Science.gov

Sample records for active hydrological cycle

  1. The Hydrologic Cycle Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Hardin, Danny M.; Goodman, H. Michael

    1995-01-01

    The Marshall Space Flight Center Distributed Active Archive Center in Huntsville, Alabama supports the acquisition, production, archival and dissemination of data relevant to the study of the global hydrologic cycle. This paper describes the Hydrologic Cycle DAAC, surveys its principle data holdings, addresses future growth, and gives information for accessing the data sets.

  2. Hydrological cycle.

    PubMed

    Gonçalves, H C; Mercante, M A; Santos, E T

    2011-04-01

    The Pantanal hydrological cycle holds an important meaning in the Alto Paraguay Basin, comprising two areas with considerably diverse conditions regarding natural and water resources: the Plateau and the Plains. From the perspective of the ecosystem function, the hydrological flow in the relationship between plateau and plains is important for the creation of reproductive and feeding niches for the regional biodiversity. In general, river declivity in the plateau is 0.6 m/km while declivity on the plains varies from 0.1 to 0.3 m/km. The environment in the plains is characteristically seasonal and is home to an exuberant and abundant diversity of species, including some animals threatened with extinction. When the flat surface meets the plains there is a diminished water flow on the riverbeds and, during the rainy season the rivers overflow their banks, flooding the lowlands. Average annual precipitation in the Basin is 1,396 mm, ranging from 800 mm to 1,600 mm, and the heaviest rainfall occurs in the plateau region. The low drainage capacity of the rivers and lakes that shape the Pantanal, coupled with the climate in the region, produce very high evaporation: approximately 60% of all the waters coming from the plateau are lost through evaporation. The Alto Paraguay Basin, including the Pantanal, while boasting an abundant availability of water resources, also has some spots with water scarcity in some sub-basins, at different times of the year. Climate conditions alone are not enough to explain the differences observed in the Paraguay River regime and some of its tributaries. The complexity of the hydrologic regime of the Paraguay River is due to the low declivity of the lands that comprise the Mato Grosso plains and plateau (50 to 30 cm/km from east to west and 3 to 1.5 cm/km from north to south) as well as the area's dimension, which remains periodically flooded with a large volume of water. PMID:21537597

  3. Terminology gap in hydrological cycle

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Water is central to life on Earth. People have been trying to understand how water moves in the hydrosphere throughout the human history. In the 9th century BC, the famous Greek poet Homer described the hydrological cycle in Iliad as "okeanos whose stream bends back in a circle" with a belief that rivers are ocean-fed from subterranean seas. Later, Aristotle (4th century BC) claimed that most of the water came from underground caverns in which air was transformed into water. It was only until 1674, French scientist Perrault developed the correct concept of the water cycle. In modern times, scientists are interested in understanding the individual processes of the hydrological cycle with a keen focus on runoff which supplies water to rivers, lakes, and oceans. Currently, the prevailing concepts on runoff processes include 'infiltration excess runoff' and 'saturation excess runoff'. However, there is no term to describe another major runoff due to the excess beyond the soil water holding capacity (i.e., the field capacity). We argue that a new term should be introduced to fill this gap, and it could be called 'holding excess runoff' which is compatible with the convention. This new term is significant in correcting a half-century misnomer where 'holding excess runoff' has been incorrectly named as 'saturation excess runoff', which was introduced by the Xinanjiang model in China in 1960s. Similar concept has been adopted in many well-known hydrological models such as PDM and HBV in which the saturation refers to the field capacity. The term 'holding excess runoff' resolves such a common confusion in the hydrological community.

  4. Detecting Global Hydrological Cycle Intensification

    NASA Astrophysics Data System (ADS)

    Poague, J.; Stine, A.

    2015-12-01

    Global warming is expected to intensify the global hydrological cycle, but significant regional differences exist in the predicted response. The predicted zonal mean response is enhanced horizontal moisture transport associated with increased saturation vapor pressure, which in turn drives additional net precipitation in the tropics and additional net evaporation in the subtropics. The observed two-dimensional response suggests that the spatial pattern of sea surface salinity is, in fact, amplifying. High salinity regions have become saltier while low salinity regions are have become fresher. Most noticeable is the widening gap between the relatively fresh Pacific ocean and the relatively salty Atlantic ocean. Changes in evaporation minus precipitation (E-P) over the global ocean in response to warming are difficult to observe directly, but changes in sea surface salinity provide a useful proxy for these changes in that they integrate changes in the highly variable surface freshwater flux. To quantify the relationship between sea surface salinity and temperature, we project sea surface salinity anomalies onto evaporation minus precipitation (E-P) to create an index of salinity variability. Conceptually, this index can be thought of as an indicator of the strength of the hydrological cycle, and is dominated by the rate of freshwater transport in the Hadley Cell. The results reveal a strong relationship between tropical temperature variability and the dominant pattern of sea surface salinity. This relationship is coherent across a broad range of frequencies. There are also strong differences in the physical response to warming in the Atlantic and Pacific ocean basins, with the Atlantic salinity response more closely tied to mean salinity and the Pacific salinity response more closely tied to evaporation minus precipitation. We hypothesize that this is due to large-scale evaporative regions and mixed-layer dynamics dominating the salinity response in the Atlantic

  5. Biospheric Aspects of the Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Hutjes, R. W. A.; Kabat, P.; Running, S. W.; Shuttleworth, W. J.; Field, C.; Bass, B.; da Silva Dias, M. F.; Avissar, R.; Becker, A.; Claussen, M.; Dolman, A. J.; Feddes, R. A.; Fosberg, M.; Fukushima, Y.; Gash, J. H. C.; Guenni, L.; Hoff, H.; Jarvis, P. G.; Kayane, I.; Krenke, A. N.; Liu, Changming; Meybeck, M.; Nobre, C. A.; Oyebande, L.; Pitman, A.; Pielke, R. A., Sr.; Raupach, M.; Saugier, B.; Schulze, E. D.; Sellers, P. J.; Tenhunen, J. D.; Valentini, R.; Victoria, R. L.; Vörösmarty, C. J.

    1998-12-01

    The Core Project Biospheric Aspects of the Hydrological Cycle (BAHC) of the International Geosphere Biosphere Programme (IGBP) addresses the biospheric aspects of the hydrological cycle through experiments and modelling of energy, water, carbon dioxide and sediment fluxes in the soil- vegetation-atmosphere system at a variety of spatial and temporal scales. Active regulation of water, energy and carbon dioxide fluxes by the vegetation make it an important factor in regulating the Earth's hydrological cycle and in the formation of the climate. Consequently, human induced conversion of vegetation cover is an important driver for climate change. A number of recent studies, discussed in this paper, emphasise the importance of the terrestrial biosphere for the climate system. Initially, these studies demonstrate the influence of the land surface on tropical weather and climate, revealing the mechanisms, acting at various scales, that connect increasing temperatures and decreasing rainfall to large-scale deforestation and other forms of land degradation. More recently, the significance of the land surface processes for water cycle and for weather and climate in temperate and boreal zones was demonstrated. In addition the terrestrial biosphere plays a significant role in the carbon dioxide fluxes and in global carbon balance. Recent work suggests that many ecosystems both in the tropics and in temperate zones may act as a substantial sink for carbon dioxide, though the temporal variability of this sink strength is yet unclear. Further, carbon dioxide uptake and evaporation by vegetation are intrinsically coupled, leading to links and feedbacks between land surface and climate that are hardly explored yet. Earth's vegetation cover and its changes owing to human impact have a profound influence on a lateral redistribution of water and transported constituents, such as nutrients and sediments, and acts therefore as an important moderator of Earth's biogeochemical cycles. In

  6. Aerosols, climate, and the hydrological cycle.

    PubMed

    Ramanathan, V; Crutzen, P J; Kiehl, J T; Rosenfeld, D

    2001-12-01

    Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding increase in solar heating of the atmosphere, changes in the atmospheric temperature structure, suppression of rainfall, and less efficient removal of pollutants. These aerosol effects can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century. PMID:11739947

  7. Anthropogenic impact on the Earth's hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wu, P.; Christidis, N.; Stott, P.; Chadwick, R.; Ingram, W.

    2013-12-01

    The global hydrological cycle is a key component of the Earth's climate system. A significant amount of the energy the Earth receives from the Sun is redistributed around the world through the hydrological cycle in the form of latent heat flux. Changes in the hydrological cycle have a direct impact on droughts, floods, water resources and ecosystem services. Observed land precipitation and global river discharges do not show an increasing trend as might be expected in a warming world. Here we show that this apparent discrepancy can be resolved when the effects of tropospheric aerosols are considered. Analyzing state-of-the-art climate model simulations, we find for the first time that there was a detectable weakening of the hydrological cycle between the 1950s and the 1980s attributable to increased anthropogenic aerosols, after which the hydrological cycle recovered due to increasing greenhouse gas concentrations. The net result of these two counter-acting effects is an insignificant trend in the global hydrological cycle, but the individual influence of each is substantial. Reductions in air pollution have already shown an intensification in the last two decades and further rapid increase in precipitation could be expected if the current trend continues.

  8. Biological Controls on the Hydrologic Cycle

    NASA Astrophysics Data System (ADS)

    Berry, J. A.

    2009-05-01

    Unlike most other parts of hydrologic cycle, that part involving plants is strongly influenced by behaviors that fall outside the realm of simple physics, and are, therefore, difficult to model. Plants have the capacity to make "decisions" that profoundly affect the surface energy budget, boundary layer processes and atmospheric dynamics over the continents. These decisions of plants are apparently based on anatomical structures and physiological mechanisms that have been tuned by evolutionary processes to permit plants to address the central dilemma of their existence. To grow requires that they open their stomata to allow CO2 to diffuse into their leaves, but they must also permit water to escape to the dry atmosphere. This water must be used sparingly lest they exhaust soil water and die of dessication, but to forgo using it comes at the expense of growth and competitive advantage. Improvements in our understanding of the physiological and environmental constraints that frame this dilemma have led to improvements in our ability to predict and model the responses of plants in the hydrologic cycle. However, there is, yet, much room for improvement in our understanding of plant hydrology and how to measure and model it. I will touch on new insights into mechanisms that regulate stomatal conductance, applications of stable isotopes for calibrating conductance parameterizations and a new tracer for assessing conductance at regional scales.

  9. Oscillations in land surface hydrological cycle

    NASA Astrophysics Data System (ADS)

    Labat, D.

    2006-02-01

    Hydrological cycle is the perpetual movement of water throughout the various component of the global Earth's system. Focusing on the land surface component of this cycle, the determination of the succession of dry and humid periods is of high importance with respect to water resources management but also with respect to global geochemical cycles. This knowledge requires a specified estimation of recent fluctuations of the land surface cycle at continental and global scales. Our approach leans towards a new estimation of freshwater discharge to oceans from 1875 to 1994 as recently proposed by Labat et al. [Labat, D., Goddéris, Y., Probst, JL, Guyot, JL, 2004. Evidence for global runoff increase related to climate warming. Advances in Water Resources, 631-642]. Wavelet analyses of the annual freshwater discharge time series reveal an intermittent multiannual variability (4- to 8-y, 14- to 16-y and 20- to 25-y fluctuations) and a persistent multidecadal 30- to 40-y variability. Continent by continent, reasonable relationships between land-water cycle oscillations and climate forcing (such as ENSO, NAO or sea surface temperature) are proposed even though if such relationships or correlations remain very complex. The high intermittency of interannual oscillations and the existence of persistent multidecadal fluctuations make prediction difficult for medium-term variability of droughts and high-flows, but lead to a more optimistic diagnostic for long-term fluctuations prediction.

  10. Modelling the hydrological cycle in assessments of climate change

    NASA Technical Reports Server (NTRS)

    Rind, D.; Rosenzweig, C.; Goldberg, R.

    1992-01-01

    The predictions of climate change studies depend crucially on the hydrological cycles embedded in the different models used. It is shown here that uncertainties in hydrological processes and inconsistencies in both climate and impact models limit confidence in current assessments of climate change. A future course of action to remedy this problem is suggested.

  11. A Hydrological Perspective to Advance Understanding of the Water Cycle

    NASA Astrophysics Data System (ADS)

    Berghuijs, W.

    2014-12-01

    In principle hydrologists are scientists that study relationships within the water cycle. Yet, current technology makes it tempting for hydrology students to lose their "hydrological perspective" and become instead full-time computer programmers or statisticians. I assert that students should ensure their hydrological perspective thrives, notwithstanding the importance and possibilities of current technology. This perspective is necessary to advance the science of hydrology. As other hydrologists have pondered similar views before, I make no claims of originality here. I just hope that in presenting my perspective on this issue I may spark the interest of other early career hydrologists.

  12. Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications

    NASA Astrophysics Data System (ADS)

    Kleidon, A.; Renner, M.

    2013-03-01

    The hydrologic cycle results from the combination of energy conversions and atmospheric transport, and the laws of thermodynamics set limits to both. Here, we apply thermodynamics to derive the limits of the strength of hydrologic cycling within the Earth system and the properties and processes that shape these limits. We set up simple models to derive analytical expressions of the limits of evaporation and precipitation in relation to vertical and horizontal differences in solar radiative forcing. These limits result from a fundamental trade-off by which a greater evaporation rate reduces the temperature gradient and thus the driver for atmospheric motion that exchanges moistened air from the surface with the drier air aloft. The limits on hydrologic cycling thus reflect the strong interaction between the hydrologic flux, motion, and the driving gradient. Despite the simplicity of the models, they yield estimates for the limits of hydrologic cycling that are within the observed magnitude, suggesting that the global hydrologic cycle operates near its maximum strength. We close with a discussion of how thermodynamic limits can provide a better characterization of the interaction of vegetation and human activity with hydrologic cycling.

  13. Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications

    NASA Astrophysics Data System (ADS)

    Kleidon, A.; Renner, M.

    2013-07-01

    The hydrologic cycle results from the combination of energy conversions and atmospheric transport, and the laws of thermodynamics set limits to both. Here, we apply thermodynamics to derive the limits of the strength of hydrologic cycling within the Earth system and about the properties and processes that shape these limits. We set up simple models to derive analytical expressions of the limits of evaporation and precipitation in relation to vertical and horizontal differences in solar radiative forcing. These limits result from a fundamental trade-off by which a greater evaporation rate reduces the temperature gradient and thus the driver for atmospheric motion that exchanges moistened air from the surface with the drier air aloft. The limits on hydrologic cycling thus reflect the strong interaction between the hydrologic flux, motion, and the driving gradient. Despite the simplicity of the models, they yield estimates for the limits of hydrologic cycling that are within the observed magnitude, suggesting that the global hydrologic cycle operates near its maximum strength. We close with a discussion of how thermodynamic limits can provide a better characterization of the interaction of vegetation and human activity with hydrologic cycling.

  14. Enhancing water cycle measurements for future hydrologic research

    USGS Publications Warehouse

    Loescher, H.W.; Jacobs, J.M.; Wendroth, O.; Robinson, D.A.; Poulos, G.S.; McGuire, K.; Reed, P.; Mohanty, B.P.; Shanley, J.B.; Krajewski, W.

    2007-01-01

    The Consortium of Universities for the Advancement of Hydrologic Sciences, Inc., established the Hydrologic Measurement Facility to transform watershed-scale hydrologic research by facilitating access to advanced instrumentation and expertise that would not otherwise be available to individual investigators. We outline a committee-based process that determined which suites of instrumentation best fit the needs of the hydrological science community and a proposed mechanism for the governance and distribution of these sensors. Here, we also focus on how these proposed suites of instrumentation can be used to address key scientific challenges, including scaling water cycle science in time and space, broadening the scope of individual subdisciplines of water cycle science, and developing mechanistic linkages among these subdisciplines and spatio-temporal scales. ?? 2007 American Meteorological Society.

  15. The hydrological cycle response to cirrus cloud thinning

    NASA Astrophysics Data System (ADS)

    Kristjánsson, Jón Egill; Muri, Helene; Schmidt, Hauke

    2015-12-01

    Recent multimodel studies have shown that if one attempts to cancel increasing CO2 concentrations by reducing absorbed solar radiation, the hydrological cycle will weaken if global temperature is kept unchanged. Using a global climate model, we investigate the hydrological cycle response to "cirrus cloud thinning (CCT)," which is a proposed climate engineering technique that seeks to enhance outgoing longwave radiation. Investigations of the "fast response" in experiments with fixed sea surface temperatures reveal that CCT causes a significant enhancement of the latent heat flux and precipitation. This is due to enhanced radiative cooling of the troposphere, which is opposite to the effect of increased CO2 concentrations. By combining CCT with CO2 increase in multidecadal simulations with a slab ocean, we demonstrate a systematic enhancement of the hydrological cycle due to CCT. This leads to enhanced moisture availability in low-latitude land regions and a strengthening of the Indian monsoon.

  16. The sensitivity of the tropical hydrological cycle to ENSO

    SciTech Connect

    Soden, B.J.

    2000-02-01

    It has been suggested that warmer temperatures associated with increasing greenhouse gas emissions will increase precipitation intensity and result in a more vigorous hydrologic cycle. Satellite observations of temperature, water vapor, precipitation and longwave radiation are used to characterize the variation of the tropical hydrologic and energy budgets associated with the El Nino-Southern Oscillation (ENSO). As the tropical oceans warm during an El Nino event, the precipitation intensity, water vapor mass, and temperature of the tropical atmosphere are observed to increase, reflecting a more vigorous hydrologic cycle. The enhanced latent heat release and resultant atmospheric warming lead to an increase in the emission of longwave radiation. Atmospheric global climate models, forced with observed sea surface temperatures (SSTs), accurately reproduce the observed tropospheric temperature, water vapor, and outgoing longwave radiation changes. However, the predicted variations in tropical-mean precipitation rate and surface longwave radiation are substantially smaller than observed. The comparison suggests that either (1) the sensitivity of the tropical hydrological cycle to ENSO-driven changes in SST is substantially underpredicted in existing climate models or (2) that current satellite observations are inadequate to accurately monitor ENSO-related changes in the tropical-mean precipitation. Either conclusion has important implications for current efforts to monitor and predict changes in the intensity of the hydrological cycle.

  17. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  18. Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Gates, Lydia Dümenil

    2001-01-01

    To validate the hydrological cycle of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) reanalyses in comparison with observed river discharge, a hydrological discharge model is used to compute the corresponding river discharge. The HD model requires daily time series of surface runoff and drainage from the soil as input fields. As it turned out that a direct application to the reanalyses was not possible, a simplified land surface scheme was developed to compute runoff and drainage fields from daily reanalysis values of total precipitation and 2 m temperature. These fields were then used as input to the global simulation of river discharge with the discharge model. Results show several shortcomings of the two reanalyses in representing the hydrological cycle at the land surface. The water balance is not closed, and the snowmelt is not incorporated in the runoff and drainage fields of either of the two reanalyses. In addition, the NCEP reanalysis overestimates summer precipitation and evapotranspiration for most parts of the Northern Hemisphere, while the ECMWF reanalysis underestimates 2 m temperatures in high latitudes during the winter and spring. In the monsoon region the hydrological cycle is well represented by both reanalyses, especially over India.

  19. Impact of Geoengineering Schemes on the Global Hydrological Cycle

    SciTech Connect

    Bala, G; Duffy, P; Taylor, K

    2007-12-07

    The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.

  20. Processes linking the hydrological cycle and the atmospheric radiative budget

    NASA Astrophysics Data System (ADS)

    Fueglistaler, Stephan; Dinh, Tra

    2016-04-01

    We study the response of the strength of the global hydrological cycle to changes in carbon dioxide (CO2) using the HiRAM General Circulation Model developed at the Geophysical Fluid Dynamics Laboratory (GFDL), with the objective to better connect the well-known energetic constraints to physical processes. We find that idealized model setups using a global slab ocean and annual mean insolation give similar scalings as coupled atmosphere-ocean models with realistic land and topography. Using the surface temperatures from the slab ocean runs, we analyse the response in the atmospheric state and hydrological cycle separately for a change in CO2 (but fixed surface temperature), and for a change in surface temperature (but fixed CO2). The former perturbation is also referred to as the "fast" response, whereas the latter is commonly used to diagnose a model's climate sensitivity. As expected from the perspective of the atmospheric radiative budget, an increase in CO2 at fixed surface temperature decreases the strength of the hydrological cycle, and an increase in surface temperature increases the strength of the hydrological cycle. However, the physical processes that connect the atmospheric radiative energy budget to the sensible and latent heat fluxes at the surface remain not well understood. The responses to the two perturbations are linearly additive, and we find that the experiment with fixed surface temperature and changes in CO2 is of great relevance to understanding the total response. This result points to the importance of local radiative heating rate changes rather than just the net atmospheric radiative loss of energy. Although larger in magnitude, the response to changes in surface temperature is dominated by the temperature dependence of the water vapor pressure, but in both cases changes in near-surface relative humidity are very important.

  1. Green roof impact on the hydrological cycle components

    NASA Astrophysics Data System (ADS)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2013-04-01

    In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a

  2. eWaterCycle: A global operational hydrological forecasting model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  3. Global operational hydrological forecasts through eWaterCycle

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Central goal of the eWaterCycle project (www.ewatercycle.org) is the development of an operational hyper-resolution hydrological global model. This model is able to produce 14 day ensemble forecasts based on a hydrological model and operational weather data (presently NOAA's Global Ensemble Forecast System). Special attention is paid to prediction of situations in which water related issues are relevant, such as floods, droughts, navigation, hydropower generation, and irrigation stress. Near-real time satellite data will be assimilated in the hydrological simulations, which is a feature that will be presented for the first time at EGU 2015. First, we address challenges that are mainly computer science oriented but have direct practical hydrological implications. An important feature in this is the use of existing standards and open-source software to the maximum extent possible. For example, we use the Community Surface Dynamics Modeling System (CSDMS) approach to coupling models (Basic Model Interface (BMI)). The hydrological model underlying the project is PCR-GLOBWB, built by Utrecht University. This is the motor behind the predictions and state estimations. Parts of PCR-GLOBWB have been re-engineered to facilitate running it in a High Performance Computing (HPC) environment, run parallel on multiple nodes, as well as to use BMI. Hydrological models are not very CPU intensive compared to, say, atmospheric models. They are, however, memory hungry due to the localized processes and associated effective parameters. To accommodate this memory need, especially in an ensemble setting, a variation on the traditional Ensemble Kalman Filter was developed that needs much less on-chip memory. Due to the operational nature, the coupling of the hydrological model with hydraulic models is very important. The idea is not to run detailed hydraulic routing schemes over the complete globe but to have on-demand simulation prepared off-line with respect to topography and

  4. The Late Cretaceous hydrological cycle very different from today

    NASA Astrophysics Data System (ADS)

    Floegel, S.; Hay, W. W.; Deconto, R. M.

    2003-04-01

    Numeric modeling of the climate system at the Cenomanian/Turonian boundary has produced surprising results concerning the hydrological cycle during the Late Cretaceous. Today; the global average of subsurface runoff (groundwater, 13.320 km3) to surface runoff (43.790 km3) is about 30%. Globally, about 2/3 of the total river discharge entering the sea today is from surface runoff, much of it originating as snowmelt, and 1/3 is from groundwater, The present day data show similar proportions of surface runoff/subsurface runoff for different continents, ~4:1 in Aus-tralia, ~3:1 in Europe, Africa, and South America, and lower on other continents. The amount and seasonal distribution of surface runoff drives both mechanical erosion and terrigenous bio-logical activity. The amount and distribution of subsurface runoff is of importance for chemical erosion and subsurface dissolution. GENESIS (v.2.0) paleoclimate simulations of the Late Cretaceous, show a relation opposite to that of present, with subsurface runoff dominating over surface runoff both globally and region-ally. Globally, the simulations produce an annual mean value for subsurface runoff about 6 times higher than that of the surface runoff. Detailed examination of the data shows very large regional differences. The ratios of surface to subsurface runoff range from 1:2 (Sevier Highlands of west-ern North America) to 1:1200 (S-Asia). There are significant regional differences between the surface runoff and subsurface runoff, even at similar paleolatitudes. Not only does the total amount of water transported annually by these two mechanisms change dramatically, but their distribution during the course of a year is different from present. In addition to the effect of the different Cretaceous hydrology on rivers, low salinity, nutrient-rich groundwater discharge di-rectly into coastal waters could have had a significant impact on the local ecology along the margins of continents and islands. If atmospheric CO2 were

  5. Impact of geoengineering schemes on the global hydrological cycle.

    PubMed

    Bala, G; Duffy, P B; Taylor, K E

    2008-06-01

    The rapidly rising CO(2) level in the atmosphere has led to proposals of climate stabilization by "geoengineering" schemes that would mitigate climate change by intentionally reducing solar radiation incident on Earth's surface. In this article we address the impact of these climate stabilization schemes on the global hydrological cycle. By using equilibrium climate simulations, we show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in global mean precipitation. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO(2) forcing of a similar magnitude. In the model used here, the hydrological sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% K(-1) for solar forcing, but only 1.5% K(-1) for CO(2) forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. For the same surface temperature change, insolation changes result in relatively larger changes in net radiative fluxes at the surface; these are compensated by larger changes in the sum of latent and sensible heat fluxes. Hence, the hydrological cycle is more sensitive to temperature adjustment by changes in insolation than by changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once. PMID:18505844

  6. Impact of geoengineering schemes on the global hydrological cycle

    PubMed Central

    Bala, G.; Duffy, P. B.; Taylor, K. E.

    2008-01-01

    The rapidly rising CO2 level in the atmosphere has led to proposals of climate stabilization by “geoengineering” schemes that would mitigate climate change by intentionally reducing solar radiation incident on Earth's surface. In this article we address the impact of these climate stabilization schemes on the global hydrological cycle. By using equilibrium climate simulations, we show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in global mean precipitation. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO2 forcing of a similar magnitude. In the model used here, the hydrological sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% K−1 for solar forcing, but only 1.5% K−1 for CO2 forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. For the same surface temperature change, insolation changes result in relatively larger changes in net radiative fluxes at the surface; these are compensated by larger changes in the sum of latent and sensible heat fluxes. Hence, the hydrological cycle is more sensitive to temperature adjustment by changes in insolation than by changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once. PMID:18505844

  7. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  8. The marine hydrological cycle: The ocean's floods and droughts

    NASA Astrophysics Data System (ADS)

    Gordon, Arnold L.

    2016-07-01

    The sea surface salinity (SSS) displays fluctuations that are not solely in response to local air-sea flux of freshwater but also reflect ocean circulation and mixing processes. Ponte and Vinogradova (2016), using Estimating the Circulation and Climate of the Ocean output, estimate the relative roles of these forces for the global ocean. They find that the governing forces vary greatly across ocean regimes. Their research identifies features that will be addressed with enhanced SSS observations from orbiting satellites and in situ global arrays, which promise new insight into the marine water cycle and its place in the global hydrological system.

  9. Changing Hydrological Cycle in Asian Monsoon Region in Relation to Water Resources

    NASA Astrophysics Data System (ADS)

    Kabat, P.

    2006-12-01

    Water is a key resource for sustainable development in the Monsoon Asian Region. Frequent occurrence of flood disasters related to increasing Asian monsoon climate variability, progressing land degradation associated with anomalous monsoon dry climate and land overexploitation, increasing water use due to rapid social/economic development, and water pollution under the development of industrialization, urbanization and intensive agriculture, all pose fundamental questions about mid- and long term future carrying capacity of water systems in this key-region of the globe. We review some of the most recent data and methodological insights about how the hydrological cycle and hydroclimate in monsoon Asia is changing or has already changed in association with the global warming (GHG increase). Next,we analyze how regional-scale anthropogenic impacts such land cover/use changes, forest fire, dust increase, affect the hydrological cycle and water resources in the monsoon Asia and Northern China. The issues addressed in the presentation include: (i)the current regional hydrological cycle, especially causal chains leading to observable changes in droughts and floods;(ii)how the water cycle and the extremes may respond to future drivers of global change;(iii) feedbacks in the coupled system as they affect the hydrological cycle; (iv)the uncertainties in the predictions of coupled climate-hydrological- land use models and (v)the future vulnerability of water as a resource. We argue for a substantial increase of international collaborative research efforts into integrated impact assessment of climate change and human activity on water systems in this region.

  10. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Kane, D.L.

    1986-01-01

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  11. An observational radiative constraint on hydrologic cycle intensification.

    PubMed

    DeAngelis, Anthony M; Qu, Xin; Zelinka, Mark D; Hall, Alex

    2015-12-10

    Intensification of the hydrologic cycle is a key dimension of climate change, with substantial impacts on human and natural systems. A basic measure of hydrologic cycle intensification is the increase in global-mean precipitation per unit surface warming, which varies by a factor of three in current-generation climate models (about 1-3 per cent per kelvin). Part of the uncertainty may originate from atmosphere-radiation interactions. As the climate warms, increases in shortwave absorption from atmospheric moistening will suppress the precipitation increase. This occurs through a reduction of the latent heating increase required to maintain a balanced atmospheric energy budget. Using an ensemble of climate models, here we show that such models tend to underestimate the sensitivity of solar absorption to variations in atmospheric water vapour, leading to an underestimation in the shortwave absorption increase and an overestimation in the precipitation increase. This sensitivity also varies considerably among models due to differences in radiative transfer parameterizations, explaining a substantial portion of model spread in the precipitation response. Consequently, attaining accurate shortwave absorption responses through improvements to the radiative transfer schemes could reduce the spread in the predicted global precipitation increase per degree warming for the end of the twenty-first century by about 35 per cent, and reduce the estimated ensemble-mean increase in this quantity by almost 40 per cent. PMID:26659186

  12. An observational radiative constraint on hydrologic cycle intensification

    NASA Astrophysics Data System (ADS)

    Hall, A. D.; DeAngelis, A. M.; Qu, X.; Zelinka, M. D.

    2015-12-01

    Hydrologic cycle intensification is a key dimension of climate change, with significant impacts on human and natural systems. A basic measure of hydrologic cycle intensification, the increase in global-mean precipitation per unit surface warming, varies by a factor of three in current-generation climate models (~1-3 % K-1). We show that a substantial portion of this spread can be traced to intermodel variations in the atmospheric shortwave absorption response to greenhouse-gas-induced warming. As climate warms, increases in shortwave absorption suppress the precipitation increase by reducing the latent heating required to balance the atmospheric energy budget. Spread in the shortwave absorption response can be explained by differences in the sensitivity of solar absorption to variations in column precipitable water. An observational estimate suggests that in many models, this sensitivity is too small, and that the shortwave absorption response to warming is too weak. Spread in the simulated sensitivity of solar absorption to varying water vapor concentration is linked to differences in radiative transfer parameterizations. Attaining accurate shortwave absorption responses through radiative transfer scheme improvement could reduce spread in global precipitation increase per unit warming at the end of the 21st century by ~35%, and produce an ensemble-mean increase that is almost 40% smaller.

  13. An observational radiative constraint on hydrologic cycle intensification

    NASA Astrophysics Data System (ADS)

    Deangelis, Anthony M.; Qu, Xin; Zelinka, Mark D.; Hall, Alex

    2015-12-01

    Intensification of the hydrologic cycle is a key dimension of climate change, with substantial impacts on human and natural systems. A basic measure of hydrologic cycle intensification is the increase in global-mean precipitation per unit surface warming, which varies by a factor of three in current-generation climate models (about 1-3 per cent per kelvin). Part of the uncertainty may originate from atmosphere-radiation interactions. As the climate warms, increases in shortwave absorption from atmospheric moistening will suppress the precipitation increase. This occurs through a reduction of the latent heating increase required to maintain a balanced atmospheric energy budget. Using an ensemble of climate models, here we show that such models tend to underestimate the sensitivity of solar absorption to variations in atmospheric water vapour, leading to an underestimation in the shortwave absorption increase and an overestimation in the precipitation increase. This sensitivity also varies considerably among models due to differences in radiative transfer parameterizations, explaining a substantial portion of model spread in the precipitation response. Consequently, attaining accurate shortwave absorption responses through improvements to the radiative transfer schemes could reduce the spread in the predicted global precipitation increase per degree warming for the end of the twenty-first century by about 35 per cent, and reduce the estimated ensemble-mean increase in this quantity by almost 40 per cent.

  14. The Hydrological Cycle of the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Waliser, D.; Tian, B.; Schwartz, M.; Liu, T.; Fetzer, E.

    2007-12-01

    The Madden-Julian Oscillation (MJO) is the dominant form of intra-seasonal variability in the Tropics and it impacts a wide range of phenomena, such as El Nino/La Nina, Asian-Australian monsoons, mid-latitude weather, and tropical cyclones. Despite the prominent impacts of the MJO and its potential predictability with lead times on the order of weeks, our weather and climate models have a relatively poor representation of the MJO and our environmental predictions suffer from this shortcoming. To date, the large-scale MJO convection and circulation characteristics have been relatively well documented and in some cases understood. For the most part, these studies have focused on quantities such as upper and lower level winds, outgoing longwave radiation and precipitation, and surface heat budget processes. In recent years, a number of studies have also documented aspects of the MJO's vertical structure impacts on biology and composition. In this study, we focus on the hydrological cycle of the MJO. With the addition of a number of new satellite products in recent years, it is possible to more completely describe most aspects of the hydrological cycle of the MJO. We build on recent work with AIRS water vapor and MLS cloud ice profiles to document and discuss the variations in rainfall (TRMM, CMAP), surface evaporation (derived via SSM/I etc), vertical profiles of moisture (AIRS), column moisture convergence (QuikScat, SSM/I), and cloud liquid (SSM/I) and ice water (MLS).

  15. eWaterCycle: A high resolution global hydrological model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  16. Monitoring the Hydrologic Cycle With the PATH Mission

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.

    2012-12-01

    One of the 15 decadal-survey missions the National Research Council recommended that NASA undertake is the Precipitation and All-weather Temperature and Humidity (PATH) mission. It consists of a microwave sounder placed on a geostationary platform to observe atmospheric processes related to the hydrologic cycle. The primary observables consist of precipitation, cloud liquid water and vertical profiles of temperature and humidity, and secondary derived products include vertical profiles of horizontal wind vectors (derived by tracking the motion of humidity features) and vertical profiles of reflectivity when there is convection. All products will be available regardless of cloud cover and some even in the presence of precipitation. The Geostationary vantage point makes it possible to get very rapid updates, every 5-30 minutes, which is sufficient to resolve the most dynamic processes. The PATH mission will give a nearly complete simultaneous view of the atmospheric component of the hydrologic cycle and will enable a number of studies that have not yet been feasible. For example, it will be possible to fully resolve the diurnal cycle of cloud formation, convection, precipitation and storm evolution. PATH covers a very wide range in the spatio-temporal domain and will enable studies ranging from the evolution of tornado-generating thunderstorm complexes to continental-scale moisture flow. We describe the sensor system and the technology that enables PATH as well as some of the science applications. We also discuss the prospects for a PATH precursor mission in the near future as well as the long-term prospects for a full PATH mission. Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

  17. The Hydrologic Cycle Response to Rapid Arctic Vegetation Change

    NASA Astrophysics Data System (ADS)

    Snyder, P. K.

    2008-12-01

    Over the last fifty years, the Northern Hemisphere high latitude land areas have warmed at rates well in excess of what can be explained by the atmospheric rise in greenhouse gases alone. Changes in the albedo of the ocean and land, whether from the loss of Arctic Ocean sea ice, changes in land cover, or changes in winter precipitation patterns account for much of the amplified warming. Although the loss of sea ice is directly related to greenhouse gas warming and low-level winds, changes in the discharge of freshwater from Arctic river basins are also responsible. While changes in river discharge can be related to precipitation, snow and ice melt, and human modification of the landscape, natural vegetation changes due to warming may also be altering the land surface hydrologic cycle and contributing to changes in the flux of freshwater to the Arctic Ocean. Satellite imagery has shown that the Arctic is becoming greener, which not only affects the surface and lower-tropospheric energy budget, but also modifies the hydrologic cycle through altering the partitioning of transpiration and plant-soil evaporation. This leads to changes in precipitation recycling and runoff, which can ultimately affect the discharge of freshwater. To illustrate this mechanism, results of a land cover change and precipitation-recycling analysis using North American Regional Reanalysis data will be presented for the Mackenzie Basin in North America. Additionally, results from a dynamic global vegetation model will be presented to evaluate the potential consequences of continued extreme warming and land cover changes to the discharge of freshwater to the Arctic Ocean.

  18. Influence Deforestation on Hydrological Cycle at Amazon Basin

    NASA Astrophysics Data System (ADS)

    Cohen, J. C.; Beltrao, J.; Gandu, A. W.

    2007-05-01

    The last three decades, the Amazon Basin has been affected for the occupation with consequence large deforestation. The principal area deforested is located from Maranhao state to Rondonia state. This area is common called "Arc Deforestation", and representing the transition between two important Brazilian ecosystems, Amazon Forest and Savanna Region. Theses ecosystems have precious biodiversity, and it has population about 10.331.000. The objective of this work was to evaluate the impact of arc deforestation on the hydrological cycle at Amazon basin, using BRAMS (Brazilian developments on the Regional Atmospheric Modeling System) including a model of dynamic vegetation, called GEMTM (General Energy and Mass Transport Model). In this study, numerical simulations were performed with a high spatial resolution regional model that allows capture some mesoscale aspects associated to the land used, topography, coastlines and large rivers. In order to predict the impact of the arc deforestation over the hydrological cycle, it was run two model simulations, conducted over a one-year period. In the first simulation, designated "control", it was used the scenarios derived from Soares Filho (2002), for the year 2002, in governance situation. In the second simulation called "deforestation", it was used the scenarios for the 2050, derived from results of Soares-Filho with governance, too. The higher-resolution regional modeling revealed important features of the deforestation process, displaying some associated mesoscale effects that are not typically represented in similar Global Circulation Model simulations. Near coastal zones and along large rivers, deforestation resulted in reduced precipitation. However, it was predicted increased precipitation over mountainous areas, especially on mountain slopes facing river valleys. Then, these higher-resolution simulations showed that, in general, orography, coastline profile and large river distribution play important roles in

  19. The Atmospheric Energy and Hydrological Cycles in ECMWF Reanalyses

    NASA Astrophysics Data System (ADS)

    Berrisford, P.; Kallberg, P.; Kobayashi, S.; Dee, D.; Uppala, S.; Simmons, A. J.; Poli, P.; Sato, H.

    2012-04-01

    Analysing the long term time averaged atmospheric energy and hydrological cycles in atmospheric datasets provides a simple means of measuring the consistency and quality of these datasets. For the energy cycle, we assume that the long term change in storage of the total energy of the atmosphere is small. Energy is absorbed at the TOA at low latitudes, some of which is lost to the surface while the remainder is transported to high latitudes and then, augmented by energy from the surface, is lost to space. The net energy gain to the atmosphere at low latitudes should match the transport from low to high latitudes which, in turn, should match the net energy lost from the atmosphere at high latitudes. For the purposes of this study, we have defined the low latitudes to be between 40N and 40S with the high latitudes encompassing the remainder of the planet, which includes the higher latitudes of both hemispheres. For the hydrological cycle, we assume that the long term change in storage of the total column water vapour of the atmosphere is small. The excess of evaporation compared to precipitation over ocean should match the transport from ocean to land which, in turn, should match the excess of precipitation compared to evaporation over land. Here, we study these cycles as depicted by the ECMWF Interim Reanalysis (ERA-Interim) and ERA-40 for the 20 year period 1989-2008. Although better than in ERA-40, the transport of energy in ERA-Interim does not agree well with the net gain of energy at low latitudes and the net loss of energy at high latitudes unless various corrections are made to the data. These corrections consist of constraining the TOA global energy balance and the surface oceanic energy balance to be zero, constraining the surface energy balance everywhere over land to be zero and mass adjusting the energy transports. The result is an energy transport of 9.5 PW. However, the meridional gradient of the TOA energy balance in ERA-Interim is weaker than in CERES

  20. Activity Cycles in Stars

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.

  1. Global Change Research Related in the Earth's Energy and Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Berry, Linda R.

    2002-01-01

    The mission of the Global Change Research Related to the Earth's Energy and Hydrologic Cycle is to enhance the scientific knowledge and educational benefits obtained from NASA's Earth Science Enterprise and the U.S. Global Change Research Program, University of Alabama in Huntsville (UAH). This paper presents the final technical report on this collaborative effort. Various appendices include: A) Staff Travel Activities years one through three; B) Publications and Presentations years one through three; C) Education Activities; D) Students year one through three; E) Seminars year one through three; and F) Center for Applied Optics Projects.

  2. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote sources of water for precipitation, based on the implementation of passive constituent tracers of water vapor (termed water vapor tracers, WVT) in a general circulation model. In this case, the major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In this approach, each WVT is associated with an evaporative source region, and tracks the water until it precipitates from the atmosphere. By assuming that the regional water is well mixed with water from other sources, the physical processes that act on the WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be computed within the model simulation, and can be validated against the model's prognostic water vapor. Furthermore, estimates of precipitation recycling can be compared with bulk diagnostic approaches. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional tracers, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic 2 regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In

  3. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  4. Observational Evidence of an Intensifying Hydrological Cycle in Northern Canada

    NASA Astrophysics Data System (ADS)

    Déry, S. J.; Hernández-Henríquez, M. A.; Mlynowski, T. J.; Burford, J. E.; Wood, E. F.

    2009-05-01

    This talk will present an overview of recent trends and variability of river discharge in northern Canada, with a focus on our contributions to the IPY project "Arctic Freshwater Systems". We will first introduce the pan-Arctic domain, with a focus on northern Canada, and its hydroclimatology. Trends and variability in the 1964-2007 annual streamflow for 45 rivers spanning 5.2 × 106 km2 of northern Canada will then be discussed. We will present a trend analysis for the 44-year period that reveals a modest increase in the annual flows, with a recent trend reversal owing to much-above average values recorded over the past decade. Trends in the coefficient of variation computed from 11-year moving windows of annual streamflows exhibit spatially coherent signals with increasing variability across most of northern Canada, excluding some rivers with outlets to the Labrador Sea and eastern James Bay. This study therefore provides observational evidence of an intensifying hydrological cycle in northern Canada.

  5. D/H isotope ratios in the global hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Good, Stephen P.; Noone, David; Kurita, Naoyuki; Benetti, Marion; Bowen, Gabriel J.

    2015-06-01

    Deuterium to hydrogen (D/H) ratios in Earth's hydrologic cycle have long served as important tracers of climate processes, yet the global HDO budget remains poorly constrained because of uncertainties in the isotopic compositions of continental evapotranspiration and runoff. Here bias-corrected satellite retrievals of HDO and H2O concentrations from the Tropospheric Emissions Spectrometer are used to estimate the marine atmospheric surface layer HDO vapor pressure deficit, from which we calculate the global flux-weighted average oceanic evaporation isotopic composition as -37.6‰. Using these estimates, combined with D/H ratios in precipitation, global mass balance suggests H isotope compositions for global runoff and terrestrial evapotranspiration of -77.3‰ and -40.0‰, respectively. By resolving the HDO budget, we establish an accurate global baseline for geochemically enabled Earth system models, demonstrate patterns in entrainment of moisture into the marine surface layer, and determine the isotopic composition of continental fluxes critical for global ecohydrologic investigations.

  6. The effect of volcanic eruptions on the hydrological cycle

    NASA Astrophysics Data System (ADS)

    Iles, Carley; Hegerl, Gabriele

    2015-04-01

    Large explosive volcanic eruptions inject sulphur dioxide into the stratosphere where it is oxidised to sulphate aerosols which reflect sunlight. This causes a reduction in global temperature and precipitation lasting a few years. We investigate the robust features of this precipitation response, comparing climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive to three observational datasets, including one with ocean coverage. Global precipitation decreases significantly following eruptions in CMIP5 models, with the largest decrease in wet tropical regions. This also occurs in observational land data, and ocean data in the boreal cold season. In contrast, the dry tropical ocean regions show an increase in precipitation in CMIP5 models. Monsoon regions dry following eruptions in both models and observations, whilst in response to individual eruptions, the ITCZ shifts away from the hemisphere with the greater concentration of aerosols in CMIP5. The ocean response in CMIP5 is longer lasting than that over land, but observational results are too noisy to confirm this. We detect the influence of volcanism on precipitation in the boreal cold season, although the models underestimate the size of the response, whilst in the warm season the volcanic influence is marginally detectable. We then examine whether the influence of volcanoes can be seen in streamflow records for 50 major world rivers. Significant reductions in flow are found for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When neighbouring rivers are combined into regions, informed by climate model predictions of the precipitation response to eruptions, decreases in streamflow can be detected in northern South American, central African and high-latitude Asian rivers and increases in southern South American and SW North American rivers. An improved understanding of how the hydrological cycle responds to volcanic eruptions is valuable in

  7. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil's physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  8. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil`s physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  9. Perchlorate in the Hydrologic Cycle - An Overview of Sources and Occurrence

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Jackson, W.; Mayer, K.; Orris, G. J.

    2007-12-01

    Perchlorate (ClO4-) in water and food is of concern due to deleterious health affects associated with hypothyroidism. The presence of widespread perchlorate in 0-to-28 ka-old pristine ground water of the Middle Rio Grande Basin (Plummer et al., 2006, ES&T, DOI:10.1021/es051739h), in ground water >1 mile from agricultural activities in the Southern High Plains (Rajagapolan et al., 2006, ES&T, DOI:10.1021/es052155i), and in unsaturated zones throughout the arid and semiarid southwestern United States (Rao et al., 2007, ES&T, DOI:10.1021/es062853i) clearly indicates that perchlorate is a non-exotic component of the hydrologic cycle, at least in dry environments. The natural system has been greatly perturbed in places by human activities. Most anthropogenic inputs are associated with the manufacture and use of explosives and rocket fuel, providing concentrated sources of excess perchlorate to the hydrologic cycle. Perchlorate-containing fertilizers and irrigation provide dispersed sources within and down-gradient from agricultural areas. Natural sources include photochemically mediated reactions involving ozone at the land surface and in the lower atmosphere. A growing body of work indicates that a small, but persistent, meteoric source acting over thousands of years can explain observed accumulations of unsaturated-zone perchlorate in arid regions. In addition to meteoric sources, oxyanions produced during volcanogenic processes can include appreciable amounts of natural perchlorate. Terrestrial plants take up perchlorate in soil water, with some species of xerophytic succulents concentrating the anion to high levels. Similarly, perchlorate in marine plants indicates that perchlorate is part of marine biochemical cycles. Perchlorate-bearing marine sediments of late Tertiary age suggest that perchlorate has been part of global geochemical cycles for millions of years and, furthermore, can be preserved in the subsurface despite the nearly ubiquitous presence of

  10. Nanosatellite Architectures for Improved Study of the Hydrologic Cycle

    NASA Astrophysics Data System (ADS)

    Blackwell, W. J.; Osaretin, I.; Cahoy, K.

    2012-12-01

    spacecraft spinning mechanism provides a 60 RPM cross-track scan as the satellite orbits the earth. Spatial, spectral, and radiometric performance is comparable to present state-of-the-art systems with costs exceeding $100M. The propulsion systems would be used to achieve formation flight (the satellites would be separated by approximately 500 ± 5 km) and to facilitate de-orbit. The cross-linked communication would provide: 1) reduced communications latency to ground, a key performance attribute that is currently lacking in present systems leading to suboptimal utilization of observations of dynamic meteorological events such as tropical cyclones and hurricanes, and 2) data-driven sensing whereby the lead sensor observes dynamic meteorological phenomena and sends a message to the following sensor to temporarily enable a very high resolution sensing mode (a higher sample rate, for example) to better capture the interesting event and preserve spacecraft resources for when they are most needed. The DOME constellation would allow global, high-resolution, persistent observations of the Earth's surface and atmosphere for studies of the hydrologic cycle and climate feedback processes.

  11. Toward a hydro-political water cycle: virtual water,hydrology and international political economy

    NASA Astrophysics Data System (ADS)

    Greco, Francesca

    2014-05-01

    At the light of global food trade, no water cycle can be considered "closed" under a political point of view. While the hydrological cycle is a circular closed environment, if we open up our perspectives to social sciences, we will demonstrate how, thanks to virtual water, it is today possible to elaborate how much water 'enters or leave' any water body under the form crop-export, in terms of " water used for the production of agri-food products'. This new 'hydro-political cycle' will be discussed at the light of different theoretical perspectives: food trade theories, hydrology, international water law, socio-economic metabolism, material flow analysis.

  12. The influence of the hydrologic cycle on the extent of sea ice with climatic implications

    NASA Technical Reports Server (NTRS)

    Dean, Ken; Gosink, Joan

    1991-01-01

    The role was analyzed of the hydrologic cycle on the distribution of sea ice, and its influence on forcings and fluxes between the marine environment and the atmosphere. River discharge plays a significant role in degrading the sea ice before any melting occurs elsewhere along the coast. The influence is considered of river discharge on the albedo, thermal balance, and distribution of sea ice. Quantitative atmospheric-hydrologic models are being developed to describe these processes in the coastal zone. Input for the models will come from satellite images, hydrologic data, and field observations. The resulting analysis provides a basis for the study of the significance of the hydrologic cycle throughout the Arctic Basin and its influence on the regional climate as a result of possible climatic scenarios. The area offshore from the Mackenzie River delta was selected as the study area.

  13. Terrestrial biogeochemical cycles - Global interactions with the atmosphere and hydrology

    NASA Technical Reports Server (NTRS)

    Schimel, David S.; Parton, William J.; Kittel, Timothy G. F.

    1991-01-01

    A review is presented of developments in ecosystem theory, remote sensing, and geographic information systems that support new endeavors in spatial modeling. A paradigm has emerged to predict ecosystem behavior based on understanding responses to multiple resources. Ecosystem models couple primary production to decomposition and nutrient availability utilizing this paradigm. It is indicated that coupling of transport and ecosystem processes alters the behavior of earth system components (terrestrial ecosystems, hydrology, and the atmosphere) from that of an uncoupled model.

  14. Imbalance in the Hydrologic Cycle-Open Systems, Ebbs and Flows, and Multi-Stable States

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.

    2011-12-01

    The hydrosphere is characterized by extraordinarily large-scale chemostasis and hydrostasis. The interconnected oceans hold >95% of the planetary water in circulation and have not greatly changed in volume since the Proterozoic, despite tectonic motions of super-continental proportions. Similarly, the chemistry of the ocean has remained relatively constant since the proliferation of widespread multicellular life and abundant oxygen some 0.6 billion years ago. Ancient humans recognized that "All rivers runneth to the sea, yet the sea doth not filleth up." The solution to this paradox is the 17th-century paradigm of the hydrologic cycle; however, the commonly made corollary assumption of hydrologic balance disappears upon analysis across the entire range of observations available through ground-based networks, satellite imaging, and proxy data on paleo-hydrologic states (chemical, isotopic, tree-rings, speleothems, etc.). Water imbalance as the normative state is supported by theoretical consideration of hydrologic responses to superimposed steady-, periodic-, and irregular forcings such as geothermal gradients, diurnal and annual cycles, and orbital irregularities. Hydrologic systems are open across all scales with respect to thermal-energy throughput and are often far from equilibrium. Temporal-spatial variations of thermal inputs and stores coupled with feedbacks from interacting biologic and geologic processes lead to chaotically punctuated water imbalances with profound consequences for ecosystem succession, water resources, long-term agricultural sustainability, and acute risk from floods and droughts. Imbalance in hydrologic systems through time is evident from studies of soils and sediments and from data on deep unsaturated zones in tropical to arid regions; these studies reveal repeated cycles of salinity accumulation and pluvial flushing and shifting frequencies of floods and droughts. Anthropogenic intensification of the hydrologic cycle-with attendant

  15. Impact of Human Activities on Hydrologic Simulations in the Huaihe River Basin

    NASA Astrophysics Data System (ADS)

    Yang, C.; Lin, Z.; Yu, Z.; Hao, Z.; Ju, Q.; Liu, D.

    2008-12-01

    Water supply and management projects including more than 5700 reservoirs and 5000 sluice gates have been operating for the growing need of water supplies for domestic, agricultural and industrial uses in the Huaihe River basin. Extreme flood and drought events occur more frequently due to the present global climate changes, which bring new difficulties in the hydrologic simulation of various hydrologic processes in the region. In this study, a long-term continuous hydrologic simulation (1980-2006) was conducted with a coupled land surface / hydrologic model in the basin in which the dynamics of vegetation, snow, soil moisture, groundwater, terrestrial hydrology, and channel(lake) / groundwater interaction were integrated into the coupled model system. Simulated hydrographs compared well with the observed at the basin outlet in 1980s. Continuous heavy flood and drought years have occurred alternately in the Huaihe River basin since 1990s; among which streamflows were over- estimated for the dry years and simulations for the flood years were reasonable. Massive water supply emerged due to increasing industrial activities and well developed water projects at that time, which altered the local natural hydrologic cycle. The simulated results were consistent with the adjusted observed hydrographs by the annual water supply, which showed that human activities have obviously affected the natural surface rainfall-runoff process, especially in dry years. It becomes an urgent issue to integrate human activities in the hydrologic simulation.

  16. Hydrology

    ERIC Educational Resources Information Center

    Sharp, John M., Jr.

    1978-01-01

    The past year saw a re-emphasis on the practical aspects of hydrology due to regional drought patterns, urban flooding, and agricultural and energy demands on water resources. Highlights of hydrologic symposia, publications, and events are included. (MA)

  17. Contrasting roles of interception and transpiration in the hydrological cycle - Part 2: Moisture recycling

    NASA Astrophysics Data System (ADS)

    van der Ent, R. J.; Wang-Erlandsson, L.; Keys, P. W.; Savenije, H. H. G.

    2014-12-01

    The contribution of land evaporation to local and remote precipitation (i.e. moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper Wang-Erlandsson et al. (2014) (hereafter Part 1), evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open-water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. We present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of 8 days, while transpiration typically resides for 9 days in the atmosphere. The process scale over which evaporation recycles is more local for interception compared to transpiration; thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells and wet seasons. On the other hand, transpiration remains active during dry spells and dry seasons and is transported over much larger distances downwind, where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning

  18. Adaptable Web Modules to Stimulate Active Learning in Engineering Hydrology using Data and Model Simulations of Three Regional Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.

    2013-12-01

    The hydrologic community has long recognized the need for broad reform in hydrologic education. A paradigm shift is critically sought in undergraduate hydrology and water resource education by adopting context-rich, student-centered, and active learning strategies. Hydrologists currently deal with intricate issues rooted in complex natural ecosystems containing a multitude of interconnected processes. Advances in the multi-disciplinary field include observational settings such as Critical Zone and Water, Sustainability and Climate Observatories, Hydrologic Information Systems, instrumentation and modeling methods. These research advances theory and practices call for similar efforts and improvements in hydrologic education. The typical, text-book based approach in hydrologic education has focused on specific applications and/or unit processes associated with the hydrologic cycle with idealizations, rather than the contextual relations in the physical processes and the spatial and temporal dynamics connecting climate and ecosystems. An appreciation of the natural variability of these processes will lead to graduates with the ability to develop independent learning skills and understanding. This appreciation cannot be gained in curricula where field components such as observational and experimental data are deficient. These types of data are also critical when using simulation models to create environments that support this type of learning. Additional sources of observations in conjunction with models and field data are key to students understanding of the challenges associated with using models to represent such complex systems. Recent advances in scientific visualization and web-based technologies provide new opportunities for the development of active learning techniques utilizing ongoing research. The overall goal of the current study is to develop visual, case-based, data and simulation driven learning experiences to instructors and students through a web

  19. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    USGS Publications Warehouse

    Wolf, Kristin L.; Noe, Gregory B.; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  20. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands.

    PubMed

    Wolf, Kristin L; Noe, Gregory B; Ahn, Changwoo

    2013-07-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots ( = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed. PMID:24216376

  1. Hydrologic regulation of chemical weathering and the geologic carbon cycle.

    PubMed

    Maher, K; Chamberlain, C P

    2014-03-28

    Earth's temperature is thought to be regulated by a negative feedback between atmospheric CO2 levels and chemical weathering of silicate rocks that operates over million-year time scales. To explain variations in the strength of the weathering feedback, we present a model for silicate weathering that regulates climatic and tectonic forcing through hydrologic processes and imposes a thermodynamic limit on weathering fluxes, based on the physical and chemical properties of river basins. Climate regulation by silicate weathering is thus strongest when global topography is elevated, similar to the situation today, and lowest when global topography is more subdued, allowing planetary temperatures to vary depending on the global distribution of topography and mountain belts, even in the absence of appreciable changes in CO2 degassing rates. PMID:24625927

  2. eWaterCycle: Developing a hyper resolution global hydrological model

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; Hut, Rolf; Drost, Niels; Steele-Dunne, Susan; de Jong, Kor; van Beek, Ludovicus; Karssenberg, Derek; van de Giesen, Nick; Bierkens, Marc

    2013-04-01

    The development of a high resolution global hydrological model has recently been put forward as Grand Challenge for the hydrological community (Wood et al., 2011). The current version of the global hydrological model PCR-GLOBWB (van Beek et al., 2011) runs at a relatively coarse spatial grid (i.e. 0.1° or about 10 km at the equator), which is well above the hyper resolution envisioned in the Grand Challenge (i.e. 100 m). The eWaterCycle project aims at developing a high resolution global hydrological model allowing for a better representation of the effects of spatial heterogeneity in topography, soil, and vegetation on hydrological dynamics. Here we modify PCR-GLOBWB so that it runs at much higher resolution, on the order of 1 km or finer, that will be relevant for addressing critical water cycle science questions and many hydrological applications such as assessing water resources sustainability, flood and drought frequency under climate change. The development of such a hyper resolution model requires utilizing recent computational advances and massive parallel computer systems. So far, the hydrological community has not yet made full use of such possibilities. The eWaterCycle is a close cooperation between hydrologists (Delft University of Technology and Utrecht University) and the Netherlands eScience Center (NleSC) - that intends to supports and reinforce data-intensive research through creative and innovative use of information and communication technology (ICT). The hyper resolution model built in this project will contribute to the current scientific state-of-the-art by combining hydrological knowledge with ICT challenges. The refinement of the current model would be a huge step forward, because increasing resolution also requires adding an explicit spatial representation of local processes (groundwater flow, water diversions, glaciers, etc.) that will greatly enhance the regional to local applicability of global models. We also argue that the result

  3. Can we Observe and Assess Whether the Global Hydrological Cycle is "Intensifying"?

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Sheffield, J.

    2012-12-01

    There is controversy over whether the hydrological cycle is "intensifying" (or "accelerating"), and if so how and where? Resolving this critical question is a central goal of both national (e.g. NASA's Energy and Water cycle Study: NEWS) and international (WCRP Global Energy and Water cycle Experiment: GEWEX) programs. Its resolution has significant implications for understanding changes in hydroclimatic states and variability, and in future water security at regional to global scales. Over the last decade a number of papers have addressed trends and change in specific water cycle variables with results that can best be described as inconclusive, regardless of the conclusions of specific papers. In this presentation a number of recent studies will be reviewed for their consistency in assessing whether collectively one can make conclusions regarding how the hydrologic cycle is changing. The presentation will also demonstrate a pathway for analyzing where to observe for the detection of change based on a NASA-supported, global, 1983-2009, terrestrial water cycle Earth System Data Record project being led by the author. Initial results will be presented and a discussion presented on the extent that the proposed strategy can be used to detect change in the terrestrial hydrological cycle.

  4. Properties of stellar activity cycles

    NASA Astrophysics Data System (ADS)

    Korhonen, Heidi

    2015-08-01

    The current photometric datasets, that span decades, allow for studying long-term magentic cycles on active stars. Complementary Ca H&K observations give information also on the cycles of normal solar-like stars, which have significantly smaller, and less easily detectable, spots. In recent years, high precision space-based observations, for example from the Kepler satellite, have allowed also to study the sunspot-like spot sizes in other stars. In this talk I will review what is known about the properties of the cyclic stellar activity in other stars than our Sun, and also discuss the future prospects in this field.

  5. Hydrological and biogeochemical constraints on terrestrial carbon cycle projections

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2 emissions. However, the future fate of this sink in the coming decades is very uncertain, as current Earth System Models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present-day Evapotranspiration (ET) and Gross Primary Productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET and GPP leads to a substantial decrease of the projected GPP and to a ca. 50% reduction of the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on Net Biome Productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Also, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. Moreover, a similar strategy is used to provide constraints on the feedbacks involving the terrestrial carbon cycle and the climate system. The findings indicate that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase of the atmospheric CO2 concentration and for future climate change.

  6. Activity cycles of M dwarfs

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2012-09-01

    We have determined activity cycles for coolest M dwarfs using photometry from the ASAS survey. The time scales of brightness variations were determined for the program stars using calculated amplitude power spectra and wavelet spectra. Most of ther program stars display periodicities in their light-curve variations, with periods from hundreds of days to years. Analysis of diagrams plotting P cyc/ P rot versus 1/ P rot in logarithmic coordinates shows that the data for all our program objects fit the general relation quite well. No differences in the activity cycles are found for our sample stars, which have different masses and thus internal structures, some having convective envelopes and others being totally convective. Our analysis indicates that the slope i of this relation is close to unity, regardless of whether it is determined from all data, from data for the shortest cycles, or from data for the longest cycles. This value of i differs from values in the literature for stars of other spectral types. Our analysis of the P cyc- P rot relation indicates that the activity cycles for the studied sample of M dwarfs do not depend on the rotation periods of these objects. The data for the studied objects do not agree with any of the relations for relatively young (active) stars or older (less active) stars. The studied M dwarfs probably form another branch of low-mass stars that display more random, irregular magnetic activity on their surfaces, which is generated and supported by the distributed dynamo mechanism or a small-scale dynamo mechanism.

