Science.gov

Sample records for active hydrothermal circulation

  1. Does Hydrothermal Circulation Matter?

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S.; von Herzen, R. P.; Fisher, A. T.

    2006-05-01

    Determining Earth's energy budget and the sources and mechanisms for heat transfer within it depends largely on assumptions of the heat loss from the formation and cooling of oceanic lithosphere, which covers about 60% of Earth's surface. Recently Hofmeister and Criss (2005) have suggested that the total global heat flow is about 30 TW, about 25% less than previously estimated by Pollack et al. (1993). The main difference between the two estimates is whether the effects of heat transfer by hydrothermal circulation are included. Thermal models describe the evolution of the lithosphere by the conductive cooling of hot material as it moves away from spreading centers. The frequently used half-space (boundary layer) and "plate" models generally successfully represent heat flow, depth, and geoid values with age, and depth-dependent properties such as flexural thickness, maximum depth of intraplate earthquakes, and lithospheric thickness. However, such models overpredict the measured heat flow from ridge crest to about 65 Myr crust. This difference is generally assumed to reflect water flow in the crust transporting heat, as shown by the spectacular hot springs at midocean ridges. If so, the observed heat flow is lower than the model's predictions, which assume that all heat is transferred by conduction. Because hydrothermal heat transport is hard to quantify, heat flow is about 50% larger than directly measured. This estimate is consistent with observations of hydrothermal circulation which indicate that the discrepancy is largely a result of the water fluxing along the oceanic basement and upwelling at isolated basement highs and outcrops. Detailed studies at such areas often show high heat flow near these outcrops and low heat flow in the surrounding areas. Hence isolated measurements are biased towards lower values and underpredict the total heat flow.

  2. Seawater bicarbonate removal during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  3. Hydrogeological and geochemical modeling of hydrothermal fluids circulation in active ultramafic-hosted systems under CAST3M

    NASA Astrophysics Data System (ADS)

    Perez, F.; Mugler, C.; Jean-Baptiste, P.; Charlou, J. L.; Donval, J.; Vidal, O.; Marcailloux, C.; Munoz, M.

    2010-12-01

    Hydrothermal circulation at mid-ocean ridges is a fundamental process that impacts the transfer of energy and water from the interior of the Earth to the Crust, Hydrosphere and biosphere. Along the Mid-Atlantic Ridge (MAR), at precisely located ultramafic-hosted systems, important fluxes of heat, hydrogen and Iron are observed (Charlou et al., 2010 AGU Monograph series). It is now demonstrated that high and low-temperature hydrothermal activity and mantle degassing are indicators of ongoing serpentinization process. For a real understanding of this process and to estimate heat and hydrogen fluxes, numerical modeling leant on field data and laboratory experiments can yield results of interest. We thus developed a thermo-hydrogeological numerical model using a Finite Volume method to simulate heat driven fluid flows in geological layers, encoded under CAST3M, and presented here. For homogeneous medias, we successfully obtained exiting fluid temperatures that natural hydrothermal fluids usually reach. Considering laboratory experiments, we coupled, under CAST3M, our thermo-hydrogeological model to a geochemical model of serpentinization reaction. This last model is based on a reaction front velocity model calibrated by laboratory experiments. Primary results are presented here.

  4. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  5. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  6. Pyrite Recrystallization Experiments With Circulating Hydrothermal Solution

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Abe, A.; Tanaka, K.

    2007-12-01

    Pyrite is one of the most common sulfide minerals found in hydrothermal deposits and sea-floor sediments from hydrothermal fumaroles. Hydrothermal fluid flow plays an important role in crystallization of sulfide minerals. In this study, we tried to reproduce pyrite crystallization with one-way flowing hydrothermal fluid. We designed a circuit circulating hydrothermal fluid by thermal convection. A rectangular circuit (42.6 cm by 17.3 cm) of SUS316 pressure tubes with 5 mm in inner diameter was used as a reaction vessel. In the circuit, pyrite dissolves to acidic fluid in upstream region. Then, pyrite will crystallize again in downstream region as temperature decreases. The rectangular plane was held to be 20 degrees inclination to generate thermal convection. One of the long sides of the rectangular was heated by an electric furnace. Starting materials were put in a tube to be heated. Upper half, approximately 20 cm, of the tube was filled with quartz sand. Next quarter was filled with equivalent mass mixture of quartz sand and powdered pyrite crystals. The lowest quarter was filled with mixture of quartz sand, pyrite, anhydrite and sulfur, those mass are equivalent. The solution was a mixture of 0.5mol/l HCl and 3.0mol/l NaCl. Maximum temperature was controlled to approximately 350°C at the center of the heated tube. Experimental durations were up to 9 days. Fluid pressure increased to approximately 6 MPa as heating. After the experiments, the run products were fixed with resin in a sample tube, and vertical sections were observed by SEM. In the run products, pyrite dissolved at the lower part of the starting material. In the upper half of the sample tube, pyrite crystals precipitated on quartz surface. Crystallization density depends on temperature gradient of the fluid. Predominant morphology of the pyrite crystals consists (100) plains. Tiny framboidal aggregates and crystals with (210) plains also occur. In the run products of longer than 3 days run durations

  7. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  8. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation.

    PubMed

    Teske, Andreas; de Beer, Dirk; McKay, Luke J; Tivey, Margaret K; Biddle, Jennifer F; Hoer, Daniel; Lloyd, Karen G; Lever, Mark A; Røy, Hans; Albert, Daniel B; Mendlovitz, Howard P; MacGregor, Barbara J

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region.

  9. Modes of crustal accretion and their implications for hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.; Hasenclever, Jörg

    2016-02-01

    Hydrothermal convection at mid-ocean ridges links the ocean's long-term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast-spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal-scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ.

  10. Core Cracking and Hydrothermal Circulation Profoundly Affect Ceres' Geophysical Evolution

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Desch, Steven J.; Castillo-Rogez, Julie C.

    2014-11-01

    The dwarf planet (1)Ceres is about to be visited by the Dawn spacecraft [1]. In addition to a recent report of water vapor emission [2], observations and models of Ceres suggest that its evolution was shaped by interactions between liquid water and silicate rock [3,4].Hydrothermal processes in a heated core require both fractured rock and liquid. Using a new core cracking model coupled to a thermal evolution code [5], we find volumes of fractured rock always large enough for significant interaction to occur. Therefore, liquid persistence is key. It is favored by antifreezes such as ammonia [4], by silicate dehydration which releases liquid, and by hydrothermal circulation itself, which enhances heat transport into the hydrosphere. The heating effect from silicate hydration seems minor. Hydrothermal circulation can profoundly affect Ceres' evolution: it prevents core dehydration via “temperature resets”, global cooling events lasting ~50 Myr, followed by ~1 Gyr periods during which Ceres' interior is nearly isothermal and its hydrosphere largely liquid. Whether Ceres has experienced such extensive hydrothermalism may be determined through examination of its present-day structure. A large, fully hydrated core (radius 420 km) suggests that extensive hydrothermal circulation prevented core dehydration. A small, dry core (radius 350 km) suggests early dehydration from short-lived radionuclides, with shallow hydrothermalism at best. Intermediate structures with a partially dehydrated core seem ambiguous, compatible both with late partial dehydration without hydrothermal circulation, and with early dehydration with extensive hydrothermal circulation. Thus, gravity measurements by the Dawn orbiter [1] could help discriminate between scenarios for Ceres' evolution.References:[1] Russell C. T. & Raymond C. A. (2011) Sp. Sci. Rev. 163, 3-23.[2] Küppers M. et al. (2014) Nature 505, 525-527.[3] Rivkin A. et al. (2011) Sp. Sci. Rev. 163, 95-116.[4] Castillo-Rogez J. C. & Mc

  11. Arctic Ocean: hydrothermal activity on Gakkel Ridge.

    PubMed

    Jean-Baptiste, Philippe; Fourré, Elise

    2004-03-04

    In the hydrothermal circulation at mid-ocean ridges, sea water penetrates the fractured crust, becomes heated by its proximity to the hot magma, and returns to the sea floor as hot fluids enriched in various chemical elements. In contradiction to earlier results that predict diminishing hydrothermal activity with decreasing spreading rate, a survey of the ultra-slowly spreading Gakkel Ridge (Arctic Ocean) by Edmonds et al. and Michael et al. suggests that, instead of being rare, the hydrothermal activity is abundant--exceeding by at least a factor of two to three what would be expected by extrapolation from observation on faster spreading ridges. Here we use helium-3 (3He), a hydrothermal tracer, to show that this abundance of venting sites does not translate, as would be expected, into an anomalous hydrothermal 3He output from the ridge. Because of the wide implications of the submarine hydrothermal processes for mantle heat and mass fluxes to the ocean, these conflicting results call for clarification of the link between hydrothermal activity and crustal production at mid-ocean ridges.

