frequencies oceanic response at depth and horizontally. A shift in the response to a slightly larger inertial frequencies ˜1.11f was observed and verified by theory. Additionally, the storm passage coincided with an asymmetric change in relative vorticity in the upper 1000 m, which persisted for ˜15 inertial periods. Vertical propagation of inertial energy was estimated at 29 m/d, while horizontal propagation at this frequency was approximately 5.7 km/d. Wavelet analysis showed two distinct subinertial responses, one with a period of 2-5 days and another with a period of 5-12 days. Analysis of the subinertial bands reveals that the spatial and temporal scales are shorter and less persistent than the near-inertial variance. As the array is geographically located near the site of the Deep Water Horizon oil spill, the spatial and temporal scales of response have significant implications for the fate, transport, and distribution of hydrocarbons following a deep water spill event.

  10. U.S. Congress Considers Hurricane Research Bills

    NASA Astrophysics Data System (ADS)

    Von Holle, Kate

    2007-07-01

    Legislation currently being considered by both the U.S. House and Senate would create a National Hurricane Research Initiative. The legislation was developed in response to a January 2007 U.S. National Science Board report,"Hurricane warning: The critical need for a National Hurricane Research Initiative." Both bills require the hurricane research initiative to set objectives in order to make recommendations to the National Science Board and to assemble U.S. science and engineering expertise through an interagency effort designed to bring together the latest research focusing on infrastructure, forecasting, and mitigating impacts on coastal populations. The bills also require the initiative to set objectives for making grants for hurricane research on a variety of topics, ranging from hurricane dynamics to improving emergency communications networks. Coordination of the interagency effort would fall under the jurisdiction of the White House Office of Science and Technology Policy.

  11. Analysis of medical treatment at a field hospital following Hurricane Andrew, 1992.

    PubMed

    Alson, R; Alexander, D; Leonard, R B; Stringer, L W

    1993-11-01

    To determine what medical care was required of a special operations response team by a community devastated by a major hurricane. Retrospective analysis of 1,544 patient encounter forms generated at a field hospital set up in Homestead, Florida, after Hurricane Andrew in August 1992 and staffed by the special operations response team from Forsyth County, North Carolina. All persons presenting for treatment. One thousand two hundred three adult patients and 336 pediatric patients were seen by the special operations response team. Only five of the injuries treated were due directly to the hurricane, whereas 285 of the treated injuries were sustained during clean-up activities. Most of the care provided was routine medical care denied the citizens due to the loss of their physicians' offices and clinics. Supplies of tetanus toxoid, antibiotics, and insulin were depleted in 24 hours. Resupplying these items and acquiring other medication to refill prescriptions constituted a pressing problem. The primary function of medical personnel responding to an area hit by a major hurricane will be to provide general medical care. Any trauma encountered will be primarily due to clean-up activities and not due to the hurricane itself. Responding medical personnel should plan on providing their own food and water for the first 72 hours and be well stocked with antibiotics, tetanus toxoid, and insulin.

  12. RapidScat and Hurricane Patricia

    NASA Image and Video Library

    2015-11-06

    NASA's RapidScat's antenna, lower right, was pointed at Hurricane Patricia as the powerful storm approached Mexico on Oct. 23, 2015. Patricia was the strongest hurricane ever recorded in the Western Hemisphere, with maximum winds of 200 mph (320 kilometers per hour). When it first made landfall on the Pacific coast of Mexico on Oct. 23, it was a destructive Category 5 storm. The videos are from the International Space Station. RapidScat's spinning antenna, lower right, collects wind-speed data from Hurricane Patricia. http://photojournal.jpl.nasa.gov/catalog/PIA20049

  13. Vortex Rossby Waves in Hurricanes Katrina and Rita (2005)

    NASA Astrophysics Data System (ADS)

    Judt, F.; Chen, S. S.

    2007-12-01

    Radar observations in hurricanes reveal inner spiraling rainbands emanating from the eyewall and propagating outward. Theoretical analysis indicated that these inner bands are azimuthally and radially propagating vortex Rossby waves (VRW). The outward propagating waves convey PV from the inner core to outer regions and thus lead to PV redistribution within a hurricane. It has been hypothesized that the outward propogating VRWs may play a role in interacting with an existing secondary PV ring in the outer region of a hurricane, which could lead to a development of concentric eyewalls. However, the lack of simultaneous observations over the inner-core and rainband regions is a major difficulty in our understanding of the complex interaction. The importance of VRWs in hurricane intensity change remains to be a question. This study aims to address the question using high- resolution model (MM5) forecasts of Hurricanes Katrina and Rita during the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005. The two major hurricanes went through a similar rapid intensification over the Gulf of Mexico. Both RAINEX observations and model forecast fields showed that Rita developed a secondary eyewall and went through an eyewall replacement before landfall, whereas Katrina did not. We analyze the model output at 1.67 km grid-resolution with 12-min time intervals. Azimuthally and radially propagating VRWs were found in the PV, rainrate, and vertical velocity fields in both storms. In the case of Katrina, no secondary PV maximum exists due to the lack of highly circular rainbands. Thus the VRWs propagate outward smoothly over a relatively long distance. No VRW activity has been found beyond 80-100 km radius in Katrina. This result indicates that interaction between the VRWs and outer PV disturbance must take place within this region, otherwise no effect concerning the importance of VRW would occur. The stagnation radius depends on the background PV- gradient which

  14. A Coordinated USGS Science Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    In late October 2012, Hurricane Sandy came ashore during a spring high tide on the New Jersey coastline, delivering hurricane-force winds, storm tides exceeding 19 feet, driving rain, and plummeting temperatures. Hurricane Sandy resulted in 72 direct fatalities in the mid-Atlantic and northeastern United States, and widespread and substantial physical, environmental, ecological, social, and economic impacts estimated at near $50 billion. Before the landfall of Hurricane Sandy, the USGS provided forecasts of potential coastal change; collected oblique aerial photography of pre-storm coastal morphology; deployed storm-surge sensors, rapid-deployment streamgages, wave sensors, and barometric pressure sensors; conducted Light Detection and Ranging (lidar) aerial topographic surveys of coastal areas; and issued a landslide alert for landslide prone areas. During the storm, Tidal Telemetry Networks provided real-time water-level information along the coast. Long-term networks and rapid-deployment real-time streamgages and water-quality monitors tracked river levels and changes in water quality. Immediately after the storm, the USGS serviced real-time instrumentation, retrieved data from over 140 storm-surge sensors, and collected other essential environmental data, including more than 830 high-water marks mapping the extent and elevation of the storm surge. Post-storm lidar surveys documented storm impacts to coastal barriers informing response and recovery and providing a new baseline to assess vulnerability of the reconfigured coast. The USGS Hazard Data Distribution System served storm-related information from many agencies on the Internet on a daily basis. Immediately following Hurricane Sandy the USGS developed a science plan, 'Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-A U.S. Geological Survey Science Plan for Support of Restoration and Recovery'. The plan will ensure continuing coordination of internal USGS activities as well as

  15. Tracking motions from satellite water vapor imagery: Quantitative applications to hurricane track forecasting

    NASA Technical Reports Server (NTRS)

    Velden, Christopher; Nieman, Steve; Aberson, Sim; Franklin, James

    1993-01-01

    Water vapor imagery from GOES satellites has been available for over a decade. These data are used extensively, mainly in a qualitative mode, by forecasters in the United States (Weldon and Holmes, 1991). Some attempts have been made at quantifying the data by tracking features in time sequences of the imagery (Stewart et al., 1985; Hayden and Stewart, 1987). For a variety of reasons, applications of this approach have produced marginal results (Velden, 1990). Recently, METEOSAT-3 (M-3) was repositioned at 50W by the European Space Agency, in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the GOES satellite, the M-3 has a superior resolution and signal-to-noise ratio in its water vapor channel, which translates into improved automated tracking capabilities. During a period in 1992 which included the Atlantic hurricane season, water vapor tracking algorithms were applied to the M-3 data in order to evaluate the coverage, accuracy and model impact of the derived vectors. Data sets were produced during several tropical cyclone cases, including Hurricane Andrew. In this paper, the M-3 water vapor wind sets are assessed, and their impact on a hurricane track forecast model is examined.

  16. Understanding Hurricane Movement from a Potential Vorticity Perspective: a Numerical Model and AN Observational Study.

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Chieh

    In the first part of this thesis, we attempt to isolate the effect of background vertical shear. The hurricane is represented in a two-layer quasigeostrophic model as a point source of mass and zero potential vorticity air in the upper layer, collocated with a point cyclone in the lower layer. The model results show that Northern Hemisphere tropical cyclones should have a component of drift relative to the mean flow in a direction to the left of the background vertical shear. The effect of weak shear is found to be at least as strong as the beta effect, and the effect is maximized by a certain optimal ambient shear. The behavior of the model is sensitive to the thickness ratio of the two layers and is less sensitive to the ratio of the vortices' horizontal scale to the radius of deformation. Storms with stronger negative potential vorticity anomalies tend to exhibit more vortex drift. The validity of balance dynamics in the tropics also allows us to explore the dynamics of hurricanes using the potential vorticity (PV) framework. In the second part of this thesis, three observational case studies (Hurricane Bob and Tropical Storm Ana of 1991, and Hurricane Andrew of 1992) have been performed to demonstrate the use of PV diagnostics of hurricane movement from the twice-daily National Meteorological Center Northen Hemisphere final analyses gridded datasets. Using the seasonal climatology as the mean reference state, piecewise potential vorticity inversions are performed under the nonlinear balance condition. By examining the balanced flows at the central position of the hurricane, one can identify which PV perturbation has the most influence on hurricane movement. We also define the hurricane advection flow as the balanced flow (in the center of the storm) associated with the whole PV in the troposphere, except for the PV anomaly of the hurricane itself. The results from the observational study show that such a steering wind is a very good approximation to the real

  17. Offshore Wind Turbines Subjected to Hurricanes

    NASA Astrophysics Data System (ADS)

    Amirinia, Gholamreza

    Hurricane Andrew (1992) caused one of the largest property losses in U.S. history, but limited availability of surface wind measurements hindered the advancement of wind engineering research. Many studies have been conducted on regular boundary layer winds (non-hurricane winds) and their effects on the structures. In this case, their results were used in the standards and codes; however, hurricane winds and their effects on the structures still need more studies and observations. Analysis of hurricane surface winds revealed that turbulence spectrum of hurricane winds differs from that of non-hurricane surface winds. Vertical profile of wind velocity and turbulence intensity are also important for determining the wind loads on high-rise structures. Vertical profile of hurricane winds is affected by different parameters such as terrain or surface roughness. Recent studies show that wind velocity profile and turbulence intensity of hurricane winds may be different from those used in the design codes. Most of the studies and available models for analyzing wind turbines subjected to high-winds neglect unsteady aerodynamic forces on a parked wind tower. Since the blade pitch angle in a parked wind turbine is usually about 90°, the drag coefficient on blade airfoils are very small therefore the along-wind aerodynamic forces on the blades are smaller than those on the tower. Hence, the tower in parked condition plays an important role in along-wind responses of the wind turbine. The objectives of this study are, first, to explore the nature of the hurricane surface winds. Next, to establish a time domain procedure for addressing structure-wind-wave-soil interactions. Third, investigating the behavior of wind turbines subjected to hurricane loads resulted form hurricane nature and, lastly, to investigate reconfiguration of turbine structure to reduce wind forces. In order to achieve these objective, first, recent observations on hurricane turbulence models were discussed

  18. A view of Hurricane Hilary from space

    NASA Image and Video Library

    2017-12-08

    Hilary is a small but strengthening hurricane, with hurricane-force winds extending outward up to 10 miles (20 km) from the center. Tropical-storm-force winds extending outward up to 60 miles (95 km). Hilary began when Tropical Depression 9E formed on July 21. By July 22 at 11 p.m. EDT, the depression strengthened into a tropical storm and was re-named Hilary. At 5 a.m. EDT on Monday, July 24, 2017, Hilary rapidly intensified into a hurricane. NASA's Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument aboard NASA’s Terra satellite captured a true color image of Hurricane Hilary on July 24 at 11 a.m. EDT. The image revealed a better organized tropical cyclone. The National Hurricane Center (NHC) noted "Satellite images indicate that Hilary has a small central core of convection, with both the visible and infrared channels suggesting that an eye is trying to form. Microwave data also show an incomplete eyewall." At 11 a.m. EDT (1500 UTC), the center of Hurricane Hilary was located near 14.1 degrees north latitude and 104.2 degrees west longitude. That's about 340 miles (545 km) south of Manzanillo, Mexico. Hilary is moving toward the west-northwest near 8 mph (13 kph), and the National Hurricane Center said this general motion with some increase in forward speed is expected over the next 48 hours. Maximum sustained winds have increased to near 80 mph (130 kph) with higher gusts. The estimated minimum central pressure is 989 millibars. The National Hurricane Center expects Hilary to become a major hurricane on Tuesday, July 25. For updated forecasts, visit: www.nhc.noaa.gov.

  19. Hurricane Season Public Health Preparedness, Response, and Recovery Guidance for Health Care Providers, Response and Recovery Workers, and Affected Communities - CDC, 2017.

    PubMed

    2017-09-22

    CDC and the Agency for Toxic Substances and Disease Registry (ATSDR) have guidance and technical materials available in both English and Spanish to help communities prepare for hurricanes and floods (Table 1). To help protect the health and safety of the public, responders, and clean-up workers during response and recovery operations from hurricanes and floods, CDC and ATSDR have developed public health guidance and other resources; many are available in both English and Spanish (Table 2).

  20. Factors Affecting Hurricane Evacuation Intentions.

    PubMed

    Lazo, Jeffrey K; Bostrom, Ann; Morss, Rebecca E; Demuth, Julie L; Lazrus, Heather

    2015-10-01

    Protective actions for hurricane threats are a function of the environmental and information context; individual and household characteristics, including cultural worldviews, past hurricane experiences, and risk perceptions; and motivations and barriers to actions. Using survey data from the Miami-Dade and Houston-Galveston areas, we regress individuals' stated evacuation intentions on these factors in two information conditions: (1) seeing a forecast that a hurricane will hit one's area, and (2) receiving an evacuation order. In both information conditions having an evacuation plan, wanting to keep one's family safe, and viewing one's home as vulnerable to wind damage predict increased evacuation intentions. Some predictors of evacuation intentions differ between locations; for example, Florida respondents with more egalitarian worldviews are more likely to evacuate under both information conditions, and Florida respondents with more individualist worldviews are less likely to evacuate under an evacuation order, but worldview was not significantly associated with evacuation intention for Texas respondents. Differences by information condition also emerge, including: (1) evacuation intentions decrease with age in the evacuation order condition but increase with age in the saw forecast condition, and (2) evacuation intention in the evacuation order condition increases among those who rely on public sources of information on hurricane threats, whereas in the saw forecast condition evacuation intention increases among those who rely on personal sources. Results reinforce the value of focusing hurricane information efforts on evacuation plans and residential vulnerability and suggest avenues for future research on how hurricane contexts shape decision making. © 2015 Society for Risk Analysis.

  1. Land area changes in coastal Louisiana after Hurricanes Katrina and Rita: Chapter 5B in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Barras, John A.

    2007-01-01

    Comparison of classified Landsat Thematic Mapper (TM) satellite imagery acquired before and after the landfalls of Hurricanes Katrina (August 29, 2005) and Rita (September 24, 2005) demonstrated that water area increased by 217 mi2 (562 km2) in coastal Louisiana. Approximately 82 mi2 (212 km2) of new water areas were in areas primarily impacted by Katrina (Mississippi River Delta basin, Breton Sound basin, Pontchartrain basin, Pearl River basin), whereas 117 mi2 (303 km2) were in areas primarily impacted by Rita (Calcasieu/ Sabine basin, Mermentau basin, Teche/Vermilion basin, Atchafalaya basin, Terrebonne basin). Barataria basin contained new water areas caused by both hurricanes, resulting in some 18 mi2 (46.6 km2) of new water areas. The fresh marsh and intermediate marsh communities' land areas decreased by 122 mi2 (316 km2) and 90 mi2 (233.1 km2), respectively. The brackish marsh and saline marsh communities' land areas decreased by 33 mi2 (85.5 km2) and 28 mi2 (72.5 km2), respectively. These new water areas identify permanent losses caused by direct removal of wetlands. They also indicate transitory water area changes caused by remnant flooding, removal of aquatic vegetation, scouring of marsh vegetation, and water-level variation attributed to normal tidal and meteorological variation between satellite images. Permanent losses cannot be estimated until several growing seasons have passed and the transitory impacts of the hurricanes are minimized. The purpose of this study was to provide preliminary information on water area changes in coastal Louisiana acquired shortly after both hurricanes' landfalls (detectable with Landsat TM imagery) and to serve as a regional baseline for monitoring posthurricane wetland recovery.

  2. Community College Re-Enrollment after Hurricane Katrina

    ERIC Educational Resources Information Center

    Lowe, Sarah R.; Rhodes, Jean E.

    2013-01-01

    In this study, we explored predictors of community college re-enrollment after Hurricane Katrina among a sample of low-income women (N = 221). It was predicted that participants' pre-hurricane educational optimism would predict community college re-enrollment a year after the hurricane. The influence of various demographic and additional resources…

  3. Central Pacific Hurricane Center - Honolulu, Hawai`i

    Science.gov Websites

    distance between lat/lon points Saffir-Simpson Scale Tropical Storm - winds 39-73 mph (34-63 kt) Category 1 Research and Development NOAA Hurricane Research Division Joint Hurricane Testbed Hurricane Forecast WFO Honolulu Weather Prediction Center Storm Prediction Center Ocean Prediction Center Local Forecast

  4. Seasonal Variation of High-latitude Geomagnetic Activity Revisited

    NASA Astrophysics Data System (ADS)

    Tanskanen, E.; Hynönen, R.; Mursula, K.

    2017-12-01

    The coupling of the solar wind and auroral region has been examined by using westward electrojet indices since 1966 - 2014. We have studied the seasonal variation of high-latitude geomagnetic activity in individual years for solar cycles 20 - 24. The classical two-equinox activity pattern in geomagnetic activity was seen in multi-year averages but it was found in less than one third of the years examined. We found that the seasonal variation of high-latitude geomagnetic activity closely follows the solar wind speed. While the mechanisms leading to the two-equinox maxima pattern are in operation, the long-term change of solar wind speed tends to mask the effect of these mechanisms for individual years. We identified the most active and the second most active season based on westward electrojet indices AL (1966 - 2014) and IL (1995 - 2014). The annual maximum is found at either equinox in 2/3 and at either solstice in 1/3 of the years examined. Large cycle-to-cycle variation is found in the seasonal pattern: equinox maxima are more common during cycles 21 and 22 than in cycles 23 or 24. An exceptionally long winter dominance in high-latitude activity and solar wind speed is seen in the declining phase of cycle 23, after the appearance of the long-lasting low-latitude coronal hole.

  5. Hurricane Jeanne Cloud Height and Motion

    NASA Image and Video Library

    2004-09-29

    These visualizations of Hurricane Jeanne on September 24, 2004 were captured by NASA Terra spacecraft after the hurricane caused widespread destruction on Puerto Rico, Haiti and the Dominican Republic.

  6. Central Pacific Hurricane Center - Honolulu, Hawai`i

    Science.gov Websites

    Department of Commerce Central Pacific Hurricane Center National Oceanic and Atmospheric Administration Blank Tracking Maps ▾ Educational Resources Be Prepared! NWS Hurricane Prep Week Preparedness Weather Central Pacific Hurricane Center Honolulu HI 800 PM HST Thu Nov 30 2017 For the central North Pacific

  7. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  8. Decay of Hurricanes Tracked by Dense Seismic Array

    NASA Astrophysics Data System (ADS)

    Lamontagne, A.; Tanimoto, T.

    2014-12-01

    Tropical cyclones (hurricanes and typhoons) are mostly atmospheric phenomena but they also generate significant ground motions in the solid earth when they become strong. If a dense seismological array existed along the path of a hurricane, we could learn about some processes near the hurricane eye and the change of its intensity through seismic data. We found a few cases of tropical cyclones that passed through the Transportable Array of Earthscope (TA) in the last four years. They provide some interesting time-evolving characteristics of hurricanes but in most cases seismic signals are too weak to gain any insight into the processes. The only exception we have found so far is Hurricane Isaac in 2012. Hurricane Isaac was mostly a tropical storm during its lifetime but it became a hurricane about 12 hours before the first landfall at the mouth of the Mississippi river at 0000 UTC August 29. The eye then went back over the ocean, but stayed near the coast, and made landfall again at 0800 UTC August 29. After this landfall, it went through the TA. This gave us an opportunity to study the decay of this hurricane based on seismic data. Our basic data are amplitude-distance plots for each 6-hour hurricane location. We confine our analysis to frequencies below 0.02 Hz because in higher frequency bands seismic waves were broader oceans, not necessarily near the hurricane eye. Right after the landfall, we found a sharp peak at about 75 km from the eye. This is most likely the location of the eyewall, where a strong ascending flow is known to exist. Over the next 12 hours, we see this peak deteriorate, which is undoubtedly related to the decay of the hurricane after landfall. The peak remained at the same location for these 12 hours and then in the following 18 hours started to move farther from the eye, to about 250 km. Therefore, we can monitor how the eyewall deteriorated over the 30 hours after landfall. The emphasis of this study will be on Hurricane Isaac but we will

  9. Hurricane IKE Recovery Efforts - MOD Volunteers

    NASA Image and Video Library

    2008-09-18

    Hurricane IKE Recovery Efforts - MOD Volunteers Location: Clear LAke Area Subject: MOD Volunteers assist fellow employees at their homes during the recovery from hurricane IKE. Photographer: Tom Murray (USA Photographer)

  10. Seasonal changes in atmospheric noise levels and the annual variation in pigeon homing performance

    USGS Publications Warehouse

    Hagstrum, Jonathan T.; McIsaac, Hugh P.; Drob, Douglas P.

    2016-01-01

    Repeated releases of experienced homing pigeons from single sites were conducted between 1972 and 1974 near Cornell University in upstate New York and between 1982 and 1983 near the University of Pittsburgh in western Pennsylvania, USA. No annual variation in homing performance was observed at these sites in eastern North America, in contrast to results from a number of similar experiments in Europe. Assuming pigeons home using low-frequency infrasonic signals (~0.1–0.3 Hz), as has been previously proposed, the annual and geographic variability in homing performance within the northern hemisphere might be explained, to a first order, by seasonal changes in low-frequency atmospheric background noise levels related to storm activity in the North Atlantic Ocean, and by acoustic waveguides formed between the surface and seasonally reversing stratospheric winds. In addition, increased dispersion among departure bearings of test birds on some North American release days was possibly caused by infrasonic noise from severe weather events during tornado and Atlantic hurricane seasons.

  11. Seasonal changes in atmospheric noise levels and the annual variation in pigeon homing performance.

    PubMed

    Hagstrum, Jonathan T; McIsaac, Hugh P; Drob, Douglas P

    2016-06-01

    Repeated releases of experienced homing pigeons from single sites were conducted between 1972 and 1974 near Cornell University in upstate New York and between 1982 and 1983 near the University of Pittsburgh in western Pennsylvania, USA. No annual variation in homing performance was observed at these sites in eastern North America, in contrast to results from a number of similar experiments in Europe. Assuming pigeons home using low-frequency infrasonic signals (~0.1-0.3 Hz), as has been previously proposed, the annual and geographic variability in homing performance within the northern hemisphere might be explained, to a first order, by seasonal changes in low-frequency atmospheric background noise levels related to storm activity in the North Atlantic Ocean, and by acoustic waveguides formed between the surface and seasonally reversing stratospheric winds. In addition, increased dispersion among departure bearings of test birds on some North American release days was possibly caused by infrasonic noise from severe weather events during tornado and Atlantic hurricane seasons.

  12. NPY Moderates the Relation between Hurricane Exposure and Generalized Anxiety Disorder in an Epidemiologic Sample of Hurricane-Exposed Adults

    PubMed Central

    Amstadter, Ananda B.; Koenen, Karestan C.; Ruggiero, Kenneth J.; Acierno, Ron; Galea, Sandro; Kilpatrick, Dean G.; Gelernter, Joel

    2009-01-01

    Background Neuropeptide Y (NPY) has been found to be anxiolytic in animals and humans. A recent study found NPY expression to be inversely correlated with trait anxiety. We examined whether rs16147, a functional single nucleotide polymorphism (SNP) in the promoter region of NPY, moderated the relationship between hurricane exposure and risk for generalized anxiety disorder (GAD) in an epidemiologic sample of adults living in areas affected by the 2004 Florida Hurricanes. Methods Data from the present study comes from 616 adults from the 2004 Florida Hurricanes study who returned buccal DNA samples via mail. Selection of participants occurred via random digit-dial procedures. Participants were interviewed via telephone about hurricane exposure and post-hurricane GAD symptoms. The outcome measure was DSM-IV GAD diagnosis, assessed via structured interview. Results Rs16147 in NPY was associated with increased risk of GAD diagnosis under conditions of high hurricane exposure (p<0.01). This gene by environment interaction remained significant after adjustment for sex, ancestry (as determined by Bayesian clustering of genotypes), and age. Conclusions NPY rs16147 modifies risk of post-disaster GAD under conditions of high stressor (hurricane) exposure. This is the first demonstration of gene-environment interaction for this locus. PMID:20037921

  13. A diary of hurricane Hugo.

    PubMed

    Counts, C S

    1989-12-01

    Charleston, South Carolina was the recent victim of Hurricane Hugo. This article recalls the events that occurred before, during, and after the hurricane struck. The focus is on four outpatient dialysis units in that area. It is a story from which others may learn more about emergency preparedness.

  14. Rapid Intensification of Hurricane Irma Seen in New SMAP Wind Images

    NASA Image and Video Library

    2017-09-05

    This pair of images shows ocean surface wind speeds for Hurricane Irma as observed at 5:26 a.m. EDT on Sept. 4, 2017 (top) and 24.5 hours later at 6:02 a.m. EDT on September 5th (bottom) by the radiometer instrument on NASA's Soil Moisture Active Passive (SMAP) satellite. Color indicates wind speed, with red being highest and blue lowest. Irma intensified from a Category 2 hurricane on Sept. 4 with observed wind speed of 106 miles per hour (47.5 meters per second) to a Category 5 hurricane on Sept. 5 with a maximum observed wind speed of 160 miles per hour (71.4 meters per second). https://photojournal.jpl.nasa.gov/catalog/PIA21939

  15. How Unusual were Hurricane Harvey's Rains?

    NASA Astrophysics Data System (ADS)

    Emanuel, K.

    2017-12-01

    We apply an advanced technique for hurricane risk assessment to evaluate the probability of hurricane rainfall of Harvey's magnitude. The technique embeds a detailed computational hurricane model in the large-scale conditions represented by climate reanalyses and by climate models. We simulate 3700 hurricane events affecting the state of Texas, from each of three climate reanalyses spanning the period 1980-2016, and 2000 events from each of six climate models for each of two periods: the period 1981-2000 from historical simulations, and the period 2081-2100 from future simulations under Representative Concentration Pathway (RCP) 8.5. On the basis of these simulations, we estimate that hurricane rain of Harvey's magnitude in the state of Texas would have had an annual probability of 0.01 in the late twentieth century, and will have an annual probability of 0.18 by the end of this century, with remarkably small scatter among the six climate models downscaled. If the event frequency is changing linearly over time, this would yield an annual probability of 0.06 in 2017.

  16. Hurricane Gonzalo in the Atlantic Ocean

    NASA Image and Video Library

    2017-12-08

    On Oct. 16 at 17:45 UTC NASA's Terra satellite captured this image of Hurricane Gonzalo in the Atlantic Ocean. Image Credit: NASA Goddard MODIS Rapid Response Team-- NASA and NOAA satellites have been providing continuous coverage of Hurricane Gonzalo as it moves toward Bermuda. NASA's Terra satellite saw thunderstorms wrapped tightly around the center with large bands of thunderstorms wrapping into it. NOAA's GOES-East satellite provided and "eye-opening" view of Gonzalo, still a Category 4 hurricane on Oct. 16. A hurricane warning is in effect for Bermuda and that means that hurricane conditions are expected within the warning area, meaning the entire island. Read more: www.nasa.gov/content/goddard/gonzalo-atlantic-ocean/index... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Increasing Magnitude of Hurricane Rapid Intensification in the Central and Eastern Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby

    2018-05-01

    Rapid intensification (RI) of hurricanes is notoriously difficult to predict and can contribute to severe destruction and loss of life. While past studies examined the frequency of RI occurrence, changes in RI magnitude were not considered. Here we explore changes in RI magnitude over the 30-year satellite period of 1986-2015. In the central and eastern tropical Atlantic, which includes much of the main development region, the 95th percentile of 24-hr intensity changes increased at 3.8 knots per decade. In the western tropical Atlantic, encompassing the Caribbean Sea and the Gulf of Mexico, trends are insignificant. Our analysis reveals that warming of the upper ocean coinciding with the positive phase of Atlantic Multidecadal Oscillation, and associated changes in the large-scale environment, has predominantly favored RI magnitude increases in the central and eastern tropical Atlantic. These results have substantial implications for the eastern Caribbean Islands, some of which were devastated during the 2017 hurricane season.

  18. Examining Hurricane Track Length and Stage Duration Since 1980

    NASA Astrophysics Data System (ADS)

    Fandrich, K. M.; Pennington, D.