  7. Water cycle meets media cycle: Hydrology engagement and social media in New Zealand

    NASA Astrophysics Data System (ADS)

    Collins, D. B.; Woods, R. A.

    2012-12-01

    The dispersal of scientific knowledge is an on-going challenge for the research community, particularly for the more applied disciplines such as hydrology. To a large degree this arises because key stakeholders do not readily follow the peer-reviewed scientific literature. Even publicly accessible technical reports may be out of sight from many in both the research and stakeholder communities. The challenge to science communication is further compounded by an increasing pressure to raise the hydrological literacy of the public, as water resource management decisions become increasingly collaborative. In these situations, the diversification of communication channels and more rapid interactions between stakeholders and scientists can be of great value. The use of social media in the communication and advancement of hydrological science in New Zealand is a case in point. Two such initiatives are described here: a hydrology blog and a crowd-sourcing data collection campaign using Facebook. The hydrology blog, Waiology (a variant of "hydrology" with the Greek prefix for water replaced by its Maori equivalent), was set up with two main goals in mind: to foster greater understanding and appreciation of hydrology among the New Zealand public, and to more rapidly share new hydrological knowledge within the New Zealand hydrological community. In part, it has also been an experiment to test whether this mode of engagement is worthwhile. Measuring the success of the initiative has proven difficult, but has led to a suite of metrics that collectively gauge popular and professional interest and use of the material. To name a few, this includes visit statistics (taking note of the institution of the visitor), subscriptions, and non-internet citations. Results indicate that, since the blog's inception in mid-2011, it has become a valued resource for the NZ hydrological community and an interesting website for the general public. The second example centered on the use of Facebook

  8. EDITORIAL: The Earth radiation balance as driver of the global hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Liepert, Beate

    2010-06-01

    brightening as a potential cause of these model deficiencies. This is further supported by the recent evidence that solar forcings are more effective in altering the intensity of the global hydrological cycle than their thermal (greenhouse-gas-forced) counterparts. Improved knowledge of variations of the components of the surface radiation balance as well as their underlying forcing factors are therefore key to our understanding of past, present and future variations in the intensity of the hydrological cycle. The recent implementation of advanced space-borne and surface-based monitoring systems should allow for more rigorous constraints of the radiative drivers behind the hydrological cycle. Together with improved modelling capabilities, including sophisticated interactive aerosol and cloud microphysics schemes, these advances should result in more realistic simulations and predictions of the intensity of the hydrological cycle in the near future. Acknowledgements Particular thanks go to Professor Christoph Schär for his valuable input to the manuscript and for his support. Richard Allan's comments on the manuscript were highly appreciated. This study is part of the National Centre for Competence in Climate Research (NCCR Climate) project HYCLIM (Intensification of the water cycle: scenarios, processes and extremes) supported by the Swiss National Science Foundation, and was further sponsored by National Aeronautics and Space Agency Modeling Analysis and Prediction Program NASA-MAP grant NNX09AV16G. We acknowledge the international modeling groups for providing their data for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data, the JSC/CLIVAR Working Group on Coupled Modelling (WGCM) and their Coupled Model Intercomparison Project (CMIP) and Climate Simulation Panel for organizing the model data analysis activity, and the IPCC WG1 TSU for technical support. The IPCC Data Archive at Lawrence Livermore

  9. Sensitivity of the hydrologic cycle to cloud changes in warm climates

    NASA Astrophysics Data System (ADS)

    Carlson, Henrik; Caballero, Rodrigo

    2016-04-01

    Climates of the deep past have posed the longstanding challenge to understand which mechanisms maintained very warm climates. Warm climates have been hard to simulate without very high CO2 concentrations compared to estimates from proxy data. Large climate sensitivity implies a route to warm temperatures without very high concentrations of CO2. In at least one model cloud feedbacks play a central role in increasing climate sensitivity with temperature. However, it is hard to evaluate cloud feedbacks using proxies. On the other hand, there are proxies that provide information about the hydrologic cycle for example through estimating aridity and isotope analysis of leaf wax. Cloud feedbacks could influence the hydrologic cycle through a change in the shortwave radiative flux at the surface that causes a change in latent heat flux and thereby a change in precipitation. We study the impact of clouds in a general circulation model for a broad range of temperatures. One set of simulations with variable clouds is compared to a set of simulations where clouds are represented by a climatology. Our aim to provide a constraint for cloud feedbacks based on hydrology proves elusive. Precipitation change with temperature is very similar regardless of cloud treatment and there is no saturation effect in precipitation as seen in idealized models. However, there is a large change in shortwave absorption by atmospheric water vapor. Our results indicate that the hydrologic cycle is not sensitive to cloud representation in Eocene-like climates but correct representation of shortwave absorption is essential.

  10. eWaterCycle: Developing a hyper resolution global hydrological model

    NASA Astrophysics Data System (ADS)

    Drost, N.; Sutanudjaja, E.; Hut, R.; Steele-Dunne, S. C.; de Jong, K.; Van Beek, L. P.; Karssenberg, D.; Bierkens, M. F.; Van De Giesen, N.

    2013-12-01

    The development of a high resolution global hydrological model has recently been put forward as Grand Challenge for the hydrological community (Wood et al., 2011). The eWaterCycle project aims at developing a high resolution global hydrological model allowing for a better representation of the effects of spatial heterogeneity in topography, soil, and vegetation on hydrological dynamics. The original version of the global hydrological model PCR-GLOBWB (van Beek et al., 2011) runs at a relatively coarse spatial grid (i.e. 0.5° or about 50 km at the equator), which is well below the hyper resolution envisioned in the Grand Challenge (i.e. 100 m). The development of such a hyper resolution model requires utilizing recent computational advances and massive parallel computer systems. So far, the hydrological community has not yet made full use of such possibilities. The eWaterCycle is a close cooperation between hydrologists (Delft University of Technology and Utrecht University) and the Netherlands eScience Center (NLeSC) - that intends to supports and reinforce data-intensive research through creative and innovative use of information and communication technology (ICT). In this project, we modify and extend PCR-GLOBWB so that it runs at much higher resolution, on the order of 1 km or finer. This model refinement is a huge step forward as increasing resolution also requires adding an explicit spatial representation of local processes (groundwater flow, water diversions, glaciers, etc.) that greatly enhance the regional to local applicability of the model. In this project, we also aim to run the model operationally with a data assimilation scheme that incorporates satellite soil moisture observations and other relevant variables. The outcome of the eWaterCycle project will be relevant for addressing critical water cycle science questions and hydrological applications such as assessing water resources sustainability, flood and drought frequency under climate change. For

  11. Illinois River Basin Hydrologic Observatory: A Center for Understanding and Predicting the Complex Hydrologic Cycle of Intensively Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Kumar, P.

    2004-12-01

    This paper is submitted on behalf of several individuals representing many institutions. We envision that the Illinois River Basin Hydrologic Observatory (IRB-HO) will be a center of excellence that provides improved scientific understanding of the hydrologic cycle with predictive capability to support better management and decision-making by stakeholders, in an intensively managed landscape. The Illinois River begins at the confluence of the Des Plaines and Kankakee rivers near Chicago, Illinois, and flows 380 km. southwest to the Mississippi River at Grafton, Illinois. It drains an area of over 80,000 sq. km. The basin is characterized by high productivity agriculture and rapid growth of urban areas, and located in northern temperate climate with low relief glaciated landscape. The observatory will address important questions that will lead to socially useful probabilistic assessments of future conditions in the basin. The IRB-HO will serve the following two functions: \\begin{enumerate} Enable multi-scale interdisciplinary research by providing infrastructure that will attract scientists and water resource professionals to pursue research in the basin. Providing this "community science resource" will be an important function that attracts both remote and on-site participation by investigators from the hydrologic science community, nationally and internationally. Answer fundamental interdisciplinary questions of high societal relevance as part of the core effort. The core science questions will be organized around the broad thrust areas of (i) water, energy and sediment flux and dynamics, (ii) biogeochemistry, (iii) hydroecology, (iv) water resources management, (v) Transport of chemical and biological contaminants. The IRB-HO will be managed as a center with broad involvement of the community in conception, design and implementation. Further, the core data collected will be made publicly available immediately to realize maximum benefits from the HO. Education

  12. Hydrology

    ERIC Educational Resources Information Center

    Sharp, John M.

    1977-01-01

    Lists many recent research projects in hydrology, including flow in fractured media, improvements in remote-sensing techniques, effects of urbanization on water resources, and developments in drainage basins. (MLH)

  13. Effects of the climate change in the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Arreguin Cortés, F.; López Pérez, M.

    2010-03-01

    Among the different effects resulting from the Climate Change around the world related to the water cycle those that account more are the drought and the flooding. Also the water supply sources is expected to diminished or polluted, wetlands tend to disappear and aquatic environments degrade, population is expected to be displaced because of the increase in sea level in deltaic zones and a lowering in health standards related to water diseases due to extreme meteorological phenomena and new climatic conditions. That the climate has changed in México is a fact and its features are the increase in seasonal temperature (winter and summer) as well as a reduction in summer precipitation in central and northern Mexico coupled to an increase in winter in the northwestern regions. More frequent severe storms in different Mexican regions (southeastern and central Mexico) and in urban areas like Mexico City and the gradual reduction in the water flowing in rivers are also evidence of this change. The National Water Commission has developed studies using maximum and minimum temperature and daily precipitation analysis from a new data base called Maya v1 which accounts for a regular network that covers the entire country. Also coastal aquifer studies, hurricane strikes incidence and identification of specific areas in water basins with major vulnerability (closely related to urban and rural settlements invading floodplains and water courses) are underway. Some studies and actions that need to be developed and taken are indicated and an example of coordinated work is shown. In addition a set of adaptation measures to take according to the regional situation is described. Such measures should focus on the present situation as well as for the future and need to be studied and foreseen now. If such measures are quickly taken in those vulnerable areas the costs they represent will be less compared with the costs of the damages due to the presence of the hydrometeorological

  14. Transient simulation of global changes of the hydrological cycle during the last deglaciation (Invited)

    NASA Astrophysics Data System (ADS)

    He, F.; Shakun, J. D.; Clark, P. U.

    2013-12-01

    The future changes of the hydrological cycle caused by the anthropogenic carbon emission have great impact on regional water management, national food security and global health. The IPCC AR4 report concluded that it is very likely that the frequency of heavy rainfall will increase over most of the land area, while area affected by drought will likely increase as well. However, the level of the scientific understanding of the hydrological changes is hindered by the short instrumental records and the inherent delay of the response of climate system to greenhouse gas forcing. The last deglaciation witnessed the last natural global warming and represents the unique opportunity to overcome the above challenges when carbon dioxide concentrations rose from 185 ppm to 260 ppm over the approximately 10,000 years. Clark et al. [2012, PNAS] has compiled the changes of the global hydrological cycle during the last deglaciation with 39 high-resolution precipitation proxies over the land area. Here we compare the transient simulation of the last deglaciation in fully coupled Community Climate System Model version 3 (CCSM3) with the reconstructed hydrological changes to check whether the current climate models used to predict the future is capable of reproducing the evolution of global hydrological cycle in the past. Over Greenland, the transient simulation reproduces the abrupt increase of precipitation during the Bølling and the reduction of precipitation during the Younger Dryas (YD). The transient simulation also reproduces the global impacts of these abrupt climate events. In the Arabian Sea, the transient simulation produces the decrease of precipitation during the Oldest Dryas (OD) and YD, and the increase of precipitation during the Bølling. In South America, the transient simulation reproduces the meridional shifts of the ITCZ, with increase of precipitation over Brazil and Bolivia during the OD and YD and decrease of precipitation during the Bølling. The transient

  15. Understanding the changes of hydrological cycle in response to increasing greenhouse gases

    NASA Astrophysics Data System (ADS)

    Dong, Buwen; Sutton, Rowan

    2010-05-01

    The global and local hydrological cycle is vital to human life and natural ecosystems. Its changes such as a consequence of climate change are expected to play a central role in governing a vast range of environmental impacts and in regulating climate stability and variability. In this study, the mechanisms responsible for the changes in the hydrological cycle are elucidated using sensitivity experiments carried out with an atmospheric general circulation model (GCM). The GCM is forced by doubling CO2, by increasing SST, or both. First, we focus on investigating and understanding the contrasted features of the hydrological changes over land and sea globally and their seasonal evolutions. Then we analyze regional details of hydrological changes caused by different forcings with a focus on Asian monsoon regions. Globally, the direct CO2 forcing weakens the global mean precipitation, accompanied by a decrease of precipitation over sea and an increase of precipitation (1.4%) over land associated with an increase in soil moisture (4.4%) and runoff (11%). By contrast, the increased SST leads to land breeze-like large scale circulation anomalies characterized by anomalous ascent over sea and anomalous decent over land, which in turn is associated with decreased precipitation (-0.6%), soil moisture (-2.5%) and runoff (-2.5%) over land and increased precipitation over sea. Regionally, both SST change and CO2 change lead to an increase in precipitation, soil moisture and runoff over the East Asian and Indian monsoon regions, implying that both forcings will lead to an increase of flooding risks locally. The direct response to the CO2 change has two components, one associated with purely radiative effects and the other associated with the reduction in stomatal conductance. Their separate effects on the global and regional changes of hydrological cycle will also be discussed.

  16. Stellar activity cycles and asteroseismology

    NASA Astrophysics Data System (ADS)

    Salabert, D.

    2011-12-01

    The success of helioseismology is due to its capability to accurately measure the p-mode parameters of the solar eigenmode spectrum, which allow us to infer unique information about the internal structure and dynamics of the Sun from its surface all the way down to the core. It has contributed greatly to a clearer understanding of the Sun and provided insights into the complex solar magnetism, by means for instance of the variability of the characteristics of the p-mode spectrum. Indeed, variations in the mean strength of the solar magnetic field lead to significant shifts in the frequencies of even the lowest-degree p modes with high levels of correlation with solar surface activity proxies. These frequency shifts are explained to arise from structural changes in the outer layers of the Sun during the 11-year activity cycle, which is understood to be driven by a dynamo process. However, clear differences between p-mode frequencies and solar surface activity during the unusually extended minimum of cycle 23 were observed. The origin of the p-mode variability is thus far from being properly understood and a better comprehension of its relationship with solar and stellar activity cycles will help us in our understanding of the dynamo processes. Spectroscopic measurements of Ca H and K emission lines revealed magnetic activity variations in a large sample of solar-type stars with timescales ranging from 2.5 and 25 years. This broad range of cycle periods is thought to reflect differences in the rotational properties and the depths of the surface convection zones with various masses and ages. However, spectroscopic measurements are only good proxies of surface magnetic fields. The recent discovery of variations with magnetic activity in the p-mode oscillation frequencies of the solar-like star HD 49933 observed by CoRoT, with a frequency dependence comparable in shape to the one observed in the Sun, opens a new era in the study of the physical phenomena involved in the

  17. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-07-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. We analyze strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in strengthening of hydrological cycle in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside the medium-high non-mitigation scenario SRES A1B, we considered a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than SRES A1B till around 2070. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in A1B throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in mid and end 21C. It is only through a very large perturbation of surface fluxes that A1B achieves larger increase of global precipitation in the last

  18. EDITORIAL: The Earth radiation balance as driver of the global hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Liepert, Beate

    2010-06-01

    Variations in the intensity of the global hydrological cycle can have far-reaching effects on living conditions on our planet. While climate change discussions often revolve around possible consequences of future temperature changes, the adaptation to changes in the hydrological cycle may pose a bigger challenge to societies and ecosystems. Floods and droughts are already today amongst the most damaging natural hazards, with floods being globally the most significant disaster type in terms of loss of human life (Jonkman 2005). From an economic perspective, changes in the hydrological cycle can impose great pressures and damages on a variety of industrial sectors, such as water management, urban planning, agricultural production and tourism. Despite their obvious environmental and societal importance, our understanding of the causes and magnitude of the variations of the hydrological cycle is still unsatisfactory (e.g., Ramanathan et al 2001, Ohmura and Wild 2002, Allen and Ingram 2002, Allan 2007, Wild et al 2008, Liepert and Previdi 2009). The link between radiation balance and hydrological cycle Globally, precipitation can be approximated by surface evaporation, since the variability of the atmospheric moisture storage is negligible. This is the case because the fluxes are an order of magnitude larger than the atmospheric storage (423 x 1012 m3 year-1 versus 13 x 1012 m3 according to Baumgartner and Reichel (1975)), the latter being determined by temperature (Clausius-Clapeyron). Hence the residence time of evaporated water in the atmosphere is not more than a few days, before it condenses and falls back to Earth in the form of precipitation. Any change in the globally averaged surface evaporation therefore implies an equivalent change in precipitation, and thus in the intensity of the global hydrological cycle. The process of evaporation requires energy, which it obtains from the surface radiation balance (also known as surface net radiation), composed of the

  19. Hydrology

    NASA Astrophysics Data System (ADS)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  20. The role of horizontal resolution in simulating drivers of the global hydrological cycle

    NASA Astrophysics Data System (ADS)

    Demory, Marie-Estelle; Vidale, Pier Luigi; Roberts, Malcolm J.; Berrisford, Paul; Strachan, Jane; Schiemann, Reinhard; Mizielinski, Matthew S.

    2014-04-01

    The role of atmospheric general circulation model (AGCM) horizontal resolution in representing the global energy budget and hydrological cycle is assessed, with the aim of improving the understanding of model uncertainties in simulating the hydrological cycle. We use two AGCMs from the UK Met Office Hadley Centre: HadGEM1-A at resolutions ranging from 270 to 60 km, and HadGEM3-A ranging from 135 to 25 km. The models exhibit a stable hydrological cycle, although too intense compared to reanalyses and observations. This over-intensity is explained by excess surface shortwave radiation, a common error in general circulation models (GCMs). This result is insensitive to resolution. However, as resolution is increased, precipitation decreases over the ocean and increases over the land. This is associated with an increase in atmospheric moisture transport from ocean to land, which changes the partitioning of moisture fluxes that contribute to precipitation over land from less local to more non-local moisture sources. The results start to converge at 60-km resolution, which underlines the excessive reliance of the mean hydrological cycle on physical parametrization (local unresolved processes) versus model dynamics (large-scale resolved processes) in coarser HadGEM1 and HadGEM3 GCMs. This finding may be valid for other GCMs, showing the necessity to analyze other chains of GCMs that may become available in the future with such a range of horizontal resolutions. Our finding supports the hypothesis that heterogeneity in model parametrization is one of the underlying causes of model disagreement in the Coupled Model Intercomparison Project (CMIP) exercises.

  1. Active layer hydrology for Imnavait Creek, Toolik, Alaska. Annual progress report, July 1984--January 1986

    SciTech Connect

    Kane, D.L.

    1986-12-31

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  2. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  3. Sustainable groundwater management system based on the regional hydrological cycle in the warm humid country, Japan

    NASA Astrophysics Data System (ADS)

    Shimada, J.; Crest Kumamoto Groundwater Team

    2011-12-01

    The increase of precipitation variability with the global warming and the rapid population growth lead to the shortage of water resources on a global scale. Groundwater bocome attracted as a relatively stable water resource because of its larger reservoir and a longer residence time. As our country belongs to a warm humid climate with much precipitation and a steep topography, the regional hydrological cycle is extremely active. Surface water could be taken easily and was often used to a water supply until now, but recently groundwater is taking the place of surface water because of the stability of water supply. While in our hydro-climatic condition, the sustainable use of groundwater is possible under the appropriative management, that is, groundwater pumping rate does not exceed the recharge rate in a basin. For the sustainable use of groundwater resources, this project aims to develop new technologies relating to the quantity and quality aspects of groundwater resources. For the precise understanding of groundwater flow system, new technologies will be developed, like frequency changeable electric resistivity exploration method to evaluate an aquifer structure. There are many problems about groundwater quality including nitrate-nitrogen contamination and toxic substances from the domestic and industrial waste disposals. It is necessary to understand the production mechanism to prevent groundwater contamination and the degradation process of nitrate-nitrogen contamination to improve the water quality. Therefore this project will develop new technologies including the reduction of NO3=N and natural toxic substances loads before groundwater recharge, the on-site removal of contaminants from aquifers, and simple and effective equipment to improve groundwater quality after pumping. Furthermore, this project will also develop a new biological monitoring technique for local groundwater users to notice the contamination at a glance; change colar fish by specific ion

  4. Field Training Activities for Hydrologic Science in West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Agustina, C.; Fajri, P. N.; Fathoni, F.; Gusti, T. P.; Harifa, A. C.; Hendra, Y.; Hertanti, D. R.; Lusiana, N.; Rohmat, F. I.; Agouridis, C.; Fryar, A. E.; Milewski, A.; Pandjaitan, N.; Santoso, R.; Suharyanto, A.

    2013-12-01

    In hydrologic science and engineering, one challenge is establishing a common framework for discussion among workers from different disciplines. As part of the 'Building Opportunity Out of Science and Technology: Helping Hydrologic Outreach (BOOST H2O)' project, which is supported by the U.S. Department of State, nine current or recent graduate students from four Indonesian universities participated in a week of training activities during June 2013. Students had backgrounds in agricultural engineering, civil and environmental engineering, water resources engineering, natural resources management, and soil science. Professors leading the training, which was based at Bogor Agricultural University (IPB) in west Java, included an agricultural engineer, civil engineers, and geologists. Activities in surface-water hydrology included geomorphic assessment of streams (measuring slope, cross-section, and bed-clast size) and gauging stream flow (wading with top-setting rods and a current meter for a large stream, and using a bucket and stopwatch for a small stream). Groundwater-hydrology activities included measuring depth to water in wells, conducting a pumping test with an observation well, and performing vertical electrical soundings to infer hydrostratigraphy. Students also performed relatively simple water-quality measurements (temperature, electrical conductivity, pH, and alkalinity) in streams, wells, and springs. The group analyzed data with commercially-available software such as AQTESOLV for well hydraulics, freeware such as the U.S. Geological Survey alkalinity calculator, and Excel spreadsheets. Results were discussed in the context of landscape position, lithology, and land use.

  5. Visualizing landscape hydrology as a means of education - The water cycle in a box

    NASA Astrophysics Data System (ADS)

    Lehr, Christian; Rauneker, Philipp; Fahle, Marcus; Hohenbrink, Tobias; Böttcher, Steven; Natkhin, Marco; Thomas, Björn; Dannowski, Ralf; Schwien, Bernd; Lischeid, Gunnar

    2016-04-01

    We used an aquarium to construct a physical model of the water cycle. The model can be used to visualize the movement of the water through the landscape from precipitation and infiltration via surface and subsurface flow to discharge into the sea. The model consists of two aquifers that are divided by a loamy aquitard. The 'geological' setting enables us to establish confining groundwater conditions and to demonstrate the functioning of artesian wells. Furthermore, small experiments with colored water as tracer can be performed to identify flow paths below the ground, simulate water supply problems like pollution of drinking water wells from inflowing contaminated groundwater or changes in subsurface flow direction due to changes in the predominant pressure gradients. Hydrological basics such as the connectivity of streams, lakes and the surrounding groundwater or the dependency of groundwater flow velocity from different substrates can directly be visualized. We used the model as an instructive tool in education and for public relations. We presented the model to different audiences from primary school pupils to laymen, students of hydrology up to university professors. The model was presented to the scientific community as part of the "Face of the Earth" exhibition at the EGU general assembly 2014. Independent of the antecedent knowledge of the audience, the predominant reactions were very positive. The model often acted as icebreaker to get a conversation on hydrological topics started. Because of the great interest, we prepared video material and a photo documentation on 1) the construction of the model and 2) the visualization of steady and dynamic hydrological situations. The videos will be published soon under creative common license and the collected material will be made accessible online. Accompanying documents will address professionals in hydrology as well as non-experts. In the PICO session, we will present details about the construction of the model

  6. Contributions of the world's glaciers to the hydrological cycle in the 21st Century

    NASA Astrophysics Data System (ADS)

    Lammers, R. B.; Bliss, A.; Hock, R.; Proussevitch, A. A.; Grogan, D. S.; Glidden, S.; Frolking, S. E.; Radic, V.

    2013-12-01

    Glacier melt water contributions to the global hydrologic cycle are a concern for all humans relying on this critical water supply. This melt water is used through direct consumption as well as indirect consumption by irrigation for crops. Additionally, the melt water reaching the oceans represents a direct input to sea level rise and therefore accurate estimates of this contribution have profound economic and geopolitical implications. It has been demonstrated that, on the scale of glacierized river catchments land surface hydrological models can successfully simulate glacier contribution to streamflow. However, at global scales, the implementation of glacier melt in hydrological models has been rudimentary or non-existent. In this study, a global glacier mass balance model is coupled with the University of New Hampshire Water Balance/Transport Model (WBM) to assess recent and project future glacier contributions to the hydrological cycle on global scale. The glacier model computes monthly glacier mass changes and resulting runoff at the glacier terminus of each individual glacier from globally complete Randolph Glacier Inventory including ~ 200,000 glaciers. The time series of glacier runoff is aggregated over each grid cell and delivered to WBM and routed downstream. WBM tracks and uses the in-stream water for filling reservoirs, transfers of water between drainage basins, and irrigation along the global system of rivers with net discharge to the ocean. Climate scenarios from global climate models prepared for IPCC AR5 are used to explore the expected range of possible future glacier melt variability to estimate the impacts on human use of these valuable waters and their net contribution to sea level change.

  7. Numerical Modeling of Cloud Convection in Titan's Atmosphere and its Role in Methan Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Ishiwatari, M.; Takehiro, S.; Hayashi, Y.

    2005-12-01

    Distinct cloud activities are found around the south pole of Titan, and their transient characteristics imply their convective origin. On the other hand, once proposed extensive hydrocarbon ocean, which might act as a reservoir of methane, seems to be absent. Therefore, the structure of cloud convection and its role in "hydrological" cycle may be quite different from the convective clouds in the atmosphere of the Earth, which are covered with the widespread ocean. Here, we examine the structure of cloud convection in Titan's troposphere and its role in methan cycle between the atmosphere and the ground surface by using a numerical model. We conduct long-term integrations of a two-dimensional non-hydrostatic cloud convection model that extends 2,048km in the horizontal direction including three-category (vapor-cloud-rain) parameterized microphysics. The supply of methane from the groud surface is caculated by the bulk formula, including a factor representing the wetness of the ground surface which may be interpreted as the ratio of the area of methane ponds to the area of dry soil. We also compare the case with and without the super saturation threshold for the condensation of methane in Titan's troposphere. In the model, the relative humidity in the lower atmosphere tends to be considerably higher than the observerd values, unless the wetness facter is very small (~ 0.001), which is consistent with the observed scarcity of the liquid surface. Even with such dry surface condition, simulated cloud convection is active; sometimes strong convective cloud develops up to the tropopause generating a large amount of methane rain. But very small amount of methane rain reaches to the ground surface as a result of the evaporation in the subsaturated lower troposphere. This is compatible with the small amount of evaporation in the model. In the case with the condensation threshold, the cloud convection tends to be more intermittent and stronger than that without it, so that

  8. Emerging Technologies for Integrating Multi-Scale Observations of the Hydrologic Cycle

    NASA Astrophysics Data System (ADS)

    Logan, W. S.; Potter, K. W.; Wood, E. F.

    2007-12-01

    The results are presented of a recent National Research Council study on examining the potential for integrating spaceborne observations with complementary airborne and ground-based observations to gain holistic understanding of hydrologic and related biogeochemical and ecological processes and to help support water and related land-resource management. The study was motivated by the interrelated challenges of population growth, global climate change, and regional changes in land use and land management that will increasingly stress water resources around the world. Meeting these challenges will require significant improvement in our management of water resources, which in turn will require improvements in our capacity to understand and quantify the hydrologic cycle and its interactions with the natural and built environment. Recent and potential future technological innovations in sensors (in-situ, airborne, and space-borne) and sensor networks, cyber-infrastructure, data assimilation, modeling, and decision-support tools offer unprecedented opportunities to improve our capacity to observe, understand, and manage hydrologic systems. The committee investigated a number of aspects to turning this potential into a reality. These included development and field deployment of land-based chemical and biological sensors; the role of airborne remote sensing; interagency gaps between the steps of sensor development, demonstration, and operational deployment; the coordination of federal responsibilities for measurement, monitoring and modeling; and getting the new information to those who can use it. A variety of case studies were used to illustrate the needs and opportunities for new measurement capacity, including hydrologic monitoring in the Everglades, water quantity and quality in the Southern High Plains, malaria in Sub-Saharan Africa, hydroclimatic research in the Arctic, hydrologic extremes and water quality in the Neuse River watershed, and mountain hydrology in the

  9. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-11-01

    Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C). We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES) A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950-2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our results show that radiative cooling is

  10. The Eta Model Surface Hydrologic Cycle of the Columbia and Colorado Basins

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Berbery, E. H.; Mitchell, K. E.

    2004-05-01

    The surface hydrology of the United States western basins is investigated using the National Centers for Environmental Prediction Eta model operational forecasts. During recent years the model has been subject to changes and upgrades that affected positively its performance. We discuss these effects on the surface hydrologic cycle by analyzing the period June 1995-May 2003. Results are compared with available precipitation observations and land surface hydrologic estimates resulting from the Variable Infiltration Capacity (VIC) macroscale hydrologic model. A fairly large disparity between the observed precipitation estimates with and without orography correction is found in the long term area-averages over the Columbia basin and over the Colorado basin. The basin-averaged model precipitation correlates well with the observations at monthly timescales, but a 34% positive difference with respect to the not-orographically corrected precipitation is found over the Columbia basin; the difference is reduced to 2% when using the orographically corrected precipitation. The excess in the model forecast precipitation is mainly found during the winter months, and seems related both to the model's large scale precipitation component, but also to the underestimation of gauge-based precipitation measurements. The model bias over the Colorado basin is largest during summer, and it is suggested that the limited performance of the convective precipitation component is the one that leads to the underestimation of the precipitation. The mean fields of the hydrological variables in the Eta model are in qualitative agreement with those from the VIC model at regional-to-large scales. As expected, the largest differences are found near mountains and the western coastline. While the mean fields of precipitation, evaporation, runoff and normalized soil moisture are in general agreement, important differences arise in their mean annual cycle over the two basins: snow melt in the Eta model

  11. Historical upscaling of the socio-hydrological cycle: Three cases from the Mediterranean Spain

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel; Sanchis-Ibor, Carles

    2015-04-01

    local level to the basin level, based on collaborative actions through multistakeholder partnerships and agreements. Irrigation development has played a major role in the evolutionary trend of the hydro-social cycle in the three basins, determining water demands and uses, and boosting institutional building. Following the main historical institutional milestones and examining the historical changes in water uses, remarkable differences can be found among the three cases, enhancing the high sensitivity of the hydrological processes with respect to socio-economic factors. Therefore, comparing them is adequate to find out those high-sensitive factors and the way they provoke the differences between the basins. The casual loop created a basin closure - basin reopening cycle. Basin closures were associated to increasing demands by population growth, irrigation and immigration, causing drought vulnerability. Basin reopenings corresponded to the building of regulation facilities (reservoirs, canals), the availability of new water sources (groundwater, regenerated water), or a change in the management strategies (conjunctive use). During basin closure, users fought during droughts but united to prevent new users' access to water. During reopenings, water use quickly increased, leading to basin closures. User conflicts were solved by user agreement in water sharing or by law requirement, establishing a new management policy. New-user conflicts were solved when the basin reopened again and those potential users gained access to water.

  12. Hands-On Hydrology

    ERIC Educational Resources Information Center

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  13. Regional Impacts of Miscanthus Biofuel Feedstock Production on the Hydrologic Cycle

    NASA Astrophysics Data System (ADS)

    Vanloocke, A. D.; Twine, T. E.; Bernacchi, C.

    2009-12-01

    Socio-economic and scientific interest toward the use of renewable energy to offset fossil fuel dependence and greenhouse gas emissions is increasing. Currently, the majority of the US renewable energy production is focused on replacing gasoline with corn ethanol. In 2008, 18% of the US corn yield was used to displace ~5% of US gasoline consumption. This represents progress toward meeting the goals of offsetting 30% of liquid fossil fuel consumption by 2030 as established by the US government in the Advanced Energy Initiative (AEI). However, a growing body of research indicates that it may not be beneficial or even possible for corn ethanol alone to meet the AEI goals. Highly productive bioenergy feedstocks requiring fewer inputs such as Miscanthus x Giganteus (Miscanthus) are ideal candidates, relative to maize, to provide a renewable and sustainable alternative to fossil fuel. It is anticipated that Miscanthus is likely to have minimal environmental impacts and could be potentially beneficial to the environment. In order to meet the AEI goals, Miscanthus production on the scale of 1x10<6> ha would be needed. Before this level of production occurs, uncertainty over the environmental impacts of large-scale implementation should be addressed particularly with regards to the hydrologic cycle. We calibrated and evaluated a process-based terrestrial ecosystem model, Agro-IBIS (Integrated Biosphere Simulator, agricultural version), to simulate the impacts of land-use-change from current land-use practices to Miscanthus production on the hydrologic cycle. Simulations for the Midwestern US (0.5°grid cell resolution) were generated using the same climate forcing for current land cover and additional scenarios where Miscanthus was planted in varying densities (10%, 25%, 50%, 75%, and 100%). Analyses indicate that for most of the Midwestern US, large increases in evapotranspiration (~100 to 250 mm/yr) and decreases in drainage (~ -100 to -250 mm/yr) occur when high

  14. On the relationship between uncertainties in tropical divergence and the hydrological cycle in global models

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung R.

    2012-01-01

    A survey of tropical divergence from three GCMs, three global reanalyses and four insitu soundings from field campaigns shows the existence of large uncertainties in the ubiquity of shallow divergent circulation as well as the depth and strength of the deep divergent circulation. More specifically, only two GCMs out of the three GCMs and three global reanalyses show significant shallow divergent circulation, which is present in all in-situ soundings, and of the three GCMs and three global reanalyses, only two global reanalyses have deep divergence profiles that lie within the range of uncertainty of the soundings. The relationships of uncertainties in the shallow and deep divergent circulation to uncertainties in present day and projected strength of the hydrological cycle from the GCMs are assessed. In the tropics and subtropics, deep divergent circulation is the largest contributor to moisture convergence that balances the net precipitation, and inter-model differences in the present day simulations carry over onto the future projections. In comparison to the soundings and reanalyses, the GCMs are found to have deeper and stronger divergent circulation. While these two characteristics of GCM divergence affect the strength of the hydrological cycle, they tend to compensate for each other so that their combined effect is relatively modest.

  15. Estimating the global terrestrial hydrologic cycle through modeling, remote sensing, and data assimilation

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Troy, Tara; Sahoo, Alok; Sheffield, Justin; Wood, Eric

    2010-05-01

    Documentation of the water cycle and its evolution over time is a primary scientific goal of the Global Energy and Water Cycle Experiment (GEWEX) and fundamental to assessing global change impacts. In developed countries, observation systems that include in-situ, remote sensing and modeled data can provide long-term, consistent and generally high quality datasets of water cycle variables. The export of these technologies to less developed regions has been rare, but it is these regions where information on water availability and change is probably most needed in the face of regional environmental change due to climate, land use and water management. In these data sparse regions, in situ data alone are insufficient to develop a comprehensive picture of how the water cycle is changing, and strategies that merge in-situ, model and satellite observations within a framework that results in consistent water cycle records is essential. Such an approach is envisaged by the Global Earth Observing System of Systems (GOESS), but has yet to be applied. The goal of this study is to quantify the variation and changes in the global water cycle over the past 50 years. We evaluate the global water cycle using a variety of independent large-scale datasets of hydrologic variables that are used to bridge the gap between sparse in-situ observations, including remote-sensing based retrievals, observation-forced hydrologic modeling, and weather model reanalyses. A data assimilation framework that blends these disparate sources of information together in a consistent fashion with attention to budget closure is applied to make best estimates of the global water cycle and its variation. The framework consists of a constrained Kalman filter applied to the water budget equation. With imperfect estimates of the water budget components, the equation additionally has an error residual term that is redistributed across the budget components using error statistics, which are estimated from the

  16. Insights into the early Eocene hydrological cycle from an ensemble of atmosphere-ocean GCM simulations

    NASA Astrophysics Data System (ADS)

    Carmichael, M. J.; Lunt, D. J.; Huber, M.; Heinemann, M.; Kiehl, J.; LeGrande, A.; Loptson, C. A.; Roberts, C. D.; Sagoo, N.; Shields, C.; Valdes, P. J.; Winguth, A.; Winguth, C.; Pancost, R. D.

    2015-07-01

    Recent studies, utilising a range of proxies, indicate that a significant perturbation to global hydrology occurred at the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma). An enhanced hydrological cycle for the warm early Eocene is also suggested to have played a key role in maintaining high-latitude warmth during this interval. However, comparisons of proxy data to General Circulation Model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised, despite significant differences in simulated surface temperatures. In this work, we undertake an intercomparison of GCM-derived precipitation and P-E distributions within the EoMIP ensemble (Lunt et al., 2012), which includes previously-published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure and precipitation relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to preindustrial. This is primarily due to elevated atmospheric paleo-CO2, although the effects of differences in paleogeography/ice sheets are also of importance in some models. For a given CO2 level, globally-averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP/dT) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that a number of GCMs underestimate precipitation rates at high latitudes. Models which warm these regions, either via elevated CO2 or by varying

  17. Insights into the early Eocene hydrological cycle from an ensemble of atmosphere-ocean GCM simulations

    NASA Astrophysics Data System (ADS)

    Carmichael, Matthew; Lunt, Daniel; Pancost, Richard

    2015-04-01

    Recent studies utilising a range of geochemical proxies have indicated that a significant perturbation to global hydrology occurred at the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma). An enhanced hydrological cycle for the warm early Eocene is also suggested to have played a key role in maintaining high-latitude warmth during this interval. Comparisons of proxy data to General Circulation Model (GCM) simulated hydrology have not widely been made however, and inter-model variability remains poorly characterised despite significant differences in simulated surface temperatures. In this work, we address this by undertaking an intercomparison of GCM-derived precipitation distributions within the EoMIP ensemble (Lunt et al., 2012), which includes previously-published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle is simulated for all Eocene simulations relative to preindustrial. This is primarily due to elevated atmospheric paleo-CO2, although the effects of differences in paleogeography/ice sheets are also of importance in some models. For a given CO2 level, globally-averaged precipitation rates vary widely between models, largely as a result of different climate sensitivities (dT/dCO2) and differing parameterisation schemes. Despite this, models with similar global precipitation sensitivities (dP/dT) display different regional responses for a given temperature change. Regions which are particularly model sensitive include the South Pacific, tropical Africa and the Tethys and may represent targets for future proxy acquisition. A comparison of leaf-fossil-derived precipitation estimates with GCM data illustrates that models tend to unanimously underestimate early Eocene precipitation rates at high latitudes. Models which warm these regions via elevated CO2 or by utilising alternative parameterisations are most

  18. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGESBeta

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time

  19. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Archer, D.

    2014-06-01

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbon (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales

  20. Modulation of the summer hydrological cycle evolution over western Europe by anthropogenic aerosols and soil-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Boé, J.

    2016-07-01

    Large decadal variations in solar radiation at surface have been observed over Europe for 60 years. These variations might have impacted the hydrological cycle, through a modulation of the energy available for evapotranspiration. Here a large ensemble of climate models is analyzed to characterize the impacts of anthropogenic aerosols on the hydrological cycle over western Europe in summer and the associated uncertainties. Some models simulate strong aerosols-driven changes in evapotranspiration and also precipitation on the historical period, while other models show virtually no impact. These opposed responses are largely determined by two seemingly independent properties of the models: the magnitude of the impact of anthropogenic aerosols on solar radiation and whether evapotranspiration is predominantly water or energy limited. Both properties, characterized on the past climate, are highly uncertain in current climate models and continue to impact the evolution of the hydrological cycle through the 21st century.

  1. The role of Amazon Basin on the atmospheric branch of the hydrological cycle

    NASA Astrophysics Data System (ADS)

    Nieto, R. O.; Drumond, A.; Gimeno, L.

    2013-05-01

    In this work we use an objective 3-D Lagrangian model (FLEXPART) to investigate the role of Amazon Basin as source and sink of moisture in the hydrological cycle along the year. The method is based on the movement of a large number of air particles using 3D data from ERA40 reanalysis. The flow is described by the position of the particles and the time. The increases and decreases in moisture along the trajectory can be calculated through changes in specific humidity (q) with time (being recorded every 6 hours). Adding these changes for all the air particles residing in the atmospheric column over an area, we can obtain a measure of the surface freshwater flux E-P (the evaporation minus the precipitation rate). For this study we track (E-P) from Amazon Basin backwards and forwards in time along the trajectories, limiting the transport times to 10 days. Climatological monthly (E-P) fields of the backwards and forwards trajectories were calculated for the period from 1980 to 1999. The backwards tracking allows us to identify where the particles gain humidity along their trajectories towards the target area, regions hereafter denominated as sources of moisture. On the other hand, the forwards method allows to investigate the role of the basin as source of moisture, identifying those particles that leave it and following them to found where they lose moisture. Preliminary analysis suggests the role of the Tropical Atlantic (TA) as one of the most important external sources of moisture for Amazon Basin. Northern TA contributes mainly during the Austral Summer, while the contribution of southern TA is more evident in the rest of the year. It seems that Amazon receives some contribution of moisture from La Plata Basin, except during Summer months. Some moisture from the Pacific South American coast also reaches Amazon along the year. Analysing the role of Amazon Basin as a source of moisture, forwards tracking suggests that its main contribution occurs for southeastern

  2. State of the Hydrological Cycle during the Eocene: Model-Data Comparison

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Huber, M.; Pagani, M.

    2011-12-01

    The early Eocene was much warmer compared to modern conditions and represents the warmest time interval of the Cenozoic. In addition to determining the character of regional temperature change during globally warm conditions, a clear understanding of how the hydrological cycle was impacted is a fundamental pursuit. The isotopic composition of precipitation is a fundamental signal that relates to the character of the hydrologic system - dependent on distance of transport, number of rainout events, amount of rainfall, and evapotranspiration. Terrestrial biomarkers, such as higher plant n-alkanes can be used to track the hydrogen isotopic composition (δD) of precipitation and have been applied to interpret hydrological changes during the Paleocene Eocene Thermal Maximum. That work concluded that rapid, global warming was associated with increased rainout at the poles with the probability of relative drying across the mid-latitudes. Several other n-alkane δD records for the early Eocene have already been generated including Cicogna (Italy), MAR-2X (Venezuela), and Tawanui (New Zealand). In this study, we present results from the water isotope enabled version of National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 3, the atmospheric component of Community Climate System Model (CCSM) with Eocene boundary conditions, two different pCO2 levels (2240 and 4480 ppm). Modeling results are evaluated and compared with existing n-alkane δD records. Preliminary results suggest that the model qualitatively reproduces the latitudinal trend observed in the data, with the most D-enriched values observed at the tropics and depletion towards the poles. However, the model predicts values that appear more D-enriched than the proxy records, by up to 40 per mil in the high latitudes. Reasons for this discrepancy along with uncertainties in the proxy records and modeling results are discussed. These results will be useful for validating models and

  3. The use of remotely sensed soil moisture data in large-scale models of the hydrological cycle

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Gurney, R. J.; Schmugge, T. J.

    1985-01-01

    Manabe (1982) has reviewed numerical simulations of the atmosphere which provided a framework within which an examination of the dynamics of the hydrological cycle could be conducted. It was found that the climate is sensitive to soil moisture variability in space and time. The challenge arises now to improve the observations of soil moisture so as to provide up-dated boundary condition inputs to large scale models including the hydrological cycle. Attention is given to details regarding the significance of understanding soil moisture variations, soil moisture estimation using remote sensing, and energy and moisture balance modeling.

  4. Climatology and natural variability of the global hydrologic cycle in the GLA atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Mehta, V. M.; Sud, Y. C.; Walker, G. K.

    1994-01-01

    Time average climatology and low-frequency variabilities of the global hydrologic cycle (GHC) in the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) were investigated in the present work. A 730-day experiment was conducted with the GLA GCM forced by insolation, sea surface temperature, and ice-snow undergoing climatological annual cycles. Ifluences of interactive soil moisture on time average climatology and natural variability of the GHC were also investigated by conducting 365-day experiments with and without interactive soil moisture. Insolation, sea surface temperature, and ice-snow were fixed at their July levels in the latter two experiments. Results show that the model's time average hydrologic cycle variables for July in all three experiments agree reasonably well with observations. Except in the case of precipitable water, the zonal average climates of the annual cycle experiment and the two perpetual July experiments are alike, i.e., their differences are within limits of the natural variability of the model's climate. Statistics of various components of the GHC, i.e., water vapor, evaporation, and precipitation, are significantly affected by the presence of interactive soil moisture. A long-term trend is found in the principal empirical modes of variability of ground wetness, evaporation, and sensible heat. Dominant modes of variability of these quantities over land are physically consistent with one another and with land surface energy balance requirements. The dominant mode of precipitation variability is found to be closely related to organized convection over the tropical western Pacific Ocean. The precipitation variability has timescales in the range of 2 to 3 months and can be identified with the stationary component of the Madden-Julian Oscillation. The precipitation mode is not sensitive to the presence of interactive soil moisture but is closely linked to both the rotational and divergent components of atmospheric

  5. Impacts of anthropogenic activities on different hydrological drought characteristics

    NASA Astrophysics Data System (ADS)

    Tijdeman, Erik; Stahl, Kerstin; Bachmair, Sophie

    2015-04-01

    The natural hazard drought can have severe impacts on a variety of sectors and at a variety of scales. Droughts, here defined as below average water availability, occur everywhere. However, the impact of a drought event is not only influenced by its severity but also by the vulnerability of an area to droughts. Research in catchments with natural flow conditions is crucial to gain process understanding about hydrological droughts. However, the locations of catchments with natural flow are often not representative for regions with a socioeconomic sector that is highly vulnerable to droughts. In these more vulnerable areas, human activities like groundwater extraction can intensify hydrological droughts. On the other hand, human activities can also mitigate or limit the magnitude of drought events. The aim of this study is to assess the impact of different anthropogenic influences on streamflow droughts by comparing hydrological drought characteristics between catchments with natural streamflow and with regulated or otherwise altered streamflow. The study is based on a large set of streamflow records from catchments in Germany, the UK and the USA with either known anthropogenic influences or natural streamflow conditions. Different drought characteristics (duration, deficit, frequency and timing of drought events) are computed for the selected stations. The drought characteristics in catchments influenced by various anthropogenic activities are stratified by the characteristics of anthropogenic influence, but also by similar physical and climatological properties. These stratified groups are then compared to drought characteristics in natural catchments with similar properties. Results show both negative and positive impacts of different human activities on droughts. For example, urbanized areas with low flow regulations show hydrological droughts with shorter durations and lower deficit volumes compared to nearby natural catchments, while records downstream of

  6. Numerical experiments on the climatic sensitivity of an atmospheric hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Roads, J. O.

    1978-01-01

    It is shown for an intermediate numerical model that fractional cloudiness and relative humidity decrease with increasing temperature. The fractional cloudiness decreases at a rate about 1 per deg K. This occurs in spite of an increase in the evaporation, water transport, condensation, precipitation and cloud water content with increasing temperature. These results are quite similar to those found from models with more highly parameterized clouds, notably the NCAR model. The fractional cloudiness in this model is measured by the fractional coverage of total cloud water and the fractional coverage of positive condensation, in addition to the relative humidity. It is also shown that some of the characteristics of a temperate climate can be simulated in an intermediate numerical model with periodic, antisymmetric and symmetric boundary conditions on an f plane. Intermediate models of this sort may therefore be useful to investigate general questions about the earth's hydrologic cycle on climatic space and time scales

  7. Development and Validation of Water Vapor Tracers as Diagnostics for the Atmospheric Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.

  8. Thermodynamic and dynamic controls on changes in the zonally anomalous hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wills, Robert C.; Byrne, Michael P.; Schneider, Tapio

    2016-05-01

    The wet gets wetter, dry gets drier paradigm explains the expected moistening of the extratropics and drying of the subtropics as the atmospheric moisture content increases with global warming. Here we show, using precipitation minus evaporation (P - E) data from climate models, that it cannot be extended to apply regionally to deviations from the zonal mean. Wet and dry zones shift substantially in response to shifts in the stationary-eddy circulations that cause them. Additionally, atmospheric circulation changes lead to a smaller increase in the zonal variance of P - E than would be expected from atmospheric moistening alone. The P - E variance change can be split into dynamic and thermodynamic components through an analysis of the atmospheric moisture budget. This reveals that a weakening of stationary-eddy circulations and changes in the zonal variation of transient-eddy moisture fluxes moderate the strengthening of the zonally anomalous hydrological cycle with global warming.

  9. Intensification of the Amazon hydrological cycle over the last two decades

    NASA Astrophysics Data System (ADS)

    Gloor, M.; Brienen, R. J. W.; Galbraith, D.; Feldpausch, T. R.; SchöNgart, J.; Guyot, J.-L.; Espinoza, J. C.; Lloyd, J.; Phillips, O. L.

    2013-05-01

    The Amazon basin hosts half the planet's remaining moist tropical forests, but they may be threatened in a warming world. Nevertheless, climate model predictions vary from rapid drying to modest wetting. Here we report that the catchment of the world's largest river is experiencing a substantial wetting trend since approximately 1990. This intensification of the hydrological cycle is concentrated overwhelmingly in the wet season driving progressively greater differences in Amazon peak and minimum flows. The onset of the trend coincides with the onset of an upward trend in tropical Atlantic sea surface temperatures (SST). This positive longer-term correlation contrasts with the short-term, negative response of basin-wide precipitation to positive anomalies in tropical North Atlantic SST, which are driven by temporary shifts in the intertropical convergence zone position. We propose that the Amazon precipitation changes since 1990 are instead related to increasing atmospheric water vapor import from the warming tropical Atlantic.

  10. A model-model and data-model comparison for the early Eocene hydrological cycle

    NASA Astrophysics Data System (ADS)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine; Valdes, Paul J.; Winguth, Arne; Winguth, Cornelia; Pancost, Richard D.

    2016-02-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP/dT) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a

  11. Atmospheric CO2 Amplification of Orbitally Forced Changes in the Hydrological Cycle in the Early Mesozoic

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Schaller, M. F.; Kent, D. V.

    2015-12-01

    Models of increasing atmospheric CO2 predict an intensification of the hydrological cycle coupled with warming, possibly amplifying effects of orbitally-forced fluctuations. While there is some Pleistocene evidence of this, CO2 concentrations were much lower than projected for the future. For the potentially more relevant Early Mesozoic, with CO2 >1000 ppm, we observe that both the soil carbonate and stomatal proxies for CO2 strongly and positively correlate with climatic-precession variance in correlative continental and marine strata of both eastern North America and Europe with temporal correlation robustly supported by magneto-, astro-, and U-Pb zircon geochronology. Eastern North American lacustrine and paleosol strata are generally characterized by >3000 ppm CO2 over most of the Norian (228-207 Ma) dropping to ~1000-3000 ppm during the succeeding latest Norian to late Rhaetian (207 to 201.6 Ma) correlative with a dramatic drop in the amplitude of the response to orbital forcing. This is followed by an extraordinary doubling to nearly tripling of CO2 (~2000-5000 ppm) in the latest Rhaetian to Early Jurassic (201.6 to 200.6 Ma) and a concurrent profound increase in the amplitude of the apparent climatic-precession variance during the eruption of the massive Central Atlantic Magmatic Province. Decreasing CO2 (~1000-2000 ppm) afterward is tracked by decreasing amplitude in the orbitally-paced cyclicity. Likewise, in the UK, high amplitude cyclicity in the lacustrine to paralic Twyning Md. Fm. gives way upward into the paralic Blue Anchor and marine Rhaetian Westbury fms in which lithological cyclicity is muted. Again, the amplitude of the orbitially-paced lithological cyclicity dramatically increases into the paralic to marine late Rhaetian Lilstock Fm. and marine latest Rhaetian to Early Jurassic Blue Lias. Parallel and correlative transitions are seen in at least western Germany. The agreement between the continental eastern US and paralic to marine European

  12. Water Transformation and Storage in the Mountains and at the Coast: Midwest Students' Disconnected Conceptions of the Hydrologic Cycle

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Wee, Bryan; Priddy, Michelle; Schellenberger, Lauren; Harbor, Jon

    2009-01-01

    The purpose of the present study was to investigate students' conceptions of the hydrologic cycle and to examine whether these conceptions vary by grade level and community setting. This study was descriptive in nature and reflected a cross-age design involving the collection of qualitative data from 1,298 students from the Midwest, USA. These…

  13. Integration of a Physically based Distributed Hydrological Model with a Model of Carbon and Nitrogen Cycling: A Case Study at the Luquillo Critical Zone Observatory, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Dialynas, Y. G.; Bras, R. L.; Arnone, E.; Noto, L. V.

    2015-12-01

    The dynamics of carbon and nitrogen cycles, increasingly influenced by human activities, are the key to the functioning of ecosystems. These cycles are influenced by the composition of the substrate, availability of nitrogen, the population of microorganisms, and by environmental factors. Therefore, land management and use, climate change, and nitrogen deposition patterns influence the dynamics of these macronutrients at the landscape scale. In this work a physically based distributed hydrological model, the tRIBS model, is coupled with a process-based multi-compartment model of the biogeochemical cycle to simulate the dynamics of carbon and nitrogen (CN) in the Mameyes River basin, Puerto Rico. The model includes a wide range of processes that influence the movement, production, alteration of nutrients in the landscape and factors that affect the CN cycling. The tRIBS integrates geomorphological and climatic factors that influence the cycling of CN in soil. Implementing the decomposition module into tRIBS makes the model a powerful complement to a biogeochemical observation system and a forecast tool able to analyze the influences of future changes on ecosystem services. The soil hydrologic parameters of the model were obtained using ranges of published parameters and observed streamflow data at the outlet. The parameters of the decomposition module are based on previously published data from studies conducted in the Luquillio CZO (budgets of soil organic matter and CN ratio for each of the dominant vegetation types across the landscape). Hydrological fluxes, wet depositon of nitrogen, litter fall and its corresponding CN ratio drive the decomposition model. The simulation results demonstrate a strong influence of soil moisture dynamics on the spatiotemporal distribution of nutrients at the landscape level. The carbon in the litter pool and the nitrate and ammonia pool respond quickly to soil moisture content. Moreover, the CN ratios of the plant litter have

  14. Hydrological cycles and trends in the NW Argentine Andes since 1940

    NASA Astrophysics Data System (ADS)

    Castino, Fabiana; Bookhagen, Bodo; Strecker, Manfred

    2016-04-01

    Strong spatiotemporal variability characterizes the hydrometeorological pattern in the NW Argentine Andes, draining parts of the most populated and economically important areas of South America. During the summer monsoon season (DJF), the eastern flanks of the central Andes are characterized by deep convection, exposing them to extreme hydrometeorological events. These often result in floods and landslides with disastrous effects on the local populations. Here, we analyze river discharge to explore long-term hydrological variability in NW Argentine Andes and the linked climate controlling processes. We rely on 13 daily river discharge time series relevant to drainage basins spanning several size orders (102-104 km2) starting in 1914 and define different hydro-climate indices both for the mean and the extreme hydrological events. We apply quantile regression to investigate long-term trends and spectral analysis associated with cross-correlation with SST-based climate indices to identify links to large-scale climate variability modes. River discharge presents a pronounced and coherent variability signal in South America, particularly for wide drainage basins, such as the Amazon and Paraná/La Plata rivers, strongly associated to Pacific and Atlantic Oceans Sea Surface Temperature (SST) anomalies (i.e. ENSO, PDO, AMO). Our analysis evidences that in the NW Argentine Andes, mean discharge values are characterized by statistically significant, mostly positive, long-term trends since 1940, whereas the extreme events present a more non-unidirectional trend pattern. Also, coherent multi-annual to multi-decadal cycles characterizing the discharge pattern have been identified, suggesting that processes linked to SST anomaly-modes strongly control the hydrometeorology variability in the NW Argentina Andes.

  15. Trends and variability of the South American hydrological cycle for the last 2000 years

    NASA Astrophysics Data System (ADS)

    Evangelista, Heitor; Gonzalez Arango, Catalina; Nogueira, Juliana; Monteiro, Leonardo; von Gunten, Lucien; Khodri, Myriam; Neukom, Raphael

    2016-04-01

    The South American continent encloses two of the largest global river basins: The Amazon basin and the La Plata basin. Its hydrological cycle is highly dependent on the water vapour transport advected from tropical-equatorial Atlantic as well as the polar advections. The Pacific Ocean contribution in the continental water budget is largely restricted to the western Andes region. Nevertheless, moderate-to-intense ENSO periods strongly affect more than half of the South American hydrology, influencing the availability of water resources from mountainous regions that are vital to ecosystems and the human economy and wellbeing. Intense droughts and floods observed continentally during the modern epoch have pointed to the need of better understanding the regional climate related issue. Recent paleoclimate advances, especially the creation of high-standard regional proxy record databases, allow describing the South American climate from a new perspective. However, large areas of tropical South America are still underrepresented in those databases. Here we present an effort of the South American PAGES 2k paleo-community LOTRED-SA to fill this gap. The group aims at producing a South American hydro-climate reconstruction from 267 proxy records (mostly tree rings, ice cores, pollen, instrumental precipitation and river flow) and 14 high resolved speleothems data covering the common era. For this study we plan to reanalyse new and existing tree ring and pollen data with respect to instrumental climate data. The well calibrated tree-ring index will be compared to an independently developed hydro-climate reconstruction for the last 2K based on speleothem records (Khodri et al., in prep) using coherence and singular spectral analyses to depict the temporal evolution of the dominant cyclicities the time series. For the more recent period, we will also use long-term instrumental data of precipitation, river flow and air temperature.

  16. eWaterCycle: Live Demonstration of an Operational Hyper Resolution Global Hydrological Model

    NASA Astrophysics Data System (ADS)

    Drost, N.; Sutanudjaja, E.; Hut, R.; van Meersbergen, M.; Donchyts, G.; Bierkens, M. F.; Van De Giesen, N.

    2014-12-01

    The eWaterCycle project works towards running an operational hyper-resolution hydrological global model, assimilating incoming satellite data in real time, and making 14 day predictions of floods and droughts.In our approach, we aim to re-use existing models and techniques as much as possible, and make use of standards and open source software wherever we can. To couple the different parts of our system we use the Basic Model Interface (BMI) as developped in the CSDMS community.Starting point of the eWaterCycle project was the PCR-GLOBWB model built by Utrecht University. The software behind this model has been partially re-engineered in order to enable it to run in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, (currently 10 x 10km).For the data assimilation we make heavy use of the OpenDA system. This allows us to make use of different data assimilation techniques without the need to implement these from scratch. We have developped a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. As a data assimilation technique we currently use an Ensemble Kalman Filter, and are working on a variant of this technique optimized for HPC environments.One of the next steps in the eWaterCycle project is to couple the model with a hydrodynamic model. Our system will start a localized simulation on demand based on triggers in the global model, giving detailed flow and flood forecasting in support of navigation and disaster management.We will show a live demo of our system, including real-time integration of satellite data.

  17. Near-term Intensification of the Hydrological Cycle in the United States

    NASA Astrophysics Data System (ADS)

    Ashfaq, M.; Rastogi, D.; Mei, R.; Kao, S. C.; Naz, B. S.; Gangrade, S.

    2015-12-01

    We present state-of-the-art near-term projections of hydrological changes over the continental U.S. from a hierarchical high-resolution regional modeling framework. We dynamically downscale 11 Global Climate Models (CCSM4, ACCESS1-0, NorESM1-M, MRI-CGCM3, GFDL-ESM2M, FGOALS-g2, bcc-csm1-1, MIROC5, MPI-ESM-MR, IPSL-ESM-MR, CMCC-CM5) from the 5th phase of Coupled Model Inter-comparison Project at 4-km horizontal grid spacing using a modeling framework that consists of a regional climate model (RegCM4) and a hydrological model (VIC). All model integrations span 41 years in the historic period (1965-2005) and 41 years in the near-term future period (2010-2050) under RCP 8.5. The RegCM4 domain covers the continental U.S. and parts of Canada and Mexico at 18-km horizontal grid spacing whereas the VIC domain covers only the continental U.S. at 4-km horizontal grid spacing. Should the emissions continue to rise throughout the next four decades of the 21st century, our results suggest that every region within the continental U.S. will be at least 2°C warmer before the mid-21st century, leading to the likely intensification of the regional hydrological cycle and the acceleration of the observed trends in the cold, warm and wet extremes. We also find an overall increase (decrease) in the inflows to the flood-controlling (hydroelectric) reservoirs across the United States, raising the likelihood of flooding events and significant impacts on the federal hydroelectric power generation. However, certain water-stressed regions such as California will be further constrained by extreme dry and wet conditions; these regions are incapable of storing rising quantities of runoff and wet years will not necessarily equate to an increase in water supply availability. Overall, these changes in the regional hydro-meteorology can have substantial impacts on the natural and human systems across the U.S.