  12. Dike Emplacement and Hydrothermal Circulation on Mars

    NASA Astrophysics Data System (ADS)

    Craft, K.; Lowell, R.; Germanovich, L.

    2010-03-01

    Using a finite element program, we model a dike propagating on Mars and calculate how the resulting surrounding stresses affect circulation in an adjacent porous medium. We also investigate the melting of an ice layer overlying the porous medium.

  13. Controls on the physics and chemistry of seafloor hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Elderfield, H.

    Low temperature diffuse hydrothermal circulation is a natural consequence of the cooling of the oceanic lithosphere. Diffuse flow is expected to be ubiquitous, and will be present both within mid-ocean ridge crest axial zones of young age (0-1 Ma), and also on the older ridge crest flanks and limbs. If underlying thermal models are correct, hydrothermal circulation should persist for oceanic lithosphere of age 0-65 Ma, and is present over half the total area of the ocean basins. By using numerical models of hydrothermal circulation in cracked permeable media, we show qualitatively how diffuse flow is an intrinsic feature of high temperature axial (0-1 Ma) hydrothermal systems, and is not restricted to older (more than 1 Ma) lithosphere. This is in agreement with our field observations which suggest that in such high temperature vent fields the greatest part of the heat and volume flux is due to lower temperature diffuse flow, rather than high temperature black smoker venting. By combining direct measurements of the physical properties of diffusely flowing effluent within axial hydrothermal systems with concurrent sampling of the chemical properties of that effluent, and by considering also the chemistry of unmixed black smoker endmember fluids from the same hydrothermal systems, the processes of mineral deposition and dissolution can be studied directly. By referring to the present-day lithology of such areas, it is possible to examine the balance between concurrent mineral deposition and dissolution processes, and the retention rate of specific mineral assemblages integrated over the history of the hydrothermal system. Thus details of the episodicity of hydrothermal venting within the system may be revealed. An example of this method of combining a variety of direct measurements of diffuse and high temperature effluent properties is given from the TAG hydrothermal field, Mid-Atlantic Ridge. Long time series observations of the physical properties of diffuse and

  14. Sustainability and dynamics of outcrop-to-outcrop hydrothermal circulation.

    PubMed

    Winslow, Dustin M; Fisher, Andrew T

    2015-06-26

    Most seafloor hydrothermal circulation occurs far from the magmatic influence of mid-ocean ridges, driving large flows of water, heat and solutes through volcanic rock outcrops on ridge flanks. Here we create three-dimensional simulations of ridge-flank hydrothermal circulation, flowing between and through seamounts, to determine what controls hydrogeological sustainability, flow rate and preferred flow direction in these systems. We find that sustaining flow between outcrops that penetrate less-permeable sediment depends on a contrast in transmittance (the product of outcrop permeability and the area of outcrop exposure) between recharging and discharging sites, with discharge favoured through less-transmissive outcrops. Many simulations include local discharge through outcrops at the recharge end of an outcrop-to-outcrop system. Both of these characteristics are observed in the field. In addition, smaller discharging outcrops sustain higher flow rates than larger outcrops, which may help to explain how so much lithospheric heat is extracted globally by this process.

  15. Sustainability and dynamics of outcrop-to-outcrop hydrothermal circulation

    PubMed Central

    Winslow, Dustin M.; Fisher, Andrew T.

    2015-01-01

    Most seafloor hydrothermal circulation occurs far from the magmatic influence of mid-ocean ridges, driving large flows of water, heat and solutes through volcanic rock outcrops on ridge flanks. Here we create three-dimensional simulations of ridge–flank hydrothermal circulation, flowing between and through seamounts, to determine what controls hydrogeological sustainability, flow rate and preferred flow direction in these systems. We find that sustaining flow between outcrops that penetrate less-permeable sediment depends on a contrast in transmittance (the product of outcrop permeability and the area of outcrop exposure) between recharging and discharging sites, with discharge favoured through less-transmissive outcrops. Many simulations include local discharge through outcrops at the recharge end of an outcrop-to-outcrop system. Both of these characteristics are observed in the field. In addition, smaller discharging outcrops sustain higher flow rates than larger outcrops, which may help to explain how so much lithospheric heat is extracted globally by this process. PMID:26113260

  16. Hydrothermal circulation at Mount St. Helens determined by self-potential measurements

    USGS Publications Warehouse

    Bedrosian, P.A.; Unsworth, M.J.; Johnston, M.J.S.

    2007-01-01

    The distribution of hydrothermal circulation within active volcanoes is of importance in identifying regions of hydrothermal alteration which may in turn control explosivity, slope stability and sector collapse. Self-potential measurements, indicative of fluid circulation, were made within the crater of Mount St. Helens in 2000 and 2001. A strong dipolar anomaly in the self-potential field was detected on the north face of the 1980-86 lava dome. This anomaly reaches a value of negative one volt on the lower flanks of the dome and reverses sign toward the dome summit. The anomaly pattern is believed to result from a combination of thermoelectric, electrokinetic, and fluid disruption effects within and surrounding the dome. Heat supplied from a cooling dacite magma very likely drives a shallow hydrothermal convection cell within the dome. The temporal stability of the SP field, low surface recharge rate, and magmatic component to fumarole condensates and thermal waters suggest the hydrothermal system is maintained by water vapor exsolved from the magma and modulated on short time scales by surface recharge. ?? 2006 Elsevier B.V. All rights reserved.

  17. Hydrothermal circulation at the Cleft-Vance overlapping spreading center: Results of a magnetometric resistivity survey

    USGS Publications Warehouse

    Evans, R.L.; Webb, S.C.; Jegen, M.; Sananikone, K.

    1998-01-01

    We report on a magnetometric resistivity sounding carried out in the overlapping spreading center between the Cleft and Vance segments of the Juan de Fuca Ridge. The data collected reveal a strong three dimensionality in the crustal electrical resistivity structure on wavelengths of a few kilometers. Areas of reduced crustal electrical resistivities, with values approaching that of seawater, are seen beneath the neovolcanic zones of both active spreading centers. We interpret these reduced resistivities as evidence of active hydrothermal circulation within the uppermost 1 km of hot, young oceanic crust.

  18. Ongoing hydrothermal activities within Enceladus.

    PubMed

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-12

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

  19. Dike control of hydrothermal circulation in the Tertiary Icelandic crust and implications for cooling of the seafloor

    NASA Astrophysics Data System (ADS)

    Pałgan, Dominik; Devey, Colin W.; Yeo, Isobel A.

    2016-04-01

    Hydrothermal activity along the Mid-Atlantic Ridge is predominantly high-temperature venting controlled by volcano-tectonic processes confined to the ridge axis and neotectonic zone, which extends ~ 20 km on each side of the axis (e.g. TAG or Logatchev 1). These vents cannot, however, account for all the heat which needs to be removed to cool the plate and a significant amount of heat is probably removed in the off-axis regions as well. These regions have previously not been systematically surveyed for hydrothermal activity due to a lack of predictive models for its nature, location or controlling structures. Here we use hot springs in the Tertiary Westfjords of Iceland as onshore analogs for hydrothermal activity along the off-axis Mid-Atlantic Ridge to better understand tectonic and volcanological controls on their occurrence, as well as the processes which support hydrothermal circulation. Our results show that even crust ≥ 10 Ma has abundant low-temperature hydrothermal activity. We show that 66% of hot springs investigated, and 100% of those for which a detailed geological setting could be determined, are associated with basaltic dikes cross-cutting the sub-horizontal lava sequence. This is in strong contrast to on-axis springs, which are known (both from underwater and on land) to be predominantly associated with faults. Absence of earthquakes in Westfjords suggests that the faults there are no longer active and possibly sealed by secondary minerals, suppressing fluid circulation. In such a situation, the jointed and fractures dike margins may provide the major pathways for fluid circulation. Extrapolating this idea to the off-axis regions of the Reykjanes Ridge, we suggest, based on bathymetric maps, potential sites for future exploration for off-axis hydrothermal systems.