    2017-12-01

    Each year, tropical systems impact thousands of people worldwide. Current research shows a correlation between the intensity and frequency of hurricanes and the changing climate. However, little is known about other prominent hurricane features. This includes information about hurricane track length (the total distance traveled from tropical depression through a hurricane's final category assignment) and how this distance may have changed with time. Also unknown is the typical duration of a hurricane stage, such as tropical storm to category one, and if the time spent in each stage has changed in recent decades. This research aims to examine changes in hurricane stage duration and track lengths for the 319 storms in NOAA's National Ocean Service Hurricane Reanalysis dataset that reached Category 2 - 5 from 1980 - 2015. Based on evident ocean warming, it is hypothesized that a general increase in track length with time will be detected, thus modern hurricanes are traveling a longer distance than past hurricanes. It is also expected that stage durations are decreasing with time so that hurricanes mature faster than in past decades. For each storm, coordinates are acquired at 4-times daily intervals throughout its duration and track lengths are computed for each 6-hour period. Total track lengths are then computed and storms are analyzed graphically and statistically by category for temporal track length changes. The stage durations of each storm are calculated as the time difference between two consecutive stages. Results indicate that average track lengths for Cat 2 and 3 hurricanes are increasing through time. These findings show that these hurricanes are traveling a longer distance than earlier Cat 2 and 3 hurricanes. In contrast, average track lengths for Cat 4 and 5 hurricanes are decreasing through time, showing less distance traveled than earlier decades. Stage durations for all Cat 2, 4 and 5 storms decrease through the decades but Cat 3 storms show a

  19. Seasonal superoxide overproduction and endothelial activation in guinea-pig heart; seasonal oxidative stress in rats and humans.

    PubMed

    Konior, Anna; Klemenska, Emilia; Brudek, Magdalena; Podolecka, Ewa; Czarnowska, Elżbieta; Beręsewicz, Andrzej

    2011-04-01

    Seasonality in endothelial dysfunction and oxidative stress was noted in humans and rats, suggesting it is a common phenomenon of a potential clinical relevance. We aimed at studying (i) seasonal variations in cardiac superoxide (O(2)(-)) production in rodents and in 8-isoprostane urinary excretion in humans, (ii) the mechanism of cardiac O(2)(-) overproduction occurring in late spring/summer months in rodents, (iii) whether this seasonal O(2)(-)-overproduction is associated with a pro-inflammatory endothelial activation, and (iv) how the summer-associated changes compare to those caused by diabetes, a classical cardiovascular risk factor. Langendorff-perfused guinea-pig and rat hearts generated ~100% more O(2)(-), and human subjects excreted 65% more 8-isoprostane in the summer vs. other seasons. Inhibitors of NADPH oxidase, xanthine oxidase, and NO synthase inhibited the seasonal O(2)(-)-overproduction. In the summer vs. other seasons, cardiac NADPH oxidase and xanthine oxidase activity, and protein expression were increased, the endothelial NO synthase and superoxide dismutases were downregulated, and, in guinea-pig hearts, adhesion molecules upregulation and the endothelial glycocalyx destruction associated these changes. In guinea-pig hearts, the summer and a streptozotocin-induced diabetes mediated similar changes, yet, more severe endothelial activation associated the diabetes. These findings suggest that the seasonal oxidative stress is a common phenomenon, associated, at least in guinea-pigs, with the endothelial activation. Nonetheless, its biological meaning (regulatory vs. deleterious) remains unclear. Upregulated NADPH oxidase and xanthine oxidase and uncoupled NO synthase are the sources of the seasonal O(2)(-)-overproduction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Hurricane Sandy science plan: New York

    USGS Publications Warehouse

    Ransom, Clarice N.

    2013-01-01

    Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. More than one-half of the U.S. population lives within 50 miles of a coast, and this number is increasing. The U.S. Geological Survey (USGS) is one of the largest providers of geologic and hydrologic information in the world. Federal, State, and local partners depend on the USGS science to know how to prepare for hurricane hazards and reduce losses from future hurricanes. The USGS works closely with other bureaus within the Department of the Interior, the Federal Emergency Management Agency, the National Oceanic Atmospheric Administration, the U.S. Army Corps of Engineers, the Environmental Protection Agency, and many State and local agencies to identify their information needs before, during, and after hurricanes.

  1. Hurricane Harvey - Aug. 24, 2017

    NASA Image and Video Library

    2017-08-24

    The International Space Station’s external cameras captured a dramatic view of Hurricane Harvey as it bore down on the central Texas coast Aug. 24. The National Hurricane Center predicts a landfall for Harvey near Corpus Christi, Texas early Aug. 26 with potentially record floods expected along the Texas coastline through next week.

  2. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    NASA Astrophysics Data System (ADS)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2014-03-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over 30 years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic change in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of evapotranspiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  3. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    NASA Astrophysics Data System (ADS)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2013-09-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  4. ISS Passes over Hurricane_Irma_GMT248-1510

    NASA Image and Video Library

    2017-09-05

    The International Space Station’s external cameras captured a dramatic view of Hurricane Irma as it moved across the Atlantic Ocean Sept. 5. The National Hurricane Center had recently upgraded Irma to a Category 5 storm with hurricane warnings issued across the Caribbean.

  5. Using a Geographic Information System to Assess the Risk of Hurricane Hazards on the Maya Civilization

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Sever, T.

    2014-12-01

    The extent of the Maya civilization spanned across portions of modern day Mexico, Belize, Guatemala, El Salvador and Honduras. Paleoclimatic studies suggest this region has been affected by strong hurricanes for the past six thousand years, reinforced by archeological evidence from Mayan records indicating they experienced strong storms. It is theorized hurricanes aided in the collapse of the Maya, damaging building structures, agriculture, and ceasing industry activities. Today, this region is known for its active tropical climatology, being hit by numerous strong storms including Hurricane Dean, Iris, Keith, and Mitch. This research uses a geographic information system (GIS) to model hurricane hazards, and assess the risk posed on the Maya civilization. GIS has the ability to handle various layer components making it optimal for combining parameters necessary for assessing the risk of experiencing hurricane related hazards. For this analysis, high winds, storm surge flooding, non-storm surge related flooding, and rainfall triggered landslides were selected as the primary hurricane hazards. Data sets used in this analysis include the National Climatic Data Center International Best Track Archive for Climate Stewardships (IBTrACS) hurricane tracks, Shuttle Radar Topography Mission Digital Elevation Model, WorldClim monthly accumulated precipitation, USGS HydroSHEDS river locations, Harmonized World Soil Database soil types, and known Maya site locations from the Electronic Atlas of Ancient Maya Sites. ArcGIS and ENVI software were utilized to process data and model hurricane hazards. To assess locations at risk of experiencing high winds, a model was created using ArcGIS Model Builder to map each storm's temporal wind profile, and adapted to simulate forward storm velocity, and storm frequency. Modeled results were then combined with physical land characteristics, meteorological, and hydrologic data to identify areas likely affected. Certain areas along the eastern

  6. Shelf sediment transport during hurricanes Katrina and Rita

    NASA Astrophysics Data System (ADS)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  7. Current-wave spectra coupling project. Volume I. Hurricane fields and cross sections, surface winds and currents, significant waves and wave spectra for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane; and for (E) Hurricane Camille (1969) off Louisiana Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretschneider, C.L.

    1980-06-01

    This volume is an extension of and consists of several modifications to the earlier report by Bretschneider (April 1979) on the subject of hurricane design wind, wave and current criteria for the four potential OTEC sites. The 100-year hurricane criteria for the design of OTEC plants is included. The criteria, in addition to the maximum conditions of winds, waves and surface current, include: hurricane fields for wind speed U/sub s/ and significant wave height H/sub s/; hurricane fields for modal wave period f/sub 0//sup -1/ and maximum energy density S/sub max/ of the wave spectrum; the corresponding Ekman wind-driven surfacemore » current V/sub s/; tabulated cross-sections for U/sub s/, H/sub s/, f/sub 0//sup -1/ and S/sub max/ through max U/sub s/ and through max H/sub s/ along traverses at right angles to and along traverses parallel to the forward movement of the hurricane; most probable maximum wave height and the expected corresponding wave period, based on statistical analysis of maximum wave heights from five hurricanes; design wave spectra for maximum U/sub s/ and also maximum H/sub s/, since maximum U/sub s/ and maximum H/sub s/ do not occur simultaneously; the envelope of wave spectra through maximum U/sub s/ and through maximum H/sub s/ along traverses parallel to the forward movement of the hurricane; the above same determinations for Hurricane Camille (1969) as for the four OTEC locations; and alternative methods (suggested) for obtaining design wave spectra from the joint probability distribution functions for wave height and period given by Longuet-Higgins (1975) and C.N.E.X.O. after Arhan, et al (1976).« less

  8. Analysis of Dynamics in Bays and Coastal Waters Impacted by Hurricanes

    NASA Astrophysics Data System (ADS)

    Li, C.; Lin, H.; Chen, C.

    2012-12-01

    The dynamical processes in coastal bays/estuaries and continental shelf are mostly tidally and wind driven. Under severe weather conditions such as hurricanes and tropical storms, the process is much more dynamic and variable. In an attempt to illustrate the dynamical regimes in coastal bays and adjacent coastal ocean, we have simulated circulation and storm tides in the northern Gulf of Mexico forced by 49 hurricanes, respectively; among which 4 are the most recent real hurricanes: Hurricane Katrina and Hurricane Rita of 2005, and Hurricane Gustav and Hurricane Ike of 2008. The other 45 hurricanes are hypothetical in their tracks, but based on the real hurricanes in terms of forcing conditions. More specifically, these 45 hurricanes are divided into five groups, each corresponding to one of these four real hurricanes plus a group for hypothetical Category 5 hurricanes, based on the information of Hurricane Katrina, except that the strength of the hurricane is increased to Category 5. Using otherwise the same forcing conditions of the hurricanes, we apply variations of each of the hurricane tracks with roughly the same moving speed. Each group has a total of 9 simulations (with 9 different tracks). Our model allows inundation of wetland, and low lying lands on the coast and around the Louisiana Bays. The model for the hurricane storm tide was done with an implementation of the Finite Volume Coastal Ocean Model, or FVCOM. Our analysis of the results reveals rich dynamical processes in the bays and estuaries and on the adjacent continental shelf. It involves various oscillations, depending on the hurricane conditions and track history and positions, long waves, under the influence of earth rotation, and currents. The protruding delta, bathymetry, and the setup of the bays all play some roles in shaping the dynamics, water movement, inundation, and receding of the storm surges.

  9. ASTER and USGS EROS emergency imaging for hurricane disasters: Chapter 4D in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Duda, Kenneth A.; Abrams, Michael

    2007-01-01

    Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.

  10. Hurricane feedback research may improve intensity forecasts

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-06-01

    Forecasts of a hurricane's intensity are generally much less accurate than forecasts of its most likely path. Large-scale atmospheric patterns dictate where a hurricane will go and how quickly it will get there. The storm's intensity, however, depends on small-scale shifts in atmospheric stratification, upwelling rates, and other transient dynamics that are difficult to predict. Properly understanding the risk posed by an impending storm depends on having a firm grasp of all three properties: translational speed, intensity, and path. Drawing on 40 years of hurricane records representing 3090 different storms, Mei et al. propose that a hurricane's translational speed and intensity may be closely linked.

  11. 76 FR 30491 - National Hurricane Preparedness Week, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Hurricane Preparedness Week, 2011 Proclamation 8680--National Safe Boating Week, 2011 Proclamation 8681... Hurricane Preparedness Week, 2011 By the President of the United States of America A Proclamation National Hurricane Preparedness Week highlights the importance of planning ahead to protect our families and secure...

  12. Responses of Two Litter-Based Invertebrate Communities to Changes in Canopy Cover in a Forest Subject to Hurricanes

    Treesearch

    Barbara Richardson; Michael Richardson; Grizelle González

    2018-01-01

    Tropical forests are subject to seasonal hurricanes resulting in cycles of canopy opening and deposition of litter, followed by periods of recovery and canopy closure. Herein, we review two studies of litter-based communities in Puerto Rico; (i) a survey of bromeliad invertebrates in three montane forest types along an elevational gradient in 1993–1997, during a period...

  13. Hurricane Felix

    NASA Image and Video Library

    2007-09-03

    These infrared and microwave images were created with data retrieved by the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite, and show the remnants of the former Hurricane Felix over Central America, September, 2007.

  14. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    NASA Astrophysics Data System (ADS)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  15. 77 FR 32877 - National Hurricane Preparedness Week, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Hurricane Preparedness Week, 2012 By the President of the United States of America A Proclamation Every year... tornadoes. During National Hurricane Preparedness Week, we rededicate ourselves to preventing loss of life... informed public. This week, I encourage all Americans living in areas that could be impacted by a hurricane...

  16. Mangroves, hurricanes, and lightning strikes: Assessment of Hurricane Andrew suggests an interaction across two differing scales of disturbance

    USGS Publications Warehouse

    Smith, Thomas J.; Robblee, Michael B.; Wanless, Harold R.; Doyle, Thomas W.

    1994-01-01

    The track of Hurricane Andrew carried it across one of the most extensive mangrove for ests in the New World. Although it is well known that hurricanes affect mangrove forests, surprisingly little quantitative information exists concerning hurricane impact on forest structure, succession, species composition, and dynamics of mangrove-dependent fauna or on rates of eco-system recovery (see Craighead and Gilbert 1962, Roth 1992, Smith 1992, Smith and Duke 1987, Stoddart 1969).After Hurricane Andrew's passage across south Florida, we assessed the environmental damage to the natural resources of the Everglades and Biscayne National Parks. Quantitative data collected during subsequent field trips (October 1992 to July 1993) are also provided. We present measurements of initial tree mortality by species and size class, estimates of delayed (or continuing) tree mortality, and observations of geomorphological changes along the coast and in the forests that could influence the course of forest recovery. We discuss a potential interaction across two differing scales of disturbance within mangrove forest systems: hurricanes and lightning strikes.

  17. Physical aspects of Hurricane Hugo in Puerto Rico

    USGS Publications Warehouse

    Scatena, F.N.; Larsen, Matthew C.

    1991-01-01

    On 18 September 1989 the western part ofHurricane Hugo crossed eastern Puerto Rico and the Luquillo Experimental Forest (LEF). Storm-facing slopes on the northeastern part of the island that were within 15 km of the eye and received greater than 200 mm of rain were most affected by the storm. In the LEF and nearby area, recurrence intervals associated with Hurricane Hugo were 50 yr for wind velocity, 10 to 31 yr for stream discharge, and 5 yr for rainfall intensity. To compare the magnitudes of the six hurricanes to pass over PuertoRico since 1899, 3 indices were developed using the standardized values of the product of: the maximum sustained wind speed at San Juan squared and storm duration; the square of the product of the maximum sustained wind velocity at San Juan and the ratio of the distance between the hurricane eye and San Juan to the distance between the eye and percentage of average annual rainfall delivered by the storm. Based on these indices, HurricaneHugo was of moderate intensity. However, because of the path of Hurricane Hugo, only one of these six storms (the 1932 storm) caused more damage to the LEF than Hurricane Hugo. Hurricanes of Hugo's magnitude are estimated to pass over the LEF once every 50-60 yr, on average. 

  18. Revised forecast: Another stormy summer ahead

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    After predicting in November 1995 that the 1996 hurricane season would be less active than the typical year (Eos, December 12, 1995), William Gray and his colleagues from Colorado State University have revised their forecast. Plugging updated atmospheric data into their statistical model, the researchers are now predicting seven hurricanes—two of them intense (category 3, 4, or 5)—and 11 named storms for the summer and fall of 1996. Net tropical cyclone activity for the hurricane season, which lasts from June 1 to December 1, should be 105% of the 25-year average, according to Gray.In November, Gray and Chris Landsea of NOAA's Hurricane Research Division predicted eight tropical storms and five hurricanes (two intense), less than the historical averages of 9.3 named storms and 5.7 hurricanes per season. The change in expectations is the result of new accounting for trends in temperature and barometric pressure in Africa and around the Atlantic Basin.

  19. On the Influence of Global Warming on Atlantic Hurricane Frequency

    NASA Astrophysics Data System (ADS)

    Hosseini, S. R.; Scaioni, M.; Marani, M.

    2018-04-01

    In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane's intensity and Sea Surface Temperature (SST) has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR). The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82). In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.

  20. Hazardous substances releases associated with Hurricanes Katrina and Rita in industrial settings, Louisiana and Texas.

    PubMed

    Ruckart, Perri Zeitz; Orr, Maureen F; Lanier, Kenneth; Koehler, Allison

    2008-11-15

    The scientific literature concerning the public health response to the unprecedented hurricanes striking the Gulf Coast in August and September 2005 has focused mainly on assessing health-related needs and surveillance of injuries, infectious diseases, and other illnesses. However, the hurricanes also resulted in unintended hazardous substances releases in the affected states. Data from two states (Louisiana and Texas) participating in the Hazardous Substances Emergency Events Surveillance (HSEES) system were analyzed to describe the characteristics of hazardous substances releases in industrial settings associated with Hurricanes Katrina and Rita. HSEES is an active multi-state Web-based surveillance system maintained by the Agency for Toxic Substances and Disease Registry (ATSDR). In 2005, 166 hurricane-related hazardous substances events in industrial settings in Louisiana and Texas were reported. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes and start-ups after the hurricanes. Emphasis is given to the contributing causal factors, hazardous substances released, and event scenarios. Recommendations are made to prevent or minimize acute releases of hazardous substances during future hurricanes, including installing backup power generation, securing equipment and piping to withstand high winds, establishing procedures to shutdown process operations safely, following established and up-to-date start-up procedures and checklists, and carefully performing pre-start-up safety reviews.

  1. Combined VLF and VHF lightning observations of Hurricane Rita landfall

    NASA Astrophysics Data System (ADS)

    Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.

    2009-12-01

    Hurricane Rita displayed abundant lightning in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF lightning data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane lightning monitoring. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. As Rita approached the Gulf coast, the VHF lightning emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF lightning emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in lightning emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF lightning source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm development, followed by an increase in CG activity at the storm’s peak. The periodic VHF lightning events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between lightning types, and in the LASA data, Rita landfall lightning activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE lightning sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective development and in possibly deducing vertical charge distributions.

  2. The Hurricane Rainband and Intensity Change Experiment (RAINEX): Observations and Modeling of Hurricanes Katrina, Ophelia, and Rita (2005)

    NASA Astrophysics Data System (ADS)

    Houze, R. A.

    2006-12-01

    The Hurricane Rainband and Intensity Change Experiment (RAINEX) used three P3 aircraft aided by high- resolution numerical modeling and satellite communications to investigate the 2005 Hurricanes Katrina, Ophelia, and Rita. The aim was to increase the understanding of tropical cyclone intensity change by interactions between a tropical cyclone's inner core and rainbands. All three aircraft had dual-Doppler radars, with the ELDORA radar on board the Naval Research Laboratory's P3 aircraft, providing particularly detailed Doppler radar data. Numerical model forecasts helped plan the aircraft missions, and innovative communications and data transfer in real time allowed the flights to be coordinated from a ground-based operations center. The P3 aircraft released approximately 600 dropsondes in locations targeted for optimal coordination with the Doppler radar data, as guided by the operations center. The storms were observed in all stages of development, from Tropical Depression to Category 5 hurricane. The data from RAINEX are readily available through an online Field Catalog and RAINEX Data Archive. The RAINEX dataset is illustrated by a preliminary analysis of Hurricane Rita, which was documented by multi-aircraft flights on five days: 1) while a tropical storm, 2) while rapidly intensifying to a Category 5 hurricane, 3) during an eyewall replacement, 4) when the hurricane became asymmetric upon encountering environmental shear, and 5) just prior to landfall.

  3. Hurricane Katrina

    Atmospheric Science Data Center

    2013-01-08

    ... Mississippi regions were acquired before and one day after Katrina made landfall along the Gulf of Mexico coast, and highlight many of the ... http://eosweb.larc.nasa.gov/HPDOCS/misr/misr_html/hurricane_katrina_flood.html ...

  4. Hurricane Carlotta

    Atmospheric Science Data Center

    2013-04-19

    ... near the hurricane's center, and are made up of individual cells that are typically less than 20 km in diameter. This image shows a number of these cells, some fairly isolated, and others connected together. Their ...

  5. Quantifying the hurricane catastrophe risk to offshore wind power.

    PubMed

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. © 2013 Society for Risk Analysis.

  6. Isentropic Analysis of a Simulated Hurricane

    NASA Technical Reports Server (NTRS)

    Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing

    2016-01-01

    Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.

  7. Hurricane Ike: Field Investigation Survey (Invited)

    NASA Astrophysics Data System (ADS)

    Ewing, L.

    2009-12-01

    Hurricane Ike made landfall at 2:10 a.m. on September 13, 2008, as a Category 2 hurricane. The eye of the hurricane crossed over the eastern end of Galveston Island and a large region of the Texas and Louisiana coast experienced extreme winds, waves and water levels, resulting in large impacts from overtopping, overwash, wind and wave forces and flooding. Major damage stretched from Freeport to the southwest and to Port Arthur to the northeast. The effects of the hurricane force winds were felt well inland in Texas and Louisiana and the storm continued to the interior of the US, causing more damage and loss of life. Through the support of the Coasts, Oceans, Ports and Rivers Institute (COPRI) of the American Society of Civil Engineers (ASCE) a team of 14 coastal scientists and engineers inspected the upper Texas coast in early October 2008. The COPRI team surveyed Hurricane Ike’s effects on coastal landforms, structures, marinas, shore protection systems, and other infrastructure. Damages ranges from very minor to complete destruction, depending upon location and elevation. Bolivar Peninsula, to the right of the hurricane path, experienced severe damage and three peninsula communities were completely destroyed. Significant flood and wave damage also was observed in Galveston Island and Brazoria County that were both on the left side of the hurricane path. Beach erosion and prominent overwash fans were observed throughout much of the field investigation area. The post-storm damage survey served to confirm expected performance under extreme conditions, as well as to evaluate recent development trends and conditions unique to each storm. Hurricane Ike confirmed many previously reported observations. One of the main conclusions from the inspection of buildings was that elevation was a key determinant for survival. Elevation is also a major factor in the stability and effectiveness of shore protection. The Galveston Seawall was high enough to provide protection from

  8. On the Current Trend of Tropical Cyclone Activity and the Lengthening of the Tropical Cyclone Season in the North Atlantic Basin

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    In this TP, the trend in North Atlantic basin TC activity, especially as related to the determination of the length of season (LOS) and its possible association with warming surface-air and sea-surface temperature, is revisited. In particular, examined are: (1) the trend in TC activity for the yearly intervals 1945-1965, 1966-1994, and 1995-2012 for TCs having duration NSD greater or equal to 0.25 day, less than 2 days, greater than or equal to 2 days, greater than or equal to 4 days, and greater than or equal to 8 days; (2) the latitudinal and longitudinal genesis locations of the short-lived TC (defined herein as those TCs having duration NSD less than 2 days) for the three yearly intervals; (3) the first storm day (FSD), last storm day (LSD), and LOS based on TCs having duration NSD greater than or equal to 0.25 day and NSD greater than or equal to 2 days; (4) the relationship between FSD, LSD, and LOS for TCs having duration NSD greater than or equal to 0.25 day and NSD greater than or equal to 2 days; (5) the surface-air and sea-surface temperature, wind, and North Atlantic Oscillation (NAO) during the interval 1945-2012; (6) the relationship of FSD, LSD, and LOS against surface-air and sea-surface temperature, wind, and the NAO; (7) the relationship of TC activity against surface-air and sea-surface temperature, wind, and the NAO; and (8) the relationship of TC activity against FSD and LOS. This TP represents an update to an earlier study by Wilson concerning the length of the yearly hurricane season.

  9. Suggested hurricane operational scenario for GOES I-M

    NASA Technical Reports Server (NTRS)

    Menzel, W. P.; Merrill, R. T.; Shenk, W. E.

    1987-01-01

    Improvements in tropical cyclone forecasts require optimum use of remote sensing capabilities, because conventional data sources cannot provide the necessary spatial and temporal data density over tropical and subtropical oceanic regions. In 1989, the first of a series of geostationary weather satellites, GOES 1-M, will be launched with the capability for simultaneous imaging and sounding. Careful scheduling of the GOES 1-M will enable measurements of both the wind and mass fields over the entire tropical cyclone activity area. The document briefly describes the GOES 1-M imager and sounder, surveys the data needs for hurricane forecasting, discusses how geostationary satellite observations help to meet them, and proposes a GOES 1-M schedule of observations and hurricane relevant derived products.

  10. Hurricane Resilient Wind Plant Concept Study Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibra, Besart; Finucane, Zachary; Foley, Benjamin

    Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, ormore » character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions

  11. Controlling a hurricane by altering its internal climate

    NASA Astrophysics Data System (ADS)

    Mardhekar, D.

    2010-09-01

    Atmospheric hazards, like the fury of a hurricane, can be controlled by altering its internal climate. The hurricane controlling technique suggested is eco-friendly, compatible with hurricane size, has a sound scientific base and is practically possible. The key factor is a large scale dilution of the hurricane fuel, vapour, in the eye wall and spiral rain bands where condensation causing vapor volume reduction (a new concept which can be explained by Avogadro's law) and latent heat release drive the storm. This can be achieved by installing multiple storage tanks containing dry liquefied air on the onshore and offshore coastal regions and islands, preferably underground, in the usual path of a hurricane. Each storage tank is designed to hold and release dry liquefied air of around 100,000 tons. Satellite tracking of hurricanes can locate the eye wall and the spiral rain bands. The installed storage tanks coming under these areas will rapidly inject dry air in huge quantities thereby diluting the vapour content of the vapour-rich air in the eye wall and in the spiral rain bands. This will result in reduced natural input of vapour-rich air, reduced release of latent heat, reduced formation of the low pressure zone due to condensation and volume reduction of the vapor, expansion of the artificially introduced dry air as it goes up occupying a larger space with the diluted fuel, absorption of energy from the system by low temperature of the artificially introduced air. It will effect considerable condensation of the vapor near the sea surface thus further starving the hurricane of its fuel in its engine. Seeding materials, or microscopic dust as suggested by Dr. Daniel Rosenfeld in large quantities may also be introduced via the flow of the injected dry air in order to enhance the hurricane controlling ability. All the above factors are in favour of retarding the hurricane's wind speed and power. The sudden weakening of hurricane Lili was found to be partially caused

  12. Seasonality of fertility measured by physical activity traits in Holstein cows.

    PubMed

    Ismael, Ahmed; Strandberg, Erling; Berglund, Britt; Fogh, Anders; Løvendahl, Peter

    2016-04-01

    Seasonality of female fertility traits, including the interval from calving to first high activity (CFHA), duration of high activity episode (DHA), and strength of high activity episode (SHA) of first estrus, were studied. The physical activity traits were derived from electronic activity tags for 20,794 Holstein cows in 135 commercial Holstein herds in Denmark. Data were categorized in 3 ways: (1) into 4 seasons of calving: winter (January-March), spring (April-June), summer (July-September), and fall (October-December); (2) into 2 seasons: a cold season (October-March) and a warm season (April-September); and (3) into an increasing light season (IL; January-June), where daylight hours gradually increased, and a decreasing light season (DL; July-December), where daylight hours gradually decreased. At the phenotypic level, least squares means of CFHA were highest at 55d for cows calving in December and lowest at 31d for cows calving in September. The highest least squares means of DHA and SHA were recorded for cows calving in November and lowest for cows calving in May and June. Genetic parameters for all traits were estimated using average information-REML in a bivariate animal model that treated the same trait in different calving seasons as different traits. Heritability estimates for CFHA were highest for the winter season (0.13) and low for the other seasons (0.03-0.04), whereas heritability estimates for DHA and SHA were lowest for winter and highest for fall. Heritability estimates for CFHA for the cold season (0.17) was higher than that for the warm season (0.10). Heritability estimates of CFHA for the IL season (0.12) was higher than for the DL season (0.07), but the opposite pattern was found for DHA and SHA. Genetic correlations (rA) of CFHA between winter and summer (rA=0.34 ± 0.27), and winter and fall (rA=0.65 ± 0.20) were significantly lower than unity. The corresponding correlations of DHA and SHA between seasons were all close to unity, except

  13. Hurricane Katrina: Influence on the Male-to-Female Birth Ratio.

    PubMed

    Grech, Victor; Scherb, Hagen

    2015-01-01

    This study was carried out in order to ascertain whether or not Hurricane Katrina and related factors (i.e. the amount of rainfall) influenced the male-to-female birth ratio (M/F). Monthly births by gender for the affected states (Alabama, Florida, Louisiana and Mississippi) for January 2003 to December 2012 were obtained from the Centers for Disease Control and Prevention (CDC Wonder, Atlanta, Ga., USA). Precipitation data was obtained from the US National Weather Service. Ordinary linear logistic regression was used for trend analysis. A p value ≤0.05 was taken to represent a statistically significant result. Of the total of 3,903,660 live births, 1,996,966 (51.16%) were male and 1,906,694 (48.84%) were female. Significant seasonal variation was noted (the maximum M/F in May was 1.055, the minimum M/F in September was 1.041, p = 0.0073). There was also a separate and significant rise in M/F 8-10 months after the storm (April to June 2006, peak M/F 1.078, p = 0.0074), which translated to an approximate deficit of 800 girls compared to 46,072 girls born in that period if the M/F increase was theoretically only due to a girls' deficit in the denominator of the ratio. This spike was only present in Alabama, Louisiana and Mississippi, all of which received heavy rainfall. Florida did not receive heavy rainfall and experienced no such M/F spike. In this study there was a dose-response relation between the amount of rainfall after Hurricane Katrina and the monthly sex ratio of live births in the US states of Alabama, Louisiana and Mississippi 8-10 months later. The well-known yet unexplained distinct sex ratio seasonality may be due to natural or man-made radiation contained in the rain. © 2015 S. Karger AG, Basel.

  14. Hurricane Isidore

    Atmospheric Science Data Center

    2013-04-18

    ... 20, 2002. After bringing large-scale flooding to western Cuba, Isidore was upgraded (on September 21) from a tropical storm to a ... Yucatan Peninsula, the hurricane caused major destruction and left hundreds of thousands of people homeless. Although weakened after ...