  18. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGESBeta

    Archer, D.

    2015-05-21

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression

  19. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Archer, D.

    2015-05-01

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial-interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. There is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial-interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil

  20. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Inland River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.; Tian, W.; Zhang, Y.; Zhou, J.; Pan, X.; Ge, Y.; Hu, X.

    2013-12-01

    Inland river basins take about 11.4% of the land area of the world and most of them are distributed over arid regions. Understanding the hydrological cycle of inland river basin is important for water resource management in water scarcity regions. This paper illustrated hydrological cycle of a typical inland river basin in China, the Heihe River Basin (HRB). First, water balance in upper, middle and lower reaches of the HRB was conceptualized by analyzing dominant hydrological processes in different parts of the river basin. Then, we used a modeling approach to study the water cycle in the HRB. In the upper reaches, we used the GBHM-SHAW, a distributed hydrological model with a new frozen soil parameterization. In the middle and lower reaches, we used the GWSiB, a three-dimensionally coupled land surface-groundwater model. Modeling results were compared with water balance observations in different landscapes and cross-validated with other results to ensure the reliability. The results show that the hydrological cycle in HRB has some distinctive characteristics. Mountainous area generates almost all of the runoff for the whole river basin. High-elevation zones have much larger runoff/precipitation ratio. Cryospheric hydrology plays an important role. Although snow melting and glacier runoff take less than 25% of total runoff, these processes regulate inter-annual variation of runoff and thus provide stable water resource for oases downstream. Forest area contributes almost no runoff but it smoothes runoff and reduces floods by storing water in soil and releasing it out slowly. In the middle reaches, artificial hydrological cycle is much more dominated than natural one. River water and groundwater, recharged by runoff from mountainous area, is the water resource to support the agriculture and nurture the riparian ecosystem. Precipitation, approximately 150 mm in average, is only a supplement to agriculture use but sufficient to sustain desert vegetation. Water

  1. The mid-cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2002-01-01

    A latitudinal gradient in meteoric ??18O compositions compiled from paleosol sphaerosiderites throughout the Cretaceous Western Interior Basin (KWIB) (34-75??N paleolatitude) exhibits a steeper, more depleted trend than modern (predicted) values (3.0??? [34??N latitude] to 9.7??? [75??N] lighter). Furthermore, the sphaerosiderite meteoric ??18O latitudinal gradient is significantly steeper and more depleted (5.8??? [34??N] to 13.8??? [75??N] lighter) than a predicted gradient for the warm mid-Cretaceous using modern empirical temperature-??18O precipitation relationships. We have suggested that the steeper and more depleted (relative to the modern theoretical gradient) meteoric sphaerosiderite ??18O latitudinal gradient resulted from increased air mass rainout effects in coastal areas of the KWIB during the mid-Cretaceous. The sphaerosiderite isotopic data have been used to constrain a mass balance model of the hydrologic cycle in the northern hemisphere and to quantify precipitation rates of the equable 'greenhouse' Albian Stage in the KWIB. The mass balance model tracks the evolving isotopic composition of an air mass and its precipitation, and is driven by latitudinal temperature gradients. Our simulations indicate that significant increases in Albian precipitation (34-52%) and evaporation fluxes (76-96%) are required to reproduce the difference between modern and Albian meteoric siderite ??18O latitudinal gradients. Calculations of precipitation rates from model outputs suggest mid-high latitude precipitation rates greatly exceeded modern rates (156-220% greater in mid latitudes [2600-3300 mm/yr], 99% greater at high latitudes [550 mm/yr]). The calculated precipitation rates are significantly different from the precipitation rates predicted by some recent general circulation models (GCMs) for the warm Cretaceous, particularly in the mid to high latitudes. Our mass balance model by no means replaces GCMs. However, it is a simple and effective means of obtaining

  2. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  3. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  4. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  5. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  6. 30 CFR 816.57 - Hydrologic balance: Activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Hydrologic balance: Activities in or adjacent to perennial or intermittent streams. 816.57 Section 816.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.57 Hydrologic balance: Activities...

  7. Hydrology and geochemistry of small tundra drainage basins in response to active layer disturbance. Progress report

    SciTech Connect

    Rundle, A.S.

    1986-06-01

    Hydrology of far northern drainage basins in which the shallow organic-rich surface layer overlies a permanently frozen substrate, is poorly known, yet is of great importance in evaluating natural stability and in predicting response to disturbances effecting flow and the distribution of nutrient and sedimentary ions. First-year study of a 2.5 km/sup 2/ watershed supports the primacy of the short duration melt-off in the yearly hydrologic/geochemical cycle. At this time basin storage capacity is minimum and total runoff carries with it a seasonal maximum of nutrient ions, suspended and dissolved solids. Subsequent to melt-off, base flow is high but decreases as thaw releases seasonally frozen water, including some temporarily stored melt-off. Spring storm events produce rapid peak discharges because of the low storage capacity in the catchment. Rare, high intensity, short duration storms in early season can produce discharges that rival diurnal peaks at melt-off. With activation of vegetation following melt-off, some nutrient ions are no longer detectable and pH becomes acid. Summer drought periods are common and if sufficiently protracted, reduce stream flow to barely measurable quantities. At such times hydrographs may show small diurnal fluctuations in response to evapotranspiration cycles. Ion concentrations show an increase as senescence commences in mid-August.

  8. Land-Use and Land-Cover Change and Associated Changes in Hydrological Cycle and Energy Exchange Processes in Monsoon Asian Region (Invited)

    NASA Astrophysics Data System (ADS)

    Jain, A.; Liang, M.; Barman, R.; Erickson, M.; Cao, L.; Bala, G.

    2009-12-01

    The climate system is affected by land-use and land-cover changes (LULCC) through changes in hydrological cycle, energy exchange processes and soil biogeochemistry. These changes affect climate both at global and regional scales. Here, we use the terrestrial component of the Integrated Science Assessment Model (ISAM), with satellite data to examine the effects of LULCC and other terrestrial ecosystem processes on variability in soil hydrology and energy fluxes in monsoon Asian region. ISAM’s energy and hydrology processes have been adapted from the Common Land Model (CoLM) and the Community Land Model (CLM 3.5), respectively. CoLM uses a two-big-leaf scheme for modeling canopy temperature, photosynthesis and stomatal conductance, improving CO2 and water flux estimates. The soil/snow hydrology, incorporated from CLM3.5 (10 layers for soil and up to 5 layers for snow) improves runoff and ground water table predictions. This talk will focus on describing the results of a series of modeling experiments investigating the influence of LULCC on terrestrial moisture flux, latent and sensible heat fluxes, and continental runoff (surface & subsurface) in monsoon Asian region. These experiments were conducted based on measured activities of LULCC and observed atmospheric forcings over the last century.

  9. Influence of cloud radiative effects on tropical circulation and hydrological cycle in the Mid-Holocene

    NASA Astrophysics Data System (ADS)

    Izumi, Kenji; Kageyama, Masa; Bony, Sandrine; Braconnot, Pascale

    2016-04-01

    Paleoenvironmental data in particular, vegetation and lake-status at mid-Holocene (6,000 years ago) in Sahara shows that African monsoon extended much further north than today. Much of this change results from the changes in insolation driven by precession of the Earth's orbit, but in the state-of-the-art climate models, this factor alone is insufficient to explain the magnitude of the change. Previous studies showed that ocean and vegetation feedbacks affect the mid-Holocene monsoon and that the incorporation of these feedbacks in models improves the simulation of the hydrological cycle. However, it is not sufficient to reduce the discrepancies between simulated and reconstructed surface climates. In this study, we investigate the extent to which the simulation of cloud-radiative effects matters for the simulation of paleo-climatic changes, and past changes in the position and strength of the tropical rain belts in particular. This is done by running a general circulation model with and without clouds-radiation interactions using the IPSL model. The impact of cloud -radiative effects, which prevents the precipitation band to move north, on the tropical circulation and precipitation changes in mid-Holocene experiments will be discussed. Additionally, we will show the simulated effects of land cover change over Sahara.

  10. Water Vapor Tacers as Diagnostics of the Regional Atmospheric Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle, especially in North America where moisture transport and local evaporation are important sources of water for precipitation. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. All evaporative sources of water are accounted for by tracers, and the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The Geostationary Operational Environmental Satellites General Circulation Model (GEOS GCM) is used to simulate several summer periods to determine the source regions of precipitation for the United States and India. Using this methodology, a detailed analysis of the recycling of water, interannual variability of the sources of water and links to the Great Plains low-level jet and North American monsoon will be presented. Potential uses in GCM sensitivity studies, predictability studies and data assimilation especially regarding the North American monsoon and GEWEX America Prediction Project (GAPP) will be discussed.

  11. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle.

    PubMed

    Ramanathan, V; Chung, C; Kim, D; Bettge, T; Buja, L; Kiehl, J T; Washington, W M; Fu, Q; Sikka, D R; Wild, M

    2005-04-12

    South Asian emissions of fossil fuel SO(2) and black carbon increased approximately 6-fold since 1930, resulting in large atmospheric concentrations of black carbon and other aerosols. This period also witnessed strong negative trends of surface solar radiation, surface evaporation, and summer monsoon rainfall. These changes over India were accompanied by an increase in atmospheric stability and a decrease in sea surface temperature gradients in the Northern Indian Ocean. We conducted an ensemble of coupled ocean-atmosphere simulations from 1930 to 2000 to understand the role of atmospheric brown clouds in the observed trends. The simulations adopt the aerosol radiative forcing from the Indian Ocean experiment observations and also account for global increases in greenhouse gases and sulfate aerosols. The simulated decreases in surface solar radiation, changes in surface and atmospheric temperatures over land and sea, and decreases in monsoon rainfall are similar to the observed trends. We also show that greenhouse gases and sulfates, by themselves, do not account for the magnitude or even the sign in many instances, of the observed trends. Thus, our simulations suggest that absorbing aerosols in atmospheric brown clouds may have played a major role in the observed regional climate and hydrological cycle changes and have masked as much as 50% of the surface warming due to the global increase in greenhouse gases. The simulations also raise the possibility that, if current trends in emissions continue, the subcontinent may experience a doubling of the drought frequency in the coming decades. PMID:15749818

  12. Triazine herbicides in the hydrologic cycle in the Mississippi River basin

    SciTech Connect

    Goolsby, D.A.; Thurman, E.M.; Koplin, D.W.

    1996-10-01

    Triazine herbicides and their metabolites are present in all compartments of the hydrologic cycle in the Mississippi River basin. In unregulated streams, the occurrence of these chemicals is highly seasonal. Concentrations and mass transport increase abruptly during rainstorms in mid-to-late spring following application and concentrations may briefly exceed 50 micrograms per liter in small to medium sized streams. High concentrations may persist during storm events for several months but generally decrease to trace levels by late summer. In contrast, reservoirs with long hydraulic residence times can collect and store the spring flush of herbicide-laden water. As a result moderate concentrations of herbicides can persist year-round In these reservoirs and in streams that receive the outflow. Rainwater in the Midwest can contain 1 to 3 micrograms per liter of atrazine and smaller amounts of cyanazine and triazine metabolites during May and June, but concentrations decrease to low or undetectable levels by late summer. The seasonal pattern in rainwater is similar to that of streams. Triazine herbicides and metabolites also occur in ground water, but detections are less frequent and concentrations are lower than in surface water. Concentrations rarely exceed health limits when wells are properly constructed. Little or no seasonal variation occurs in ground water.

  13. Global aspects of the Los Alamos general circulation model hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Chen, S.-C.; Kao, J.; Langley, D.; Glatzmaier, G.

    1992-01-01

    The global hydrologic cycle in the Los Alamos general circulation model (GCM) is compared to available global observations. Global observations of the water vapor, water-vapor flux and water-vapor flux divergence are derived from the National Meteorological Center's final analysis for the period 1986-1989. The new precipitation data set of Legates and Willmott (1990) is used for the global precipitation observations. Global evaporation is derived as a residual of the precipitation and water-vapor flux divergence. There are a number of similarities as well as discrepancies between the GCM and observations. The large-scale nondivergent and divergent GCM circulations are remarkably similar to the observed circulations; the large-scale GCM precipitation and evaporation patterns are also qualitatively similar to observations. Discrepancies are mainly quantitative and small-scale in nature: the GCM atmosphere is relatively dry which results in a slightly greater evaporation and precipitation rate than is observed; the GCM South Pacific convergence zone is displaced too far to the northwest.

  14. The use of GRACE satellite data to validate the global hydrological cycle as simulated by a global climate mode

    NASA Astrophysics Data System (ADS)

    Boening, C.; Demory, M. E.; Vidale, P. L.; Wiese, D. N.; Roberts, M.; Schiemann, R.; Mizielinski, M.; Watkins, M. M.

    2014-12-01

    This study investigates the use of the Gravity Recovery and Climate Experiment (GRACE) data to validate the global hydrological cycle as simulated by an atmospheric General Circulation Model (GCM), particularly the transport of water from the ocean to the land and vice-versa. Until GRACE, no other observational data were available for such a robust assessment. Usually, moisture transport is calculated by using the water balance equations (e.g. Precipitation-Evaporation), or by using reanalysis data, which are known to have major issues related to the hydrological cycle. By comparing the decade-long record of Earth's gravity field variations measured by GRACE with the terrestrial water storage simulated by GCMs, we can compare the amplitude of the variability in water transport at inter-annual to decadal time scales at global and regional scales. This is an innovative approach to assess GCMs and understand the processes underlying changes in the water cycle. It is by improving our understanding of the mechanisms involved in the hydrological cycle that we will be able to build confidence in model simulations of the evolution of the hydrological cycle with climate change. We make use of the UPSCALE (UK on PRACE: weather resolving Simulations of Climate for globAL Environmental risk) campaign, a traceable hierarchy of global atmospheric simulations (based on the Met Office Unified Model, GA3 formulation), with mesh sizes ranging from 130 km to 25 km, for which five-member ensembles of 27-year, atmosphere-only integrations are available, using present-day forcing. We show here the ability of this climate model, at any resolution, to simulate the inter-annual variability of terrestrial water storage, compared to GRACE. We particularly find that the model is able to capture the regional distribution of changes in terrestrial water transport during El Nino Southern Oscillation events, implying its ability to import more or less water over land during a La Nina or an El

  15. The use of GRACE satellite data to validate the global hydrological cycle as simulated by a global climate model

    NASA Astrophysics Data System (ADS)

    Boening, Carmen; Demory, Marie-Estelle; Vidale, Pier Luigi; Wiese, David; Roberts, Malcolm; Schiemann, Reinhard; Mizielinski, Matthew; Watkins, Michael

    2015-04-01

    This study investigates the use of the Gravity Recovery and Climate Experiment (GRACE) data to validate the global hydrological cycle as simulated by an atmospheric General Circulation Model (GCM), particularly the transport of water from the ocean to the land and vice-versa. Until GRACE, no other observational data were available for such a robust assessment. Usually, moisture transport is calculated by using the water balance equations (e.g. Precipitation-Evaporation), or by using reanalysis data, which are known to have major issues related to the hydrological cycle. By comparing the decade-long record of Earth's gravity field variations measured by GRACE with the terrestrial water storage simulated by GCMs, we can compare the amplitude of the variability in water transport at inter-annual to decadal time scales at global and regional scales. This is an innovative approach to assess GCMs and understand the processes underlying changes in the water cycle. It is by improving our understanding of the mechanisms involved in the hydrological cycle that we will be able to build confidence in model simulations of the evolution of the hydrological cycle with climate change. We make use of the UPSCALE (UK on PRACE: weather resolving Simulations of Climate for globAL Environmental risk) campaign, a traceable hierarchy of global atmospheric simulations (based on the Met Office Unified Model, GA3 formulation), with mesh sizes ranging from 130 km to 25 km, for which five-member ensembles of 27-year, atmosphere-only integrations are available, using present-day forcing. We show here the ability of this climate model, at any resolution, to simulate the inter-annual variability of terrestrial water storage, compared to GRACE. We particularly find that the model is able to capture the regional distribution of changes in terrestrial water transport during El Nino Southern Oscillation events, implying its ability to import more or less water over land during a La Nina or an El

  16. A possible activity cycle in Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D.

    2007-01-01

    Context: Several late-type stars present activity cycles resembling the Solar one. This fact has been observed mostly in stars ranging from F to K, i.e., in stars with a radiative core and an outer convective layer. Aims: This work aims at studying whether an activity cycle can be detected in the dM5.5e star Proxima Centauri, which is supposed to be completely convective. Methods: We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed over 7 years. We discarded the spectra that present flare activity, and analyze the remaining activity levels using four different statistical techniques to look for a period of activity. Results: We find strong evidence of a cyclic activity, with a period of ~442 days. We also estimate that the Ca ~II S index varies around 130% due to activity variations outside of flares.

  17. A possible activity cycle in Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D.

    Several late-type stars (stars with a radiative core and an outer convective layer) present activity cycles resembling the Solar one. This work aims at studying whether an activity cycle can be detected in the dM5.5e star Proxima Centauri, which is supposed to be completely convective. We present periodical medium-resolution echelle observations covering the complete visual range, which were taken at the CASLEO Argentinean Observatory. These observations are distributed along 7 years. We analize the activity levels to look for a period of activity. We find strong evidence of a cyclic activity, with a period of ˜442 days. We also estimated that the Ca II S index varies around 130% due to activity variations outside of flares.

  18. Global water cycle and solar activity variations

    NASA Astrophysics Data System (ADS)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  19. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake

    USGS Publications Warehouse

    Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.

    2016-01-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  20. Hydrologic Controls on Nitrogen Cycling Processes and Functional Gene Abundance in Sediments of a Groundwater Flow-Through Lake.

    PubMed

    Stoliker, Deborah L; Repert, Deborah A; Smith, Richard L; Song, Bongkeun; LeBlanc, Denis R; McCobb, Timothy D; Conaway, Christopher H; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B

    2016-04-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient. PMID:26967929

  1. Recent variability in the hydrological cycle of tropical Asia from oxygen isotopes of tree cellulose

    NASA Astrophysics Data System (ADS)

    Zhu, Mengfan

    This dissertation investigates hydrological variability within tropical Asia over the past several few centuries as reflected in the stable oxygen isotope composition of atmospheric moisture. High-resolution water isotope records are developed from trees collected from northern Thailand, southern Cambodia, and eastern part of the Tibetan Plateau. These records are examined to assess whether and how the 20th century is unique in terms of the hydrological conditions in tropical Asia under the influences of both monsoon and ENSO with the observed temperature changes. In northern Thailand, the oxygen isotopic composition (δ 18O) of tree cellulose samples of Pinus kesiya from a montane forest has been analyzed in subannual resolution for the past 80 years. The cellulose δ18O values exhibit a distinctive annual cycle with an amplitude of up to 12 ‰, which is interpreted to reflect primarily the seasonal cycle of precipitation δ18 O. The cellulose δ18O annual mean values correlate significantly with the amount of summer monsoon precipitation over the India subcontinent, corroborating recent studies that suggest the so-called "isotope amount effect" in the tropical precipitation δ18O reflects the hydrological processes of the upstream or the moisture source regions instead of the rainfall amount at the local site. No obvious trend in the summer monsoon precipitation is detected from the cellulose δ 18O record. However, the record does suggest a temporal weakening relationship between the Indian Monsoon and ENSO over the 20th century. The annual maxima in the cellulose δ18O values are representative of the moisture balance during the winter dry season, and possibly document a decreasing trend in the isotopically-distinct fog water input during the dry season because of the warming in the 20th century. Isotope chronologies of Pinus merkusii from a coastal lowland forest in Cambodia have been generated to investigate hydrological variability over the Indo

  2. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    NASA Technical Reports Server (NTRS)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  3. How active was solar cycle 22?

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Pesnell, W. D.; Woods, T. N.; Rottman, G. J.

    1993-01-01

    Solar EUV observations from the Langmuir probe on Pioneer Venus Orbiter suggest that at EUV wavelengths solar cycle 22 was more active than solar cycle 21. The Langmuir probe, acting as a photodiode, measured the integrated solar EUV flux over a 13 1/2 year period from January 1979 to June 1992, the longest continuous solar EUV measurement. The Ipe EUV flux correlated very well with the SME measurement of L-alpha during the lifetime of SME and with the UARS SOLSTICE L-alpha from October 1991 to June 1992 when the Ipe measurement ceased. Starting with the peak of solar cycle 21, there was good general agreement of Ipe EUV with the 10.7 cm, Ca K, and He 10830 solar indices, until the onset of solar cycle 22. From 1989 to the start of 1992, the 10.7 cm flux exhibited a broad maximum consisting of two peaks of nearly equal magnitude, whereas Ipe EUV exhibited a strong increase during this time period making the second peak significantly higher than the first. The only solar index that exhibits the same increase in solar activity as Ipe EUV and L-alpha during the cycle 22 peak is the total magnetic flux. The case for high activity during this peak is also supported by the presence of very high solar flare intensity.

  4. Impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Flanner, M. G.; Leung, L.; Wang, W.

    2010-12-01

    The Tibetan Plateau (TP) has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of Asian people, but the TP glaciers have been retreating faster than those anywhere else in the world. In this study a series of experiments with a global climate model are designed to simulate radiative forcing (RF) of black carbon (BC) in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 µg/kg. Because of high aerosol content in snow and large incident solar radiation, the TP exhibits the largest surface RF induced by BC in snow compared to other snow-covered regions in the world. The BC-induced snow albedo perturbations generate surface RF of 5-15 W/m2 during spring. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer, i.e. a trend toward earlier melt dates. The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its thermodynamical forcing. During boreal spring, aerosols are transported by

  5. Quantifying components of the hydrologic cycle in Virginia using chemical hydrograph separation and multiple regression analysis

    USGS Publications Warehouse

    Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.

    2012-01-01

    This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971–2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.

  6. Tracing the hydrological cycle by water stable isotopes on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Tian, L.; Yao, T.; Yu, W.

    2013-05-01

    A network of precipitation, river, lake water, ice core and atmospheric vapor sampling was set up on the Tibetan Plateau to trance the moisture origins supplied to the plateau, the inland hydrological cycle process and land surface evaporation processes. This work shows different moisture from Indian Ocean monsoon and the westerlies dominate the precipitation δ18O in the south and north of the plateau respectively, which can cause a difference in precipitation δ18O of about 5‰ in average. Precipitation δ18O bears "temperature effect" in the northern Tibetan Plateau, whereas the seasonal precipitation δ18O shows precipitation "amount effect" in the south. This relation is also held in the ice core records on the plateau. An instance is the δ18O record from shallow ice cores in Muztagata Glacier, Dunde ice cap and Naimona'Nyi Glacier. The ice core δ18O record from monsoon region in south Tibet, such as Dasuopu glacier in Xixiabangma, shows a precipitation "amount effect" at least in the annual scale. Further isotope enrichment can be found in the land surface evaporation processes. A simple case is in the close lake system in Yamdruk-tso catchment, southern part of Tibetan Plateau. Both observation and simulation work shows the enrichment of heavy isotope in lake water can be over 10‰ for δ18O, which is much linked to the local climatic condition. Simulation work also shows that atmospheric vapor isotope is also very important to capture the lake water δD value. However, vapor isotopes data are usually less available on the plateau.

  7. Developing a Domain Ontology: the Case of Water Cycle and Hydrology

    NASA Astrophysics Data System (ADS)

    Gupta, H.; Pozzi, W.; Piasecki, M.; Imam, B.; Houser, P.; Raskin, R.; Ramachandran, R.; Martinez Baquero, G.

    2008-12-01

    A semantic web ontology enables semantic data integration and semantic smart searching. Several organizations have attempted to implement smart registration and integration or searching using ontologies. These are the NOESIS (NSF project: LEAD) and HydroSeek (NSF project: CUAHS HIS) data discovery engines and the NSF project GEON. All three applications use ontologies to discover data from multiple sources and projects. The NASA WaterNet project was established to identify creative, innovative ways to bridge NASA research results to real world applications, linking decision support needs to available data, observations, and modeling capability. WaterNet (NASA project) utilized the smart query tool Noesis as a testbed to test whether different ontologies (and different catalog searches) could be combined to match resources with user needs. NOESIS contains the upper level SWEET ontology that accepts plug in domain ontologies to refine user search queries, reducing the burden of multiple keyword searches. Another smart search interface was that developed for CUAHSI, HydroSeek, that uses a multi-layered concept search ontology, tagging variables names from any number of data sources to specific leaf and higher level concepts on which the search is executed. This approach has proven to be quite successful in mitigating semantic heterogeneity as the user does not need to know the semantic specifics of each data source system but just uses a set of common keywords to discover the data for a specific temporal and geospatial domain. This presentation will show tests with Noesis and Hydroseek lead to the conclusion that the construction of a complex, and highly heterogeneous water cycle ontology requires multiple ontology modules. To illustrate the complexity and heterogeneity of a water cycle ontology, Hydroseek successfully utilizes WaterOneFlow to integrate data across multiple different data collections, such as USGS NWIS. However,different methodologies are employed by

  8. Changes in northeast African hydrology and vegetation associated with Pliocene-Pleistocene sapropel cycles.

    PubMed

    Rose, Cassaundra; Polissar, Pratigya J; Tierney, Jessica E; Filley, Timothy; deMenocal, Peter B

    2016-07-01

    East African climate change since the Late Miocene consisted of persistent shorter-term, orbital-scale wet-dry cycles superimposed upon a long-term trend towards more open, grassy landscapes. Either or both of these modes of palaeoclimate variability may have influenced East African mammalian evolution, yet the interrelationship between these secular and orbital palaeoclimate signals remains poorly understood. Here, we explore whether the long-term secular climate change was also accompanied by significant changes at the orbital-scale. We develop northeast African hydroclimate and vegetation proxy data for two 100 kyr-duration windows near 3.05 and 1.75 Ma at ODP Site 967 in the eastern Mediterranean basin, where sedimentation is dominated by eastern Sahara dust input and Nile River run-off. These two windows were selected because they have comparable orbital configurations and bracket an important increase in East African C4 grasslands. We conducted high-resolution (2.5 kyr sampling) multiproxy biomarker, H- and C-isotopic analyses of plant waxes and lignin phenols to document orbital-scale changes in hydrology, vegetation and woody cover for these two intervals. Both intervals are dominated by large-amplitude, precession-scale (approx. 20 kyr) changes in northeast African vegetation and rainfall/run-off. The δ(13)Cwax values and lignin phenol composition record a variable but consistently C4 grass-dominated ecosystem for both intervals (50-80% C4). Precessional δDwax cycles were approximately 20-30‰ in peak-to-peak amplitude, comparable with other δDwax records of the Early Holocene African Humid Period. There were no significant differences in the means or variances of the δDwax or δ(13)Cwax data for the 3.05 and 1.75 Ma intervals studied, suggesting that the palaeohydrology and palaeovegetation responses to precessional forcing were similar for these two periods. Data for these two windows suggest that the eastern Sahara did not experience the

  9. Intensified hydrologic cycle and increased marine productivity during Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    van Helmond, N. A.; Sluijs, A.; Reichart, G.; Sinninghe Damsté, J. S.; Slomp, C. P.; Brinkhuis, H.

    2012-12-01

    , are abundant during these cooler episodes, suggesting drier conditions with less runoff. After OAE2, abundances of fresh water tolerant dinocyst species diminish, absolute abundances of dinocysts sharply decrease and assemblages point to conditions similar to before OAE2. The combined results, including inorganic geochemical evidence, strongly suggests an intensified hydrological cycle during OAE2.

  10. Glaciers and small ice caps in the macro-scale hydrological cycle - an assessment of present conditions and future changes

    NASA Astrophysics Data System (ADS)

    Lammers, Richard; Hock, Regine; Prusevich, Alexander; Bliss, Andrew; Radic, Valentina; Glidden, Stanley; Grogan, Danielle; Frolking, Steve

    2014-05-01

    Glacier and small ice cap melt water contributions to the global hydrologic cycle are an important component of human water supply and for sea level rise. This melt water is used in many arid and semi-arid parts of the world for direct human consumption as well as indirect consumption by irrigation for crops, serving as frozen reservoirs of water that supplement runoff during warm and dry periods of summer when it is needed the most. Additionally, this melt water reaching the oceans represents a direct input to sea level rise and therefore accurate estimates of this contribution have profound economic and geopolitical implications. It has been demonstrated that, on the scale of glacierized river catchments, land surface hydrological models can successfully simulate glacier contribution to streamflow. However, at global scales, the implementation of glacier melt in hydrological models has been rudimentary or non-existent. In this study, a global glacier mass balance model is coupled with the University of New Hampshire Water Balance/Transport Model (WBM) to assess recent and projected future glacier contributions to the hydrological cycle over the global land surface (excluding the ice sheets of Greenland and Antarctica). For instance, results of WBM simulations indicate that seasonal glacier melt water in many arid climate watersheds comprises 40 % or more of their discharge. Implicitly coupled glacier and WBM models compute monthly glacier mass changes and resulting runoff at the glacier terminus for each individual glacier from the globally complete Randolph Glacier Inventory including over 200 000 glaciers. The time series of glacier runoff is aggregated over each hydrological modeling unit and delivered to the hydrological model for routing downstream and mixing with non-glacial contribution of runoff to each drainage basin outlet. WBM tracks and uses glacial and non-glacial components of the in-stream water for filling reservoirs, transfers of water between

  11. Catchment hydrological change from soil degradation: A model study for assessing urbanization on the terrestrial water cycle

    NASA Astrophysics Data System (ADS)

    Shu, L.; Duffy, C.

    2015-12-01

    It is commonly held that land cover and land use changes from agriculture and urbanization impact the terrestrial water cycle primarily through changes in the land surface and canopy energy balance. Another, and in some cases more important factor is the role that landuse changes have on soil structure, compaction, and loss of carbon on hydrologic performance. The consequential change on soil properties, such as aggregation of soil particles, reduction of voids, impacts on matrix conductivity and macropore fractions, alter the hydrological processes in a watershed. Macropores promote rapid water and gas movement under wet conditions while the soil matrix preserves the water-holding capacity necessary for plant growth. The physically-based Penn State Integrated Hydrologic Model (PIHM) simulates water movement in soil with Richard's equation using an effective matrix-macropore conductivity. The model is able to capture the preferential flow and soil water storage in vertical and horizontal directions. Soil degradation leads to a reduction of the macropore fraction with dramatic changes in overall hydrologic performance under urban development and agricultural landuse practices. The effects on the terrestrial water cycle in the catchment reduce infiltration, soil water availability, recharge and subsurface baseflow to streams, while increasing heavy surface runoff and erosion. The Lancaster area and surrounding watershed in eastern Pennsylvania, USA is a benchmark watershed comprised of urban (24%), agricultural (58%) and forest lands (18%) respectively. After parameter estimation from national geospatial soils, landuse and historical climate reanalysis, three landuse scenarios were developed. 1) Pre-development forest landuse (<1700 AD), (2) deforestation for agriculture and light urban landuse (1700-1900), (3) urban-suburban development (1900-pres.). The watershed model was used to evaluate hydrologic changes due to landuse change and soil degradation. The effects

  12. Evaluation of Boundless Biogeochemical Cycle through Development of Process-Based Eco-Hydrological and Biogeochemical Cycle Model to Incorporate Terrestrial-Aquatic Continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2014-12-01

    Inland water might act as important transport pathway for continental biogeochemical cycle although its contribution has remained uncertain yet due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local-regional-global scales, and can simulate iteratively nonlinear feedback between hydrologic-geomorphic-ecological processes. Because NICE incorporates 3-D groundwater sub-model and expands from previous 1- or 2-D or steady state, the model can simulate the lateral transport pronounced at steeper-slope or riparian/floodplain with surface-groundwater connectivity. River discharge and groundwater level simulated by NICE agreed reasonably with those in previous researches (Niu et al., 2007; Fan et al., 2013) and extended to clarify lateral subsurface also has important role on global hydrologic cycle (Nakayama, 2011b; Nakayama and Shankman, 2013b) though the resolution was coarser. NICE was further developed to incorporate biogeochemical cycle including reaction between inorganic and organic carbons in terrestrial and aquatic ecosystems. The missing role of carbon cycle simulated by NICE, for example, CO2 evasion from inland water (global total flux was estimated as about 1.0 PgC/yr), was relatively in good agreement in that estimated by empirical relation using previous pCO2 data (Aufdenkampe et al., 2011; Laruelle et al., 2013). The model would play important role in identification of greenhouse gas balance of the biosphere and spatio-temporal hot spots, and bridging gap between top-down and bottom-up approaches (Cole et al. 2007; Frei et al. 2012).

  13. Integrated Watershed Management to Rehabilitate the Distorded Hydrologic Cycle in a Korean Urban Region

    NASA Astrophysics Data System (ADS)

    Lee, K.; Chung, E.; Park, K.

    2007-12-01

    Many urbanized watersheds suffer from streamflow depletion and poor stream quality, which often negatively affects related factors such as in-stream and near-stream ecologic integrity and water supply. But any watershed management which does not consider all potential risks is not proper since all hydrological components are closely related. Therefore this study has developed and applied a ten-step integrated watershed management (IWM) procedure to sustainably rehabilitate distorted hydrologic cycles due to urbanization. Step 1 of this procedure is understanding the watershed component and processes. This study proposes not only water quantity/quality monitoring but also continuous water quantity/quality simulation and estimation of annual pollutant loads from unit loads of all landuses. Step 2 is quantifying the watershed problem as potential flood damage (PFD), potential streamflow depletion (PSD), potential water quality deterioration (PWQD) and watershed evaluation index (WEI). All indicators are selected from the sustainability concept, Pressure-State- Response (PSR) model. All weights are estimated by Analytic Hierarchy Process (AHP). Four indices are calculated using composite programming, a kind of multicritera decision making technque. In Step 3 residents' preference on management objectives which consists of flood damage mitigation, prevention of streamflow depletion, and water quality enhancement are quantified. WEI can be recalculated using these values. Step 4 requires one to set the specific goals and objectives based on the results from Step 2 and 3. Objectives can include spatial flood allocation, instreamflow requirement and total maximum daily load (TMDL). Step 5 and 6 are developing all possible alternatives and to eliminate the infeasible. Step 7 is analyzing the effectiveness of all remaining feasible alternatives. The criteria of water quantity are presented as changed lowflow(Q275) and drought flow(Q355) of flow duration curve and number of

  14. POSSIBLE CHROMOSPHERIC ACTIVITY CYCLES IN AD LEO

    SciTech Connect

    Buccino, Andrea P.; Petrucci, Romina; Mauas, Pablo J. D.; Jofré, Emiliano

    2014-01-20

    AD Leo (GJ 388) is an active dM3 flare star that has been extensively observed both in the quiescent and flaring states. Since this active star is near the fully convective boundary, studying its long-term chromospheric activity in detail could be an appreciable contribution to dynamo theory. Here, using the Lomb-Scargle periodogram, we analyze the Ca II K line-core fluxes derived from CASLEO spectra obtained between 2001 and 2013 and the V magnitude from the ASAS database between 2004 and 2010. From both of these totally independent time series, we obtain a possible activity cycle with a period of approximately seven years and a less significant shorter cycle of approximately two years. A tentative interpretation is that a dynamo operating near the surface could be generating the longer cycle, while a second dynamo operating in the deep convection zone could be responsible for the shorter one. Based on the long duration of our observing program at CASLEO and the fact that we observe different spectral features simultaneously, we also analyze the relation between simultaneous measurements of the Na I index (R{sub D}{sup ′}), Hα, and Ca II K fluxes at different activity levels of AD Leo, including flares.

  15. Hydrological cycle in the Danube basin in present and projected future climate conditions: a models' intercomparison perspective

    NASA Astrophysics Data System (ADS)

    Lucarini, V.

    2010-09-01

    We present an intercomparison and verification analysis of several GCMs and RCMs included in the 4th IPCC assessment report on their representation of the hydrological cycle on the Danube river basin for present and (in the case of the GCMs) projected future climate conditions. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few data sets are consistent with the observed discharge values of the Danube at its Delta. This occurs in spite of common nesting of the RCMs into the same run of the same AGCM, and even if the driving AGCM provides itself an excellent estimate. We find consistently that, for a given model, increases in the resolution do not alter the net water balance, while speeding up the hydrological cycle through the enhancement of both precipitation and evaporation by the same amount. We propose that the atmospheric components of RCMs still face difficulties in representing the water balance even on a relatively large scale. Moreover, since for some models the hydrological balance estimates obtained with the runoff fields do not agree with those obtained via precipitation and evaporation, some deficiencies of the land models are also apparent. In the case of the GCMs, the span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are, surprisingly, comparable to those of the RCMs. Both RCMs and GCMs greatly outperform the NCEP-NCAR and ERA-40

  16. The Impact of Land Cover and Land Use Changes on the Hydrological Cycle of the Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Ozdogan, M.; Kurban, A.; Steven, L. I.; Chen, X.

    2015-12-01

    The Tarim Basin, located in NW China, is the largest inland basin in the world. Since 1970s, the basin became modernized agriculturally through unprecedented reclamation which were controlled by the Chinese government to promote cotton production. In 2013, 40% of China's cotton production is harvested in the Tarim Basin, representing 15% of world production. However, these large scale land use transformations lead to overuse of water resources in the upper and middle reaches for irrigation, with severe unintended ecological consequences in the lower reaches. The lower reaches of the Tarim River dried up gradually during the 1970s. In 2000, a water release project was launched to meet the ecological water demands of the river's lower reaches. So far there have been 15 water releases with 1.7 billion USD invested. This work aims to improve our understanding of the impacts on the hydrologic cycle from land-use/land-cover change activities in the Tarim Basin by bridging boundaries between different disciplines and integrating them to portray all the key processes involved. This multidisciplinary approach includes analysis of remotely sensed imagery, application of a dynamic crop modelling framework, and simulation analyses with a transient, 2D, variably-saturated groundwater model. My primary findings show that in 2006, about 25820 km2 were identified as irrigated field. This is a 41% increase from 1970s, when the total irrigated area was only 18250 km2. The rapid expansions in irrigate fields, together with climate change, have affected the partitioning of water between the land surface and the lower atmosphere through changing evapotranspiration patterns. Approximately 7 km3 of water entered the atmosphere through crop evapotranspiration in 1971, but by 2006 this value had increased to nearly 11 km3. But changes in climatic conditions accounted for only 20% of the total increase in ET. In terms of ecological restoration, the study shows the current water releases

  17. The Heliosphere Through the Solar Activity Cycle

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Lanzerotti, L. J.; Suess, S. T.

    2006-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar ESA and NASA have now unamiously agreed a third extension to operate the highly successful Ulysses spacecraft until March 2008 and, in 2007 and 2008, the European-built space probe will fly over the poles of the Sun for a third time. This will enable Ulysses to add an important chapter to its survey of the high-latitude heliosphere and this additional material would be included in a 2nd edition of this book.

  18. Global Carbon Cycle Perturbations and Implications for Arctic Hydrology during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Kump, L.; Diefendorf, A. F.; Freeman, K. H.

    2011-12-01

    The Paleocene-Eocene Thermal Maximum (PETM; ca. 55.9 Ma) was an interval of geologically abrupt global warming lasting ~200 ka. It has been proposed as an ancient analogue for future climate response to CO2 emission from fossil fuel burning. The onset of this event is fueled by a large release of 13C-depleted carbon into the ocean-atmosphere system. However, there is a large discrepancy in the magnitude of the carbon isotope excursion (CIE) between marine and terrestrial records. Here we present new organic geochemical data and stable carbon isotope records from n-alkanes and pristane extracted from core materials representing the most expanded PETM section yet recovered from a nearshore marine early Cenozoic succession from Spitsbergen. The low hydrogen index and oxygen index indicate that organic matter has been thermally altered, consistent with n-alkanes that do not show a clear odd-over-even predominance as reflected by the low and constant carbon preference index. The δ13C records of long chain n-alkanes from core BH9-05 track the δ13C recorded in total organic carbon, but are ~3% more negative prior to the CIE, ~4.5% more negative during the CIE, and ~4% more negative after the CIE. An orbital age model derived from the same core suggests the CIE from n-alkanes appears more abruptly onset than the bulk organic carbon, indicating possibly climate-induced modification to the observed feature in n-alkanes. In addition, the carbon isotope values of individual long-chain (n-C27 to n-C31) n-alkanes tend to become less negative with increasing chain length resulting in the smallest magnitude CIEs in longer chain lengths (i.e. n-C31) and the largest magnitude CIEs in shorter chain lengths (i.e. n-C27). We are currently considering the effect of plant community and paleoclimate on the observed pattern of CIE in n-alkanes to evaluate carbon cycle perturbations and Arctic hydrology changes during the PETM. One interpretation of these patterns is that there was an

  19. Overview of the effects of the coal fuel cycle on hydrology, water quality and use, and aquatic ecology

    SciTech Connect

    Cushman, R.M.; Gough, S.B.; Moran, M.S.

    1980-05-01

    Literature is summarized for the effects of the coal fuel cycle (mining, mine-site processing, transportation, storage, onsite processing, combustion, and waste collection and disposal) on water resources. Aspects considered include surface- and ground-water hydrology, water quality and use, and aquatic ecology. Water use is discussed with regard to both availability and water quality constraints on use. Requirements of the recently enacted Surface Mining Control and Reclamation Act are introduced where appropriate. For the combustion step in the fuel cycle, only those effects which are specific to coal as a fuel are addressed. Effects not specific to coal use (such as thermal effects, impingement, and entrainment resulting from cooling water withdrawal and use) are not considered. Reference is made to more exhaustive studies of the topics reviewed. A summary of the major environmental effects of the coal fuel cycle is given below.

  20. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland

    NASA Astrophysics Data System (ADS)

    Coleman Wasik, J. K.; Engstrom, D. R.; Mitchell, C. P. J.; Swain, E. B.; Monson, B. A.; Balogh, S. J.; Jeremiason, J. D.; Branfireun, B. A.; Kolka, R. K.; Almendinger, J. E.

    2015-09-01

    A series of severe droughts during the course of a long-term, atmospheric sulfate-deposition experiment in a boreal peatland in northern Minnesota created a unique opportunity to study how methylmercury (MeHg) production responds to drying and rewetting events in peatlands under variable levels of sulfate loading. Peat oxidation during extended dry periods mobilized sulfate, MeHg, and total mercury (HgT) to peatland pore waters during rewetting events. Pore water sulfate concentrations were inversely related to antecedent moisture conditions and proportional to past and current levels of atmospheric sulfate deposition. Severe drying events caused oxidative release of MeHg to pore waters and resulted in increased net MeHg production likely because available sulfate stimulated the activity of sulfate-reducing bacteria, an important group of Hg-methylating bacteria in peatlands. Rewetting events led to increased MeHg concentrations across the peatland, but concentrations were highest in peat receiving elevated atmospheric sulfate deposition. Dissolved HgT concentrations also increased in peatland pore waters following drought but were not affected by sulfate loading and did not appear to be directly controlled by dissolved organic carbon mobilization to peatland pore waters. Peatlands are often considered to be sinks for sulfate and HgT in the landscape and sources of MeHg. Hydrologic fluctuations not only serve to release previously sequestered sulfate and HgT from peatlands but may also increase the strength of peatlands as sources of MeHg to downstream aquatic systems, particularly in regions that have experienced elevated levels of atmospheric sulfate deposition.

  1. Recent Advances in GEO Water Cycle Activities

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2009-12-01

    Over the past few years GEO (Group on Earth Observations) efforts within the Water Societal Benefit Area (SBA) have been coordinated by the Science Committee of the former Integrated Global Observing Strategy Partnership (IGOS-P) IGWCO (Integrated Global Water Cycle Observations) theme. Within this framework a number of projects related to data system design, product development, and capacity building are being carried out. GEO has recently consolidated the Water SBA activities into three tasks, namely Droughts, Floods and Water Resource Management; Capacity Building for Water Resource Management (in Asia, Africa and the Americas); and Integrated Products for Water Resource Management and Research. In order to strengthen interactions with the GEO and its User Interface Committee, a Water Cycle Community of Practice (COP) was initiated. In addition, within the past year, the IGWCO Science Committee has decided to also function as a Community of Practice in collaboration with the existing Water Cycle COP. This overview will provide background and an update on the GEO Water SBA activities with an emphasis of the way in which these activities are being integrated within the three tasks. It will also describe activities that are planned for 2010 to facilitate this integration. Recent advances related to drought monitoring, capacity and network building, and observational and data systems will be highlighted. New water-related activities arising from collaborations between US GEO and Canada GEO, and through activities within the GEO Architecture and Data Committee, will also be described. This presentation will conclude with a longer-term outlook for water within the GEO framework and provide some guidance for interested experts on how they can become involved in helping to implement these plans.

  2. Impact of the assimilation of satellite soil moisture and LST on the hydrological cycle

    NASA Astrophysics Data System (ADS)

    Laiolo, Paola; Gabellani, Simone; Delogu, Fabio; Silvestro, Francesco; Rudari, Roberto; Campo, Lorenzo; Boni, Giorgio

    2014-05-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce ground based data. The aim of this work is to investigate the impacts on the performances of a distributed hydrological model (Continuum) of the assimilation of satellite-derived soil moisture products and Land Surface (LST). In this work three different soil moisture (SM) products, derived by ASCAT sensor, are used. These data are provided by the EUMETSAT's H-SAF (Satellite Application Facility on Support to Operational Hydrology and Water Management) program. The considered soil moisture products are: large scale surface soil moisture (SM OBS 1 - H07), small scale surface soil moisture (SM OBS 2 - H08) and profile index in the roots region (SM DAS 2 - H14). These data are compared with soil moisture estimated by Continuum model on the Orba catchment (800 km2), in the northern part of Italy, for the period July 2012-June 2013. Different assimilation experiments have been performed. The first experiment consists in the assimilation of the SM products by using a simple Nudging technique; the second one is the assimilation of only LST data, derived from MSG satellite, and the third is the assimilation of both SM products and LST. The benefits on the model predictions of discharge, LST and soil moisture dynamics were tested.

  3. Regional Climate Simulations of the Hydrological Cycle in the Iberian Peninsula with a Coupled WRF-HYDRO Model

    NASA Astrophysics Data System (ADS)

    Rios-Entenza, A.; Miguez-Macho, G.

    2008-12-01

    Land-atmosphere water exchanges and heat fluxes play an important role in climate and particularly in controlling precipitation in water-limited regions. One of such regions is the Iberian Peninsula, and in this study we examine the relevance of water recycling in convective precipitation regimes of the Fall and Spring there, when rainfall is critical for agriculture and many other human activities. We conducted simulations with WRF-ARW model at 5 km horizontal resolution, using a 1500 km x 1500 km nested grid that covers the Iberian Peninsula, with a parent domain that uses spectral nudging in order to avoid the distortion of the large-scale circulation caused by the interaction of the modeled flow with the lateral boundaries of the nested grid. For land-surface interactions we coupled WRF with the LEAF-HYDRO land surface model, which includes water table dynamics. We use therefore a tool that simulates the entire water cycle, including the water table, which has been reported to be critical for soil moisture dynamics in semi-arid regions like the Iberian Peninsula. For each one of the events that we selected, we performed two simulations: a control one, where all land-atmosphere feedbacks are taken into account, and the experiment, where infiltration of the precipitated water into the soil was suppressed. In this manner we explore the role of upward latent and sensible heat fluxes and evapotranspiration in precipitation dynamics. Preliminary results suggest that water recycling is a key factor in extending convective precipitation during several days, and that the total new water added in the area as a whole is only a fraction of the total measured rainfall. An estimation of this fraction is very important to better understanding the water budget and for hydrological planning in this water-stressed region.

  4. Lacustrine 87Sr/86Sr as a tracer to reconstruct Milankovitch forcing of the Eocene hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Baddouh, M'bark; Meyers, Stephen R.; Carroll, Alan R.; Beard, Brian L.; Johnson, Clark M.

    2016-08-01

    The Green River Formation (GRF) provides one of the premier paleoclimate archives of the Early Eocene Climatic Optimum (∼50 Ma), representing the apex of the early Cenozoic greenhouse climate. Rhythmic lake-level variability expressed in the GRF has inspired numerous hypotheses for the behavior of the Eocene hydrologic cycle, including its linkage to astronomical forcing, solar variability, and the El Niño Southern Oscillation (ENSO). However, the lack of sufficient proxy data to document atmospheric water-mass transport and the geographic pattern of evaporation/precipitation/runoff has made it difficult to discriminate between different models for astronomical forcing. Variable 87Sr/86Sr ratios of bedrock that encompass the GRF provide an opportunity to reconstruct the spatial expression of the Eocene hydrologic cycle and its linkage to lake level. Here Sr isotope data from the Wilkins Peak Member, a rhythmic succession that has been demonstrated to record Milankovitch forcing of lake levels, indicate that high lake levels reflect an increased proportion of runoff from less radiogenic rocks west of the basin, eliminating a number of the existing astronomical-forcing hypotheses. The 87Sr/86Sr variability is consistent with a change in mean ENSO state, which is predicted by climate models to be linked to orbital-insolation. Thus, the 87Sr/86Sr data reveal a coupling of high frequency (ENSO) and low frequency (astronomical) climate variability, and also predict the existence of sizable astronomically-forced alpine snowpack during the last greenhouse climate. More broadly, this study demonstrates the utility of 87Sr/86Sr as a powerful tool for reconstructing the deep-time hydrologic cycle.

  5. The Role of Data Assimilation in the Study of Regional and Global Variability of the Hydrological Cycle

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Chang, Yehui; Chen, Tsing-Chang

    1999-01-01

    In the coming years, researchers will have at their disposal a host of new observations from advanced space-based sensors (e.g. the Tropical Rainfall Measuring Mission, EOS Terra and PM missions) providing, among other things, a more complete and accurate description of various components of the Earth's hydrological cycle. Also, increasingly more sophisticated and comprehensive geophysical models will provide researchers better tools for simulating the hydrological cycle, and for carrying out mechanistic studies of the role of moist processes in the climate system. In addition, new data sets generated with global four-dimensional data assimilation (4DDA) systems will provide comprehensive and complete information on both the state and forcing of the climate system. Ideally, the 4DDA systems optimally incorporate all relevant information from the observations together with a first guess from a state-of-the-art geophysical model to produce a "best" estimate of the climate state. Furthermore, to the extent that the assimilating models are realistic and are constrained by the observations, they should provide reliable estimates of the associated physical processes or climate forcing fields. While operational weather centers now have a considerable history of providing reliable estimates of the basic atmospheric state variables, the associated processes or diagnostic fields (which are less well constrained by the observations and sensitive to errors in the model's physical parameterizations) are still considered experimental and of uncertain quality. In this study we will examine the current generation of reanalysis products to assess the capabilities of 4DDA systems to represent components of the hydrological cycle. The focus is on the role of the model in providing consistent estimates of moist processes. We will also assess whether current observations provide sufficient constraints on these model- generated fields.

  6. An intensified hydrological cycle in the simulation of geoengineering by cirrus cloud thinning using ice crystal fall speed changes

    NASA Astrophysics Data System (ADS)

    Jackson, L. S.; Crook, J. A.; Forster, P. M.

    2016-06-01

    Proposals to geoengineer Earth's climate by cirrus cloud thinning (CCT) potentially offer advantages over solar radiation management schemes: amplified cooling of the Arctic and smaller perturbations to global mean precipitation in particular. Using an idealized climate model implementation of CCT in which ice particle fall speeds were increased 2×, 4×, and 8× we examine the relationships between effective radiative forcing (ERF) at the top of atmosphere, near-surface temperature, and the response of the hydrological cycle. ERF was nonlinear with fall speed change and driven by the trade-off between opposing positive shortwave and negative longwave radiative forcings. ERF was -2.0 Wm-2 for both 4× and 8× fall speeds. Global mean temperature decreased linearly with ERF, while Arctic temperature reductions were amplified compared with the global mean change. The change in global mean precipitation involved a rapid adjustment (~ 1%/Wm2), which was linear with the change in the net atmospheric energy balance, and a feedback response (~2%/°C). Global mean precipitation and evaporation increased strongly in the first year of CCT. Intensification of the hydrological cycle was promoted by intensification of the vertical overturning circulation of the atmosphere, changes in boundary layer climate favorable for evaporation, and increased energy available at the surface for evaporation (from increased net shortwave radiation and reduced subsurface storage of heat). Such intensification of the hydrological cycle is a significant side effect to the cooling of climate by CCT. Any accompanying negative cirrus cloud feedback response would implicitly increase the costs and complexity of CCT deployment.

  7. Evaluation of hydrological cycle in the major European midlatitude river basins in the frame of the CORDEX project

    NASA Astrophysics Data System (ADS)

    Georgievski, Goran; Keuler, Klaus

    2013-04-01

    Water supply and its potential to increase social, economic and environmental risks are among the most critical challenges for the upcoming decades. Therefore, the assessment of the reliability of regional climate models (RCMs) to represent present-day hydrological balance of river basins is one of the most challenging tasks with high priority for climate modelling in order to estimate range of possible socio-economic impacts of the climate change. However, previous work in the frame of 4th IPCC AR and corresponding regional downscaling experiments (with focus on Europe and Danube river basin) showed that even the meteorological re-analyses provide unreliable data set for evaluations of climate model performance. Furthermore, large discrepancies among the RCMs are caused by internal model deficiencies (for example: systematic errors in dynamics, land-soil parameterizations, large-scale condensation and convection schemes), and in spite of higher resolution RCMs do not always improve much the results from GCMs, but even deteriorate it in some cases. All that has a consequence that capturing impact of climate change on hydrological cycle is not an easy task. Here we present state of the art of RCMs in the frame of the CORDEX project for Europe. First analysis shows again that even the up to date ERA-INTERIM re-analysis is not reliable for evaluation of hydrological cycle in major European midlatitude river basins (Seine, Rhine, Elbe, Oder, Vistula, Danube, Po, Rhone, Garonne and Ebro). Therefore, terrestrial water storage, a quasi observed parameter which is a combination of river discharge (from Global River Discharge Centre data set) and atmospheric moisture fluxes from ERA-INTERIM re-analysis, is used for verification. It shows qualitatively good agreement with COSMO-CLM (CCLM) regional climate simulation (abbreviated CCLM_eval) at 0.11 degrees horizontal resolution forced by ERA-INTERIM re-analysis. Furthermore, intercomparison of terrestrial water storage

  8. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  9. GEO Water Cycle Activities and Plans

    NASA Astrophysics Data System (ADS)

    Lawford, R.; Koike, T.; Ishida, C.; Grabs, W.

    2008-12-01

    The Group on Earth Observations (GEO) consists of more than 70 countries and 40 international organizations which are working together to develop the Global Earth Observation System of Systems (GEOSS). Since its launch in 2004, GEO has stimulated a wide range of activities related to data systems and their architecture, the development of science and technology to support observational programs, user interactions and interfaces, and capacity building. GEO tasks directed at Water Resources Management, one of the nine GEO Societal Benefit areas, are an integral part of these developments. They draw heavily upon the activities of the Integrated Global Water Cycle Observations (IGWCO) theme and on the activities and infrastructure provided through GEO and its committees. Within the GEO framework the water related activities have been focused on four specific tasks namely integrated data set development; information for floods, droughts and water management; water quality, and capacity building. Currently these efforts are being facilitated by the IGWCO theme that was formed under the former Integrated Global Observing Strategy Partnership (IGOS-P). With the dissolution of this partnership, other mechanisms, including the GEO Water Cycle Community of Practice, are being considered as new opportunitites for coordinating the work of the theme and the water-related GEO tasks. This talk provides a description of the GEO water tasks and reviews the progress that has been made in addressing them. It also provides a perspective on new opportunities and briefly describes some of the mechanisms, such as the Water Cycle Community of Practice, that could be expanded to coordinate a more comprehensive set of water tasks and greater community involvement.

  10. Active layer dynamics and arctic hydrology and meteorology. Final report

    SciTech Connect

    Not Available

    1993-10-01

    Man`s impact on the environment is increasing with time. To be able to evaluate anthropogenic impacts on an ecosystems, it is necessary first to understand all facets of how the ecosystems works: what the main processes (physical, biological, chemical) are, at what rates they proceed, and how they can be manipulated. Arctic ecosystems are dominated by physical processes of energy exchange. This project has concentrated on a strong program of hydrologic and meteorologic data collection, to better understand dominant physical processes. Field research focused on determining the natural annual and diurnal variability of meteorologic and hydrologic variables, especially those which may indicate trends in climatic change. Comprehensive compute models are being developed to simulate physical processes occurring under the present conditions and to simulate processes under the influence of climatic change.

  11. Coronal Activity and Extended Solar Cycles

    NASA Astrophysics Data System (ADS)

    Altrock, R. C.

    2012-12-01

    Wilson et al. (1988, Nature 333, 748) discussed a number of solar parameters, which appear at high latitudes and gradually migrate towards the equator, merging with the sunspot "butterfly diagram". They found that this concept had been identified by earlier investigators extending back to 1957. They named this process the "Extended Solar Cycle" (ESC). Altrock (1997, Solar Phys. 170, 411) found that this process continued in Fe XIV 530.3 nm emission features. In cycles 21 - 23 solar maximum occurred when the number of Fe XIV emission regions per day > 0.19 (averaged over 365 days and both hemispheres) first reached latitudes 18°, 21° and 21°, for an average of 20° ± 1.7°. Other recent studies have shown that Torsional Oscillation (TO) negative-shear zones are co-located with the ESC from at least 50° down to the equator and also in the zones where the Rush to the Poles occur. These phenomena indicate that coronal activity occurring up to 50° and higher latitudes is related to TO shear zones, another indicator that the ESC is an important solar process. Another high-latitude process, which appears to be connected with the ESC, is the "Rush to the Poles" ("Rush") of polar crown prominences and their associated coronal emission, including Fe XIV. The Rush is is a harbinger of solar maximum (cf. Altrock, 2003, Solar Phys. 216, 343). Solar maximum in cycles 21 - 23 occurred when the center line of the Rush reached a critical latitude. These latitudes were 76°, 74° and 78°, respectively, for an average of 76° ± 2°. Applying the above conclusions to Cycle 24 is difficult due to the unusual nature of this cycle. Cycle 24 displays an intermittent "Rush" that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6°/yr was found in the north, compared to an average of 9.4 ± 1.7 °/yr in the previous three cycles. This early fit to the Rush would have reached 76° at 2014.6. However, in 2010 the slope increased to 7.5°/yr (an increase

  12. Performance of the CORDEX-Africa regional climate simulations in representing the hydrological cycle of the Niger River basin

    NASA Astrophysics Data System (ADS)

    Mascaro, Giuseppe; White, Dave D.; Westerhoff, Paul; Bliss, Nadya

    2015-12-01

    The water resources of the Niger River basin (NRB) in West Africa are crucial to support the socioeconomic development of nine countries. In this study, we compared and evaluated performances of simulations at 0.44° resolution of several regional climate models (RCMs) of the Coordinated Regional climate Downscaling Experiment (CORDEX) in reproducing the statistical properties of the hydrological cycle of the NRB in the current climate. To capture the large range of climatic zones in the region, analyses were conducted by spatially averaging the water balance components in four nested subbasins. Most RCMs overestimate (order of +10% to +400%, depending on model and subbasin) the mean annual difference between precipitation (P) and evaporation (E), whose observed value was assumed equal to the long-term discharge based on the mass conservation principle. This is due to a tendency to simulate larger mean annual P and a weak hydrological cycle in the E channel. Some exceptions appear in the humid most-upstream subbasin, where a few RCMs underestimate P. Overall, the representation of the water balance is mostly sensitive to the parameterized land surface and atmospheric processes of the nested RCMs, with less influence of the driving general circulation model. This finding is supported by further analyses on seasonal cycle and spatial variability of the water balance components and on model performances in reproducing observed climatology. Results of this work should be considered when RCMs are used directly or in impact studies to develop policies and plan investments aimed at ensuring water sustainability in the NRB.

  13. Flip-flop cycles in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    2006-08-01

    Doppler images and long time series of photometric observations of cool active stars reveal permanent active longitudes on their surfaces. They are found to alternate their dominant activity quasi-periodically which indicates a new type of the activity cycles, flip-flop cycles. In this talk I will review properties of active longitudes and flip-flop cycles on different types of active stars including the Sun.