  20. Hydrothermal circulation system in the central Mariana illustrated by Magnetometoric Resistivity experiments

    NASA Astrophysics Data System (ADS)

    Tada, N.; Seama, N.; Goto, T.; Kido, M.

    2004-12-01

    Hydrothermal vent fields are known to exist on the spreading axis, where sea water penetrates into the crust and upwells through the hydrothermal vents. Understanding of the hydrothermal circulation system is extremely important to reveal the cooling process of the oceanic crust. The thermal structure beneath the hydrothermal vent reflects the extent of underground activity and the convection scale of the hot water. Temperature in the crust can be estimated from the electrical conductivity because the conductivity depends on the water volume, the salinity concentration and the temperature of the sea water in the crust. The Alice Spring Field (18 o12.9'N, 144 o42.5'E and 3600m deep), on the spreading axis in the central Mariana Back-Arc Basin, is a suitable site for this purpose. Hydrothermal vent in this field was firstly discovered by Alvin in 1987 (Hawkins et al., 1990). Shinkai6500 also confirmed the hydrothermal activity in 1992 and 1996 (Gamou et al., 1994; Fujikura et al., 1997). In November, 2002, we conducted Magnetometric Resistivity (MMR) survey using R/V Kairei, JAMSTEC in this field. In the MMR method, controlled electric current was applied from a pair of electrodes; one is just beneath the sea surface and the other is close to the seafloor. To record electoromagnetic responses of the crust to the inputed current, we deployed six ocean bottom electromagnetometers (OBEMs), which can measure 3-components of magnetic and electric fields simultaneously. Measurements were conducted at 34 sites around the field, each of which consists of 30 minutes stacking for repeated current signals to keep better S/N ratio. Apparent resistivity is given by a function of amplitudes of magnetic field variation and source-receiver distance. We recovered the data from four OBEMs (two were on the spreading axis and other two were off axis). The plot of magnetic amplitudes to source-receiver distances shows different trend between OBEMs on-axis and off-axis. Therefore, we

  1. Fine-scale heat flow, shallow heat sources, and decoupled circulation systems at two sea-floor hydrothermal sites, Middle Valley, northern Juan de Fuca Ridge

    SciTech Connect

    Stein, J.S.; Fisher, A.T.; Langseth, M.; Jin, W.; Iturrino, G.; Davis, E.

    1998-12-01

    Fine-scale heat-flow patterns at two areas of active venting in Middle Valley, a sedimented rift on the northern Juan de Fuca Ridge, provide thermal evidence of shallow hydrothermal reservoirs beneath the vent fields. The extreme variability of heat flow is explained by conductive heating immediately adjacent to vents and shallow circulation within sediments above the reservoir. This secondary circulation is hydrologically separated from the deeper system feeding the vents by a shallow conductive lid within the sediments. A similar separation of shallow and deep circulation may also occur at sediment-free ridge-crest hydrothermal environments.

  2. Dual-scale hydrothermal circulation inferred from detailed heat flow measurements in the Suiyo Seamount Hydrothermal System, Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    Gomado, M.; Kinoshita, M.

    2002-12-01

    Hydrothermal activity within the caldera of Suiyo Seamount was investigated in detail using manned or remotely-operated submersibles, and by deep-tow imagery and seismic surveys. Hydrothermal regime in the Suiyo-seamount is characterized by a geochemically uniform fluid, shallow reservoir depth, very permeable seafloor, and venting without creating big chimneys. Detailed heat flow surveys were carried out through four research cruises conducted in 2001-2002. Geothermal probes, called SAHF (Stand-Alone Heat Flow) meter, are 1m in length, and five thermistors are installed at 11-12 cm intervals. Heat flow is highest (> 10 W/m2) within the active area. These values were obtained close to black smokers, thus are affected by the venting or very shallow reservoirs. To the east, heat flow is uniform around 4 W/m2. Since there were no indications of discharge, this area is dominated by thermal conduction, and its heat source would be a hydrothermal reservoir capped by some impermeable layer. To the west, we detected very low heat flow values of less than 0.3 W/m2, only several tens of meters away from the active area. A similar heat flow anomaly was detected in the TAG hyudrothermal mound of the Mid-Atlantic Ridge (Becker et al., 1996). We penetrated at 1-2 m away from two isolated active sulfide mounds. At both sites subbottom temperatures were about 40 degC at 10-20 cm depth, then they decreased to about 20 degC at 30-40cm. The temperature reversals suggest a meter-scale hydrothermal circulation, where a hot fluid discharges as a branch flow from the main vent to the mound. An impermeable structure of the mound and a permeable sediment surrounding the mound would make this very local circulation possible. We suggest a dual scale hydrothermal circulation system, one with several meters scale, and the other with few tens of meters scale. The former would be driven by a suction created by discrete venting of high temperature fluid, and the latter is a regional

  3. Permeability changes due to mineral diagenesis in fractured crust: implications for hydrothermal circulation at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice Jh.; Rabinowicz, Michel; Boulègue, Jacques

    2001-01-01

    The hydrothermal processes at ridge crests have been extensively studied during the last two decades. Nevertheless, the reasons why hydrothermal fields are only occasionally found along some ridge segments remain a matter of debate. In the present study we relate this observation to the mineral precipitation induced by hydrothermal circulation. Our study is based on numerical models of convection inside a porous slot 1.5 km high, 2.25 km long and 120 m wide, where seawater is free to enter and exit at its top while the bottom is held at a constant temperature of 420°C. Since the fluid circulation is slow and the fissures in which seawater circulates are narrow, the reactions between seawater and the crust achieve local equilibrium. The rate of mineral precipitation or dissolution is proportional to the total derivative of the temperature with respect to time. Precipitation of minerals reduces the width of the fissures and thus percolation. Using conventional permeability versus porosity laws, we evaluate the evolution of the permeability field during the hydrothermal circulation. Our computations begin with a uniform permeability and a conductive thermal profile. After imposing a small random perturbation on the initial thermal field, the circulation adopts a finger-like structure, typical of convection in vertical porous slots thermally influenced by surrounding walls. Due to the strong temperature dependence of the fluid viscosity and thermal expansion, the hot rising fingers are strongly buoyant and collide with the top cold stagnant water layer. At the interface of the cold and hot layers, a horizontal boundary layer develops causing massive precipitation. This precipitation front produces a barrier to the hydrothermal flow. Consequently, the flow becomes layered on both sides of the front. The fluid temperature at the top of the layer remains quite low: it never exceeds a temperature of 80°C, well below the exit temperature of hot vent sites observed at

  4. Modeling the hydrothermal circulation and the hydrogen production at the Rainbow site with Cast3M

    NASA Astrophysics Data System (ADS)

    Perez, F.; Mügler, C.; Charlou, J.; Jean-baptiste, P.

    2012-12-01

    On the Mid-Atlantic Ridge, the Rainbow venting site is described as an ultramafic-hosted active hydrothermal site and releases high fluxes of methane and hydrogen [1, 2]. This behavior has first been interpreted as the result of serpentinization processes. But geochemical reactions involving olivine and plagioclase assemblages, and leading to chlorite, tremolite, talc and magnetite assemblages, could contribute to the observed characteristics of the exiting fluid [2]. The predominance of one of these geochemical reactions or their coexistence strongly depend on the hydrothermal fluid circulation. We developed and validated a 2D/3D numerical model using a Finite Volume method to simulate heat driven fluid flows in the framework of the Cast3M code [3, 4]. We also developed a numerical model for hydrogen production and transport that is based on experimental studies of the serpentinization processes [5-6]. This geochemical model takes into account the exothermic and water-consuming behavior of the serpentinization reaction and it can be coupled to our thermo-hydrogeological model. Our simulations provide temperatures, mass fluxes and venting surface areas very close to those estimated in-situ [7]. We showed that a single-path model [8] was necessary to simulate high values such as the in-situ measured temperatures and estimated water mass fluxes of the Rainbow site [7]. This single-path model will be used to model the production and transport of hydrogen at the Rainbow hydrothermal site. References [1]Charlou et al. (2010) AGU Monograph series. [2]Seyfried et al. (2011) Geochim. Cosmochim. Acta 75, 1574-1593. [3]http://www-cast3m.cea.fr. [4]Martin & Fyfe (1970) Chem. Geol. 6, 185-202. [5] Marcaillou et al. (2011) Earth and Planet. Sci. Lett. 303, 281-290. [6]Malvoisin et al. (2012) JGR, 117, B01104. [7]Perez et al. (2012) submited to Computational Geosciences. [8]Lowell & Germanovich (2004) AGU, Washington DC, USA.