  15. Hurricane Wilma

    Atmospheric Science Data Center

    2014-05-15

    ... Information on cloud top heights at different stages in the life cycle of the rapidly intensifying Hurricane Wilma may prove useful for ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  16. Guidelines for hurricane evacuation signing and markings

    DOT National Transportation Integrated Search

    2007-12-01

    Based on focus group input and surveys of motorists who have recent hurricane evacuation experience, researchers developed guidelines for various hurricane evacuation signs and markings, including route signs, contraflow signs, emergency shoulder lan...

  17. Revamping EAGLE-I and experiences during Hurricanes Harvey and Irma

    NASA Astrophysics Data System (ADS)

    Sanyal, J.; Chinthavali, S.; Myers, A.; Newby, S.; Redmon, D.

    2017-12-01

    EAGLE-I, the Environment for Analysis of Geo-Located Energy Information) is an operational system for the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability (OE), Infrastructure Security and Energy Restoration (ISER) division to provide near real-time situational awareness of the nation's energy sector. The system geospatially maps energy assets and systems in electricity, oil and natural gas, petroleum, and coal, and tie together a variety of data sources into one visualization platform. The system serves the needs of the ESF#12 (Emergency Support Function - Energy) community and has users from FEMA, USDA, DHS, and other federal and state emergency response agencies. During the hurricane season, the EAGLE-I team improved the coverage of electric customers in areas where the hurricanes were expected to make landfall, provided custom reports for Puerto Rico using whatever data was available, and supported various requests for data during the events. Various attempts were also made to establish a direct contact with utilities. Acute shortage of information was felt as utility systems went down, particularly in the territories, which led to considerations of using indirect mechanisms such as processing night lights imagery. As the EAGLE-I system undergoes a significant modernization, these experiences have helped understand and guide priorities in the modernization.

  18. Increased hurricane frequency near Florida during Younger Dryas Atlantic Meridional Overturning Circulation slowdown

    USGS Publications Warehouse

    Toomey, Michael; Korty, Robert L.; Donnelly, Jeffrey P.; van Hengstum, Peter J.; Curry, William B.

    2017-01-01

    The risk posed by intensification of North Atlantic hurricane activity remains controversial, in part due to a lack of available storm proxy records that extend beyond the relatively stable climates of the late Holocene. Here we present a record of storm-triggered turbidite deposition offshore the Dry Tortugas, south Florida, USA, that spans abrupt transitions in North Atlantic sea-surface temperature and Atlantic Meridional Overturning Circulation (AMOC) during the Younger Dryas (12.9–11.7 ka). Despite potentially hostile conditions for cyclogenesis in the tropical North Atlantic at that time, our record and numerical experiments suggest that strong hurricanes may have regularly affected Florida. Less severe surface cooling at mid-latitudes (∼20°–40°N) than across much of the tropical North Atlantic (∼10°–20°N) in response to AMOC reduction may best explain strong hurricane activity during the Younger Dryas near the Dry Tortugas and possibly along the entire southeastern coast of the United States.

  19. Quantifying the Hurricane Risk to Offshore Wind Power (Invited)

    NASA Astrophysics Data System (ADS)

    Apt, J.; Rose, S.; Jaramillo, P.; Small, M.

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. Whether that risk will grow as a result of climate change is uncertain. Recent years have seen an increase in hurricane activity in the Atlantic basin (1) and, all else being equal, warmer sea surface temperatures can be expected to lead to increased storm intensity. We have developed a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes (2). In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously due to hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. 1. Iris Grossmann and M. Granger Morgan, "Tropical Cyclones, Climate Change, and Scientific Uncertainty: What do we know, what does it mean, and what should be done?," Climatic Change, 108, pp 543-579, 2011. 2. Carnegie Mellon Electricity Industry Center Working Paper CEIC-13-07, http://wpweb2.tepper.cmu.edu/electricity/papers/ceic-13-07.asp This work was supported in part by the EPA STAR fellowship program, a grant from the Alfred P. Sloan Foundation and EPRI to the Carnegie Mellon Electricity Industry Center, and by the Doris Duke Charitable Foundation, the R.K. Mellon Foundation and the Heinz Endowments for support of the RenewElec program at Carnegie Mellon University. This research was also supported in part by the Climate and

  20. Fires, Floods, and Hurricanes: Is ENSO to Blame?

    ERIC Educational Resources Information Center

    Mjelde, James W.; Litzenberg, Kerry K.; Hoyle, Julie E.; Holochwost, Sharon R.; Funkhouser, Sarah

    2007-01-01

    Scientists have associated the El Nino/Southern Oscillation (ENSO) phenomenon with extreme climate events such as flooding in California, droughts in Australia, fires in Indonesia, and increased hurricane activity in the Atlantic Ocean. The popular media is constantly attributing individual storms to the ENSO phenomenon. The reality is that a…

  1. Hurricane Irma Damage Assessment

    NASA Image and Video Library

    2017-09-12

    The Operations Support Building I (OSB I) is seen during an aerial survey of NASA's Kennedy Space Center in Florida on September 12, 2017. The roof of the building is currently undergoing repair from Hurricane Matthew. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Irma as the storm passed Kennedy on September 10, 2017. NASA closed the center ahead of the storm's onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  2. Hurricanes, sea level rise, and coastal change

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    Sixteen hurricanes have made landfall along the U.S. east and Gulf coasts over the past decade. For most of these storms, the USGS with our partners in NASA and the U.S. Army Corps of Engineers have flown before and after lidar missions to detect changes in beaches and dunes. The most dramatic changes occurred when the coasts were completely submerged in an inundation regime. Where this occurred locally, a new breach was cut, like during Hurricane Isabel in North Carolina. Where surge inundated an entire island, the sand was stripped off leaving marshy outcrops behind, like during Hurricane Katrina in Louisiana. Sea level rise together with sand starvation and repeated hurricane impacts could increase the probabilities of inundation and degrade coasts more than sea level rise alone.

  3. Contribution of river floods, hurricanes, and cold fronts to elevation change in a deltaic floodplain, northern Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Bevington, Azure E.; Twilley, Robert R.; Sasser, Charles E.; Holm, Guerry O.

    2017-05-01

    Deltas are globally important locations of diverse ecosystems, human settlement, and economic activity that are threatened by reductions in sediment delivery, accelerated sea level rise, and subsidence. Here we investigated the relative contribution of river flooding, hurricanes, and cold fronts on elevation change in the prograding Wax Lake Delta (WLD). Sediment surface elevation was measured across 87 plots, eight times from February 2008 to August 2011. The high peak discharge river floods in 2008 and 2011 resulted in the greatest mean net elevation gain of 5.4 to 4.9 cm over each flood season, respectively. The highest deltaic wetland sediment retention (13.5% of total sediment discharge) occurred during the 2008 river flood despite lower total and peak discharge compared to 2011. Hurricanes Gustav and Ike resulted in a total net elevation gain of 1.2 cm, but the long-term contribution of hurricane derived sediments to deltaic wetlands was estimated to be just 22% of the long-term contribution of large river floods. Winter cold front passage resulted in a net loss in elevation that is equal to the elevation gain from lower discharge river floods and was consistent across years. This amount of annual loss in elevation from cold fronts could effectively negate the long-term land building capacity within the delta without the added elevation gain from both high and low discharge river floods. The current lack of inclusion of cold front elevation loss in most predictive numerical models likely overestimates the land building capacity in areas that experience similar forcings to WLD.

  4. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    Beach erosion caused by Hurricane Matthew is visible along the Atlantic shoreline at NASA’s Kennedy Space Center in Florida. Although some sections of shoreline suffered erosion, recently restored portions of beach fared well. Hurricane Matthew, a Category 3 storm, passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion.

  5. ENVIRONMENTAL SAMPLING AND ANALYSIS IN THE AFTERMATH OF HURRICANE KATRINA

    EPA Science Inventory

    This presentation describes the environmental sampling completed by EPA in southeastern Louisiana after Hurricane Katrina caused major catastrophic damage. Presentation also describes EPA's Environmental Unit activities in Baton Rouge and New Orleans, LA, and Dallas, TX.

  6. Divine Wind - The History and Science of Hurricanes

    NASA Astrophysics Data System (ADS)

    Emanuel, Kerry

    2005-09-01

    Imagine standing at the center of a Roman coliseum that is 20 miles across, with walls that soar 10 miles into the sky, towering walls with cascades of ice crystals falling along its brilliantly white surface. That's what it's like to stand in the eye of a hurricane. In Divine Wind , Kerry Emanuel, one of the world's leading authorities on hurricanes, gives us an engaging account of these awe-inspiring meteorological events, revealing how hurricanes and typhoons have literally altered human history, thwarting military incursions and changing the course of explorations. Offering an account of the physics of the tropical atmosphere, the author explains how such benign climates give rise to the most powerful storms in the world and tells what modern science has learned about them. Interwoven with this scientific account are descriptions of some of the most important hurricanes in history and relevant works of art and literature. For instance, he describes the 17th-century hurricane that likely inspired Shakespeare's The Tempest and that led to the British colonization of Bermuda. We also read about the Galveston Hurricane of 1900, by far the worst natural calamity in U.S. history, with a death toll between 8,000 and 12,000 that exceeded the San Francisco earthquake, the Johnstown Flood, and the Okeechobee Hurricane combined. Boasting more than one hundred color illustrations, from ultra-modern Doppler imagery to classic paintings by Winslow Homer, Divine Wind captures the profound effects that hurricanes have had on humanity. Its fascinating blend of history, science, and art will appeal to weather junkies, science buffs, and everyone who read Isaac's Storm .

  7. Hurricane genesis: on the breaking African easterly waves and critical layers

    NASA Astrophysics Data System (ADS)

    Asaadi, Ali; Brunet, Gilbert; Yau, Peter

    2015-04-01

    This study bring new understanding on the decades-old hurricane genesis problem that starts with westward travelling African easterly waves that can evolve into coherent cyclonic vortices depending on their strength and other nonlinear wave breaking processes. In general, observations indicate that only a small fraction of the African easterly waves that occur in a single hurricane season contribute to tropical cyclogenesis. However, this small fraction includes a large portion of named storms. In addition, a recent study by Dunkerton et al. (2009) has shown that named storms in the Atlantic and eastern Pacific basins are almost all associated with a cyclonic Kelvin "cat's eye" of a tropical easterly wave typical of critical layers, located equatorward of the easterly jet axis. To better understand the dynamics involved in hurricane genesis, the flow characteristics and the physical and dynamical mechanisms by which easterly waves form cat's eyes are investigated with the help of atmospheric reanalyzes and numerical simulations. We perform a climatological study of developing easterly waves covering the 1998-2001 hurricane seasons using ERA-Interim 6-hourly reanalysis data. Composite analyses for all named storms show a monotonic potential vorticity (PV) profile with weak meridional PV gradient and a cyclonic (i.e., south of the easterly jet axis) critical line for time periods of several days preceding the cat's eye formation. In addition, the developing PV anomaly composite shows a statistically significant companion wave-packet of non-developing easterly waves. A barotropic shallow water model is used to study the initial value and forced problems of disturbances on a parabolic jet and realistic profiles associated with weak basic state meridional PV gradients, leading to Kelvin cat's eye formation around the jet axis. The results highlight the synergy of the dynamical mechanisms, including wave breaking and PV redistribution within the nonlinear critical layer

  8. The Greatest Storm on Earth: Hurricane.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This publication, produced by the National Oceanic and Atmospheric Administration (NOAA), is an illustrated non-technical description of the meteorology of hurricanes and their effects on the land areas they hit. As an information source for students and teachers alike, this publication also describes the damage done in the past by hurricanes, the…

  9. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... that the staff uses in evaluating specific problems or postulated accidents, and data that the staff... turbine missiles. NUREG/CR 7004 is the technical basis for regulatory guidance on design-basis hurricane... hurricane wind speeds for new nuclear power plants. [[Page 54919

  10. Studying the Processes Contributed to the Hairpin Turn of Hurricane Joaquin with WRF numerical simulations and TCI-2015 observations

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Yu, Y.

    2016-12-01

    The prediction of Hurricane Joaquin's hairpin clockwise during 1 and 2 October 2015 presents a forecasting challenge during real-time numerical weather prediction, as tracks of several major numerical weather prediction models differ from each other. To investigate the large-scale environment and hurricane inner-core structures related to the hairpin turn of Joaquin, a series of high-resolution mesoscale numerical simulations of Hurricane Joaquin had been performed with an advanced research version of the Weather Research and Forecasting (WRF) model. The outcomes were compared with the observations obtained from the US Office of Naval Research's Tropical Cyclone Intensity (TCI) Experiment during 2015 hurricane season. Specifically, five groups of sensitivity experiments with different cumulus, boundary layer, and microphysical schemes as well as different initial and boundary conditions and initial times in WRF simulations had been performed. It is found that the choice of the cumulus parameterization scheme plays a significant role in reproducing reasonable track forecast during Joaquin's hairpin turn. The mid-level environmental steering flows can be the reason that leads to different tracks in the simulations with different cumulus schemes. In addition, differences in the distribution and amounts of the latent heating over the inner-core region are associated with discrepancies in the simulated intensity among different experiments. Detailed simulation results, comparison with TCI-2015 observations, and comprehensive diagnoses will be presented.

  11. Effects of a hurricane on fish parasites.

    PubMed

    Overstreet, R M

    2007-09-01

    Hurricanes, also called tropical cyclones, can dramatically affect life along their paths, including a temporary losing or reducing in number of parasites of fishes. Hurricane Katrina in the northern Gulf of Mexico in August 2005 provides many examples involving humans and both terrestrial and aquatic animals and plants. Fishes do not provide much of an indicator of hurricane activity because most species quickly repopulate the area. Fish parasites, however, serve as a good indicator of the overall biodiversity and environmental health. The reasons for the noted absence or reduction of parasites in fishes are many, and specific parasites provide indications of different processes. The powerful winds can produce perturbations of the sediments harboring intermediate hosts. The surge of high salinity water can kill or otherwise affect low salinity intermediate hosts or free-living stages. Both can introduce toxicants into the habitat and also interfere with the timing and processes involved with host-parasite interrelationships. All these have had a major influence on fish parasite populations of fishes in coastal Mississippi, especially for those parasites incorporating intermediate hosts in their life cycles. The length of time for a parasite to become re-established can vary considerably, depending on its life cycle as well as the associated biota, habitat, and environmental conditions, and each parasite provides a special indicator of environmental health.

  12. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis

    NASA Astrophysics Data System (ADS)

    Lee, Isabella K.; Shamsoddini, Ali; Li, Xiaofeng; Trinder, John C.; Li, Zeyu

    2016-07-01

    Hurricanes are among the most destructive global natural disasters. Thus recognizing and extracting their morphology is important for understanding their dynamics. Conventional optical sensors, due to cloud cover associated with hurricanes, cannot reveal the intense air-sea interaction occurring at the sea surface. In contrast, the unique capabilities of spaceborne synthetic aperture radar (SAR) data for cloud penetration, and its backscattering signal characteristics enable the extraction of the sea surface roughness. Therefore, SAR images enable the measurement of the size and shape of hurricane eyes, which reveal their evolution and strength. In this study, using six SAR hurricane images, we have developed a mathematical morphology method for automatically extracting the hurricane eyes from C-band SAR data. Skeleton pruning based on discrete skeleton evolution (DSE) was used to ensure global and local preservation of the hurricane eye shape. This distance weighted algorithm applied in a hierarchical structure for extraction of the edges of the hurricane eyes, can effectively avoid segmentation errors by reducing redundant skeletons attributed to speckle noise along the edges of the hurricane eye. As a consequence, the skeleton pruning has been accomplished without deficiencies in the key hurricane eye skeletons. A morphology-based analyses of the subsequent reconstructions of the hurricane eyes shows a high degree of agreement with the hurricane eye areas derived from reference data based on NOAA manual work.

  13. Drag Coefficient and Foam in Hurricane Conditions.

    NASA Astrophysics Data System (ADS)

    Golbraikh, E.; Shtemler, Y.

    2016-12-01

    he present study is motivated by recent findings of saturation and even decrease in the drag coefficient (capping) in hurricane conditions, which is accompanied by the production of a foam layer on the ocean surface. As it is difficult to expect at present a comprehensive numerical modeling of the drag coefficient saturation that is followed by wave breaking and foam production, there is no complete confidence and understanding of the saturation phenomenon. Our semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd , with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the available optical and radiometric measurements of the fractional foam coverage,αf, combined with direct wind speed measurements in hurricane conditions, which provide the minimum of the effective drag coefficient, Cd for the sea covered with foam. The present model yields Cd10 versus U10 in fair agreement with that evaluated from both open-ocean and laboratory measurements of the vertical variation of mean wind speed in the range of U10 from low to hurricane speeds. The present approach opens opportunities for drag coefficient modeling in hurricane conditions and hurricane intensity estimation by the foam-coverage value using optical and radiometric measurements.

  14. NASA CloudSat Captures Hurricane Daniel Transformation

    NASA Image and Video Library

    2006-07-25

    Hurricane Daniel intensified between July 18 and July 23rd. NASA new CloudSat satellite was able to capture and confirm this transformation in its side-view images of Hurricane Daniel as seen in this series of images

  15. Mortality associated with Hurricane Katrina--Florida and Alabama, August-October 2005.

    PubMed

    2006-03-10

    On August 25, 2005, Hurricane Katrina made landfall between Hallandale Beach and Aventura, Florida, as a Category 1 hurricane, with sustained winds of 80 mph. Storm effects, primarily rain, flooding, and high winds, were substantial; certain areas reported nearly 12 inches of rainfall. After crossing southern Florida and entering the Gulf of Mexico, the hurricane strengthened and made landfall in southeastern Louisiana on August 29 as a Category 3 hurricane, with sustained winds of 125 mph. Katrina was one of the strongest hurricanes to strike the United States during the past 100 years and was likely the nation's costliest natural disaster to date. This report summarizes findings and recommendations from a review of mortality records of Florida's Medical Examiners Commission (FMEC) and the Alabama Department of Forensic Science (ADFS). CDC was invited by the Florida Department of Health (FDOH) and the Alabama Department of Public Health (ADPH) to assess the mortality related to Hurricane Katrina. The mortality review was intended to provide county-based information that would be used to 1) define the impact of the hurricane, 2) describe the etiology of deaths, and 3) identify strategies to prevent or reduce future hurricane-related mortality. Combined, both agencies identified five, 23, and 10 deaths, respectively, that were directly, indirectly, or possibly related to Hurricane Katrina. Information from the characterization of these deaths will be used to reduce hurricane-related mortality through early community awareness of hurricane-related risk, prevention measures, and effective communication of a coordinated hurricane response plan.

  16. Hurricane Hortense: impact on surface water in Puerto Rico

    USGS Publications Warehouse

    Torres-Sierra, Heriberto

    1997-01-01

    Late Monday night, September 9, and into the early morning hours of Tuesday, September 10, 1996, Hurricane Hortense passed over the southwestern part of Puerto Rico (inset). Hurricane Hortense made landfall as a Category One Hurricane (74 to 95 miles per hour) on the Saffir-Simpson Scale, with maximum sustained winds of nearly 80 miles per hour. The eye of Hurricane Hortense moved over the towns of Guayanilla, Yauco, Guánica, Lajas, San Germán, Cabo Rojo, Hormigueros, and Mayagüez (fig. 1).

  17. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    Plant debris caused by Hurricane Matthew is strewn across the dune line along the Atlantic shoreline at NASA’s Kennedy Space Center in Florida. Although some sections of shoreline suffered erosion, recently restored portions of beach fared well. Hurricane Matthew, a Category 3 storm, passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion.

  18. Hurricane Watch in Effect for Bermuda

    NASA Image and Video Library

    2017-12-08

    Hurricane Gonzalo is moving toward the northwest near 12 mph. A turn toward the north-northwest and then north is expected during the next day or so, followed by a north northeastward acceleration by late Thursday. Maximum sustained winds are near 130 mph making Gonzalo a Category 4 hurricane on the Saffir-Simpson Hurricane Wind Scale. Tropical storm conditions are possible on Bermuda by late Thursday night, with hurricane conditions possible on Friday. Large swells generated by Gonzalo will reach much of the U.S. east coast and Bermuda on Thursday. These swells are likely to cause life-threatening surf and rip current conditions. This image was taken by GOES 13 at 1607 UTC on October 16, 2014. Caption: NOAA Image Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Understanding Tropical Forest Abiotic Responses to Canopy Loss and Biomass Deposition from an Experimental Hurricane Manipulation

    NASA Astrophysics Data System (ADS)

    Van Beusekom, A.; González, G.; Stankavitch, S.; Zimmerman, J. K.

    2017-12-01

    Understanding the nature and duration of the response of tropical forests to the extreme weather events of hurricanes is critical to understanding future forest regimes, as hurricanes are expected to increase in frequency with climate change. Here we present results from a manipulative experiment on hurricane disturbance effects in the Luquillo Experimental Forest (LEF) in Puerto Rico. The LEF is an example of a forest that would be in a frequent-hurricane region in Earth System Models (ESMs). Thus, the Canopy Trimming Experiment (CTE) was designed to study the key mechanisms behind such a forest's response after a major hurricane (category 4), and guide how repeated hurricanes might be expected to alter such ecosystems using these key mechanisms. Furthermore, with explicit forest manipulation instead of natural occurrence, it is possible to separate out which aspects of hurricane disturbance are most important to be accurately included in ESMs. Phase one of the experiments ran from 2005-2012, where it was found that short-term biotic responses of the forests were driven by canopy openness rather than by debris deposition. In phase two, running from 2014 through the present, we focus here on the abiotic changes forcing the overall response of the ecosystem. The manner in which these abiotic characteristics are disturbed and the speed at which they recover will be key to the continued existence of tropical forests under a climate with more frequent hurricane activity.

  20. Hurricane Sandy: Shared Trauma and Therapist Self-Disclosure.

    PubMed

    Rao, Nyapati; Mehra, Ashwin

    2015-01-01

    Hurricane Sandy was one of the most devastating storms to hit the United States in history. The impact of the hurricane included power outages, flooding in the New York City subway system and East River tunnels, disrupted communications, acute shortages of gasoline and food, and a death toll of 113 people. In addition, thousands of residences and businesses in New Jersey and New York were destroyed. This article chronicles the first author's personal and professional experiences as a survivor of the hurricane, more specifically in the dual roles of provider and trauma victim, involving informed self-disclosure with a patient who was also a victim of the hurricane. The general analytic framework of therapy is evaluated in the context of the shared trauma faced by patient and provider alike in the face of the hurricane, leading to important implications for future work on resilience and recovery for both the therapist and patient.

  1. Aircraft Monitoring of Sea-Spray and Changes in Hurricane Intensity

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.

    2010-12-01

    Sea spray above the ocean surface in hurricanes enhances the transfer of sensible heat to the atmospheric boundary layer. Sea spray becomes of greater significance as the intensity and thereby the wind speed of the hurricane increases. A fuller knowledge of the distribution of sea spray over the ocean may help in understanding changes in intensity of the most dangerous hurricanes. An instrument to measure the salt content of rain has been developed and installed on one of NOAA’s P3 hurricane research aircraft. The instrument detects changes in the conductivity of a thin film of water on the surface of the instrument. Calibration of the instrument has been completed at the University of Texas A&M wind tunnel facility. An earlier version of the sensor was flown into Hurricane Paloma (2008) at an elevation of 4 km. Changes in salt concentration were detected. A sturdier version of the instrument was flown into winter storms off the coast of Newfoundland in February of 2010. For the most part, the instrument did not function because the precipitation was a solid. But the one time the on-board meteorologist noted there was liquid precipitation, the instrument did function. Rain samples collected at ground level from eleven land falling hurricanes ranged from 5 ppm to 50 ppm (Lawrence et al, 2006 Fall AGU abstract, session A33). Hurricane Katrina showed the highest concentration of salt at 50 ppm. Sea salt measurements in rain from Hurricane Earl were underway starting on August 28 with continued plans through September 3. Salinity measurements by the instrument will be compared to wind velocities measured by the on-board radar. Because sea spray increases heat-transfer from the ocean to the hurricane atmosphere, especially in category 3 to 5 hurricanes, these studies may help improve models that predict changes in hurricane intensity.

  2. Diet and physical activity in African-American girls: Seasonal differences

    USDA-ARS?s Scientific Manuscript database

    Diet and physical activity (PA) may vary by season. Two 24-hour dietary recalls and 7 days of accelerometry were collected from 342 8-10 year-old African-American girls between January 2013 and October 2014. Season was based on time of data collection (fall, spring, winter, summer). Seasonal differe...

  3. Estimating the human influence on Hurricanes Harvey, Irma and Maria

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.; Patricola, C. M.; Risser, M. D.

    2017-12-01

    Attribution of the human-induced climate change influence on the physical characteristics of individual extreme weather events has become an advanced science over the past decade. However, it is only recently that such quantification of anthropogenic influences on event magnitudes and probability of occurrence could be applied to very extreme storms such as hurricanes. We present results from two different classes of attribution studies for the impactful Atlantic hurricanes of 2017. The first is an analysis of the record rainfall amounts during Hurricane Harvey in the Houston, Texas area. We analyzed observed precipitation from the Global Historical Climatology Network with a covariate-based extreme value statistical analysis, accounting for both the external influence of global warming and the internal influence of ENSO. We found that human-induced climate change likely increased Hurricane Harvey's total rainfall by at least 19%, and likely increased the chances of the observed rainfall by a factor of at least 3.5. This suggests that changes exceeded Clausius-Clapeyron scaling, motivating attribution studies using dynamical climate models. The second analysis consists of two sets of hindcast simulations of Hurricanes Harvey, Irma, and Maria using the Weather Research and Forecasting model (WRF) at 4.5 km resolution. The first uses realistic boundary and initial conditions and present-day greenhouse gas forcings while the second uses perturbed conditions and pre-industrial greenhouse has forcings to simulate counterfactual storms without anthropogenic influences. These simulations quantify the fraction of Harvey's precipitation attributable to human activities and test the super Clausius-Clapeyron scaling suggested by the observational analysis. We will further quantify the human influence on intensity for Harvey, Irma, and Maria.

  4. Decadal Trends of Atlantic Basin Tropical Cyclones (1950-1999)

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2001-01-01

    Ten-year moving averages of the seasonal rates for 'named storms,' tropical storms, hurricanes, and major (or intense) hurricanes in the Atlantic basin suggest that the present epoch is one of enhanced activity, marked by seasonal rates typically equal to or above respective long-term median rates. As an example, the 10-year moving average of the seasonal rates for named storms is now higher than for any previous year over the past 50 years, measuring 10.65 in 1994, or 2.65 units higher than its median rate of 8. Also, the 10-year moving average for tropical storms has more than doubled, from 2.15 in 1955 to 4.60 in 1992, with 16 of the past 20 years having a seasonal rate of three or more (the median rate). For hurricanes and major hurricanes, their respective 10-year moving averages turned upward, rising above long-term median rates (5.5 and 2, respectively) in 1992, a response to the abrupt increase in seasonal rates that occurred in 1995. Taken together, the outlook for future hurricane seasons is for all categories of Atlantic basin tropical cyclones to have seasonal rates at levels equal to or above long-term median rates, especially during non-El Nino-related seasons. Only during El Nino-related seasons does it appear likely that seasonal rates might be slightly diminished.

  5. Gulf Coast Hurricanes Situation Report #39

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2005-11-09

    There are 49,300 customers without power in Florida as of 7:00 AM EST 11/9 due to Hurricane Wilma, down from a peak of about 3.6 million customers. Currently, less than 1 percent of the customers are without power in the state. This is the last report we will due on outages due to Hurricane Wilma.

  6. An In Depth Look at Lightning Trends in Hurricane Harvey using Satellite and Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Ringhausen, J.

    2017-12-01

    This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.

  7. Fetch-Trapping in Hurricane Isabel

    NASA Astrophysics Data System (ADS)

    Pearse, A. J.; Hanson, J. L.

    2005-12-01

    Hurricane Isabel made landfall near Drum Inlet on the Outer Banks of North Carolina on September 18, 2003, and caused extensive monetary and coastal damage. Storm surge and battering waves were a primary cause of damage, as in most hurricanes. Data collected at the US Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, the National Data Buoy Center (NDBC), and the Coastal Data Information Program (CDIP) suggest that the waves generated by Hurricane Isabel were larger and had longer periods than would be suggested by a traditional semi-empirical wave growth model with similar fetch and wind speed values. It is likely that this enhanced growth was due to the trapping of storm waves within the moving fetch of the hurricane. The purpose of this study was to empirically confirm the enhancement and to identify the degree of fetch-trapping that occurred. Directional wave spectra from 577 individual wave records were collected from buoys in three locations: CDIP station 078 in King's Bay, GA, the FRF Waverider in NC, and NDBC Station 44025 off Long Island, NY. A wave partitioning approach was used to isolate the individual swell components from the evolving wave field at each station. A backward raytrace along great-circle routes was employed to identify the intersection of each swell system with the official National Hurricane Center (NHC) Isabel track. This allowed matching each observed swell component with a generation time, storm translation speed, and peak wind speed. Wave period, rather than amplitude, was used in this study because amplitude is significantly affected by the bottom topography whereas period is conserved. Using the identified wind speeds and an average fetch of 200 km (approximated using NOAA wind field charts), the actual waves showed wave period enhancements up to 60% over predictions using the standard wave growth model. A variety of resonance criteria are applied to evaluate fetch trapping in Hurricane Isabel. The most enhanced

  8. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    USGS Publications Warehouse

    Barras, John A.