  14. eWaterCycle: Building an operational global Hydrological forecasting system based on standards and open source software

    NASA Astrophysics Data System (ADS)

    Drost, Niels; Bierkens, Marc; Donchyts, Gennadii; van de Giesen, Nick; Hummel, Stef; Hut, Rolf; Kockx, Arno; van Meersbergen, Maarten; Sutanudjaja, Edwin; Verlaan, Martin; Weerts, Albrecht; Winsemius, Hessel

    2015-04-01

    At EGU 2015, the eWaterCycle project (www.ewatercycle.org) will launch an operational high-resolution Hydrological global model, including 14 day ensemble forecasts. Within the eWaterCycle project we aim to use standards and open source software as much as possible. This ensures the sustainability of the software created, and the ability to swap out components as newer technologies and solutions become available. It also allows us to build the system much faster than would otherwise be the case. At the heart of the eWaterCycle system is the PCRGLOB-WB Global Hydrological model (www.globalhydrology.nl) developed at Utrecht University. Version 2.0 of this model is implemented in Python, and models a wide range of Hydrological processes at 10 x 10km (and potentially higher) resolution. To assimilate near-real time satellite data into the model, and run an ensemble forecast we use the OpenDA system (www.openda.org). This allows us to make use of different data assimilation techniques without the need to implement these from scratch. As a data assimilation technique we currently use (variant of) an Ensemble Kalman Filter, specifically optimized for High Performance Computing environments. Coupling of the model with the DA is done with the Basic Model Interface (BMI), developed in the framework of the Community Surface Dynamics Modeling System (CSDMS) (csdms.colorado.edu). We have added support for BMI to PCRGLOB-WB, and developed a BMI adapter for OpenDA, allowing OpenDA to use any BMI compatible model. We currently use multiple different BMI models with OpenDA, already showing the benefits of using this standard. Throughout the system, all file based input and output is done via NetCDF files. We use several standard tools to be used for pre- and post-processing data. Finally we use ncWMS, an NetCDF based implementation of the Web Map Service (WMS) protocol to serve the forecasting result. We have build a 3D web application based on Cesium.js to visualize the output. In

  15. Activity Cycles in the Hyades and Praesepe

    NASA Astrophysics Data System (ADS)

    Baliunas, Sallie L.

    The giant stars in the Hyades present a well-studied group of stars of spectral type KO III. Their optical properties are quite similar, if not identical. All rotate with the same, slow period. Yet their chromospheric and coronal emission is different one from another, by as much as a factor of ten. We conjecture that this disparity results from sampling during different phases of long-term activity cycles which are present among dwarf stars. Some variation on a three-year timescale has been observed, as well as during phases of rotation modulation, however, at levels too small to explain the discrepancy of the emission strengths between the stars. We propose to investigate the range of chromospheric activity from these giants which are similar in the visible three ways: (a) reobserve the Hyades to search for variability on at least a seven-year timescale; (b) reobserve another young cluster, Praesepe, with four KO III stars similar to those in the Hyades to search for variability on a five-year timescale; (c) extend the sampling to four Hyades moving group stars with similar photospheric properties. The ultraviolet spectra provided by IUE represent the longest time frame, seven years, over which to search for long-term activity variations.

  16. The Annual Glaciohydrology Cycle in the Ablation Zone of the Greenland Ice Sheet: Part 1. Hydrology Model

    NASA Technical Reports Server (NTRS)

    Colgan, William; Rajaram, Harihar; Anderson, Robert; Steffen. Konrad; Phillips, Thomas; Zwally, H. Jay; Abdalati, Waleed

    2012-01-01

    We apply a novel one-dimensional glacier hydrology model that calculates hydraulic head to the tidewater-terminating Sermeq Avannarleq flowline of the Greenland ice sheet. Within a plausible parameter space, the model achieves a quasi-steady-state annual cycle in which hydraulic head oscillates close to flotation throughout the ablation zone. Flotation is briefly achieved during the summer melt season along a approx.17 km stretch of the approx.50 km of flowline within the ablation zone. Beneath the majority of the flowline, subglacial conduit storage closes (i.e. obtains minimum radius) during the winter and opens (i.e. obtains maximum radius) during the summer. Along certain stretches of the flowline, the model predicts that subglacial conduit storage remains open throughout the year. A calculated mean glacier water residence time of approx.2.2 years implies that significant amounts of water are stored in the glacier throughout the year. We interpret this residence time as being indicative of the timescale over which the glacier hydrologic system is capable of adjusting to external surface meltwater forcings. Based on in situ ice velocity observations, we suggest that the summer speed-up event generally corresponds to conditions of increasing hydraulic head during inefficient subglacial drainage. Conversely, the slowdown during fall generally corresponds to conditions of decreasing hydraulic head during efficient subglacial drainage.

  17. From drought to flooding: understanding the abrupt 2010-11 hydrological annual cycle in the Amazonas River and tributaries

    NASA Astrophysics Data System (ADS)

    Carlo Espinoza, Jhan; Ronchail, Josyane; Loup Guyot, Jean; Junquas, Clementine; Drapeau, Guillaume; Martinez, Jean Michel; Santini, William; Vauchel, Philippe; Lavado, Waldo; Ordoñez, Julio; Espinoza, Raúl

    2012-06-01

    In this work we document and analyze the hydrological annual cycles characterized by a rapid transition between low and high flows in the Amazonas River (Peruvian Amazon) and we show how these events, which may impact vulnerable riverside residents, are related to regional climate variability. Our analysis is based on comprehensive discharge, rainfall and average suspended sediment data sets. Particular attention is paid to the 2010-11 hydrological year, when an unprecedented abrupt transition from the extreme September 2010 drought (8300 m3 s-1) to one of the four highest discharges in April 2011 (49 500 m3 s-1) was recorded at Tamshiyacu (Amazonas River). This unusual transition is also observed in average suspended sediments. Years with a rapid increase in discharge are characterized by negative sea surface temperature anomalies in the central equatorial Pacific during austral summer, corresponding to a La Niña-like mode. It originates a geopotential height wave train over the subtropical South Pacific and southeastern South America, with a negative anomaly along the southern Amazon and the southeastern South Atlantic convergence zone region. As a consequence, the monsoon flux is retained over the Amazon and a strong convergence of humidity occurs in the Peruvian Amazon basin, favoring high rainfall and discharge. These features are also reported during the 2010-11 austral summer, when an intense La Niña event characterized the equatorial Pacific.

  18. Hydrological control on carbon export and cycling in three subarctic micro-catchments

    NASA Astrophysics Data System (ADS)

    Ohlanders, N.; Hodson, A. J.; Phoenix, G.

    2011-12-01

    Future climatic change in the Scandinavian subarctic region will likely affect export of organic carbon and inorganic uptake of atmospheric carbon dioxide in weathering reactions. These two processes are both likely to increase in magnitude as a response to increasing precipitation. Whereas the former is linked to processes resulting in a positive feedback to atmospheric CO2, the latter causes sequestration of atmospheric CO2 and therefore provides a negative feedback to global warming. Links between variables such as soil maturity, flow routing, water residence time, carbon export and weathering rates need to be further established in order to evaluate the effects of future climatic change on the hydrology and carbon economy of subarctic catchments. Further, little attention has been given to the long-term development of mentioned hydrologic processes. We present here, detailed water and nutrient mass balances for three subarctic micro-catchments (<1 km2) located along a landscape maturity gradient in the Abisko area in northern Sweden. Stream- and soil water, precipitation and snowpacks were sampled frequently. Annual nutrient yields, flowpath variability, organic content of snowpacks and response in water quality to snowmelt-induced runoff events were assessed within these catchments. Along the landscape maturity gradient studied, there was a large variability in flowpath control on solute composition and yields. This variabilty was characterised by an increasing importance of a groundwater flowpath towards the more mature site, resulting in the highest concentration and yields of weathering product at this site. Long term control on carbon fluxes via hydrologic flowpaths might therefore differ in subarctic Scandinavia compare to the Glacier Bay area in Alaska, for which the importance of groundwater has been shown to decrease with landscape maturity. This is due to the geomorphological setting of these contrasting landscapes; the time/space-substitution and

  19. Modelling Gravimetric Fluctuations due to Hydrological Processes in Active Volcanic Settings

    NASA Astrophysics Data System (ADS)

    Hemmings, B.; Gottsmann, J.; Whitaker, F.

    2014-12-01

    Both static and dynamic gravimetric surveys are widely used to monitor magmatic processes in active volcanic settings. However, attributing residual gravimetric signals solely to magma movement can result in misdiagnosis of a volcano's pre-eruptive state and incorrect assessment of hazard. The relative contribution of magmatic and aqueous fluids to integrated gravimetric and geodetic data has become an important topic for debate, particularly in restless caldera systems. Groundwater migration driven by volcanically-induced pressure changes, and groundwater mass fluctuations associated with seasonal and inter-annual variations in recharge may also contribute to measured gravity changes. Here we use numerical models to explore potential gravimetric signals associated with fundamental hydrological processes, focusing on variations in recharge and hydrogeological properties. TOUGH2 simulations demonstrate the significance of groundwater storage within a thick unsaturated zone (up to 100 m). Changes are dominantly in response to inter-annual recharge variations and can produce measurable absolute gravity variations of several 10s of μgal. Vadose zone storage and the rate of response to recharge changes depend on the hydrological properties. Porosity, relative and absolute permeability and capillary pressure conditions all affect the amplitude and frequency of modelled gravity time series. Spatial variations in hydrologic properties and importantly, hydrological recharge, can significantly affect the phase and amplitude of recorded gravity signals. Our models demonstrate the potential for an appreciable hydrological component within gravimetric measurements on volcanic islands. Characterisation of hydrological processes within a survey area may be necessary to robustly interpret gravity signals in settings with significant recharge fluctuations, a thick vadose zone and spatially variable hydrological properties. Such modelling enables further exploration of feedbacks

  20. Are foreign investments in land leading to an imbalance in the hydrological cycle?

    NASA Astrophysics Data System (ADS)

    Steenhuis, T. S.; Theodore, C.; Makki, F. M.

    2012-12-01

    Over the past few years, large-scale acquisitions of farmland have taken place across the world. Although the land acquisitions are generally portrayed as a land grab in Africa, in almost all cases it is the extra water that is consumed by the crops that brings a new imbalance in the hydrological science. Understanding the imbalance is central to livelihoods and food security of the people downstream because almost all rivers in Africa with the exception of the Congo are being fully consumed before they enter the ocean. In this talk we will show what the effects on the water imbalance caused by foreign and national investments in the Blue Nile basin in the Ethiopian highlands has on the water availability in the downstream countries and whether the imbalance can be made up by increasing irrigation efficiency.

  1. Enhancing our Understanding of the Arctic Atmospheric Hydrological Cycle using Observations from an International Arctic Water Vapor Isotope Network

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, V.; Steen-Larsen, H. C.; Werner, M.

    2014-12-01

    Due to the role of water vapor and clouds in positive feedback mechanisms, water vapor is a key player in the future of Arctic climate. Ecosystems and human societies are vulnerable to climate change through even minor changes in precipitation patterns, including the occurrence of extreme events. It is therefore essential to monitor, understand and model correctly the mechanisms of transport of moisture, at the regional scale. Water isotopes - the relative abundance of heavy and light water in the atmosphere - hold the key to understanding the physical processes influencing future Arctic climate. Water isotope observations in the atmosphere are a modern analog to the Rosetta Stone for understanding the processes involved in evaporation, moisture transport, cloud formation and to track moisture origin. Indeed, technological progress now allows continuous, in situ or remote sensing monitoring of water isotopic composition. In parallel, a growing number of atmospheric circulation models are equipped with the explicit modeling of water stable isotopes, allowing evaluation at the process scale. We present here data obtained through national or bi-national initiatives from stations onboard an icebreaker and land based stations in Greenland, Iceland, Svalbard, and Siberia - together forming an emerging international Arctic water vapor isotope network. Using water tagging and back trajectories we show water vapor of Arctic origin to have a high d-excess fingerprint. This show the potential of using water vapor isotopes as tracer for changes in the Arctic hydrological cycle. Using the network of monitoring stations we quantify using the isotopes advection of air masses and the key processes affecting the water vapor en-route between stations. We have successfully used the obtained atmospheric water vapor isotope observations to benchmark isotope-enabled general circulation models. This comparison allows us to address key processes of the atmospheric hydrological cycle for

  2. The hydrological cycle of the Niger River basin simulated by the CORDEX-Africa regional climate models

    NASA Astrophysics Data System (ADS)

    Mascaro, G.; White, D. D.; Westerhoff, P.; Bliss, N.

    2015-12-01

    The Niger River Basin (NRB) is a large transnational watershed of ~1.5 million km2, whose water resources sustain more than 100 million people of nine countries in West Africa. Evaluating the reliability of climate simulations in the region is essential to support water sustainability and food security under possible future climatic changes and population growth. Here, we assess the ability of a set of state-of-the-art regional climate models (RCMs) of the COordinated Regional climate Downscaling EXperiment (CORDEX)-Africa to reproduce the hydrologic cycle of the NRB. For this aim, we adopt a verification framework based on the mass conservation principle that assumes that the mean annual difference between precipitation and evaporation equals the long-term mean discharge. We focus on four nested sub-basins encompassing different climatic zones with available discharge observations. We found that most RCMs overestimate the mean annual runoff (from +10% to +400%), because of a positive bias in the simulation of precipitation and a weak hydrologic cycle in the evaporation channel. Some exceptions are found in the more humid sub-basin upstream where a few climate simulations are not able to capture the intensity of the West African monsoon. Analyses of the water balance components also revealed that the signature of the RCMs is more significant than that of the driving General Circulation Model, likely due to the specific schemes adopted in the RCMs to parameterize the land-surface processes. This work is useful to increase the utility of regional climate simulations in impact studies supporting the development of water management polices and
planning of hydraulic infrastructures in the basin.

  3. NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes

    NASA Astrophysics Data System (ADS)

    Kuechler, R. R.; Schefuß, E.; Beckmann, B.; Dupont, L.; Wefer, G.

    2013-12-01

    We present a hydrologic reconstruction of the Sahara-Sahel transition, covering the complete Last Glacial cycle (130 ka), based on a combination of plant-wax-specific hydrogen (δD) and carbon isotopes (δ13C). The δD and δ13C signatures of long-chain n-alkanes from ODP Site 659 off NW Africa reveal a significant anti-correlation. Complementary to published pollen data, we infer that this plant-wax signal reflects sensitive responses of the vegetation cover to precipitation changes in the Sahel region, as well as varying contributions from biomes north of the Sahara (C3 domain) by North-East Trade Winds (NETW). During arid phases, especially the northern parts of the Sahel likely experienced crucial water stress, which resulted in a pronounced contraction of the vegetation cover, thus reducing the amount of C4 plant waxes from the region. The increase in NETW strength during dry periods further promoted a more pronounced C3-plant-wax signal derived from the North African C3 plant domain. During humid periods, the C4-dominated Sahelian environments spread northward into the Saharan realm, in association with lower NETW inputs of C3 plant waxes. Arid-humid cycles deduced from plant-wax δD are in accordance with concomitant changes in weathering intensity reflected in varying major element distributions. Environmental shifts are generally linked to periods with large fluctuations in Northern Hemisphere summer insolation. During Marine Isotope Stages 2 and 3, when insolation variability was low, coupling of the hydrologic regime to alkenone-based estimates of NE Atlantic sea-surface temperatures becomes apparent.

  4. CO{sub 2} and the hydrologic cycle: Simulation of two Texas river basins

    SciTech Connect

    King, K.W.; Srinivasan, R.; Arnold, J.G.; Williams, J.R.

    1994-12-31

    Increasing concentrations of CO{sub 2}, in the atmosphere have been speculated to have a major effect on water supplies as well as other ecological characteristics. SWAT (Soil Water Assessment Tool) is a river basin scale hydrologic model that was modified to simulate the impact of CO{sub 2} concentration on ET and biomass production. The model was utilized to analyze the impact of global climate change on two contrasting Texas basins. Climatic changes included doubling of CO{sub 2} concentration from 330 ppm to 660 ppm and varying temperatures 0, {+-}2, and {+-}4 C from present values. Potential impacts of six hydrologic parameters including ET, potential ET, water yield, water stress, soil water, and biomass were simulated. CO{sub 2} doubling had a more pronounced effect than did temperature variances. When temperature alone was varied, water yield at the outlet of the basins ranged from {minus}4.4% to 6.5% for basin 1202 and from 2.9% to 26.7% for basin 1208. But, when coupled with an elevated CO{sub 2} concentration, water yields increased in the range of 13.1% to 24.5% for basin 1202 and 5.6% to 33.7% for basin 1208. Rising CO{sub 2} levels reduced ET for both basins, representing an enhanced water use efficiency. Seasonal fluctuations of soil water were a result of different growing periods and are evident from water stress encountered by the plant. With enriched CO{sub 2} levels, increases in biomass production ranged from 6.9% to 47.4% and from 14.5 % to 31.4% for basins 1202 and 1208, respectively. 42 refs., 10 figs., 2 tabs.

  5. Understanding Changes to Interrelated Hydrologic and Trace Metal Cycles in Mountain Pine Beetle Infested Watersheds

    NASA Astrophysics Data System (ADS)

    Bearup, L.; Maxwell, R. M.; Clow, D. W.; McCray, J. E.; Sharp, J. O.

    2012-12-01

    Changing climate in the Rocky Mountain West and worldwide has led to insect infestation and resultant tree mortality at epidemic levels. This unprecedented change in land cover is known to impact tree-scale hydrologic processes in forested watersheds, with possible implications for water quality. In this work, soil and streamwater samples from a mountain pine beetle (MPB) infested watershed were analyzed for metals and stable isotopes to understand how the loss of forest cover over large spatial and temporal extent changes interrelated hydrologic and metal transport processes. An increase in trace metal fluxes from pine forest soils is a potential result of increases in organic matter and alterations in pH. To understand the implication for MPB-infested forests, the mobility of eight metals of interest (Al, Ba, Cd, Cu, Fe, Mn, Ni and Zn) were compared from soils beneath impacted and living trees. Preliminary results from this study found significant decreases in solid - liquid partitioning coefficients among the majority of metals analyzed, particularly in organic horizon samples. These results suggest an increase in potential mobilization from deposited litter and underlying soil horizons after beetle attack. Differences were also observed between aspects, with more pronounced mobility increases on south facing slopes. Sequential extractions are underway to better elucidate the important mechanisms and possible change in metal fractionation under different tree phases. In addition to increased metal release, changes in transport processes are also possible. Stable isotopes (∂18O and ∂D) and streamwater chemistry were analyzed to distinguish potential changes of water sources. Observed increases in soil moisture under impacted trees suggest possible increases in flow through the shallow subsurface that could have implications for contaminant transport. Clarifying important metal release mechanisms at the tree scale and changes in flow processes at the watershed

  6. Improving student comprehension of the interconnectivity of the hydrologic cycle with a novel 'hydrology toolbox', integrated watershed model, and companion textbook

    NASA Astrophysics Data System (ADS)

    Huning, L. S.; Margulis, S. A.

    2013-12-01

    Concepts in introductory hydrology courses are often taught in the context of process-based modeling that ultimately is integrated into a watershed model. In an effort to reduce the learning curve associated with applying hydrologic concepts to real-world applications, we developed and incorporated a 'hydrology toolbox' that complements a new, companion textbook into introductory undergraduate hydrology courses. The hydrology toolbox contains the basic building blocks (functions coded in MATLAB) for an integrated spatially-distributed watershed model that makes hydrologic topics (e.g. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) more user-friendly and accessible for students. The toolbox functions can be used in a modular format so that students can study individual hydrologic processes and become familiar with the hydrology toolbox. This approach allows such courses to emphasize understanding and application of hydrologic concepts rather than computer coding or programming. While topics in introductory hydrology courses are often introduced and taught independently or semi-independently, they are inherently interconnected. These toolbox functions are therefore linked together at the end of the course to reinforce a holistic understanding of how these hydrologic processes are measured, interconnected, and modeled. They are integrated into a spatially-distributed watershed model or numerical laboratory where students can explore a range of topics such as rainfall-runoff modeling, urbanization, deforestation, watershed response to changes in parameters or forcings, etc. Model output can readily be visualized and analyzed by students to understand watershed response in a real river basin or a simple 'toy' basin. These tools complement the textbook, each of which has been well received by students in multiple hydrology courses with various disciplinary backgrounds. The same governing equations that students have

  7. A decrease in solar and geomagnetic activity from cycle 19 to cycle 24

    NASA Astrophysics Data System (ADS)

    Gvishiani, A. D.; Starostenko, V. I.; Sumaruk, Yu. P.; Soloviev, A. A.; Legostaeva, O. V.

    2015-05-01

    Variations in the solar and geomagnetic activity from cycle 19 to cycle 24 were considered based on data from the magnetic observatories of the Russian-Ukrainian INTERMAGNET segment and international centers of data on solar-terrestrial physics. It has been indicated that activity decreases over the course of time. This is especially evident during the cycle 24 growth phase. The possible causes and consequences of a decrease in geomagnetic activity were analyzed.

  8. Diurnal variability of the hydrologic cycle in a general circulation model

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Dazlich, Donald A.; HARSHVARDHAN

    1991-01-01

    In the present Colorado State University GCM simulation-based analysis of the diurnal and semidiurnal variability of precipitation, precipitable water, evaporation, cloudiness, horizontal moisture flux convergence, and cloud radiative forcing, a realistic afternoon precipitation maximum is obtained over land in warm rainy regions, as well as an early morning maximum over the oceans. The model has been further used to investigate the bases for the oceanic diurnal-precipitation cycle; the results thus obtained indicate that such an oceanic cycle occurs even in the absence of neighboring continents, and tends to have a morning maximum, although the observed phenomenon is generally stronger than the results indicate.

  9. A prediction of geomagnetic activity for solar cycle 23

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Ling, A. G.; Wise, J. E.; Lanzerotti, L. J.

    1999-04-01

    Using a database of 13 solar cycles of geomagnetic aa data, we obtained correlations between cycle averages of geomagnetic activity (and sunspot number) and the numbers of days with disturbance levels above certain aa thresholds. We then used a precursor-type relation to predict an average aa index of 23.1 nT for cycle 23 and inserted this average aa value into the above correlations to forecast the integral size distribution of geomagnetic activity for the new cycle. The predicted size distribution is similar to that observed for cycles 21 and 22 but most closely resembles that of solar cycle 18 (1944-1954), which was slightly smaller than cycles 21 and 22. Our prediction agrees reasonably well with the ``climatology-based'' forecast made by the intergovernmental panel tasked to predict geomagnetic activity for the coming solar cycle and is significantly different from their ``precursor-based'' prediction.

  10. Biogeochemical and hydrologic processes controlling mercury cycling in Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Naftz, D.; Kenney, T.; Angeroth, C.; Waddell, B.; Darnall, N.; Perschon, C.; Johnson, W. P.

    2006-12-01

    Great Salt Lake (GSL), in the Western United States, is a terminal lake with a highly variable surface area that can exceed 5,100 km2. The open water and adjacent wetlands of the GSL ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere, as well as a brine shrimp industry with annual revenues exceeding 70 million dollars. Despite the ecologic and economic significance of GSL, little is known about the biogeochemical cycling of mercury (Hg) and no water-quality standards currently exist for this system. Whole water samples collected since 2000 were determined to contain elevated concentrations of total Hg (100 ng/L) and methyl Hg (33 ng/L). The elevated levels of methyl Hg are likely the result of high rates of SO4 reduction and associated Hg methylation in persistently anoxic areas of the lake at depths greater than 6.5 m below the water surface. Hydroacoustic equipment deployed in this anoxic layer indicates a "conveyor belt" flow system that can distribute methyl Hg in a predominantly southerly direction throughout the southern half of GSL (fig. 1, URL: http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs- AUG06.pdf). Periodic and sustained wind events on GSL may result in transport of the methyl Hg-rich anoxic water and bottom sediments into the oxic and biologically active regions. Sediment traps positioned above the anoxic brine interface have captured up to 6 mm of bottom sediment during cumulative wind-driven resuspension events (fig. 2, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Vertical velocity data collected with hydroacoustic equipment indicates upward flow > 1.5 cm/sec during transient wind events (fig. 3, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Transport of methyl Hg into the oxic regions of GSL is supported by biota samples. The median Hg concentration (wet weight) in brine shrimp increased seasonally from the spring to fall time period and is likely a

  11. Effects of vegetation on soil moisture distribution and flux with implications for the global hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Macari, Emir Jose

    1991-01-01

    Recent climate modeling experiments have identified the critical need for a better understanding of land surface - atmosphere interactions. An important issue in global climate modeling is to be able to relate land surface and atmospheric processes. In the past this link has been inadequately represented due to the lack of understanding of the interaction between the processes and also due to the large spatial variability of the hydrological and soil properties. A project was initiated at the Marshall Space Flight Center (MSFC) in FY-90 under the Center's Directorate Discretionary Fund (CDDF) to study small-scale effects of vegetation on the distribution and fluxes of soil moisture. Installation of a large array of instruments was accomplished during that first year (FY-90). During this second year of the project, the instrumentation and data collection systems were improved and data has begun to be taken. Preliminary analysis of the data show that the equipment has been functioning properly. Some of the preliminary results that have recently been analyzed are given.

  12. Coupling hydrological and impact assessment models to explore nutrient cycling in freshwater systems

    NASA Astrophysics Data System (ADS)

    Bouwman, Lex; van Beek, Rens; Beusen, Arthur; Mogollón, José; Middelburg, Jack

    2016-04-01

    The IMAGE-Global Nutrient Model (GNM) is a new globally distributed, spatially explicit model in which the hydrology model PCR-GLOBWB is coupled to the integrated assessment model IMAGE to simulate nitrogen (N) and phosphorus (P) delivery, and then with a spiraling ecological approach to simulating instream biogeochemistry. Routing the water with dissolved and suspended N and P from upstream grid cells occurs simultaneous with N and P delivery to water bodies within grid cells from diffuse and point sources (wastewater). IMAGE-GNM describes the following diffuse sources associated with the water flow: surface runoff, shallow and deep groundwater, riparian zones. Depending on the landscape features, all these flows may be present within one grid cell. Furthermore, diffuse N and P inputs occur through allochtonous organic matter inputs via litterfall in (temporarily) inundated river floodplains, and atmospheric deposition. In the spiraling concept, the residence time of the water and nutrient uptake velocity determine N and P retention in water bodies. Validation of model results with observations yields acceptable agreement given the global scale of the uncalibrated model. Sensitivity analysis shows shifts in the importance of the different sources, with decreasing importance of natural sources and increasing influence of wastewater and agriculture. IMAGE-GNM can be employed to study the interaction between society and the environment over prolonged time periods. Here we show results for the full 20th century.

  13. The Martian hydrologic cycle - Effects of CO2 mass flux on global water distribution

    NASA Technical Reports Server (NTRS)

    James, P. B.

    1985-01-01

    The Martian CO2 cycle, which includes the seasonal condensation and subsequent sublimation of up to 30 percent of the planet's atmosphere, produces meridional winds due to the consequent mass flux of CO2. These winds currently display strong seasonal and hemispheric asymmetries due to the large asymmetries in the distribution of insolation on Mars. It is proposed that asymmetric meridional advection of water vapor on the planet due to these CO2 condensation winds is capable of explaining the observed dessication of Mars' south polar region at the current time. A simple model for water vapor transport is used to verify this hypothesis and to speculate on the effects of changes in orbital parameters on the seasonal water cycle.

  14. Effects of Climate-Induced Hydrologic Modifications on Biogeochemical Cycling of Trace Metals in Alluvial and Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Lee, M.; Natter, M. G.; Keevan, J. P.; Guerra, K.; Saunders, J.; Uddin, A.; Humayun, M.; Wang, Y.; Keimowitz, A. R.

    2013-12-01

    Assessing the impacts of climate changes on water quality requires an understanding of the biogeochemical cycling of trace metals. Evidence from research on alluvial aquifers and coastal watersheds shows direct impacts of climate change on the fate and transformation of trace metals in natural environments. This study employs field data and numerical modeling techniques to test assumptions about the effects of climate change on natural arsenic contamination of groundwater in alluvial aquifers and mercury bioaccumulation in coastal saltmarshes. The results show that the rises of sea level and river base during the warm Holocene period has led to an overall increase in groundwater arsenic concentration due to the development of reducing geochemical conditions and sluggish groundwater movement. Modeling results indicate that the intrusion of seawater occurring during high sea-level stand may lead to desorption of arsenic from the surfaces of hydrous oxides due to pH effects and ionic competition for mineral sorbing sites. Our results also show that contamination and bioaccumulation of Hg and other metals in estuarine and coastal ecosystems may be influenced by climate-induced hydrologic modifications (atmospheric deposition, riverine input, salinity level, etc.). An integrated research framework consisting of numerical modeling, long-term monitoring, laboratory experiments will be necessary for building a comprehensive understanding of the complex response of biogeochemical cycling of trace metals to climate change.

  15. The role of water ice clouds in the Martian hydrologic cycle

    NASA Technical Reports Server (NTRS)

    James, Philip B.

    1990-01-01

    A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.

  16. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics

    NASA Astrophysics Data System (ADS)

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; Godsey, Sarah E.; Maxwell, Reed M.; McNamara, James P.; Tague, Christina

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water-related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross-site focus on "critical zone hydrology" has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: "how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?" Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.

  17. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  18. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  19. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  20. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  1. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  2. Expansion of Bioenergy Crops in the Midwestern United States: Implications for the Hydrologic Cycle under Climate Change

    NASA Astrophysics Data System (ADS)

    Le, P. V.; Kumar, P.; Drewry, D.

    2010-12-01

    To meet the emerging bioenergy production demands, the agricultural Midwestern United States is likely to see large-scale land use conversions to accommodate expansion of perennial bioenergy crops such as Miscanthus (Miscanthus X giganteus) and Switchgrass (Panicum virgatum). This leads to open questions regarding the impact on the hydrologic cycle in the region. To address these, a mechanistic model MLCan (Multi-Layer Canopy model, Drewry et al. 2010) is applied to analyze and predict: (i) the eco-physiological adaptations in the two most promising perennial bioenergy C4 crops in the Midwest, viz. Miscanthus and Switchgrass; and (ii) the impact on soil-water use. Model validation is performed using recent 2005 observations and then projections under climate change for 2050 are analyzed. The result indicates that compared with corn (Zea mays L.), another C4 but annual crop, Miscanthus and Switchgrass utilize more water for total seasonal evapotranspiration (ET) by approximately 58% to 36%, respectively, due to their higher leaf area and longer growing season. Under projected 2050 scenario of elevated atmospheric concentration of carbon dioxide (CO2) [550 ppm], Miscanthus, Switchgrass, and corn are likely to decrease water use for ET by approximately 16%, 15%, 13% for respectively. However, when projected increase in air temperature is also considered, it results in an increase in ET. Air temperature sensitivity to water use of each crop under environmental changes is examined. Meanwhile, spatial extent and distribution of land-use change and bioenergy crop production is driven by economics and policy. Based on economic projections and the corresponding expansion of land area predicted for bioenergy crop production an analysis is conducted to assess the spatial impacts on hydrology. It is predicted that, based on projected elevated CO2 and air temperature increases, the total additional amount of water use in one growing season for these bioenergy crops in the

  3. eWaterCycle: Recent progress in a global operational hydrological forecasting model

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Sutanudjaja, E.; Bierkens, M. F.; Drost, N.; Hut, R.

    2015-12-01

    Earlier this year, the eWaterCycle project launched its operational forecasting system (forecast.ewatercycle.org). The forecasts are ensemble based, and cover fourteen days. Near-real-time satellite data on soil moisture are assimilated in the forecasts. Presently, the model runs with a spatial resolution of 10km x 10km, and the plan is to move to 1km x 1km in the near future. The eWaterCycle forecast systems runs on a combination of a supercomputer and a cloud platform. Interactive visualization allows users to zoom in on any area of interest and select different variables. The project builds on close cooperation between hydrologists and computer scientists. What makes eWaterCycle relatively unique is that it was built with existing software, which is largely open source and uses existing standards. The Basic Model Interface (BMI) of the Community Surface Dynamics Modeling System (CSDMS) is an important tool that connects different modules. This allows for easy change and exchange of modules within the project. Only a few parts of the software needed to be re-engineerd for allowing it to run smoothly in a High-Performance Computing environment. After a general introduction to the modeling framework, the presentation will focus on recent advances, especially with respect to quality control of runoff predictions. Different parts of the world show different predictive error. As the model does not use explicit calibration procedures, it is of interest to see where the model performs well and where it performs not so well. The next natural question is then why this is the case and how to move forward without ending up with ad hoc improvement measures.

  4. Nonlinear statistics reveals stronger ties between ENSO and tropical hydrological cycle

    SciTech Connect

    Khan, Shiraj; Ganguly, Auroop R; Bandyopadhyay, Sharba; Saigal, Sunil; Erickson III, David J; Protopopescu, Vladimir A; Ostrouchov, George

    2006-01-01

    Cross-spectrum analysis based on linear correlations in the time domain suggested a coupling between large river flows and the El Nino-Southern Oscillation (ENSO) cycle. A nonlinear measure based on mutual information (MI) reveals extrabasinal connections between ENSO and river flows in the tropics and subtropics, that are 20-70% higher than those suggested so far by linear correlations. The enhanced dependence observed for the Nile, Amazon, Congo, Paran{acute a}, and Ganges rivers, which affect large, densely populated regions of the world, has significant impacts on inter-annual river flow predictabilities and, hence, on water resources and agricultural planning.

  5. The role of the hydrological cycle on the distribution patterns of fish assemblages in an Andean stream.

    PubMed

    Ríos-Pulgarín, M I; Barletta, M; Mancera-Rodríguez, N J

    2016-07-01

    The seasonal and interannual changes of the fish assemblage in the main channel and littoral zone of the Guarinó River, a torrential system located in the Colombian Andean foothills, were examined in relation to the physical and chemical environmental changes associated with the hydrological cycle and the El Niño-La Niña-Southern Oscillation (ENSO) between 2007 and 2010. Four samplings per year (in dry season and high water) were performed. Environmental variables (temperature, pH, conductivity, turbidity, oxygen, total nitrogen, orthophosphate, depth and flow rate) were contrasted with ANOVAs and a discriminant analysis to establish temporal patterns. Biological descriptors (richness, density and biomass) were contrasted with ANCOVAs. The temporal patterns of the taxonomic and functional composition and the density of the fish assemblages were examined with respect to environmental variables through canonical discriminant analysis per habitat. Interannual differences were significant with regard to density and richness for the main channel habitat; while in the littoral zone, the differences were significant between both the year and seasons. Discriminant analysis showed variations in species composition and relative abundance between the main channel and the littoral zone under contrasting hydrological conditions of El Niño-La Niña. High flows from 2008 to 2009 (La Niña) favoured resident species (e.g. Creagrutus magdalenae) and small benthic Siluriformes (e.g. Chaetostoma spp.), but was limited to migratory species (e.g. Prochilodus magdalenae). From 2009 to 2010 (El Niño), the most common species were reduced and rare species increased. River flow, temperature and oxygen were the variables that had the largest influences on the seasonal and interannual differences in the fish assemblage structure of the Guarinó River. The results suggested that the presence and abundance of species and functional groups in different habitats were regulated by stochastic

  6. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow can modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields.

  7. Multi-proxy reconstruction of the paleo-hydrological cycle during Andean Plateau uplift, NW-Argentina

    NASA Astrophysics Data System (ADS)

    Rohrmann, A.; Sachse, D.; Strecker, M. R.; Mulch, A.; Pingel, H.; Alonso, R. N.

    2014-12-01

    Controversies around the uplift history of the Central Andes may partly be due to the common use of single stable-isotope elevation proxies that are limited in recording the paleo-hydrological cycle during uplift. Our new, multi-proxy stable isotope data from 68 lipid biomarker n-alkanes, 62 soil carbonates (SC), and 15 volcanic glass shards (VG) from a well-dated section in the intermontane Angastaco Basin in the E Cordillera of NW Argentina (25°45 S, 66 W) provide insight into the paleo-hydrological cycle during uplift and outward growth of the adjacent Puna plateau's eastern margin. The samples cover a time interval from ~10 to 2 Ma with a resolution of ~ 0.2 Ma. C29 and C31 alkanes yield δD and δ13C values ranging from -95 to -160 ‰ (VSMOW) for δD and -23 to -36 ‰ (PDB) for δ13C. Measured SC range from 18 to 31 ‰ (VSMOW) for δ18O and -4 to -17 ‰ (PDB) for δ13C, whereas VG δD values range from -71 to -95 ‰ (VSMOW). In concert with published clumped-isotope temperature and VG data (Carrapa et al., 2014) our data indicate humid foreland conditions after 10 Ma that became drier at 6.5 Ma as a result of basin uplift and orographic barrier formation farther east. We constructed equidistant time series to calibrate and evaluate each proxy signal to determine which part of the hydrologic cycle is recorded and how each is influenced by regional surface uplift. The results show that water hydrating the VG reflects precipitation, whereas SC and n-alkanes record soil-water compositions. All three proxies show similar short-term trends in δD, δ18O and δ13C on timescales of < ~1 Myr, but deviate significantly over timescales of > ~1 Myr. For example, VG δD values show a gradual depletion during uplift from 6.5 to 4 Ma, whereas C29 and C31 δD values are D-enriched in response to basin aridification, which is in line with a change from C3 to C4 plants as recorded by δ13C C29 and C31. SC δ18O values show a buffered signal with a similar trend as δD of

  8. Up-scaling of process-based eco-hydrology model to global scale for identification of hot spots in boundless biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2013-12-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which includes surface-groundwater interactions and down-scaling process from regional to local simulation with finer resolution, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes in east Asia. In this study, NICE was further extended to implement map factor and non-uniform grid through up-scaling process of coordinate transformation from rectangular to longitude-latitude system applicable to global scale. This improved model was applied to several basins in Eurasia to evaluate the impact of coordinate transformation on eco-hydrological changes. Simulated eco-hydrological process after up-scaling corresponded reasonably to that in the original there after evaluating the effect of different latitude. Then, the model was expanded to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. This simulation system would play important role in identification of spatio-temporal hot spots in boundless biogeochemical cycle along terrestrial-aquatic continuum for global environmental change (Cole et al. 2007; Battin et al. 2009; Frei et al. 2012).

  9. The Hydrological Cycle on the Tibetan Plateau - Observed by Multisensoral Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Hochschild, V.

    2015-12-01

    Climate change and its potential effects are of global interest. Lake ice and snow coverage act as effective indicators of climate change due to their sensitivity to climate elements (like air temperature in the case of the lake ice), and can be observed on a large-scale with the help of remote sensing. The lakes on the Tibetan Plateau are important indicators for the development of the high mountain ecosystems facing the impacts of future climatic warming on runoff from snow and ice. Many of these Tibetan lakes are remote and hard to access, so multi-sensoral remote sensing is a valuable tool to generate hydrological relevant information as modeling input (land cover, soil moisture, trends in mountain lake ice cover, etc.) or validation base (lake level changes) . Tibetan lakes are remote and hard to access. For the monitoring of the lake ice, the first and the last day of the partial ice cover and the period of total ice cover are defined on the basis of temporal high temporal resolution MODIS data. The larger lakes were compared and put into regional groups in order to delineate and define different local trends. For obtaining a better spatial resolution for the calculation of the ice covered area, additional medium and high resolution optical and microwave data (ERS-1, ERS-2, ENVISAT A-SAR, LANDSAT, Kompsat-2, RapidEye) were considered, which at the same time, have a smaller temporal resolution. By means of correlation of the different data, the respective advantages of each data type are merged and were then exploited for the exaction of the iced surface and calculation of its area extent calculation. The study is enhanced by the use of passive microwave data (SSM/I, AMSR-E) which provides very high temporal resolution information as validation input. Simultaneously TerraSAR-X ScanSAR data was analysed for the whole winter period 2011 (December until April) in order to derive the spatial distribution of different ice types. The snow cover is an important

  10. Carbon and water cycling in lake-rich landscapes: Landscape connections, lake hydrology, and biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cardille, Jeffrey A.; Carpenter, Stephen R.; Coe, Michael T.; Foley, Jonathan A.; Hanson, Paul C.; Turner, Monica G.; Vano, Julie A.

    2007-06-01

    Lakes are low-lying connectors of uplands and wetlands, surface water and groundwater, and though they are often studied as independent ecosystems, they function within complex landscapes. One such highly connected region is the Northern Highland Lake District (NHLD), where more than 7000 lakes and their watersheds cycle water and carbon through mixed forests, wetlands, and groundwater systems. Using a new spatially explicit simulation framework representing these coupled cycles, the Lake, Uplands, Wetlands Integrator (LUWI) model, we address basic regional questions in a 72-lake simulation: (1) How do simulated water and carbon budgets compare with observations, and what are the implications for carbon stocks and fluxes? (2) How do the strength and spatial pattern of landscape connections vary among watersheds? (3) What is the role of interwatershed connections in lake carbon processing? Results closely coincide with observations at seasonal and annual scales and indicate that the connections among components and watersheds are critical to understanding the region. Carbon and water budgets vary widely, even among nearby lakes, and are not easily predictable using heuristics of lake or watershed size. Connections within and among watersheds exert a complex, varied influence on these processes: Whereas inorganic carbon budgets are strongly related to the number and nature of upstream connections, most organic lake carbon originates within the watershed surrounding each lake. This explicit incorporation of terrestrial and aquatic processes in surface and subsurface connection networks will aid our understanding of the relative roles of on-land, in-lake, and between-lake processes in this lake-rich region.

  11. Investigations of fault zone behavior during earthquake cycles using hydrology and geodesy

    NASA Astrophysics Data System (ADS)

    Xue, Lian

    This study investigates processes of three stages of the earthquake cycle: interseismic, post-seismic and coseismic periods. For the inter-seismic period, this thesis explored the inter-seismic strain accumulation on the Nicoya Peninsula, Costa Rica integrating InSAR and GPS data. This work demonstrates that the InSAR data can be used to recover small deformation signal of long wavelength with refined resolution when integrated with GPS observations. The spatial correlation between the distribution of coupling and the locations of slow slip events and low frequency events suggests that fluid and frictional heterogeneities may be the two main factors influencing coupling variations in the Nicoya, Costa Rica subduction zone. For the coseismic period, this thesis studied the coseismic friction associated with the 2008 MW 7.9 Wenchuan Earthquake using repeat measured temperature profiles across the fault slip zone, since measuring the heating signal on the fault zone after an earthquake is the most direct and efficient way to quantify the coseismic friction. The long-term temperature records following the Wenchuan Earthquake are consistent with low coseismic friction. The observed thermal anomalies above and within the fault zone cannot be the frictional transient from faulting and are likely a result of advective flow. For the post-seismic period, this thesis investigated the healing process after the Wenchuan Earthquake. The hydrogeologic properties of the fault zone can serve as a proxy for fracturing and the post-seismic recovery of fault strength, which is one of the major unconstrained elements of the earthquake cycle. We used continuous monitoring of borehole water response to tidal forcing to measure the continuous in-situ permeability properties of the Wenchuan Earthquake fault damage zone. Observed post-seismic episodically decreasing permeability over time indicates an interaction between the healing and damage in the aftermath of a major earthquake.

  12. Rest-Activity Cycles in Childhood and Adolescent Depression.

    ERIC Educational Resources Information Center

    Armitage, Roseanne; Hoffmann, Robert; Emslie, Graham; Rintelman, Jeanne; Moore, Jarrette; Lewis, Kelly

    2004-01-01

    Objective: To quantify circadian rhythms in rest-activity cycles in depressed children and adolescents. Method: Restactivity cycles were evaluated by actigraphy over five consecutive 24-hour periods in 100 children and adolescents, including 59 outpatients with major depressive disorder (MDD) and 41 healthy normal controls. Total activity, total…

  13. Geomagnetic Activity Indicates Large Amplitude for Sunspot Cycle 24

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.; Wilson, R. M.

    2006-01-01

    The level of geomagnetic activity near the time of solar activity minimum has been shown to be a reliable indicator for the amplitude of the following solar activity maximum. The geomagnetic activity index aa can be split into two components: one associated with solar flares, prominence eruptions, and coronal mass ejections which follows the solar activity cycle and a second component associated with recurrent high speed solar wind streams which is out of phase with the solar activity cycle. This second component often peaks before solar activity minimum and has been one of the most reliable indicators for the amplitude of the following maximum. The size of the recent maximum in this second component indicates that solar activity cycle 24 will be much higher than average - similar in size to cycles 21 and 22.

  14. Recent Geological and Hydrological Activity in Amazonis and Elysium Basins and Their Link, Marte Valles (AME): Prime Target for Future Reconnaissance

    NASA Astrophysics Data System (ADS)

    Dohm, J. M.; Robbins, S. J.; Hynek, B. M.

    2012-03-01

    Amazonis and Elysium basins and their link, Marte Vallis (AME), uniquely point to a geologically and hydrologically active Mars. We will present evidence for why AME reconnaissance can help address whether Mars is geologically, hydrologically, and biologically active.

  15. Organic productivity, nutrient cycling and small watershed hydrology of natural forests and monoculture plantations in Chikmagalur district, Karnataka

    SciTech Connect

    Swamy, H.R.

    1992-12-31

    Tree measurement in representative, undisturbed 1 ha plots of pre-montane Shola, high-altitude evergreen, semi-evergreen and moist deciduous forests have thrown light on the understanding of forest structure. Standing biomass and productivity were estimated and found to be similar to those of other tropical rain forests. Measurement in a 58-year-old teak, a 22-year-old Eucalyptus and a 13-year-old Acacia plantation showed that teak was the most naturalized and Acacia most productive; Eucalyptus performed poorly among the monocultures. Soil studies indicated that topsoils were less acidic than the deeper horizons, and that high rainfall areas had more acidic soils. Cation exchange capacities were lower in grasslands and in monocultures than in natural forests. They also decreased down through the soil profiles indicating ion-exchange chiefly on organic sites. N was higher and more easily available in high rainfall areas. Irrespective of higher organic C in these sites, the C/N ratios in plantations and drier areas were still higher, indicating a faster eluviation of N, K, P, Ca and Mg levels were higher in the low rainfall areas. Micro-nutrient deficiencies were not indicated anywhere. Nutrient cycling was studied by litter dynamics, live tissue analysis and assessment of standing biomass. Nutrient cycling was more efficient in plantations and in Shola than in natural forests. Although nutrient capital of Eucalyptus plantation was only 29% of that in natural forests, it was found to be the most efficient nutrient utilizer. The hydrology of a small watershed harbouring a semi-evergreen forest indicating that surface run-off depends not only on precipitation but also on its distribution, indicating significant subsurface underflow.

  16. Arctic hydrology and meteorology

    SciTech Connect

    Kane, D.L.

    1988-01-01

    The behavior of arctic ecosystems is directly related to the ongoing physical processes of heat and mass transfer. Furthermore, this system undergoes very large fluctuations in the surface energy balance. The buffering effect of both snow and the surface organic soils can be seen by looking at the surface and 40 cm soil temperatures. The active layer, that surface zone above the permafrost table, is either continually freezing or thawing. A large percentage of energy into and out of a watershed must pass through this thin veneer that we call the active layer. Likewise, most water entering and leaving the watershed does so through the active layer. To date, we have been very successful at monitoring the hydrology of Imnavait Creek with special emphasis on the active layer processes. The major contribution of this study is that year-round hydrologic data are being collected. An original objective of our study was to define how the thermal and moisture regimes within the active layer change during an annual cycle under natural conditions, and then to define how the regime will be impacted by some imposed terrain alteration. Our major analysis of the hydrologic data sets for Imnavait Creek have been water balance evaluations for plots during snowmelt, water balance for the watershed during both rainfall and snowmelt, and the application of a hydrologic model to predict the Imnavait Creek runoff events generated by both snowmelt and rainfall.

  17. The influence of large-scale circulation on the summer hydrological cycle in the Haihe River basin of China

    NASA Astrophysics Data System (ADS)

    Ou, Tinghai; Liu, Yanxiang; Chen, Deliang; Rayner, David; Zhang, Qiang; Gao, Ge; Xiang, Weiguo

    2011-08-01

    In this study, we focus on changes in three important components of the hydrological-cycle in the Haihe River basin (HRB) during 1957-2005: precipitation (Prep), actual evaportranspiration (ETa), and pan evaporation (PE)— a measure of potential evaporation. The changes in these components have been evaluated in relation to changes in the East Asian summer monsoon. Summer Prep for the whole basin has decreased significantly during 1957-2005. Recent weakening of the convergence of the integrated water vapor flux, in combination with a change from cyclonic-like large-scale circulation conditions to anti-cyclonic-like conditions, led to the decrease in the summer Prep in the HRB. ETa is positively correlated with Prep on the interannual timescale. On longer timescales, however, ETa is less dependent on Prep or the large-scale circulation. We found negative trends in ETa when the ERA40 reanalysis data were used, but positive trends in ETa when the NCEP/NCAR reanalysis data were used. PE declined during the period 1957-2001. The declining of PE could be explained by a combination of declining solar radiation and declining surface wind. However, the declining solar radiation may itself be related to the weakening winds, due to weaker dispersion of pollution. If so, the downward trend of PE may be mainly caused by weakening winds.

  18. A terrestrial PETM record of variations in carbon and hydrologic cycles from Northern Italian

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Dirghangi, S. S.; Krishnan, S.; Agnini, C.; Galeotti, S.; Domenico, R.; Pagani, M.

    2009-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) represents an interval of rapid global warming overprinted on an already warm global climate ~55 million years ago. While carbon cycle and temperature perturbations to marine environments are well established, changes to terrestrial environments are not well constrained. Here we present hydrogen and carbon isotope records of terrestrial plant-derived n-alkanes during the PETM from a Tethyan section in northern Italy. Carbon isotope compositions of n-alkanes reveal a negative carbon isotope excursion (CIE) of 3.5‰ while bulk marine carbonates show a -4.0‰ CIE. Both the marine and terrestrial carbon isotope records are in phase and indicate a similar recovery to baseline carbon isotope values. Hydrogen isotope values demonstrate an ~30‰ enrichment in 2H prior to the CIE and become 10‰ more negative immediately following the onset of the CIE. Hydrogen isotope ratios remain relatively stable during the body of the CIE and gradually become more negative during the recovery phase. We interpret changes in n-alkane δ2H values as variations in precipitation δ2H value and/or evapotranspiration. However, increased evapotranspiration prior to the CIE relative to peak warming is unlikely. Further, we observe a decrease in the average n-alkane chain length prior to the CIE and a steady increase across the body of the CIE before returning to baseline values. The available evidence suggests that shorter n-alkane chain lengths can be associated with wetter conditions, and thus changes prior to the CIE likely indicate an early shift the δ2H value of precipitation.

  19. Microbial life in cold, hydrologically active oceanic crustal fluids

    NASA Astrophysics Data System (ADS)

    Meyer, J. L.; Jaekel, U.; Girguis, P. R.; Glazer, B. T.; Huber, J. A.

    2012-12-01

    It is estimated that at least half of Earth's microbial biomass is found in the deep subsurface, yet very little is known about the diversity and functional roles of these microbial communities due to the limited accessibility of subseafloor samples. Ocean crustal fluids, which may have a profound impact on global nutrient cycles given the large volumes of water moving through the crustal aquifer, are particularly difficult to sample. Access to uncontaminated ocean crustal fluids is possible with CORK (Circulation Obviation Retrofit Kit) observatories, installed through the Integrated Ocean Drilling Program (IODP). Here we present the first microbiological characterization of the formation fluids from cold, oxygenated igneous crust at North Pond on the western flank of the Mid Atlantic Ridge. Fluids were collected from two CORKs installed at IODP boreholes 1382A and 1383C and include fluids from three different depth horizons within oceanic crust. Collection of borehole fluids was monitored in situ using an oxygen optode and solid-state voltammetric electrodes. In addition, discrete samples were analyzed on deck using a comparable lab-based system as well as a membrane-inlet mass spectrometer to quantify all dissolved volatiles up to 200 daltons. The instruments were operated in parallel and both in situ and shipboard geochemical measurements point to a highly oxidized fluid, revealing an apparent slight depletion of oxygen in subsurface fluids (~215μM) relative to bottom seawater (~245μM). We were unable to detect reduced hydrocarbons, e.g. methane. Cell counts indicated the presence of roughly 2 x 10^4 cells per ml in all fluid samples, and DNA was extracted and amplified for the identification of both bacterial and archaeal community members. The utilization of ammonia, nitrate, dissolved inorganic carbon, and acetate was measured using stable isotopes, and oxygen consumption was monitored to provide an estimate of the rate of respiration per cell per day

  20. Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.

    2008-01-01

    Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.

  1. Inferences on Stellar Activity and Stellar Cycles from Asteroseismology

    NASA Astrophysics Data System (ADS)

    Chaplin, William J.; Basu, Sarbani

    2014-12-01

    The solar activity cycle can be studied using many different types of observations, such as counting sunspots, measuring emission in the Ca II H&K lines, magnetograms, radio emissions, etc. One of the more recent ways of studying solar activity is to use the changing properties of solar oscillations. Stellar activity cycles are generally studied using the Ca II lines, or sometimes using photometry. Asteroseismology is potentially an exciting means of studying these cycles. In this article we examine whether or not asteroseismic data can be used for this purpose, and what the asteroseismic signatures of stellar activity are. We also examine how asteroseismology may help in more indirect ways.

  2. The circum-Chryse region as a possible example of a hydrologic cycle on Mars: Geologic observations and theoretical evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Clow, Gary D.; Davis, Wanda L.; Gulick, Virginia C.; Janke, David R.; McKay, Christopher P.; Stoker, Carol R.; Zent, Aaron P.

    1995-01-01

    dipping subsurface layer accessed along the southern edge of the lake, recharging the flood-source aquifers. H2O not redeposited in the flood-source region was largely lost to the hydrologic cycle. This loss progressively lowered the vitality of the cycle, probably by now killing it. Our numerical evaluations indicate that of the two hypotheses we formulated, the groundwater seep cycle seems by far the more viable. Optimally, approx. 3/4 of the original mass of an ice-covered cylindrical lake (albedo 0.5, 1 km deep, 100-km radius, draining along its rim for one quarter of its circumference into substrata with a permeability of 3000 darcies) can be modeled to have moved underground (on timescales of the order of 10(exp 3) years) before the competing mechanisms of sublimation and freeze down choked off further water removal. Once underground, this water can travel distances equal to the separation between Chryse basin and flood-source sites in geologically short (approx. 10(exp 6) year-scale) times. Conversely, we calculate that optimally only approx. 40% of the H2O carried from Chryse can condense at the highlands, and most of the precipitate would either collect at the base of the highlands/lowlands scarp or sublimate at rates greater than it would accumulate over the flood-source sites. Further observations from forthcoming missions may permit the determination of which mechanisms may have operated to recycle the Chryse flood-waters.

  3. The Circum-Chryse Region as a Possible Example of a Hydrologic Cycle on Mars: Geologic Observations and Theoretical Evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Clow, Gary D.; Davis, Wanda L.; Gulick, Virginia C.; Janke, David R.; McKay, Christopher P.; Stoker, Carol R.; Zent, Aaron P.

    1995-01-01

    dipping subsurface layer accessed along the southern edge of the lake, recharging the flood-source aquifers. H2O not redeposited in the flood-source region was largely lost to the hydrologic cycle. This loss progressively lowered the vitality of the cycle, probably by now killing it. Our numerical evaluations indicate that of the two hypotheses we formulated, the groundwater seep cycle seems by far the more viable. Optimally, approximately 3/4 of the original mass of an ice-covered cylindrical lake (albedo 0.5, 1 km deep, 100-km radius, draining along its rim for one quarter of its circumference into substrata with a permeability of 3000 darcies) can be modeled to have moved underground (on timescales of the order of 10(exp 3) years) before the competing mechanisms of sublimation and freeze down choked off further water removal. Once underground, this water can travel distances equal to the separation between Chryse basin and flood-source sites in geologically short (approximately 10(exp 6) year-scale) times. Conversely, we calculate that optimally only approximately 40% of the H2O carried from Chryse can condense at the highlands, and most of the precipitate would either collect at the base of the highlands/lowlands scrap or sublimate at rates greater than it would accumulate over the flood-source sites. Further observations from forthcoming missions may permit the determination of which mechanisms may have operated to recycle the Chryse flood-waters.

  4. Linking sediment structure, hydrological functioning and biogeochemical cycling in disturbed coastal saltmarshes and implications for vegetation development

    NASA Astrophysics Data System (ADS)

    Spencer, Kate; Harvey, Gemma; James, Tempest; Simon, Carr; Michelle, Morris

    2014-05-01

    Saltmarsh restoration undoubtedly provides environmental enhancement, with vegetation quickly re-establishing following the breach of sea walls and subsequent tidal inundation of previously defended areas. Yet evidence increasingly suggests that the restored saltmarshes do not have the same biological characteristics as their natural counterparts (Mossman et al. 2012) and this may be in part be due to physicochemical parameters at the site including anoxia and poor drainage. Hence, restored saltmarshes may not offer the range and quality of ecosystem services anticipated. These environments will have been 'disturbed' by previous land use and there is little understanding of the impacts of this disturbance on the wider hydrogeomorphic and biogeochemical functioning in restored saltmarshes and the implications for saltmarsh vegetation development. This study examines linkages between physical sediment characteristics, sediment structure (using X-ray microtomography), sub-surface hydrology (using pressure transducers and time series analysis), and sediment and porewater geochemistry (major and trace elements, major anions) in sediment cores collected from undisturbed saltmarshes and those restored by de-embankment. Sub-surface sediments in restored saltmarshes have lower organic matter content, lower moisture content and higher bulk density than undisturbed sites. Using X-ray tomography a clear horizon can be observed which separates relict agricultural soils at depth with less dense and structureless sediments deposited since de-embankment. Ratios of open to closed pore space suggest that while undisturbed saltmarshes have the highest porosity, restored saltmarshes have larger void spaces, but limited pore connectivity. Sub-surface hydrological response to tidal flooding was subdued in the restored compared to the undisturbed site, suggesting that porewater flow may be impeded. Time series analysis indicated that flow pathways differ in restored saltmarsh sediments

  5. Two modeling approaches for quantifying hydrologic and biologic controls on large-scale nitrogen cycling, Upper Rio Grande, NM

    NASA Astrophysics Data System (ADS)

    Oelsner, G. P.; Brooks, P. D.; Hogan, J. F.; Meixner, T.; Tidwell, V.; Roach, J. D.

    2007-12-01

    Variations in nutrient concentrations can be caused by both abiotic changes in hydrology and biotic processes. Most process-level studies of nutrient cycling are conducted in small catchment systems and at points on large river systems. Relatively less understanding has been developed on how biotic and abiotic processes influence large-scale nutrient concentrations and variability in large river systems. To address this issue, we performed biannual synoptic chemical sampling along a 640 km reach of the Upper Rio Grande for five years to determine the large-scale patterns in dissolved carbon and nitrogen concentrations and then used two different and simple models to evaluate the abiotic and biotic processes that generate the observed large-scale patterns. First, we used a Cl mixing model, validated with Br to quantify the effects of evapoconcentration, tributaries, and point sources on dissolved nitrogen and carbon concentrations. Ratios of observed to predicted concentrations close to 1 suggest that abiotic hydrologic processes are the dominant controls on concentrations while ratios departing from 1 indicate that biological processes are important controls. Our conservative mixing model generally captured patterns in DOC concentrations, suggesting minimal, net biological processing. In contrast, both nitrate and TDN concentrations were altered biogeochemically in all reaches. In areas where observed and predicted values differed, the spatial variability of river characteristics was more strongly correlated to relative nutrient retention than seasonal or inter-annual discharge variability. Second, we used an integrated surface water - groundwater dynamic simulation model to evaluate the agricultural conveyance and riparian systems as potential nitrogen removal locations. Under conservative behavior, modeled nitrate concentrations were higher than observed in the groundwater, river, and conveyance channels. We calibrated the model using denitrification in the

  6. A satellite remote sensing case study of the hydrological cycle and oceanic response in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Brown, John Edward Murray

    Aspects of the hydrological cycle over the Bay of Bengal, the Andaman Sea, and their respective catchment areas are analyzed with a focus on seasonal and inter-annual variability. Taking an Earth System Sciences approach, this study examines the coupled terrestrial, oceanographic, and atmospheric processes involved in the region using various satellite remote sensing data sets. The Bay of Bengal was selected due to its unique combination of forcing mechanisms at work: (1) low latitude - high insolation regime, (2) monsoonal reversal of winds and currents, (3) immense quantities of freshwater input from river runoff and precipitation leading to strong surface stratification in the ocean, (4) occasional tropical cyclones and low pressure systems, and (5) equatorial oceanic forcing. The performance of two satellite-derived precipitation products were compared to weather station observations for 2002 and 2003 and evaluated for their potential as input for hydrological land surface models. Despite certain limitations these products reproduced well the monsoonal progression of rainfall and the natural variability of daily rainfall accumulation. They were found to be quite adequate for large, continental scale watershed modeling. River discharge estimates were generated for 2001 and 2002 using NASA's Land Information System, a University of Washington river routing model and a University of New Hampshire artificial river network. The routed model output performed well against measured observations for the Ganges/Brahmaputra combined river basin, but underestimated peak discharge periods at the height of the summer monsoon. Results for the other major river basins compared favorably with the available, but limited climatology. The oceanic response to the large riverine flux was examined using SeaWiFS ocean color imagery. A time series of bio-optical properties such as chlorophyll concentration, absorption by colored dissolved organic material, and backscatter from river

  7. Valuing Non-market Benefits of Rehabilitation of Hydrologic Cycle Improvements in the Anyangcheon Watershed: Using Mixed Logit Models

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Kong, K.