  5. The formation of alteration rims in basaltic lava flows upon hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Driesner, Thomas; Kosakowski, Georg; Kulik, Dmitrii

    2016-04-01

    We investigated fossil hydrothermal systems in the North of the Reykjavik peninsula (Iceland), in order to better understand water-rock interactions occurring during hydrothermal fluid circulation. The observation of a lava flow formation showed that the basalt is practically not altered, except in zones of a few cm thickness around the largest fractures (i.e. alteration rims). XRD analysis and observations of polished thin sections by optical microscope evidenced a severe alteration of the protolith in the alteration rim. Secondary minerals mostly consist in pyrite, calcite and chlorite, indicating a temperature of 250°C during the hydrothermal event. The presence of pyrite and calcite in the alteration rim and their absence in the rest of the rock suggest that the fluid contained significant amount of volcanic gasses H2S and CO2 and probably followed an ascending path. Most of the calcite is located in fractures that have been formed after the precipitation of the other secondary minerals. This observation, coupled with fluid inclusions analysis, indicates a second hydrothermal event that happened at lower temperature and pressure. We reproduced those observations by using a geochemical reactive transport model (OpenGeoSys-GEM code). The purpose was to decipher how diffusion and mineral reaction kinetics (protolith dissolution and secondary minerals precipitation) influence the alteration, and to establish the time duration of the hydrothermal circulation.

  6. Effect of hydrothermal circulation on slab dehydration for the subduction zone of Costa Rica and Nicaragua

    NASA Astrophysics Data System (ADS)

    Rosas, Juan Carlos; Currie, Claire A.; Harris, Robert N.; He, Jiangheng

    2016-06-01

    Dehydration of subducting oceanic plates is associated with mantle wedge melting, arc volcanism, intraslab earthquakes through dehydration embrittlement, and the flux of water into the mantle. In this study, we present two-dimensional thermal models of the Costa Rica-Nicaragua subduction zone to investigate dehydration reactions within the subducting Cocos plate. Seismic and geochemical observations indicate that the mantle wedge below Nicaragua is more hydrated than that below Costa Rica. These trends have been hypothesized to be due to a variation in either the thermal state or the hydration state of the subducting slab. Despite only small variations in plate age along strike, heat flow measurements near the deformation front reveal significantly lower heat flow offshore Nicaragua than offshore Costa Rica. These measurements are interpreted to reflect an along-strike change in the efficiency of hydrothermal circulation in the oceanic crust. We parameterize thermal models in terms of efficient and inefficient hydrothermal circulation and explore their impact on slab temperature in the context of dehydration models. Relative to models without fluid flow, efficient hydrothermal circulation reduces slab temperature by as much at 60 °C to depths of ∼75 km and increases the predicted depth of eclogitization by ∼15 km. Inefficient hydrothermal circulation has a commensurately smaller influence on slab temperatures and the depth of eclogitization. For both regions, the change in eclogitization depth better fits the observed intraslab crustal seismicity, but there is not a strong contrast in the slab thermal structure or location of the main dehydration reactions. Consistent with other studies, these results suggest that observed along-strike differences in mantle wedge hydration may be better explained by a northwestward increase in the hydration state of the Cocos plate before it is subducted.

  7. Numerical 3D models support two distinct hydrothermal circulation systems at fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars

    2013-04-01

    We present 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The setup of the 3D models is based our previous 2D studies, in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data of the East Pacific Rise (EPR). The 1000°C isotherm obtained from the 2D results is now used as the lower boundary of the 3D model domain, while the upper boundary is a smoothed bathymetry of the EPR. The same permeability field as in the 2D models is used, with the highest permeability at the ridge axis and a decrease with both depth and distance to the ridge. Permeability is also reduced linearly between 600 and 1000°C. Using a newly developed parallel finite element code written in Matlab that solves for thermal evolution, fluid pressure and Darcy flow, we simulate the flow patterns of hydrothermal circulation in a segment of 5000m along-axis, 10000m across-axis and up to 5000m depth. We observe two distinct hydrothermal circulation systems: An on-axis system forming a series of vents with a spacing ranging from 100 to 500m that is recharged by nearby (100-200m) downflows on both sides of the ridge axis. Simultaneously a second system with much broader extensions both laterally and vertically exists off-axis. It is recharged by fluids intruding between 1500m to 5000m off-axis and sampling both upper and lower crust. These fluids are channeled in the deepest and hottest regions with high permeability and migrate up-slope following the 600°C isotherm until reaching the edge of the melt lens. Depending on the width of the melt lens these off-axis fluids either merge with the on-axis hydrothermal system or form separate vents. We observe separate off-axis vent fields if the magma lens half-width exceeds 1000m and confluence of both systems for half-widths smaller than 500m. For

  8. Crustal accretion at fast spreading ridges and implications for hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, S.; Rupke, L.; Hasenclever, J.

    2015-12-01

    Oceanic crust is continuously created at mid-ocean ridges, but the location of lower crust crystallization continues to be debated since the proposal of the gabbro glacier and many sills end-member models. Geophysical and geochemical studies find evidence for either of the models. The crust is cooled by a combination of heat diffusion and advection, and hydrothermal circulation is thought to play a key role in distinguishing between both models. We use our numerical model for joint modeling of crustal accretion and hydrothermal circulation1 to test different accretion and hydrothermal cooling scenarios. The results match the seismic and structural observations from the East Pacific Rise2 and the Oman Ophiolite3, with a shallow melt lens at the correct location overlaying a narrow volume of partially molten rocks. Our results show that no more than 25-50% of the lower crust crystallizes in situ and that deep circulation is likely to occur at fast and intermediate spreading ridges. The occurrence of deep hydrothermal cooling however does not rule out that a major portion of the lower crust is formed in the shallow melt lens; our simulations rather suggest that it is necessary independent of where in the lower crust crystallization takes place. 1 Theissen-Krah, S., Iyer, K., Rupke, L. H. & Morgan, J. P. Coupled mechanical and hydrothermal modeling of crustal accretion at intermediate to fast spreading ridges. Earth and Planetary Science Letters 311, 275-286, doi:10.1016/j.epsl.2011.09.018 (2011). 2 Dunn, R. A., Toomey, D. R. & Solomon, S. C. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9 degrees 30'N. Journal of Geophysical Research-Solid Earth 105, 23537-23555 (2000). 3 Nicolas, A. & Boudier, F. Structural contribution from the Oman ophiolite to processes of crustal accretion at the East Pacific Rise. Terra Nova 27, 77-96, doi:10.1111/ter.12137 (2015).

  9. The Electrokinetic Mechanism of Hydrothermal-Circulation-Related and Production-Induced Self-Potentials

    SciTech Connect

    Ishido, T.; Kikuchi, T.; Sugihara, M.

    1987-01-20

    Self-potential (SP) surveys were carried out on a number of geothermal areas in Japan during the last decade. In most cases SP anomalies of positive polarity are found to overlie high temperature upflow zones. Streaming potential generated by hydrothermal circulation (Ishido, 1981) is considered to be the most likely cause of the observed positive anomalies. Repeated surveys conducted on the Nigorikawa caldera in Japan detected a change in SP induced by production of geothermal fluids. The observed change is dipolar in waveform and can also be attributed to an electrokinetic mechanism. 6 figs., 14 refs.

  10. Hydrothermal fluid-mineral interactions within volcanic sediment layer revealed by shallow drilling in active seafloor hydrothermal fields in the mid-Okinawa

    NASA Astrophysics Data System (ADS)

    Ishibashi, J.; Miyoshi, Y.; Tanaka, K.; Omori, E.; Takahashi, Y.; Furuzawa, Y.; Yamanaka, T.; Kawagucci, S.; Yoshizumi, R.; Urabe, T.