    2007-01-01

    Introduction Hurricane Katrina made landfall on the eastern coastline of Louisiana on August 29, 2005; Hurricane Rita made landfall on the western coastline of Louisiana on September 24, 2005. Comparison of Landsat Thematic Mapper (TM) satellite imagery acquired before and after the landfalls of Katrina and Rita and classified to identify land and water demonstrated that water area increased by 217 mi2 (562 km2) in coastal Louisiana as a result of the storms. Approximately 82 mi2 (212 km2) of new water areas were in areas primarily impacted by Hurricane Katrina (Mississippi River Delta basin, Breton Sound basin, Pontchartrain basin, and Pearl River basin), whereas 99 mi2 (256 km2) were in areas primarily impacted by Hurricane Rita (Calcasieu/Sabine basin, Mermentau basin, Teche/Vermilion basin, Atchafalaya basin, and Terrebonne basin). Barataria basin contained new water areas caused by both hurricanes, resulting in some 18 mi2 (46.6 km2) of new water areas. The fresh marsh and intermediate marsh communities' land areas decreased by 122 mi2 (316 km2) and 90 mi2 (233.1 km2), respectively, and the brackish marsh and saline marsh communities' land areas decreased by 33 mi2 (85.5 km2) and 28 mi2 (72.5 km2), respectively. These new water areas represent land losses caused by direct removal of wetlands. They also indicate transitory changes in water area caused by remnant flooding, removal of aquatic vegetation, scouring of marsh vegetation, and water-level variation attributed to normal tidal and meteorological variation between satellite images. Permanent losses cannot be estimated until several growing seasons have passed and the transitory impacts of the hurricanes are minimized. The purpose of this study was to provide preliminary information on water area changes in coastal Louisiana acquired shortly after the landfalls of both hurricanes (detectable with Landsat TM imagery) and to serve as a regional baseline for monitoring posthurricane wetland recovery. The land

  9. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled

  10. Seasonal Variation of High-Latitude Geomagnetic Activity in Individual Years

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Hynönen, R.; Mursula, K.

    2017-10-01

    We study the seasonal variation of high-latitude geomagnetic activity in individual years in 1966-2014 (solar cycles 20-24) by identifying the most active and the second most active season based on westward electrojet indices AL (1966-2014) and IL (1995-2014). The annual maximum is found at either equinox in two thirds and at either solstice in one third of the years examined. The traditional two-equinox maximum pattern is found in roughly one fourth of the years. We found that the seasonal variation of high-latitude geomagnetic activity closely follows the solar wind speed. While the mechanisms leading to the two-equinox maxima pattern are in operation, the long-term change of solar wind speed tends to mask the effect of these mechanisms for individual years. Large cycle-to-cycle variation is found in the seasonal pattern: equinox maxima are more common during cycles 21 and 22 than in cycles 23 or 24. Exceptionally long winter dominance in high-latitude activity and solar wind speed is seen in the declining phase of cycle 23, after the appearance of the long-lasting low-latitude coronal hole.

  11. 1954 hurricane damage on Penobscot Experimental Forest

    Treesearch

    T. J. Grisez

    1954-01-01

    The two hurricanes "Carol" and "Edna" that struck inland over New England this summer caused some timber losses. But the damage was neither so extensive nor so severe as the damage done by the hurricane of 1938 and the storms of 1950.

  12. Hurricane Fred Lashes the Cape Verde Islands

    NASA Image and Video Library

    2017-12-08

    Hurricane Fred is bringing very heavy rains to the Cape Verde Islands. From the National Hurricane Center's Hurricane Fred Forecast Discussion: "According to the official Atlantic tropical cyclone record, which begins in 1851, Fred is the first hurricane to pass through the Cape Verde Islands since 1892. We caution, however, that the database is less reliable prior to the satellite era (mid 1960s onward)." This image was taken by GOES East on August 31, 2015. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram Credit: NOAA/NASA GOES Project

  13. Understanding household preferences for hurricane risk mitigation information: evidence from survey responses.

    PubMed

    Chatterjee, Chiradip; Mozumder, Pallab

    2014-06-01

    Risk information is critical to adopting mitigation measures, and seeking risk information is influenced by a variety of factors. An essential component of the recently adopted My Safe Florida Home (MSFH) program by the State of Florida is to provide homeowners with pertinent risk information to facilitate hurricane risk mitigation activities. We develop an analytical framework to understand household preferences for hurricane risk mitigation information through allowing an intensive home inspection. An empirical analysis is used to identify major drivers of household preferences to receive personalized information regarding recommended hurricane risk mitigation measures. A variety of empirical specifications show that households with home insurance, prior experience with damages, and with a higher sense of vulnerability to be affected by hurricanes are more likely to allow inspection to seek information. However, households with more members living in the home and households who live in manufactured/mobile homes are less likely to allow inspection. While findings imply MSFH program's ability to link incentives offered by private and public agencies in promoting mitigation, households that face a disproportionately higher level of risk can get priority to make the program more effective. © 2014 Society for Risk Analysis.

  14. Tornado outbreaks associated with landfalling hurricanes in the North Atlantic Basin: 1954 2004

    NASA Astrophysics Data System (ADS)

    Verbout, S. M.; Schultz, D. M.; Leslie, L. M.; Brooks, H. E.; Karoly, D. J.; Elmore, K. L.

    2007-08-01

    Tornadoes are a notable potential hazard associated with landfalling hurricanes. The purpose of this paper is to discriminate hurricanes that produce numerous tornadoes (tornado outbreaks) from those that do not (nonoutbreaks). The data consists of all hurricane landfalls that affected the United States from the North Atlantic basin from 1954 to 2004 and the United States tornado record over the same period. Because of the more than twofold increase in the number of reported tornadoes over these 51 years, a simple least-squares linear regression (“the expected number of tornadoes”) was fit to the annual number of tornado reports to represent a baseline for comparison. The hurricanes were sorted into three categories. The first category, outbreak hurricanes, was determined by hurricanes associated with the number of tornado reports exceeding a threshold of 1.5% of the annual expected number of tornadoes and at least 8 F1 and greater tornadoes during the time of landfall (from outer rainbands reaching shore to dissipation of the system). Eighteen hurricane landfalls were classified as outbreak hurricanes. Second, 37 hurricanes having less than 0.5% of the annual expected number of tornadoes were classified as nonoutbreak landfalls. Finally, 28 hurricanes that were neither outbreak nor nonoutbreak hurricanes were classified as midclass hurricane landfalls. Stronger hurricanes are more likely to produce tornado outbreaks than weaker hurricanes. While 78% of outbreak hurricanes were category 2 or greater at landfall, only 32% of nonoutbreak hurricanes were category 2 or greater at landfall. Hurricanes that made landfall along the southern coast of the United States and recurved northeastward were more likely to produce tornadoes than those that made landfall along the east coast or those that made landfall along the southern coast but did not recurve. Recurvature was associated with a 500-hPa trough in the jet stream, which also contributed to increased deep

  15. Simulating the formation of Hurricane Isabel (2003) with AIRS data

    NASA Astrophysics Data System (ADS)

    Wu, Liguang; Braun, Scott A.; Qu, John J.; Hao, Xianjun

    2006-02-01

    Using the AIRS retrieved temperature and humidity profiles, the Saharan Air Layer (SAL) influence on the formation of Hurricane Isabel (2003) is simulated numerically with the MM5 model. The warmth and dryness of the SAL (the thermodynamic effect) is assimilated by use of the nudging technique, which enables the model thermodynamic state to be relaxed to the profiles of the AIRS retrieved data for the regions without cloud contamination. By incorporating the AIRS data, MM5 better simulates the large-scale flow patterns and the timing and location of the formation of Hurricane Isabel and its subsequent track. By comparing with an experiment without nudging of the AIRS data, it is shown that the SAL may have delayed the formation of Hurricane Isabel and inhibited the development of another tropical disturbance to the east. This case study confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.

  16. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, T.G.; Wood, N.; Yarnal, B.; Bauer, D.H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir-Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards. ?? 2010 Elsevier Ltd.

  17. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  18. Directional spectra of hurricane-generated waves in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hu, Kelin; Chen, Qin

    2011-10-01

    Hurricane-induced directional wave spectra in the Gulf of Mexico are investigated based on the measurements collected at 12 buoys during 7 hurricane events in recent years. Focusing on hurricane-generated wave spectra, we only consider the wave measurements at the buoys within eight times the radius of the hurricane maximum wind speed (Rmax) from the hurricane center. A series of numerical experiments using a third-generation spectral wave prediction model were carried out to gain insight into the mechanism controlling the directional and frequency distributions of hurricane wave energy. It is found that hurricane wave spectra are almost swell-dominated except for the right-rear quadrant of a hurricane with respect to the forward direction, where the local strong winds control the spectra. Despite the complexity of a hurricane wind field, most of the spectra are mono-modal, similar to those under fetch-limited, unidirectional winds. However, bi-modal spectra were also found in both measurements and model results. Four types of bi-modal spectra have been observed. Type I happens far away (>6 × Rmax) from a hurricane. Type II is bi-modal in frequency with significant differences in direction. It happens in the two left quadrants when the direction of hurricane winds deviates considerably from the swell direction. Type III is bi-modal in frequency in almost the same wave direction with two close peaks. It occurs when the energy of locally-generated wind-sea is only partially transferred to the swell energy by non-linear wave-wave interactions. Type IV was observed in shallow waters owing to coastal effects.

  19. Seasonal bat activity related to insect emergence at three temperate lakes.

    PubMed

    Salvarina, Ioanna; Gravier, Dorian; Rothhaupt, Karl-Otto

    2018-04-01

    Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole-night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats' energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic-terrestrial interactions or designing conservation and monitoring plans.

  20. Fertility after natural disaster: Hurricane Mitch in Nicaragua

    PubMed Central

    Davis, Jason

    2017-01-01

    This investigation evaluates the effect of Hurricane Mitch on women’s reproductive outcomes throughout Nicaragua. This research aim is achieved by analyzing a unique Nicaraguan Living Standards Measurement Study panel dataset that tracks women’s fertility immediately before and at two time points after Hurricane Mitch, combined with satellite-derived municipality-level precipitation data for the 10-day storm period. Results show higher odds of post-disaster fertility in municipalities receiving higher precipitation levels in the immediate post-Hurricane Mitch period. However, fertility normalizes between disaster and non-disaster areas four to six years after the storm. These findings suggest that the disruptive effects of a natural disaster such as Hurricane Mitch can have an initial stimulative effect on fertility but the effect is ephemeral. PMID:28694556

  1. Storming ahead

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Fourteen tropical storms, nine hurricanes, and four intense hurricanes with winds above 111 mph. That's the forecast for hurricane activity in the Atlantic Basin for the upcoming hurricane season which extends from June 1 through November 30, 1999, according to a Colorado State Hurricane Forecast team led by William Gray, professor of atmospheric science. The forecast supports an earlier report by the team.Hurricane activity, said Gray will be similar to 1998—which yielded 14 tropical storms, 10 hurricanes, and 3 intense storms. These numbers are significantly higher than the long-term statistical averages of 9.3, 5.8, and 2.2, annually.

  2. Food-related coping strategies after Hurricane Andrew.

    PubMed

    Magnus, M H

    1994-06-01

    This telephone survey examined food-related coping strategies in Floridian households after Hurricane Andrew. Approximately 137 households of university faculty and staff who lived in hurricane-damaged areas were interviewed. The average respondent was a college-educated woman between 41 and 60 years old. Prevailing food-purchasing problems included food stores that were either closed, without perishable food, distant, or crowded. In the absence of electricity and water, changes in food preparation included preparation of meals without a stove, more frequent use of grills and canned food, simpler meals, and less cooking. Changes in kitchen cleanup included using more disposables, cleaning more often, washing dishes by hand, and cleaning up less often because of damage in the kitchen. Respondents indicated that the hurricane experience taught them that they should have acquired more general supplies (eg, coolers, thermoses, propane stoves, and gas burners), more water and ice, and more nonperishable foods before the hurricane.

  3. On the relationship between hurricane cost and the integrated wind profile

    NASA Astrophysics Data System (ADS)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  4. Dynamic Hurricane Data Analysis Tool

    NASA Technical Reports Server (NTRS)

    Knosp, Brian W.; Li, Peggy; Vu, Quoc A.

    2009-01-01

    A dynamic hurricane data analysis tool allows users of the JPL Tropical Cyclone Information System (TCIS) to analyze data over a Web medium. The TCIS software is described in the previous article, Tropical Cyclone Information System (TCIS) (NPO-45748). This tool interfaces with the TCIS database to pull in data from several different atmospheric and oceanic data sets, both observed by instruments. Users can use this information to generate histograms, maps, and profile plots for specific storms. The tool also displays statistical values for the user-selected parameter for the mean, standard deviation, median, minimum, and maximum values. There is little wait time, allowing for fast data plots over date and spatial ranges. Users may also zoom-in for a closer look at a particular spatial range. This is version 1 of the software. Researchers will use the data and tools on the TCIS to understand hurricane processes, improve hurricane forecast models and identify what types of measurements the next generation of instruments will need to collect.

  5. Tornadoes & Hurricanes. The Natural Disaster Series. Grades 4-8.

    ERIC Educational Resources Information Center

    Deery, Ruth

    The topics of tornadoes and hurricanes are important to children but are often missing from elementary textbooks. This document is a part of "The Natural Disaster Series" and is an attempt to supplement elementary science and social studies programs with lessons and student activities. Reasoning skills are emphasized throughout the…

  6. Teaching and Learning Mathematics through Hurricane Tracking

    ERIC Educational Resources Information Center

    Fernandez, Maria L.; Schoen, Robert C.

    2008-01-01

    Mathematics teachers can tap into students' curiosity about hurricanes to develop their understanding of mathematical ideas within a real-life context. This article discusses hurricane-based mathematics tasks involving cooperative learning that were found to help students enhance their understanding of patterns, graphs, and rates of change. For…

  7. Effects of hurricanes and climate oscillations on annual variation in reproduction in wet forest, Puerto Rico.

    PubMed

    Zimmerman, Jess K; Hogan, James Aaron; Nytch, Christopher J; Bithorn, John E

    2018-06-01

    Interannual changes in global climate and weather disturbances may influence reproduction in tropical forests. Phenomena such as the El Niño Southern Oscillation (ENSO) are known to produce interannual variation in reproduction, as do severe storms such as hurricanes. Using stationary trap-based phenology data collected fortnightly from 1993 to 2014 from a hurricane-affected (1989 Hugo, 1998 Georges) subtropical wet forest in northeastern Puerto Rico, we conducted a time series analysis of flowering and seed production. We addressed (1) the degree to which interannual variation in flower and seed production was influenced by global climate drivers and time since hurricane disturbance, and (2) how long-term trends in reproduction varied with plant lifeform. The seasonally de-trended number of species in flower fluctuated over time while the number of species producing seed exhibited a declining trend, one that was particularly evident during the second half of the study period. Lagged El Niño indices and time series hurricane disturbance jointly influenced the trends in numbers of flowering and fruiting species, suggesting complex global influences on tropical forest reproduction with variable periodicities. Lag times affecting flowering tended to be longer than those affecting fruiting. Long-term patterns of reproduction in individual lifeforms paralleled the community-wide patterns, with most groups of lifeform exhibiting a long-term decline in seed but not flower production. Exceptions were found for hemiepiphytes, small trees, and lianas whose seed reproduction increased and then declined over time. There was no long-term increase in flower production as reported in other Neotropical sites. © 2018 by the Ecological Society of America.

  8. Hurricane Patricia Viewed by NASA ISS-RapidScat

    NASA Image and Video Library

    2015-10-23

    NASA's ISS-RapidScat passed over Hurricane Patricia at about 3:00 AM GMT on Oct. 23, 2015. A Hurricane Warning was in effect from San Blas to Punta San Telmo. A Hurricane Watch was in effect from east of Punta San Telmo to Lazaro Cardenas and a Tropical Storm Warning was in effect from east of Punta San Telmo to Lazaro Cardenas. Patricia was moving toward the north-northwest near 12 mph (19 kph) and a turn toward the north is expected later this morning, followed by a turn toward the north-northeast this afternoon. On the forecast track, the core of Patricia will make landfall in the hurricane warning area today, Oct. 23, 2015, during the afternoon or evening. http://photojournal.jpl.nasa.gov/catalog/PIA20031

  9. The dynamics of hurricane balls

    NASA Astrophysics Data System (ADS)

    Andersen, W. L.; Werner, Steven

    2015-09-01

    We examine the theory of the hurricane balls toy. This toy consists of two steel balls, welded together that are sent spinning on a horizontal surface somewhat like a top. Unlike a top, at high frequency the symmetry axis approaches a limiting inclination that is not perpendicular to the surface. We calculate (and experimentally verify) the limiting inclinations for three toy geometries. We find that at high frequencies, hurricane balls provide an easily realized and testable example of the Poinsot theory of freely rotating symmetrical bodies.

  10. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-13

    Roofing materials, blown loose by Hurricane Matthew, lie on the ground behind the Beach House at NASA’s Kennedy Space Center in Florida. Members of the Disaster Assessment and Recovery Team (DART) are working on repairs to the facility following Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  11. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    PubMed Central

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  12. Hurricanes Kilo, Ignacio and Jimena Surround Hawaii

    NASA Image and Video Library

    2017-12-08

    Major Hurricane Kilo is located around 1220 miles west of Honolulu, Hurricane Ignacio is located around 315 miles east of Hilo and Major Hurricane Jimena is located around 1425 miles east of Hilo, Hawaii. This image was taken by GOES West on August 31, 2015. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Wetland Sedimentation from Hurricanes Katrina and Rita

    NASA Astrophysics Data System (ADS)

    Turner, R. Eugene; Baustian, Joseph J.; Swenson, Erick M.; Spicer, Jennifer S.

    2006-10-01

    More than 131 × 106 metric tons (MT) of inorganic sediments accumulated in coastal wetlands when Hurricanes Katrina and Rita crossed the Louisiana coast in 2005, plus another 281 × 106 MT when accumulation was prorated for open water area. The annualized combined amount of inorganic sediments per hurricane equals (i) 12% of the Mississippi River's suspended load, (ii) 5.5 times the inorganic load delivered by overbank flooding before flood protection levees were constructed, and (iii) 227 times the amount introduced by a river diversion built for wetland restoration. The accumulation from hurricanes is sufficient to account for all the inorganic sediments in healthy saltmarsh wetlands.

  14. Hurricane Sandy: An Educational Bibliography of Key Research Studies

    ERIC Educational Resources Information Center

    Piotrowski, Chris

    2013-01-01

    There, undoubtedly, will be a flurry of research activity in the "Superstorm" Sandy impact area on a myriad of disaster-related topics, across academic disciplines. The purpose of this study was to review the disaster research related specifically to hurricanes in the educational and social sciences that would best serve as a compendium…

  15. Hurricanes accelerated the Florida-Bahamas lionfish invasion.

    PubMed

    Johnston, Matthew W; Purkis, Sam J

    2015-06-01

    In this study, we demonstrate how perturbations to the Florida Current caused by hurricanes are relevant to the spread of invasive lionfish from Florida to the Bahamas. Without such perturbations, this current represents a potential barrier to the transport of planktonic lionfish eggs and larvae across the Straits of Florida. We further show that once lionfish became established in the Bahamas, hurricanes significantly hastened their spread through the island chain. We gain these insights through: (1) an analysis of the direction and velocity of simulated ocean currents during the passage of hurricanes through the Florida Straits and (2) the development of a biophysical model that incorporates the tolerances of lionfish to ocean climate, their reproductive strategy, and duration that the larvae remain viable in the water column. On the basis of this work, we identify 23 occasions between the years 1992 and 2006 in which lionfish were provided the opportunity to breach the Florida Current. We also find that hurricanes during this period increased the rate of spread of lionfish through the Bahamas by more than 45% and magnified its population by at least 15%. Beyond invasive lionfish, we suggest that extreme weather events such as hurricanes likely help to homogenize the gene pool for all Caribbean marine species susceptible to transport. © 2015 John Wiley & Sons Ltd.

  16. FAQ HURRICANES, TYPHOONS, AND TROPICAL CYCLONES

    Science.gov Websites

    Time ? How do I tell at what time a satellite picture was taken ? A14) How do I convert from mph to largest number of hurricanes in the Atlantic Ocean at the same time? E19) How many direct hits by hurricane and how does this feedback to the storm itself? I : REAL TIME INFORMATION I1) Where can I get real

  17. Hurricane Katrina Wind Investigation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjarlais, A. O.

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after majormore » wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation

  18. Cloud Height Maps for Hurricanes Frances and Ivan

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane Frances on September 4, 2004, when the eye sat just off the coast of eastern Florida, and Hurricane Ivan on September 5th, after this cyclone had devastated Grenada and was heading toward the central and western Caribbean. Hurricane Frances made landfall in the early hours of September 5, and was downgraded to Tropical Storm status as it swept inland through the Florida panhandle and continued northward. On the heels of Frances is Hurricane Ivan, which is on record as the strongest tropical cyclone to form at such a low latitude in the Atlantic, and was the most powerful hurricane to have hit the Caribbean in nearly a decade.

    The ability of forecasters to predict the intensity and amount of rainfall associated with hurricanes still requires improvement, especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane forecasts, scientists need to better understand the multi-scale interactions at the cloud, mesoscale and synoptic scales that lead to hurricane intensification and dissipation, and the various physical processes that affect hurricane intensity and rainfall distributions. Because these uncertainties with regard to how to represent cloud processes still exist, it is vital that the model findings be evaluated against hurricane observations whenever possible. Two-dimensional maps of cloud height such as those shown here offer an unprecedented opportunity for comparing simulated cloud fields against actual hurricane observations.

    The left-hand panel in each image pair is a natural color view from MISR's nadir camera. The right-hand panels are cloud-top height retrievals produced by automated computer recognition of the distinctive spatial features between images acquired at different view angles. These results indicate that at the time that these images were

  19. Hurricane impacts on US forest carbon sequestration

    Treesearch

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  20. Spatial structure of directional wave spectra in hurricanes

    NASA Astrophysics Data System (ADS)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  1. Hospitalization rates among dialysis patients during Hurricane Katrina.

    PubMed

    Howard, David; Zhang, Rebecca; Huang, Yijian; Kutner, Nancy

    2012-08-01

    Dialysis centers struggled to maintain continuity of care for dialysis patients during and immediately following Hurricane Katrina's landfall on the US Gulf Coast in August 2005. However, the impact on patient health and service use is unclear. The impact of Hurricane Katrina on hospitalization rates among dialysis patients was estimated. Data from the United States Renal Data System were used to identify patients receiving dialysis from January 1, 2001 through August 29, 2005 at clinics that experienced service disruptions during Hurricane Katrina. A repeated events duration model was used with a time-varying Hurricane Katrina indicator to estimate trends in hospitalization rates. Trends were estimated separately by cause: surgical hospitalizations, medical, non-renal-related hospitalizations, and renal-related hospitalizations. The rate ratio for all-cause hospitalization associated with the time-varying Hurricane Katrina indicator was 1.16 (95% CI, 1.05-1.29; P = .004). The ratios for cause-specific hospitalization were: surgery, 0.84 (95% CI, 0.68-1.04; P = .11); renal-related admissions, 2.53 (95% CI, 2.09-3.06); P < .001), and medical non-renal related, 1.04 (95% CI, 0.89-1.20; P = .63). The estimated number of excess renal-related hospital admissions attributable to Katrina was 140, representing approximately three percent of dialysis patients at the affected clinics. Hospitalization rates among dialysis patients increased in the month following the Hurricane Katrina landfall, suggesting that providers and patients were not adequately prepared for large-scale disasters.

  2. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    A small staircase, toppled and relocated by Hurricane Matthew, is seen in front of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  3. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    A construction trailer damaged by Hurricane Matthew is seen in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  4. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    Ceiling and furniture damage caused by Hurricane Matthew is seen inside a support building in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  5. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-13

    Roofing materials, blown loose by Hurricane Matthew, are visible on the ground below the deck of the Beach House at NASA’s Kennedy Space Center in Florida. Members of the Disaster Assessment and Recovery Team (DART) are working on repairs to the facility following Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  6. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    An ice dispenser damaged by Hurricane Matthew is seen in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  7. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    A construction helmet and staircase, both relocated by Hurricane Matthew, is seen in front of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  8. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    A construction trailer damaged by Hurricane Matthew is seen in front of the Mobile Launcher within the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  9. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    Hurricane Matthew tore away a section of wall on a support building in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  10. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    A hole caused by Hurricane Matthew is visible in a section of door on the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  11. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    A broken window caused by Hurricane Matthew is seen inside a support building in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  12. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    Siding damage caused by Hurricane Matthew is seen inside a support building in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  13. Deriving spatial and temporal patterns of coastal marsh aggradation from hurricane storm surge marker beds

    NASA Astrophysics Data System (ADS)

    Hodge, Joshua; Williams, Harry

    2016-12-01

    This study uses storm surge sediment beds deposited by Hurricanes Audrey (1957), Carla (1961), Rita (2005) and Ike (2008) to investigate spatial and temporal changes in marsh sedimentation on the McFaddin National Wildlife Refuge in Southeastern Texas. Fourteen sediment cores were collected along a transect extending 1230 m inland from the Gulf coast. Storm-surge-deposited sediment beds were identified by texture, organic content, carbonate content, the presence of marine microfossils and 137Cs dating. The hurricane-derived sediment beds facilitate assessment of changes in marsh sedimentation from nearshore to inland locations and over decadal to annual timescales. Spatial variation along the transect reflects varying contributions from three prevailing sediment sources: flooding, overwash and organic sedimentation from marsh plants. Over about the last decade, hurricane overwash has been the predominant sediment source for nearshore locations because of large sediment inputs from Hurricanes Rita and Ike. Farther inland, hurricane inputs diminish and sedimentation is dominated by deposition from flood waters and a larger organic component. Temporal variations in sedimentation reflect hurricane activity, changes in marsh surface elevation and degree of compaction of marsh sediments, which is time-dependent. There was little to no marsh sedimentation in the period 2008-2014, firstly because no hurricanes impacted the study area and secondly because overwash sedimentation prior to 2008 had increased nearshore marsh surface elevations by up to 0.68 m, reducing subsequent inputs from flooding. Marsh sedimentation rates were relatively high in the period 2005-2008, averaging 2.13 cm/year and possibly reflecting sediment contributions from Hurricanes Humberto and Gustav. However, these marsh sediments are highly organic and largely uncompacted. Older, deeper marsh deposits formed between 1961 and 2005 are less organic-rich, more compacted and have an average annual

  14. Improved Use of Satellite Imagery to Forecast Hurricanes

    NASA Technical Reports Server (NTRS)

    Louis, Jean-Francois

    2001-01-01

    This project tested a novel method that uses satellite imagery to correct phase errors in the initial state for numerical weather prediction, applied to hurricane forecasts. The system was tested on hurricanes Guillermo (1997), Felicia (1997) and Iniki (1992). We compared the performance of the system with and without phase correction to a procedure that uses bogus data in the initial state, similar to current operational procedures. The phase correction keeps the hurricane on track in the analysis and is far superior to a system without phase correction. Compared to operational procedure, phase correction generates somewhat worse 3-day forecast of the hurricane track, but better forecast of intensity. It is believed that the phase correction module would work best in the context of 4-dimensional variational data assimilation. Very little modification to 4DVar would be required.

  15. Current-wave spectra coupling project. Volume II. Hurricane fields and cross sections, surface winds and currents, significant waves and wave spectra for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane; and for (E) Hurricane Camille (1969) off Louisiana Coast. Technical support for Volume I. [HURICA1 and HURICA2 codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretschneider, C.L.; Huang, T.S.; Endo, H.

    1980-07-01

    This volume represents the details of the technical development of and the calibration of the two-directional three parameter wave forecasting relationships, which are specially adapted for forecasting hurricane significant wave height, H/sub s/, modal wave period f/sub 0//sup -1/ and the peak of the wave spectrum, S/sub max/. These three parameters lead to the determination of the three-parameter wave spectrum which has been verified by use of hurricane wind generated wave spectra from Hurricane Eloise (1975). The hurricane wind field is still based on the original US Weather Service model as given by Meyers (1954). Hurricane winds, waves and wavemore » spectra data from Hurricane Eloise (1975) published by Withee and Johnson, NOAA (1975), have been used. Although the data is of an analyzed form, the term raw data was used as distinguished from smoothed data. An analysis of the raw data is presented in this volume, and considerable sense of the analysis has been made. A weighted average technique was not used, but could have reduced the scatter in the so-called raw data during the first 2/3 of the storm when the winds and waves were less than gale force and quite variable. There is considerably less variability in the wind and wave data when the wind reaches gale force, and these are the data for which the greatest emphasis is given in the analysis. (WHK)« less

  16. Weathering the storm: challenges to nurses providing care to nursing home residents during hurricanes.

    PubMed

    Hyer, Kathryn; Brown, Lisa M; Christensen, Janelle J; Thomas, Kali S

    2009-11-01

    This article documents the experience of 291 Florida nursing homes during the 2004 hurricane season. Using quantitative and qualitative methods, the authors described and compared the challenges nurses encountered when evacuating residents with their experiences assisting residents of facilities that sheltered in place. The primary concerns for evacuating facilities were accessing appropriate evacuation sites for residents and having ambulance transportation contracts honored. The main issue for facilities that sheltered in place was the length of time it took for power to be restored. Barriers to maintaining resident health during disasters for those who evacuated or sheltered in place are identified.

  17. Hurricane Matthew Damage Assessment

    NASA Image and Video Library

    2016-10-08

    An aerial survey of NASA's Kennedy Space Center in Florida was conducted after Hurricane Matthew hit the Space Coast area. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.

  18. Trends in Serious Emotional Disturbance among Youths Exposed to Hurricane Katrina

    PubMed Central

    McLaughlin, Katie A.; Fairbank, John A.; Gruber, Michael J.; Jones, Russell T.; Osofsky, Joy D.; Pfefferbaum, Betty; Sampson, Nancy A.; Kessler, Ronald C.