    2010-12-01

    This research the findings from a discrete-choice experiment designed to estimate the economic benefits associated with the Anyangcheon watershed improvements in Rep. of Korea. The Anyangcheon watershed has suffered from streamflow depletion and poor stream quality, which often negatively affect instream and near-stream ecologic integrity, as well as water supply. Such distortions in the hydrologic cycle mainly result from rapid increase of impermeable area due to urbanization, decreases of baseflow runoff due to groundwater pumping, and reduced precipitation inputs driven by climate forcing. As well, combined sewer overflows and increase of non-point source pollution from urban regions decrease water quality. The appeal of choice experiments (CE) in economic analysis is that it is based on random utility theory (McFadden, 1974; Ben-Akiva and Lerman, 1985). In contrast to contingent valuation method (CVM), which asks people to choose between a base case and a specific alternative, CE asks people to choice between cases that are described by attributes. The attributes of this study were selected from hydrologic vulnerability components that represent flood damage possibility, instreamflow depletion, water quality deterioration, form of the watershed and tax. Their levels were divided into three grades include status quo. Two grades represented the ideal conditions. These scenarios were constructed from a 35 orthogonal main effect design. This design resulted in twenty-seven choice sets. The design had nine different choice scenarios presented to each respondent. The most popular choice models in use are the conditional logit (CNL). This model provides closed-form choice probability calculation. The shortcoming of CNL comes from irrelevant alternatives (IIA). In this paper, the mixed logit (ML) is applied to allow the coefficient’s variation for random taste heterogeneity in the population. The mixed logit model(with normal distributions for the attributes) fit the

  8. The influence of hydrologic connectivity on ecosystem metabolism and nitrate uptake in an active beaver meadow

    NASA Astrophysics Data System (ADS)

    Wegener, P.; Covino, T. P.; Wohl, E.; Kampf, S. K.; Lacy, S.

    2015-12-01

    Wetlands have been widely demonstrated to provide important watershed services, such as the sequestration of carbon (C) and removal of nitrate (NO3-) from through-flowing water. Hydrologic connectivity (degree of water and associated material exchange) between floodplain water bodies (e.g., side channels, ponds) and the main channel influence rates of C accumulation and NO3- uptake, and the degree to which wetlands contribute to enhanced water quality at the catchment scale. However, environmental engineers have largely ignored the role of hydrologic connectivity in providing essential ecosystem services, and constructed wetlands are commonly built using compacted clay and berms that result in less groundwater and surface water exchange than observed in natural wetlands. In a study of an active beaver meadow (multithreaded, riparian wetland) in Rocky Mountain National Park, CO, we show how shifts in hydrology (connectivity, residence times, flow paths) from late spring snowmelt (high connectivity) to autumn/winter baseflow (low connectivity) influence ecosystem metabolism metrics (e.g., gross primary production, ecosystem respiration, and net ecosystem productivity) and NO3- uptake rates. We use a combination of mixing analyses, tracer tests, and hydrometric methods to evaluate shifts in surface and subsurface hydrologic connections between floodplain water bodies from snowmelt to baseflow. In the main channel and three floodplain water bodies, we quantify metabolism metrics and NO3- uptake kinetics across shifting flow regimes. Results from our research indicate that NO3- uptake and metabolism dynamics respond to changing levels of hydrologic connectivity to the main channel, emphasizing the importance of incorporating connectivity in wetland mitigation practices that seek to enhance water quality at the catchment scale.

  9. Forecasting the Peak of the Present Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  10. Active Lakes of the Recovery Ice Stream, East Antarctica: A Bedrock-Controlled Subglacial Hydrological System

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.; Scambos, T. A.; Bell, R. E.; Carter, S. P.

    2014-12-01

    A connected system of active sub-glacial lakes was revealed beneath the Recovery Ice Stream, East Antarctica by ICESat laser altimetry acquired from 2003 to 2008. Here we combine repeat-track analysis of ICESat (2003-2009), Operation IceBridge laser altimetry and radio-echo sounding (RES; 2011 and 2012), and MODIS image differencing (2009-2011) to learn more about the surface and bedrock topographic setting of the lakes and the constraints on water flow through the system. IceBridge data reveal a ~1500 m deep, ~1000 km long bedrock trough under the main trunk of Recovery Ice Stream. We extend the lake activity time series to 2012 for the three lower lakes using IceBridge data: one lake underwent a large deflation between 2009 and 2011; another lake, which had been continuously filling between 2003 and 2010, started to drain after 2011. Hydrologic connections among the lakes appear to be direct and responsive. We reproduce the lake activity using a simple subglacial water model. The hydrologic system beneath Recovery Ice Stream is controlled by unusually pronounced bedrock topography (and not ice surface topography, as is the case for most Antarctic systems studied to date). We discuss potential causes of non-steady hydrologic behavior in major Antarctic catchments.

  11. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  12. The connection between stellar activity cycles and magnetic field topology

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Folsom, C. P.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Waite, I. A.

    2016-08-01

    Zeeman Doppler imaging has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period-Rossby number plane or the cycle period-rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained form ZDI and activity cycles.

  13. Large-Scale Forest Fires and Resulting Alterations to the Hydrologic Cycle in the Western U.S

    NASA Astrophysics Data System (ADS)

    Carr, J.; White, A. B.; Thomson, B.

    2012-12-01

    Recent changes in climate have resulted in a decrease in precipitation and snowpack amounts and increased temperatures in the western United States. Drier and warmer conditions coupled with forest management issues have led to an increase in the frequency and size of forest fires. The 2000 Cerro Grande fire in Los Alamos, New Mexico burned over 43,000 acres and 200 structures. Eleven years later, the Las Conchas fire burned over 156,000 acres and 100 structures, including areas previously burned in 2000, and was considered the largest fire in New Mexico's history. Both fires burned ponderosa, juniper, piñon and mixed conifer forests, resulting in dramatic decreases in vegetation, changes to surface soils, and alterations to the hydrologic cycle (decreased evapotranspiration, decreased infiltration, increased runoff volume and peak discharge, and decreased time to peak discharge) in surrounding watersheds. Burned Area Emergency Response (BAER) teams need to determine the flash-flood danger quickly in order to protect residents, fire-fighters, BAER-team field personnel, and property at risk. The USGS developed an analytical method for predicting post-fire peak discharges using data collected from eight different fires throughout the western United States. We use this method to predict peak discharge in Los Alamos watersheds post-Cerro Grande and post-Las Conchas, then compare predicted to measured peak discharge. We will evaluate the effectiveness of the three methodology levels presented by the USGS, which include varying levels of data input and processing. We expect the peak discharges to be similar in magnitude; however, we will also investigate different influential factors such as burn severity, soil type, vegetation type and density, ecological connectivity, topography, pre- and post-fire weather conditions, etc., as they relate to the fires and the results seen from the measured versus the analytical method. Determining the relative influence of these

  14. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Flanner, M.; Leung, R.; Wang, W.

    2012-04-01

    The Tibetan Plateau (TP) has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative effect of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative flux changes induced by aerosols (e.g. BC, Dust) in snow compared to any other snow-covered regions in the world. Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative flux changes of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. Simulation results show that during boreal spring

  15. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Flanner, M. G.; Leung, L. R.; Wang, W.

    2010-10-01

    The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating faster than those anywhere else in the world. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative forcing of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 μg/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0 °C averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation

  16. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Flanner, M. G.; Leung, L. R.; Wang, W.

    2011-03-01

    The Tibetan Plateau (TP) has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative effect of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative flux changes induced by aerosols (e.g. BC, Dust) in snow compared to any other snow-covered regions in the world. Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative flux changes of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0 °C averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. Simulation results show that during boreal spring

  17. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    SciTech Connect

    Qian, Yun; Flanner, M G; Leung, Lai-Yung R; Wang, Weiguo

    2011-03-02

    The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating extensively at a speed faster than any other part of the world. In this study a series of experiments with a global climate model are designed to simulate black carbon (BC) and dust in snow and their radiative forcing and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow, respectively, on the snowpack over the TP, as well as their subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 µk/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. The aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0°C averaged over the TP and reduces snowpack over the TP more than that induced by pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere during spring. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently

  18. Influenza pandemics, solar activity cycles, and vitamin D.

    PubMed

    Hayes, Daniel P

    2010-05-01

    There is historic evidence that influenza pandemics are associated with solar activity cycles (the Schwabe-cycle of about 11-years periodicity). The hypothesis is presented and developed that influenza pandemics are associated with solar control of vitamin D levels in humans which waxes and wanes in concert with solar cycle dependent ultraviolet radiation. It is proposed that this solar cycle dependence arises both directly from cyclic control of the amount of ultraviolet radiation as well as indirectly through cyclic control of atmospheric circulation and dynamics. PMID:20056531

  19. The circum-Chryse region as a possible example of a hydrologic cycle on Mars: Geologic observations and theoretical evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Clow, Gary D.; Davis, Wanda L.; Gulick, Virginia C.; Janke, David R.; Mckay, Christopher P.; Stoker, Carol R.; Zent, Aaron P.

    1995-01-01

    The transection and superposition relationships among channels, chaos, surface materials units, and other features in the circum-Chryse region of Mars were used to evaluate relative age relationships and evolution of flood events. Channels and chaos in contact (with one another) were treated as single discrete flood-carved systems. Some outflow channel systems form networks and are inferred to have been created by multiple flood events. Within some outflow channel networks, several separate individual channel systems can be traced to a specific chaos which acted as flood-source area to that specific flood channel. Individual flood-carved systems were related to widespread materials units or other surface features that served as stratigraphic horizons. Chryse outflow channels are inferred to have formed over most of the perceivable history of Mars. Outflow channels are inferred to become younger with increasing proximity to the Chryse basin. The relationship of subsequent outflow channel sources to the sources of earlier floods is inferred to disfavor episodic flooding due to the progresssive tapping of a juvenile near-surface water supply. Instead, we propose the circum-Chryse region as a candidate site of past hydrological recycling. The discharge rates necessary to carve the circum-Chryse outflow channels would have inevitably formed temporary standing bodies of H2O on the Martian surface where the flood-waters stagnated and pooled (the Chryse basin is topographically enclosed). These observations and inferences have led us to formulate and evaluate two hypotheses. Our numerical evaluations indicate that of these two hypotheses formulated, the groundwater seep cycle seems by far the more viable. Further observations from forthcoming missions may permit the determination of which mechanisms may have operated to recycle the Chryse flood-waters.

  20. Butterfly Diagram and Activity Cycles in HR 1099

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana V.; Henry, Gregory W.

    2007-04-01

    We analyze photometric data of the active RS CVn-type star HR 1099 for the years 1975-2006 with an inversion technique and reveal the nature of two activity cycles of 15-16 yr and 5.3+/-0.1 yr duration. The 16 yr cycle is related to variations of the total spot area and is coupled with the differential rotation, while the 5.3 yr cycle is caused by the symmetric redistribution of the spotted area between the opposite stellar hemispheres (flip-flop cycle). We recover long-lived active regions comprising two active longitudes that migrate in the orbital reference frame with a variable rate because of the differential rotation along with changes in the mean spot latitudes. The migration pattern is periodic with the 16 yr cycle. Combining the longitudinal migration of the active regions with a previously measured differential rotation law, we recover the first stellar butterfly diagram without an assumption about spot shapes. We find that mean latitudes of active regions at opposite longitudes change antisymmetrically in the course of the 16 yr cycle: while one active region migrates to the pole, the other approaches the equator. This suggests a precession of the global magnetic field with respect to the stellar rotational axis.

  1. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions

  2. Climate of the Eocene Greenhouse Intervals from TEX86 and Other Proxies: Evidence for a More Energetic Hydrologic Cycle? (Invited)

    NASA Astrophysics Data System (ADS)

    Zachos, J. C.; Tierney, J. E.; Tingley, M.; Penman, D. E.; Kiehl, J. T.; Sluijs, A.; Bohaty, S. M.; Babila, T.; Rosenthal, Y.

    2013-12-01

    change in salinity consistent with a shift in the seasonal cycle of precipitation during the PETM, with overall higher E-P. This evidence supports a shift toward a more energetic hydrologic cycle.

  3. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow should also modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields. The observational evidence and the theoretical consequences (similar to those of Cameron and Schussler (2012)) will be described.

  4. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Astrophysics Data System (ADS)

    Hathaway, David H.; Upton, L.

    2013-07-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow should also modulate the amplitude of the following sunspot cycle through its influence on the Sun’s polar fields. The observational evidence and the theoretical consequences (similar to those of Cameron and Schussler (2012)) will be described. Komm, Howard, and Harvey (1993) Solar Phys. 147, 207. Cameron and Schussler (2012) Astron. Astrophys. 548, A57.

  5. An overview of the lightning and atmospheric electricity observations collected in Southern France during the HYdrological cycle in Mediterranean EXperiment (HyMeX), Special Observation Period 1

    NASA Astrophysics Data System (ADS)

    Defer, E.; Pinty, J.-P.; Coquillat, S.; Martin, J.-M.; Prieur, S.; Soula, S.; Richard, E.; Rison, W.; Krehbiel, P.; Thomas, R.; Rodeheffer, D.; Vergeiner, C.; Malaterre, F.; Pedeboy, S.; Schulz, W.; Farges, T.; Gallin, L.-J.; Ortéga, P.; Ribaud, J.-F.; Anderson, G.; Betz, H.-D.; Meneux, B.; Kotroni, V.; Lagouvardos, K.; Roos, S.; Ducrocq, V.; Roussot, O.; Labatut, L.; Molinié, G.

    2014-08-01

    The PEACH (Projet en Electricité Atmosphérique pour la Campagne HyMeX - the Atmospheric Electricity Project of HyMeX Program) project is the Atmospheric Electricity component of the HyMeX (Hydrology cycle in the Mediterranean Experiment) experiment and is dedicated to the observation of both lightning activity and electrical state of continental and maritime thunderstorms in the area of the Mediterranean Sea. During the HyMeX SOP1 (Special Observation Period; 5 September-6 November 2012), four European Operational Lightning Locating Systems (OLLSs) (ATDNET, EUCLID, LINET, ZEUS) and the HyMeX Lightning Mapping Array network (HyLMA) were used to locate and characterize the lightning activity over the Southeastern Mediterranean at flash, storm and regional scales. Additional research instruments like slow antennas, video cameras, micro-barometer and microphone arrays were also operated. All these observations in conjunction with operational/research ground-based and airborne radars, rain gauges and in situ microphysical records aimed at characterizing and understanding electrically active and highly precipitating events over Southeastern France that often lead to severe flash floods. Simulations performed with Cloud Resolving Models like Meso-NH and WRF are used to interpret the results and to investigate further the links between dynamics, microphysics, electrification and lightning occurrence. A description of the different instruments deployed during the field campaign as well as the available datasets is given first. Examples of concurrent observations from radio frequency to acoustic for regular and atypical lightning flashes are then presented showing a rather comprehensive description of lightning flashes available from the SOP1 records. Then examples of storms recorded during HyMeX SOP1 over Southeastern France are briefly described to highlight the unique and rich dataset collected. Finally the next steps of the work required for the delivery of reliable

  6. An overview of the lightning and atmospheric electricity observations collected in southern France during the HYdrological cycle in Mediterranean EXperiment (HyMeX), Special Observation Period 1

    NASA Astrophysics Data System (ADS)

    Defer, E.; Pinty, J.-P.; Coquillat, S.; Martin, J.-M.; Prieur, S.; Soula, S.; Richard, E.; Rison, W.; Krehbiel, P.; Thomas, R.; Rodeheffer, D.; Vergeiner, C.; Malaterre, F.; Pedeboy, S.; Schulz, W.; Farges, T.; Gallin, L.-J.; Ortéga, P.; Ribaud, J.-F.; Anderson, G.; Betz, H.-D.; Meneux, B.; Kotroni, V.; Lagouvardos, K.; Roos, S.; Ducrocq, V.; Roussot, O.; Labatut, L.; Molinié, G.

    2015-02-01

    The PEACH project (Projet en Electricité Atmosphérique pour la Campagne HyMeX - the Atmospheric Electricity Project of the HyMeX Program) is the atmospheric electricity component of the Hydrology cycle in the Mediterranean Experiment (HyMeX) experiment and is dedicated to the observation of both lightning activity and electrical state of continental and maritime thunderstorms in the area of the Mediterranean Sea. During the HyMeX SOP1 (Special Observation Period) from 5 September to 6 November 2012, four European operational lightning locating systems (ATDnet, EUCLID, LINET, ZEUS) and the HyMeX lightning mapping array network (HyLMA) were used to locate and characterize the lightning activity over the northwestern Mediterranean at flash, storm and regional scales. Additional research instruments like slow antennas, video cameras, microbarometer and microphone arrays were also operated. All these observations in conjunction with operational/research ground-based and airborne radars, rain gauges and in situ microphysical records are aimed at characterizing and understanding electrically active and highly precipitating events over southeastern France that often lead to severe flash floods. Simulations performed with cloud resolving models like Meso-NH and Weather Research and Forecasting are used to interpret the results and to investigate further the links between dynamics, microphysics, electrification and lightning occurrence. Herein we present an overview of the PEACH project and its different instruments. Examples are discussed to illustrate the comprehensive and unique lightning data set, from radio frequency to acoustics, collected during the SOP1 for lightning phenomenology understanding, instrumentation validation, storm characterization and modeling.

  7. The Sensitivity of Ocean Circulation and Carbon Uptake to the Rate of CO2 Increase and the Resultant Changes in Climate and Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Cao, L.; Jain, A. K.

    2003-12-01

    We investigate an important feedback loop in the climate-carbon cycle system that involves increase in atmospheric CO2 and the resulting changes in temperature, the hydrological cycle, ocean circulation, and oceanic carbon uptake. This study is conducted using the coupled atmosphere-ocean-carbon cycle component of the Integrated Science Assessment Model (ISAM). The coupled model includes an energy-moisture balance atmosphere module, a thermodynamic sea-ice module, and a zonal mean ocean module. The ocean component resolves major ocean basins and is based on the balance equations of momentum, temperature, salinity and carbon and its isotopes. The coupled model has the ability to successfully simulate historical and current climates, the ocean thermohaline circulation (THC), oceanic carbon uptake, and bomb 14C. Global warming may cause a weakening or even a collapse of the THC through the increased sea surface temperature and an enhanced hydrological cycle, which can reduce oceanic carbon uptake, thus accelerate the global warming. Recent studies find that the change in the THC is dependent not only on the concentration of atmospheric CO2, but also on the rate of CO2 increase. Using a variety of CO2 increase scenarios (e.g., 0.5%, 1%, 2%/yr CO2 increase from present concentration to the level of doubling or quadrupling of CO2), we extend previous studies by assessing the effect of the rate of CO2 increase, temperature, and hydrological cycle not only on the THC but also on the oceanic carbon uptake. We also explore the threshold values of the rate of CO2 increase and the absolute amount of atmospheric CO2 that are likely to induce the collapse of the North Atlantic Deep Water (NADW) formation, which can have dramatic effects on oceanic uptake of CO2.

  8. Hydrological Modeling of Groundwater Disturbance to Gravity Signal for High-accuracy Monitoring of Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Kazama, T.; Okubo, S.

    2007-12-01

    Gravity observation is one of the effective methods to detect magma movements in volcanic eruptions [e.g., Furuya et al., J. Geoph. Res., 2003]. Groundwater-derived disturbances have to be corrected from gravity variations for highly accurate monitoring of volcanic activities. They have been corrected with empirical methods, such as tank models and regression curves [e.g., Imanishi et al., J. Geodyn., 2006]. These methods, however, are not based on hydrological background, and are very likely to eliminate volcanic signals excessively. The correction method of groundwater disturbance has to be developed with hydrological and quantitative approach. We thus estimate the gravity disturbance arising from groundwater as follows. (1) Groundwater distributions are simulated on a hydrological model, utilizing groundwater flow equations. (2) Groundwater-derived gravity value is estimated for each instant of time, by integrating groundwater distributions spatially. (3) The groundwater-derived gravity, as the correction value, is subtracted from observed gravity data. In this study, we simulated groundwater flow and groundwater-derived gravity value on the east part of the Asama volcano, central Japan. A simple hydrological model was supposed, consisting of homogeneous soil, lying on a flat impermeable basement. Hydraulic conductivity, which defines groundwater velocity, was set as 2.0×10-6[m/s], which is consistent with typical volcanic soils. We also observed time variations of watertable height, soil moisture and gravity simultaneously during the summer of 2006 at Asama volcano, and compared the observations with the theoretical values. Both simulated groundwater distributions and gravity changes agree fairly well with observed values. On variations of water level and moisture content, rapid increase at the time of rainfalls and exponential decrease after rainfalls were illustrated. Theoretical gravity changes explained 90% of the observed gravity increase (+20μgals) for

  9. Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds

    NASA Astrophysics Data System (ADS)

    Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; Klaus, Julian; Du, Enhao; Bitew, Menberu M.

    2016-02-01

    Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds, while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. Together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.

  10. Geothermal activity helps life survive glacial cycles.

    PubMed

    Fraser, Ceridwen I; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L

    2014-04-15

    Climate change has played a critical role in the evolution and structure of Earth's biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this "geothermal glacial refugia" hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species. PMID:24616489

  11. Geothermal activity helps life survive glacial cycles

    PubMed Central

    Fraser, Ceridwen I.; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L.

    2014-01-01

    Climate change has played a critical role in the evolution and structure of Earth’s biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this “geothermal glacial refugia” hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species. PMID:24616489

  12. Surface solar radiation and hydrological cycle in 20th century China: sensitivity studies with ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Folini, D.; Wild, M.

    2012-04-01

    The world, and China in particular, has seen a tremendous population growth and industrialization in the 20th century. These changes were accompanied, among others, by a substantial increase in aerosol emission. To learn more about associated consequences for the climate system we have carried out a comparatively large set of transient sensitivity studies with the global atmosphere only climate model ECHAM5-HAM, using aerosol emission data from NIES (National Institute of Environmental Studies, Japan) and prescribed, observation based sea surface temperatures (SSTs) from the Hadley Center. The sensitivity studies cover the period from 1870 to 2005 and comprise ensembles of simulations (up to 13 members per ensemble), which allow to address the role of different aerosol species, greenhouse gases, and prescribed sea surface temperatures. Here we analyze these simulation data with particular focus on surface solar radiation, temperature, and the hydrological cycle in China. Physical mechanisms able to explain the results will be discussed. We generally find the strongest effects in the east of the country, where urbanization and industrialization is strongest and emissions increased most. The decrease of surface solar radiation (SSR) under clear sky conditions reaches up to around -8 W / m2 per decade from 1950 to 1990. Comparable values are found for all sky conditions. Dimming ceases in the second half of the 1990s, when we even see a renewed increase in SSR in some regions. Overall, these findings are in line with observation based estimates. Modeled surface temperatures reflect the decrease in SSR but carry also a substantial SST signature. After remaining roughly constant from 1870 to 1900, we find modeled surface temperatures to increase by about 1 degree Celsius till 1950, then decrease again by -0.2 to -1.2 degree Celsius till 1990, before a renewed increase sets in. Precipitation decreases in our model results from 1950 to 2000 by up to 10% or 150 mm per year

  13. Quantification of a greenhouse hydrologic cycle from equatorial to polar latitudes: The mid-Cretaceous water bearer revisited

    USGS Publications Warehouse

    Suarez, M.B.; Gonzalez, Luis A.; Ludvigson, Greg A.

    2011-01-01

    This study aims to investigate the global hydrologic cycle during the mid-Cretaceous greenhouse by utilizing the oxygen isotopic composition of pedogenic carbonates (calcite and siderite) as proxies for the oxygen isotopic composition of precipitation. The data set builds on the Aptian-Albian sphaerosiderite ??18O data set presented by Ufnar et al. (2002) by incorporating additional low latitude data including pedogenic and early meteoric diagenetic calcite ??18O. Ufnar et al. (2002) used the proxy data derived from the North American Cretaceous Western Interior Basin (KWIB) in a mass balance model to estimate precipitation-evaporation fluxes. We have revised this mass balance model to handle sphaerosiderite and calcite proxies, and to account for longitudinal travel by tropical air masses. We use empirical and general circulation model (GCM) temperature gradients for the mid-Cretaceous, and the empirically derived ??18O composition of groundwater as constraints in our mass balance model. Precipitation flux, evaporation flux, relative humidity, seawater composition, and continental feedback are adjusted to generate model calculated groundwater ??18O compositions (proxy for precipitation ??18O) that match the empirically-derived groundwater ??18O compositions to within ??0.5???. The model is calibrated against modern precipitation data sets.Four different Cretaceous temperature estimates were used: the leaf physiognomy estimates of Wolfe and Upchurch (1987) and Spicer and Corfield (1992), the coolest and warmest Cretaceous estimates compiled by Barron (1983) and model outputs from the GENESIS-MOM GCM by Zhou et al. (2008). Precipitation and evaporation fluxes for all the Cretaceous temperature gradients utilized in the model are greater than modern precipitation and evaporation fluxes. Balancing the model also requires relative humidity in the subtropical dry belt to be significantly reduced. As expected calculated precipitation rates are all greater than modern

  14. BOOST H2O - Field Training Activities for Hydrologic Science near Lake Iznik, Turkey

    NASA Astrophysics Data System (ADS)

    Derin, Y.; Hatipoglu, E.; Sunnetci, M. O.; Tanyas, H.; Unal Ercan, H.; Aktuna, Z.; Agouridis, C.; Fryar, A. E.; Milewski, A.; Schroeder, P.; Ece, O. I.; Yilmaz, K. K.

    2013-12-01

    Field activities are often the best pedagogy for reinforcing principles learned in the classroom. As part of the 'Building Opportunity Out of Science and Technology: Helping Hydrologic Outreach (BOOST H2O)' project, which is supported by the U.S. Department of State, six graduate students from three Turkish universities, four U.S. professors, and two Turkish professors participated in a week of training activities during May-June 2013. Field activities took place in the Lake Iznik region in western Turkey. The lake basin is geologically complex, with fault-controlled hydrogeology, and land use is dominated by agriculture, particularly olive cultivation. Professors trained the students (four females and two males) on concepts and techniques in surface-water and groundwater hydrology, water quality, and related computer software. Activities included stream gauging (using top-setting rods and a current meter), geomorphic assessment of streams (slope, cross-sections, and bed-clast size), measuring depth to water in wells, and collection of water samples from springs, wells, and the lake. Measurements of pH, temperature, electrical conductivity, and alkalinity were performed along with sampling for stable isotope (oxygen and hydrogen) analysis. The students visited local villages, farms, surface-water intakes, and recreational springs for a holistic approach towards integrated water resource management. Results were discussed in the context of lithology, tectonics, land use, and other human impacts.

  15. Retrieval Assimilation and Modeling of Atmospheric Water Vapor from Ground- and Space-Based GPS Networks: Investigation of the Global and Regional Hydrological Cycles

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1999-01-01

    Uncertainty over the response of the atmospheric hydrological cycle (particularly the distribution of water vapor and cloudiness) to anthropogenic forcing is a primary source of doubt in current estimates of global climate sensitivity, which raises severe difficulties in evaluating its likely societal impact. Fortunately, a variety of advanced techniques and sensors are beginning to shed new light on the atmospheric hydrological cycle. One of the most promising makes use of the sensitivity of the Global Positioning System (GPS) to the thermodynamic state, and in particular the water vapor content, of the atmosphere through which the radio signals propagate. Our strategy to derive the maximum benefit for hydrological studies from the rapidly increasing GPS data stream will proceed in three stages: (1) systematically analyze and archive quality-controlled retrievals using state-of-the-art techniques; (2) employ both currently available and innovative assimilation procedures to incorporate these determinations into advanced regional and global atmospheric models and assess their effects; and (3) apply the results to investigate selected scientific issues of relevance to regional and global hydrological studies. An archive of GPS-based estimation of total zenith delay (TZD) data and water vapor where applicable has been established with expanded automated quality control. The accuracy of the GPS estimates is being monitored; the investigation of systematic errors is ongoing using comparisons with water vapor radiometers. Meteorological packages have been implemented. The accuracy and utilization of the TZD estimates has been improved by implementing a troposphere gradient model. GPS-based gradients have been validated as real atmospheric moisture gradients, establishing a link between the estimated gradients and the passage of weather fronts. We have developed a generalized ray tracing inversion scheme that can be used to analyze occultation data acquired from space

  16. A quest for activity cycles in low-mass stars

    NASA Astrophysics Data System (ADS)

    Vida, K.; Kriskovics, L.; Oláh, K.

    2013-11-01

    Long-term photometric measurements in a sample of ultrashort-period (P≈0.5 days or less) single and binary stars of different interior structures are analysed. A loose correlation exists between the rotational rate and cycle lengths of active stars, regardless of their evolutionary state and the corresponding physical parameters. The shortest cycles are expected for the fastest rotators of the order of 1-2 years, which is reported in this paper.

  17. The hydrological cycle in the high Pamir Mountains: how temperature and seasonal precipitation distribution influence stream flow in the Gunt catchment, Tajikistan

    NASA Astrophysics Data System (ADS)

    Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P.

    2014-12-01

    Complex climatic interactions control hydrological processes in high mountains that in their turn regulate the erosive forces shaping the relief. To unravel the hydrological cycle of a glaciated watershed (Gunt River) considered representative of the Pamirs' hydrologic regime we developed a remote sensing-based approach. At the boundary between two distinct climatic zones dominated by Westerlies and Indian summer monsoon, the Pamir is poorly instrumented and only a few in situ meteorological and hydrological data are available. We adapted a suitable conceptual distributed hydrological model (J2000g). Interpolations of the few available in situ data are inadequate due to strong, relief induced, spatial heterogeneities. Instead we use raster data, preferably from remote sensing sources depending on availability and validation. We evaluate remote sensing-based precipitation and temperature products. MODIS MOD11 surface temperatures show good agreement with in situ data, perform better than other products and represent a good proxy for air temperatures. For precipitation we tested remote sensing products as well as the HAR10 climate model data and the interpolation-based APHRODITE dataset. All products show substantial differences both in intensity and seasonal distribution with in-situ data. Despite low resolutions, the datasets are able to sustain high model efficiencies (NSE ≥0.85). In contrast to neighbouring regions in the Himalayas or the Hindukush, discharge is dominantly the product of snow and glacier melt and thus temperature is the essential controlling factor. 80% of annual precipitation is provided as snow in winter and spring contrasting peak discharges during summer. Hence, precipitation and discharge are negatively correlated and display complex hysteresis effects that allow to infer the effect of inter-annual climatic variability on river flow. We infer the existence of two subsurface reservoirs. The groundwater reservoir (providing 40% of annual

  18. Radio Imaging Observations of Solar Activity Cycle and Its Anomaly

    NASA Astrophysics Data System (ADS)

    Shibasaki, K.

    2011-12-01

    The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.

  19. Forecast for solar cycle 23 activity: a progress report

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.

    2001-08-01

    At the 25th International Cosmic Ray Conference (ICRC) at Durban, South Africa, I announced the discovery of a three cycle quasi-periodicity in the ion chamber data string assembled by me, for the 1937 to 1994 period (Conf. Pap., v. 2, p. 109, 1997). It corresponded in time with a similar quasi-periodicity observed in the dataset for the planetary index Ap. At the 26th ICRC at Salt Lake City, UT, I reported on our analysis of the Ap data to forecast the amplitude of solar cycle 23 activity (Conf. Pap., v. 2, pl. 260, 1999). I predicted that cycle 23 will be moderate (a la cycle 17), notwithstanding the early exuberant forecasts of some solar astronomers that cycle 23, "may be one of the greatest cycles in recent times, if not the greatest." Sunspot number data up to April 2001 indicate that our forecast appears to be right on the mark. We review the solar, interplanetary and geophysical data and describe the important lessons learned from this experience. 1. Introduction Ohl (1971) was the first to realize that Sun may be sending us a subliminal message as to its intent for its activity (Sunspot Numbers, SSN) in the next cycle. He posited that the message was embedded in the geomagnetic activity (given by sum Kp). Schatten at al (1978) suggested that Ohl hypothesis could be understood on the basis of the model proposed by Babcock (1961) who suggested that the high latitude solar poloidal fields, near a minimum, emerge as the toroidal fields on opposite sides of the solar equator. This is known as the Solar Dynamo Model. One can speculate that the precursor poloidal solar field is entrained in the high speed solar wind streams (HSSWS) from the coronal holes which are observed at Earth's orbit during the descending phase of the previous cycle. The interaction

  20. Cycle Length Dependence of Stellar Magnetic Activity and Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Choi, Hwajin; Lee, Jeongwoo; Oh, Suyeon; Kim, Bogyeong; Kim, Hoonkyu; Yi, Yu

    2015-03-01

    Solar cycle (SC) 23 was extraordinarily long with remarkably low magnetic activity. We have investigated whether this is a common behavior of solar-type stars. From the Ca ii H and K line intensities of 111 stars observed at Mount Wilson Observatory from 1966 to 1991, we have retrieved data of all 23 G-type stars and recalculated their cycle lengths using the damped least-squares method for the chromospheric activity index S as a function of time. A regression analysis was performed to find relations between the derived cycle length, Pavg, and the index for excess chromospheric emission, RHK\\prime . As a noteworthy result, we found a segregation between young and old solar-type stars in the cycle length-activity correlation. We incorporated the relation for the solar-type stars into the previously known rule for stellar chromospheric activity and brightness to estimate the variation of solar brightness from SC 22 to SC 23 as (0.12 ± 0.06)%, much higher than the actual variation of total solar irradiance (TSI) ≤0.02%. We have then examined solar spectral irradiance (SSI) to find a good phase correlation with a sunspot number in the wavelength range of 170-260 nm, which is close to the spectral range effective in heating the Earth’s atmosphere. Therefore, it appears that SSI rather than TSI is a good indicator of the chromospheric activity, and its cycle length dependent variation would be more relevant to the possible role of the Sun in the cyclic variation of the Earth’s atmosphere.

  1. NASA Tropical Rainfall Measurement Mission (TRMM): Effects of tropical rainfall on upper ocean dynamics, air-sea coupling and hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary; Busalacchi, Antonio J.; Liu, W. Timothy; Lukas, Roger B.; Niiler, Pern P.; Swift, Calvin T.

    1995-01-01

    This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?

  2. Variation of Meteor Heights and Solar-Cycle Activity

    NASA Astrophysics Data System (ADS)

    Porubcan, Vladimír; Bucek, Marek; Cevolani, Giordano; Zigo, Pavel

    2012-08-01

    Photographic meteor observations of the Perseid meteoroid stream compiled from the IAU Meteor Data Center catalogue are analyzed from the viewpoint of possible long-term variation of meteor heights with the solar-cycle activity, which was previously reported from radio observations. The observed beginning and end-point heights of the Perseids, normalized for the geocentric velocity and the absolute photographic magnitude, do not show a variation consistent with the solar-cycle activity. This result is valid for the mass range of larger meteoroids observed by photographic techniques, and must be still verified also for the range of smaller meteoroids observed by TV and radio methods.

  3. Assessing the skill of hydrology models at simulating the water cycle in the HJ Andrews LTER: Assumptions, strengths and weaknesses

    EPA Science Inventory

    Simulated impacts of climate on hydrology can vary greatly as a function of the scale of the input data, model assumptions, and model structure. Four models are commonly used to simulate streamflow in model assumptions, and model structure. Four models are commonly used to simu...

  4. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    SciTech Connect

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.; Mauas, P. J. D.; Petrucci, R.; Brown, B. P.; Soderblom, D. R.; Henry, T. J.; Hall, J. C.; Basu, S.

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  5. The mid-Cretaceous water-bearer revisited: Quantification of a greenhouse hydrologic cycle in the Americas

    NASA Astrophysics Data System (ADS)

    Suarez, M. B.; Gonzalez, L. A.; Ludvigson, G. A.

    2009-12-01

    The response of the hydrologic cycle to global warmth is vital to understanding the global climate system during greenhouse conditions. Investigation of the Cretaceous greenhouse climate allows us to generate important data that can be utilized to constrain models used in forecasting future greenhouse conditions. This study builds on the Aptian-Albian sphaerosiderite δ18O data set, a groundwater δ18O proxy, presented by Ufnar et al. (2002) by including new and additional low latitude data which includes pedogenic and early meteoric diagenetic calcite δ18O. Ufnar et al. (2002) used the proxy data derived from the North American Cretaceous Western Interior Basin (KWIB) in a mass balance model to estimate precipitation-evaporation fluxes. We have revised this mass balance model to handle sphaerosiderite and calcite proxies and to account for longitudinal travel by tropical air masses. We use empirical and GCM modeled temperature gradients for the mid-Cretaceous, and the empirically-derived δ18O composition of groundwater as constraints in our mass balance model. Precipitation flux, evaporation flux, relative humidity, seawater composition, and continental feedback are adjusted to generate model calculated groundwater δ18O compositions (proxy for precipitation δ18O) that match the empirically-derived groundwater δ18O compositions to within ± 0.5‰. The model is calibrated against modern precipitation data sets. Four different Cretaceous temperature estimates were used: the leaf physiognomy estimates of Wolfe and Upchurch (1987) and Spicer and Corfield (1992), the cool and warm Cretaceous GCM derived curves of Barron (1983) and data for the eastern KWIB margin derived from Poulsen’s (1999) GCM simulations, presented in White et al. (2001). Precipitation fluxes for all the Cretaceous temperature gradients utilized in the model, are greater than modern precipitation fluxes. As expected calculated precipitation rates are all greater than modern precipitation

  6. Evaluating the realism of climate model hydrological cycle via comparisons with the observed moisture mixing ratio distribution (Invited)

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Kursinski, A. L.

    2010-12-01

    The water vapor feedback is the largest feedback in climate models and is tightly coupled to other fundamental and difficult to predict climate variables such as clouds, precipitation, lapse rates and dynamics. It is therefore critical that climate models accurately represent the hydrological cycle and the processes controlling the moisture distribution. There has long been concern that vertical coupling of water vapor in models may be too strong and causing the water vapor feedback to be overestimated in models. Evaluating models requires tight and unique observational constraints that leave the models little wiggle room, in order to ensure that if models get the right answer, they get it for the right reasons. Along these lines, an approach to evaluating models is to compare the observed and model-generated distributions of water vapor mixing ratios at radiatively important levels in the troposphere. The extremes of the moisture distribution are particularly important to evaluating model realism. Earth’s ability to cool itself is linked directly to and depends critically on the dryness of the free troposphere in the subtropics which have been referred to as the radiator fins of the climate system. At the other end of the distribution is air at or near saturation, rising from below, and providing source of moisture in the free troposphere. It is the source of much of the clouds and most of the precipitation and is tied closely to and is partially the driver of atmospheric circulation. One can infer that models that produce reasonable circulation and precipitation amounts and patterns while missing the upper end of the water vapor distribution must contain erroneous physics and parameterizations that somehow compensate for the systematic errors in the moisture distribution. We also note that observations must quantify the properties of supersaturated air, which is now recognized to occur commonly at altitudes above the freezing level, for comparison with models

  7. Reprint of: Active subspaces for sensitivity analysis and dimension reduction of an integrated hydrologic model

    NASA Astrophysics Data System (ADS)

    Jefferson, Jennifer L.; Gilbert, James M.; Constantine, Paul G.; Maxwell, Reed M.

    2016-05-01

    Integrated hydrologic models coupled to land surface models require several input parameters to characterize the land surface and to estimate energy fluxes. Uncertainty of input parameter values is inherent in any model and the sensitivity of output to these uncertain parameters becomes an important consideration. To better understand these connections in the context of hydrologic models, we use the ParFlow-Common Land Model (PF-CLM) to estimate energy fluxes given variations in 19 vegetation and land surface parameters over a 144-hour period of time. Latent, sensible and ground heat fluxes from bare soil and grass vegetation were estimated using single column and tilted-v domains. Energy flux outputs, along with the corresponding input parameters, from each of the four scenario simulations were evaluated using active subspaces. The active subspace method considers parameter sensitivity by quantifying a weight for each parameter. The method also evaluates the potential for dimension reduction by identifying the input-output relationship through the active variable - a linear combination of input parameters. The aerodynamic roughness length was the most important parameter for bare soil energy fluxes. Multiple parameters were important for energy fluxes from vegetated surfaces and depended on the type of energy flux. Relationships between land surface inputs and output fluxes varied between latent, sensible and ground heat, but were consistent between domain setup (i.e., with or without lateral flow) and vegetation type. A quadratic polynomial was used to describe the input-output relationship for these energy fluxes. The reduced-dimension model of land surface dynamics can be compared to observations or used to solve the inverse problem. Considering this work as a proof-of-concept, the active subspace method can be applied and extended to a range of domain setups, land cover types and time periods to obtain a reduced-form representation of any output of interest

  8. The Solar Non-activity Cycle of Polar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Kirk, M. S.; Pesnell, W. D.; Young, C. A.

    2015-12-01

    After the unusually extended minimum in 2008 and 2009, solar cycle 24 continues to be an exceptionally weak cycle both in sunspot number and number of large magnetic storms. Coronal holes offer a direct measurement of the non-activity solar cycle, a missing link in our understanding of solar cycle progression. They are prevalent during solar minimum, non-axisymmetric, and are stable. Polar coronal holes are regularly observed capping the northern and southern solar poles in EUV images of the corona and are understood as the primary source of the fast solar wind. We make measurements of these features from 1996 through 2015 using four different NASA imagers: SOHO EIT, STEREO A and B EUVI, and SDO AIA. A measurement of the axial symmetry of the polar holes is seen to have clear solar cycle dependence. Polar coronal holes are aligned with the solar rotation axis during minimum and have a maximum asymmetry between holes of about 14 degrees in the declining phase of the current solar cycle.

  9. Periods of activity cycles in late-type stars

    NASA Technical Reports Server (NTRS)

    Kliorin, N. I.; Ruzmaykin, A. A.; Sokolov, D. D.

    1983-01-01

    The mean magnetic field dynamo theory is utilized to obtain the qualitative dependence of the period of activity on the angular velocity of rotation for stars with sufficiently extensive convective shells. The dependence of the cycle period on the spectral class is also discussed.

  10. A cycling workstation to facilitate physical activity in office settings.

    PubMed

    Elmer, Steven J; Martin, James C

    2014-07-01

    Facilitating physical activity during the workday may help desk-bound workers reduce risks associated with sedentary behavior. We 1) evaluated the efficacy of a cycling workstation to increase energy expenditure while performing a typing task and 2) fabricated a power measurement system to determine the accuracy and reliability of an exercise cycle. Ten individuals performed 10 min trials of sitting while typing (SIT type) and pedaling while typing (PED type). Expired gases were recorded and typing performance was assessed. Metabolic cost during PED type was ∼ 2.5 × greater compared to SIT type (255 ± 14 vs. 100 ± 11 kcal h(-1), P < 0.01). Typing time and number of typing errors did not differ between PED type and SIT type (7.7 ± 1.5 vs. 7.6 ± 1.6 min, P = 0.51, 3.3 ± 4.6 vs. 3.8 ± 2.7 errors, P = 0.80). The exercise cycle overestimated power by 14-138% compared to actual power but actual power was reliable (r = 0.998, P < 0.01). A cycling workstation can facilitate physical activity without compromising typing performance. The exercise cycle's inaccuracy could be misleading to users. PMID:24681071

  11. Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds

    DOE PAGESBeta

    Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; Klaus, Julian; Du, Enhao; Bitew, Menberu M.

    2016-02-08

    Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds,more » while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. In conclusion, together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.« less

  12. Coupled high-resolution marine and terrestrial records of carbon and hydrologic cycles variations during the Paleocene-Eocene Thermal Maximum (PETM)

    NASA Astrophysics Data System (ADS)

    Tipple, Brett J.; Pagani, Mark; Krishnan, Srinath; Dirghangi, Sitindra S.; Galeotti, Simone; Agnini, Claudia; Giusberti, Luca; Rio, Domenico

    2011-11-01

    The Paleocene-Eocene Thermal Maximum is characterized by a massive perturbation of the global carbon cycle reflected in a large, negative carbon isotope excursion associated with rapid global warming and changes in the hydrologic system. The magnitude of the carbon isotope excursion from terrestrial carbonates and organic carbon is generally larger relative to marine carbonates. However, high-resolution marine and terrestrial isotopic records from the same locality for direct comparison are limited. Here we present coupled carbon isotope records from terrestrial biomarkers (δ 13C n-alkane ), marine bulk carbonates (δ 13C carbonate), and bulk organic carbon (δ 13C organic) from the continuous sedimentary record of the Forada section in northern Italy in order to evaluate the magnitude and phase relationships between terrestrial and marine environments. Consistent with previous reports, we find that the carbon isotope excursion established from δ 13C n-alkane values is more negative than those established from δ 13C carbonate and δ 13C organic values. In contrast to the majority of PETM records, all Forada δ 13C records show a sharp 13C-enrichment immediately following the onset of the carbon isotope excursion. Further, the terrestrial δ 13C n-alkane record lags δ 13C carbonate/δ 13C organic trends by ~ 4-5 kyr—offsets that reflect the long residence time of soil organic carbon. Hydrogen isotope records from higher-plant leaf waxes (δD n-alkane ) and sea-surface temperatures (TEX 86) were established to assess hydrologic and ocean temperature trends. We find δD n-alkane values trend more positive, associated with higher temperatures prior to the onset of the carbon isotope excursion, and conclude that regional changes in the hydrologic cycle likely occurred before the onset of the carbon isotope anomaly.

  13. Climate warming causes intensification of the hydrological cycle resulting in changes to the vernal and autumnal windows in a northern temperate forest

    NASA Astrophysics Data System (ADS)

    Creed, Irena; Hwang, Taehee; Lutz, Brian; Way, Danielle

    2015-04-01

    Climate warming is likely to lead to complex effects on northern forests of the temperate forest biome. We investigated whether rising temperatures altered the timing of snowmelt and snowpack accumulation or extended the forest growing season length in the Turkey Lakes Watershed in Central Ontario. Archived satellite imagery was used to track changes in timing of snow pack loss/gain and canopy leaf on/off; the periods between these events were defined as the vernal (spring) and autumnal (fall) windows. We found only a slight extension of the growing season into the autumn period and no increase in the width of the vernal or autumnal windows, indicating that forest growth is not responding significantly to temperature increases during these windows. Archived time series of temperature, precipitation and discharge data for a nested set of catchments ranging in size from headwater (<10 ha) to regional (103 ha) catchments were used to track changes in the magnitude, timing and partitioning of precipitation into evapotranspiration and discharge. We found an intensification of hydrological cycling, with (1) a higher dryness index (PET/P) during the summer growing season, and (2) earlier spring snowmelt discharges and later more concentrated autumn storm discharges during the shoulder seasons. This intensification of the hydrological cycle during the summer growth season and the vernal and autumnal windows may not only limit opportunities for enhanced forest growth, but may be contributing to the recent observations of forest decline within this biome.

  14. Activity Cycles in Stars with Highly Active Chromospheres

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.

    The extended lifetime of the IUE satellite has provided an unique and unanticipated opportunity to examine the long-term evolution of magnetic activity on active chromospheric stars. We propose to obtain further IUE observations of the highly active RS CVn stars V711 Tauri, lambda Andromedae, II Pegasi, and UX Arietis in conjunction with groundbased optical and radio observations, and possibly ROSAT X-ray observations. In addition we would continue IUE observations of the unusual rapidly rotating early G giant, FK Comae, which, although not in the RS CVn category, shares a similarly high level of magnetic activity. These five stars have the most extensive IUE archival coverage for stars of their type and have almost continuous ground-based photometric coverage from about 1975 onward. We aim to trace the long-term development of magnetic activity on these stars: a detailed study of the UV emission-like fluxes will enable us to follow the variations in chromospheric and transition-region activity over an interval of 12-16 years. Optical observations reveal variations in photospheric (starspot) activity: the starspot regions are large (up to 30% of the stellar surface) and vary significantly with time. The main aim of the proposed research is to examine the relationship between chromospheric, transition-region, and photospheric active regions. Elucidation of the role of white-light faculae vis-a-vis spots in effecting stellar irradiance changes is also desirable.

  15. Towards a theory for hydrological change

    NASA Astrophysics Data System (ADS)

    Montanari, Alberto

    2014-05-01

    Hydrological change is one of the most important research issues in modern hydrology. Several recent contribution focused on emerging unprecedented patterns therefore pointing out that relevant changes are affecting the fundamental processes related to the water cycle. The above interest is motivated by the impact of hydrological change on natural hazards and therefore on the related risk affecting human settlements and activities. Indeed, water plays a central role for societal systems and therefore any change affecting water security, and water related risks in general, is a matter of concern for society. However, hydrological change is still "a well known unknown". On the one hand, humans are well aware that environmental systems are continuously changing. On the other hand, natural variability and the associated change are poorly known. Moreover, a fundamental question remains unsolved on the impact of human activity on environmental change and environmental risks. To what extent humans may affect the global water cycle? How to model the interactions and feedbacks between natural systems and society? Furthermore, it is still not clear how hydrological change can be understood and modelled. The above lack of clarity is inducing relevant misconceptions, like for instance the convincement that change is a synonym for non-stationarity or the belief that non-stationary approaches are needed to predict the impact of change. As a matter of fact, a theoretical framework for dealing with hydrological change is still lacking. This talk will summarise ideas for the development of a theoretical framework to support the interpretation and modelling of hydrological change. I am not proposing new concepts, but rather a review of the main approaches that are available for dealing with hydrological change. My objective is to clarify the ways forward to a better comprehension of the changing behaviour of hydrological systems, to improve our capability to support hydrological

  16. The evolution and orientation of early cycle 22 active regions

    NASA Technical Reports Server (NTRS)

    Cannon, Anne T.; Marquette, William H.

    1991-01-01

    The evolution of six major active regions which appeared during the first phase of the present solar cycle (cycle 22) has been studied. It was found that the northern hemisphere regions exhibited a broad range of evolutionary behavior in which the commonly accepted 'normal pattern' (whereby the follower flux moves preferentially polewards ahead of the leader flux) is represented at one end of the range. At the other end of the range, the leader flux is displaced polewards of the follower flux. In the latter cases equatorward extensions of the polar coronal hole are noted.

  17. Climate driven changes in hydrology, nutrient cycling, and food web dynamics in surface waters of the Arctic Coastal Plain, Alaska

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Wipfli, M.; Schmutz, J.; Gurney, K.

    2011-12-01

    Arctic ecosystems are changing rapidly as a result of a warming climate. While many areas of the arctic are expected to dry as a result of warming, the Arctic Coastal Plain (ACP) of Alaska, which extends from the Brooks Range north to the Beaufort Sea will likely become wetter, because subsurface hydrologic fluxes are constrained by thick, continuous permafrost. This landscape is characterized by large, oriented lakes and many smaller ponds that form in the low centers and troughs/edges of frost polygons. This region provides important breeding habitat for many migratory birds including loons, arctic terns, eiders, shorebirds, and white-fronted geese, among others. Increased hydrologic fluxes may provide a bottom-up control on the success of these species by altering the availability of food resources including invertebrates and fish. This work aimed to 1) characterize surface water fluxes and nutrient availability in the small streams and lake types of two study regions in the ACP, 2) predict how increased hydrological fluxes will affect the lakes, streams, and water chemistry, and 3) use nutrient additions to simulate likely changes in lake chemistry and invertebrate availability. Initial observations suggest that increasing wetland areas and availability of nutrients will result in increased invertebrate abundance, while the potential for drainage and terrestrialization of larger lakes may reduce fish abundance and overwintering habitat. These changes will likely have positive implications for insectivores and negative implications for piscivorous waterfowl.

  18. The active RS Canum Venaticorum binary II Pegasi. IV. The SPOT activity cycle

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.; Berdyugin, A. V.; Ilyin, I.; Tuominen, I.

    1999-10-01

    A total of 6 new surface images of II Peg obtained for the years 1997 and 1998 confirms the recently revealed permanent active longitude structure. The lower limit of the active longitudes' lifetime is now extended up to 25 years. A new ``flip-flop'' phenomenon, redefined as a switch of the activity between the active longitudes, has started in summer of 1998. It coincides reasonably well with the moment predicted from the activity cycle of the star. This confirms definitely the cyclic behaviour of the activity of II Peg we recently discovered. Therefore, we assign numbers to the cycles of 4.65 yr since the earliest photoelectric observations of II Peg and define the active longitudes as ``odd'' and ``even'' corresponding to odd and even numbers of cycles. With such a definition, in late 1998 the 7th cycle began and the ``odd'' active longitude became more active. From the analysis of the spot area evolution within the active longitudes we conclude that the activity cycle is developed as a rearrangement of the nearly constant amount of the spot area between the active longitudes. We discuss the ``flip-flop'' phenomenon as a tracer of stellar activity and the role of the unseen secondary in establishing the cycle. Based on observations collected at the Nordic Optical Telescope (NOT), La Palma, Spain; the 1.25m telescope of the Crimean Astrophysical Observatory, Ukraine; the Phoenix 10 robotic telescope, APT Observatory, Arizona, USA.}

  19. SOLAR ROTATION RATE DURING THE CYCLE 24 MINIMUM IN ACTIVITY

    SciTech Connect

    Antia, H. M.; Basu, Sarbani E-mail: sarbani.basu@yale.ed

    2010-09-01

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We find that the band of fast rotating region close to the equator bifurcated around 2005 and recombined by 2008. This behavior is different from that during the cycle 23 minimum. By autocorrelating the zonal-flow pattern with a time shift, we find that in terms of solar dynamics, solar cycle 23 lasted for a period of 11.7 years, consistent with the result of Howe et al. (2009). The autocorrelation coefficient also confirms that the zonal-flow pattern penetrates through the convection zone.

  20. Activity Scratchpad Prototype: Simplifying the Rover Activity Planning Cycle

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy

    2005-01-01

    The Mars Exploration Rover mission depends on the Science Activity Planner as its primary interface to the Spirit and Opportunity Rovers. Scientists alternate between a series of mouse clicks and keyboard inputs to create a set of instructions for the rovers. To accelerate planning by minimizing mouse usage, a rover planning editor should receive the majority of inputted commands from the keyboard. Thorough investigation of the Eclipse platform's Java editor has provided the understanding of the base model for the Activity Scratchpad. Desirable Eclipse features can be mapped to specific rover planning commands, such as auto-completion for activity titles and content assist for target names. A custom editor imitating the Java editor's features was created with an XML parser for experimenting purposes. The prototype editor minimized effort for redundant tasks and significantly improved the visual representation of XML syntax by highlighting keywords, coloring rules, folding projections, and providing hover assist, templates and an outline view of the code.

  1. Hydrological cycle effects on the aquatic community in a Neotropical stream of the Andean piedmont during the 2007-2010 ENSO events.

    PubMed

    Ríos-Pulgarín, M I; Barletta, M; Mancera-Rodriguez, N J

    2016-07-01

    The seasonal and interannual changes in the fish, macroinvertebrates and phycoperiphyton assemblages of the Guarinó River were examined in relation to the physical and chemical environmental changes associated with the hydrological cycle and the El Niño-Niña/Southern Oscillation (ENSO) between 2007 and 2010. Four samplings (in dry and rainy seasons) were performed per year. Environmental variables (temperature, pH, conductivity, turbidity, oxygen, total nitrogen, orthophosphate, depth and flow rate) were measured. The temporal patterns of the taxonomic compositions for the three assemblages and the functional composition of fish and macroinvertebrate assemblages with respect to environmental variables were examined through canonical discriminant analysis, multidimensional scaling and multiple correlations. The presence and abundance of fishes, macroinvertebrates and algae species were regulated by environmental variables associated with extreme hydrological events, which derived from the natural torrential regimen of the basin and larger-scale phenomena, such as El Niño and La Niña. Fish abundance and richness were significantly correlated with algal density and pH, the macroinvertebrate density was negatively related to the flow rate and the richness was positively correlated with algal density. The algae richness was positively correlated with pH and negatively correlated with the flow rate and nitrogen. The algal density was positively correlated with pH and temperature and negatively correlated with river flow. The phycoperiphyton assemblage exhibited more direct responses in its density and richness to the hydrological changes (r(2) = 0·743 and 0·800, respectively). In functional terms, the El Niño phenomenon was defined by a greater abundance of omnivorous and insectivorous fishes, as well as filter feeders, scrapers and macroinvertebrate predators. During La Niña, a greater abundance of benthic fishes (both detritivorous and insectivorous) and

  2. The IAHR project CCHE-Climate Change impact on the Hydrological cycle, water management and Engineering: an overview and preliminary results

    NASA Astrophysics Data System (ADS)

    Ranzi, Roberto; Kojiri, T.; Mynett, A.; Barontini, S.; van de Giesen, N.; Kolokytha, E.; Ngo, L. A.; Oreamuno, R.; Renard, B.; Sighomnou, D.; Vizina, A.

    2010-05-01

    IAHR, the International Association for Hydro-Environment Engineering and Research launched a research Project called Climate Change impact on the Hydrological cycle, water management and Engineering (IAHR CCHE Project). It was motivated by the fact that, although it is now well accepted that, in the light of the recent IPCC reports the vast majority of members of the scientific community are convinced that the climate is changing or at least will experience a significant fluctuation already during the current century, it is perceived that some hydrologists, water experts and hydraulic engineers are not yet ready to incorporate climate change scenarios in their designs for such projects as: - flood protection and river training, - dam rehabilitation, - water resources management under water scarcity and changes in the hydrological regimes. The objective of the project is to encourage a close co-operation between the scientific and engineering communities in taking appropriate and timely action in response to the impact of climate change on the hydrological regime and on water resource projects. The project aims at reporting on (a) the current state of knowledge as regards the impact of projected climate change on the hydrological regime in different regions of the world, where these regions are defined not just in geographic terms but also on the basis of their level of economic and water resources development; (b) the extent to which these impacts are recognized and taken into account by national water authorities, engineering organizations and other regulating bodies in setting their standard practices and procedures for the planning, design and operation of water works. These adaptation measures will include both "hard" responses, such as the construction or enlargement of engineering structures, and "soft" responses, such as changes in legislation or the operating rules of existing structures. An overview of the project and preliminary results extracted from of

  3. 45 years of non-stationary hydrology over a forest plantation growth cycle, Coalburn catchment, Northern England

    NASA Astrophysics Data System (ADS)

    Birkinshaw, Stephen J.; Bathurst, James C.; Robinson, Mark

    2014-11-01

    The Coalburn research catchment (1.5 km2) in Kielder Forest, Northern England, is a long-term project to study the effect of upland afforestation on hydrology. There is now a unique 45-year record; making it Britain's longest running forest hydrology research catchment. The site was instrumented in 1967, ploughed and planted in 1972/73 and the trees have now reached maturity. Hourly meteorological data have been measured since 1993 and these have enabled hydrological simulations to be carried out using the Shetran model for the period 1993-2011. The results from this work show that after ploughing there was an increase of around 50-100 mm in annual streamflow compared with the original upland grassland vegetation. However, the mature trees now show a decrease of around 250-300 mm in the annual streamflow compared with the original vegetation and a decrease of around 350 mm in the annual streamflow compared with when the site was ploughed. The simulation results show very clearly the non-stationary nature of the catchment during 1993-2011 with an annual increase in intercepted evaporation and a decrease in discharge as the trees grow. Simulation results also show that peak discharges are higher for a cover of smaller trees compared with taller trees. However, the results suggest that the bigger the event the smaller is the difference, i.e. there is absolute convergence for the two different tree scenarios at higher discharges. The study shows how modelling can compensate for data deficiencies, to maximise outcomes. As a rare example of long-term analysis of non-stationary catchment behaviour it also provides real evidence of change that would otherwise have had to be inferred theoretically.

  4. Effects of antecedent hydrologic conditions, time dependence, and climate cycles on the suspended sediment load of the Salinas River, California

    NASA Astrophysics Data System (ADS)

    Gray, Andrew B.; Pasternack, Gregory B.; Watson, Elizabeth B.; Warrick, Jonathan A.; Goñi, Miguel A.

    2015-06-01

    Previous estimations of sediment flux for the Salinas River of central California were based on data collected in the 1970s and assumptions of time invariant suspended sediment-discharge behavior. The goals of this study were to estimate sediment flux from the Salinas River using data from 1967-2011 by incorporating time dependent behavior and reassess the role of El Niño Southern Oscillation patterns in inter-decadal sediment load. This study builds on previous findings that time-dependent suspended sediment behavior in this system is controlled in part by antecedent hydrologic conditions. The condition of temporal dependence was further tested herein through comparison of flux estimates obtained using time-dependent formulations and a multivariate approach incorporating hydrologic factors. Longer sampling records and incorporation of decadal scale behavior or antecedent hydrologic conditions resulted in average annual load estimates of 2.0-2.9 Mt/yr with 95% confidence intervals of ±25 to 202%, in comparison to earlier estimates of ∼3.3 Mt/yr. Previous overestimation of sediment load is due largely to the extrapolation of suspended sediment behavior from a decade of high sediment concentrations to the entire record, and the use of log-linear regression techniques on a non-linear system. The use of LOESS methods lowered QSS estimates and decreased confidence interval size. The inclusion of time-stratified and antecedent flow indices further decreased QSS estimates, but increased confidence interval size. However, temporal dependence of the CSS-Q relationship violates the assumptions of single base period regression, which suggests that time-stratified rating curves provide more realistic estimates of sediment flux means and uncertainty. The majority of suspended sediment was transported by flows of ∼25-90 times mean discharge depending on transport constituent (fines or sand) and estimation method. Periods of differential suspended sediment behavior changed

  5. Improving the representation of hydrologic processes in Earth System Models

    SciTech Connect

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, Jennifer C.; Bolster, Diogo; Gochis, David J.; Hooper, Richard P.; Kumar, Mukesh; Leung, L. Ruby; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-21

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.