    2012-12-01

    TAIGA11 Expedition of R/V Hakurei-maru No.2 was conducted in June, 2011 to study subseafloor environment below active hydrothermal fields using a shallow drilling system (called as Benthic Multi-coring System, BMS). Three active hydrothermal fields at Iheya North Knoll (27 47'N, 126 54'E), at Izena Hole Jade site (27 16'N, 127 05'E) and at Izena Hole Hakurei site (27 15'N, 127 04'E) were selected as exploration targets, to focus on a hydrothermal fluid circulation system that develops in sediment consists of volcaniclastic and hemipelagic materials. In this presentation, we will report mineralogy of hydrothermal precipitates and altered clay minerals together with geochemistry of pore fluids, to discuss hydrothermal interactions beneath an active hydrothermal field. In the Iheya North Knoll hydrothermal field, the BMS drilling successfully attained to 453 cmbsf at the station 200 meters apart from the central mound area. The obtained core consisted almost entirely of grayish white altered mud that was identified as kaolinite by XRD. Pore fluid from the corresponding depth showed enrichment in major cations (Na, K, Ca and Mg) and Cl, which may be explained as a result of involvement of water into the kaolinite. Since kaolinite is considered as stable in rather acidic environment, its abundant occurrence beneath the seafloor would be attributed to a unique hydrothermal interaction. A possible scenario is intrusion of the vapor-rich hydrothermal component that has experienced phase separation. In the Jade hydrothermal fields in the Izena Hole, the BMS drilling successfully attained to 529 cmbsf at the marginal part of a hydrothermal field. The obtained core comprised grayish white hydrothermal altered mud below 370 cmbsf. Occurrence of native sulphur is also identified. Unfortunately, pore fluid could not be extracted from the intense alteration layer. In the Hakurei hydrothermal fields in the Izena Hole, the BMS drilling successfully attained to 610 cmbsf near one of

  11. Hydrothermal Activity in the Northern Guaymas Basin

    NASA Astrophysics Data System (ADS)

    Berndt, C.; Hensen, C.; Mortera-Gutierrez, C. A.; Sarkar, S.; Geilert, S.; Schmidt, M.; Liebetrau, V.; Kipfer, R.; Scholz, F.; Doll, M.; Muff, S.; Karstens, J.; Böttner, C.; Chi, W. C.; Moser, M.; Behrendt, R.; Fiskal, A.; Evans, T.; Planke, S.; Lizarralde, D.; Lever, M. A.

    2015-12-01

    Rift-related magmatism in the Guaymas Basin, Gulf of California induces hydrothermal activity within the basin sediments. Mobilized fluids migrate to the seafloor where they are emitted into the water column changing ocean chemistry and fuelling chemosynthetic ecosystems. New seismic and geochemical data from the northern rift arm of the Guaymas Basin document the variety of fluid expulsion phenomena from large-scale subsurface sediment mobilization related to contact metamorphosis to focused small-scale structures. The geochemical composition of emitted fluids depends largely on the age of the fluid escape structures with respect to the underlying intrusions. Whereas, old structures are dominated by methane emission, young vent sites are characterized by hot fluids that carry a wide range of minerals in solution. The overall high geothermal gradient within the basin (mainly between 160 and 260 °C/km) leads to a thin gas hydrate stability zone. Thus, deep hydrothermal fluid advection affects the gas hydrate system and makes it more dynamic than in colder sedimentary basins.

  12. Geochemistry of fluid phases and sediments: Relevance to hydrothermal circulation in Middle Valley, ODP Legs 139 and 169

    USGS Publications Warehouse

    Gieskes, J.M.; Simoneit, B.R.T.; Shanks, Wayne C.; Goodfellow, W.D.; James, R.H.; Baker, P.A.; Ishibashi, J.-I.

    2002-01-01

    Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill hydrothermal sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the hydrothermal systems reflect non-steady state conditions, the data allow an assessment of the history of the hydrothermal processes. Sediment K/A1 ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog hydrothermal field has been, and still is, active. In contrast, similar data in the Bent Hill hydrothermal field indicate a waning of hydrothermal activity. Pore fluid and hydrothermal vent data in the Dead Dog hydrothermal field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of hydrothermal activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of hydrothermal fluids at greater depths in this area. This suggests the origin of the hydrothermal fluids found to be emanating from Hole 1035F, which constitutes one of the first man made hydrothermal vents in the Middle Valley hydrothermal system. Similarly, CORKed Hole 858G, because of seal failures, has acted as a hydrothermal vent, with sulfide deposits forming inside the CORK. ?? 2002 Elsevier Science Ltd. All rights reserved.

  13. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  14. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P.-M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment, to evaluate the distribution of hydrothermal activity. We have identified a new on-axis site with diffuse flow, Ewan, and an active vent structure ∼1.2 km from the axis, Capelinhos. These sites are minor relative to the Main field, and our total heatflux estimate for all active sites (200-1200 MW) is only slightly higher than previously published estimates. We also identify fossil sites W of the main Lucky Strike field. A circular feature ∼200 m in diameter located on the flanks of a rifted off-axis central volcano is likely a large and inactive hydrothermal edifice, named Grunnus. We find no indicator of focused hydrothermal activity elsewhere along the segment, suggesting that the enhanced melt supply and the associated melt lenses, required to form central volcanoes, also sustain hydrothermal circulation to form and maintain large and long-lived hydrothermal fields. Hydrothermal discharge to the seafloor occurs along fault traces, suggesting focusing of hydrothermal circulation in the shallow crust along permeable fault zones.

  15. Hybrid on-axis plus ridge-perpendicular circulation reconciles hydrothermal flow observations at fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Hasenclever, J.; Theissen-Krah, S.; Rupke, L.; Morgan, J.; Iyer, K. H.; Petersen, S.; Devey, C. W.

    2013-12-01

    We present crustal-scale 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The model domain covers 5 km along-axis, 20 km across-axis and extends down to Moho depth. We observe that a complex hydrothermal system develops that extends over the entire crustal thickness and forms a series of on-axis vent fields with an average along-ridge spacing of 500-1000m. This hydrothermal system comprises two distinct flow components: (1) An on-axis circulation above the melt lens with recharging flow surrounding the hot up-flow zones. (2) A ridge-perpendicular circulation with recharge areas located kilometers away from the ridge. Here fluids penetrate the crust down to Moho depth and travel at temperatures of 400-600°C towards the ridge where they merge with the on-axis circulation in a reaction zone above the axial melt lens. Fluids released at the seafloor are a mixture of both components, with an average ratio between proximately- and distally-sourced fluids of about 2:1. This hybrid hydrothermal system reconciles previously incompatible observations that support either on-axis or ridge-perpendicular circulation patterns. The potential co-existence of two interacting hydrothermal circulations at fast spreading ridges is of importance for the interpretation of chemical signatures at hydrothermal vents and the quantification of the mass and energy exchange between ocean and solid earth: (1) A vertically and laterally extended ridge-perpendicular circulation will expose a much larger volume of oceanic crust to high-temperature hydrothermal alteration. Especially the lower crust would also be exposed to significant hydrothermal fluid flow and thus geochemical mining. (2) Fluids that migrate ridge-perpendicular and undergo phase separation at depth are likely to separate gravitationally from the denser and highly saline brine phase. Only the vapor-like phase may migrate up-slope towards the top of the melt lens, where these fluids would provide a

  16. Hydrothermal activity on the Gorda Ridge

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    Near-bottom plumes of materials indicative of discharge of metal-rich hot springs were discovered at sites on the Gorda Ridge by a research team of government and university scientists on a cruise of the National Oceanic and Atmospheric Administration (NOAA) ship Surveyor during May 1985 as part of the NOAA Vents Program. The Gorda Ridge, off northern California and Oregon, is the only seafloor spreading center within the proclaimed 200-mile U.S. Exclusive Economic Zone (370 km wide) of the conterminous United States and is one of the last oceanic ridges to be explored for metal-rich hot springs. One reason for this neglect is that the Gorda Ridge is slow spreading, with half-rates ranging from 1.1 cm/yr in the southern portion to 2.2 cm/yr in the northern portion. Slow spreading centers have not been fully evaluated with regard to hydrothermal activity by many members of the research community, who have concentrated their attention on the faster spreading East Pacific Rise to the south and the Juan de Fuca Ridge to the north of the Gorda Ridge.