    2011-01-01

    Objective To examine patterns and predictors of trends in DSM-IV serious emotional disturbance (SED) among youths exposed to Hurricane Katrina. Method A probability sample of adult pre-hurricane residents of the areas affected by Katrina completed baseline and follow-up telephone surveys 18-27 months post-hurricane and 12-18 months later. Baseline adult respondents residing with children (ages 4-17) provided informant reports about the emotional functioning of these youths (n = 576) with the Strengths and Difficulties Questionnaire (SDQ). The surveys also assessed hurricane-related stressors and ongoing stressors experienced by respondent families. Results SED prevalence decreased significantly across survey waves from 15.1% to 11.5%, although even the latter prevalence was considerably higher than the pre-hurricane prevalence of 4.2% estimated in the US National Health Interview Survey. Trends in hurricane-related SED were predicted by both stressors experienced in the hurricane and ongoing stressors, with SED prevalence decreasing significantly only among youths with moderate stress exposure (16.8% vs. 6.5%). SED prevalence did not change significantly between waves among youths with either high stress exposure (30.0% vs. 41.9%) or low stress exposure (3.5% vs. 3.4%). Pre-hurricane functioning did not predict SED persistence among youths with high stress exposure, but did predict SED persistence among youth with low-moderate stress exposure. Conclusions The prevalence of SED among youths exposed to Hurricane Katrina remains significantly elevated several years after the storm despite meaningful decrease since baseline. Youths with high stress exposure have the highest risk of long-term hurricane-related SED and consequently represent an important target for mental health intervention. PMID:20855044

  19. Chesapeake Bay plankton and fish abundance enhanced by Hurricane Isabel

    NASA Astrophysics Data System (ADS)

    Roman, M. R.; Boicourt, W. C.; Kimmel, D. G.; Miller, W. D.; Adolf, J. E.; Bichy, J.; Harding, L. W., Jr.; Houde, E. D.; Jung, S.; Zhang, X.

    Hurricane Isabel made landfall east of Cape Lookout, North Carolina, as a Category 2 (Safford-Simpson scale) hurricane on 18 September 2003. The storm's center tracked to the northwest, passing west of Chesapeake Bay (Figure 1) in the early morning of 19 September. Hurricane Isabel brought the highest storm surge and winds to the region since the Chesapeake-Potomac hurricane of 1933 and Hurricane Hazel in 1954 (http://www.erh. noaa.gov/er/akq/wx_events/hur/isabel_2003. htm). Storm surge was variable in the region, reaching a high of 2.7 m on the western side of the bay where the heaviest rainfall occurred. The highest sustained wind in the bay region reached 30.8 m s-1 at Gloucester Point,Virginia, with gusts to 40.7 m s-1.

  20. Near-real-time Forensic Disaster Analysis: experiences from hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Kunz, Michael; Mühr, Bernhard; Schröter, Kai; Kunz-Plapp, Tina; Daniell, James; Khazai, Bijan; Wenzel, Friedemann; Vannieuwenhuyse, Marjorie; Comes, Tina; Münzberg, Thomas; Elmer, Florian; Fohringer, Joachim; Lucas, Christian; Trieselmann, Werner; Zschau, Jochen

    2013-04-01

    Hurricane Sandy was the last tropical cyclone of the 2012 Northern Atlantic Hurricane season that made landfall. It moved on an unusual track from the Caribbean to the East Coast of the United States from 24 to 30 October as a Category 1 and 2 Hurricane according to the Saffir-Simpson Scale. Along its path, the severe storm event caused widespread damage including almost 200 fatalities. In the early hours of 30 October, Sandy made landfall near Atlantic City, N.J. Sandy was an extraordinary event due to its multihazard nature and several cascading effects in the aftermath. From the hydro-meteorological perspective, most unusual was the very large spatial extent of up to 1,700 km. High wind speeds were associated with record breaking storm surges at the U.S. Mid- Atlantic and New England Coast during high (astronomical) tide, leading to widespread flooding. Though Sandy was not the most severe storm event in terms of wind speed and precipitation, the impact in the U.S. was enormous with total damage estimates of up to 90 billion US (own estimate from Dec. 2012). Although much better data emerge weeks after such an event, the Forensic Disaster Analysis (FDA) Task Force of the Center for Disaster Management and Risk Reduction Technology (CEDIM) made an effort to obtain a comprehensive and holistic overview of the causes, hazardous effects and consequences associated with Sandy immediately after landfall at the U.S. coast on 30 October 2012. This was done in an interdisciplinary way by collecting and compiling scattered and distributed information from available databases and sources via the Internet, by applying own methodologies and models for near-real time analyses developed in recent years, and by expert knowledge. This contribution gives an overview about the CEDIM-FDA analyses' results. It describes the situation that led to the extraordinary event, highlights the interaction of the tropical cyclone with other hydro-meteorological events, and examines the

  1. Hurricane Bonnie, Northeast of Bermuda, Atlantic Ocean

    NASA Image and Video Library

    1992-09-20

    STS047-151-618 (19 Sept 1992) --- A large format Earth observation camera captured this scene of Hurricane Bonnie during the late phase of the mission. Bonnie was located about 500 miles from Bermuda near a point centered at 35.4 degrees north latitude and 56.8 degrees west longitude. The Linhof camera was aimed through one of Space Shuttle Endeavour's aft flight deck windows (note slight reflection at right). The crew members noticed the well defined eye in this hurricane, compared to an almost non-existent eye in the case of Hurricane Iniki, which was relatively broken up by the mission's beginning. Six NASA astronauts and a Japanese payload specialist conducted eight days of in-space research.

  2. An Integrated Scenario Ensemble-Based Framework for Hurricane Evacuation Modeling: Part 2-Hazard Modeling.

    PubMed

    Blanton, Brian; Dresback, Kendra; Colle, Brian; Kolar, Randy; Vergara, Humberto; Hong, Yang; Leonardo, Nicholas; Davidson, Rachel; Nozick, Linda; Wachtendorf, Tricia

    2018-04-25

    Hurricane track and intensity can change rapidly in unexpected ways, thus making predictions of hurricanes and related hazards uncertain. This inherent uncertainty often translates into suboptimal decision-making outcomes, such as unnecessary evacuation. Representing this uncertainty is thus critical in evacuation planning and related activities. We describe a physics-based hazard modeling approach that (1) dynamically accounts for the physical interactions among hazard components and (2) captures hurricane evolution uncertainty using an ensemble method. This loosely coupled model system provides a framework for probabilistic water inundation and wind speed levels for a new, risk-based approach to evacuation modeling, described in a companion article in this issue. It combines the Weather Research and Forecasting (WRF) meteorological model, the Coupled Routing and Excess STorage (CREST) hydrologic model, and the ADvanced CIRCulation (ADCIRC) storm surge, tide, and wind-wave model to compute inundation levels and wind speeds for an ensemble of hurricane predictions. Perturbations to WRF's initial and boundary conditions and different model physics/parameterizations generate an ensemble of storm solutions, which are then used to drive the coupled hydrologic + hydrodynamic models. Hurricane Isabel (2003) is used as a case study to illustrate the ensemble-based approach. The inundation, river runoff, and wind hazard results are strongly dependent on the accuracy of the mesoscale meteorological simulations, which improves with decreasing lead time to hurricane landfall. The ensemble envelope brackets the observed behavior while providing "best-case" and "worst-case" scenarios for the subsequent risk-based evacuation model. © 2018 Society for Risk Analysis.

  3. Posttraumatic stress disorder and community collective efficacy following the 2004 Florida hurricanes.

    PubMed

    Ursano, Robert J; McKibben, Jodi B A; Reissman, Dori B; Liu, Xian; Wang, Leming; Sampson, Robert J; Fullerton, Carol S

    2014-01-01

    There is a paucity of research investigating the relationship of community-level characteristics such as collective efficacy and posttraumatic stress following disasters. We examine the association of collective efficacy with probable posttraumatic stress disorder and posttraumatic stress disorder symptom severity in Florida public health workers (n = 2249) exposed to the 2004 hurricane season using a multilevel approach. Anonymous questionnaires were distributed electronically to all Florida Department of Health personnel nine months after the 2004 hurricane season. The collected data were used to assess posttraumatic stress disorder and collective efficacy measured at both the individual and zip code levels. The majority of participants were female (80.42%), and ages ranged from 20 to 78 years (median = 49 years); 73.91% were European American, 13.25% were African American, and 8.65% were Hispanic. Using multi-level analysis, our data indicate that higher community-level and individual-level collective efficacy were associated with a lower likelihood of having posttraumatic stress disorder (OR = 0.93, CI = 0.88-0.98; and OR = 0.94, CI = 0.92-0.97, respectively), even after adjusting for individual sociodemographic variables, community socioeconomic characteristic variables, individual injury/damage, and community storm damage. Higher levels of community-level collective efficacy and individual-level collective efficacy were also associated with significantly lower posttraumatic stress disorder symptom severity (b = -0.22, p<0.01; and b = -0.17, p<0.01, respectively), after adjusting for the same covariates. Lower rates of posttraumatic stress disorder are associated with communities with higher collective efficacy. Programs enhancing community collective efficacy may be an important part of prevention practices and possibly lead to a reduction in the rate of posttraumatic stress disorder post-disaster.

  4. Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA

    USGS Publications Warehouse

    Miner, M.D.; Kulp, M.A.; FitzGerald, D.M.; Flocks, J.G.; Weathers, H.D.

    2009-01-01

    A large deficit in the coastal sediment budget, high rates of relative sea-level rise (???0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ???1.6????????109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ???41,400 m2 to ???139,500 m 2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends. ?? 2009 Springer-Verlag.

  5. Seasonal Variability of Precipitation Extremes in New York City

    NASA Astrophysics Data System (ADS)

    Polanco, W.

    2016-12-01

    Precipitation extremes can have very important impacts, and it is not known as to how precipitation extremes might change with global warming. New York City is located in the mid-latitude region where there are specific storms that can cause precipitation extremes, predominantly, hurricanes, extratropical cyclones, and quasi-linear convective systems. These storms preferentially occur during different seasons. Therefore, to understand how these different storms relate to precipitation extremes, this study examines NYC precipitation extremes per season. First, NOAA weather station data from January 1979 to December 2014 from the three NYC airports (JFK, LaGuardia and Newark) will be analyzed to derive the climatology, the counts of non-rain events, and the counts of extreme precipitation events. Next, a multi-station average will be used to compare the precipitation events that occur in Spring, Summer, and Fall. The precipitation strength will be compared as well as the temperature anomalies for each season. Then, using reanalysis, composites of the sea level pressure and temperature fields will be calculated for the top events from each season.

  6. Hurricane Katrina: Influence on the Male-to-Female Birth Ratio

    PubMed Central

    Grech, Victor; Scherb, Hagen

    2015-01-01

    Objective This study was carried out in order to ascertain whether or not Hurricane Katrina and related factors (i.e. the amount of rainfall) influenced the male-to-female birth ratio (M/F). Materials and Methods Monthly births by gender for the affected states (Alabama, Florida, Louisiana and Mississippi) for January 2003 to December 2012 were obtained from the Centers for Disease Control and Prevention (CDC Wonder, Atlanta, Ga., USA). Precipitation data was obtained from the US National Weather Service. Ordinary linear logistic regression was used for trend analysis. A p value ≤0.05 was taken to represent a statistically significant result. Results Of the total of 3,903,660 live births, 1,996,966 (51.16%) were male and 1,906,694 (48.84%) were female. Significant seasonal variation was noted (the maximum M/F in May was 1.055, the minimum M/F in September was 1.041, p = 0.0073). There was also a separate and significant rise in M/F 8–10 months after the storm (April to June 2006, peak M/F 1.078, p = 0.0074), which translated to an approximate deficit of 800 girls compared to 46,072 girls born in that period if the M/F increase was theoretically only due to a girls' deficit in the denominator of the ratio. This spike was only present in Alabama, Louisiana and Mississippi, all of which received heavy rainfall. Florida did not receive heavy rainfall and experienced no such M/F spike. Conclusion In this study there was a dose-response relation between the amount of rainfall after Hurricane Katrina and the monthly sex ratio of live births in the US states of Alabama, Louisiana and Mississippi 8–10 months later. The well-known yet unexplained distinct sex ratio seasonality may be due to natural or man-made radiation contained in the rain. PMID:26139554

  7. Combined effects of Hurricane Katrina and Hurricane Gustav on the mental health of mothers of small children.

    PubMed

    Harville, E W; Xiong, X; Smith, B W; Pridjian, G; Elkind-Hirsch, K; Buekens, P

    2011-05-01

    Few studies have assessed the results of multiple exposures to disaster. Our objective was to examine the effect of experiencing Hurricane Gustav on mental health of women previously exposed to Hurricane Katrina. A total of 102 women from Southern Louisiana were interviewed by telephone. Experience of the hurricanes was assessed with questions about injury, danger and damage, while depression was assessed with the Edinburgh Depression Scale and post-traumatic stress disorder using the Post-Traumatic Checklist. Minor stressors, social support, trait resilience and perceived benefit had been measured previously. Mental health was examined with linear and log-linear models. Women who had a severe experience of both Gustav and Katrina scored higher on the mental health scales, but finding new ways to cope after Katrina or feeling more prepared was not protective. About half the population had better mental health scores after Gustav than at previous measures. Improvement was more likely among those who reported high social support or low levels of minor stressors, or were younger. Trait resilience mitigated the effect of hurricane exposure. Multiple disaster experiences are associated with worse mental health overall, although many women are resilient. Perceiving benefit after the first disaster was not protective. © 2010 Blackwell Publishing.

  8. Schooling the Forgotten Kids of Hurricane Katrina

    ERIC Educational Resources Information Center

    Cook, Glenn

    2006-01-01

    In this article, the author talks about students being taking in public schools in Houston and Dallas, as well as other states, after evacuating from New Orleans which was struck by Hurricane Katrina and Hurricane Rita. For students displaced by the storm, mobility is as constant as stability is elusive. Already traumatized and faced with the loss…

  9. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms.

    PubMed

    de Souza, Lesley S; Godwin, James C; Renshaw, Mark A; Larson, Eric

    2016-01-01

    Environmental DNA (eDNA) holds great promise for conservation applications like the monitoring of invasive or imperiled species, yet this emerging technique requires ongoing testing in order to determine the contexts over which it is effective. For example, little research to date has evaluated how seasonality of organism behavior or activity may influence detection probability of eDNA. We applied eDNA to survey for two highly imperiled species endemic to the upper Black Warrior River basin in Alabama, US: the Black Warrior Waterdog (Necturus alabamensis) and the Flattened Musk Turtle (Sternotherus depressus). Importantly, these species have contrasting patterns of seasonal activity, with N. alabamensis more active in the cool season (October-April) and S. depressus more active in the warm season (May-September). We surveyed sites historically occupied by these species across cool and warm seasons over two years with replicated eDNA water samples, which were analyzed in the laboratory using species-specific quantitative PCR (qPCR) assays. We then used occupancy estimation with detection probability modeling to evaluate both the effects of landscape attributes on organism presence and season of sampling on detection probability of eDNA. Importantly, we found that season strongly affected eDNA detection probability for both species, with N. alabamensis having higher eDNA detection probabilities during the cool season and S. depressus have higher eDNA detection probabilities during the warm season. These results illustrate the influence of organismal behavior or activity on eDNA detection in the environment and identify an important role for basic natural history in designing eDNA monitoring programs.

  10. Hurricane Sandy, Disaster Preparedness, and the Recovery Model.

    PubMed

    Pizzi, Michael A

    2015-01-01

    Hurricane Sandy was the second largest and costliest hurricane in U.S. history to affect multiple states and communities. This article describes the lived experiences of 24 occupational therapy students who lived through Hurricane Sandy using the Recovery Model to frame the research. Occupational therapy student narratives were collected and analyzed using qualitative methods and framed by the Recovery Model. Directed content and thematic analysis was performed using the 10 components of the Recovery Model. The 10 components of the Recovery Model were experienced by or had an impact on the occupational therapy students as they coped and recovered in the aftermath of the natural disaster. This study provides insight into the lived experiences and recovery perspectives of occupational therapy students who experienced Hurricane Sandy. Further research is indicated in applying the Recovery Model to people who survive disasters. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  11. Nurses respond to Hurricane Hugo victims' disaster stress.

    PubMed

    Weinrich, S; Hardin, S B; Johnson, M

    1990-06-01

    Hugo, a class IV hurricane, hit South Carolina September 22, 1989, and left behind a wake of terror and destruction. Sixty-one nursing students and five faculty were involved in disaster relief with families devastated by the hurricane. A review of the literature led these authors to propose a formulation of the concept of disaster stress, a synthesis of theories that explains response to disaster as a crisis response, a stress response, or as posttraumatic stress. With the concept of disaster stress serving as a theoretical foundation, the nurses observed, assessed, and intervened with one population of hurricane Hugo victims, noting their immediate psychosocial reactions and coping mechanisms. Victims' reactions to disaster stress included confusion, irritability, lethargy, withdrawal, and crying. The most frequently observed coping strategy of these hurricane Hugo victims was talking about their experiences; other coping tactics involved humor, religion, and altruism.

  12. Hurricane Marilyn, Caribbean

    NASA Image and Video Library

    1995-09-15

    STS069-715-019 (15 September 1995) --- This photograph of Hurricane Marilyn was captured on film as it moves over Puerto Rico, in this 70mm frame. The southern half of Puerto Rico can be seen outside the cloud cover. The island of Hispaniola is seen in lower left-hand corner. During the 11-plus day mission, the astronauts aboard the Space Shuttle Endeavour caught with their cameras at least two large oceanic storms. Another hurricane, named Luis, followed a similar path earlier in the flight. Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC) and ended its mission there September 18, 1995, with a successful landing on Runway 33. The multifaceted mission carried the crew of astronauts David M. Walker, mission commander; Kenneth D. Cockrell, pilot; and James S. Voss (payload commander), James H. Newman, Michael L. Gernhardt, all mission specialists.

  13. Race Differences in Depression Vulnerability Following Hurricane Katrina

    PubMed Central

    Ali, Jeanelle S.; Farrell, Amy S.; Alexander, Adam C.; Forde, David R.; Stockton, Michelle; Ward, Kenneth D.

    2016-01-01

    OBJECTIVE This study investigated whether racial disparities in depression were present after Hurricane Katrina. METHOD Data were gathered from 932 New Orleans residents who were present when Hurricane Katrina struck, and who returned to New Orleans the following year. Multiple logistic regression models evaluated racial differences in screening positive for depression (a score ≥16 on the Center for Epidemiologic Studies Depression scale), and explored whether differential vulnerability (pre-hurricane physical and mental health functioning and education level), differential exposure to hurricane-related stressors, and loss of social support moderated and/or reduced the association of race with depression. RESULTS A univariate logistic regression analysis showed the odds for screening positive for depression were 86% higher for African Americans than for Caucasians (OR=1.86 [1.28–2.71], p=.0012). However, after controlling simultaneously for sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors, race was no longer a significant correlate for screening positive for depression (OR=1.54 [0.95–2.48], p=.0771). CONCLUSIONS The racial disparity in post disaster depression seems to be confounded by sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors. Nonetheless, even after adjusting for these factors, there was a non-significant trend effect for race, which could suggest race played an important role in depression outcomes following Hurricane Katrina. Future studies should examine these associations prospectively, using stronger assessments for depression, and incorporate measures for discrimination and segregation, to further understand possible racial disparities in depression after Hurricane Katrina. PMID:27869461

  14. Serious Emotion Disturbance among Youth Exposed to Hurricane Katrina Two Years Post-Disaster

    PubMed Central

    McLaughlin, Katie A.; Fairbank, John A.; Gruber, Michael J.; Jones, Russell T.; Lakoma, Matthew D.; Pfefferbaum, Betty; Sampson, Nancy A.; Kessler, Ronald C.

    2014-01-01

    Objective To estimate the prevalence of serious emotional disturbance (SED) among children and adolescents exposed to Hurricane Katrina along with the associations of SED with hurricane-related stressors, socio-demographics, and family factors 18–27 months following the hurricane. Method A probability sample of pre-hurricane residents of areas affected by Hurricane Katrina was administered a telephone survey. Respondents provided information on up to two of their children (n=797) aged 4–17. The survey assessed hurricane-related stressors and lifetime history of psychopathology in respondents, screened for 12-month SED in respondents’ children using the Strengths and Difficulties Questionnaire (SDQ), and determined whether children’s emotional and behavioral problems were attributable to Hurricane Katrina. Results The estimated prevalence of SED was 14.9%, and 9.3% of youth were estimated to have SED that is directly attributable to Hurricane Katrina. Stress exposure was associated strongly with SED, and 20.3% of youth with high stress exposure had hurricane-attributable SED. Death of a loved one had the strongest association with SED among pre-hurricane residents of New Orleans, whereas exposure to physical adversity had the strongest association in the remainder of the sample. Among children with stress exposure, parental psychopathology and poverty were associated with SED. Conclusions The prevalence of SED among youth exposed to Hurricane Katrina remains high 18–27 months after the storm, suggesting a substantial need for mental health treatment resources in the hurricane-affected areas. Youth who were exposed to hurricane-related stressors, have a family history of psychopathology, and have lower family incomes are at greatest risk for long-term psychiatric impairment. PMID:19797983

  15. On the Impact Angle of Hurricane Sandy's New Jersey Landfall

    NASA Technical Reports Server (NTRS)

    Hall, Timothy M.; Sobel, Adam H.

    2013-01-01

    Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).

  16. University of Miami Hurricane Football Team Off-Season Strength Training Program.

    ERIC Educational Resources Information Center

    Ganong, Ray

    The off-season football strength training and conditioning program at the University of Miami was developed to emphasize commitment and continued intensity of effort on the part of the individual player. The program emphasizes the intrinsic rewards of physical conditioning, positive reinforcement for effort, and individual responsibility for…

  17. Trends in serious emotional disturbance among youths exposed to Hurricane Katrina.

    PubMed

    McLaughlin, Katie A; Fairbank, John A; Gruber, Michael J; Jones, Russell T; Osofsky, Joy D; Pfefferbaum, Betty; Sampson, Nancy A; Kessler, Ronald C

    2010-10-01

    To examine patterns and predictors of trends in DSM-IV serious emotional disturbance (SED) among youths exposed to Hurricane Katrina. A probability sample of adult pre-hurricane residents of the areas affected by Katrina completed baseline and follow-up telephone surveys 18 to 27 months post-hurricane and 12 to 18 months later. Baseline adult respondents residing with children and adolescents (4-17 years of age) provided informant reports about the emotional functioning of these youths (n = 576) with the Strengths and Difficulties Questionnaire (SDQ). The surveys also assessed hurricane-related stressors and ongoing stressors experienced by respondent families. SED prevalence decreased significantly across survey waves from 15.1% to 11.5%, although even the latter prevalence was considerably higher than the pre-hurricane prevalence of 4.2% estimated in the US National Health Interview Survey. Trends in hurricane-related SED were predicted by both stressors experienced in the hurricane and ongoing stressors, with SED prevalence decreasing significantly only among youths with moderate stress exposure (16.8% versus 6.5%). SED prevalence did not change significantly between waves among youths with either high stress exposure (30.0% versus 41.9%) or low stress exposure (3.5% versus 3.4%). Pre-hurricane functioning did not predict SED persistence among youths with high stress exposure, but did predict SED persistence among youth with low-moderate stress exposure. The prevalence of SED among youths exposed to Hurricane Katrina remains significantly elevated several years after the storm despite meaningful decrease since baseline. Youths with high stress exposure have the highest risk of long-term hurricane-related SED and consequently represent an important target for mental health intervention. Copyright © 2010 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Serious emotional disturbance among youths exposed to Hurricane Katrina 2 years postdisaster.

    PubMed

    McLaughlin, Katie A; Fairbank, John A; Gruber, Michael J; Jones, Russell T; Lakoma, Matthew D; Pfefferbaum, Betty; Sampson, Nancy A; Kessler, Ronald C

    2009-11-01

    To estimate the prevalence of serious emotional disturbance (SED) among children and adolescents exposed to Hurricane Katrina along with the associations of SED with hurricane-related stressors, sociodemographics, and family factors 18 to 27 months after the hurricane. A probability sample of prehurricane residents of areas affected by Hurricane Katrina was administered a telephone survey. Respondents provided information on up to two of their children (n = 797) aged 4 to 17 years. The survey assessed hurricane-related stressors and lifetime history of psychopathology in respondents, screened for 12-month SED in respondents' children using the Strengths and Difficulties Questionnaire, and determined whether children's emotional and behavioral problems were attributable to Hurricane Katrina. The estimated prevalence of SED was 14.9%, and 9.3% of the youths were estimated to have SED that is directly attributable to Hurricane Katrina. Stress exposure was associated strongly with SED, and 20.3% of the youths with high stress exposure had hurricane-attributable SED. Death of a loved one had the strongest association with SED among prehurricane residents of New Orleans, whereas exposure to physical adversity had the strongest association in the remainder of the sample. Among children with stress exposure, parental psychopathology and poverty were associated with SED. The prevalence of SED among youths exposed to Hurricane Katrina remains high 18 to 27 months after the storm, suggesting a substantial need for mental health treatment resources in the hurricane-affected areas. The youths who were exposed to hurricane-related stressors, have a family history of psychopathology, and have lower family incomes are at greatest risk for long-term psychiatric impairment.

  19. Floods in southwest-central Florida from hurricane Frances, September 2004

    USGS Publications Warehouse

    Kane, Richard L.

    2005-01-01

    Hurricane Frances brought heavy rainfall and widespread flooding to southwest-central Florida September 4-14, 2004. The center of Hurricane Frances made landfall on the east coast of Florida on September 5 as a category 2 hurricane on the Saffir-Simpson scale, then moved west-northwestward through central Florida before exiting Pasco County into the Gulf of Mexico on September 6 (fig. 1; National Weather Service, 2004). The hurricane moved across the Florida Peninsula generating 5 to 11 inches of rain over already saturated ground (table 1). Record flooding occurred in parts of Hardee, Hillsborough, Pasco, and Polk Counties (fig. 1). The hurricane and resulting floods caused an estimated $4-5 billion in damage to public and private property (Harrington, 2004), and 23 deaths were attributed to Hurricane Frances (National Weather Service, 2004). Several watersheds drain counties in southwest-central Florida that were affected by Hurricane Frances. De Soto, Hardee, and Polk Counties generally are drained by the Peace River system, which flows southwestward to Charlotte Harbor and the Gulf of Mexico. Hillsborough and Pasco Counties generally are drained by the Alafia, Hillsborough, Anclote, and Pithlachascotee River systems. Water in the Hillsborough and Alafia River watersheds flows west to Tampa Bay and water in the Anclote and Pithlachascotee River watersheds flows west to the Gulf of Mexico. (fig. 1, http://water.usgs.gov/pubs/fs/2005/3028/#fig1).

  20. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    A damaged construction trailer and several pieces of associated debris, aftermath of Hurricane Matthew, are seen near the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  1. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    Damaged construction trailers and several pieces of associated debris, aftermath of Hurricane Matthew, are seen in front of the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  2. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-18

    A damaged construction trailer and several pieces of associated debris, aftermath of Hurricane Matthew, are seen in front of the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  3. Deaths associated with Hurricane Sandy - October-November 2012.

    PubMed

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  4. Complicated grief associated with Hurricane Katrina

    PubMed Central

    Shear, M. Katherine; McLaughlin, Katie A.; Ghesquiere, Angela; Gruber, Michael J.; Sampson, Nancy A.; Kessler, Ronald C.

    2011-01-01

    Background Although losses are important consequences of disasters, few epidemiological studies of disasters have assessed complicated grief (CG) and none assessed CG associated with losses other than death of loved one. Methods Data come from the baseline survey of the Hurricane Katrina Community Advisory Group (CAG), a representative sample of 3,088 residents of the areas directly affected by Hurricane Katrina. A brief screen for CG was included containing four items consistent with the proposed DSM 5 criteria for a diagnosis of bereavement-related adjustment disorder. Results 58.5% of respondents reported a significant hurricane-related loss: Most-severe losses were 29.0% tangible, 9.5% interpersonal, 8.1% intangible, 4.2% work-financial, and 3.7% death of loved one. 26.1% of respondents with significant loss had possible CG and 7.0% moderate-severe CG. Death of loved one was associated with the highest conditional probability of moderate-severe CG (18.5%, compared to 1.1–10.5% conditional probabilities for other losses) but accounted for only 16.5% of moderate-severe CG due to its comparatively low prevalence. Most moderate-severe CG was due to tangible (52.9%) or interpersonal (24.0%) losses. Significant predictors of CG were mostly unique to either bereavement (racial-ethnic minority status, social support) or other losses (pre-hurricane history of psychopathology, social competence.). Conclusions Non-bereavement losses accounted for the vast majority of hurricane-related possible CG despite risk of CG being much higher in response to bereavement than to other losses. This result argues for expansion of research on CG beyond bereavement and alerts clinicians to the need to address post-disaster grief associated with a wide range of losses. PMID:21796740

  5. Hurricane Maria Puerto Rico Landsat Analysis

    DOE Data Explorer

    Feng, Yanlei; Chambers, Jeff [LBNL; Negron-Juarez, Robinson [LBNL; Patricola, Chris; Clinton, Nick; Uriarte, Maria; Hall, Jaz; Collins, William

    2018-01-01

    Hurricane Maria made landfall as a strong Category 4 storm in southeast Puerto Rico on September 20th, 2018. The powerful storm traversed the island in a northwesterly direction causing widespread destruction. This study focused on a rapid assessment of Hurricane Marias impact to Puerto Ricos forests. Calibrated and corrected Landsat 8 image composites for the entire island were generated using Google Earth Engine for a comparable pre-Maria and post-Maria time period that accounted for phenology. Spectral mixture analysis (SMA) using image-derived end members was carried out on both composites to calculate the change in the non-photosynthetic vegetation (Delta-NPV) spectral response, a metric that quantifies the increased fraction of exposed wood and surface litter associated with tree mortality and crown damage from the storm. Hurricane simulations were also conducted using the Weather Research and Forecasting (WRF) regional climate model to estimate wind speeds associated with forest disturbance. Dramatic changes in forest structure across the entire island were evident from pre- and post-Maria composited Landsat 8 images. A Delta-NPV map for only the forested pixels illustrated significant spatial variability in disturbance, with patterns that associated with factors such as slope, aspect and elevation. An initial order-of-magnitude impact estimate based on previous work indicated that Hurricane Maria may have caused mortality and severe damage to 23-31 million trees. Additional field work and image analyses are required to further detail the impact of Hurricane Maria to Puerto Rico forests. A minor update to this dataset was posted on April 20, 2018. The previous version is being retired. If you need access to the prior version of the data, email ngee-tropics-archive@lbl.gov.