  6. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect

    Ness, H.M.; Reuther, R.B.

    1995-12-01

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  7. Effects of turbulent pumping on stellar activity cycles

    NASA Astrophysics Data System (ADS)

    Do Cao, O.; Brun, A. S.

    2011-12-01

    Stellar magnetic activity of solar like stars is thought to be due to an internal dynamo. While the Sun has been the subject of intense research for refining dynamo models, observations of magnetic cyclic activity in solar type stars have become more and more available, opening a new path to understand the underlying physics behind stellar cycles. For instance, it is key to understand how stellar rotation rate influences magnetic cycle period P_cyc. Recent numerical simulations of advection-dominated Babcock Leighton models have demonstrated that it is difficult to explain this observed trend given a) the strong influence of the cycle period to the meridional circulation amplitude and b) the fact that 3D models indicate that meridional flows become weaker as the rotation rate increases. In this paper, we introduce the turbulent pumping mechanism as another advective process capable also of transporting the magnetic fields. We found that this model is now able to reproduce the observations under the assumption that this effect increases as \\Omega2. The turbulent pumping becomes indeed another major player able to circumvent the meridional circulation. However, for high rotation rates (\\Omega ≃ 5 \\Omega_⊙), its effects dominate those of the meridional circulation, entering a new class of regime dominated by the advection of turbulent pumping and thus leading to a cyclic activity qualitatively different from that of the Sun.

  8. Magnetic Cloud Polarity and Geomagnetic Activities over Three Solar Cycles

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luhmann, J.

    2006-12-01

    Interplanetary coronal mass ejections (ICMEs) that show fluxrope magnetic structures are named magnetic clouds (MCs). Majority of the MCs exhibit bipolar signature in their north-south component (Bz) in IMF measurements. The Bz component of a bipolar cloud is either NS (north first then turning south as the MC traverses the spacecraft) or SN. Studies show that the occurrence of these two types of MCs has some solar cycle dependence. However it appears to be a complex relationship as the switch between the two types of MCs is not concurrent with either the solar polar reversal or the time of the sunspot minimum when the new cycle sunspots start to appear. In this paper, we use ACE solar wind and IMF observations to obtain the most updated MC signatures and their temporal variation. In combination with our previously published results, we analyze MC polarity variations over the three solar cycles of 21, 22 and 23. Interpretations in terms of their solar sources will be attempted. On the other hand, the geomagnetic activities over the same solar cycles will be studied using geomagnetic indices. The geoeffectiveness of the MC will be evaluated in the aid of Dst indices.

  9. Estrus cycle effect on muscle tyrosine kinase activity in bitches.

    PubMed

    Gomes Pöppl, Álan; Costa Valle, Sandra; Hilário Díaz González, Félix; de Castro Beck, Carlos Afonso; Kucharski, Luiz Carlos; Silveira Martins Da Silva, Roselis

    2012-03-01

    Estrus cycle is a well recognized cause of insulin resistance in bitches. The insulin receptor (IR) as well as the insulin-like growth factor-I receptor belong to the same subfamily of tyrosine kinase (TK) receptors. The objective of this study was to evaluate basal TK activity in muscle tissue of bitches during the estrus cycle. Twenty-four bitches were used in the study (7 in anestrus, 7 in estrus, and 10 in diestrus). Muscle samples, taken after spaying surgery to determine TK activity, were immediately frozen in liquid nitrogen and then stored at -80°C until the membranes were prepared by sequential centrifugation after being homogenized. TK activity was determined by Poly (Glu 4:Tyr 1) phosphorylation and expressed in cpm/μg of protein. TK activity was significantly lower (P < 0.001) in the animals in estrus (104.5 ± 11.9 cpm/μg of protein) and diestrus (94.5 ± 16.9 cpm/μg of protein) when compared with bitches in anestrus (183.2 ± 39.2 cpm/μg of protein). These results demonstrate, for the first time, lower basal TK activity in the muscle tissue of female dogs during estrus and diestrus, which may represent lower insulin signaling capacity, opening a new field of investigation into the molecular mechanisms of insulin resistance in dogs. PMID:22139063

  10. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  11. Changes in the activity budget of cycling female chimpanzees.

    PubMed

    Matsumoto-Oda, A; Oda, R

    1998-01-01

    This study is a preliminary report on the time allocated to various activities by female wild chimpanzees (Pan troglodytes schweinfurthii) during their sexual cycle. Cycling females with maximal tumescence (estrous females) tended to spend more time moving than cycling females with quiescent sexual skin (anestrous females). Although there was no statistically significant decrease in any specific activity that corresponded to the increase in time spent moving, feeding time did decrease in four of the five females. The frequency of approach by females toward males and the frequency of approach by males toward females significantly increased when females were in estrus. Direct aggression by males occurred more frequently toward estrous females than toward anestrous females. The copulation frequency and the frequency of approach to males was not significantly correlated with the increase in time spent moving. There was a high but not significant correlation between the time spent moving and the frequency of direct aggression by males toward females. Mating effort, feeding competition, male aggression, and other possible reasons that might explain the increase in moving time are discussed. PMID:9773678

  12. Solar Activity in the Green Corona Over Cycle 23

    NASA Astrophysics Data System (ADS)

    Rušin, V.

    2006-12-01

    The intensity of the green coronal line (5303Å, Fe {\\sc xiv), which is directly proportional to the electron density as well as the temperature of the corona, is a good and sensitive indicator of the reflection of the photospheric activity in the emission corona, mapping also the evolution of the magnetic fields in the active regions on the solar surface. In cycle 23 (1996 -2007), the average intensity of the green corona was of about 30% less when compared with that of the preceding cycle; this, however, does not necessarily imply a lower temperature of the corona, but rather a smaller number of active regions and/or smaller strength of local magnetic fields in the latter. The maximum of the intensity of the green corona was observed in August 2001, preceding for about one and a half year that of sunspot number. Moreover, the increased intensities were not observed continuously in time and heliographic latitude, but rather in particular latitudes, with a slight time-lag between the north and south hemispheres. It is well known that a time-latitudinal distribution of the intensity of the green corona features two kinds of large-scale motions. The first is the so-called polar branch, which separates from the "main flow" in the middle latitudes in the cycle minimum, lasts for about 3 -4 years and disappears at the time of the maxima of solar activity near the poles. The other is the equatorial (or principal) branch, which after separation in middle-latitudes moves first towards the poles, then roughly 2 years after the polar branch reached the poles makes a U-turn at upper heliographic latitudes of ±70 degrees, and migrates towards the equator where it disappears in the next minimum; the life-time of this branch is about 18 years. Given the time of the splitting of the two branches, we can guess the time of the maximum and minimum of the forthcoming cycle - cycle 24: the corresponding numbers are 2011 and 2012.5 for the time of the "double" maximum and 2019 for

  13. Studies of the Hydrological Cycle for the Sao Francisco Basin using a combination of modeling and satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Rebello, V.; Martins, T.; Rotunno Filho, O. C.; Araujo, A. A.; Lakshmi, V.

    2015-12-01

    The EPHSTC land surface hydrological model is used here in a case study for the São Francisco River Basin (area 630.000 km²) located in Northeast Brazil. The model solves the surface fluxes using ISBA prognostic equations and a gravitational drainage, a vertical diffusion process. A mechanism for subgrid-scale surface runoff generation was added. Another feature implemented in this model is the lateral redistribution of the soil water. This work will be a first attempt of evaluating EPHSTC results in a Brazil catchment for a long time period - 2001 to 2014. The GLDAS model input surface parameters would be used. Validation will be performed by the model values of soil moisture with corresponding GDLAS soil moisture (0-10,10-40,40-60 cm) and latent and heat fluxes. The two time series will be compared by calculation of the coefficient of determination and root mean square error.

  14. The variations of prominence activities during solar cycle

    NASA Astrophysics Data System (ADS)

    Shimojo, Masumi

    The prominence activities (prominence eruption/disappearance) in the solar atmosphere closely relate with the CMEs that cause great influences on heliosphere and magnetosphere. Gopal-swarmy et al. (2003) reported that 72 The Nobeyama Radioheliograph (NoRH) is observing Sun in microwave (17 GHz) since 1992. At a flare, the main component of the microwave from Sun is emitted from non-thermal electrons that are accelerated by flare. On the other hand, the main component of the microwave is thermal emission when Sun is quiet, and a prominence is clearly observed in microwave because there is the prominence on the limb. We developed the automatic prominence activity detection program based on 17 GHz images observed by NoRH, and investigated the variation of the properties of the prominence activities that oc-curred from 1992 to the end of 2009. We found the following results. 1. The variation in the number of prominence activities is similar to that of sunspots during one solar cycle but there are differences between the peak times of prominence activities and sunspots. 2. The frequency distribution as a function of the magnitude of the prominence activities the size of activated prominences at each phase shows a power-law distribution. The power-law index of the distribution does not change except around the solar minimum. 3. The number of promi-nence activities has a dependence on the latitude On the other hand the average magnitude is independent of the latitude. In the paper, we will also discuss the relationship the other properties of prominence eruptions, solar cycle and the photospheric magnetic field.

  15. Non-linear feedbacks between climate change, hydrologic partitioning, plant available water, and carbon cycling in montane forests

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Litvak, M. E.; Harpold, A. A.; Molotch, N. P.; McIntosh, J. C.; Troch, P. A.; Zapata, X.

    2011-12-01

    Changes in both temperature and the amount and timing of precipitation have the potential to profoundly impact water balance in mountain ecosystems. Although changes in the amount of precipitation and potential evapotranspiration are widely considered in climate change scenarios, less attention has been given to how changes in climate or land cover may affect hydrologic partitioning and plant available water. The focus of this presentation is on how spatial transitions in ecosystem structure and temporal transitions in climate affect the fraction of precipitation potentially available to vegetation. In most temperate mountain environments winter snows are a significant fraction of annual precipitation and understanding the partitioning of snow and snow melt is critical for predicting both ecosystem water availability and stream flow under future climate scenarios. Spatial variability in net snow water input is a function of the interaction of snowfall, wind, and solar radiation with topography and vegetation structure. Integrated over larger scales these interactions may result in between 0% and 40% sublimation of winter snowfall before melt, effectively excluding this water from growing season water balance. Once melt begins, variability in the partitioning of snowmelt is driven by the rate of melt, and somewhat less intuitively, by the timing of snow accumulation the previous fall. Early accumulating snowpacks insulate soils and minimize soil frost increasing infiltration of melt the following spring. In contrast, later snowfall results in colder soils, more soil frost, reduced infiltration, increased runoff during melt, and reduced plant available water during the following growing season. This change in hydrologic partitioning, mediated by the timing of snowpack accumulation, results in lower evapotranspiration (ET) and net ecosystem exchange (NEE) the following spring. These findings suggest that abiotic controls on the partitioning of precipitation may

  16. Effects of solar cycle 24 activity on WAAS navigation

    NASA Astrophysics Data System (ADS)

    Datta-Barua, Seebany; Walter, Todd; Bust, Gary S.; Wanner, William

    2014-01-01

    This paper reviews the effects of geomagnetic activity of solar cycle 24 from 2011 through mid-2013 on the Federal Aviation Administration's Wide Area Augmentation System (WAAS) navigation service in the U.S., to identify (a) major impacts and their severity compared with the previous cycle and (b) effects in new service regions of North America added since last solar cycle. We examine two cases: a storm that reduced service coverage for several hours and ionospheric scintillation that led to anomalous receiver tracking. Using the 24-25 October 2011 storm as an example, we examine WAAS operational system coverage for the conterminous U.S. (CONUS). The WAAS algorithm upgrade to ionospheric estimation, in effect since late 2011, is able to mitigate the daytime coverage loss but not the nighttime loss. We correlate WAAS availability to maps of the storm plasma generated with the data assimilative model Ionospheric Data Assimilation 4-D, which show a local nighttime corotating persistent plume of plasma extending from Florida across central CONUS. We study the effect of scintillation on 9 October 2012 on the WAAS reference station at Fairbanks, Alaska. Data from a nearby scintillation monitor in Gakona and all-sky imaging of aurora at Poker Flat corroborate the event. Anomalous receiver processing triggered by scintillation reduces accuracy at Fairbanks for a few minutes. Users experiencing similar effects would have their confidence bounds inflated, possibly trading off service continuity for safety. The activity to date in solar cycle 24 has had minor effects on WAAS service coverage, mainly occurring in Alaska and Canada.

  17. Enhancing the T-shaped learning profile when teaching hydrology using data, modeling, and visualization activities

    NASA Astrophysics Data System (ADS)

    Sanchez, Christopher A.; Ruddell, Benjamin L.; Schiesser, Roy; Merwade, Venkatesh

    2016-03-01

    Previous research has suggested that the use of more authentic learning activities can produce more robust and durable knowledge gains. This is consistent with calls within civil engineering education, specifically hydrology, that suggest that curricula should more often include professional perspective and data analysis skills to better develop the "T-shaped" knowledge profile of a professional hydrologist (i.e., professional breadth combined with technical depth). It was expected that the inclusion of a data-driven simulation lab exercise that was contextualized within a real-world situation and more consistent with the job duties of a professional in the field, would provide enhanced learning and appreciation of job duties beyond more conventional paper-and-pencil exercises in a lower-division undergraduate course. Results indicate that while students learned in both conditions, learning was enhanced for the data-driven simulation group in nearly every content area. This pattern of results suggests that the use of data-driven modeling and visualization activities can have a significant positive impact on instruction. This increase in learning likely facilitates the development of student perspective and conceptual mastery, enabling students to make better choices about their studies, while also better preparing them for work as a professional in the field.

  18. Enhancing the T-shaped learning profile when teaching hydrology using data, modeling, and visualization activities

    NASA Astrophysics Data System (ADS)

    Sanchez, C. A.; Ruddell, B. L.; Schiesser, R.; Merwade, V.

    2015-07-01

    Previous research has suggested that the use of more authentic learning activities can produce more robust and durable knowledge gains. This is consistent with calls within civil engineering education, specifically hydrology, that suggest that curricula should more often include professional perspective and data analysis skills to better develop the "T-shaped" knowledge profile of a professional hydrologist (i.e., professional breadth combined with technical depth). It was expected that the inclusion of a data driven simulation lab exercise that was contextualized within a real-world situation and more consistent with the job duties of a professional in the field, would provide enhanced learning and appreciation of job duties beyond more conventional paper-and-pencil exercises in a lower division undergraduate course. Results indicate that while students learned in both conditions, learning was enhanced for the data-driven simulation group in nearly every content area. This pattern of results suggests that the use of data-driven modeling and visualization activities can have a significant positive impact on instruction. This increase in learning likely facilitates the development of student perspective and conceptual mastery, enabling students to make better choices about their studies, while also better preparing them for work as a professional in the field.

  19. Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture

    NASA Technical Reports Server (NTRS)

    Wood, E. F.; Lin, D.-S.; Mancini, M.; Thongs, D.; Troch, P. A.; Jackson, T. J.; Famiglietti, J. S.; Engman, E. T.

    1993-01-01

    Soil moisture estimations from a distributed hydrological model and two microwave sensors were compared with ground measurements collected during the MAC-HYDRO'90 experiment. The comparison was done with the purpose of evaluating the performance of the hydrological model and examining the limitations of remote sensing techniques used in soil moisture estimation. An image integration technique was used to integrate and analyze rainfall, soil properties, land cover, topography, and remote sensing imagery. Results indicate that the hydrological model and microwave sensors successfully picked up temporal variations of soil moisture and that the spatial soil moisture pattern may be remotely sensed with reasonable accuracy using existing algorithms.

  20. A new simple dynamo model for solar activity cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, Nobumitsu; Schmitt, Dieter

    2015-04-01

    The solar magnetic activity cycle has been investigated in an elaborated manner with several types of dynamo models [1]. In most of the current mean-field approaches, the inhomogeneity of the large-scale flow is treated as an essential ingredient in the mean magnetic field equation whereas it is completely neglected in the turbulence equation. In this work, a new simple model for the solar activity cycle is proposed. The present model differs from the previous ones mainly in two points. First, in addition to the helicity coefficient α, we consider a term related to the cross helicity, which represents the effect of the inhomogeneous mean flow, in the turbulent electromotive force [2, 3]. Second, this transport coefficient (γ) is not treated as an adjustable parameter, but the evolution equation for γ is simultaneously solved. The basic scenario for the solar activity cycle in this approach is as follows: The toroidal field is induced by the toroidal rotation in mediation by the turbulent cross helicity. Then due to the α or helicity effect, the poloidal field is generated from the toroidal field. The poloidal field induced by the α effect produces a turbulent cross helicity whose sign is opposite to the original one (negative cross-helicity production). The cross helicity with this opposite sign induces a reversed toroidal field. Results of the eigenvalue analysis of the model equations are shown, which confirm the above scenario. References [1] Charbonneau, Living Rev. Solar Phys. 7, 3 (2010). [2] Yoshizawa, A. Phys. Fluids B 2, 1589 (1990). [3] Yokoi, N. Geophys. Astrophys. Fluid Dyn. 107, 114 (2013).

  1. Episodic Endogenetic-driven Atmospheric and Hydrologic Cycles and Their Influence on the Geologic Records of the Northern and Southern Hemispheres, Mars

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Fairen, A. G.; Baker, V. R.; Ferris, J. C.; Anderson, R. C.; Uceda, E. R.

    2003-01-01

    Diverse evidence shows a direct correlation between episodic endogenetic events of the Tharsis magmatic complex (TMC)/Superplume, flood inundations in the northern plains, and glacial/ lacustrine/ice sheet activity in the south polar region, which includes Hellas and Argyre impact basins, corroborating the MEGAOUTFLO hypothesis. The TMC encompasses a total surface area of approximately 2 x 10(exp 7) sq km, which is slightly larger than the estimated size of the Southern Pacific Superplume. These hydrologic events include: (1) a Noachian to possibly Early Hesperian oceanic epoch and related atmospheric and environmental change (a water body covering about 1/3 of the planet s surface area) related to the incipient development of Tharsis Superplume and the northwestern sloping valleys (NSVs) and possibly early circum-Chryse development, the northwest and northeast watersheds of Tharsis, respectively, (2) a smaller ocean inset within the former larger ocean related to extensive Late Hesperian to Early Amazonian effusive volcanism at Tharsis and Elysium and incisement of the circum-Chryse outflow system. During this time, magmatic/plume-driven tectonic activity transitioned into more centralized volcanism. This Late Hesperian water body may have simply diminished into smaller seas and/or lakes during the Amazonian Period, or renewed activity at Tharsis and Elysium resulted in brief perturbations from the prevailing cold and dry climatic conditions to later form minor seas or lakes. All of the hydrologic phases transitioned into extensive periods of quiescence.

  2. Sunspot Activity Near Cycle Minimum and What it Might Suggest for Cycle 24, the Next Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2009-01-01

    In late 2008, 12-month moving averages of sunspot number, number of spotless days, number of groups, area of sunspots, and area per group were reflective of sunspot cycle minimum conditions for cycle 24, these values being of or near record value. The first spotless day occurred in January 2004 and the first new-cycle, high-latitude spot was reported in January 2008, although old-cycle, low-latitude spots have continued to be seen through April 2009, yielding an overlap of old and new cycle spots of at least 16 mo. New-cycle spots first became dominant over old-cycle spots in September 2008. The minimum value of the weighted mean latitude of sunspots occurred in May 2007, measuring 6.6 deg, and the minimum value of the highest-latitude spot followed in June 2007, measuring 11.7 deg. A cycle length of at least 150 mo is inferred for cycle 23, making it the longest cycle of the modern era. Based on both the maximum-minimum and amplitude-period relationships, cycle 24 is expected to be only of average to below-average size, peaking probably in late 2012 to early 2013, unless it proves to be a statistical outlier.

  3. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  4. Changes in the long-term hydrological regimes and the impacts of human activities in the main Wei River, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Huang, Qiang; Zhang, Qiang; Gu, Lei; Chen, Keyu; Yu, Qijun

    2016-03-01

    Under the combined influence of climate changes and human activities, the hydrological regime of the Wei River shows remarkable variations which have caused many issues in the Wei River in recent decades, such as a lack of freshwater, water pollution, disastrous flooding and channel sedimentation. Hence, hydrological regime changes and potential human-induced impacts have been drawing increasing attention from local government and hydrologists. This study investigates hydrological regime changes in the natural and measured runoff series at four hydrological stations on the main Wei River and quantifies features of their long-term change by analysing their historical annual and seasonal runoff data using several approaches, i.e., continuous wavelet transform, cross-wavelet, wavelet coherence, trend-free pre-whitening Mann-Kendall test and detrended fluctuation analysis. By contrasting two different analysis results between natural and measured river runoff series, the impacts of human activities on the long-term hydrological regime were investigated via the changes of spatio-temporal distribution in dominant periods, the trends and long-range memory of river runoff. The results show : (a) that periodic properties of the streamflow changes are the result of climate, referring to precipitation changes in particular, while human activities play a minor role; (b) a significant decreasing trend can be observed in the natural streamflow series along the entire main stream of the Wei River and the more serious decrease emerging in measured flow should result from human-induced influences in recent decades; and (c) continuous decreasing streamflow in the Wei River will trigger serious shortages of freshwater in the future, which may challenge the sustainability and safety of water resources development in the river basin, and should be paid great attention before 2020.

  5. Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle

    NASA Astrophysics Data System (ADS)

    Niemeier, U.; Schmidt, H.; Alterskjær, K.; Kristjánsson, J. E.

    2013-11-01

    Different techniques of solar radiation management (SRM) have been suggested to counteract global warming, among them the injection of sulfur into the stratosphere, mirrors in space, and marine cloud brightening through artificial emissions of sea salt. This study focuses on to what extent climate impacts of these three methods would be different. We present results from simulations with an Earth system model where the forcing from the increase of greenhouse gases in a transient scenario (RCP4.5) was balanced over 50 years by SRM. While global mean temperature increases slightly due to the inertia of the climate system and evolves similar with time for the different SRM methods, responses of global mean precipitation differ considerably among the methods. The hydrological sensitivity is decreased by SRM, most prominently for aerosol-based techniques, sea salt emissions, and injection of sulfate into the stratosphere. Reasons for these differences are discussed through an analysis of the surface energy budget. Furthermore, effects on large-scale tropical dynamics and on regional climate are discussed.

  6. Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    SciTech Connect

    PD Meyer; RJ Serne

    1999-12-21

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package.

  7. Capturing interactions between nitrogen and hydrological cycles under historical climate and land use: Susquehanna watershed analysis with the GFDL land model LM3-TAN

    USGS Publications Warehouse

    Lee, M.; Malyshev, S.; Shevliakova, E.; Milly, Paul C. D.; Jaffé, P. R.

    2014-01-01

    We developed a process model LM3-TAN to assess the combined effects of direct human influences and climate change on terrestrial and aquatic nitrogen (TAN) cycling. The model was developed by expanding NOAA's Geophysical Fluid Dynamics Laboratory land model LM3V-N of coupled terrestrial carbon and nitrogen (C-N) cycling and including new N cycling processes and inputs such as a soil denitrification, point N sources to streams (i.e., sewage), and stream transport and microbial processes. Because the model integrates ecological, hydrological, and biogeochemical processes, it captures key controls of the transport and fate of N in the vegetation–soil–river system in a comprehensive and consistent framework which is responsive to climatic variations and land-use changes. We applied the model at 1/8° resolution for a study of the Susquehanna River Basin. We simulated with LM3-TAN stream dissolved organic-N, ammonium-N, and nitrate-N loads throughout the river network, and we evaluated the modeled loads for 1986–2005 using data from 16 monitoring stations as well as a reported budget for the entire basin. By accounting for interannual hydrologic variability, the model was able to capture interannual variations of stream N loadings. While the model was calibrated with the stream N loads only at the last downstream Susquehanna River Basin Commission station Marietta (40°02' N, 76°32' W), it captured the N loads well at multiple locations within the basin with different climate regimes, land-use types, and associated N sources and transformations in the sub-basins. Furthermore, the calculated and previously reported N budgets agreed well at the level of the whole Susquehanna watershed. Here we illustrate how point and non-point N sources contributing to the various ecosystems are stored, lost, and exported via the river. Local analysis of six sub-basins showed combined effects of land use and climate on soil denitrification rates, with the highest rates in the

  8. Capturing interactions between nitrogen and hydrological cycles under historical climate and land use: Susquehanna watershed analysis with the GFDL Land Model LM3-TAN

    NASA Astrophysics Data System (ADS)

    Lee, M.; Malyshev, S.; Shevliakova, E.; Jaffé, P. R.

    2014-04-01

    We developed a~process model LM3-TAN to assess the combined effects of direct human influences and climate change on Terrestrial and Aquatic Nitrogen (TAN) cycling. The model was developed by expanding NOAA's Geophysical Fluid Dynamics Laboratory land model LM3V-N of coupled terrestrial carbon and nitrogen (C-N) cycling and including new N cycling processes and inputs such as a~soil denitrification, point N sources to streams (i.e. sewage), and stream transport and microbial processes. Because the model integrates ecological, hydrological, and biogeochemical processes, it captures key controls of transport and fate of N in the vegetation-soil-river system in a comprehensive and consistent framework which is responsive to climatic variations and land use changes. We applied the model at 1/8° resolution for a study of the Susquehanna River basin. We simulated with LM3-TAN stream dissolved organic-N, ammonium-N, and nitrate-N loads throughout the river network, and we evaluated the modeled loads for 1986-2005 using data from 15 monitoring stations as well as a reported budget for the entire basin. By accounting for inter-annual hydrologic variability, the model was able to capture inter-annual variations of stream N loadings. While the model was calibrated with the stream N loads only at the last downstream station Marietta (40.02° N, 76.32° W), it captured the N loads well at multiple locations within the basin with different climate regimes, land use types, and associated N sources and transformations in the sub-basins. Furthermore, the calculated and previously reported N budgets agreed well at the level of the whole Susquehanna watershed. Here we illustrate how point and non-point N sources contribute to the various ecosystems are stored, lost, and exported via the river. Local analysis for 6 sub-basins showed combined effects of land use and climate on the soil denitrification rates, with the highest rates in the Lower Susquehanna sub-basin (extensive

  9. Capturing interactions between nitrogen and hydrological cycles under historical climate and land use: Susquehanna watershed analysis with the GFDL land model LM3-TAN

    NASA Astrophysics Data System (ADS)

    Lee, M.; Malyshev, S.; Shevliakova, E.; Milly, P. C. D.; Jaffé, P. R.

    2014-10-01

    We developed a process model LM3-TAN to assess the combined effects of direct human influences and climate change on terrestrial and aquatic nitrogen (TAN) cycling. The model was developed by expanding NOAA's Geophysical Fluid Dynamics Laboratory land model LM3V-N of coupled terrestrial carbon and nitrogen (C-N) cycling and including new N cycling processes and inputs such as a soil denitrification, point N sources to streams (i.e., sewage), and stream transport and microbial processes. Because the model integrates ecological, hydrological, and biogeochemical processes, it captures key controls of the transport and fate of N in the vegetation-soil-river system in a comprehensive and consistent framework which is responsive to climatic variations and land-use changes. We applied the model at 1/8° resolution for a study of the Susquehanna River Basin. We simulated with LM3-TAN stream dissolved organic-N, ammonium-N, and nitrate-N loads throughout the river network, and we evaluated the modeled loads for 1986-2005 using data from 16 monitoring stations as well as a reported budget for the entire basin. By accounting for interannual hydrologic variability, the model was able to capture interannual variations of stream N loadings. While the model was calibrated with the stream N loads only at the last downstream Susquehanna River Basin Commission station Marietta (40°02' N, 76°32' W), it captured the N loads well at multiple locations within the basin with different climate regimes, land-use types, and associated N sources and transformations in the sub-basins. Furthermore, the calculated and previously reported N budgets agreed well at the level of the whole Susquehanna watershed. Here we illustrate how point and non-point N sources contributing to the various ecosystems are stored, lost, and exported via the river. Local analysis of six sub-basins showed combined effects of land use and climate on soil denitrification rates, with the highest rates in the Lower

  10. Flowpath acceleration vs flowpath activation: how do hydrologic systems respond to dynamic inputs and changes in storage?

    NASA Astrophysics Data System (ADS)

    Harman, Ciaran

    2016-04-01

    The response of catchments to rainfall or snowmelt can be understood in terms of the propagation and dissipation of a wave of fluid energy, and in terms of the translation of fluid parcels in space. The first determines the amount of flow in a stream, and the second determines the age composition of that streamflow. However, these are not distinct phenomena, but two aspects of the integrated catchment scale hydrologic response. Previous work has shown that catchment storage is the dominant state variable controlling both the magnitude of the flow response and the age composition of that flow response. Here, I will present a succinct framework that unifies the flow and transport properties of a watershed, and their relationship to storage. This framework further extends rank StorAge Selection (rSAS) function theory. The framework suggests that the hydrologic response of a watershed to inputs can be understood to consist of two modalities: flowpath acceleration and flowpath activation. In the first case, additional potential energy drives an acceleration of flowpaths, so that water of all ages moves more quickly toward the catchment outlet. In the second case, the additional new water moves toward the outlet along newly-activated flow paths without modifying the velocity of water previously in the watershed. Real hydrologic systems may exhibit some combination of both modalities across their age-ranked storage. The proposed framework allows the dominant modalities of a given hydrologic system to be explored with few a priori assumptions. Data from several hydrologic systems will be used to demonstrate the method, and gain insights into the sensitivity of catchment flow and transport in variable climatic conditions.

  11. Cardiovascular responses to active and passive cycling movements.

    PubMed

    Nóbrega, A C; Williamson, J W; Friedman, D B; Araújo, C G; Mitchell, J H

    1994-06-01

    Ten healthy subjects were evaluated at rest and at 5 min of unloaded active (AC) and passive (PC) cycling. Passive limb movements were accomplished using a tandem bicycle with a second rider performing the movements. We measured heart rate (HR), mean arterial pressure (MAP), cardiac output (CO), oxygen uptake (VO2), rating of perceived exertion (RPE), and electrical activity (EMG) of lower limbs muscles. Values for stroke volume (SV) and peripheral vascular resistance (PVR) were calculated. EMG, RPE, and VO2 were higher during AC than during PC (P < 0.001). CO increased during both modes of cycling, but during AC it resulted from a HR acceleration (73 +/- 2 at rest to 82 +/- 2 beats.min-1 at 60 rpm; P < 0.001) with no change in SV whereas during PC, SV increased from rest (65 +/- 4 at rest to 71 +/- 3 ml at 60 rpm; P = 0.003) along with no change in HR. PVR remained constant during PC, but decreased by 13% during AC (P < 0.001) and MAP increased only during PC (93 +/- 2 at rest to 107 +/- 2 mm Hg at 60 rpm). These results supports the concept that central command determines the HR response to dynamic exercise. The increase in SV and consequently in MAP during PC was probably due to increased venous return and/or to muscle mechanoreceptor-evoked increased myocardial contractility. PMID:8052111

  12. A Brief Summary of the Geomorphic Evidence for an Active Surface Hydrologic Cycle in Mars' Past

    NASA Technical Reports Server (NTRS)

    Parker, T. J.

    2000-01-01

    Because Mars is just over half the Earth's diameter (about 6800 km), it does not exhibit global tectonism on a scale comparable to Earth and Venus. But because it is still a large body compared to Mercury and the moon, it has had an atmosphere and climate over the history of the solar system. This is why Mars has been able to retain surfaces produced both through volcanic and climatic processes that are intermediate in age between volcanic surfaces on the moon and Mercury and both types of surfaces on Venus and Earth. For the purposes of this discussion, this has important implications about the origins and evolution of topographic depressions that potentially may have contained lakes. Tectonism is probably the most important process on Earth for producing closed depressions on the continents, and is clearly responsible for maintenance of the ocean basins through geologic time. This is probably also true for depressions in the highland terrains and lowland plains of Venus. On Mars, however, tectonism appears limited to relatively small amounts of regional extension, compression, and vertical motion largely due to crustal loading of the two major volcanic provinces - Tharsis and Elysium Impact craters and large impact basins (including all or parts of the northern plains) are clearly more important sites for potential lake basins on Mars, though they were likely more important on Earth, and Venus as well, during the period of heavy meteorite bombardment throughout the solar system prior to 3.5 Ga. Comparisons of the relative importance of other formative processes on Mars with those on Earth are less obvious, and some may be quite speculative, since our understanding of the early Martian environment is still rather limited. Additional information is contained in the original extended abstract.

  13. GASAKe: forecasting landslide activations by a genetic-algorithms based hydrological model

    NASA Astrophysics Data System (ADS)

    Terranova, O. G.; Gariano, S. L.; Iaquinta, P.; Iovine, G. G. R.

    2015-02-01

    GASAKe is a new hydrological model aimed at forecasting the triggering of landslides. The model is based on genetic-algorithms and allows to obtaining thresholds of landslide activation from the set of historical occurrences and from the rainfall series. GASAKe can be applied to either single landslides or set of similar slope movements in a homogeneous environment. Calibration of the model is based on genetic-algorithms, and provides for families of optimal, discretized solutions (kernels) that maximize the fitness function. Starting from these latter, the corresponding mobility functions (i.e. the predictive tools) can be obtained through convolution with the rain series. The base time of the kernel is related to the magnitude of the considered slope movement, as well as to hydro-geological complexity of the site. Generally, smaller values are expected for shallow slope instabilities with respect to large-scale phenomena. Once validated, the model can be applied to estimate the timing of future landslide activations in the same study area, by employing recorded or forecasted rainfall series. Example of application of GASAKe to a medium-scale slope movement (the Uncino landslide at San Fili, in Calabria, Southern Italy) and to a set of shallow landslides (in the Sorrento Peninsula, Campania, Southern Italy) are discussed. In both cases, a successful calibration of the model has been achieved, despite unavoidable uncertainties concerning the dates of landslide occurrence. In particular, for the Sorrento Peninsula case, a fitness of 0.81 has been obtained by calibrating the model against 10 dates of landslide activation; in the Uncino case, a fitness of 1 (i.e. neither missing nor false alarms) has been achieved against 5 activations. As for temporal validation, the experiments performed by considering the extra dates of landslide activation have also proved satisfactory. In view of early-warning applications for civil protection purposes, the capability of the

  14. GASAKe: forecasting landslide activations by a genetic-algorithms-based hydrological model

    NASA Astrophysics Data System (ADS)

    Terranova, O. G.; Gariano, S. L.; Iaquinta, P.; Iovine, G. G. R.

    2015-07-01

    GASAKe is a new hydrological model aimed at forecasting the triggering of landslides. The model is based on genetic algorithms and allows one to obtain thresholds for the prediction of slope failures using dates of landslide activations and rainfall series. It can be applied to either single landslides or a set of similar slope movements in a homogeneous environment. Calibration of the model provides families of optimal, discretized solutions (kernels) that maximize the fitness function. Starting from the kernels, the corresponding mobility functions (i.e., the predictive tools) can be obtained through convolution with the rain series. The base time of the kernel is related to the magnitude of the considered slope movement, as well as to the hydro-geological complexity of the site. Generally, shorter base times are expected for shallow slope instabilities compared to larger-scale phenomena. Once validated, the model can be applied to estimate the timing of future landslide activations in the same study area, by employing measured or forecasted rainfall series. Examples of application of GASAKe to a medium-size slope movement (the Uncino landslide at San Fili, in Calabria, southern Italy) and to a set of shallow landslides (in the Sorrento Peninsula, Campania, southern Italy) are discussed. In both cases, a successful calibration of the model has been achieved, despite unavoidable uncertainties concerning the dates of occurrence of the slope movements. In particular, for the Sorrento Peninsula case, a fitness of 0.81 has been obtained by calibrating the model against 10 dates of landslide activation; in the Uncino case, a fitness of 1 (i.e., neither missing nor false alarms) has been achieved using five activations. As for temporal validation, the experiments performed by considering further dates of activation have also proved satisfactory. In view of early-warning applications for civil protection, the capability of the model to simulate the occurrences of the

  15. Chromospheric and coronal variation across stellar activity cycles

    NASA Astrophysics Data System (ADS)

    Hagen, Cedric; Miller, Brendan P.; Gallo, Elena; Wright, Jason; Isaacson, Howard T.; Henry, Gregory W.

    2015-01-01

    We investigate cyclic chromospheric and coronal activity in main-sequence stars, using Ca II H and K core emission and X-ray luminosities, respectively. From a sample of 244 nearby stars with high-cadence Keck optical spectroscopy spanning up to 17 years (obtained for the California Planet Search program), we use automated sinusoid modeling and goodness-of-fit criteria to identify 33 stars with highly significant cyclic R'HK variability. The cycle periods are refined using mmag APT optical photometry. We also construct a comparison sample of 23 stars that show virtually no R'HK variability. The cyclic and flat stars have similar B-V and absolute magnitude distributions but the cyclic stars tend to be more active, with greater median R'HK values. We present new Swift/XRT observations of 10 cyclic stars and 1 flat star, totaling 32.6 ks; 5/11 are detected in this snapshot pilot survey. A comparison of their current-epoch X-ray luminosities to archival ROSAT values shows variation by a factor of 2-3 is common on decade-long timescales. Several stars also show suggestive evidence for X-ray variability on much shorter timescales, perhaps related to stellar rotation and coronal inhomogeneity or to small flares. We use the chromospheric activity cycles to calculate the phase of each X-ray observation. Additional Swift observations are ongoing and with this larger dataset we will measure the typical amplitude of cyclic X-ray variation. We discuss our initial results in the context of magnetic dynamo activity and consider the implications for exoplanet atmosphere heating and evaporation.

  16. The Sequence of Learning Cycle Activities in High School Chemistry.

    ERIC Educational Resources Information Center

    Abraham, Michael R.; Renner, John W.

    1986-01-01

    Different learning cycle sequences were investigated to determine factors accounting for success of the cycle, compared learning with conventional instruction, and examined relationships between Piaget's theory and learning cycles. Results show that the normal learning cycle sequence is the optimum sequence for achievement of content knowledge in…

  17. The Global Hydrologic Cycle Contribution to Polar Warmth During the mid-Cretaceous Revealed by Oxygen Isotopic Compositions of Pedogenic Carbonates (Invited)

    NASA Astrophysics Data System (ADS)

    Suarez, M. B.; Gonzalez, L. A.; Ludvigson, G. A.

    2010-12-01

    The role of the global hydrologic cycle in contributing to equable climates (low equator to pole temperature gradients) such as the Cretaceous greenhouse has become widely recognized. This study builds on an Aptian-Albian sphaerosiderite δ18O data set from the North American Cretaceous Western Interior Basin. Additional low latitude data, including pedogenic and early meteoric diagenetic calcite δ18O, are compiled with the sphaerosiderite data to generate four latitudinal groundwater δ18O gradients based on four different Cretaceous latitudinal temperature gradients (warm and cool estimates of Barron [1], leaf physiognomy-based gradient [2], and model based estimates [3]). Ufnar et al. [4] developed a mass balance model to determine the precipitation and evaporation fluxes necessary to produce precipitation δ18O compositions that are consistent with the sphaerosiderite δ18O. We modify this mass balance model to include the low latitude data and adjust precipitation flux, evaporation flux, relative humidity, seawater composition, and continental feedback to generate model derived groundwater δ18O compositions (proxy for precipitation δ18O) that match the empirically-derived (from sphaerosiderite and calcite) groundwater δ18O compositions to within ± 0.5‰. Precipitation fluxes for all the Cretaceous temperature gradients utilized in the model are greater than modern precipitation fluxes. Calculated global average precipitation rates range from 371 mm/year to 1196 mm/year greater than modern precipitation rates. Evaporation fluxes are also greater, especially at latitudes below 30°N. Using precipitation-evaporation flux and calculated precipitation rates, average latent heat flux was calculated at each paleolatitude. These calculations suggest that below 30°N, heat is lost through evaporation with a maximum heat loss of -103 W/m2 at about 9°N. Heat is gained in the mid to high latitudes with a maximum gain of 174 W/m2 at 56°N. These values are only

  18. Hydrology, microbiology and carbon cycling at a high Arctic polythermal glacier, (John Evans Glacier, Ellesmere Island, Canada)

    NASA Astrophysics Data System (ADS)

    Skidmore, Mark Leslie

    Analysis of the hydrology, hydrochemistry and microbiology at polythermal John Evans Glacier and geochemical and isotopic data from Haut Glacier d'Arolla demonstrates that certain subglacial chemical weathering processes are microbially mediated. Subglacial drainage is likely an annual occurrence beneath John Evans Glacier and solute rich subglacial waters indicate over winter storage at the glacier bed. Subglacial microbial populations are also present, and are viable under simulated near in situ conditions at 0.3°C. This suggests that temperate subglacial environments at a polythermal glacier, which are isolated by cold ice above and around them, provide a viable habitat for life where basal water and organic carbon are present throughout the year. Thus, a subglacial microbial ecosystem based upon legacy carbon, (from old soils or surface inputs) rather than primary production may exist, where redox processes are a key component, and seasonal anoxia may occur. The existence of anoxic environments is supported by the presence of strictly anaerobic bacteria (sulphate reducing bacteria and methanogens) in the basal sediments---which are viable in culture at 4°C---and also argues that these bacteria are not washed in with oxygenated surface meltwaters, but are present in the subglacial environment. During the summer meltseason there is a large input of surficial waters to the subglacial system and water residence times are drastically reduced. Hence, kinetic weathering processes dominate, resulting in light delta 13C-DIC (dissolved inorganic carbon) in glacial runoff, as verified by experimental work on CaCO3 and John Evans Glacier sediments. The experiments demonstrate kinetic bedrock fractionation (KBF) during carbonate hydrolysis and that kinetic fractionation of CO2 (KFC) is proportional to the rate of CO2 draw down during the carbonation of carbonates. This results in significantly depleted delta13C-DIC values (≤-16 ‰) relative to the bedrock carbonate

  19. Effects of Low Activity Solar Cycle on Orbital Debris Lifetime

    NASA Technical Reports Server (NTRS)

    Cable, Samual B.; Sutton, Eric K.; Lin, chin S.; Liou, J.-C.

    2011-01-01

    Long duration of low solar activity in the last solar minimum has an undesirable consequence of extending the lifetime of orbital debris. The AFRL TacSat-2 satellite decommissioned in 2008 has finally re-entered into the atmosphere on February 5th after more than one year overdue. Concerning its demise we have monitored its orbital decay and monthly forecasted Tacsat-2 re-entry since September 2010 by using the Orbital Element Prediction (OEP) model developed by the AFRL Orbital Drag Environment program. The model combines estimates of future solar activity with neutral density models, drag coefficient models, and an orbit propagator to predict satellite lifetime. We run the OEP model with solar indices forecast by the NASA Marshall Solar Activity Future Estimation model, and neutral density forecast by the MSIS-00 neutral density model. Based on the two line elements in 2010 up to mid September, we estimated at a 50% confidence level TacSat-2's re-entry time to be in early February 2011, which turned out to be in good agreement with Tacsat-2's actual re-entry date. The potential space weather effects of the coming low activity solar cycle on satellite lifetime and orbital debris population are examined. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of solar flux on the orbital debris population in the 200-600 km altitude environment. The results are discussed for developing satellite orbital drag application product.

  20. Genipin as a novel chemical activator of EBV lytic cycle.

    PubMed

    Son, Myoungki; Lee, Minjung; Ryu, Eunhyun; Moon, Aree; Jeong, Choon-Sik; Jung, Yong Woo; Park, Gyu Hwan; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-02-01

    Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that causes acute infection and establishes life-long latency. EBV causes several human cancers, including Burkitt's lymphoma, nasopharyngeal and gastric carcinoma. Antiviral agents can be categorized as virucides, antiviral chemotherapeutic agents, and immunomodulators. Most antiviral agents affect actively replicating viruses, but not their latent forms. Novel antiviral agents must be active on both the replicating and the latent forms of the virus. Gardenia jasminoides is an evergreen flowering plant belonging to the Rubiaceae family and is most commonly found growing wild in Vietnam, Southern China, Taiwan, Japan, Myanmar, and India. Genipin is an aglycone derived from an iridoid glycoside called geniposide, which is present in large quantities in the fruit of G. jasminoides. In this study, genipin was evaluated for its role as an antitumor and antiviral agent that produces inhibitory effects against EBV and EBV associated gastric carcinoma (EBVaGC). In SNU719 cells, one of EBVaGCs, genipin caused significant cytotoxicity (70 μM), induced methylation on EBV C promoter and tumor suppressor gene BCL7A, arrested cell-cycle progress (S phases), upregulated EBV latent/lytic genes in a dose-dependent manner, stimulated EBV progeny production, activated EBV F promoter for EBV lytic activation, and suppressed EBV infection. These results indicated that genipin could be a promising candidate for antiviral and antitumor agents against EBV and EBVaGC. PMID:25626372

  1. Water EducaTion for Alabama's Black Belt (WET Alabama): Facilitating Scientific Understanding of the Hydrologic Cycle in Low-Resource Schools

    NASA Astrophysics Data System (ADS)

    Wolf, L. W.; Lee, M.; Stone, K.

    2008-12-01

    Youth, as future citizens, play an important role in obtaining and maintaining water resources. Water EducaTion for Alabama's Black Belt (WET Alabama) provides off-campus environmental and water-education activities designed to increase the appreciation, knowledge, conservation, and protection of water resources by middle-school teachers and children from predominantly African-American families in some of Alabama's poorest counties. The project is structured around a variety of indoor and outdoor activities held at two field sites, Auburn University's E. V. Smith Center in Macon County and the Robert G. Wehle Nature Center in Bullock County located in Alabama's "Black Belt" region, a region in which the prosperity of local communities is low. The educational activities provide an engaging laboratory and field experience for children from rural schools that lack scientific facilities and equipment. Both hosting centers have easy access to surface water (ponds, wetlands, streams) and offer facilities for basic hydrologic experiments (e.g., aquifer models, permeameter, water quality). The E.V. Smith site has access to groundwater through pairs of nested wells. Educational activities are designed to help students and teachers visualize groundwater flow and its interaction with surface water in an aquifer tank model; compare the hydrologic properties (porosity and permeability) of different aquifer materials (sands, gravels, and clays); learn about groundwater purging and sampling; and assess water quality and flow direction in the field. Simple exercises demonstrate (1) the balance of recharge and discharge, (2) the effects of flooding, drought and pumping, and (3) movement of contaminants through aquifers. A set of ready-to-teach laboratory exercises and tutorials address goals specified by the State of Alabama science curriculum for grades 6 to 8. The ultimate goal of Project WET Alabama is to help students and teachers from resource-poor schools become knowledgeable

  2. Global changes in biogeochemical cycles in response to human activities

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Melillo, Jerry

    1994-01-01

    The main objective of our research was to characterize biogeochemical cycles at continental and global scales in both terrestrial and aquatic ecosystems. This characterization applied to both natural ecosystems and those disturbed by human activity. The primary elements of interest were carbon and nitrogen and the analysis sought to quantify standing stocks and dynamic cycling processes. The translocation of major nutrients from the terrestrial landscape to the atmosphere (via trace gases) and to fluvial systems (via leaching, erosional losses, and point source pollution) were of particular importance to this study. Our aim was to develop the first generation of Earth System Models. Our research was organized around the construction and testing of component biogeochemical models which treated terrestrial ecosystem processes, aquatic nutrient transport through drainage basins, and trace gas exchanges at the continental and global scale. A suite of three complementary models were defined within this construct. The models were organized to operate at a 1/2 degree latitude by longitude level of spatial resolution and to execute at a monthly time step. This discretization afforded us the opportunity to understand the dynamics of the biosphere down to subregional scales, while simultaneously placing these dynamics into a global context.

  3. Residential construction demonstration project, Cycle II: Active ventilation

    SciTech Connect

    Not Available

    1991-01-01

    This report documents the analysis of the performance of natural and mechanical ventilation in Pacific Northwest homes. The analysis was part of Cycle II of the Residential Construction Demonstration Project, sponsored by Bonneville Power Administration (BPA). Since 1986, the Residential Construction Demonstration Project (RCDP) has sponsored the collection of data on energy efficient homes in the Pacific Northwest that comply with these new standards and requirements. Cycle II of RCDP was conducted between September 1987 and April 1990. It concentrated on energy innovations in homes built to the Super Good Cents specification. All of the test homes have electric heat and mechanical ventilation systems. Seven different types of active ventilation systems are represented in the homes. Three of these system types are equipped with heat recovery devices, and are represented in approximately a quarter of the test homes. The potential for both natural and mechanical ventilation was measured. Potential structural leakage was measured by blower door testing. Flow rate and operating time of mechanical ventilation systems were measured with flow hoods and hour meters. Actual ventilation was measured by using a passive tracer gas technique for several weeks during the heating season and at times of normal occupancy.

  4. Residential construction demonstration project, Cycle II: Active ventilation

    SciTech Connect

    Not Available

    1991-12-31

    This report documents the analysis of the performance of natural and mechanical ventilation in Pacific Northwest homes. The analysis was part of Cycle II of the Residential Construction Demonstration Project, sponsored by Bonneville Power Administration (BPA). Since 1986, the Residential Construction Demonstration Project (RCDP) has sponsored the collection of data on energy efficient homes in the Pacific Northwest that comply with these new standards and requirements. Cycle II of RCDP was conducted between September 1987 and April 1990. It concentrated on energy innovations in homes built to the Super Good Cents specification. All of the test homes have electric heat and mechanical ventilation systems. Seven different types of active ventilation systems are represented in the homes. Three of these system types are equipped with heat recovery devices, and are represented in approximately a quarter of the test homes. The potential for both natural and mechanical ventilation was measured. Potential structural leakage was measured by blower door testing. Flow rate and operating time of mechanical ventilation systems were measured with flow hoods and hour meters. Actual ventilation was measured by using a passive tracer gas technique for several weeks during the heating season and at times of normal occupancy.

  5. Diurnal cycle of convective activity over ocean in the Tropics

    NASA Astrophysics Data System (ADS)

    Hara, Masayuki; Takahashi, Hiroshi; Fujita, Mikiko

    2015-04-01

    In this study, the influence of land mass on the diurnal cycle of convective activity is analyzed. 17-year observation of Tropical Rainfall Measuring Mission (TRMM) 2A25 V7 (1998-2014) Estimated Surface Rain (ESR) is used as a precipitation data. We rasterized the ESR data into 0.1x0.1 degree mesh for each local solar time (LST) of observation. U. S. Geological Survey Global Land Cover Characterization (USGS GLCC) Version 2 data is used for determining the shoreline. As the many studies indicated, the precipitation peak time is about 3 LST over the Tropical ocean near the coastline, and about 15 LST over the Tropical land. Although the total precipitation amount strongly depends on the distance from the shoreline, The phase of the diurnal cycle over the ocean is not dependent on the distance from the nearest shoreline. We also performed a series of ideal experiments with a quasi-three dimensional domain using non-hydrostatic atmospheric model to elucidate the detailed feature of the relationship between land-sea contrast and local convection systems.

  6. Intertwined arbovirus transmission activity: reassessing the transmission cycle paradigm

    PubMed Central

    Diaz, Luis A.; Flores, Fernando S.; Quaglia, Agustín; Contigiani, Marta S.

    2013-01-01

    Arboviruses are emerging/reemerging infectious agents worldwide. The factors within this scenario include vector and host population fluctuations, climatic changes, anthropogenic activities that disturb ecosystems, an increase in international flights, human mobility, and genetic mutations that allow spill-over phenomenon. Arboviruses are maintained by biologic transmission among vectors and hosts. Sometimes this biological transmission is specific and includes one vector and host species such as Chikungunya (CHIKV), Dengue (DENV), and urban Yellow Fever (YFV). However, most of the arboviruses are generalist and they use many vectors and hosts species. From this perspective, arboviruses are maintained through a transmission network rather than a transmission cycle. This allows us to understand the complexity and dynamics of the transmission and maintenance of arboviruses in the ecosystems. The old perspective that arboviruses are maintained in close and stable transmission cycles should be modified by a new more integrative and dynamic idea, representing the real scenario where biological interactions have a much broader representation, indicating the constant adaptability of the biological entities. PMID:23335900

  7. Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Lin, D.-S.; Mancini, M.; Thongs, D.; Troch, P. A.; Jackson, T. J.; Famiglietti, J. S.; Engman, E. T.

    1993-05-01

    Soil moisture estimates from a distributed hydrological model and two microwave remote sensors (Push Broom Microwave Radiometer and Synthetic Aperture Radar) were compared with the ground measurements collected during the MAC-HYDRO'90 experiment over a 7.4-km2 watershed in central Pennsylvania. Various information, including rainfall, soil properties, land cover, topography and remote sensing imagery, were integrated and analyzed using an image integration technique. It is found that the hydrological model and both microwave sensors successfully pick up the temporal variation of soil moisture. Results also indicate the spatial soil moisture pattern can be remotely sensed within reasonable accuracy using existing algorithms. Watershed averaged soil moisture estimates from the hydrological model are wetter than remotely sensed data. It is difficult to conclude which instrument yield better performance for the studied case. The choice will be based on the intended applications and information that is available.

  8. A New Simple Dynamo Model for Stellar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, N.; Schmitt, D.; Pipin, V.; Hamba, F.

    2016-06-01

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α–Ω-type models in two main ways. First, in addition to the usual helicity (α) and turbulent magnetic diffusivity (β) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solved simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.

  9. New dimensions in satellite hydrology

    NASA Technical Reports Server (NTRS)

    Rango, A.; Salomonson, V. V.; Mcginnis, D. F.; Wiesnet, D. R.

    1974-01-01

    Consideration of the use of remote sensing technology applied from satellites to obtain information for the rapid and continuing assessment of the hydrologic cycle. A detailed account is given of the hydrological information made available through the activities of the ERTS-1 satellite, an experimental satellite entirely devoted to earth resources observations, and the NOAA-2 satellite, a high-resolution operational environmental satellite. Following a description of the satellites and their payloads, it is shown how with their aid information can be obtained regarding atmospheric moisture, surface water and snow cover, glaciers, potential flood situations, and subsurface water fluctuations. In addition, the use of the ERTS-1 and NOAA-2 satellites in watershed characterization and modeling and in monitoring water quality is discussed.

  10. Modeling the atmospheric and terrestrial water and energy cycles in the ScaleX experiment through a fully-coupled atmosphere-hydrology model

    NASA Astrophysics Data System (ADS)

    Senatore, Alfonso; Benjamin, Fersch; Thomas, Rummler; Caroline, Brosy; Christian, Chwala; Junkermann, Wolfgang; Ingo, Völksch; Harald, Kunstmann

    2016-04-01

    The TERENO preAlpine Observatory, comprising a series of observatory sites along an altitudinal gradient within the Ammer catchment (southern Bavaria, Germany), has been designed as an international research platform, open for participation and integration, and has been provided with comprehensive technical infrastructure to allow joint analyses of water-, energy- and nutrient fluxes. In June and July 2015 the operational monitoring has been complemented by the ScaleX intensive measurement campaign, where additional precipitation and soil moisture measurements, remote sensing measurements of atmospheric wind, humidity and temperature profiles have been performed, complemented by micro-light aircraft- and UAV-based remote sensing for three-dimensional pattern information. The comprehensive observations serve as validation and evaluation basis for compartment-crossing modeling systems. Specifically, the fully two-way dynamically coupled atmosphere-hydrology modeling system WRF-Hydro has been used to investigate the interplay of energy and water cycles at the regional scale and across the compartments atmosphere, stream, vadose zone and groundwater during the ScaleX campaign and to assess the closure of the budgets involved. Here, several high-resolution modeled hydro-meteorological variables, such as precipitation, soil moisture, river discharge and air moisture and temperature along vertical profiles are compared with observations from multiple sources, such as rain gauges and soil moisture networks, rain radars, stream gauges, UAV and a micro-light aircraft. Results achieved contribute to the objective of addressing questions on energy- and water-cycling within the TERENO-Ammer region at a very high scale and degree of integration, and provides hints on how well can observations constrain uncertainties associated with the modeling of atmospheric and terrestrial water and energy balances.

  11. Rapid changes in temperature and hydrology in the western Mediterranean during the last climatic cycle from the high resolution record ODP Site 976 (Alboran Sea)

    NASA Astrophysics Data System (ADS)

    Combourieu-Nebout, Nathalie; Peyron, Odile; Bout-Roumazeille, Viviane

    2013-04-01

    High-resolution pollen record, pollen-inferred climate reconstructions and clay mineralogy records were performed over the last climatic cycle from the ODP Site 976 located in the Alboran Sea Continental paleoenvironment proxies were provided on the same samples to depict the short and long term variability of Mediterranean vegetation and climate during the two last terminations and the last two interglacials. Pollen record highlights the vegetation changes associated to climate variability while clay mineralogy informs about the terrigenous inputs related to wind and/or river transport. During the last cycle, both vegetation and clay minerals data have recorded the response of continental ecosystems to all the climate events which characterized the last 135000 years. The Dansgaard/Oeschger oscillations and the rapid cold events evidenced in the North Atlantic (Bond et al., 1993; McManus et al., 1994) are well evidenced in the ODP sequence. Thus, warm interstadials show a strong colonisation of temperate Mediterranean forest while cold events are particularly well expressed by correlative increases in dry steppic to semi-desert formation with enhanced input from African desert dust (Bout-Roumazeilles et al, 2007 and in progress). A special attention has been paid on the two last glacial/interglacial transitions 1 and 2 that occurred before the interglacial inception in order to better understand what happened during these key-periods in continental areas and also better understand how reacts the Mediterranean climate regime through these two periods. The two high resolution records from the Terminaison 2/ Stage 5 and Terminaison 1/ Holocene are compared especially with regards to the wind regime modifications through atmospheric supply, and to hydrological and temperature changes reconstructed from pollen data. Therefore for these two key-periods, we aim to produce a robust climate reconstruction pollen-inferred precipitation and temperature from the 0DP 976 marine

  12. Understanding past climatic and hydrological variability in the Mediterranean from Lake Prespa sediment isotope and geochemical record over the Last Glacial cycle

    NASA Astrophysics Data System (ADS)

    Leng, Melanie J.; Wagner, Bernd; Boehm, Anne; Panagiotopoulos, Konstantinos; Vane, Christopher H.; Snelling, Andrea; Haidon, Cheryl; Woodley, Ewan; Vogel, Hendrik; Zanchetta, Gianni; Baneschi, Ilaria

    2013-04-01

    Here we present stable isotope and geochemical data from Lake Prespa (Macedonia/Albania border) over the Last Glacial cycle (Marine Isotope Stages 5-1) and discuss past lake hydrology and climate (TIC, oxygen and carbon isotopes), as well as responses to climate of terrestrial and aquatic vegetation (TOC, Rock Eval pyrolysis, carbon isotopes, pollen). The Lake Prespa sediments broadly fall into 5 zones based on their sedimentology, geochemistry, palynology and the existing chronology. The Glacial sediments suggest low supply of carbon to the lake, but high summer productivity; intermittent siderite layers suggest that although the lake was likely to have mixed regularly leading to enhanced oxidation of organic matter, there must have been within sediment reducing conditions and methanogenesis. MIS 5 and 1 sediments suggest much more productivity, higher rates of organic material preservation possibly due to more limited mixing with longer periods of oxygen-depleted bottom waters. We also calculated lakewater δ18O from siderite (authigenic/Glacial) and calcite (endogenic/Holocene) and show much lower lakewater δ18O values in the Glacial when compared to the Holocene, suggesting the lake was less evaporative in the Glacial, probably as a consequence of cooler summers and longer winter ice cover. In the Holocene the oxygen isotope data suggests general humidity, with just 2 marked arid phases, features observed in other Eastern and Central Mediterranean lakes.