  17. Hydrothermal activity in Tertiary Icelandic crust: Implication for cooling processes along slow-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pałgan, D.; Devey, C. W.; Yeo, I. A.

    2015-12-01

    Known hydrothermal activity along the Mid-Atlantic Ridge is mostly high-temperature venting, controlled by volcano-tectonic processes confined to ridge axes and neotectonic zones ~15km wide on each side of the axis (e.g. TAG or Snake Pit). However, extensive exploration and discoveries of new hydrothermal fields in off-axis regions (e.g. Lost City, MAR) show that hydrothermalism may, in some areas, be dominated by off-axis venting. Little is known about nature of such systems, including whether low-temperature "diffuse" venting dominates rather than high-temperature black-smokers. This is particularly interesting since such systems may transport up to 90% of the hydrothermal heat to the oceans. In this study we use Icelandic hot springs as onshore analogues for off-shore hydrothermal activity along the MAR to better understand volcano-tectonic controls on their occurrence, along with processes supporting fluid circulation. Iceland is a unique laboratory to study how new oceanic crust cools and suggests that old crust may not be as inactive as previously thought. Our results show that Tertiary (>3.3 Myr) crust of Iceland (Westfjords) has widespread low-temperature hydrothermal activity. Lack of tectonism (indicated by lack of seismicity), along with field research suggest that faults in Westfjords are no longer active and that once sealed, can no longer support hydrothermal circulation, i.e. none of the hot springs in the area occur along faults. Instead, dyke margins provide open and permeable fluid migration pathways. Furthermore, we suggest that the Reykjanes Ridge (south of Iceland) may be similar to Westfjords with hydrothermalism dominated by off-axis venting. Using bathymetric data we infer dyke positions and suggest potential sites for future exploration located away from neotectonic zone. We also emphasise the importance of biological observations in seeking for low-temperature hydrothermal activity, since chemical or optical methods are not sufficient.

  18. Using Hydrothermal Plumes and Their Chemical Composition to Identify and Understand Hydrothermal Activity at Explorer Ridge

    NASA Astrophysics Data System (ADS)

    Resing, J.; Lebon, G.; Baker, E.; Walker, S.; Nakamura, K.; Silvers, B.

    2002-12-01

    During June and July, 2002, an extensive survey of the hydrothermal systems of the Explorer Ridge was made aboard the R/V Thomas Thompson. This survey employed hydrocasts and the Autonomous Benthic Explorer (ABE) to locate and map hydrothermal vent fields. A total of 28 hydrocasts (17 verticals and 11 tow-yos) were used to search for hydrothermal activity from 49.5°N to 50.3°N on the Explorer Ridge. During the hydrocasts continuous measurements were made of conductivity, temperature, pressure, light backscatter, eH, Fe, Mn, and pH. Discrete samples were collected for total dissolved Fe and Mn, methane, pH, total CO2, and particulate matter. Most of the strong hydrothermal venting was near the Magic Mountain area of the Explorer Ridge at ~49.76° N, 130.26° W, where strong particulate backscatter signals (~0.130 NTUs) and moderate temperature anomalies (~ 0.05 °C) were detected. The particulate matter causing the backscatter was made up primarily of volatile particulate sulfur (PS) with little to no hydrothermal PFe. PS:PFe ratios exceeded 25 in the areas of most intense venting, . These PFe and PS data suggest that the hydrothermal Fe, if any, is deposited as sulfide minerals beneath the sea floor and that S is far in excess of Fe in the hydrothermal fluids. In the most intense plumes,total dissolvable Fe and Mn were between 20 and 30 nM, pH anomalies exceeded 0.025 pH units (indicating an increase of ~10uM CO2), and methane reached 16nM. These results suggest that the fluids exiting the sea floor are metal-poor and moderately gas-rich.

  19. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  20. Hydrothermal circulation in fast spread ocean crust - where and how much? Insight from ODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Harris, M.; Coggon, R. M.; Smith-Duque, C. E.; Teagle, D. A. H.

    2014-12-01

    Understanding and quantifying hydrothermal circulation is critical to testing models of the accretion of lower ocean crust and quantifying global geochemical cycles. However, our understanding is principally limited by a lack of direct observations from intact ocean crust. Key questions remain about the magnitude of hydrothermal fluid fluxes, the nature and distribution of fluid pathways and their global variability. ODP Hole 1256D in the eastern equatorial Pacific samples a complete section of 15 Myr old upper ocean crust down to the dike/gabbro transition zone. A high spatial resolution Sr isotope profile is integrated with wireline studies, volcanostratigraphy, petrography and mineral geochemistry to document fluid pathways and develop a model for the evolving hydrothermal system during volcanic construction of the crust. Major off-axis fluid conduits in the volcanic sequence are restricted to the flow margins of two anomalously thick (>25 m) massive flows, indicating that massive flows act as a permeability barrier for fluid flow. Dike margins are pathways for both recharge and discharge hydrothermal fluids. Sub-horizontal channeling of high temperature fluids at the dike/gabbro boundary is a common attribute of most cartoons of mid ocean ridge hydrothermal systems. Hole 1256D provides the first in situ observations of the dike/gabbro transition zone and records lateral fluid transport along intrusive boundaries. The time-integrated fluid flux in the sheeted dikes of Hole 1256D calculated using Sr isotope mass balance is ~1.8 x 106 kg/m2. This is similar to fluid fluxes from other studies (Hole 504B, Pito Deep, Hess Deep) despite large variations in the thickness and Sr isotope profiles of the sheeted dike complexes, suggesting that hydrothermal fluid fluxes are remarkably uniform and independent of the local structure of the crust. This fluid flux is not large enough to completely remove the heat flux from crystallizing and cooling the lower crust and requires

  1. Hydrothermal circulation and subsidence of ocean basins : a case study from the South-East Indian Ocean

    NASA Astrophysics Data System (ADS)

    Louis, G. B.; Jean, F.; James, C. R.; Cinthia, L.; Delphine, A.

    2003-12-01

    The South-East Indian Ridge (SEIR) flanks between 105° E and 130° E are characterized by anomalously low subsidence rates, less than about 280 m/ sqrt(Ma) [Hayes and Kane, JGR, 1994]. While individual estimates of the upper mantle temperature variations below the SEIR axis may vary significantly from one study to the other, all geophysical (axial morphology, seismology and geoid) and geochemical (major and trace elements systematics) evidence is compatible with variations of less than about 100° C. Such a temperature anomaly is not sufficient to fully explain the observed anomalously low subsidence rates, using the present available models for the thermal evolution of the lithosphere. Ad hoc explanations, such as, for instance, variations in mantle thermal parameters cannot be readily rejected, but are not completely satisfactory because they cannot be supported by direct estimates. In contrast, of direct evidence is the lack of sedimentation that characterizes the flanks of the SEIR and the fact, recognized from heat flow data, that in absence of sediment cover, seawater penetrates into the ocean crust and plays a key role in the mechanisms of heat transfer through the seafloor. Although it is now widely accepted that seawater may penetrate massively into poorly sedimented off-axis crust, the contribution of water circulation to the seafloor subsidence rate has only been considered so far near crestal areas, but not at the scale of tens of millions years. We thus propose a simple model which assumes, at first approximation, that seawater penetrates into highly permeable off-axis crust to a depth H below the seafloor and maintains the temperature equal to Tc at that depth (Note : H may depend on age crust). Assuming that hydrothermal circulation is active over large periods (of tens of Ma, for instance), the subsidence rate is controlled by Tm-Tc. The model thus predicts that variations in the hydrothermal regime, by affecting Tc, may affect the subsidence rate

  2. Interactions Between Serpentinization, Hydrothermal Activity and Microbial Community at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Delacour, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Schaeffer, P.; Frank, M.; Gutjahr, M.; Kelley, D. S.