  6. Flood Risk Due to Hurricane Flooding

    NASA Astrophysics Data System (ADS)

    Olivera, Francisco; Hsu, Chih-Hung; Irish, Jennifer

    2015-04-01

    In this study, we evaluated the expected economic losses caused by hurricane inundation. We used surge response functions, which are physics-based dimensionless scaling laws that give surge elevation as a function of the hurricane's parameters (i.e., central pressure, radius, forward speed, approach angle and landfall location) at specified locations along the coast. These locations were close enough to avoid significant changes in surge elevations between consecutive points, and distant enough to minimize calculations. The probability of occurrence of a surge elevation value at a given location was estimated using a joint probability distribution of the hurricane parameters. The surge elevation, at the shoreline, was assumed to project horizontally inland within a polygon of influence. Individual parcel damage was calculated based on flood water depth and damage vs. depth curves available for different building types from the HAZUS computer application developed by the Federal Emergency Management Agency (FEMA). Parcel data, including property value and building type, were obtained from the county appraisal district offices. The expected economic losses were calculated as the sum of the products of the estimated parcel damages and their probability of occurrence for the different storms considered. Anticipated changes for future climate scenarios were considered by accounting for projected hurricane intensification, as indicated by sea surface temperature rise, and sea level rise, which modify the probability distribution of hurricane central pressure and change the baseline of the damage calculation, respectively. Maps of expected economic losses have been developed for Corpus Christi in Texas, Gulfport in Mississippi and Panama City in Florida. Specifically, for Port Aransas, in the Corpus Christi area, it was found that the expected economic losses were in the range of 1% to 4% of the property value for current climate conditions, of 1% to 8% for the 2030's and

  7. Not so close but still extremely loud: recollection of the World Trade Center terror attack and previous hurricanes moderates the association between exposure to hurricane Sandy and posttraumatic stress symptoms.

    PubMed

    Palgi, Yuval; Shrira, Amit; Hamama-Raz, Yaira; Palgi, Sharon; Goodwin, Robin; Ben-Ezra, Menachem

    2014-05-01

    The present study examined whether recollections of the World Trade Center (WTC) terror attack and previous hurricanes moderated the relationship between exposure to Hurricane Sandy and related posttraumatic stress disorder (PTSD) symptoms. An online sample of 1000 participants from affected areas completed self-report questionnaires a month after Hurricane Sandy hit the East Coast of the United States. Participants reported their exposure to Hurricane Sandy, their PTSD symptoms, and recollections of the WTC terror attack and previous hurricanes elicited due to Hurricane Sandy. Exposure to Hurricane Sandy was related to PTSD symptoms among those with high level of recollections of the WTC terror attack and past hurricanes, but not among those with low level of recollections. The aftermath of exposure to Hurricane Sandy is related not only to exposure, but also to its interaction with recollections of past traumas. These findings have theoretical and practical implications for practitioners and health policy makers in evaluating and interpreting the impact of past memories on future natural disasters. This may help in intervention plans of social and psychological services. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A Numerical Study of Sediment Dynamics during Hurricane Gustav

    NASA Astrophysics Data System (ADS)

    Zang, Z.; Xue, Z. G.; Bao, S.; Chen, Q. J.; Walker, N.; Haag, A.; Ge, Q.; Yao, Z.

    2017-12-01

    Hurricanes are capable of introducing serious sediment erosion and transport upon their landing. We employed the Coupled Ocean-Atmosphere-Wave-and-Sediment Transport Modeling system (COAWST) to explore hydro- and sediment dynamics in the northern Gulf of Mexico during Hurricane Gustav in 2008. Cohesive behavior was incorporated to estimate the influence of seabed swelling and consolidation on critical shear stress. Upon Gustav's landfall in coastal Louisiana, the maximum significant wave heights reached more than 10 m offshore and dropped quickly upon moving toward the inner shelf, where vertical mixing was prevalent. Westward alongshore currents were dominant to the east of the hurricane track, while offshore-directed currents prevailed to the west. Water with high suspended sediment concentrations was confined to the inner shelf within the surface layer while, at the bottom, high concentrations extended offshore to the 200 m isobaths. The stratification restored, although not fully, one week after the landfall. The asymmetric hurricane winds resulted in stronger hydrodynamics in the eastern sector, which gave rise to more severe erosion. Calculated suspended sediment flux (SSF) was convergent to the hurricane center and its value peaked near the south and southeast of the Mississippi River delta, reaching 70 g/m2/s. Post-hurricane deposition in coastal Louisiana was estimated up to 6.1 cm, which could be 5-40 times higher than those under normal weather conditions.

  9. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms

    PubMed Central

    de Souza, Lesley S.; Godwin, James C.; Renshaw, Mark A.; Larson, Eric

    2016-01-01

    Environmental DNA (eDNA) holds great promise for conservation applications like the monitoring of invasive or imperiled species, yet this emerging technique requires ongoing testing in order to determine the contexts over which it is effective. For example, little research to date has evaluated how seasonality of organism behavior or activity may influence detection probability of eDNA. We applied eDNA to survey for two highly imperiled species endemic to the upper Black Warrior River basin in Alabama, US: the Black Warrior Waterdog (Necturus alabamensis) and the Flattened Musk Turtle (Sternotherus depressus). Importantly, these species have contrasting patterns of seasonal activity, with N. alabamensis more active in the cool season (October-April) and S. depressus more active in the warm season (May-September). We surveyed sites historically occupied by these species across cool and warm seasons over two years with replicated eDNA water samples, which were analyzed in the laboratory using species-specific quantitative PCR (qPCR) assays. We then used occupancy estimation with detection probability modeling to evaluate both the effects of landscape attributes on organism presence and season of sampling on detection probability of eDNA. Importantly, we found that season strongly affected eDNA detection probability for both species, with N. alabamensis having higher eDNA detection probabilities during the cool season and S. depressus have higher eDNA detection probabilities during the warm season. These results illustrate the influence of organismal behavior or activity on eDNA detection in the environment and identify an important role for basic natural history in designing eDNA monitoring programs. PMID:27776150

  10. Predicting the trajectories and intensities of hurricanes by applying machine learning techniques

    NASA Astrophysics Data System (ADS)

    Sujithkumar, A.; King, A. W.; Kovilakam, M.; Graves, D.

    2017-12-01

    The world has witnessed an escalation of devastating hurricanes and tropical cyclones over the last three decades. Hurricanes and tropical cyclones of very high magnitude will likely be even more frequent in a warmer world. Thus, precise forecasting of the track and intensity of hurricane/tropical cyclones remains one of the meteorological community's top priorities. However, comprehensive prediction of hurricane/ tropical cyclone is a difficult problem due to the many complexities of underlying physical processes with many variables and complex relations. The availability of global meteorological and hurricane/tropical storm climatological data opens new opportunities for data-driven approaches to hurricane/tropical cyclone modeling. Here we report initial results from two data-driven machine learning techniques, specifically, random forest (RF) and Bayesian learning (BL) to predict the trajectory and intensity of hurricanes and tropical cyclones. We used International Best Track Archive for Climate Stewardship (IBTrACS) data along with weather data from NOAA in a 50 km buffer surrounding each of the reported hurricane and tropical cyclone tracts to train the model. Initial results reveal that both RF and BL are skillful in predicting storm intensity. We will also present results for the more complicated trajectory prediction.

  11. The public health planners' perfect storm: Hurricane Matthew and Zika virus.

    PubMed

    Ahmed, Qanta A; Memish, Ziad A

    Hurricane Matthew threatened to be one of the most powerful Hurricanes to hit the United States in a century. Fortunately, it avoided making landfall on Florida, the eye of the Hurricane remaining centered 40 miles off the Florida coast. Even so it has resulted in over $7 Billion USD in damage according to initial estimates with much of the damage ongoing in severe flooding. Response to and recovery from Hurricane Matthew challenged Florida's public health services and resources just as emergency Zika-specific congressional funding to combat Zika outbreaks in Florida had become available. Hurricanes can disrupt the urban environment in a way that increases the likelihood of vector-borne illnesses and their aftermath can severely strain the very infectious disease and infection control academe needed to combat vector-borne outbreaks. This commentary attempts to examine the challenges posed by Hurricane Matthew in Florida's efforts to contain Zika. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Atmospheric Balloon Swarms for Persistent In-Situ Measurements in Hurricanes

    NASA Astrophysics Data System (ADS)

    Meneghello, G.; Bewley, T.

    2015-12-01

    Real-time measurements within hurricanes are essential to improve forecasts, protect property and save lives. Current methods for obtaining in-situ data, including radar and satellite imagery as well as drop-sondes deployed from repeated aircraft flights above or even within the hurricane itself, are costly, dangerous and limited in duration or resolution. We demonstrate how a swarm of inexpensive, buoyancy-controlled, sensor-laden balloons can be deployed from altitude or from sea-level within a hurricane flow field, and coordinated autonomously in an energetically-efficient fashion to persistently and continuously monitor relevant properties (pressure, humidity, temperature, windspeed) of a hurricane for days at a time. Rather than fighting the gale-force winds in the storm, the strong, predictable stratification of these winds is leveraged to disperse the balloons into a favorable, time-evolving distribution and to follow the hurricane track as it moves. Certain target orbits of interest in the hurricane can be continuously sampled by some balloons, while other balloons make continuous sweeps between the eye and the spiral rain bands. We expect the acquired data to complement current measurement methods and to be instrumental in improving the numerical models' forecast skills.

  13. Hurricane-related emergency department visits in an inland area: an analysis of the public health impact of Hurricane Hugo in North Carolina.

    PubMed

    Brewer, R D; Morris, P D; Cole, T B

    1994-04-01

    To evaluate the public health impact of a hurricane on an inland area. Descriptive study. Seven hospital emergency departments. Patients who were treated from September 22 to October 6, 1989, for an injury or illness related to Hurricane Hugo. None. Over the two-week study period, 2,090 patients were treated for injuries or illnesses related to the hurricane. Of these, 1,833 (88%) were treated for injuries. Insect stings and wounds accounted for almost half of the total cases. A substantial proportion (26%) of the patients suffering from stings had a generalized reaction (eg, hives, wheezing, or both). Nearly one-third of the wounds were caused by chain saws. Hurricanes can lead to substantial morbidity in an inland area. Disaster plans should address risks associated with stinging insects and hazardous equipment and should address ways to improve case reporting.

  14. Observations and operational model simulations reveal the impact of Hurricane Matthew (2016) on the Gulf Stream and coastal sea level

    NASA Astrophysics Data System (ADS)

    Ezer, Tal; Atkinson, Larry P.; Tuleya, Robert

    2017-12-01

    In October 7-9, 2016, Hurricane Matthew moved along the southeastern coast of the U.S., causing major flooding and significant damage, even to locations farther north well away from the storm's winds. Various observations, such as tide gauge data, cable measurements of the Florida Current (FC) transport, satellite altimeter data and high-frequency radar data, were analyzed to evaluate the impact of the storm. The data show a dramatic decline in the FC flow and increased coastal sea level along the U.S. coast. Weakening of the Gulf Stream (GS) downstream from the storm's area contributed to high coastal sea levels farther north. Analyses of simulations of an operational hurricane-ocean coupled model reveal the disruption that the hurricane caused to the GS flow, including a decline in transport of ∼20 Sv (1 Sv = 106 m3 s-1). In comparison, the observed FC reached a maximum transport of ∼40 Sv before the storm on September 10 and a minimum of ∼20 Sv after the storm on October 12. The hurricane impacts both the geostrophic part of the GS and the wind-driven currents, generating inertial oscillations with velocities of up to ±1 m s-1. Analysis of the observed FC transport since 1982 indicated that the magnitude of the current weakening in October 2016 was quite rare (outside 3 standard deviations from the mean). Such a large FC weakening in the past occurred more often in October and November, but is extremely rare in June-August. Similar impacts on the FC from past tropical storms and hurricanes suggest that storms may contribute to seasonal and interannual variations in the FC. The results also demonstrated the extended range of coastal impacts that remote storms can cause through their influence on ocean currents.

  15. Venomous adversaries: a reference to snake identification, field safety, and bite-victim first aid for disaster-response personnel deploying into the hurricane-prone regions of North America.

    PubMed

    Wozniak, Edward J; Wisser, John; Schwartz, Michael

    2006-01-01

    Each hurricane season, emergency-preparedness deployment teams including but not limited to the Office of Force Readiness and Deployment of the US Public Health Service, Federal Emergency Management Agency, Deployment Medical Assistance Teams, Veterinary Medical Assistance Teams, and the US Army and Air Force National Guard are at risk for deploying into hurricane-stricken areas that harbor indigenous hazards, including those posed by venomous snakes. North America is home to 2 distinct families of venomous snakes: 1) Viperidae, which includes the rattlesnakes, copperheads, and cottonmouths; and 2) Elapidae, in which the only native species are the coral snakes. Although some of these snakes are easily identified, some are not, and many rank among the most feared and misunderstood animals. This article specifically addresses all the native species of venomous snakes that inhabit the hurricane-prone regions of North America and is intended to serve as a reference to snake identification, basic field safety procedures, and the currently recommended first-aid measures for snakebite casualties.

  16. Daily and seasonal activity patterns of free range South-American rattlesnake (Crotalus durissus).

    PubMed

    Tozetti, Alexandro M; Martins, Marcio

    2013-09-01

    This study aimed at describing daily and seasonal variation in the activity of a population of South-American rattlesnakes (Crotalus durissus) in a savanna like habitat (Cerrado) in Southeastern Brazil. Seasonal and daily activities of snakes were evaluated by the number of captures of snakes during road surveys, accidental encounters, and relocations by radio-tracking. Our results show that climatic variables such as air temperature and rainfall have little influence on the activity pattern of rattlesnakes. Our findings indicate that rattlesnakes spend most of the day resting and most of the night in ambush posture. The South-American rattlesnake is active throughout the year with a discrete peak in activity of males during the matting season. The possibility of maintaining activity levels even during the coldest and driest season can facilitate the colonization of several habitats in South America. This possibility currently facilitates the colonization of deforested areas by rattlesnakes.

  17. Seasonal activity and morphological changes in martian gullies

    USGS Publications Warehouse

    Dundas, Colin M.; Diniega, Serina; Hansen, Candice J.; Byrne, Shane; McEwen, Alfred S.

    2012-01-01

    Recent studies of martian dune and non-dune gullies have suggested a seasonal control on present-day gully activity. The timing of current gully activity, especially activity involving the formation or modification of channels (which commonly have been taken as evidence of fluvial processes), has important implications regarding likely gully formation processes and necessary environmental conditions. In this study, we describe the results of frequent meter-scale monitoring of several active gully sites by the High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO). The aim is to better assess the scope and nature of current morphological changes and to provide improved constraints on timing of gully activity on both dune and non-dune slopes. Our observations indicate that (1) gully formation on Mars is ongoing today and (2) the most significant morphological changes are strongly associated with seasonal frost and defrosting activity. Observed changes include formation of all major components of typical gully landforms, although we have not observed alcove formation in coherent bedrock. These results reduce the need to invoke recent climate change or present-day groundwater seepage to explain the many martian gullies with pristine appearance.

  18. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    USGS Publications Warehouse

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  19. Hurricane Isabel

    NASA Image and Video Library

    2003-09-18

    This false-color image shows Hurricane Isabel viewed by the AIRS and AMSU-A instruments at 1:30 EDT in the morning of Thursday September 18, 2003. Isabel will be ashore within 12 hours, bringing widespread flooding and destructive winds. In figure 1 on the left, data retrieved by the AIRS infrared sensor shows the hurricane's eye as the small ring of pale blue near the upper left corner of the image. The dark blue band around the eye shows the cold tops of hundreds of powerful thunderstorms. These storms are embedded in the 120 mile per hour winds swirling counterclockwise around Isabel's eye. Cape Hatteras is the finger of land north-northwest of the eye. Isabel's winds will soon push ashore a 4- to 8-foot high mound of 'storm surge' and accompanying high surf, leading to flooding of Cape Hatteras and other islands of North Carolina's Outer Banks. Also seen in the image are several organized bands of cold, (blue) thunderstorm tops being pulled into the storm center. Other thunderstorm are forming north of the islands of Jamaica, Cuba, Hispaniola and Puerto Rico near the bottom of the picture. http://photojournal.jpl.nasa.gov/catalog/PIA00428

  20. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Treesearch

    A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...

  1. Hurricane Katrina-related maternal stress, maternal mental health, and early infant temperament.

    PubMed

    Tees, Michael T; Harville, Emily W; Xiong, Xu; Buekens, Pierre; Pridjian, Gabriella; Elkind-Hirsch, Karen

    2010-07-01

    To investigate temperament in infants whose mothers were exposed to Hurricane Katrina and its aftermath, and to determine if high hurricane exposure is associated with difficult infant temperament. A prospective cohort study of women giving birth in New Orleans and Baton Rouge, LA (n = 288) in 2006-2007 was conducted. Questionnaires and interviews assessed the mother's experiences during the hurricane, living conditions, and psychological symptoms, 2 months and 12 months postpartum. Infant temperament characteristics were reported by the mother using the activity, adaptability, approach, intensity, and mood scales of the Early Infant and Toddler Temperament Questionnaires, and "difficult temperament" was defined as scoring in the top quartile for three or more of the scales. Logistic regression was used to examine the association between hurricane experience, mental health, and infant temperament. Serious experiences of the hurricane did not strongly increase the risk of difficult infant temperament (association with three or more serious experiences of the hurricane: adjusted odds ratio (aOR) 1.50, 95% confidence interval (CI) 0.63-3.58 at 2 months; 0.58, 0.15-2.28 at 12 months). Maternal mental health was associated with report of difficult infant temperament, with women more likely to report having a difficult infant temperament at 1 year if they had screened positive for PTSD (aOR 1.82, 95% confidence interval (CI) 0.61-5.41), depression, (aOR 3.16, 95% CI 1.22-8.20) or hostility (aOR 2.17, 95% CI 0.81-5.82) at 2 months. Large associations between maternal stress due to a natural disaster and infant temperament were not seen, but maternal mental health was associated with reporting difficult temperament. Further research is needed to determine the effects of maternal exposure to disasters on child temperament, but in order to help babies born in the aftermath of disaster, the focus may need to be on the mother's mental health.

  2. Hurricane Katrina-related maternal stress, maternal mental health, and early infant temperament

    PubMed Central

    Tees, Michael T.; Xiong, Xu; Buekens, Pierre; Pridjian, Gabriella; Elkind-Hirsch, Karen

    2012-01-01

    To investigate temperament in infants whose mothers were exposed to Hurricane Katrina and its aftermath, and to determine if high hurricane exposure is associated with difficult infant temperament. A prospective cohort study of women giving birth in New Orleans and Baton Rouge, LA (n=288) in 2006–2007 was conducted. Questionnaires and interviews assessed the mother’s experiences during the hurricane, living conditions, and psychological symptoms, two months and 12 months postpartum. Infant temperament characteristics were reported by the mother using the activity, adaptability, approach, intensity, and mood scales of the Early Infant and Toddler Temperament Questionnaires, and “difficult temperament” was defined as scoring in the top quartile for three or more of the scales. Logistic regression was used to examine the association between hurricane experience, mental health, and infant temperament. Serious experiences of the hurricane did not strongly increase the risk of difficult infant temperament (association with 3 or more serious experiences of the hurricane: adjusted odds ratio (aOR) 1.50, 95% confidence interval (CI) 0.63–3.58 at 2 months; 0.58, 0.15–2.28 at 12 months). Maternal mental health was associated with report of difficult infant temperament, with women more likely to report having a difficult infant temperament at one year if they had screened positive for PTSD (aOR 1.82, 95% confidence interval (CI) 0.61–5.41), depression, (aOR 3.16, 95% CI 1.22–8.20) or hostility (aOR 2.17, 95% CI 0.81–5.82) at 2 months. Large associations between maternal stress due to a natural disaster and infant temperament were not seen, but maternal mental health was associated with reporting difficult temperament. Further research is needed to determine the effects of maternal exposure to disasters on child temperament, but in order to help babies born in the aftermath of disaster, the focus may need to be on the mother’s mental health. PMID:19554438

  3. Observing Natural Hazards: Tsunami, Hurricane, and El Niño Observations from the NDBC Ocean Observing System of Systems

    NASA Astrophysics Data System (ADS)

    O'Neil, K.; Bouchard, R.; Burnett, W. H.; Aldrich, C.

    2009-12-01

    The National Oceanic and Atmospheric Administration’s (NOAA) National Data Buoy Center (NDBC) operates and maintains the NDBC Ocean Observing Systems of Systems (NOOSS), comprised of 3 networks that provide critical information before and during and after extreme hazards events, such as tsunamis, hurricanes, and El Niños. While each system has its own mission, they have in common the requirement to remain on station in remote areas of the ocean to provide reliable and accurate observations. After the 2004 Sumatran Tsunami, NOAA expanded its network of tsunameters from six in the Pacific Ocean to a vast network of 39 stations providing information to Tsunami Warning Centers to enable faster and more accurate tsunami warnings for coastal communities in the Pacific, Atlantic, Caribbean and the Gulf of Mexico. The tsunameter measurements are used to detect the amplitude and period of the tsunamis, and the data can be assimilated into models for the prediction and impact of the tsunamis to coastal communities. The network has been used for the detection of tsunamis generated by earthquakes, including the 2006 and 2007 Kuril Islands, 2007 Peru, and Solomon Islands, and most recently for the 2009 Dusky Sound, New Zealand earthquake. In August 2009, the NOAA adjusted its 2009 Atlantic Hurricane Seasonal Outlooks from above normal to near or below normal activity, primarily due to a strengthening El Niño. A key component in the detection of that El Niño was the Tropical Atmosphere Ocean Array (TAO) operated by NDBC. TAO provides real-time data for improved detection, understanding, and prediction of El Niño and La Niña. The 55-buoy TAO array spans the central and eastern equatorial Pacific providing real-time and post-deployment recovery data to support climate analysis and forecasts. Although, in this case, the El Niño benefits the tropical Atlantic, the alternate manifestation, La Niña typically enhances hurricane activity in the Atlantic. The various phases of

  4. Species-specific Seedling Responses to Hurricane Disturbance in a Puerto Rican Rain Forest.

    Treesearch

    Lawrence R. Walker; D. Jean Lodge; Sandra M. Guzman-Grajales; Ned \\t Fetcher

    2003-01-01

    Seedling dynamics were followed in a Puerto Rican forest for 20 months following a severe hurricane to study the interactive effects of hurricane debris, nutrients, and light on seedling diversity, density, growth, and mortality. Three treatments (debris removal, an unaltered control with hurricane debris, and chemical fertilization added to hurricane debris) altered...

  5. OSCAT Eyes Hurricane Sandy

    NASA Image and Video Library

    2012-10-30

    This image shows ocean surface winds for Hurricane Sandy observed by the OSCAT radar scatterometer on the Indian Space Research Organization ISRO OceanSat-2 satellite. Colors indicate wind speed and arrows indicate direction.

  6. Numerical study of sediment dynamics during hurricane Gustav

    NASA Astrophysics Data System (ADS)

    Zang, Zhengchen; Xue, Z. George; Bao, Shaowu; Chen, Qin; Walker, Nan D.; Haag, Alaric S.; Ge, Qian; Yao, Zhigang

    2018-06-01

    In this study, the coupled ocean-atmosphere-wave-and-sediment transport (COAWST) modeling system was employed to explore sediment dynamics in the northern Gulf of Mexico during hurricane Gustav in 2008. The performance of the model was evaluated quantitatively and qualitatively against in-situ and remote sensing measurements, respectively. After Gustav's landfall in coastal Louisiana, the maximum significant wave heights reached more than 8 m offshore and they decreased quickly as it moved toward the inner shelf, where the vertical stratification was largely destroyed. Alongshore currents were dominant westward on the eastern sector of the hurricane track, and offshoreward currents prevailed on the western sector. High suspended sediment concentrations (>1000 mg/l) were confined to the inner shelf at surface layers and the simulated high concentrations at the bottom layer extended to the 200 m isobaths. The stratification was restored one week after landfall, although not fully. The asymmetric hurricane winds induced stronger hydrodynamics in the eastern sector, which led to severe erosion. The calculated suspended sediment flux (SSF) was convergent to the hurricane center and the maximum SSF was simulated near the south and southeast of the Mississippi river delta. The averaged post-hurricane deposition over the Louisiana shelf was 4.0 cm, which was 3.2-26 times higher than the annual accumulation rate under normal weather conditions.

  7. What's a Lab to Do During and After a Hurricane?

    PubMed

    Rodriguez, Fred; Selvaratnam, Rajeevan; Mann, Peggy; Kalariya, Rina; Petersen, John R

    2018-03-21

    Although laboratories may be able to rely on a comprehensive Hurricane Plan during a hurricane, alarming and unanticipated events frequently occur. To minimize disruption of lab operations, it is important to try to mitigate the impact of these unexpected events as quickly as possible, in the quest to minimize negative outcomes. In this article, we discuss approaches to dealing with unanticipated events during and after hurricanes, based on our personal experiences.

  8. [Hurricanes and tropical coastal biodiversity].

    PubMed

    Salazar-Vallejo, Sergio I

    2002-06-01

    Tropical coastal biodiversity has been modulated by tropical storms during a long time and it is currently facing a heavy human impact. The purpose of this review is to compile the available information to improve our understanding of hurricane impacts and to promote the establishment of coastal landscape monitoring, because that is the best way to assess these impacts. Although generalizations on hurricane effects are elusive, some historical dynamics and temporal relationships are included and some details are presented on the impacts by resuspension and movement of sediments, storm waves, and breaking off of coral reef organisms. Some effects on marine turtles and coastal forests are also briefly pointed out.

  9. Land area change analysis following hurricane impacts in Delacroix, Louisiana, 2004--2009

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2012-01-01

    The purpose of this project is to provide improved estimates of Louisiana wetland land loss due to hurricane impacts between 2004 and 2009 based upon a change detection mapping analysis that incorporates pre- and post-landfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional water classification of a combination of high resolution (QuickBird, IKONOS and Geoeye-1) and medium resolution (Landsat) satellite imagery. This second dataset focuses on Hurricanes Katrina and Gustav, which made landfall on August 29, 2005, and September 1, 2008, respectively. The study area is an approximately 1208-square-kilometer region surrounding Delacroix, Louisiana, in the eastern Delta Plain. Overall, 77 percent of the area remained unchanged between 2004 and 2009, and over 11 percent of the area was changed permanently by Hurricane Katrina (including both land gain and loss). Less than 3 percent was affected, either temporarily or permanently, by Hurricane Gustav. A related dataset (SIM 3141) focused on Hurricane Rita, which made landfall on the Louisiana/Texas border on September 24, 2005, as a Category 3 hurricane.

  10. Variability and seasonality of active transportation in USA: evidence from the 2001 NHTS.

    PubMed

    Yang, Yong; Diez Roux, Ana V; Bingham, C Raymond

    2011-09-14

    Active transportation including walking and bicycling is an important source of physical activity. Promoting active transportation is a challenge for the fields of public health and transportation. Descriptive data on the predictors of active transportation, including seasonal patterns in active transportation in the US as a whole, is needed to inform interventions and policies. This study analyzed monthly variation in active transportation for the US using National Household Travel Survey 2001 data. For each age group of children, adolescents, adults and elderly, logistic regression models were used to identify predictors of the odds of active transportation including gender, race/ethnicity, household income level, geographical region, urbanization level, and month. The probability of engaging in active transportation was generally higher for children and adolescents than for adults and the elderly. Active transportation was greater in the lower income groups (except in the elderly), was lower in the South than in other regions of the US, and was greater in areas with higher urbanization. The percentage of people using active transportation exhibited clear seasonal patterns: high during summer months and low during winter months. Children and adolescents were more sensitive to seasonality than other age groups. Women, non-Caucasians, persons with lower household income, who resided in the Midwest or Northeast, and who lived in more urbanized areas had greater seasonal variation. These descriptive results suggest that interventions and policies that target the promotion of active transportation need to consider socio-demographic factors and seasonality.

  11. Hurricane & Tropical Storm Impacts over the South Florida Metropolitan Area: Mortality & Government

    NASA Astrophysics Data System (ADS)

    Colon Pagan, I. C.

    2007-12-01

    Since 1985, the South Florida Metropolitan area (SFMA), which covers the counties of Miami-Dade, Broward, and Palm Beach, has been directly affected by 9 tropical cyclones: four tropical storms and 5 hurricanes. This continuous hurricane and tropical storm activity has awakened the conscience of the communities, government, and private sector, about the social vulnerability, in terms of age, gender, ethnicity, and others. Several factors have also been significant enough to affect the vulnerability of the South Florida Metropolitan area, like its geographic location which is at the western part of the Atlantic hurricane track, with a surface area of 6,137 square miles, and elevation of 15 feet. And second, from the 2006 Census estimate, this metropolitan area is the 7th most populous area in the United States supporting almost 1,571 individuals per square mile. Mortality levels due to hurricanes and tropical storms have fluctuated over the last 21 years without any signal of a complete reduction, a phenomenon that can be related to both physical characteristics of the storms and government actions. The average annual death count remains almost the same from 4.10 between 1985 and 1995 to 4 from 1996 to 2006. However, the probability of occurrence of a direct impact of an atmospheric disturbance has increase from 0.3 to 0.6, with an average of three hurricane or tropical storm direct impacts for every five. This analysis suggests an increasing problem with regard to atmospheric disturbances-related deaths in the South Florida Metropolitan area. In other words, despite substantial increases in population during the last 21 years, the number of tropical cyclone-related deaths is not declining; it's just being segregated among more storms. Gaps between each impact can be related to mortality levels. When that time increases in five years or more, such as Bob and Andrew or Irene and Katrina, or decreases in weeks or months, such as Harvey and Irene or Katrina and Wilma

  12. Nature Run for the North Atlantic Ocean Hurricane Region: System Evaluation and Regional Applications

    NASA Astrophysics Data System (ADS)

    Kourafalou, V.; Androulidakis, I.; Halliwell, G. R., Jr.; Kang, H.; Mehari, M. F.; Atlas, R. M.