  13. A mechanistic soil biogeochemistry model with explicit representation of microbial and macrofaunal activities and nutrient cycles

    NASA Astrophysics Data System (ADS)

    Fatichi, Simone; Manzoni, Stefano; Or, Dani; Paschalis, Athanasios

    2016-04-01

    The potential of a given ecosystem to store and release carbon is inherently linked to soil biogeochemical processes. These processes are deeply connected to the water, energy, and vegetation dynamics above and belowground. Recently, it has been advocated that a mechanistic representation of soil biogeochemistry require: (i) partitioning of soil organic carbon (SOC) pools according to their functional role; (ii) an explicit representation of microbial dynamics; (iii) coupling of carbon and nutrient cycles. While some of these components have been introduced in specialized models, they have been rarely implemented in terrestrial biosphere models and tested in real cases. In this study, we combine a new soil biogeochemistry model with an existing model of land-surface hydrology and vegetation dynamics (T&C). Specifically the soil biogeochemistry component explicitly separates different litter pools and distinguishes SOC in particulate, dissolved and mineral associated fractions. Extracellular enzymes and microbial pools are explicitly represented differentiating the functional roles of bacteria, saprotrophic and mycorrhizal fungi. Microbial activity depends on temperature, soil moisture and litter or SOC stoichiometry. The activity of macrofauna is also modeled. Nutrient dynamics include the cycles of nitrogen, phosphorous and potassium. The model accounts for feedbacks between nutrient limitations and plant growth as well as for plant stoichiometric flexibility. In turn, litter input is a function of the simulated vegetation dynamics. Root exudation and export to mycorrhiza are computed based on a nutrient uptake cost function. The combined model is tested to reproduce respiration dynamics and nitrogen cycle in few sites where data were available to test plausibility of results across a range of different metrics. For instance in a Swiss grassland ecosystem, fine root, bacteria, fungal and macrofaunal respiration account for 40%, 23%, 33% and 4% of total belowground

  14. Exercise, physical activity, and exertion over the business cycle.

    PubMed

    Colman, Gregory; Dave, Dhaval

    2013-09-01

    Shifts in time and income constraints over economic expansions and contractions would be expected to affect individuals' behaviors. We explore the impact of the business cycle on individuals' exercise, time use, and total physical exertion, utilizing information on 112,000 individual records from the 2003-2010 American Time Use Surveys. In doing so, we test a key causal link that has been hypothesized in the relation between unemployment and health, but not heretofore assessed. Using more precise measures of exercise (and other activities) than previous studies, we find that as work-time decreases during a recession, recreational exercise, TV-watching, sleeping, childcare, and housework increase. This, however, does not compensate for the decrease in work-related exertion due to job-loss, and total physical exertion declines. These effects are strongest among low-educated men, which is validating given that employment in the Great Recession has declined most within manufacturing, mining, and construction. We also find evidence of intra-household spillover effects, wherein individuals respond to shifts in spousal employment conditional on their own labor supply. The decrease in total physical activity during recessions is especially problematic for vulnerable populations concentrated in boom-and-bust industries, and may have longer-term effects on obesity and related health outcomes. PMID:23906116

  15. Hydrologic Services Course.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    A course to develop an understanding of the scope of water resource activities, of the need for forecasting, of the National Weather Service's role in hydrology, and of the proper procedures to follow in fulfilling this role is presented. The course is one of self-help, guided by correspondence. Nine lessons are included: (1) Hydrology in the…

  16. The Atmospheric Hydrologic Cycle over the Arctic Basin from Reanalyses. Part I: Comparison with Observations and Previous Studies*.

    NASA Astrophysics Data System (ADS)

    Cullather, Richard I.; Bromwich, David H.; Serreze, Mark C.

    2000-03-01

    The atmospheric moisture budget is evaluated for the region 70°N to the North Pole using reanalysis datasets of the European Centre for Medium-Range Weather Forecasts (ECMWF; ERA: ECMWF Re-Analysis) and the collaborative effort of the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). For the forecast fields of the reanalyses, the ERA annually averaged P E (precipitation minus evaporation/sublimation) field reproduces the major features of the basin perimeter as they are known, while the NCEP-NCAR reanalysis forecast fields contain a spurious wave pattern in both P and E. Comparisons between gauge data from Soviet drift camp stations and forecast P values of the reanalyses show reasonable agreement given the difficulties (i.e., gauge accuracy, translating location). When averaged for 70°-90°N, the ERA and NCEP-NCAR forecast P E are similar in the annual cycle. Average reanalysis forecast values of E for the north polar cap are found to be 40% or more too large based on comparisons using surface latent heat flux climatologies.Differences between a synthesized average moisture flux across 70°N from rawinsonde data of the Historical Arctic Rawinsonde Archive (HARA) and the reanalysis data occur in the presence of rawinsonde network problems. It is concluded that critical deficiencies exist in the rawinsonde depiction of the summertime meridional moisture transport. However, it remains to be seen whether the rawinsonde estimate can be rectified with a different method. For 70°-90°N, annual moisture convergence (P E) values from the ERA and NCEP-NCAR are very similar; for both reanalyses, annual P E values obtained from forecast fields are much lower than those obtained from moisture flux convergence by about 60%, indicating severe nonclosure of the atmospheric moisture budget. The nonclosure primarily results from anomalously large forecast E values. In comparison with other studies, reanalyses moisture

  17. Long-Range Solar Activity Predictions: A Reprieve from Cycle #24's Activity

    NASA Technical Reports Server (NTRS)

    Richon, K.; Schatten, K.

    2003-01-01

    We discuss the field of long-range solar activity predictions and provide an outlook into future solar activity. Orbital predictions for satellites in Low Earth Orbit (LEO) depend strongly on exospheric densities. Solar activity forecasting is important in this regard, as the solar ultra-violet (UV) and extreme ultraviolet (EUV) radiations inflate the upper atmospheric layers of the Earth, forming the exosphere in which satellites orbit. Rather than concentrate on statistical, or numerical methods, we utilize a class of techniques (precursor methods) which is founded in physical theory. The geomagnetic precursor method was originally developed by the Russian geophysicist, Ohl, using geomagnetic observations to predict future solar activity. It was later extended to solar observations, and placed within the context of physical theory, namely the workings of the Sun s Babcock dynamo. We later expanded the prediction methods with a SOlar Dynamo Amplitude (SODA) index. The SODA index is a measure of the buried solar magnetic flux, using toroidal and poloidal field components. It allows one to predict future solar activity during any phase of the solar cycle, whereas previously, one was restricted to making predictions only at solar minimum. We are encouraged that solar cycle #23's behavior fell closely along our predicted curve, peaking near 192, comparable to the Schatten, Myers and Sofia (1996) forecast of 182+/-30. Cycle #23 extends from 1996 through approximately 2006 or 2007, with cycle #24 starting thereafter. We discuss the current forecast of solar cycle #24, (2006-2016), with a predicted smoothed F10.7 radio flux of 142+/-28 (1-sigma errors). This, we believe, represents a reprieve, in terms of reduced fuel costs, etc., for new satellites to be launched or old satellites (requiring reboosting) which have been placed in LEO. By monitoring the Sun s most deeply rooted magnetic fields; long-range solar activity can be predicted. Although a degree of uncertainty

  18. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    PubMed

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-01

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation. PMID:27052834

  19. Interaction of the terrestrial and atmospheric hydrological cycles in the context of the North American southwest summer monsoon

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1995-01-01

    Work under this grant has used information on precipitation and water vapor fluxes in the area of the Mexican Monsoon to analyze the regional precipitation climatology, to understand the nature of water vapor transport during the monsoon using model and observational data, and to analyze the ability of the TRMM remote sensing algorithm to characterize precipitation. An algorithm for estimating daily surface rain volumes from hourly GOES infrared images was developed and compared to radar data. Estimates were usually within a factor of two, but different linear relations between satellite reflectances and rainfall rate were obtained for each day, storm type and storm development stage. This result suggests that using TRMM sensors to calibrate other satellite IR will need to be a complex process taking into account all three of the above factors. Another study, this one of the space-time variability of the Mexican Monsoon, indicate that TRMM will have a difficult time, over the course of its expected three year lifetime, identifying the diurnal cycle of precipitation over monsoon region. Even when considering monthly rainfalls, projected satellite estimates of August rainfall show a root mean square error of 38 percent. A related examination of spatial variability of mean monthly rainfall using a novel method for removing the effects of elevation from gridded gauge data, show wide variation from a satellite-based rainfall estimates for the same time and space resolution. One issue addressed by our research, relating to the basic character of the monsoon circulation, is the determination of the source region for moisture. The monthly maps produced from our study of monsoon variability show the presence of two rainfall maxima in the analysis normalized to sea level, one in south-central Arizona associated with the Mexican monsoon maximum and one in southeastern New Mexico associated with the Gulf of Mexico. From the point of view of vertically-integrated fluxes and

  20. A Summary of Closed Brayton Cycle Development Activities at NASA

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2009-01-01

    NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.

  1. Quantifying promoter activity during the developmental cycle of Chlamydia trachomatis

    PubMed Central

    Cong, Yanguang; Gao, Leiqiong; Zhang, Yan; Xian, Yuqi; Hua, Ziyu; Elaasar, Hiba; Shen, Li

    2016-01-01

    Chlamydia trachomatis is an important human pathogen that undergoes a characteristic development cycle correlating with stage-specific gene expression profiles. Taking advantage of recent developments in the genetic transformation in C. trachomatis, we constructed a versatile green fluorescent protein (GFP) reporter system to study the development-dependent function of C. trachomatis promoters in an attempt to elucidate the mechanism that controls C. trachomatis adaptability. We validated the use of the GFP reporter system by visualizing the activity of an early euo gene promoter. Additionally, we uncovered a new ompA promoter, which we named P3, utilizing the GFP reporter system combined with 5′ rapid amplification of cDNA ends (RACE), in vitro transcription assays, real-time quantitative RT-PCR (RT-qPCR), and flow cytometry. Mutagenesis of the P3 region verifies that P3 is a new class of C. trachomatis σ66-dependent promoter, which requires an extended −10 TGn motif for transcription. These results corroborate complex developmentally controlled ompA expression in C. trachomatis. The exploitation of genetically labeled C. trachomatis organisms with P3-driven GFP allows for the observation of changes in ompA expression in response to developmental signals. The results of this study could be used to complement previous findings and to advance understanding of C. trachomatis genetic expression. PMID:27263495

  2. Quantifying promoter activity during the developmental cycle of Chlamydia trachomatis.

    PubMed

    Cong, Yanguang; Gao, Leiqiong; Zhang, Yan; Xian, Yuqi; Hua, Ziyu; Elaasar, Hiba; Shen, Li

    2016-01-01

    Chlamydia trachomatis is an important human pathogen that undergoes a characteristic development cycle correlating with stage-specific gene expression profiles. Taking advantage of recent developments in the genetic transformation in C. trachomatis, we constructed a versatile green fluorescent protein (GFP) reporter system to study the development-dependent function of C. trachomatis promoters in an attempt to elucidate the mechanism that controls C. trachomatis adaptability. We validated the use of the GFP reporter system by visualizing the activity of an early euo gene promoter. Additionally, we uncovered a new ompA promoter, which we named P3, utilizing the GFP reporter system combined with 5' rapid amplification of cDNA ends (RACE), in vitro transcription assays, real-time quantitative RT-PCR (RT-qPCR), and flow cytometry. Mutagenesis of the P3 region verifies that P3 is a new class of C. trachomatis σ(66)-dependent promoter, which requires an extended -10 TGn motif for transcription. These results corroborate complex developmentally controlled ompA expression in C. trachomatis. The exploitation of genetically labeled C. trachomatis organisms with P3-driven GFP allows for the observation of changes in ompA expression in response to developmental signals. The results of this study could be used to complement previous findings and to advance understanding of C. trachomatis genetic expression. PMID:27263495

  3. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    SciTech Connect

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  4. Hydrologic similarity, comparative hydrology and hydrologic extremes

    NASA Astrophysics Data System (ADS)

    Wagener, T.; Laaha, G.; Koffler, D.; Singh, R.

    2012-04-01

    Recent years have brought a renewed focus on the issue of hydrologic similarity. What makes two catchments similar and what can we do with this understanding? The reason for this issue being so important lies at least partially in the need for generalization of results in a scientific field, which is limited through the large heterogeneity in our environment. The issue of hydrologic similarity is of course as old as hydrology itself, however, we believe that taking stock is needed from time to time to guide comparative hydrology efforts that have the potential to bring structure into the field of catchment hydrology. Apart from that, catchment similarity is the rational behind any attempt of predicting streamflow at ungauged basins, and a better understanding and definition of hydrologic similarity will enhance our ability to estimate water resources in absence of stream gauges. In this talk we focus on signatures of hydrologic extremes, i.e. flood and low flow characteristics of streamflow. Can similarity concepts relate catchment behavior under both high and low flow extremes? In how far do our understanding and our predictive capability regarding hydrologic extremes benefit from a holistic few of individual catchments, and from a comparative analysis between catchment? We will review different studies and present a meta analysis to highlight the proven and the potential benefit of taking a broader view.

  5. Solar Activity in Cycle 24 - What do Acoustic Oscillations tell us?

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, Sushant; Simoniello, Rosaria; Hill, Frank

    2016-05-01

    Solar Cycle 24 is the weakest cycle in modern era of space- and ground-based observations. The number of sunspots visible on solar disk and other measures of magnetic activity have significantly decreased from the last cycle. It was also preceeded by an extended phase of low activity, a period that raised questions on our understanding of the solar activity cycle and its origin. This unusual behavior was not only limited to the visible features in Sun's atmosphere, the helioseismic observations also revealed peculiar behavior in the interior. It was suggested that the changes in magnetic activity were confined to shallower layers only, as a result low-degree mode frequencies were found to be anti-correlated with solar activity. Here we present results on the progression of Cycle 24 by analyzing the uninterrupted helioseismic data from GONG and SDO/HMI, and discuss differences and similarity between cycles 23 and 24 in relation to the solar activity.

  6. Integrated time-lapse geoelectrical imaging of wetland hydrological processes

    NASA Astrophysics Data System (ADS)

    Uhlemann, S. S.; Sorensen, J. P. R.; House, A. R.; Wilkinson, P. B.; Roberts, C.; Gooddy, D. C.; Binley, A. M.; Chambers, J. E.

    2016-03-01

    Wetlands provide crucial habitats, are critical in the global carbon cycle, and act as key biogeochemical and hydrological buffers. The effectiveness of these services is mainly controlled by hydrological processes, which can be highly variable both spatially and temporally due to structural complexity and seasonality. Spatial analysis of 2-D geoelectrical monitoring data integrated into the interpretation of conventional hydrological data has been implemented to provide a detailed understanding of hydrological processes in a riparian wetland. A two-layered hydrological system was observed in the peat. In the lower part of the peat, upwelling of deeper groundwater from underlying deposits was considered the driver for a 30% increase in peat resistivity during Winter/Spring. In Spring/Summer there was a 60% decrease in resistivity in the near-surface peats due to plant transpiration and/or microbial activity. Water exchange between the layers only appeared to be initiated following large drops in the encircling surface water stage. For the first time, we demonstrated that automated interpretation of geoelectrical data can be used to quantify ground movement in the vertical direction. Here, we applied this method to quantify shrink-swell of expandable soils, affecting hydrological parameters, such as, porosity and permeability. This study shows that an integrated interpretation of hydrological and geophysical data can significantly improve the understanding of wetland hydrological processes. Potentially, this approach can provide the basis for the evaluation of ecosystem services and may aid in the optimization of wetland management strategies.

  7. Carbon cycle dynamics and solar activity embedded in a high-resolution 14C speleothem record from Belize, Central America

    NASA Astrophysics Data System (ADS)

    Lechleitner, Franziska A.; Breitenbach, Sebastian F. M.; McIntyre, Cameron; Asmerom, Yemane; Prufer, Keith M.; Polyak, Victor; Culleton, Brendan J.; Kennett, Douglas J.; Eglinton, Timothy I.; Baldini, James U. L.

    2015-04-01

    of old recalcitrant carbon to the soil water, and resulting in closer coupling between atmosphere and cave environment. The resolution of the record (0.3-0.7 mm/sample) permits identification of the dominant drivers of stalagmite 14C during different intervals. For example, hydrologic control on 14C appears dominant during the 11th century drought, while in the 16th to 18th century a clear solar influence exists. Solar activity is reflected in YOK-I as lower a14Cinit, reflecting the atmospheric a14C. We apply simple hydrological models to investigate the different factors influencing 14C in YOK-I. We estimate the importance of mean SOM age to signal dampening, and quantify the strength of the solar influence and the global carbon cycle on the record. References: Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E., Hamelin, B. (2001) Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems, GCA, 65 Griffiths, M.L., Fohlmeister, J., Drysdale, R.N., Hua, Q., Johnson, K.R., Hellstrom, J.C., Gagan, M.K., Zhao, J.-x. (2012) Hydrological control of the dead carbon fraction in a Holocene tropical speleothem, Quat. Geochron. 14 Ridley, H.E., Baldini, J.U.L., Prufer, K.M., Walczak, I.W., Breitenbach, S.F.M. (in press) High resolution monitoring of a tropical cave system reveals dynamic ventilation and hydrologic resilience to seismic activity, Journal of Cave and Karst Studies

  8. The lacustrine carbon cycle as illuminated by the waters and sediments of two hydrologically distinct headwater lakes in North-Central Minnesota, U.S.A

    USGS Publications Warehouse

    Dean, W.E.; Schwalb, A.

    2002-01-01

    The accumulation rates of CaCO3 and organic carbon (OC) in lake sediments are delicately balanced between production in the epilimnion and destruction in the hypolimnion. The cycling of these two forms of carbon makes a "carbon pump" that greatly affects the biogeochemical cycles of other elements. To further understand these biogeochemical dynamics, the lakes, streams, and wetlands of the Shingobee River headwater area of north-central Minnesota have been subjected to intensive hydrologic and biogeochemical studies. Williams Lake, situated close to the highest point in the regional flow system, is hydrologically closed, with no surface inlet or outlet, and ground water and precipitation as the only sources of water. Shingobee Lake, situated at the lowest point in the regional flow system, has the Shingobee River as an inlet and outlet. The surface waters of both lakes are oversaturated, and the bottom waters undersaturated, with respect to CaCO3 during the summer. The small amount of CaCO3 that is precipitated in the epilimnion of Williams Lake during the summer is dissolved in the undersaturated hypolimnion and sediments with the result that no CaCO3 is incorporated into the profundal surface sediments. Because of the high phytoplankton productivity of Shingobee Lake, sufficient CaCO3 is produced in the epilimnion that large amounts survive the corrosive hypolimnion and sediments, and an average of 46 wt. % accumulates in surface sediments. Another consequence of higher phytoplankton productivity in Shingobee Lake is that the hypolimnion becomes oxygen deficient within a month after overturn in both the spring and fall. Because of reducing conditions that develop in the hypolimnion of Shingobee Lake, high concentrations of dissolved Fe and Mn accumulate there during summer stratification. Precipitation of Fe and Mn oxyhydroxides during periods of fall and spring overturn results in high concentrations of Fe and Mn in surface sediments. In Williams Lake, high

  9. The role of the hydrological cycle and the ocean`s thermohaline circulation in climate change: A multicomponent climate model study. Ph.D. Thesis

    SciTech Connect

    Wang, Huaxiao

    1993-12-31

    Global ocean-atmosphere and ocean-atmosphere-continental ice sheet models are developed to address the question of feedbacks between the hydrological cycle and the global thermohaline circulation capable of explaining the climate changes seen in paleoclimate records of the late Pleistocene and the last deglaciation. The ocean-atmosphere model climate system displays two distinct stable equilibria controlled by latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation; maximum difference between the modes occurs in the North Atlantic. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations, with maximum changes occurring in the North Pacific. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. In the regime with vapor flux from the Atlantic to the Pacific, one mode has strong production of deep water in the North Atlantic and a large flux of heat to the atmosphere from the high latitude North Atlantic. The other has strong deep water production in the Southern Ocean and weak production in the North Pacific and small heat transport to high-latitude North Atlantic. The ocean-atmosphere-ice sheet system displays feedbacks which produce century/millennium time scale oscillations. The thermohaline circulation plays a central role in these feedbacks because of its transport of both heat and salt. The feedbacks could potentially play a causal role in the century/milliennium climate change seen in the paleoclimate record.

  10. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  11. Arctic hydrology and meteorology. Annual report

    SciTech Connect

    Kane, D.L.

    1988-12-31

    The behavior of arctic ecosystems is directly related to the ongoing physical processes of heat and mass transfer. Furthermore, this system undergoes very large fluctuations in the surface energy balance. The buffering effect of both snow and the surface organic soils can be seen by looking at the surface and 40 cm soil temperatures. The active layer, that surface zone above the permafrost table, is either continually freezing or thawing. A large percentage of energy into and out of a watershed must pass through this thin veneer that we call the active layer. Likewise, most water entering and leaving the watershed does so through the active layer. To date, we have been very successful at monitoring the hydrology of Imnavait Creek with special emphasis on the active layer processes. The major contribution of this study is that year-round hydrologic data are being collected. An original objective of our study was to define how the thermal and moisture regimes within the active layer change during an annual cycle under natural conditions, and then to define how the regime will be impacted by some imposed terrain alteration. Our major analysis of the hydrologic data sets for Imnavait Creek have been water balance evaluations for plots during snowmelt, water balance for the watershed during both rainfall and snowmelt, and the application of a hydrologic model to predict the Imnavait Creek runoff events generated by both snowmelt and rainfall.

  12. A question driven socio-hydrological modeling process

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Portney, K.; Islam, S.

    2015-08-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human induced changes may propagate through this coupled system. Modeling of coupled human and hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding the choice of modeling structure, scope, and detail. A shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope, and detail to remain contingent and adaptive to the question context. We demonstrate its utility by exploring a question: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result per capita demand decreases during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available

  13. Proton activity of the Sun in current solar cycle 24

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Miroshnichenko, Leonty I.; Fang, Cheng

    2015-07-01

    We present a study of seven large solar proton events in the current solar cycle 24 (from 2009 January up to the current date). They were recorded by the GOES spacecraft with the highest proton fluxes being over 200 pfu for energies >10 MeV. In situ particle measurements show that: (1) The profiles of the proton fluxes are highly dependent on the locations of their solar sources, namely flares or coronal mass ejections (CMEs), which confirms the “heliolongitude rules” associated with solar energetic particle fluxes; (2) The solar particle release (SPR) times fall in the decay phase of the flare emission, and are in accordance with the times when the CMEs travel to an average height of 7.9 solar radii; and (3) The time differences between the SPR and the flare peak are also dependent on the locations of the solar active regions. The results tend to support the scenario of proton acceleration by the CME-driven shock, even though there exists a possibility of particle acceleration at the flare site, with subsequent perpendicular diffusion of accelerated particles in the interplanetary magnetic field. We derive the integral time-of-maximum spectra of solar protons in two forms: a single power-law distribution and a power law roll-over with an exponential tail. It is found that the unique ground level enhancement that occurred in the event on 2012 May 17 displays the hardest spectrum and the largest roll-over energy which may explain why this event could extend to relativistic energies. Supported by the National Natural Science Foundation of China.

  14. Hydrologic activity during late Noachian and Early Hesperian downwarping of Borealis Basin, Mars

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenneth L.

    1991-06-01

    Pronounced global volcanism as well as fracturing and erosion along the highland/lowland boundary (HLB) during the Late Noachian (LN) and Early Hesperian (EH) led McGill and Dimitriou to conclude that the Borealis basin formed tectonically during this period. This scenario provides a basis for interpretation of the initiation and mode of formation of erosional and collapse features along the HLB. The interpretation, in turn, is integral to hypotheses regarding the development of ancient lakes (or an ocean) and their impact on the climate history of Mars. Hydrologic features of Mars are discussed along with their implications for paleolakes and climate history.

  15. Hydrologic activity during late Noachian and Early Hesperian downwarping of Borealis Basin, Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.

    1991-01-01

    Pronounced global volcanism as well as fracturing and erosion along the highland/lowland boundary (HLB) during the Late Noachian (LN) and Early Hesperian (EH) led McGill and Dimitriou to conclude that the Borealis basin formed tectonically during this period. This scenario provides a basis for interpretation of the initiation and mode of formation of erosional and collapse features along the HLB. The interpretation, in turn, is integral to hypotheses regarding the development of ancient lakes (or an ocean) and their impact on the climate history of Mars. Hydrologic features of Mars are discussed along with their implications for paleolakes and climate history.

  16. Life cycle assessment of active and passive groundwater remediation technologies

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Finkel, Michael

    2006-02-01

    Groundwater remediation technologies, such as pump-and-treat (PTS) and funnel-and-gate systems (FGS), aim at reducing locally appearing contaminations. Therefore, these methodologies are basically evaluated with respect to their capability to yield local improvements of an environmental situation, commonly neglecting that their application is also associated with secondary impacts. Life cycle assessment (LCA) represents a widely accepted method of assessing the environmental aspects and potential impacts related to a product, process or service. This study presents the set-up of a LCA framework in order to compare the secondary impacts caused by two conceptually different technologies at the site of a former manufactured gas plant in the city of Karlsruhe, Germany. As a FGS is already operating at this site, a hypothetical PTS of the same functionality is adopted. During the LCA, the remediation systems are evaluated by focusing on the main technical elements and their significance with respect to resource depletion and potential adverse effects on ecological quality, as well as on human health. Seven impact categories are distinguished to address a broad spectrum of possible environmental loads. A main point of discussion is the reliability of technical assumptions and performance predictions for the future. It is obvious that a high uncertainty exists when estimating impact specific indicator values over operation times of decades. An uncertainty analysis is conducted to include the imprecision of the underlying emission and consumption data and a scenario analysis is utilised to contrast various possible technological variants. Though the results of the study are highly site-specific, a generalised relative evaluation of potential impacts and their main sources is the principle objective rather than a discussion of the calculated absolute impacts. A crucial finding that can be applied to any other site is the central role of steel, which particularly derogates

  17. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity

    PubMed Central

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S.; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO’s potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  18. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity.

    PubMed

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO's potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  19. Computational Simulation of the Activation Cycle of Gα Subunit in the G Protein Cycle Using an Elastic Network Model

    PubMed Central

    Kim, Min Hyeok; Kim, Young Jin; Kim, Hee Ryung; Jeon, Tae-Joon; Choi, Jae Boong; Chung, Ka Young; Kim, Moon Ki

    2016-01-01

    Agonist-activated G protein-coupled receptors (GPCRs) interact with GDP-bound G protein heterotrimers (Gαβγ) promoting GDP/GTP exchange, which results in dissociation of Gα from the receptor and Gβγ. The GTPase activity of Gα hydrolyzes GTP to GDP, and the GDP-bound Gα interacts with Gβγ, forming a GDP-bound G protein heterotrimer. The G protein cycle is allosterically modulated by conformational changes of the Gα subunit. Although biochemical and biophysical methods have elucidated the structure and dynamics of Gα, the precise conformational mechanisms underlying the G protein cycle are not fully understood yet. Simulation methods could help to provide additional details to gain further insight into G protein signal transduction mechanisms. In this study, using the available X-ray crystal structures of Gα, we simulated the entire G protein cycle and described not only the steric features of the Gα structure, but also conformational changes at each step. Each reference structure in the G protein cycle was modeled as an elastic network model and subjected to normal mode analysis. Our simulation data suggests that activated receptors trigger conformational changes of the Gα subunit that are thermodynamically favorable for opening of the nucleotide-binding pocket and GDP release. Furthermore, the effects of GTP binding and hydrolysis on mobility changes of the C and N termini and switch regions are elucidated. In summary, our simulation results enabled us to provide detailed descriptions of the structural and dynamic features of the G protein cycle. PMID:27483005

  20. High resolution Raman lidar measurements for the characterization of the water vapour inflow in the frame of the Hydrological Cycle in the Mediterranean Experiment

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Cacciani, Marco; Stelitano, Dario; Summa, Donato

    2013-04-01

    The University of BASILicata Raman Lidar system (BASIL) was deployed in Candillargues (Southern France, Lat: 43°37' N, Long: 4° 4' E) in the frame of the Hydrological Cycle in the Mediterranean Experiment - HyMeX. Within this experiment a major field campaign (Special Observation Period 1-SOP1, September to November 2012) took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy and Spain, with a specific focus on the study of heavy precipitation and flash-flood events. During HyMeX-SOP1, BASIL operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 measurement days and 19 intensive observation periods (IOPs). The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV (Di Girolamo et al., 2004, 2006, 2009). This makes it an ideal tool for the characterization of the water vapour inflow in Southern France, which is important piece of information to improve the comprehension and forecasting capabilities of heavy precipitations in the Northwestern Mediterranean basin. Preliminary measurements from this field deployment will be illustrated and discussed at the Conference. These measurements allow to monitor and characterize the marine atmospheric flow that transport moist and conditionaly unstable air towards the coasts, which is feeding into the HPE events in Southern France. Measurements from BASIL can also be used to better characterize Planetary Boundary Layer moisture transport mechanisms from the surface to deep-convection systems. Besides temperature and water vapour, BASIL also provides measurements of the particle (aerosol/cloud) backscattering coefficient at 355, 532 and 1064 nm, of the particle extinction coefficient at 355 and 532

  1. Performance improvement: an active life cycle product management

    NASA Astrophysics Data System (ADS)

    Cucchiella, Federica; Gastaldi, Massimo; Lenny Koh, S. C.

    2010-03-01

    The management of the supply chain has gained importance in many manufacturing firms. Operational flexibility can be considered a crucial weapon to increase competitiveness in a turbulent marketplace. It reflects the ability of a firm to properly and rapidly respond to a variable and dynamic environment. For the firm operating in a fashion sector, the management of the supply chain is even more complex because the product life cycle is shorter than that of the firm operating in a non-fashion sector. The increase of firm flexibility level can be reached through the application of the real option theory inside the firm network. In fact, real option may increase the project value by allowing managers to more efficiently direct the production. The real option application usually analysed in literature does not take into account that the demands of products are well-defined by the product life cycle. Working on a fashion sector, the life cycle pattern is even more relevant because of an expected demand that grows according to a constant rate that does not capture the demand dynamics of the underlying fashion goods. Thus, the primary research objective of this article is to develop a model useful for the management of investments in a supply chain operating in a fashion sector where the system complexity is increased by the low level of unpredictability and stability that is proper of the mood phenomenon. Moreover, unlike the traditional model, a real option framework is presented here that considers fashion product characterised by uncertain stages of the production cycle.

  2. Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription

    PubMed Central

    Banyai, Gabor; Baïdi, Feriel; Coudreuse, Damien; Szilagyi, Zsolt

    2016-01-01

    Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and requires the periodic expression of particular gene clusters in different cell cycle phases. However, the interplay between the networks that generate these transcriptional oscillations and the core cell cycle machinery remains largely unexplored. In this work, we use a synthetic regulable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity, with different clusters directly responding to specific activity levels. We further establish that cell cycle events neither participate in nor interfere with the Cdk1-driven transcriptional program, provided that cells are exposed to the appropriate Cdk1 activities. These findings contrast with current models that propose self-sustained and Cdk1-independent transcriptional oscillations. Our work therefore supports a model in which Cdk1 activity serves as a quantitative platform for coordinating cell cycle transitions with the expression of critical genes to bring about proper cell cycle progression. PMID:27045731

  3. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    SciTech Connect

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V. E-mail: s.zharkov@hull.ac.uk

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  4. Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer

    PubMed Central

    Alves-Pinto, Ana; Blumenstein, Tobias; Turova, Varvara; Lampe, Renée

    2016-01-01

    Objective Cycling on a recumbent ergometer constitutes one of the most popular rehabilitation exercises in cerebral palsy (CP). However, no control is performed on how muscles are being used during training. Given that patients with CP present altered muscular activity patterns during cycling or walking, it is possible that an incorrect pattern of muscle activation is being promoted during rehabilitation cycling. This study investigated patterns of muscular activation during cycling on a recumbent ergometer in patients with CP and whether those patterns are determined by the degree of spasticity and of mobility. Methods Electromyographic (EMG) recordings of lower leg muscle activation during cycling on a recumbent ergometer were performed in 14 adult patients diagnosed with CP and five adult healthy participants. EMG recordings were done with an eight-channel EMG system built in the laboratory. The activity of the following muscles was recorded: Musculus rectus femoris, Musculus biceps femoris, Musculus tibialis anterior, and Musculus gastrocnemius. The degree of muscle spasticity and mobility was assessed using the Modified Ashworth Scale and the Gross Motor Function Classification System, respectively. Muscle activation patterns were described in terms of onset and duration of activation as well as duration of cocontractions. Results Muscle activation in CP was characterized by earlier onsets, longer periods of activation, a higher occurrence of agonist–antagonist cocontractions, and a more variable cycling tempo in comparison to healthy participants. The degree of altered muscle activation pattern correlated significantly with the degree of spasticity. Conclusion This study confirmed the occurrence of altered lower leg muscle activation patterns in patients with CP during cycling on a recumbent ergometer. There is a need to develop feedback systems that can inform patients and therapists of an incorrect muscle activation during cycling and support the training

  5. Respiratory Muscle Activity During Simultaneous Stationary Cycling and Inspiratory Muscle Training.

    PubMed

    Hellyer, Nathan J; Folsom, Ian A; Gaz, Dan V; Kakuk, Alynn C; Mack, Jessica L; Ver Mulm, Jacyln A

    2015-12-01

    Inspiratory muscle training (IMT) strengthens the muscles of respiration, improves breathing efficiency, and increases fitness. The IMT is generally performed independently of aerobic exercise; however, it is not clear whether there is added benefit of performing the IMT while simultaneously performing aerobic exercise in terms of activating and strengthening inspiratory muscles. The purpose of our study was to determine the effect of IMT on respiratory muscle electromyography (EMG) activity during stationary cycling in the upright and drops postures as compared with that when the IMT was performed alone. Diaphragm and sternocleidomastoid EMG activity was measured under different resting and cycling postures, with and without the use of the IMT at 40% maximal inspiratory pressure (n = 10; mean age 37). Cycling in an upright posture while simultaneously performing the IMT resulted in a significantly greater diaphragm EMG activity than while performing the IMT at rest in upright or drops postures (p ≤ 0.05). Cycling in drops postures while performing the IMT had a significantly greater diaphragm EMG activity than when performing the IMT at rest in either upright or drops postures (p ≤ 0.05). Sternocleidomastoid muscle activity increased with both cycling and IMT, although posture had little effect. These results support our hypothesis in that the IMT while cycling increases respiratory EMG activity to a significantly greater extent than when performing the IMT solely at rest, suggesting that the combination of IMT and cycling may provide an additive training effect. PMID:26584054

  6. Unusual Migration of Prominence Activities in the Southern Hemisphere during Cycles 23-24

    NASA Astrophysics Data System (ADS)

    Shimojo, Masumi

    2013-12-01

    The solar activity in Cycles 23-24 shows differences from the previous cycles that were observed with modern instruments, e.g., long cycle duration and a small number of sunspots. To appreciate the anomalies further, we investigated the prominence eruptions and disappearances observed with the Nobeyama Radioheliograph for over 20 years. Consequently, we found that the occurrence of prominence activities in the northern hemisphere is normal because the period of the number variation is 11 years, and the migration of the producing region of the prominence activities traces the migration of 11 years ago. On the other hand, the migration in the southern hemisphere significantly differs from that in the northern hemisphere and the previous cycles. The prominence activities occurred over -50° latitude in spite of the late decay phase of Cycle 23, and the number of prominence activities in the higher latitude region (over -65°) is very small, even near the solar maximum of Cycle 24. The results suggest that the anomalies of the global magnetic field distribution started at the solar maximum of Cycle 23. A comparison of the butterfly diagram of the prominence activities with the magnetic butterfly diagram indicates that the timing of "the rush to the pole" and the polar magnetic field closely relates to unusual migration. Considering that the rush to the pole is made of the sunspots, the hemispheric asymmetry of the sunspots and the strength of the polar magnetic fields are essential for understanding the anomalies of the prominence activities.

  7. Application of remote sensing to hydrological problems and floods

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.

    1983-01-01

    The main applications of remote sensors to hydrology are identified as well as the principal spectral bands and their advantages and disadvantages. Some examples of LANDSAT data applications to flooding-risk evaluation are cited. Because hydrology studies the amount of moisture and water involved in each phase of hydrological cycle, remote sensing must be emphasized as a technique for hydrological data acquisition.

  8. Incorporating human activities into an earth system model of the Northeastern United States: socio-hydrology at the regional scale

    NASA Astrophysics Data System (ADS)

    Rosenzweig, B.; Vorosmarty, C. J.; Miara, A.; Stewart, R.; Wollheim, W. M.; Lu, X.; Kicklighter, D. W.; Ehsani, N.; Shikhmacheva, K.; Yang, P.

    2013-12-01

    The Northeastern United States is one of the most urbanized regions of the world and its 70 million residents will be challenged by climate change as well as competing demands for land and water through the remainder of the 21st Century. The strategic management decisions made in the next few years will have major impacts on the region's future water resources, but planners have had limited quantitative information to support their decision-making. We have developed a Northeast Regional Earth System Model (NE-RESM), which allows for the testing of future scenarios of climate change, land use change and infrastructure management to better understand their implications for the region's water resources and ecosystem services. Human features of the water cycle - including thermoelectric power plants, wastewater treatment plants interbasin transfers and changes in impervious cover with different patterns of urban development - are explicitly represented in our modeling. We are currently engaged in a novel, participatory scenario design process with regional stakeholders to ensure the policy relevancy of our modeling experiments. The NE-RESM hydrologic modeling domain. Figure by Stanley Glidden and Rob Stewart

  9. The Life Cycle of Active Region Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J.

    2016-08-01

    We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed.

  10. Hydrologic Vulnerability of Western US Rangelands in the Wake of Woodland Encroachment and Increasing Wildfire Activity

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.; Kormos, P. R.

    2013-12-01

    Pinyon and juniper woodlands have dramatically increased their range in the past 150 years and currently occupy more than 30 million ha of the western US. Range expansion has primarily occurred through encroachment into sagebrush rangelands. Woodland expansion and infill on western rangelands have altered the ecological structure and function of these ecosystems and have made much of the western US prone to large severe wildfires. Early-succession woodlands are now burning in large, high-severity wildfires due to heavy woody-fuel loading and extensive horizontal-to-vertical fuel connectivity. Tree infill on late-succession woodlands coupled with extreme fire weather has increased the occurrence of large, high-severity woodland fires in recent decades. We investigated the effects of woodland encroachment and burning on hydrologic vulnerability at multiple woodlands and at a sagebrush rangeland in the early stages of woodland encroachment. Artificial rainfall and overland flow simulations were paired with vegetation and soil measures to evaluate ecohydrologic ramifications of woodland encroachment and burning at multiple spatial scales and over time. Our results provide insight into the ecohydrologic consequences of landscape-scale conversion of sagebrush rangelands to woodlands and the effects of increasing wildfire across this domain in the western US.

  11. On the Use of Hydrological Models and Satellite Data to Study the Water Budget of River Basins Affected by Human Activities: Examples from the Garonne Basin of France

    NASA Astrophysics Data System (ADS)

    Martin, Eric; Gascoin, Simon; Grusson, Youen; Murgue, Clément; Bardeau, Mélanie; Anctil, François; Ferrant, Sylvain; Lardy, Romain; Le Moigne, Patrick; Leenhardt, Delphine; Rivalland, Vincent; Sánchez Pérez, José-Miguel; Sauvage, Sabine; Therond, Olivier

    2016-03-01

    Natural and anthropogenic forcing factors and their changes significantly impact water resources in many river basins around the world. Information on such changes can be derived from fine scale in situ and satellite observations, used in combination with hydrological models. The latter need to account for hydrological changes caused by human activities to correctly estimate the actual water resource. In this study, we consider the catchment area of the Garonne river (in France) to investigate the capabilities of space-based observations and up-to-date hydrological modeling in estimating water resources of a river basin modified by human activities and a changing climate. Using the ISBA-MODCOU and SWAT hydrological models, we find that the water resources of the Garonne basin display a negative climate trend since 1960. The snow component of the two models is validated using the moderate-resolution imaging spectroradiometer snow cover extent climatology. Crop sowing dates based on remote sensing studies are also considered in the validation procedure. Use of this dataset improves the simulated evapotranspiration and river discharge amounts when compared to conventional data. Finally, we investigate the benefit of using the MAELIA multi-agent model that accounts for a realistic agricultural and management scenario. Among other results, we find that changes in crop systems have significant impacts on water uptake for agriculture. This work constitutes a basis for the construction of a future modeling framework of the sociological and hydrological system of the Garonne river region.

  12. A University Consortium for the Advancement of Hydrologic Research

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Wilson, J.; Band, L.; Reckhow, K.

    2003-12-01

    Seventy-six research universities across the United States have joined to form the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), a non-profit corporation. With support from the National Science Foundation, CUAHSI has embarked upon the design and development of programs to enable hydrologic research at larger spatial scales over longer time periods than has been within the grasp of individual investigators. The guiding principle of this design has been an embracing of the entire hydrologic cycle to enable research at the interfaces among traditional hydrologic subdisciplines and between hydrologic science and allied disciplines in the earth and life sciences. To improve our predictive understanding of hydrologic phenomena, the fundamental approach that has been adopted is the development of multidisciplinary, coherent data sets to enable testing of hypotheses in different hydrologic settings across a range of spatial and temporal scales. Four mutually supportive program elements have been conceived: a network of hydrologic observatories (the subject of this special session) designed strategically to collect additional data at large scales (on the order of 10,000 km2) and to leverage existing investments in small-scale intensive studies and in larger scale monitoring activities; hydrologic information systems to develop a comprehensive data model for integrating disparate data types, to develop the cyberinfrastructure necessary for systematic data collection and dissemination and to support community models; hydrologic measurement technology facility to broker instrumentation services from existing sources, to provide cutting edge tools along with the necessary support to use them, and to develop new hydrologic instrumentation needed to advance the science; and hydrologic synthesis center to provide a venue for hydrologic sciences from a range of disciplines to work on topics ranging from inter-observatory comparison to evolving

  13. Rhinosporidium seeberi Nuclear Cycle Activities Using Confocal Microscopy.

    PubMed

    Delfino, Darly; Mendoza, Leonel; Vilela, Raquel

    2016-02-01

    Rhinosporidium seeberi is an uncultivated Ichthyosporean infecting animals, including humans. Recent studies suggested R. seeberi undergoes synchronized nuclear division without cytokinesis. We used confocal microscopy to investigate R. seeberi nuclear division cycles in formalin-fixed tissues stained with DAPI and phalloidin. We report that R. seeberi nuclei in juvenile and intermediary sporangia synchronously divided without cytokinesis. Intermediary sporangia display numerous 3-4 μm nuclei at different mitotic stages as well as a thick inner layer with strong affinity for phalloidin. Mature sporangia showed numerous 5-12 μm cell-walled endospores, each containing a 2-4 μm in diameter nucleus. Phalloidin did not bind to the inner layers of mature sporangia or endospores. The development of a "germinative zone" in the inner layer of mature sporangia containing hundreds of nuclei was also confirmed. This study establishes that during the R. seeberi life cycle synchronous nuclear divisions without cytokinesis takes place, resulting in the formation of thousands of nuclei. Cytokinesis, on the other hand, is a 1-time event and occurs in the latest stages of intermediate sporangia, after the formation of thousands of nuclei and just before mature sporangia development. PMID:26461427

  14. Cycling for Students with ASD: Self-Regulation Promotes Sustained Physical Activity

    ERIC Educational Resources Information Center

    Todd, Teri; Reid, Greg; Butler-Kisber, Lynn

    2010-01-01

    Individuals with autism often lack motivation to engage in sustained physical activity. Three adolescents with severe autism participated in a 16-week program and each regularly completed 30 min of cycling at the end of program. This study investigated the effect of a self-regulation instructional strategy on sustained cycling, which included…

  15. Hydrological similarity and controls of streamflow behaviour in eastern Australian catchments

    NASA Astrophysics Data System (ADS)

    Trancoso, R.; Mcalpine, C. A.; Larsen, J.; Phinn, S. R.; McVicar, T.

    2014-12-01

    Along the eastern Australian seaboard, changes to both landscapes and climate are altering the hydrological cycle and impacting catchment outflows. The region supports 80% of the human population and regularly experiences extreme events such as tropical cyclones, floods and droughts. These changes in the hydrological cycle affect water supply for urban population centres, reduce economic activities and threaten water-dependent ecosystems. An important question that emerges from these issues is how human-modified, spatially heterogeneous catchments are responding to hydrological changes and which biophysical factors are driving the streamflow response. In order to organize and classify heterogeneous catchments with regard to their hydrological functioning, this study utilizes daily streamflow and rainfall time series to quantify hydrological similarity across 402 catchments located along the east coast of Australia. We computed several metrics such as runoff ratio, slope of the Flow Duration Curve, and streamflow elasticity to describe how catchments respond to rainfall input over a period of 30 hydrologic years (1980 to 2010). We used ordination analysis and mixed-effect models to evaluate how the landscape and climatic characteristics of catchments are controlling both individual hydrological signatures and the dominant streamflow response. This work provides new insights into how catchments characteristics and climate variability are interacting to control hydrological behaviour.

  16. Hydrological extremes in China during 1971-2000: from observations and models

    NASA Astrophysics Data System (ADS)

    Liu, Xingcai; He, Jun; Mu, Mengfei; Tang, Qiuhong

    2016-04-01

    Hydrological cycle in China has been greatly affected by both significant climate change and human disturbance since the 1970s. The ISI-MIP2 project provides such a framework by involving multiple hydrological models to reproduce the global hydrological cycle considering both climate change and human impacts. However, the multimodel simulations yet need validation at regional applications. In this study, we evaluate the multimodel simulations of river flow using monthly observations from about 300 hydrological stations in China during the 1970-2000 period. The Nash-Sutcliffe (NS) coefficient and mean relative errors (MRE) are computed for each station to measure the performance of multimodel simulations. Trends in river flow are also compared for observations and simulations. On the basis of overall comparison, we evaluate the hydrological extremes derived from observations and simulations. The hydrological extremes are identified using a standardized discharge index (SDI), which resembles the standardized precipitation index (SPI), based on monthly river flow. The performance of multimodel simulations in reproducing hydrological extremes shows regional difference, and which seems to be greatly associated with the intensity of human activities in the basins. The uncertainty in multimodel simulations may be from models and input data. The uncertainties from both the hydrological models and forcings are investigated, and uncertainty from human impact related input (irrigated area and reservoir storage) is discussed with respect to reported data in China.

  17. Amygdala/hippocampal activation during the menstrual cycle: evidence for lateralization of effects across different tasks.

    PubMed

    Lisofsky, Nina; Lindenberger, Ulman; Kühn, Simone

    2015-01-01

    Variations in hormonal levels between the follicular and the luteal phase of the female menstrual cycle are associated with variations in emotional and cognitive aspects of behavior. The functional neural correlates of these cycle-related variations have been explored in previous neuroimaging studies. We summarize the existing findings of functional magnetic resonance imaging (fMRI) studies to identify regions of increased brain activation in the follicular or luteal phases of the cycle that are concordant across studies. Eleven fMRI studies reporting coordinates of higher brain activation in one of the two main cycle phases were included in the analysis. Activation likelihood estimation was used to determine concordance. We found higher left amygdala/hippocampal activation during the luteal phase and higher right amygdala/hippocampal activation during the follicular phase. Additionally, the anterior cingulate cortex and temporal pole showed increased activation during the luteal phase and the superior temporal gyrus during the follicular phase. The observed pattern of cycle-dependent functional lateralization of the amygdala/hippocampal complex is consistent with findings on cycle-related behavioral variations and on sex differences in lateralization of activity in amygdala and hippocampus. PMID:25496966

  18. Diurnal cycles in serotonin acetyltransferase activity and cyclic GMP content of cultured chick pineal glands.

    PubMed

    Wainwright, S D

    1980-06-12

    Levels of serotonin N-acetyltransferase (NAT: acetul CoA:arylamine N-acetyltransferase; EC 2.1.1.5.) activity in the chick pineal gland exhibit a marked diurnal variation in birds kept under a diurnal cycle of ilumination. Activity begins to rise rapidly at the start of the dark phase of the cycle and reaches maximum levels at mid-dark phase about 25-fold greater than the minimum basal level at mid-light phase. Thereafter, the level of activity declines to the basal level about the start of the light phase. This diurnal cycle in chick pineal NAT activity found in vivo has recently been reproduced in vitro with intact glands incubated in organ culture. The mechanism of the 'biological clock' which regulates these variations in level of chick pineal NAT activity is unknown. However, I now report that chick pineal glands cultured under a diurnal cycle of illumination exhibit a diurnal cycle in content of cyclic GMP which roughly parallels the cycles in NAT activity. In contrast, there was no correlation between variations in pineal content of cyclic AMP and in level of NAT activity. PMID:6250035

  19. A summary of selected publications, project activities, and data sources related to hydrology in the Warrior and Plateau coal fields of Alabama

    USGS Publications Warehouse

    Kidd, Robert E.; Hill, Thomas J.

    1982-01-01

    The report is a reference source on hydrologic information related to coal-mining activities in the Warrior and Plateau coal fields of Alabama. It contains a bibliography of more than 200 references and selected annotations. Also included is information on maps, automated-data bases, water-monitoring programs, and data-source agencies and organizations.

  20. Possible chromospheric activity cycles in II Peg, UX Ari and V711 Tau

    NASA Astrophysics Data System (ADS)

    Buccino, Andrea P.; Mauas, Pablo J. D.

    2009-02-01

    We study the Mount Wilson indices we obtained indirectly from IUE high and low resolution spectra of the RS CVn-type systems II Peg (K2IV), UX Ari (K0IV+G5V) and V711 Tau (K1IV+G5V), extensively observed by IUE from 1978 to 1996. We analyze the activity signatures, which correspond to the primary star, with the Lomb-Scargle periodogram. From the analysis of V711 Tau data, we found a possible chromospheric cycle with a period of 18 years and a shorter ~3 year cycle, which could be associated to a chromospheric flip-flop cycle. The data of II Peg also suggest a chromospheric cycle of ~21 years and a flip-flop cycle of ~9 years. Finally, we obtained a possible chromospheric cycle of ~6 years for UX Ari.

  1. Martian induced magnetosphere variations with solar activity cycle

    NASA Astrophysics Data System (ADS)

    Fedorov, Andrey; Ronan, Modolo; Jarninen, Riku; Mazelle, Christian; Barabash, Stas

    2014-05-01

    During the last 6 years of ESA Mars Express mission we have accumulated plasma data taken inside and around the Martian induced magnetosphere corresponding to the increasing branch of solar activity. This data allows to make an enhanced study of the magnetosphere variations as a response of the solar activity level. Since Mars Express has no onboard magnetometer, we used the hybrid models of the Martian plasma environment to get a proper frame to make an adequate statistics of the magnetospheric response. In this paper we present a spatial distribution of the planetary plasma in the planetary wake as well as the ionsospheric escape as a function of the solar activity.

  2. Does crustacean ethoxyresorufin O-deethylase activity vary during the molting cycle?

    PubMed

    Hotard, Kate; Zou, Enmin

    2013-10-01

    The authors examined fluctuation in microsomal ethoxyresorufin O-deethylase (EROD) activity in the hepatopancreas during the molting cycle of the fiddler crab, Uca pugilator. Results showed that microsomal EROD activity fluctuates significantly during the molting cycle, with the lowest enzymatic activity occurring in the late premolt stage. These results clearly show that molting physiology influences crustacean EROD activity, suggesting that when using crustacean EROD assays in evaluating pollution, only individuals from the same molt stage should be used. The authors propose that the high level of EROD activity in postmolt and intermolt stages is an additional mechanism crustaceans use to prevent any untimely rise in ecdysteroid levels. PMID:23843096

  3. Frowning and Jaw Clenching Muscle Activity Reflects the Perception of Effort During Incremental Workload Cycling

    PubMed Central

    Huang, Ding-Hau; Chou, Shih-Wei; Chen, Yi-Lang; Chiou, Wen-Ko

    2014-01-01

    The present study aimed to investigate whether facial electromyography (EMG) recordings reflect the perception of effort and primary active lower limb muscle activity during incremental workload cycling. The effects of exercise intensity on EMG activity of the corrugator supercilii (CS), masseter and vastus lateralis (VL) muscles, heart rate (HR) and the rating of perceived exertion (RPE) were investigated, and the correlations among these parameters were determined. Eighteen males and 15 females performed continuous incremental workload cycling exercise until exhaustion. CS, masseter and VL muscle activities were continuously recorded using EMG during exercise. HR was also continuously monitored during the test. During the final 30 s of each stage of cycle ergometer exercise, participants were asked to report their feeling of exertion on the adult OMNI-Cycle RPE. HR and EMG activity of the facial muscles and the primary active lower limb muscle were strongly correlated with RPE; they increased with power output. Furthermore, facial muscle activity increased significantly during high-intensity exercise. Masseter muscle activity was strongly and positively correlated with HR, RPE and VL activity. The present investigation supports the view that facial EMG activity reflects the perception of effort. The jaw clenching facial expression can be considered an important factor for improving the reporting of perceived effort during high-intensity exercise in males and females. Key points Frowning and jaw clenching muscle activity reflects the perception of effort during incremental workload cycling. EMG activity of the masseter muscle was strongly and positively correlated with RPE, HR and lower limb EMG activity during incremental workload cycling. The jaw clenching facial expression can be considered an important factor for estimating the intensity of effort. PMID:25435786

  4. A cell cycle-controlled redox switch regulates the topoisomerase IV activity

    PubMed Central

    Narayanan, Sharath; Janakiraman, Balaganesh; Kumar, Lokesh

    2015-01-01

    Topoisomerase IV (topo IV), an essential factor during chromosome segregation, resolves the catenated chromosomes at the end of each replication cycle. How the decatenating activity of the topo IV is regulated during the early stages of the chromosome cycle despite being in continuous association with the chromosome remains poorly understood. Here we report a novel cell cycle-regulated protein in Caulobacter crescentus, NstA (negative switch for topo IV decatenation activity), that inhibits the decatenation activity of the topo IV during early stages of the cell cycle. We demonstrate that in C. crescentus, NstA acts by binding to the ParC DNA-binding subunit of topo IV. Most importantly, we uncover a dynamic oscillation of the intracellular redox state during the cell cycle, which correlates with and controls NstA activity. Thus, we propose that predetermined dynamic intracellular redox fluctuations may act as a global regulatory switch to control cellular development and cell cycle progression and may help retain pathogens in a suitable cell cycle state when encountering redox stress from the host immune response. PMID:26063575

  5. Viral activities and life cycles in deep subseafloor sediments.

    PubMed

    Engelhardt, Tim; Orsi, William D; Jørgensen, Bo Barker

    2015-12-01

    Viruses are highly abundant in marine subsurface sediments and can even exceed the number of prokaryotes. However, their activity and quantitative impact on microbial populations are still poorly understood. Here, we use gene expression data from published continental margin subseafloor metatranscriptomes to qualitatively assess viral diversity and activity in sediments up to 159 metres below seafloor (mbsf). Mining of the metatranscriptomic data revealed 4651 representative viral homologues (RVHs), representing 2.2% of all metatranscriptome sequence reads, which have close translated homology (average 77%, range 60-97% amino acid identity) to viral proteins. Archaea-infecting RVHs are exclusively detected in the upper 30 mbsf, whereas RVHs for filamentous inoviruses predominate in the deepest sediment layers. RVHs indicative of lysogenic phage-host interactions and lytic activity, notably cell lysis, are detected at all analysed depths and suggest a dynamic virus-host association in the marine deep biosphere studied here. Ongoing lytic viral activity is further indicated by the expression of clustered, regularly interspaced, short palindromic repeat-associated cascade genes involved in cellular defence against viral attacks. The data indicate the activity of viruses in subsurface sediment of the Peruvian margin and suggest that viruses indeed cause cell mortality and may play an important role in the turnover of subseafloor microbial biomass. PMID:26109514

  6. Remote sensing in hydrology

    NASA Astrophysics Data System (ADS)

    Schultz, Gert A.

    1988-07-01

    The "Electronic Age" offers new and attractive opportunities to hydrologists for remote sensing (RS) of hydrological data. A discussion of hydrologically relevant platforms and sensors and the type of electromagnetic signals used by such sensors is followed by an analysis of the structure of mathematical hydrologic models which use RS information either as input or to provide a basis for model parameter estimation. Three examples of RS application in hydrological modeling are given: (1) model parameter estimation with the aid of multispectral Landsat satellite data; (2) computation of historic monthly runoff for design purposes with the aid of a lumped system model using NOAA infrared satellite data as input; and (3) real-time flood forecasting applying a distributed system model using radar rainfall measurements as input. Further applications of RS information in hydrology are discussed in the field of evapotranspiration, soil moisture, rainfall, surface water, snow and ice, sediments and water quality. A brief discussion of RS data availability and the hardware and software required is followed by an assessment of future opportunities. The potential of passive and active microwave sensors for hydrological applications is emphasized.

  7. Assimilation of SMOS soil moisture into a distributed hydrological model and impacts on the water cycle variables over the Ouémé catchment in Benin

    NASA Astrophysics Data System (ADS)

    Leroux, Delphine J.; Pellarin, Thierry; Vischel, Théo; Cohard, Jean-Martial; Gascon, Tania; Gibon, François; Mialon, Arnaud; Galle, Sylvie; Peugeot, Christophe; Seguis, Luc

    2016-07-01

    Precipitation forcing is usually the main source of uncertainty in hydrology. It is of crucial importance to use accurate forcing in order to obtain a good distribution of the water throughout the basin. For real-time applications, satellite observations allow quasi-real-time precipitation monitoring like the products PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks, TRMM (Tropical Rainfall Measuring Mission) or CMORPH (CPC (Climate Prediction Center) MORPHing). However, especially in West Africa, these precipitation satellite products are highly inaccurate and the water amount can vary by a factor of 2. A post-adjusted version of these products exists but is available with a 2 to 3 month delay, which is not suitable for real-time hydrologic applications. The purpose of this work is to show the possible synergy between quasi-real-time satellite precipitation and soil moisture by assimilating the latter into a hydrological model. Soil Moisture Ocean Salinity (SMOS) soil moisture is assimilated into the Distributed Hydrology Soil Vegetation Model (DHSVM) model. By adjusting the soil water content, water table depth and streamflow simulations are much improved compared to real-time precipitation without assimilation: soil moisture bias is decreased even at deeper soil layers, correlation of the water table depth is improved from 0.09-0.70 to 0.82-0.87, and the Nash coefficients of the streamflow go from negative to positive. Overall, the statistics tend to get closer to those from the reanalyzed precipitation. Soil moisture assimilation represents a fair alternative to reanalyzed rainfall products, which can take several months before being available, which could lead to a better management of available water resources and extreme events.

  8. Life Cycle of the Salmon. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Tarabochia, Kathy

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  9. Do Male And Female Cyclists' Cortical Activity Differ Before and During Cycling Exercise?

    PubMed

    Ludyga, Sebastian; Gronwald, Thomas; Hottenrott, Kuno

    2015-12-01

    Although men and women are suggested to vary in resistance to fatigue, possible sex difference in its central component have rarely been investigated via electroencephalography (EEG). Therefore, we examined differences in cortical activity between male and female cyclists (n = 26) during cycling exercise. Participants performed an incremental test to derive the anaerobic threshold from the lactate power curve. In addition, cyclists' cortical activity was recorded with EEG before and during cycling exercise. Whereas women showed higher frontal alpha and beta activity at rest, no sex-specific differences of relative EEG spectral power occurred during cycling at higher intensity. Women and men's brains respond similarly during submaximal cycling, as both sexes show an inverted U-shaped curve of alpha power. Therefore, sex differences observable at rest vanish after the onset of exercise. PMID:26866769

  10. Looking for activity cycles in late-type Kepler stars using time-frequency analysis

    NASA Astrophysics Data System (ADS)

    Vida, K.; Oláh, K.; Szabó, R.

    2014-07-01

    We analyse light curves covering four years of 39 fast-rotating (Prot ≲ 1 d) late-type active stars from the Kepler data base. Using time-frequency analysis (short-term Fourier transform), we find hints for activity cycles of 300-900 d at nine targets from the changing typical latitude of the starspots, which with the differential rotation of the stellar surface change the observed rotation period over the activity cycle. We also give a lowest estimation for the shear parameter of the differential rotation, which is ≈0.001 for the cycling targets. These results populate the less studied, short-period end of the rotation-cycle length relation.

  11. Contextualizing Solar Cycle 24: Report on the Development of a Homogenous Database of Bipolar Active Regions Spanning Four Cycles

    NASA Astrophysics Data System (ADS)

    Munoz-Jaramillo, A.; Werginz, Z. A.; DeLuca, M. D.; Vargas-Acosta, J. P.; Longcope, D. W.; Harvey, J. W.; Martens, P.; Zhang, J.; Vargas-Dominguez, S.; DeForest, C. E.; Lamb, D. A.