    2008-12-01

    Seafloor investigations of slow- and ultraslow-spreading ridges have reported many occurrences of exposed mantle peridotites and gabbroic rocks on the ocean floor. Along the Mid-Atlantic Ridge, these uplifted portions of oceanic crust host high-temperature black smoker-type hydrothermal systems (e.g., Rainbow, Logatchev, Saldanha), and the more distinct low-temperature Lost City Hydrothermal Field (LCHF). Built on a southern terrace of the Atlantis Massif, the LCHF is composed of carbonate-brucite chimneys that vent alkaline and low-temperature (40-90°C) hydrothermal fluids. These fluids are related to serpentinization of mantle peridotites, which together with minor gabbroic intrusions form the basement of the LCHF. Long-lived hydrothermal activity at Lost City led to extensive seawater-rock interaction in the basement rocks, as indicated by seawater-like Sr- and mantle to unradiogenic Nd-isotope compositions of the serpentinites. These high fluid fluxes in the southern part of the massif influenced the conditions of serpentinization and have obliterated the early chemical signatures in the serpentinites, especially those of carbon and sulfur. Compared to reducing conditions commonly formed during the first stages of serpentinization, serpentinization at Lost City is characterized by relatively oxidizing conditions resulting in a predominance of magnetite, the mobilization/dissolution and oxidation of igneous sulfides to secondary pyrite, and the incorporation of seawater sulfate, all leading to high bulk-rock S-isotope compositions. The Lost City hydrothermal fluids contain high concentrations in methane, hydrogen, and low-molecular weight hydrocarbons considered as being produced abiotically. In contrast, organic compounds in the serpentinites are dominated by the occurrences of isoprenoids (pristane, phytane, and squalane), polycyclic compounds (hopanes and steranes), and higher abundances of C16 to C20 n-alkanes indicative of a marine organic input. We

  3. Porosity and hydraulic properties of sediments from the Galapagos spreading center and their relation to hydrothermal circulation in the oceanic crust

    SciTech Connect

    Karato, S.; Becker, K.

    1983-02-10

    Density and porosity of sediments were measured on DSDP legs 69 and 70 samples from the Galapagos spreading center. Permeability and the hydraulic impedance of each sediment layer were estimated from measured values of porosity. The gradients of porosity and density with depth where sediment layers are thin (< or approx. =50 m thick) are anomalously high compared with those of other areas and with the upper part of thicker sediment layers in this area. A good correlation was found between the anomalous porosity and density gradients and the present-day heat flow. We interpret these observations to suggest that these high gradients may be due to active hydrothermal circulation through a thin sediment cover, which is inhibited by a thicker sediment layer, and that the pattern of hydrothermal circulation may be essentially fixed with the moving plate. Hydraulic impedance of the sediment layer was estimated from the observed depth variation of porosity and was shown to increase rapidly with its thickness. Our interpretation that a threshold thickness of about 50 m would inhibit direct diffuse discharge or recharge of hydrothermal flow through the undisturbed sediment layer yields an average permeability of the underlying basement layer of about 3-6 x 10/sup -14/ m/sup 2/ (30-60 mdarcies).

  4. METEORIC-HYDROTHERMAL SYSTEMS.

    USGS Publications Warehouse

    Criss, Robert E.; Taylor, Hugh P.

    1986-01-01

    This paper summarizes the salient characteristics of meteoric-hydrothermal systems, emphasing the isotopic systematics. Discussions of permeable-medium fluid dynamics and the geology and geochemistry of modern geothermal systems are also provided, because they are essential to any understanding of hydrothermal circulation. The main focus of the paper is on regions of ancient meteoric-hydrothermal activity, which give us information about the presently inaccessible, deep-level parts of modern geothermal systems. It is shown oxygen and hydrogen isotopes provide a powerful method to discover and map fossil hydrothermal systems and to investigate diverse associated aspects of rock alteration and ore deposition.

  5. Constraints on the Lost City Hydrothermal System from borehole thermal data; 3-D models of heat flow and hydrothermal circulation in an oceanic core complex.

    NASA Astrophysics Data System (ADS)

    Titarenko, S.; McCaig, A. M.

    2014-12-01

    A perennial problem in near-ridge hydrothermal circulation is that the only directly measurable data to test models is often vent fluid temperature. Surface heat flow measurements may be available but without the underlying thermal structure it is not known if they are transient and affected by local hydrothermal flow, or conductive. The Atlantis Massif oceanic core complex at 30 °N on the mid-Atlantic Ridge, offers a unique opportunity to better constrain hydrothermal circulation models. The temperature profile in gabbroic rocks of IODP Hole 1309D was measured in IODPExpedition 340T, and found to be near-conductive, but with a slight inflexion at ~750 mbsf indicating downward advection of fluid above that level. The lack of deep convection is especially remarkable given that the long-lived Lost City Hydrothermal Field (LCHF) is located only 5km to the south. We have modelled hydrothermal circulation in the Massif using Comsol Multiphysics, comparing 2-D and 3-D topographic models and using temperature-dependent conductivity to give the best estimate of heatflow into the Massif. We can constrain maximum permeability in gabbro below 750 mbsf to 5e-17 m2. The thermal gradient in the upper part of the borehole can be matched with a permeability of 3e-14 m2 in a 750 m thick layer parallel to the surface of the massif, with upflow occurring in areas of high topography and downflow at the location of the borehole. However in 3-D the precise flow pattern is quite model dependent, and the thermal structure can be matched either by downflow centred on the borehole at lower permeability or centred a few hundred metres from the borehole at higher permeability. The borehole gradient is compatible with the longevity (>120 kyr) and outflow temperature (40-90 °C) of the LCHF either with a deep more permeable (1e-14 m2 to 1e-15 m2) domain beneath the vent site in 2-D or a permeable fault slot 500 to 1000m wide and parallel to the transform fault in 3-D. In both cases topography

  6. Characteristics of hydrothermal convection in inclined layers: implications for hydrothermal activity at slow-spreading axis.

    NASA Astrophysics Data System (ADS)

    Fontaine, F. J.; Cannat, M.; Escartin, J.; Dusunur, D.

    2006-12-01

    The thermal structure of segments along (slow-spreading) mid-ocean ridges is likely to be a key parameter controlling the distribution, dynamics and geometry of hydrothermal systems. It is usually considered that the depth of penetration of hydrothermal fluids at the ridge axis is a function of the depth to the brittle-ductile transition. At slow-spreading axis, it is likely that this depth varies both along- and across-axis, with a deepening of several kilometers from the segment center towards its ends [e.g., Hooft et al., 2000]. This geometry is a consequence of focused melt supply to the segment center, resulting in the episodic and localized injection of magma bodies in the crust, as observed at the Lucky Strike segment of the Mid-Atlantic ridge [Singh et al., 2005]. In order to study the effect of such slopes of the basal temperature on the dynamics of slow-spreading axis hydrothermal systems, we ran a series of two-dimensional numerical models of hydrothermal convection. As a first approximation and following previous studies [e.g., Rabinowicz et al., 1999], we assume that these systems can be represented as rectangular and inclined permeable layers. The models are single-phase and incorporate realistic fluid properties and permeabilities. We have explored the cases of slopes ranging from 0 to 15°, aspect ratios from 1 to 16, and permeabilities up to 10^{-14} m2. The basal slope controls the number of convective cells. As the slope increases, the ratio of the size of the downflow and upflow areas increases. Above a critical slope the circulation is uni-cellular and composed of a broad recharge zone and a focused discharge zone, and encompassing the whole length of the segment. We will present the implication of our models for the distribution of vent sites along slow-spreading ridge segments. The segment-scale circulation and focused outflow obtained could also explain the elevated heat flux at some of the main sites found along slow-spreading ridges like

  7. Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system

    USGS Publications Warehouse

    Janik, Cathy J.; McLaren, Marcia K.

    2010-01-01

    Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235–270°C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220–240°C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (<6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (≤161°C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N–S oriented normal faulting and E–W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5–10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen

  8. Hydrothermal activity along the northern Mid-Atlantic Ridge and in the Bransfield Strait Backarc Basin, Antarctica

    NASA Astrophysics Data System (ADS)

    Chin, Carol S.