    2016-02-01

    A prototype ocean Observing System Simulation Experiments (OSSE) system, first developed and data validated in the Gulf of Mexico, has been applied on the extended North Atlantic Ocean hurricane region. The main objectives of this study are: a) to contribute toward a fully relocatable ocean OSSE system by expanding the Gulf of Mexico OSSE to the North Atlantic Ocean; b) demonstrate and quantify improvements in hurricane forecasting when the ocean component of coupled hurricane models is advanced through targeted observations and assimilation. The system is based on the Hybrid Coordinate Ocean Model (HYCOM) and has been applied on a 1/250 Mercator mesh for the free-running Nature Run (NR) and on a 1/120 Mercator mesh for the data assimilative forecast model (FM). A "fraternal twin" system is employed, using two different realizations for NR and FM, each configured to produce substantially different physics and truncation errors. The NR has been evaluated using a variety of available observations, such as from AVISO, GDEM climatology and GHRSST observations, plus specific regional products (upper ocean profiles from air-borne instruments, surface velocity maps derived from the historical drifter data set and tropical cyclone heat potential maps derived from altimetry observations). The utility of the OSSE system to advance the knowledge of regional air-sea interaction processes related to hurricane activity is demonstrated in the Amazon region (salinity induced surface barrier layer) and the Gulf Stream region (hurricane impact on the Gulf Stream extension).

  13. Utilization of military support in the response to hurricane Marilyn: implications for future military-civilian cooperation.

    PubMed

    Weddle, M; Prado-Monje, H

    1999-01-01

    The past decade has been a period of evolution for the Federal disaster response system within the United States. Two domestic hurricanes were pivotal events that influenced the methods used for organizing Federal disaster assistance. The lessons of Hurricane Hugo (1989) and Hurricane Andrew (1992) were incorporated into the successful response to Hurricane Marilyn in the U.S. Virgin Islands in 1995. Following each of these storms, the Department of Defense was a major component of the response by the health sector. Despite progress in many areas, lack of clear communication between military and civilian managers and confusion among those requesting Department of Defense health resources may remain as obstacles to rapid response. This discussion is based on an unpublished case report utilizing interviews with military and civilian managers involved in the Hurricane Marilyn response. The findings suggest that out-of-channel pathways normally utilized in the warning and emergency phase of the response remained operational after more formal civilian-military communication pathways and local assessment capability had been established. It is concluded that delays may be avoided if the system in place was to make all active pathways for the request and validation of military resources visible to the designated Federal managers located within the area of operations.

  14. Trends in Serious Emotional Disturbance among Youths Exposed to Hurricane Katrina

    ERIC Educational Resources Information Center

    McLaughlin, Katie A.; Fairbank, John A.; Gruber, Michael J.; Jones, Russell T.; Osofsky, Joy D.; Pfefferbaum, Betty; Sampson, Nancy A.; Kessler, Ronald C.

    2010-01-01

    Objective: To examine patterns and predictors of trends in "DSM-IV" serious emotional disturbance (SED) among youths exposed to Hurricane Katrina. Method: A probability sample of adult pre-hurricane residents of the areas affected by Katrina completed baseline and follow-up telephone surveys 18 to 27 months post-hurricane and 12 to 18…

  15. Taking precautions at KSC for Hurricane Georges

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers put up plywood barriers on the windows of the Operations Support Building (OSB) as part of a precautionary plan in the event that Hurricane Georges threatens Central Florida. In light of the unpredictable nature of hurricanes, the decision was made to minimize risk and provide protection to KSC personnel and to the Space Shuttle national asset. The Vehicle Assembly Building is reflected (left) in the uncovered windows of the OSB.

  16. Personality diatheses and Hurricane Sandy: effects on post-disaster depression.

    PubMed

    Kopala-Sibley, D C; Kotov, R; Bromet, E J; Carlson, G A; Danzig, A P; Black, S R; Klein, D N

    2016-03-01

    According to diathesis-stress models, personality traits, such as negative emotionality (NE) and positive emotionality (PE), may moderate the effects of stressors on the development of depression. However, relatively little empirical research has directly examined whether NE and PE act as diatheses in the presence of stressful life events, and no research has examined whether they moderate the effect of disaster exposure on depressive symptoms. Hurricane Sandy, the second costliest hurricane in US history, offers a unique opportunity to address these gaps. A total of 318 women completed measures of NE and PE 5 years prior to Hurricane Sandy. They were also assessed for lifetime depressive disorders on two occasions, the latter occurring an average of 1 year before the hurricane. Approximately 8 weeks after the disaster (mean = 8.40, s.d. = 1.48 weeks), participants completed a hurricane stress exposure questionnaire and a measure of current depressive symptoms. Adjusting for lifetime history of depressive disorders, higher levels of stress from Hurricane Sandy predicted elevated levels of depressive symptoms, but only in participants with high levels of NE or low levels of PE. These findings support the role of personality in the development of depression and suggest that personality traits can be useful in identifying those most vulnerable to major stressors, including natural disasters.

  17. It Takes Two: NASA and NOAA's Shared Path of Hurricane Science Flights with the Global Hawk. Time for the Research To Operations (R2O) Transition?

    NASA Astrophysics Data System (ADS)

    Emory, A. E.; Wick, G. A.; Dunion, J. P.; McLinden, M.; Schreier, M. M.; Black, P.; Hood, R. E.; Sippel, J.; Tallapragada, V.

    2017-12-01

    The impacts of Harvey, Irma, and Maria during the 2017 Atlantic hurricane season re-emphasized the critical need for accurate operational forecasts. The combined NASA East Pacific Origins and Characteristics of Hurricanes (EPOCH) and NOAA UAS field campaign during August 2017 was the fourth campaign in a series of dual agency partnerships between NASA and NOAA to improve forecasting accuracy in tropical cyclogenesis and rapid intensification. A brief history of Global Hawk (GH) hurricane field campaigns, including GRIP (2010), HS3 (2012-2014), NOAA-SHOUT (2015-2016) and EPOCH (2017), will show the incremental steps taken over the last eight years to bring the GH from a research platform to a candidate for operational hurricane reconnaissance. GH dropsondes were assimilated into the ECMWF and HWRF forecast models during the 2015-2016 NOAA SHOUT campaigns. EPOCH marked the first time that GH dropsondes were assimilated in real-time into NOAA's GFS forecast model. Early results show that assimilating dropsonde data significantly increases skill in predicting intensity change, which is game changing since the National Hurricane Center intensity error trend has remained virtually unchanged, particularly at 24 hours, over the last 25 years. The results from the past few years suggest that a paradigm shift of sampling the environment with a high-altitude, long-duration UAS like the GH that is capable of deploying up to 90 dropsondes ahead of and over the top of a developing or strengthening tropical cyclone could produce the best return on hurricane forecast predictions in subsequent years. Recommendations for the future, including lessons learned and the potential for R2O transition will be discussed.

  18. Maternal exposure to hurricane destruction and fetal mortality.

    PubMed

    Zahran, Sammy; Breunig, Ian M; Link, Bruce G; Snodgrass, Jeffrey G; Weiler, Stephan; Mielke, Howard W

    2014-08-01

    The majority of research documenting the public health impacts of natural disasters focuses on the well-being of adults and their living children. Negative effects may also occur in the unborn, exposed to disaster stressors when critical organ systems are developing and when the consequences of exposure are large. We exploit spatial and temporal variation in hurricane behaviour as a quasi-experimental design to assess whether fetal death is dose-responsive in the extent of hurricane damage. Data on births and fetal deaths are merged with Parish-level housing wreckage data. Fetal outcomes are regressed on housing wreckage adjusting for the maternal, fetal, placental and other risk factors. The average causal effect of maternal exposure to hurricane destruction is captured by difference-in-differences analyses. The adjusted odds of fetal death are 1.40 (1.07-1.83) and 2.37 (1.684-3.327) times higher in parishes suffering 10-50% and >50% wreckage to housing stock, respectively. For every 1% increase in the destruction of housing stock, we observe a 1.7% (1.1-2.4%) increase in fetal death. Of the 410 officially recorded fetal deaths in these parishes, between 117 and 205 may be attributable to hurricane destruction and postdisaster disorder. The estimated fetal death toll is 17.4-30.6% of the human death toll. The destruction caused by Hurricanes Katrina and Rita imposed significant measurable losses in terms of fetal death. Postdisaster migratory dynamics suggest that the reported effects of maternal exposure to hurricane destruction on fetal death may be conservative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. NASA Sees Hurricane Celia Headed for Central Pacific

    NASA Image and Video Library

    2017-12-08

    Hurricane Celia is currently in the Eastern Pacific Ocean, but once it passes west of 140 degrees west longitude, warnings on the system will be issued by NOAA's Central Pacific Hurricane Center. On July 11 at 22:05 UTC (6:05 p.m. EDT) the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA-DOD's Suomi NPP satellite captured a visible light image of Hurricane Celia that showed a cloud-filled eye with powerful bands of thunderstorms wrapping around the low level center. The VIIRS image also showed a large band of thunderstorms that extended to the south, wrapping into the storms' eastern quadrant. At 5 a.m. EDT (0900 UTC) on July 12 the center of Hurricane Celia was located near 16.2 north latitude and 127.9 west longitude. That's about 1,260 miles (2,025 km) west-southwest of the southern tip of Baja California, Mexico. It was moving to the west-northwest at 10 mph (17 kph) and NOAA's National Hurricane Center (NHC) expects Celia to turn toward the northwest later today, with this motion continuing Tuesday night and Wednesday. Maximum sustained winds were near 100 mph (155 kph). NHC forecasts weakening over the next two days and Celia could weaken to a tropical storm on Wednesday. Read more: NASA Sees Hurricane Celia Headed for Central Pacific Credit: NASA/Goddard/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Determination of flavonoids, polyphenols and antioxidant activity of Tephrosia purpurea: a seasonal study.

    PubMed

    Pandey, Madan Mohan; Khatoon, Sayyada; Rastogi, Subha; Rawat, Ajay Kumar Singh

    2016-11-01

    Tephrosia purpurea (Linn · ) Pers. is widely used in traditional medicine to treat liver disorders, febrile attacks, enlargement and obstruction of liver, spleen, and kidney. In the present study, investigations were carried out to determine the seasonal impact on the content of flavonoid glycosides and on antioxidant activities so as to identify the optimal time of harvesting. The plant materials were collected in different seasons during 2013-2014. Air-dried, powdered plant materials were extracted with 95% ethanol and ethanol: water (1:1) by ultrasound-assisted extraction process. Their chemical composition in terms of total polyphenol and flavonoid contents (TPCs and TFCs) was determined using modified colorimetric Folin-Ciocalteu method and aluminum chloride colorimetric assay respectively. To determine the in vitro antioxidant activity, diphenyl-picryl hydrazyl (DPPH) radical-scavenging assay and total antioxidant capacity by phosphomolybdate antioxidant assay were carried out. High-performance liquid chromatography (HPLC)/photo-diode array (PDA) analysis was used to quantify the flavonoid glycosides in the samples collected in different seasons. Correlation studies were also carried out between antioxidant activities and TPCs. The highest TPC and TFC were found to be in the 95% ethanolic extract of the August sample and the lowest in the 50% hydro-alcoholic extract of the plant sample collected in winter season. It was observed that in both the assays used to determine the antioxidant activity, the 95% ethanolic extracts in all the seasons showed a higher activity than their respective 50% hydro-alcoholic extracts with an increase in activity as we go from cold to hot to rainy seasons. Based on correlation analysis, DPPH radical-scavenging activities as well as the spectrophotometrically measured phosphomolybdenum complex were also strongly correlated with TPC of the extracts. The most abundant flavonoid glycoside was quercetin-3-O-rhamnoglucoside in all

  1. Hurricane Relief Military News Page - U.S. Department of Defense Official

    Science.gov Websites

    1 will be equal to or better than it was before Hurricane Katrina, the Army general in charge of the ., March 7, 2006 - After the devastation from Hurricane Katrina left the base and the surrounding area in snake through southern Louisiana parishes. Since Hurricane Katrina visited the area Aug. 29, very few of

  2. Hurricane Sandy: observations and analysis of coastal change

    USGS Publications Warehouse

    Sopkin, Kristin L.; Stockdon, Hilary F.; Doran, Kara S.; Plant, Nathaniel G.; Morgan, Karen L.M.; Guy, Kristy K.; Smith, Kathryn E.L.

    2014-01-01

    Hurricane Sandy, the largest Atlantic hurricane on record, made landfall on October 29, 2012, and impacted a long swath of the U.S. Atlantic coastline. The barrier islands were breached in a number of places and beach and dune erosion occurred along most of the Mid-Atlantic coast. As a part of the National Assessment of Coastal Change Hazards project, the U.S. Geological Survey collected post-Hurricane Sandy oblique aerial photography and lidar topographic surveys to document the changes that occurred as a result of the storm. Comparisons of post-storm photographs to those collected prior to Sandy’s landfall were used to characterize the nature, magnitude, and spatial variability of hurricane-induced coastal changes. Analysis of pre- and post-storm lidar elevations was used to quantify magnitudes of change in shoreline position, dune elevation, and beach width. Erosion was observed along the coast from North Carolina to New York; however, as would be expected over such a large region, extensive spatial variability in storm response was observed.

  3. 7 CFR 1416.2 - Eligible counties, hurricanes, and disaster periods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane... Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane Recovery, 2006 provides...

  4. 7 CFR 1416.2 - Eligible counties, hurricanes, and disaster periods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane... Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane Recovery, 2006 provides...

  5. 7 CFR 1416.2 - Eligible counties, hurricanes, and disaster periods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane... Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane Recovery, 2006 provides...

  6. 7 CFR 1416.2 - Eligible counties, hurricanes, and disaster periods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane... Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane Recovery, 2006 provides...

  7. 7 CFR 1416.2 - Eligible counties, hurricanes, and disaster periods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane... Supplemental Appropriations Act for Defense, the Global War on Terror, and Hurricane Recovery, 2006 provides...

  8. Hurricane Douglas south of Baja California

    NASA Technical Reports Server (NTRS)

    2002-01-01

    As recently as July 23, 2002, Hurricane Douglas was a category 2 hurricane, with winds as high as 90 knots (over 100 miles per hour). As of July 24, Douglas had dropped back to category 1 status as it moved away from the Baja California Peninsula in the eastern Pacific Ocean. The storm is predicted to continue moving westward over the next 24 hours and should weaken as it moves over cooler waters. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on July 23, 2002.

  9. Low ionospheric reactions on tropical depressions prior hurricanes

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Radovanović, Milan; Milovanović, Boško; Kovačević, Andjelka; Bajčetić, Jovan; Popović, Luka Č.

    2017-10-01

    We study the reactions of the low ionosphere during tropical depressions (TDs) which have been detected before the hurricane appearances in the Atlantic Ocean. We explore 41 TD events using very low frequency (VLF) radio signals emitted by NAA transmitter located in the USA and recorded by VLF receiver located in Belgrade (Serbia). We found VLF signal deviations (caused ionospheric turbulence) in the case of 36 out of 41 TD events (88%). Additionally, we explore 27 TDs which have not been developed in hurricanes and found similar low ionospheric reactions. However, in the sample of 41 TDs which are followed by hurricanes the typical low ionosphere perturbations seem to be more frequent than other TDs.

  10. Effects of track and threat information on judgments of hurricane strike probability.

    PubMed

    Wu, Hao-Che; Lindell, Michael K; Prater, Carla S; Samuelson, Charles D

    2014-06-01

    Although evacuation is one of the best strategies for protecting citizens from hurricane threat, the ways that local elected officials use hurricane data in deciding whether to issue hurricane evacuation orders is not well understood. To begin to address this problem, we examined the effects of hurricane track and intensity information in a laboratory setting where participants judged the probability that hypothetical hurricanes with a constant bearing (i.e., straight line forecast track) would make landfall in each of eight 45 degree sectors around the Gulf of Mexico. The results from 162 participants in a student sample showed that the judged strike probability distributions over the eight sectors within each scenario were, unsurprisingly, unimodal and centered on the sector toward which the forecast track pointed. More significantly, although strike probability judgments for the sector in the direction of the forecast track were generally higher than the corresponding judgments for the other sectors, the latter were not zero. Most significantly, there were no appreciable differences in the patterns of strike probability judgments for hurricane tracks represented by a forecast track only, an uncertainty cone only, or forecast track with an uncertainty cone-a result consistent with a recent survey of coastal residents threatened by Hurricane Charley. The study results suggest that people are able to correctly process basic information about hurricane tracks but they do make some errors. More research is needed to understand the sources of these errors and to identify better methods of displaying uncertainty about hurricane parameters. © 2013 Society for Risk Analysis.

  11. Active commuting to school in Finland, the potential for physical activity increase in different seasons

    PubMed Central

    Kallio, Jouni; Turpeinen, Salla; Hakonen, Harto; Tammelin, Tuija

    2016-01-01

    Background Active commuting to school (ACS) can be a significant source of physical activity and provide many health benefits. Objective This study identified the potential to increase physical activity levels by promoting ACS in Finnish schools and evaluated the effects of season, distance and age on ACS. Design Data were collected with a questionnaire from 5,107 students, aged 10–16, in 45 comprehensive schools in Finland. The distance and the mode of transport to school in different seasons were self-reported. Results The prevalence of ACS was over 80% during spring/fall for those living 0–5 km from school. ACS was inversely associated with the distance to school and was lower in winter compared to spring and fall. Cycling is less common in winter, especially among girls and younger students. The potential for increasing students’ physical activity levels via ACS seems to be largest in winter, especially among students living 1–5 km from school. The variation in the prevalence of ACS between schools was large, especially in winter. Conclusions When planning interventions to promote ACS, one is encouraged to acknowledge and evaluate the potential in the selected target schools in different seasons. The potential varies largely between schools and seasons and is highly dependent on students’ commuting distances. PMID:27924739

  12. Teacher Guidelines for Helping Students after a Hurricane

    ERIC Educational Resources Information Center

    National Child Traumatic Stress Network, 2013

    2013-01-01

    Being in a hurricane can be very frightening, and the days, weeks, and months following the storm can be very stressful. Most families recover over time, especially with the support of relatives, friends, and their community. But different families may have different experiences during and after a hurricane, and how long it takes them to recover…

  13. Hurricane Warning: the Critical Need for a National Hurricane Research Initiative

    ERIC Educational Resources Information Center

    National Science Foundation, 2007

    2007-01-01

    The United States possesses the most capable research enterprise, the largest economy, and the most sophisticated societal infrastructure in the world, yet it remains notably vulnerable to catastrophic damage and loss of life from natural hazards. Among weather hazards, hurricanes account for over half of the total damage inflicted. Despite their…

  14. Modeling hurricane evacuation traffic : development of a time-dependent hurricane evacuation demand model.

    DOT National Transportation Integrated Search

    2006-04-01

    Little attention has been given to estimating dynamic travel demand in transportation planning in the past. However, when factors influencing travel are changing significantly over time such as with an approaching hurricane - dynamic demand and t...

  15. Quantifying Hurricane Wind Speed with Undersea Sound

    DTIC Science & Technology

    2006-06-01

    even detect hurricanes using practical linear arrays at long ranges in these environments. 2.6 Conclusions We have shown that the wind- generated noise...application in other seismic research where a sensor on land measures signals generated by sources at sea. For example undersea earthquakes [124] and...at 100 Hz for a 64-element A/2-spaced horizontal broadside array as a function of steering angle for hurricane generated noise in the North Atlantic

  16. Variability and seasonality of active transportation in USA: evidence from the 2001 NHTS

    PubMed Central

    2011-01-01

    Background Active transportation including walking and bicycling is an important source of physical activity. Promoting active transportation is a challenge for the fields of public health and transportation. Descriptive data on the predictors of active transportation, including seasonal patterns in active transportation in the US as a whole, is needed to inform interventions and policies. Methods This study analyzed monthly variation in active transportation for the US using National Household Travel Survey 2001 data. For each age group of children, adolescents, adults and elderly, logistic regression models were used to identify predictors of the odds of active transportation including gender, race/ethnicity, household income level, geographical region, urbanization level, and month. Results The probability of engaging in active transportation was generally higher for children and adolescents than for adults and the elderly. Active transportation was greater in the lower income groups (except in the elderly), was lower in the South than in other regions of the US, and was greater in areas with higher urbanization. The percentage of people using active transportation exhibited clear seasonal patterns: high during summer months and low during winter months. Children and adolescents were more sensitive to seasonality than other age groups. Women, non-Caucasians, persons with lower household income, who resided in the Midwest or Northeast, and who lived in more urbanized areas had greater seasonal variation. Conclusions These descriptive results suggest that interventions and policies that target the promotion of active transportation need to consider socio-demographic factors and seasonality. PMID:21917136

  17. Hurricane Matthew Hits Haiti

    NASA Image and Video Library

    2017-12-08

    Read more from: go.nasa.gov/2duxEeZ On October 4, 2016, Hurricane Matthew made landfall on southwestern Haiti as a category-4 storm—the strongest storm to hit the Caribbean nation in more than 50 years. Just hours after landfall, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image. At the time, Matthew had top sustained winds of about 230 kilometers (145 miles) per hour. Earlier on October 4, temperature data collected by MODIS on NASA’s Aqua satellite revealed that the cloud tops around Matthew were very cold (at least -57° Celsius, or -70° Fahrenheit). Cold cloud tops are known to produce heavy rainfall. The National Hurricane Center called for 380 to 500 millimeters (15 to 20 inches) of rain in Southern Haiti and in the southwestern Dominican Republic. The northward movement of the storm should bring the center of Matthew over eastern Cuba late on October 4. Dangerous conditions can extend far beyond a storm’s center. According to National Hurricane Center forecasters, Matthew is “likely to produce devastating impacts from storm surge, extreme winds, heavy rains, flash floods, and/or mudslides in portions of the watch and warning areas in Haiti, Cuba, and the Bahamas.” NASA Earth Observatory image by Joshua Stevens, using MODIS data from the Land Atmosphere Near real-time Capability for EOS (LANCE). Caption by Kathryn Hansen.

  18. Hurricane Katrina Soil Sampling

    EPA Pesticide Factsheets

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  19. Hurricane Katrina Water Sampling

    EPA Pesticide Factsheets

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  20. Hurricane Katrina Sediment Sampling

    EPA Pesticide Factsheets

    Hurricane Katrina made landfall in August 2005, causing widespread devastation along the Gulf Coast of the United States. EPA emergency response personnel worked with FEMA and state and local agencies to respond to the emergencies throughout the Gulf.

  1. Radial profiles of velocity and pressure for condensation-induced hurricanes

    NASA Astrophysics Data System (ADS)

    Makarieva, A. M.; Gorshkov, V. G.

    2011-02-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  2. Hurricane Sandy science plan: coastal impact assessments

    USGS Publications Warehouse

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  3. Satellite Animation Sees Category 4 Hurricane Irma and Jose, Katia Landfall

    NASA Image and Video Library

    2017-09-09

    This animation of NOAA's GOES East satellite imagery from Sept. 6 at 9:45 a.m. EDT (1345 UTC) to Sept. 9 ending at 10:15 a.m. EDT (1415 UTC) shows Category 4 Hurricane Irma approaching south Florida and Category 4 Hurricane Jose approach the northern Leeward Islands. Meanwhile, Hurricane Storm Katia made landfall and dissipated in eastern Mexico.

  4. Electric Field and Lightning Observations in the Core of Category 5 Hurricane Emily

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Mach, Doug M.; Bateman, Monte G.; Bailey, Jeff C.

    2007-01-01

    Significant electric fields and lightning activity associated with Hurricane Emily were observed from a NASA high-altitude ER-2 aircraft on July 17, 2005 while this storm developed as a compact but intense category 5 hurricane in the Caribbean south of Cuba. The electrical measurements were acquired as part of the NASA sponsored Tropical Cloud Systems and Processes (TCSP) experiment. In addition to the electrical measurements, the aircraft's remote sensing instrument complement also included active radars, passive microwave, visible and infrared radiometers, and a temperature sounder providing details on the dynamical, microphysical, and environmental structure, characteristics and development of this intense storm. Cloud-to-ground lightning location data from Vaisala's long range lightning detection network were also acquired and displayed in real-time along with electric fields measured at the aircraft. These data and associated display also supported aircraft guidance and vectoring during the mission. During the observing period, flash rates in excess of 3 to 5 flashes per minute, as well as large electric field and field change values were observed as the storm appeared to undergo periods of intensification, especially in the northwest quadrant in the core eyewall regions. This is in contrast to most hurricanes that tend to be characterized by weak electrification and little or no lightning activity except in the outer rain bands. It should be noted that this storm also had significant lightning associated with its rain bands.

  5. Changes in trace metals in Thalassia testudinum after hurricane impacts.

    PubMed

    Whelan, T; Van Tussenbroek, B I; Santos, M G Barba

    2011-12-01

    Major hurricanes Emily and Wilma hit the Mexican Caribbean in 2005. Changes in trace metals in the seagrass Thalassia testudinum prior to (May 2004, 2005) and following passage of these hurricanes (May, June 2006) were determined at four locations along a ≈ 130 km long stretch of coast. Before the hurricanes, essential metals were likely limiting and concentrations of potentially toxic Pb were high in a contaminated lagoon (27.5 μg g(-1)) and near submarine springs (6.10 μg g(-1)); the likely sources were inland sewage disposal or excessive boat traffic. After the hurricanes, Pb decreased to 2.0 μg g(-1) in the contaminated lagoon probably through flushing. At the northern sites, essential Fe increased >2-fold (from 26.8 to 68.3 μg g(-1) on average), possibly from remobilization of anoxic sediments or upwelling of deep seawater during Wilma. Thus, hurricanes can be beneficial to seagrass beds in flushing toxic metals and replenishing essential elements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Developing Local Scale, High Resolution, Data to Interface with Numerical Hurricane Models

    NASA Astrophysics Data System (ADS)

    Witkop, R.; Becker, A.

    2017-12-01

    In 2017, the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) developed hurricane models that specify wind speed, inundation, and erosion around Rhode Island with enough precision to incorporate impacts on individual facilities. At the same time, URI's Marine Affairs Visualization Lab (MAVL) developed a way to realistically visualize these impacts in 3-D. Since climate change visualizations and water resource simulations have been shown to promote resiliency action (Sheppard, 2015) and increase credibility (White et al., 2010) when local knowledge is incorporated, URI's hurricane models and visualizations may also more effectively enable hurricane resilience actions if they include Facility Manager (FM) and Emergency Manager (EM) perceived hurricane impacts. This study determines how FM's and EM's perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale while exploring methods to elicit this information from FMs and EMs in a format usable for incorporation into URI GSO's hurricane models.

  7. An OSSE on Mesoscale Model Assimilation of Simulated HIRAD-Observed Hurricane Surface Winds

    NASA Technical Reports Server (NTRS)

    Albers, Cerese; Miller, Timothy; Uhlhorn, Eric; Krishnamurti, T. N.

    2012-01-01

    The hazards of landfalling hurricanes are well known, but progress on improving the intensity forecasts of these deadly storms at landfall has been slow. Many cite a lack of high-resolution data sets taken inside the core of a hurricane, and the lack of reliable measurements in extreme conditions near the surface of hurricanes, as possible reasons why even the most state-of-the-art forecasting models cannot seem to forecast intensity changes better. The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for observing hurricanes, and is operated and researched by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. This instrument?s purpose is to study the wind field of a hurricane, specifically observing surface wind speeds and rain rates, in what has traditionally been the most difficult areas for other instruments to study; the high wind and heavy rain regions. Dr. T. N. Krishnamurti has studied various data assimilation techniques for hurricane and monsoon rain rates, and this study builds off of results obtained from utilizing his style of physical initializations of rainfall observations, but obtaining reliable observations in heavy rain regions has always presented trouble to our research of high-resolution rainfall forecasting. Reliable data from these regions at such a high resolution and wide swath as HIRAD provides is potentially very valuable to mesoscale forecasting of hurricane intensity. This study shows how the data assimilation technique of Ensemble Kalman Filtering (EnKF) in the Weather Research and Forecasting (WRF) model can be used to incorporate wind, and later rain rate, data into a mesoscale model forecast of hurricane intensity. The study makes use of an Observing System Simulation Experiment (OSSE) with a simulated

  8. Personality diatheses and Hurricane Sandy: effects on post-disaster depression

    PubMed Central

    Kopala-Sibley, D. C.; Kotov, R.; Bromet, E. J.; Carlson, G. A.; Danzig, A. P.; Black, S. R.; Klein, D. N.