    2015-12-01

    The solar cycle can be understood as a process that alternates the large-scale magnetic field of the Sun between poloidal and toroidal configurations. Although the process that transitions the solar cycle between toroidal and poloidal phases is still not fully understood, theoretical studies, and observational evidence, suggest that this process is driven by the emergence and decay of bipolar magnetic regions (BMRs) at the photosphere. Furthermore, the emergence of BMRs at the photosphere is the main driver behind solar variability and solar activity in general; making the study of their properties doubly important for heliospheric physics. However, in spite of their critical role, there is still no unified catalog of BMRs spanning multiple instruments and covering the entire period of systematic measurement of the solar magnetic field (i.e. 1975 to present).In this presentation we discuss an ongoing project to address this deficiency by applying our Bipolar Active Region Detection (BARD) code on full disk magnetograms measured by the 512 (1975-1993) and SPMG (1992-2003) instruments at the Kitt Peak Vacuum Telescope (KPVT), SOHO/MDI (1996-2011) and SDO/HMI (2010-present). First we will discuss the results of our revitalization of 512 and SPMG KPVT data, then we will discuss how our BARD code operates, and finally report the results of our cross-callibration.The corrected and improved KPVT magnetograms will be made available through the National Solar Observatory (NSO) and Virtual Solar Observatory (VSO), including updated synoptic maps produced by running the corrected KPVT magnetograms though the SOLIS pipeline. The homogeneous active region database will be made public by the end of 2017 once it has reached a satisfactory level of quality and maturity. The Figure shows all bipolar active regions present in our database (as of Aug 2015) colored according to the sign of their leading polarity. Marker size is indicative of the total active region flux. Anti

  12. Peroxide bond strength of antimalarial drugs containing an endoperoxide cycle. Relation with biological activity.

    PubMed

    Fernández, Israel; Robert, Anne

    2011-06-01

    Several endoperoxide compounds are very efficient antimalarial analogues of the natural drug artemisinin. Quantum chemical calculations have been used to correlate the computed free energies of the O-O bond with respect to the total number of oxygen atoms contained in the cycle, and with the size/strain of the cycle (5- or 6-membered cycles). The gas-phase homolysis of the O-O bond has been studied for five- and six-membered oxygenated cycles which are models of the "real" drugs. Our results indicate that, in 6-membered cycles, the stability order is the following: 1,2-dioxane > 1,2,4-trioxane > 1,2,4,5-tetraoxane. In cycles containing 3 oxygen atoms, the 5-membered cycle 1,2,4-trioxolane was found much less stable than its 6-membered counterpart 1,2,4-trioxane. This feature indicates the possible role of the cycle strain for the O-O bond stability, and may also explain the high antimalarial activity of some trioxolane derivatives. Similar trends in the O-O bond strength have been found for the real antimalarial drugs. However, the O-O bond stability is not in itself a decisive argument to anticipate the antimalarial activity of drugs. PMID:21487624

  13. Is the Valles caldera entering a new cycle of activity?

    SciTech Connect

    Wolff, J.A.; Gardner, J.N.

    1995-05-01

    The Valles caldera formed during two major rhyolitic ignimbrite eruptive episodes (the Bandelier Tuff) at 1.61 and 1.22 Ma, after some 12 m.y. of activity in the Jemez Mountains volcanic field, New Mexico. Several subsequent eruptions between 1.22 and 0.52 Ma produced dominantly high-silica rhyolite lava domes and tephras within the caldera. These were followed by a dormancy of 0.46 m.y. prior to the most recent intracaldera activity, the longest hiatus since the inception of the Bandelier magma system at approximately 1.8 Ma. The youngest volcanic activity at approximately 60 ka produced the SW moat rhyolites, a series of lavas and tuffs that display abundant petrologic evidence of being newly generated melts. Petrographic textures conform closely to published predictions for silicic magmas generated by intrusion of basaltic magma into continental crust. The Valles caldera may currently be the site of renewed silicic magma generation, induced by intrusion of mafic magma at depth. Recent seismic investigations revealed the presence of a large low-velocity anomaly in the lower crust beneath the caldera. The generally aseismic character of the caldera, despite abundant regional seismicity, may be attributed to a heated crustal column, the local effect of 13 m.y. of magmatism and emplacement of mid-crustal plutons. 24 refs., 3 figs.

  14. Cell cycle-dependent regulation of RNA polymerase II basal transcription activity.

    PubMed Central

    Yonaha, M; Chibazakura, T; Kitajima, S; Yasukochi, Y

    1995-01-01

    Regulation of transcription by RNA polymerase II (pol II) in eukaryotic cells requires both basal and regulatory transcription factors. In this report we have investigated in vitro pol II basal transcription activity during the cell cycle by using nuclear extracts from synchronized HeLa cells. It is shown that pol II basal transcription activity is low in the S and G2 phases and high in early G1 phase and TFIID is the rate limiting component of pol II basal transcription activity during the cell cycle. Further analyses reveal that TFIID exists as a less active form in the S and G2 phases and nuclear extracts from S and G2 phase cells contain a heat-sensitive repressor(s) of TATA box binding protein (TBP). These results suggest that pol II basal transcription activity is regulated by a qualitative change in the TFIID complex, which could involve repression of TBP, during the cell cycle. Images PMID:7479063

  15. The activity cycle of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Snodgrass, C.; Barrera, L.; Boehnhardt, H.; Guilbert-Lepoutre, A.; Hainaut, O.; Hutsemékers, D.; Jehin, E.; Meech, K.; Opitom, C.; Schulz, R.; Tozzi, G.; Tubiana, C.

    2014-07-01

    We present ground-based observations of comet 67P/Churyumov-Gerasimenko, target of the Rosetta mission, and an assessment on its activity levels. Based on imaging in the R-band, we measure the brightness of the coma within various apertures and use this to assess the amount of dust in the coma. We find that the comet begins to show detectable activity at a pre-perihelion distance from the Sun of 4.3 au, and then shows a smooth increase in production to a peak around one month after perihelion passage. The behaviour of the comet is consistent from one orbit to another, based on archival images taken over three apparitions, and we therefore use the heliocentric lightcurve to make predictions for the 2014/5 period while Rosetta is operating at the comet. We find that the Afρ parameter, measured within an aperture of radius 10,000 km at the comet, is proportional to r^{-3.2}, pre-perihelion [1]. We also attempt to make predictions on the gas production rate by fitting a model to the observed brightness values. This is done by assuming various parameters about the nucleus and dust, many of which are reasonably well constrained for 67P, and solving an energy balance equation that gives the sublimation rate of various ices as a function of solar illumination [2]. The model then links the gas production rate to the total amount of dust in the coma, and its brightness. We find that only a small fraction of the surface area (1.4 %) needs to be active for water sublimation, with an extra peak (up to 4 %) for a month either side of perihelion, while an even smaller area is producing CO_2 (0.04-0.09 %) [1]. The predictions can now be tested against new observations, and we will present the latest results from our 2014 monitoring of 67P. We are performing regular R-band imaging on the comet using the VLT, and early indications in March 2014 indicate that the comet does appear to have returned to activity as expected. By the time of the ACM meeting we will have around 4 months

  16. On the existence of the 11-year cycle in solar activity before the Maunder minimum

    SciTech Connect

    Attolini, M.R.; Cecchini, S.; Cini Castagnoli, G.; Galli, M.; Nanni, T.

    1988-11-01

    The existence of the 11-year cycle in solar activity before the Maunder minimum is clearly demonstrated with cosmogenic /sup 10/Be in polar ice during 1180--1500 A.D. For that interval a periodicity of 11.4 +- 0.2 years is found with a high significance level. Indication of a cyclicity that resembles the Hale magnetic cycle is also observed at a lower significance level. A highly variable cyclicity in the band 9.5--11.5 years is also found in the record of historical aurorae which appears to be well correlated with the /sup 10/Be cyclicity for the same time interval. It is concluded that the Schwabe, or 11-year, cycle and the Hale magnetic cycle were present before and after the Maunder minimum, even though it is not possible to understand the variability of the cycle. copyright American Geophysical Union 1988

  17. Solar Wind and Magnetic Storms in 24-th Cycle of Solar Activity

    NASA Astrophysics Data System (ADS)

    Val'chuk, T. E.

    2013-01-01

    Slow growth of 24-th solar cycle allows adding of this cycle to the type of low cycles. Geomagnetic activity is not expensive too - strong geomagnetic storms were absent in the beginning of growth branch of this cycle. Very prolonged minimum was lasting about 4 years. We may remember that century minimum of solar activity was proposed after XX century high strong cycles. It may be - we look this situation now in 2012. Our work is connected with sporadic phenomena in 24-th cycle. These more or less intensive variations of solar activity are not predicted, they are caused by flowing up of new magnetic fields of spots, the excitement of flares, intensive plasma flows, coronal mass ejections (CME) and filament eruptions. Now two last versions (CME and filaments) are primary. Geomagnetic activity on a descending phase of solar cycle depends on quality of coronal holes providing the recurrent geomagnetic storms. Sporadic phenomena, which generated geomagnetic storms in Earth magnetosphere if flare flows reached the Earth magnetosphere and transferred it the energy are more interesting for us - they are the valuable characteristics of 24-th cycle. The disturbed period of several geomagnetic storms was generated by solar active region N11429. It is one sample only, this case is difficult and indicative. Replacing each other scenarios describe geomagnetic variations at the beginning of March 2012. Detailed consideration of this interval revealed its communication with sporadic events on the Sun. The structural configuration of plasma in flare flows was defined by means fractal dimension calculations of solar plasma parameters: velocity Vx and density N in flare streams.

  18. Periods of Highly Synchronous, Non-Reentrant Endocardial Activation Cycles Occur During Long Duration Ventricular Fibrillation

    PubMed Central

    Robichaux, Robert P.; Dosdall, Derek J.; Osorio, Jose; Garner, Nicholas W.; Li, Li; Huang, Jian; Ideker, Raymond E.

    2010-01-01

    Background Little is known about long-duration ventricular fibrillation (LDVF), lasting 1-10 minutes when resuscitation is still possible. Methods and Results To determine global LV endocardial activation during LDVF, 6 canines (9.5±0.8 kg) received a 64-electrode basket catheter in the left ventricle (LV), a right ventricular (RV) catheter, and a 12-lead ECG. Activation sequences of 15 successive cycles after initiation and after 1, 2, 3, 5, 7, and 10 minutes of LDVF were determined. Early during VF, LV endocardial activation was complex and present throughout most (78.0±9.7%) of each cycle consistent with reentry. After 3-7 min of LDVF in 5 animals, endocardial activation became highly synchronized and present for only a small percentage of each cycle (18.2±7.7%), indicating that LV endocardial reentry was no longer present. During this synchronization, activations arose focally in Purkinje fibers and spread as large wavefronts to excite the Purkinje system followed by the subendocardial working myocardium. During this synchronization, the ECG continued to appear irregular, consistent with VF, and LV cycle length (183±29 ms) was significantly different than RV cycle length (144±14 ms) and significantly different than the LV cycle length when synchronization was not present (130±11 ms). Conclusion After 3-7 minutes of LDVF, a highly organized, synchronous, focal LV endocardial activation pattern frequently occurs that is not consistent with reentry but is consistent with triggered activity or abnormal automaticity in Purkinje fibers. The ECG continues to appear irregular during this period, partially because of differences in LV and RV cycle lengths. PMID:20487123

  19. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  20. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  1. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    SciTech Connect

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-07-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  2. The effect of cadence on timing of muscle activation and mechanical output in cycling: on the activation dynamics hypothesis.

    PubMed

    McGhie, David; Ettema, Gertjan

    2011-02-01

    The purpose of this study was to examine the activation dynamics hypothesis, which states that, in cycling, the pattern between muscle activity and crank position shifts in regard to its angle in the crank cycle with increasing cadence to maintain invariant positioning of the mechanical output. We measured surface EMG of six muscles, and by means of force measurements at the crank and inverse dynamics calculated hip, knee, and ankle joint dynamics during cycling at five cadences (60-100 rpm) at 75% of maximal power in trained cyclists. The joint dynamics (net muscle moment and power) showed a consistent positive phase shift with increasing cadence. The phase shift in muscle activation patterns was highly variable amongst subjects and was, on average, close to zero. Our results are in contradiction with the activation dynamics hypothesis. PMID:20594872

  3. Finding year-long activity cycles in ground-based and space-borne photometry

    NASA Astrophysics Data System (ADS)

    Vida, Krisztián; Oláh, Katalin; Szabó, Róbert

    2015-08-01

    Using long­term ground­based photometry of fast­rotating M­-dwarfs (EY Dra, V405 And, GSC 3377­0296 and V374 Peg), all with rotational periods near 0.5 day, but with different internal structures, we found activity cycles in the form of long-­term brightness changes, on the time scales of about one year. Using the cycling stars as templates, we searched for similar, fast rotating (P < 1d), active, late­-type targets in the Kepler Input Catalogue. Analysing the light curves of these 39 stars, we found hints of 300­-900 day­-long cycles in 9 cases detecting small variations in the rotation periods caused by differential rotation and the changing spot emergence latitudes over the cycle (i.e., the butterfly diagram).

  4. The solar cycle variation of the rates of CMEs and related activity

    NASA Technical Reports Server (NTRS)

    Webb, David F.

    1991-01-01

    Coronal mass ejections (CMEs) are an important aspect of the physics of the corona and heliosphere. This paper presents results of a study of occurrence frequencies of CMEs and related activity tracers over more than a complete solar activity cycle. To properly estimate occurrence rates, observed CME rates must be corrected for instrument duty cycles, detection efficiencies away from the skyplane, mass detection thresholds, and geometrical considerations. These corrections are evaluated using CME data from 1976-1989 obtained with the Skylab, SMM and SOLWIND coronagraphs and the Helios-2 photometers. The major results are: (1) the occurrence rate of CMEs tends to track the activity cycle in both amplitude and phase; (2) the corrected rates from different instruments are reasonably consistent; and (3) over the long term, no one class of solar activity tracer is better correlated with CME rate than any other (with the possible exception of type II bursts).

  5. Relationship between skin temperature and muscle activation during incremental cycle exercise.

    PubMed

    Priego Quesada, Jose I; Carpes, Felipe P; Bini, Rodrigo R; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2015-02-01

    While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography - EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10 min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<-0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test. PMID:25660627

  6. A Comparison Between Global Proxies of the Sun's Magnetic Activity Cycle: Inferences from Helioseismology

    NASA Astrophysics Data System (ADS)

    Broomhall, A.-M.; Nakariakov, V. M.

    2015-11-01

    The last solar minimum was, by recent standards, unusually deep and long. We are now close to the maximum of the subsequent solar cycle, which is relatively weak. In this article we make comparisons between different global (unresolved) measures of the Sun's magnetic activity to investigate how they are responding to this weak-activity epoch. We focus on helioseismic data, which are sensitive to conditions, including the characteristics of the magnetic field, in the solar interior. Also considered are measures of the magnetic field in the photosphere (sunspot number and sunspot area), the chromosphere and corona (10.7 cm radio flux and 530.3 nm green coronal index), and two measures of the Sun's magnetic activity closer to Earth (the interplanetary magnetic field and the galactic cosmic-ray intensity). Scaled versions of the activity proxies diverge from the helioseismic data around 2000, indicating a change in relationship between the proxies. The degree of divergence varies from proxy to proxy, with sunspot area and 10.7 cm flux showing only small deviations, while sunspot number, coronal index, and the two interplanetary proxies show much larger departures. In Cycle 24 the deviations in the solar proxies and the helioseismic data decrease, raising the possibility that the deviations observed in Cycle 23 are just symptomatic of a 22-year Hale cycle. However, the deviations in the helioseismic data and the interplanetary proxies increase in Cycle 24. Interestingly, the divergence in the solar proxies and the helioseismic data are not reflected in the shorter-term variations (often referred to as quasi-biennial oscillations) observed on top of the dominant 11-year solar cycle. However, despite being highly correlated in Cycle 22, the short-term variations in the interplanetary proxies show very little correlation with the helioseismic data during Cycles 23 and 24.

  7. Body temperature and physical activity correlates of the menstrual cycle in Chacma Baboons (Papio hamadryas ursinus).

    PubMed

    Nyakudya, Trevor T; Fuller, Andrea; Meyer, Leith C R; Maloney, Shane K; Mitchell, Duncan

    2012-12-01

    We investigated the temporal relationship between abdominal temperature, physical activity, perineal swelling, and urinary progesterone and estradiol concentrations over the menstrual cycle in unrestrained captive baboons. Using a miniature temperature-sensitive data logger surgically implanted in the abdominal cavity and an activity data logger implanted subcutaneously on the trunk, we measured, continuously over 6 months at 10-min intervals, abdominal temperature and physical activity patterns in four female adult baboons Papio hamadryas ursinus (12.9-19.9 kg), in cages in an indoor animal facility (22-25°C). We monitored menstrual bleeding and perineal swelling changes, and measured urinary progesterone and estradiol concentrations, daily for up to 6 months, to ascertain the stage and length of the menstrual cycle. The menstrual cycle was 36 ± 2 days (mean ± SD) long and the baboons exhibited cyclic changes in perineal swellings, abdominal temperature, physical activity, urinary progesterone, and estradiol concentrations over the cycle. Mean 24-hr abdominal temperature during the luteal phase was significantly higher than during the periovulatory phase (ANOVA, F((2, 9)) = 4.7; P = 0.04), but not different to that during the proliferative phase. Physical activity followed a similar pattern, with mean 24-hr physical activity almost twice as high in the luteal than in the periovulatory phase (ANOVA, P = 0.58; F((2, 12)) = 5.8). We have characterized correlates of the menstrual cycle in baboons and shown, for the first time, a rhythm of physical activity and abdominal temperature over the menstrual cycle, with a nadir of temperature and activity at ovulation. PMID:22930453

  8. Hydrology/Radionuclide Migration Program and related research activities; FY 1986 progress report, October 1, 1985--September 30, 1986

    SciTech Connect

    Jones, M.A.

    1992-02-01

    This report presents the results of technical studies conducted under the Hydrology/Radionuclide Migration Program (HRMP) at the Nevada Test Site (NTS) for the period of October 1, 1985 through September 30, 1986. The HRMP was initiated in 1973 as the Radionuclide Migration Program to study and better understand the hydrologic systems of the NTS and potential movement and rates of movement of radionuclides and other contaminants injected into these systems by underground nuclear testing.

  9. A Distributed Biosphere-Hydrological Model System for Continental Scale River Basins

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Oki, T.; Kanae, S.; Hu, H.

    2006-12-01

    A new generation hydrological model, Distributed Biosphere-Hydrological (DBH) Model, is developed to connect hydrological cycle with biosphere, climate system and human society. The vegetated surface is calculated by a realistic land surface model SiB2. The hydrological part estimates the surface runoff and calculates the interlayer exchanges and interaction between soil water and groundwater. It physically represents hydrological cycle with the support of nontraditional datasets. With the new generation model, the scope of hydrology will broaden from rainfall-runoff relationship to climatology, biosphere, ecosystem, remote sensing, and human society. The model can demonstrate the effects of natural and anthropogenic heterogeneity on hydrological cycle. The effects on hydrological responses of precipitation variability and the variability on irrigation redistributing runoff, was investigated. Runoff is underestimated if the rainfall is spatially uniformly put on large grid cell. Runoff simulation could be improved by taking into account the precipitation heterogeneity. However, the negative runoff contribution cannot be simulated by only considering the natural heterogeneity. This constructive model shortcoming can be eliminated by taking into account anthropogenic heterogeneity. The model is used to interpret the Yellow River drying up phenomenon in China. Scenarios are performed from 1960 to 2000 to quantify the effect of human activity, and to distinguish it from the effect from climate change. The results show climate change is dominated in the upper and middle reaches, and human activity is dominated in the lower reaches. The river discharge nearly half is affected by climate change and half by human activities. Climate pattern change rather than linear change contributes to the decrease of stream flow in the Yellow River.

  10. Tubulin dynamics during the cytoplasmic cohesiveness cycle in artificially activated sea urchin eggs.

    PubMed

    Coffe, G; Foucault, G; Raymond, M N; Pudles, J

    1983-12-01

    Sedimentation studies and [3H]colchicine-binding assays have demonstrated a relationship between the cytoplasmic cohesiveness cycles and the changes in tubulin organization in Paracentrotus lividus eggs activated by 2.5 mM procaine. The same amount of tubulin (20-25% of the total egg tubulin) is involved in these cyclic process and appears to undergo polymerization and depolymerization cycles. Electron microscopy studies reveal that the microtubules formed during these cytoplasmic cohesiveness cycles are under a particulate form which is sedimentable at low speed. Activation experiments carried out in the presence of cytochalasin B (CB) show that the increase in the cytoplasmic cohesiveness is highly reduced while tubulin polymerization and depolymerization cycles and pronuclear centration are not affected. Although tubulin or actin polymerization can be independently triggered in procaine-activated eggs, the increase in cytoplasmic cohesiveness requires the polymerization of both proteins. However, the cytoplasmic cohesiveness cycles appear to be regulated by tubulin polymerization and depolymerization cycles. PMID:6641809

  11. Soil hydrological and soil property changes resulting from termite activity on agricultural fields in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Mettrop, I.; Cammeraat, L. H.; Verbeeten, E.

    2009-04-01

    Termites are important ecosystem-engineers in subtropical and tropical regions. The effect of termite activity affecting soil infiltration is well documented in the Sahelian region. Most studies find increased infiltration rates on surfaces that are affected by termite activity in comparison to crusted areas showing non-termite presence. Crusted agricultural fields in the Sanmatenga region in Burkina Faso with clear termite activity were compared to control fields without visual ground dwelling termite activity. Fine scale rainfall simulations were carried out on crusted termite affected and control sites. Furthermore soil moisture change, bulk density, soil organic matter as well as general soil characteristics were studied. The top soils in the study area were strongly crusted (structural crust) after the summer rainfall and harvest of millet. They have a loamy sand texture underlain by a shallow sandy loam Bt horizon. The initial soil moisture conditions were significantly higher on the termite plots when compared to control sites. It was found that the amount of runoff produced on the termite plots was significantly higher, and also the volumetric soil moisture content after the experiments was significantly lower if compared to the control plots. Bulk density showed no difference whereas soil organic matter was significantly higher under termite affected areas, in comparison to the control plots. Lab tests showed no significant difference in hydrophobic behavior of the topsoil and crust material. Micro and macro-structural properties of the topsoil did not differ significantly between the termite sites and the control sites. The texture of the top 5 cm of the soil was also found to be not significantly different. The infiltration results are contradictory to the general literature, which reports increased infiltration rates after prolonged termite activity although mostly under different initial conditions. The number of nest entrances was clearly higher in

  12. Discovery of an activity cycle in the solar analog HD 45184. Exploring Balmer and metallic lines as activity proxy candidates

    NASA Astrophysics Data System (ADS)

    Flores, M.; González, J. F.; Jaque Arancibia, M.; Buccino, A.; Saffe, C.

    2016-05-01

    Context. Most stellar activity cycles similar to that found in the Sun have been detected by using the chromospheric Ca ii H&K lines as stellar activity proxies. However, it is unclear whether such activity cycles can be identified using other optical lines. Aims: We aim to detect activity cycles in solar-analog stars and determine whether they can be identified through other optical lines, such as Fe II and Balmer lines. We study the solar-analog star HD 45184 using HARPS spectra. The temporal coverage and high quality of the spectra allow us to detect both long- and short-term activity variations. Methods: We analysed the activity signatures of HD 45184 by using 291 HARPS spectra obtained between 2003 and 2014. To search for line-core flux variations, we focused on Ca ii H&K and Balmer Hα and Hβ lines, which are typically used as optical chromospheric activity indicators. We calculated the HARPS-S index from Ca ii H&K lines and converted it into the Mount Wilson scale. In addition, we also considered the equivalent widths of Balmer lines as activity indicators. Moreover, we analysed the possible variability of Fe ii and other metallic lines in the optical spectra. The spectral variations were analysed for periodicity using the Lomb-Scargle periodogram. Results: We report for the first time a long-term 5.14-yr activity cycle in the solar-analog star HD 45184 derived from Mount Wilson S index. This makes HD 45184 one of most similar stars to the Sun with a known activity cycle. The variation is also evident in the first lines of the Balmer series, which do not always show a correlation with activity in solar-type stars. Notably, unlike the solar case, we also found that the equivalent widths of the high photospheric Fe ii lines (4924 Å, 5018 Å and 5169 Å) are modulated (±2 mÅ) by the chromospheric cycle of the star. These metallic lines show variations above 4σ in the rms spectrum, while some Ba ii and Ti ii lines present variations at 3σ level, which

  13. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths - are DOC exports mediated by iron reduction/oxidation cycles?

    NASA Astrophysics Data System (ADS)

    Knorr, K.-H.

    2013-02-01

    Dissolved organic carbon (DOC) exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water and DOC fluorescence, the wetlands were identified as the main source of DOC. Antecedent biogeochemical conditions, i.e., water table levels in the wetlands, influenced the discharge patterns of nitrate, iron and DOC during an event. The correlation of DOC with pH was positive in pore waters, but negative in surface waters; it was negative for DOC with sulfate in pore waters, but only weak in surface waters. Though, the positive correlation of DOC with iron was universal for pore and surface water. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidising iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is, thus, a need to consider processes more thoroughly of DOC mobilisation in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least, in part, be caused by increasing activities in iron reduction, possibly due to increases in temperature, increasing wetness of riparian wetlands, or by a shift from sulfate dominated to iron reduction dominated biogeochemical

  14. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths - are DOC exports mediated by iron reduction/oxidation cycles?

    NASA Astrophysics Data System (ADS)

    Knorr, K.-H.

    2012-09-01

    Dissolved organic carbon (DOC) exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water, and DOC fluorescence, the wetlands were identified as main source of DOC. Antecedent biogeochemical conditions, i.e. water table levels in the wetlands, influenced the discharge patterns of nitrate, iron, and DOC during an event. The correlation of DOC with pH was positive in pore waters but negative in surface waters; it was negative for DOC with sulfate in pore waters but only weak in surface waters. The positive correlation of DOC with iron was universal for pore and surface water, though. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidizing iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is thus a need to more thoroughly consider processes of DOC mobilization in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least in part be caused by increasing activities in iron reduction, possibly due to increases in temperature or wetness of riparian wetlands.

  15. Hydrological response to land cover changes and human activities in arid regions using a geographic information system and remote sensing.

    PubMed

    Mahmoud, Shereif H; Alazba, A A

    2015-01-01

    The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities. PMID:25923712

  16. Hydrological Response to Land Cover Changes and Human Activities in Arid Regions Using a Geographic Information System and Remote Sensing

    PubMed Central

    Mahmoud, Shereif H.; Alazba, A. A.

    2015-01-01

    The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities. PMID:25923712

  17. Hydrological and geomorphological consequences of beavers activity in the Struga Czechowska valley (Tuchola Pinewood Forest, Poland)

    NASA Astrophysics Data System (ADS)

    Brykała, Dariusz; Gierszewski, Piotr; Błaszkiewicz, Mirosław; Kordowski, Jarosław; Tyszkowski, Sebastian; Słowiński, Michał; Kaszubski, Michał; Brauer, Achim

    2016-04-01

    Since last years, after the process of beavers' (Castor fiber) reintroduction to the Polish environment, on the Struga Czechowska river (Tuchola Pinewood Forest, Poland) was observed large beaver activity, especially along the outlet from the Lake Głęboczek. It expresses in relief transformation of the valley bottom and its slopes. Created by beavers small ponds functioning as local sediment traps. Periodically the dams were destroyed. This led to rapid water drainage. The effects of such events were observed in the period between December 2014 and May 2015. Inventory of beaver dams along the Struga Czechowska river, which had made in 2015, shows that dams were distributed on average every 50 m. There were 30 dams on three sections of river. Only 6 were built there in 2015, and the remaining were older and abandoned, but one-third of them still damming water of stream. The average water damming by beaver dams amounts 0.2 m, and maximum 0.6 m. The width of the beaver dams reached there almost always the value of 3 m, and their height reached average up to 0.8 m was identical to the bankfull depth. Cascade character of the beaver dams operation has its consequences in functioning of erosional and accumulation parts of watercourses (alternately). Analysis of hydrograph of the Struga Czechowska water levels shows, that since December 2014 there were nine rapid drainages of beaver ponds located above the paleolake Trzechowskie. Damaged dams were very quickly rebuilt, and water in ponds was again stored. The average time of restoration the dam amounts 10 hours, and maximum 3 days. Rapid flows from beaver ponds resulted in intensive bottom and lateral erosion of stream channel and a creation of soil falls on the slopes of valley below destroyed dams. Products of erosion were accumulated along watercourse at a distance of 200 meters, and then in the stream channel in form of sandy bars. Especially intensive accumulation occurred at flat surface of paleolake. Maximum

  18. Sex-dependent activity of the spinal excitatory amino acid transporter: Role of estrous cycle.

    PubMed

    Sajjad, Jahangir; Felice, Valeria D; Golubeva, Anna V; Cryan, John F; O'Mahony, Siobhain M

    2016-10-01

    Females are more likely to experience visceral pain than males, yet mechanisms underlying this sex bias are not fully elucidated. Moreover, pain sensitivity can change throughout the menstrual cycle. Alterations in the glutamatergic system have been implicated in several pain-disorders; however, whether these are sex-dependent is unclear. Thus, we aimed to investigate sex differences in the spinal cord glutamate uptake and how it varies across the estrous cycle. The activity of the glutamate transporters, excitatory amino acid transporters (EAATs) was assessed using an ex vivo aspartate radioactive uptake assay in the lumbosacral spinal cord in Sprague-Dawley male and female rats. The gene expression of EAATs, glutamate receptor subunits NR1 and NR2B and the estrogen receptors ERα & ERβ in the spinal cord were also analyzed. EAAT activity was lower in females, particularly during the estrus phase, and this was the only cycle stage that was responsive to the pharmacological effects of the EAATs activator riluzole. Interestingly, EAAT1 mRNA expression was lower in high-estrogen and high-ERα states compared to diestrus in females. We conclude that the Spinal EAAT activity in females is different to that in males, and varies across the estrous cycle. Furthermore, the expression levels of estrogen receptors also showed a cycle-dependent pattern that may affect EAATs function and expression. PMID:27471194

  19. Low-intensity cycling affects the muscle activation pattern of consequent countermovement jumps.

    PubMed

    Marquez, Gonzalo J; Mon, Javier; Acero, Rafael M; Sanchez, Jose A; Fernandez-del-Olmo, Miguel

    2009-08-01

    Players (eg, basketball, soccer, and football) often use a static bicycle during a game to maintain warming. However, the effectiveness of this procedure has not been addressed in the literature. Thus, it remains unknown whether low-intensity cycling movement can affect explosive movement performance. In this study, 10 male subjects performed countermovement jumps before and after a 15-minutes cycling bout at 35% of their maximal power output. Three sessions were tested for 3 different cadences of cycling: freely chosen cadence, 20% lower than freely chosen cadence (FCC-20%), and 20% higher than freely chosen cadence (FCC+20%). Jump height, kinematics, and electromyogram were recorded simultaneously during the countermovement jumps. The results showed a significant decreasing in the height of countermovement jump after cycling at freely chosen cadence and FCC-20% (p = 0.03 and p = 0.04, respectively), but not for FCC+20% cadences. The electromyographic parameters suggest that changes in the countermovement jump after cycling can be attributed to alteration of the pattern of activation and may be modulated by the preceding cycling cadence. Our study indicates that to avoid a possible negative effect of the cycling in the subsequent explosive movements, a cadence 20% higher than the preferred cadence must be used. PMID:19620918

  20. Coupling hydrologic and hydraulic modelling for reliable flood risk mitigation activities in the Upper-Medium Tiber River basin

    NASA Astrophysics Data System (ADS)

    Berni, N.; Brocca, L.; Giustarini, L.; Pandolfo, C.; Stelluti, M.; Melone, F.; Moramarco, T.

    2009-04-01

    In view of the recent and serious flood events occurred in latest years in Italy, the interest towards accurate methodology for the evaluation of flood prone areas is continually increasing. In particular, this issue is related to urbanization planning activities, civil protection actions (e.g. hydraulic risk warning systems), and the assessment of hydraulic engineering structures behaviour during severe hydrometeorological conditions. In Italy, following the publishing in the late 90's of many laws and regulations concerning hydraulic risk assessment matters, a widespread flooding areas mapping have been carried out (Italian Basin Authorities "PAI" plans). In case of limited availability of historical peak flow data, the flood prone areas estimation was based on the application of hydrologic and hydraulic modelling separately. Moreover, the recent directive 2007/60/EC on the assessment and management of flood risks requires from each member state: preliminary flood risk assessment (within December 2011), flood hazard maps and flood risk maps (within December 2013), flood risk management plans (within December 2015). In order to prevent and control flood events in medium-small river basins (e.g. Upper Tiber River basin, Central Italy), the use of hydrologic models coupled with hydraulic ones can be a valuable tool also for real time applications, such as flood risk mitigation and warning activities of the Italian National Warning System Network (composed by regional "Functional Centres" coordinated by the National Civil Protection Department). In this context, two significant flood events occurred in November 2005 and December 2008 in the Umbria Region territory were considered. In this area a hydrometeorological network, characterized by a high temporal and spatial resolution, is operating in real time. Different coupled models were considered to reproduce the selected events, in order to test and compare their reliability and efficiency. Specifically, two semi

  1. Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Fleck, Jacob A.; Ackerman, Joshua T.; Marvin-DiPasquale, Mark C.; Stricker, Craig A.; Heim, Wesley A.; Bachand, Philip A.M.; Eagles-Smith, Collin A.; Gill, Gary; Stephenson, Mark; Alpers, Charles N.

    2014-01-01

    With seasonal wetting and drying, and high biological productivity, agricultural wetlands (rice paddies) may enhance the conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg), the more toxic, organic form that biomagnifies through food webs. Yet, the net balance of MeHg sources and sinks in seasonal wetland environments is poorly understood because it requires an annual, integrated assessment across biota, sediment, and water components. We examined a suite of wetlands managed for rice crops or wildlife during 2007–2008 in California's Central Valley, in an area affected by Hg contamination from historic mining practices. Hydrologic management of agricultural wetlands for rice, wild rice, or fallowed — drying for field preparation and harvest, and flooding for crop growth and post-harvest rice straw decay — led to pronounced seasonality in sediment and aqueous MeHg concentrations that were up to 95-fold higher than those measured concurrently in adjacent, non-agricultural permanently-flooded and seasonally-flooded wetlands. Flooding promoted microbial MeHg production in surface sediment of all wetlands, but extended water residence time appeared to preferentially enhance MeHg degradation and storage. When incoming MeHg loads were elevated, individual fields often served as a MeHg sink, rather than a source. Slow, horizontal flow of shallow water in the agricultural wetlands led to increased importance of vertical hydrologic fluxes, including evapoconcentration of surface water MeHg and transpiration-driven advection into the root zone, promoting temporary soil storage of MeHg. Although this hydrology limited MeHg export from wetlands, it also increased MeHg exposure to resident fish via greater in situ aqueous MeHg concentrations. Our results suggest that the combined traits of agricultural wetlands — slow-moving shallow water, manipulated flooding and drying, abundant labile plant matter, and management for wildlife — may enhance microbial

  2. Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study.

    PubMed

    Windham-Myers, Lisamarie; Fleck, Jacob A; Ackerman, Joshua T; Marvin-DiPasquale, Mark; Stricker, Craig A; Heim, Wesley A; Bachand, Philip A M; Eagles-Smith, Collin A; Gill, Gary; Stephenson, Mark; Alpers, Charles N

    2014-06-15

    With seasonal wetting and drying, and high biological productivity, agricultural wetlands (rice paddies) may enhance the conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg), the more toxic, organic form that biomagnifies through food webs. Yet, the net balance of MeHg sources and sinks in seasonal wetland environments is poorly understood because it requires an annual, integrated assessment across biota, sediment, and water components. We examined a suite of wetlands managed for rice crops or wildlife during 2007-2008 in California's Central Valley, in an area affected by Hg contamination from historic mining practices. Hydrologic management of agricultural wetlands for rice, wild rice, or fallowed - drying for field preparation and harvest, and flooding for crop growth and post-harvest rice straw decay - led to pronounced seasonality in sediment and aqueous MeHg concentrations that were up to 95-fold higher than those measured concurrently in adjacent, non-agricultural permanently-flooded and seasonally-flooded wetlands. Flooding promoted microbial MeHg production in surface sediment of all wetlands, but extended water residence time appeared to preferentially enhance MeHg degradation and storage. When incoming MeHg loads were elevated, individual fields often served as a MeHg sink, rather than a source. Slow, horizontal flow of shallow water in the agricultural wetlands led to increased importance of vertical hydrologic fluxes, including evapoconcentration of surface water MeHg and transpiration-driven advection into the root zone, promoting temporary soil storage of MeHg. Although this hydrology limited MeHg export from wetlands, it also increased MeHg exposure to resident fish via greater in situ aqueous MeHg concentrations. Our results suggest that the combined traits of agricultural wetlands - slow-moving shallow water, manipulated flooding and drying, abundant labile plant matter, and management for wildlife - may enhance microbial methylation

  3. The Transformation of a Semiarid Ecosystem Due to Severe Drought and How It Has Influenced the Hydrologic Cycle Across Varying Scales

    NASA Astrophysics Data System (ADS)

    White, A. B.; Springer, E. P.; Vivoni, E. R.

    2008-12-01

    An extended, severe drought in the southwestern U.S. from 2000 to 2003 was accompanied by increased temperatures and bark beetle infestations, inducing the large-scale mortality of woody overstory (Pinus edulis). The consequential redistribution of water, radiation, and nutrient availability modified the ecosystem phenology, species composition, and forced the ecosystem to transition into a new state. We hypothesize that the hydrological processes in the ecosystem were also altered due to the mortality. Thus, our objective is to investigate changes in the soil-vegetation-atmosphere continuum across the plot, watershed, and ecoregion scales. The plot site is located near Los Alamos in Northern New Mexico (1.5 hectare), the watershed is the Rio Ojo Caliente Basin (1,050 km2), a subbasin of the Upper Rio Grande, and the ecoregion consists of Pinus edulis, or piñon, across the Four Corners Region of Arizona, Colorado, New Mexico, and Utah (245,000 km2). These sites are chosen because a significant portion of the woodland ecosystem (piñon-juniper) was affected during the mortality event. Examining a remotely-sensed vegetation index (1-km AVHRR NDVI from 1989 to 2007), there is an increasing trend in the NDVI from 1989 to 1998 (pre-drought period), a decreasing trend from 1999 to 2003 (drought period), and a dramatic increasing trend from 2004 to 2007 (post-drought period) in which the NDVI rebounds to nearly pre-drought magnitudes. This pattern exists across the three spatial scales and signifies a profound alteration in the ecosystem, for while the vegetation composition was altered to a great degree, the system rapidly recovered photosynthetically during the post-drought period. This may be attributable to the decrease in the less- responsive overstory (pinñon mortality) and increase in the more-responsive understory (grasses and shrubs exploiting newly available resources). In order to examine hydrological changes, temporal patterns in gauge-based precipitation

  4. The effect of physical activity across the menstrual cycle on reproductive function

    PubMed Central

    Ahrens, Katherine A.; Vladutiu, Catherine J.; Mumford, Sunni L.; Schliep, Karen C.; Perkins, Neil J.; Wactawski-Wende, Jean; Schisterman, Enrique F.

    2013-01-01

    Purpose To evaluate the association between physical activity (PA) across the menstrual cycle and reproductive function. Methods The BioCycle Study (2005–2007) followed 259, healthy premenopausal women not using hormonal contraceptives for up to two menstrual cycles (N=509 cycles). Serum leptin, estradiol, progesterone, luteinizing hormone, follicle-stimulating hormone, and testosterone were measured five to eight times per cycle. Linear mixed models were used to estimate the effect of past-week PA (measured four times during each cycle) on hormone levels. Past-week PA was categorized into tertiles based on metabolic equivalent [MET]-h/week (cut-points were 15.3 and 35.7). Risk ratios for sporadic anovulation were estimated using generalized linear models. Analyses adjusted for habitual PA (assessed at baseline), body mass index, race, age, and perceived stress. Linear mixed models used inverse probability weights to control for concurrent reproductive hormones and caloric intake. Results High past-week PA was inversely associated with leptin (−6.6%, 95% confidence interval [−10.6, −2.5]) and luteal phase progesterone (−22.1% [−36.2, −4.7]) as compared with low past-week PA. High past-week PA was not significantly associated with sporadic anovulation (adjusted risk ratio=1.5 [0.6, 3.4]). Conclusions High levels of PA were modestly associated with changes in select hormones, but not sporadic anovulation among moderate to highly active premenopausal women. PMID:24345590

  5. Effects of physical activity on pupil cycle time (PCT) in healthy Indian male.

    PubMed

    Ghosh, Suparna; Avadhany, Sandhya T

    2014-01-01

    Globally, physical inactivity is an important risk factor for the development of non-communicable disease consisting of coronary artery disease, as well as, other diseases including hypertension, diabetes, obesity, osteoporosis, and certain types of cancers. Parasympathetic nervous system (PNS) activity in the eye is determined by the pupil cycle time (PCT) can be comparable with cardiac parasympathetic response and thereby determine the morbidity and mortality among individuals. The PCT is measured by throwing white light on the edge of the pupil. Pupil cycling is a feature of pupillary reflex arc. The aim of this study is to establish the effect of physical activity on the PCT. The counting of PCT was done for 90 cycles and average one count is considered a single PCT. The physical activity level (PAL) was determined by administering a physical activity level questionnaire developed in the Division of Nutrition, St. John's Medical College, Bangalore. The PAL is classified as < 1.4 as sedentary, 1.55 to 1.75 moderately active, and > 1.75 heavily active. Thirty healthy male volunteers in the age group of 18-50 years and with BMI of 18.5 kg/m2-30 kg/m2 were studied. We obtained PCT of 962.00 ± 105.72 msec in sedentary, 896.77 ± 85.88 msec in moderately active and 889.45 ± 68.71 msec in heavily active individuals. Linear regression analysis shows there is statistically significant difference between the three different groups of physical activity level with a b value of 0 and R2 being 0.19. Increase in physical activity led to decrease in the PCT i.e. increase in the parasympathetic tone in the eye. Pupil cycle time (PCT) is a simple noninvasive tool to assess and differentiate the PNS function in different activity level of individual. PMID:25906609

  6. Impact of New Transport Infrastructure on Walking, Cycling, and Physical Activity

    PubMed Central

    Panter, Jenna; Heinen, Eva; Mackett, Roger; Ogilvie, David

    2016-01-01

    Introduction Walking and cycling bring health and environmental benefits, but there is little robust evidence that changing the built environment promotes these activities in populations. This study evaluated the effects of new transport infrastructure on active commuting and physical activity. Study design Quasi-experimental analysis nested within a cohort study. Setting/participants Four hundred and sixty-nine adult commuters, recruited through a predominantly workplace-based strategy, who lived within 30 kilometers of Cambridge, United Kingdom and worked in areas of the city to be served by the new transport infrastructure. Intervention The Cambridgeshire Guided Busway opened in 2011 and comprised a new bus network and a traffic-free walking and cycling route. Exposure to the intervention was defined using the shortest distance from each participant’s home to the busway. Main outcome measures Change in weekly time spent in active commuting between 2009 and 2012, measured by validated 7-day recall instrument. Secondary outcomes were changes in total weekly time spent walking and cycling and in recreational and overall physical activity, measured using the validated Recent Physical Activity Questionnaire. Data were analyzed in 2014. Results In multivariable multinomial regression models—adjusted for potential sociodemographic, geographic, health, and workplace confounders; baseline active commuting; and home or work relocation—exposure to the busway was associated with a significantly greater likelihood of an increase in weekly cycle commuting time (relative risk ratio=1.34, 95% CI=1.03, 1.76) and with an increase in overall time spent in active commuting among the least active commuters at baseline (relative risk ratio=1.76, 95% CI=1.16, 2.67). The study found no evidence of changes in recreational or overall physical activity. Conclusions Providing new sustainable transport infrastructure was effective in promoting an increase in active commuting. These

  7. [The development of the activity-rest cycle in the rabbit fetus].

    PubMed

    Belich, A I; Nazarova, L A

    1988-01-01

    On 25-30-day rabbit foetuses, in chronic experiments using constant synchronous recording of the motor activity and heart rate, studies have been made of temporal organization of the activity-rest cycle. Already in 25-day foetus, three functional conditions may be distinguished: active, intermediate and resting ones, the duration of the latter increasing to the end of gestation up to 8-10 min, whereas the duration of the intermediate phase decreases, reaching its minimum to the 30th day if not being completely reduced. Cyclic pattern of active and resting phases is observed in 28-day foetuses; to the 29th-30th day, these phases from a unique activity-rest cycle, its duration reaching 20-30 min to the end of intrauterine period. It is suggested that the resting phase in foetal rabbits serves as a basis for the development of polyphasic sleep in adult animals. PMID:3414220

  8. Menstrual cycle phase does not affect sympathetic neural activity in women with postural orthostatic tachycardia syndrome

    PubMed Central

    Stickford, Abigail SL; VanGundy, Tiffany B; Levine, Benjamin D; Fu, Qi

    2015-01-01

    Abstract Patients with the postural orthostatic tachycardia syndrome (POTS) are primarily premenopausal women, which may be attributed to female sex hormones. We tested the hypothesis that hormonal fluctuations of the menstrual cycle alter sympathetic neural activity and orthostatic tolerance in POTS women. Ten POTS women were studied during the early follicular (EF) and mid-luteal (ML) phases of the menstrual cycle. Haemodynamics and muscle sympathetic nerve activity (MSNA) were measured when supine, during 60 deg upright tilt for 45 min or until presyncope, and during the cold pressor test (CPT) and Valsalva manoeuvres. Blood pressure and total peripheral resistance were higher during rest and tilting in the ML than EF phase; however, heart rate, stroke volume and cardiac output were similar between phases. There were no mean ± SD differences in MSNA burst frequency (8 ± 8 EF phase vs. 10 ± 10 bursts min–1 ML phase at rest; 34 ± 15 EF phase vs. 36 ± 16 bursts min–1 ML phase at 5 min tilt), burst incidence or total activity, nor any differences in the cardiovagal and sympathetic baroreflex sensitivities between phases under any condition. The incidence of presyncope was also the same between phases. There were no differences in haemodynamic or sympathetic responses to CPT or Valsalva. These results suggest that the menstrual cycle does not affect sympathetic neural activity but modulates blood pressure and vasoconstriction in POTS women during tilting. Thus, factors other than sympathetic neural activity are probably responsible for the symptoms of orthostatic intolerance across the menstrual cycle in women with POTS. Key points Women with the postural orthostatic tachycardia syndrome (POTS) report fluctuations in orthostatic tolerance throughout the menstrual cycle. The mechanism(s) underlying blood pressure control across the menstrual cycle in women with POTS are unknown. The findings of the present study indicate that the menstrual

  9. Solar Magnetic Activity Cycles, Coronal Potential Field Models and Eruption Rates

    NASA Astrophysics Data System (ADS)

    Petrie, G. J. D.

    2013-05-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  10. Fluvio-lacustrine Landforms and Associated Phyllosilicates of a Paleolake at Libya Montes, Mars: Evidence of Complex Hydrologic activity

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Ivanov, M. A.; Reiss, D.; Hiesinger, H.; Bishop, J. L.; Tirsch, D.; Tornabene, L. L.; Jaumann, R.

    2015-10-01

    The last decades of Mars research have revealed numerous observations of past flowing and ponding of water on the surface of Mars, including channels, valleys, paleolakes, seas and oceans. A region on Mars with the highest density of fluvial and lacustrine landforms is the Noachian-aged Libya Montes highland at the southern rim of Isidis Planitia [e.g., 1-5]. In particular, a 60-km diameter crater paleolake site located at 85.8°E/2.7°N reveals a diverse and complex setting of fluvial and lacustrine landforms [4]. The dense appearance of valleys, fan-shaped deposits and associated mineral assemblages record the repeated occurrence of liquid, flowing and standing water and provide significant insights into the aqueous geologic record of Libya Montes. The complex hydrologic activity proposed for this crater lake site indicates a great potential for discovery of past environmental conditions that may have been favorable for life [4]. The complex geologic and geochemical nature of this site encouraged multiple proposals for candidate landing sites for future rover missions to Mars [e.g., 4,6,7]. Although this site has not yet been selected as a landing site due to difficulties meeting the engineering requirements of near-future missions to Mars, it has been monitored with high priority by recent Mars orbiter missions. New HiRISE images provide, together with the HRSC DEM for the geologic context (Fig.1), a terrific view into the paleolake site and, in particular, of the fan- shaped deposits. Here we present the morphologic maps of the deposits at HiRISE scale (Fig. 2-4) and added hyperspectral CRISM data to investigate the mineralogy in greater detail.

  11. Seasonal patterns of activity and community structure in an amphibian assemblage at a pond network with variable hydrology

    NASA Astrophysics Data System (ADS)

    Vignoli, Leonardo; Bologna, Marco A.; Luiselli, Luca

    2007-03-01

    We studied community structure and seasonal activity patterns in a system of four ponds with seasonally-variable hydrology at a Mediterranean area in central Italy. We used a set of field methods to assess species presence and relative frequency of observation. The network of ponds was inhabited by six species of amphibians, two salamanders and four frogs. The breeding phenology of the six species did not vary remarkably among ponds, but there were significant differences among species in use of ponds. Factorial analysis of pond similarity drawn from percentage composition of the amphibian fauna, revealed that each of the four ponds was treatable as independent units, with no influence of relative inter-pond distance. PCA analysis allowed us to spatially arrange the amphibian species into three main groups: two were monospecific groups (i.e., Triturus vulgaris and Bufo bufo) and the third consisted of those species that selected not only the largest-deepest ponds, but also the ephemeral ones (i.e., Triturus carnifex, Hyla intermedia, the green frogs and Rana dalmatina). Our results suggest that the inter-pond differences in riparian vegetation, water depth, aquatic vegetation structure/abundance, and soil composition may produce differences among pond ecological characteristics (i.e., water turbidity and temperature, shelter availability, abundance of oviposition micro-sites), which may in turn influence different patterns of use by amphibians. To our knowledge, this is the first study emphasizing the potential role of heterochrony in the maintenance of a high species richness in Mediterranean amphibian communities. Preservation of freshwater vertebrate biodiversity requires management and protection not only of the main ponds and water bodies but also the temporary and ephemeral shallow ponds.

  12. Development of a real-time hydrological cycle - rice growth coupled simulation system as a tool for farmers' decision making in an ungauged basin in Cambodia for the better agricultural water resources management

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ohta, T.; Yasukawa, M.; Koike, T.; Kitsuregawa, M.; Homma, K.

    2013-12-01

    The entire country of Cambodia depends on agriculture for its economy. Rice is the staple food, making it the major agricultural product (roughly 80% of total national production). The target area of this study is western Cambodia, where rice production is the greatest in the country and most land is rainfed. Since most farmers rely only on their (non-science-based) experience, they would not adjust to changing rainfall and degraded water resources under climate change, so food security in the region would be seriously threatened (Monichoth et al., 2013). Under this condition, irrigation master plans are being considered by several ODA projects. This study aims to contribute to the design of such irrigation plans through the development of a real-time hydrological cycle - rice growth coupled simulation system. The purpose of the development of this system is to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. Rice growing condition as affected by water stress due to the water shortage is supposed to be shown for both of the cases with and without irrigation for several rainfall patterns. A dynamically coupled model of a distributed hydrological model (WEB-DHM., Wang et al., 2009) and a rice growth model (SIMRIW-rainfed, Homma et al., 2009) has been developed with a simple irrigation model. The target basin, a small basin in western Cambodia, is basically an ungauged basin and the model was validated by soil moisture, LAI, dry matter production of the rice crop, and rice yield, using both intensive field observation and satellite observations. Calibrating hourly satellite precipitation dataset (GSMaP/NRT) using ground rain gauges, hydrological cycle (soil moisture at three layers, river discharge, irrigatable water amount, water level of each paddy field, water demand of each paddy field, etc.) and rice growth (LAI, developmental index of the rice crop, dry matter

  13. Evaluation of the representation of the hydrological cycle in Western Siberia in the LMDZ general circulation model using ground-based and satellite measurements of water vapor and precipitation isotopic composition

    NASA Astrophysics Data System (ADS)

    Gryazin, Victor; Risi, Camille; Jouzel, Jean; Zakharov, Vyacheslav; Gribanov, Konstantin; Rokotyan, Nikita; Bastrikov, Vladislav; Worden, John; Frankenberg, Christian; Kurita, Naoyuki

    2013-04-01

    The hydrological and biochemical cycles in regions of peatlands and permafrost are particularly sensitive to climate perturbations. Credible climate change projections in these regions require a realistic representation by climate models of atmospheric and hydrological processes specific to those regions. In this context, observations of the water vapor and precipitation composition are emerging as an additional constrain to better evaluate the realism of the representation of the hydrological cycle by models. In high latitude regions, the water isotopic composition keeps an imprint of various processes such as distillation of air masses, evaporation and transpiration recycling air masses along trajectories, cloud processes and vertical mixing. In this study we evaluate the isotopic composition simulated by LMDZ general circulation model in Western Siberia against a combination of isotopic measurements in precipitation and in water vapor. First, the GNIP and SNIP networks provide information on the geographical and seasonal variations of H218O and HDO composition (yielding δD and d-excess) in precipitation. Second, in-situ measurements by a Picarro analyzer and ground-based FTIR retrievals document hourly to seasonal variability in δD and d-excess in low-level water vapor at the site of Ekaterinburg in Western Siberia. Third, satellite measurements using the GOSAT and TES satellite instruments document the geographical and temporal (intra-seasonal to seasonal) variations of water vapor δD in the total column and at different levels of the troposphere respectively. To first order, observed geographical and temporal variations at different time scales are well captured by LMDZ, though the latitudinal gradient and the daily variability in water vapor δD are underestimated. Simulations are investigated to interpret these model-data differences in terms of physical processes. In particular, sensitivity tests to the representation of transport, cloud processes and

  14. A question driven socio-hydrological modeling process

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Portney, K.; Islam, S.

    2016-01-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during

  15. Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle.

    PubMed

    Albert, Kimberly; Pruessner, Jens; Newhouse, Paul

    2015-09-01

    Although ovarian hormones are thought to have a potential role in the well-known sex difference in mood and anxiety disorders, the mechanisms through which ovarian hormone changes contribute to stress regulation are not well understood. One mechanism by which ovarian hormones might impact mood regulation is by mediating the effect of psychosocial stress, which often precedes depressive episodes and may have mood consequences that are particularly relevant in women. In the current study, brain activity and mood response to psychosocial stress was examined in healthy, normally cycling women at either the high or low estradiol phase of the menstrual cycle. Twenty eight women were exposed to the Montreal Imaging Stress Task (MIST), with brain activity determined through functional magnetic resonance imaging, and behavioral response assessed with subjective mood and stress measures. Brain activity responses to psychosocial stress differed between women in the low versus high estrogen phase of the menstrual cycle: women with high estradiol levels showed significantly less deactivation in limbic regions during psychosocial stress compared to women with low estradiol levels. Additionally, women with higher estradiol levels also had less subjective distress in response to the MIST than women with lower estradiol levels. The results of this study suggest that, in normally cycling premenopausal women, high estradiol levels attenuate the brain activation changes and negative mood response to psychosocial stress. Normal ovarian hormone fluctuations may alter the impact of psychosocially stressful events by presenting periods of increased vulnerability to psychosocial stress during low estradiol phases of the menstrual cycle. This menstrual cycle-related fluctuation in stress vulnerability may be relevant to the greater risk for affective disorder or post-traumatic stress disorder in women. PMID:26123902

  16. Corticospinal contributions to lower limb muscle activity during cycling in humans.

    PubMed

    Sidhu, Simranjit K; Hoffman, Ben W; Cresswell, Andrew G; Carroll, Timothy J

    2012-01-01

    The purpose of the current study was to investigate corticospinal contributions to locomotor drive to leg muscles involved in cycling. We studied 1) if activation of inhibitory interneurons in the cortex via subthreshold transcranial magnetic stimulation (TMS) caused a suppression of EMG and 2) how the responses to stimulation of the motor cortex via TMS and cervicomedullary stimulation (CMS) were modulated across the locomotor cycle. TMS at intensities subthreshold for activation of the corticospinal tract elicited suppression of EMG for approximately one-half of the subjects and muscles during cycling, and in matched static contractions in vastus lateralis. There was also significant modulation in the size of motor-evoked potentials (MEPs) elicited by TMS across the locomotor cycle (P < 0.001) that was strongly related to variation in background EMG in all muscles (r > 0.86; P < 0.05). When MEP and CMEP amplitudes were normalized to background EMG, they were relatively larger prior to the main EMG burst and smaller when background EMG was maximum. Since the pattern of modulation of normalized MEP and CMEP responses was similar, the data suggest that phase-dependent modulation of corticospinal responses during cycling in humans is driven mainly by spinal mechanisms. However, there were subtle differences in the degree to which normalized MEP and CMEP responses were facilitated prior to EMG burst, which might reflect small increases in cortical excitability prior to maximum muscle activation. The data demonstrate that the motor cortex contributes actively to locomotor drive, and that spinal factors dominate phase-dependent modulation of corticospinal excitability during cycling in humans. PMID:22013236

  17. Biochar effects on soil hydrology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar has the potential to alter soil hydrology, and these alterations may lead to significant changes in water cycling and ecosystem processes mediated by water. Biochar soil amendment may change infiltration and drainage in both sandy and clay soils, may increase or decrease plant-available wate...

  18. Geomagnetic activity during 10 - 11 solar cycles that has been observed by old Russian observatories.

    NASA Astrophysics Data System (ADS)

    Seredyn, Tomasz; Wysokinski, Arkadiusz; Kobylinski, Zbigniew; Bialy, Jerzy

    2016-07-01

    A good knowledge of solar-terrestrial relations during past solar activity cycles could give the appropriate tools for a correct space weather forecast. The paper focuses on the analysis of the historical collections of the ground based magnetic observations and their operational indices from the period of two sunspot solar cycles 10 - 11, period 1856 - 1878 (Bartels rotations 324 - 635). We use hourly observations of H and D geomagnetic field components registered at Russian stations: St. Petersburg - Pavlovsk, Barnaul, Ekaterinburg, Nertshinsk, Sitka, and compare them to the data obtained from the Helsinki observatory. We compare directly these records and also calculated from the data of the every above mentioned station IHV indices introduced by Svalgaard (2003), which have been used for further comparisons in epochs of assumed different polarity of the heliospheric magnetic field. We used also local index C9 derived by Zosimovich (1981) from St. Petersburg - Pavlovsk data. Solar activity is represented by sunspot numbers. The correlative and continuous wavelet analyses are applied for estimation of the correctness of records from different magnetic stations. We have specially regard to magnetic storms in the investigated period and the special Carrington event of 1-2 Sep 1859. Generally studied magnetic time series correctly show variability of the geomagnetic activity. Geomagnetic activity presents some delay in relation to solar one as it is seen especially during descending and minimum phase of the even 11-year cycle. This pattern looks similarly in the case of 16 - 17 solar cycles.

  19. Functional activity of sphingomyelin cycle in rat liver in chronic toxic hepatitis.

    PubMed

    Serebrov, V Yu; Kuzmenko, D I; Burov, P G; Novitsky, S V

    2008-12-01

    Activities of sphingomyelinase and ceramidase decreased in the liver in chronic toxic hepatitis and the balance between the levels of proapoptotic ceramide and antiapoptotic sphyngosine-1-phosphate shifts towards the latter substance. Pronounced changes in the qualitative and quantitative composition of fatty acids in the sphingomyelin cycle effector molecules were revealed. PMID:19513367

  20. US Activities in Making Life Cycle Inventory Data More Available to Users

    EPA Science Inventory

    The demand for LCA studies continues to grow, although, the lack of reliable, transparent Life Cycle Inventory (LCI) data is hampering the wide-spread application of LCA. This paper will present activities related to the development and accessibility of process LCI data in the U...

  1. The Development of a New Practical Activity: Using Microorganisms to Model Gas Cycling

    ERIC Educational Resources Information Center

    Redfern, James; Burdass, Dariel; Verran, Joanna

    2014-01-01

    For many in the school science classroom, the term "microbiology" has become synonymous with "bacteriology". By overlooking other microbes, teachers may miss out on powerful practical tools. This article describes the development of an activity that uses algae and yeast to demonstrate gas cycling, and presents full instructions…

  2. Hydrology and cycling of nitrogen and phosphorus in Little Bean Marsh : a remnant riparian wetland along the Missouri River in Platte County, Missouri, 1996-97

    USGS Publications Warehouse

    Blevins, Dale W.

    2004-01-01

    The lack of concurrent water-quality and hydrologic data on riparian wetlands in the Midwestern United States has resulted in a lack of knowledge about the water-quality functions that these wetlands provide. Therefore, Little Bean Marsh, a remnant riparian wetland along the Missouri River, was investigated in 1996 and 1997 primarily to determine the magnitude and character of selected water-quality benefits that can be produced in such a wetland and to identify critical processes that can be managed in remnant or restored riparian wetlands for amelioration of water quality. Little Bean Marsh averages 69 hectares in size, has a maximum depth of about 1 meter, and the majority of the marsh is covered by macrophytes. In 1997, 41 percent of the water received by Little Bean Marsh was from direct precipitation, 14 percent was from ground-water seepage, 30 percent from watershed runoff, and 15 percent was backflow from Bean Lake. Although, Little Bean Marsh was both a ground-water recharge and discharge area, discharge to the marsh was three times the recharge to ground water. Ground-water levels closely tracked marsh water levels indicating a strong hydraulic connection between ground water and the marsh. Reduced surface runoff and ground-water availability are stabilizing influences on marsh hydrology and probably contribute to the persistence of emergent vegetation. The rapid hydraulic connection between Little Bean Marsh and ground water indicates that the hydrologic regime of most wetlands along the lower Missouri River is largely a function of the altitude of the marsh bottom relative to the altitude of the water table. More water was lost from the marsh through evapotranspiration (59 percent) than all other pathways c