    2015-01-01

    Background According to diathesis–stress models, personality traits, such as negative emotionality (NE) and positive emotionality (PE), may moderate the effects of stressors on the development of depression. However, relatively little empirical research has directly examined whether NE and PE act as diatheses in the presence of stressful life events, and no research has examined whether they moderate the effect of disaster exposure on depressive symptoms. Hurricane Sandy, the second costliest hurricane in US history, offers a unique opportunity to address these gaps. Method A total of 318 women completed measures of NE and PE 5 years prior to Hurricane Sandy. They were also assessed for lifetime depressive disorders on two occasions, the latter occurring an average of 1 year before the hurricane. Approximately 8 weeks after the disaster (mean = 8.40, s.d. = 1.48 weeks), participants completed a hurricane stress exposure questionnaire and a measure of current depressive symptoms. Results Adjusting for lifetime history of depressive disorders, higher levels of stress from Hurricane Sandy predicted elevated levels of depressive symptoms, but only in participants with high levels of NE or low levels of PE. Conclusions These findings support the role of personality in the development of depression and suggest that personality traits can be useful in identifying those most vulnerable to major stressors, including natural disasters. PMID:26619902

  9. OHD/HL - Hurricane

    Science.gov Websites

    flooding. While storm surge is always a potential threat, more people have died from inland flooding in the 56 people who perished, 50 drowned due to inland flooding. Satellite image of Hurricane Floyd people drowned. Damages exceeded $750 million. Tropical Storm Claudette (1979) brought 45 inches of rain

  10. Water level response in back-barrier bays unchanged following Hurricane Sandy

    USGS Publications Warehouse

    Aretxabaleta, Alfredo L.; Butman, Bradford; Ganju, Neil K.

    2014-01-01

    On 28–30 October 2012, Hurricane Sandy caused severe flooding along portions of the northeast coast of the United States and cut new inlets across barrier islands in New Jersey and New York. About 30% of the 20 highest daily maximum water levels observed between 2007 and 2013 in Barnegat and Great South Bay occurred in 5 months following Hurricane Sandy. Hurricane Sandy provided a rare opportunity to determine whether extreme events alter systems protected by barrier islands, leaving the mainland more vulnerable to flooding. Comparisons between water levels before and after Hurricane Sandy at bay stations and an offshore station show no significant differences in the transfer of sea level fluctuations from offshore to either bay following Sandy. The post-Hurricane Sandy bay high water levels reflected offshore sea levels caused by winter storms, not by barrier island breaching or geomorphic changes within the bays.

  11. Serious Emotional Disturbance among Youths Exposed to Hurricane Katrina 2 Years Postdisaster

    ERIC Educational Resources Information Center

    McLaughlin, Katie A.; Fairbank, John A.; Gruber, Michael J.; Jones, Russell T.; Lakoma, Matthew D.; Pfefferbaum, Betty; Sampson, Nancy A.; Kessler, Ronald C.

    2009-01-01

    Objective: To estimate the prevalence of serious emotional disturbance (SED) among children and adolescents exposed to Hurricane Katrina along with the associations of SED with hurricane-related stressors, sociodemographics, and family factors 18 to 27 months after the hurricane. Method: A probability sample of prehurricane residents of areas…

  12. Land loss due to recent hurricanes in coastal Louisiana, U.S.A.

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Barras, John A.; Brock, John C.

    2013-01-01

    The aim of this study is to improve estimates of wetland land loss in two study regions of coastal Louisiana, U.S.A., due to the extreme storms that impacted the region between 2004 and 2009. The estimates are based on change-detection-mapping analysis that incorporates pre and postlandfall (Hurricanes Katrina, Rita, Gustav, and Ike) fractional-water classifications using a combination of high-resolution (<5 m) QuickBird, IKONOS, and GeoEye-1, and medium-resolution (30 m) Landsat Thematic Mapper satellite imagery. This process was applied in two study areas: the Hackberry area located in the southwestern part of chenier plain that was impacted by Hurricanes Rita (September 24, 2005) and Ike (September 13, 2008), and the Delacroix area located in the eastern delta plain that was impacted by Hurricanes Katrina (August 29, 2005) and Gustav (September 1, 2008). In both areas, effects of the hurricanes include enlargement of existing bodies of open water and erosion of fringing marsh areas. Surge-removed marsh was easily identified in stable marshes but was difficult to identify in degraded or flooded marshes. Persistent land loss in the Hackberry area due to Hurricane Rita was approximately 5.8% and increased by an additional 7.9% due to Hurricane Ike, although this additional area may yet recover. About 80% of the Hackberry study area remained unchanged since 2003. In the Delacroix area, persistent land loss due to Hurricane Katrina measured approximately 4.9% of the study area, while Hurricane Gustav caused minimal impact of 0.6% land loss by November 2009. Continued recovery in this area may further erase Hurricane Gustav's impact in the absence of new storm events.

  13. Science and the storms: The USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    This report is designed to give a view of the immediate response of the U.S. Geological Survey (USGS) to four major hurricanes of 2005: Dennis, Katrina, Rita, and Wilma. Some of this response took place days after the hurricanes; other responses included fieldwork and analysis through the spring. While hurricane science continues within the USGS, this overview of work following these hurricanes reveals how a Department of the Interior bureau quickly brought together a diverse array of its scientists and technologies to assess and analyze many hurricane effects. Topics vary from flooding and water quality to landscape and ecosystem impacts, from geotechnical reconnaissance to analyzing the collapse of bridges and estimating the volume of debris. Thus, the purpose of this report is to inform the American people of the USGS science that is available and ongoing in regard to hurricanes. It is the hope that such science will help inform the decisions of those citizens and officials tasked with coastal restoration and planning for future hurricanes. Chapter 1 is an essay establishing the need for science in building a resilient coast. The second chapter includes some hurricane facts that provide hurricane terminology, history, and maps of the four hurricanes’ paths. Chapters that follow give the scientific response of USGS to the storms. Both English and metric measurements are used in the articles in anticipation of both general and scientific audiences in the United States and elsewhere. Chapter 8 is a compilation of relevant ongoing and future hurricane work. The epilogue marks the 2-year anniversary of Hurricane Katrina. An index of authors follows the report to aid in finding articles that are cross-referenced within the report. In addition to performing the science needed to understand the effects of hurricanes, USGS employees helped in the rescue of citizens by boat and through technology by “geoaddressing” 911 calls after Katrina and Rita so that other

  14. Post-hurricane forest damage assessment using satellite remote sensing

    Treesearch

    W. Wang; J.J. Qu; X. Hao; Y. Liu; J.A. Stanturf

    2010-01-01

    This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five commonly used vegetation indices as post-hurricane forest damage indicators was investigated through statistical analysis. The Normalized Difference Infrared Index (NDII) was...

  15. A Climatological Study of Hurricane Force Extratropical Cyclones

    DTIC Science & Technology

    2012-03-01

    extratropical cyclone by months in the Pacific basin. Most of the storms occur from October through March...hurricane force extratropical cyclone. Starting from left to right; the first column is the storm name, second column is the year, month, day, hour (UTC...2000 through 2007 illustrates that the number of hurricane-force extratropical cyclones is quite significant: approximately 500 storms , nearly evenly

  16. The Business of Intimacy: Hurricanes and Howling Wolves

    ERIC Educational Resources Information Center

    Paley, Vivian

    2006-01-01

    The date is September 9, 2005. This article is set in a rural Wisconsin community, a thousand miles north of New Orleans, where Hurricane Katrina is about to make landfall. The four- and five- year- olds in Mrs. Olson's classroom have never experienced a hurricane or seen flood waters rise to cover the farms and houses they know, but they cannot…

  17. Hurricane Bonnie, Northeast of Bermuda, Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Hurricane Bonnie was over the North Atlantic Ocean about 500 miles northeast of Bermuda (39.0N, 56.5W) when this photo was taken. Compare this view with Hurricane Iniki, also photographed on this mission (STS-47-77-058). Bonnie is small but in her prime, having a well defined eye, a tight spiral gyre indicating high wind speeds and numerous thunderheads. Iniki, on the other hand, was decaying when photographed and no longer presented a threat.

  18. Psychological distress of adolescents exposed to Hurricane Hugo.

    PubMed

    Hardin, S B; Weinrich, M; Weinrich, S; Hardin, T L; Garrison, C

    1994-07-01

    To ascertain the effects of a natural disaster on adolescents, 1482 South Carolina high school students who were exposed to Hurricane Hugo were surveyed 1 year after the disaster. Subjects completed a self-administered questionnaire measuring Hugo exposure, nonviolent and violent life events, social support, self-efficacy, and psychological distress. Results showed that the students reported minimal exposure to the hurricane and psychological distress variables approximated national norms. As exposure increased, adolescents reported increased symptoms of psychological distress; i.e., anger, depression, anxiety, and global mental distress. Females and white students experienced higher levels of distress. In most cases, other stressful life events were at least as strong a predictor of psychological distress as was exposure to the hurricane. Self-efficacy and social support were protective.

  19. Synoptic Factors Affecting Structure Predictability of Hurricane Alex (2016)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Aleman, J. J.; Evans, J. L.; Kowaleski, A. M.

    2016-12-01

    On January 7, 2016, a disturbance formed over the western North Atlantic basin. After undergoing tropical transition, the system became the first hurricane of 2016 - and the first North Atlantic hurricane to form in January since 1938. Already an extremely rare hurricane event, Alex then underwent extratropical transition [ET] just north of the Azores Islands. We examine the factors affecting Alex's structural evolution through a new technique called path-clustering. In this way, 51 ensembles from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS) are grouped based on similarities in the storm's path through the Cyclone Phase Space (CPS). The differing clusters group various possible scenarios of structural development represented in the ensemble forecasts. As a result, it is possible to shed light on the role of the synoptic scale in changing the structure of this hurricane in the midlatitudes through intercomparison of the most "realistic" forecast of the evolution of Alex and the other physically plausible modes of its development.

  20. An Overview of LANL's New Hurricane Lightning Project (Invited)

    NASA Astrophysics Data System (ADS)

    Jeffery, C. A.; Shao, X.; Reisner, J.; Kao, C. J.; Brockwell, M.; Chylek, P.; Fierro, A.; Galassi, M.; Godinez, H. C.; Guimond, S.; Hamlin, T.; Henderson, B. G.; Ho, C.; Holden, D.; Light, T. E.; O'Connor, N.; Suszcynsky, D. M.

    2009-12-01

    For the last two years, Los Alamos National Laboratory has sponsored an internal hurricane lightning project with four main goals: (1) To develop and deploy a new dual VLF/VHF lightning mapping array in the Mississippi River Delta south of New Orleans. (2) To develop a new hurricane forecast capability with fully prognostic cloud electrification and lightning discharge physics, based on a model framework developed at Oklahoma University. (3) To develop a new data assimilation approach for ingesting LANL lightning data into our forecast model that exploits the phenomenological relationship between lightning occurrence and intense convection. (4) To demonstrate that the assimilation of lightning data from the new LANL Gulf array into the hurricane forecast model improves the prediction of rapid intensification (RI), when RI is driven by eyewall adjustment (axisymmetrization) triggered by intense convective events (hot towers). In this talk, I present an overview of LANL's new hurricane lighting project, and the progress we have made to-date in achieving the project's four main goals.

  1. Hurricane Katrina: addictive behavior trends and predictors.

    PubMed

    Beaudoin, Christopher E

    2011-01-01

    Post-disaster trends in alcohol consumption and cigarette smoking, as well as their predictors, were identified. Methods. Data from cross-sectional and panel surveys of African American adults in New Orleans, Louisiana, were used from before (2004: n = 1,867; 2005: n = 879) and after (2006a: n = 500; 2006b: n = 500) Hurricane Katrina. Alcohol consumption increased significantly from pre- to post-Hurricane Katrina, while cigarette smoking remained constant. In 2006, posttraumatic stress disorder (PTSD) was associated with cigarette smoking, whereas "news attention" and "provided social support" were inversely associated with cigarette smoking. "News attention" was also inversely associated with cigarette smoking frequency, while "neighborliness" was associated with alcohol consumption. In addition, the effects of PTSD on alcohol consumption were moderated by "neighborliness." In the wake of Hurricane Katrina, there were complex predictive processes of addictive behaviors involving PTSD, news information, and social capital-related measures.

  2. Effects of Moist Convection on Hurricane Predictability

    NASA Technical Reports Server (NTRS)

    Zhang, Fuqing; Sippel, Jason A.

    2008-01-01

    This study exemplifies inherent uncertainties in deterministic prediction of hurricane formation and intensity. Such uncertainties could ultimately limit the predictability of hurricanes at all time scales. In particular, this study highlights the predictability limit due to the effects on moist convection of initial-condition errors with amplitudes far smaller than those of any observation or analysis system. Not only can small and arguably unobservable differences in the initial conditions result in different routes to tropical cyclogenesis, but they can also determine whether or not a tropical disturbance will significantly develop. The details of how the initial vortex is built can depend on chaotic interactions of mesoscale features, such as cold pools from moist convection, whose timing and placement may significantly vary with minute initial differences. Inherent uncertainties in hurricane forecasts illustrate the need for developing advanced ensemble prediction systems to provide event-dependent probabilistic forecasts and risk assessment.

  3. Leveraging Social Media Data to Understand Disaster Resilience: A Case Study of Hurricane Isaac

    NASA Astrophysics Data System (ADS)

    Zou, L.; Lam, N.; Cai, H.

    2017-12-01

    Coastal communities are facing multiple threats from natural hazards, such as hurricanes, flooding, and storm surge, and show uneven response and recovery behaviors. To build a sustainable coast, it is critical to understand how coastal hazards affect humans and how to enhance disaster resilience. However, understanding community resilience remains challenging, due to the lack of real-time data describing community's response and recovery behaviors during disasters. Public discussion through social media platforms provides an opportunity to understand these behaviors by categorizing real-time social media data into three main phases of emergency management - preparedness, response, and recovery. This study analyzes the spatial-temporal patterns of Twitter use and content during Hurricane Isaac, which struck coastal Louisiana on August 29, 2012. The study area includes counties affected by Hurricane Isaac in Louisiana and Mississippi. The objectives are three-fold. First, we will compute a set of Twitter indices to quantify the Twitter activities during Hurricane Issac and the results will be compared with those of Hurricane Sandy to gain a better understanding of human response in extreme events. Second, county-level disaster resilience in the affected region will be computed and evaluated using the Resilience Inference Measurement (RIM) model. Third, we will examine the relationship between the geographical and social disparities in Twitter use and the disparities in disaster resilience and evaluate the role of Twitter use in disaster resilience. Knowledge gained from this study could provide valuable insights into strategies for utilizing social media data to increase resilience to disasters.

  4. NASA Sees Hurricane Olaf Move into Central Pacific Ocean

    NASA Image and Video Library

    2017-12-08

    On Oct. 19 at 19:35 UTC (3:35 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite saw Hurricane Olaf moving into the central Pacific Ocean with a visible eye. Powerful thunderstorms circled the eye and extended in a thick band in the eastern quadrant from north to south. At 5 a.m. EDT (0900 UTC) on Oct. 20, Hurricane Olaf's center was located near latitude 10.3 north and longitude 140.4 west. That's about 1,175 miles (1,890 km) east-southeast of Hilo, Hawaii. Despite being so far from Hawaii and because Olaf is a powerful hurricane, large swells generated by Olaf will begin to arrive along east facing shores of the main Hawaiian Islands over the next couple of days. The CPHC said that resultant surf will be large...potentially life-threatening and damaging. Olaf is moving toward the west-northwest near 10 mph (17 kph) and the Central Pacific Hurricane Center (CPHC), who has taken over forecast responsibilities now that Olaf has crossed the 140 degree longitude line, expects Olaf to turn toward the west-northwest and then northwest by October 21. Maximum sustained winds are near 150 mph (240 kph). Olaf is a category four hurricane on the Saffir-Simpson Hurricane wind scale. Some additional strengthening is forecast on Tuesday, Oct. 20 and fluctuations in intensity are possible Tuesday night and Wednesday. The estimated minimum central pressure is 938 millibars. Olaf is expected to remain a major hurricane for the next couple of days and begin curving to the northeast and away from Hawaii by Friday, October 23. For updates, visit: www.prh.noaa.gov/cphc. Credit: NASA Goddard's MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on

  5. Hurricane Hugo: Emergency Preparedness Planning and Response for Mental Health Services.

    ERIC Educational Resources Information Center

    Carter, Nancy C.; And Others

    This report describes how, in the aftermath of Hurricane Hugo, the South Carolina Department of Mental Health activated its Emergency Preparedness Plan to assist mental health centers and their staff in providing crisis counseling services to the general public. The first section explains the history and structure of the involvement by the…

  6. Hurricane Proof This!

    ERIC Educational Resources Information Center

    Sterling, Donna R.

    2010-01-01

    While learning about the types of weather events that occur in the local area, students in grades 4-6 were asked to consider how structures can be built to withstand extreme weather conditions. Teams of students designed, constructed, and tested buildings to withstand hurricanes and designed the tests they would use to evaluate their structures.…

  7. Retention of Displaced Students after Hurricanes Katrina and Rita

    ERIC Educational Resources Information Center

    Coco, Joshua Christian

    2017-01-01

    The purpose of the study was to investigate the strategies that university leaders implemented to improve retention of displaced students in the aftermaths of Hurricanes Katrina and Rita. The universities that participated in this study admitted displaced students after Hurricanes Katrina and Rita. This study utilized a qualitative…

  8. Resilience of Professional Counselors Following Hurricanes Katrina and Rita

    ERIC Educational Resources Information Center

    Lambert, Simone F.; Lawson, Gerard

    2013-01-01

    Professional counselors who provided services to those affected by Hurricanes Katrina and Rita completed the K6+ (screen for severe mental illness), the Posttraumatic Growth Inventory, and the Professional Quality of Life Scale. Results indicated that participants who survived the hurricanes had higher levels of posttraumatic growth than…

  9. Electric Field Profiles over Hurricanes, Tropical Cyclones, and Thunderstorms with an Instrumented ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Mach, Doug M.; Blakeslee, Richard J.; Bateman, Monte G.; Bailey, Jeff C.

    2007-01-01

    Over the past several years, we have flown a set of calibrated electric field meters (FMs) on the NASA high altitude ER-2 aircraft over oceanic and landbased storms in a number of locations. These included tropical oceanic cyclones and hurricanes in the Caribbean and Atlantic ocean during the Third and Fourth Convection And Moisture EXperiment (CAMEX-3,1998; CAMEX-4, 2001), thunderstorms in Florida during the TExas FLorida UNderflight (TEFLUN, 1998) experiment, tropical thunderstorms in Brazil during the Tropical Rainfall Measuring Mission - Large Scale Biosphere-Atmosphere Experiment in Amazonia (TRMM LBA, 1999), and finally, hurricanes and tropical cyclones in the Caribbean and Western Pacific and thunderstorms in Central America during the Tropical Cloud Systems and Processes (TCSP, 2005) mission. Between these various missions we have well over 50 sorties that provide a unique insights on the different electrical environment, evolution and activity occurring in and around these various types of storms. In general, the electric fields over the tropical oceanic storms and hurricanes were less than a few kilovolts per meter at the ER-2 altitude, while the lightning rates were low. Land-based thunderstorms often produced high lightning activity and correspondingly higher electric fields.

  10. Modeling hurricane evacuation traffic : development of a time-dependent hurricane evacuation demand model.

    DOT National Transportation Integrated Search

    2008-04-01

    The objective of this research is to develop alternative time-dependent travel demand models of hurricane evacuation travel and to compare the performance of these models with each other and with the state-of-the-practice models in current use. Speci...

  11. Using Enabling Technologies to Facilitate the Comparison of Satellite Observations with the Model Forecasts for Hurricane Study

    NASA Astrophysics Data System (ADS)

    Li, P.; Knosp, B.; Hristova-Veleva, S. M.; Niamsuwan, N.; Johnson, M. P.; Shen, T. P. J.; Tanelli, S.; Turk, J.; Vu, Q. A.

    2014-12-01

    Due to their complexity and volume, the satellite data are underutilized in today's hurricane research and operations. To better utilize these data, we developed the JPL Tropical Cyclone Information System (TCIS) - an Interactive Data Portal providing fusion between Near-Real-Time satellite observations and model forecasts to facilitate model evaluation and improvement. We have collected satellite observations and model forecasts in the Atlantic Basin and the East Pacific for the hurricane seasons since 2010 and supported the NASA Airborne Campaigns for Hurricane Study such as the Genesis and Rapid Intensification Processes (GRIP) in 2010 and the Hurricane and Severe Storm Sentinel (HS3) from 2012 to 2014. To enable the direct inter-comparisons of the satellite observations and the model forecasts, the TCIS was integrated with the NASA Earth Observing System Simulator Suite (NEOS3) to produce synthetic observations (e.g. simulated passive microwave brightness temperatures) from a number of operational hurricane forecast models (HWRF and GFS). An automated process was developed to trigger NEOS3 simulations via web services given the location and time of satellite observations, monitor the progress of the NEOS3 simulations, display the synthetic observation and ingest them into the TCIS database when they are done. In addition, three analysis tools, the joint PDF analysis of the brightness temperatures, ARCHER for finding the storm-center and the storm organization and the Wave Number Analysis tool for storm asymmetry and morphology analysis were integrated into TCIS to provide statistical and structural analysis on both observed and synthetic data. Interactive tools were built in the TCIS visualization system to allow the spatial and temporal selections of the datasets, the invocation of the tools with user specified parameters, and the display and the delivery of the results. In this presentation, we will describe the key enabling technologies behind the design of

  12. West Florida Shelf Response to Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weisberg, R. H.; Chen, J.; Merz, C. R.; Law, J.; Zheng, L.

    2017-12-01

    Hurricane Irma impacted the west Florida continental shelf (WFS) as it transited the state of Florida during September 10-12, 2017, making landfall first at Cudjoe Key and then again at Naples, as a Category 2 hurricane. The WFS response to Hurricane Irma is analyzed using a combination of in situ observations and numerical model simulations. The observations include water column velocity (by Acoustic Doppler Current Profilers), sea surface temperature and meteorological records from three moorings on the shelf, surface currents by high-frequency radars, and coastal tide gauge records. The West Florida Coastal Ocean Model (WFCOM) employed downscales from the deep Gulf of Mexico, across the shelf and into the estuaries by nesting the unstructured grid FVCOM in the Gulf of Mexico HYCOM. Both the observations and the model simulations revealed strong upwelling and vertical mixing followed by downwelling as the storm passed by. This was accompanied by a rapid drop in sea surface temperature of approximately 4ºC and large decreases in sea level with associated negative surges, causing drying in the Florida Bay, Charlotte Harbor, Tampa Bay estuaries and the Big Bend region. The transport and exchange of water between the shelf and the estuaries and between the shelf and the Florida Keys reef track during the hurricane may have important implications for ecosystem studies within the region.

  13. Seasonality and weather conditions jointly drive flight activity patterns of aquatic and terrestrial chironomids.

    PubMed

    Vebrová, Lucie; van Nieuwenhuijzen, Andre; Kolář, Vojtěch; Boukal, David S

    2018-06-19

    Chironomids, a major invertebrate taxon in many standing freshwaters, rely on adult flight to reach new suitable sites, yet the impact of weather conditions on their flight activity is little understood. We investigated diel and seasonal flight activity patterns of aquatic and terrestrial chironomids in a reclaimed sandpit area and analysed how weather conditions and seasonality influenced their total abundance and species composition. Air temperature, relative humidity, wind speed, and air pressure significantly affected total flight activity of both groups, but not in the same way. We identified an intermediate temperature and humidity optimum for the flight activity of terrestrial chironomids, which contrasted with weaker, timescale-dependent relationships in aquatic species. Flight activity of both groups further declined with wind speed and increased with air pressure. Observed flight patterns also varied in time on both daily and seasonal scale. Flight activity of both groups peaked in the evenings after accounting for weather conditions but, surprisingly, aquatic and terrestrial chironomids used partly alternating time windows for dispersal during the season. This may be driven by different seasonal trends of key environmental variables in larval habitats and hence implies that species phenologies and conditions experienced by chironomid larvae (and probably other aquatic insects with short-lived adults) influence adult flight patterns more than weather conditions. Our results provide detailed insights into the drivers of chironomid flight activity and highlight the methodological challenges arising from the inherent collinearity of weather characteristics and their diurnal and seasonal cycles.

  14. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrieval Assessment with Dropsondes

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.

    2017-01-01

    Map surface wind speed over wide swath (approximately 50-60 km, for aircraft greater than FL600) in hurricanes. Provide research data for understanding hurricane structure, and intensity change. Enable improved forecasts, warnings, and decision support.

  15. On the Use of Ocean Dynamic Temperature for Hurricane Intensity Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby

    Sea surface temperature (SST) and the Tropical Cyclone Heat Potential (TCHP) are metrics used to incorporate the ocean's influence on hurricane intensification in the National Hurricane Center's Statistical Hurricane Intensity Prediction Scheme (SHIPS). While both SST and TCHP serve as useful measures of the upper-ocean heat content, they do not accurately represent ocean stratification effects. Here we show that replacing SST in the SHIPS framework with a dynamic temperature (Tdy), which accounts for the oceanic negative feedback to the hurricane's intensity arising from storm-induced vertical mixing and sea-surface cooling, improves the model performance. While the model with SST and TCHPmore » explains nearly 41% of the variance in 36-hr intensity changes, replacing SST with Tdy increases the variance explained to nearly 44%. Our results suggest that representation of the oceanic feedback, even through relatively simple formulations such as Tdy, may improve the performance of statistical hurricane intensity prediction models such as SHIPS.« less

  16. Multi-proxy Characterization of Two Recent Storm Deposits Attributed to Hurricanes Rita and Ike in the Chenier Plain of Southwestern Louisiana

    NASA Astrophysics Data System (ADS)

    Yao, Q.; Liu, K. B.; Ryu, J.

    2017-12-01

    The Chenier Plain in southwestern Louisiana owes its origin to dynamic depositional processes that are dominated by delta-switching of the Mississippi River to the east, while frequent hurricane activities also play an important role in its geomorphology and sedimentary history. However, despite several studies in the literature, the sediment-stratigraphic characteristics of recent or historic hurricane deposits are still not well documented from the Chenier Plain. In 2005 and 2008, Hurricane Rita (category 3) and Ike (category 2) made landfall on the coasts of Louisiana and Texas. Remote sensing images confirm that the Rockefeller Wildlife Refuge, located at the east end of the Louisiana Chenier Plain, was heavily impacted by both hurricanes. We analyzed the lithology and chemical stratigraphy of three 30 cm sediment monoliths (ROC-1, ROC-2, and ROC-3) recovered from a coastal saltmarsh in the Rockefeller Wildlife Refuge to identify the event deposits attributed to these two storms. Each monolith contains 2 distinct light-colored clastic sediment layers imbedded in brown organic clay. The loss-on-ignition and X-ray fluorescence results show that the hurricane layers have increased contents of Ca, Sr, Zr, and carbonates and decreased contents of water and organics. Surprisingly, despite its greater intensity and more severe impacts, Hurricane Rita left a much thinner storm deposit than did Hurricane Ike in all monoliths. Satellite data reveal that Hurricane Rita caused significant coastal erosion and shoreline recession, rendering the sampling sites much closer to the beach and ocean and therefore more prone to storm surges and overwash deposition than when Hurricane Ike struck three years later. Our results suggest that site-to-sea distance, which affects a study site's paleotempestological sensitivity, can play a bigger role in affecting the thicknesses of storm deposits than the intensity of the hurricane.

  17. Preliminary medical examiner reports of mortality associated with Hurricane Charley--Florida, 2004.

    PubMed

    2004-09-17

    On August 13, 2004, at approximately 3:45 p.m. EDT, Hurricane Charley made landfall at Cayo Costa, a Gulf of Mexico barrier island west of Cape Coral, Florida, as a Category 4 storm, with sustained winds estimated at 145 mph. Charley was the strongest hurricane to make landfall in the United States since Hurricane Andrew in August 1992. Charley created a 7-foot storm surge in Fort Myers, then traversed the state in 9 hours, continuing in a northeast direction across eight counties. This report presents preliminary data from Florida medical examiners (MEs), which indicated that 31 deaths were associated with Hurricane Charley. Deaths might be reduced through coordinated hurricane planning, focused evacuations, and advance communication to the public regarding the environmental hazards after a natural disaster.

  18. Eogenetic karst hydrology: Insights from the 2004 hurricanes, peninsular Florida

    USGS Publications Warehouse

    Florea, L.J.; Vacher, H. Leonard

    2007-01-01

    Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix - both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous. ?? 2007 National Ground Water Association.

  19. Eogenetic karst hydrology: insights from the 2004 hurricanes, peninsular Florida.

    PubMed

    Florea, Lee J; Vacher, H L

    2007-01-01

    Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix-both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous.

  20. Race differences in depression vulnerability following Hurricane Katrina.

    PubMed

    Ali, Jeanelle S; Farrell, Amy S; Alexander, Adam C; Forde, David R; Stockton, Michelle; Ward, Kenneth D

    2017-05-01

    This study investigated whether racial disparities in depression were present after Hurricane Katrina. Data were gathered from 932 New Orleans residents who were present when Hurricane Katrina struck, and who returned to New Orleans the following year. Multiple logistic regression models evaluated racial differences in screening positive for depression (a score ≥16 on the Center for Epidemiologic Studies Depression Scale), and explored whether differential vulnerability (prehurricane physical and mental health functioning and education level), differential exposure to hurricane-related stressors, and loss of social support moderated and/or reduced the association of race with depression. A univariate logistic regression analysis showed the odds for screening positive for depression were 86% higher for African Americans than for Caucasians (odds ratio [OR] = 1.86 [1.28-2.71], p = .0012). However, after controlling simultaneously for sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors, race was no longer a significant correlate for screening positive for depression (OR = 1.54 [0.95-2.48], p = .0771). The racial disparity in postdisaster depression seems to be confounded by sociodemographic characteristics, preexisting vulnerabilities, social support, and trauma-specific factors. Nonetheless, even after adjusting for these factors, there was a nonsignificant trend effect for race, which could suggest race played an important role in depression outcomes following Hurricane Katrina. Future studies should examine these associations prospectively, using stronger assessments for depression, and incorporate measures for discrimination and segregation, to further understand possible racial disparities in depression after Hurricane Katrina. (PsycINFO Database Record (c) 2017 APA, all rights reserved).