    1998-12-01

    Seafloor hydrothermal circulation through young oceanic crust results in the expulsion of fluids as both diffuse and focused flow in the form of hydrothermal venting. High-temperature hydrothermal fluids are enriched in reduced chemical species that rapidly oxidize upon interaction with ambient, oxygen-rich bottom waters, resulting in plumes that are detectable in the water column both by their dissolved chemical composition as well as by their particle concentration. This study employed a novel instrument package which detected both dissolved manganese and particle concentration in situ. This package also included a standard CTD (conductivity, temperature, depth) and rosette for the collection of water samples. Because hydrothermal plumes integrate the output from an entire vent field, measurements in plumes can be used to estimate vent field fluxes. Some geochemical tracers from hydrothermal vents can also be detected thousands of kilometers from their sources. Thus, plumes provide the means to prospect for undiscovered hydrothermal sites, and can also predict characteristics of the venting site. This work includes studies of hydrothermal plumes along the northern Mid-Atlantic Ridge and in the Bransfield Strait backarc basin, Antarctica. In recent years, the number of known hydrothermal sites on the Mid-Atlantic Ridge (MAR) has increased from two to seven, and most other segments between 12° and 41° N have shown evidence of high-temperature hydrothermal activity. Furthermore, it appears that as one approaches the Azores Plateau, the concentration of dissolved delta3He in the bottom water (originating from hydrothermal venting) increases, suggesting that hydrothermal activity increases toward the plateau. This is consistent with the significant tectonic extension and crustal fissuring observed near the Azores Platform, which is expected to support increased convection. The Bransfield Strait is a backarc basin between the Antarctic Peninsula and the South

  9. Contrasting two-dimensional and three-dimensional models of outcrop-to-outcrop hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Winslow, D. M.; Stauffer, P. H.; Gable, C. W.; Zyvoloski, G.

    2015-12-01

    We present results from two-dimensional and three-dimensional coupled (fluid and heat flow) simulations of ridge-flank hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge. Field studies in this region demonstrate the existence of an active hydrothermal siphon operating between two seamounts separated by ~50 km, and provide quantitative constraints that help to determine which simulations are successful in replicating known properties and processes. Constraints from field observations include (a) the flow rate between the outcrops, (b) the presence of secondary convection within the basement aquifer, leading to simultaneous recharge and discharge through a single outcrop (in additional to siphon flow between outcrops), (c) direct measurements of crustal permeability in basement boreholes, and (d) the lack of a regional seafloor heat flux anomaly as a consequence of outcrop-to-outcrop circulation. New simulations include an assessment of crustal permeability and thickness, outcrop permeability, and a comparison of simulation results using different geometries. Three-dimensional simulations are more consistent with field observations than their two-dimensional counterparts and indicate a crustal aquifer of ≤300 m thick having a bulk permeability between 3×10-13 and 2×10-12 m2, values consistent with borehole measurements. In addition, we find fluid flow rates and crustal cooling efficiencies that are an order of magnitude greater in three-dimensional simulations than inferred from two-dimensional simulations using equivalent properties. These results show that three-dimensional simulations of outcrop-to-outcrop hydrothermal circulation on a ridge flank improves the geological and geometric accuracy of results, in comparison to models run in two dimensions.

  10. A whole-moon thermal history model of Europa: Impact of hydrothermal circulation and salt transport

    NASA Astrophysics Data System (ADS)

    Travis, B. J.; Palguta, J.; Schubert, G.

    2012-04-01

    A whole-moon numerical model of Europa is developed to simulate its thermal history. The thermal evolution covers three phases: (i) an initial, roughly 0.5 Gyr-long period of radiogenic heating and differentiation, (ii) a long period from 0.5 Gyr to 4 Gyr with continuing radiogenic heating but no tidal dissipative heating (TDH), and (iii) a final period covering the last 0.5 Gyr until the present, during which TDH is active. Hydrothermal plumes develop after the initial period of heating and differentiation and transport heat and salt from Europa's silicate mantle to its ice shell. We find that, even without TDH, vigorous hydrothermal convection in the rocky mantle can sustain flow in an ocean layer throughout Europa's history. When TDH becomes active, the ice shell melts quickly to a thickness of about 20 km, leaving an ocean 80 km or more deep. Parameterized convection in the ice shell is non-uniform spatially, changes over time, and is tied to the deeper ocean-mantle dynamics. We also find that the dynamics are affected by salt concentrations. An initially non-uniform salt distribution retards plume penetration, but is homogenized over time by turbulent diffusion and time-dependent flow driven by initial thermal gradients. After homogenization, the uniformly distributed salt concentrations are no longer a major factor in controlling plume transport. Salt transport leads to the formation of a heterogeneous brine layer and salt inclusions at the bottom of the ice shell; the presence of salt in the ice shell could strongly influence convection in that layer.

  11. The Sasquatch Hydrothermal Field: Linkages Between Seismic Activity, Hydrothermal Flow, and Geology

    NASA Astrophysics Data System (ADS)

    Glickson, D. A.; Kelley, D. S.; Delaney, J. R.

    2006-12-01

    The Sasquatch Hydrothermal Field is the most northern known vent field along the central Endeavour Segment of the Juan de Fuca Ridge, located 6 km north of the Main Endeavour Field (MEF) near 47° 59.8'N, 129° 4.0'W. It was discovered in 2000, after two large earthquake swarms in June 1999 and January 2000 caused increased venting temperatures in the MEF and significant changes in volatile composition along the entire axis [Johnson et al., 2000; Lilley et al., 2003; Proskurowski et al., 2004]. From 2004-2006, Sasquatch and the surrounding axial valley were comprehensively mapped with SM2000 multibeam sonar system and Imagenex scanning sonar at a resolution of 1-5 m. These data were combined with visual imagery from Alvin and ROV dives to define the eruptive, hydrothermal, and tectonic characteristics of the field and distal areas. Based on multibeam sonar results, bathymetric relief of the segment near Sasquatch is subdued. The broad axial valley is split by a central high that rises 30-40 m above the surrounding seafloor. Simple pattern analysis of the valley shows two fundamentally different regions, distinguished by low and high local variance. Areas of low variance correspond to a collapse/drainback landscape characterized by ropy sheet flow, basalt pillars, and bathtub rings capped by intact and drained lobate flows. Areas of high variance generally correspond to three types of ridge structures: 1) faulted basalt ridges composed of truncated pillow basalt, rare massive flows, and widespread pillow talus; 2) constructional basalt ridges composed of intact pillow flow fronts; and 3) extinct sulfide ridges covered by varying amounts of sulfide talus and oxidized hydrothermal sediment. Sasquatch is located in a depression among truncated pillow ridges, and is comprised of ~10, 1-6 m high, fragile sulfide chimneys that vent fluids up to 289°C. The active field extends only ~25 x 25 m, although a linear, N-S trending ridge of nearly continuous extinct sulfide

  12. Two-dimensional numerical models of open-top hydrothermal convection at high Rayleigh and Nusselt numbers: Implications for mid-ocean ridge hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice J.; Wilcock, William S. D.

    2007-07-01

    Mid-ocean ridges host vigorous hydrothermal systems that remove large quantities of heat from the oceanic crust. Inferred Nusselt numbers (Nu), which are the ratios of the total heat flux to the heat flux that would be transported by conduction alone, range from 8 to several hundred. Such vigorous convection is not fully described by most numerical models of hydrothermal circulation. A major difficulty arises at high Nu from the numerical solution of the temperature equation. To avoid classical numerical artifacts such as nonphysical oscillatory behavior and artificial diffusion, we implement the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA) technique, which solves the temperature equation using an iterated upwind corrected scheme. We first validate the method by comparing results for models with uniform fluid properties in closed- and open-top systems to existing solutions with Nu ≤ ˜20. We then incorporate realistic fluid properties and run models for Nu up to 50-60. Solutions are characterized by an unstable bottom thermal boundary layer where thermal instabilities arise locally. The pattern of heat extraction is periodic to chaotic. At any Nu > ˜13 the venting temperatures in a given plume are chaotic and oscillate from ˜350° to 450°C. Individual plumes can temporarily stop short of the surface for intervals ranging from tens to hundreds of years at times when other plumes vent with an increased flow rate. The solutions also display significant recirculation, and as a result large areas of downflow are relatively warm with temperatures commonly exceeding 150°C at middepths. Our results have important implications for mid-ocean ridge hydrothermal systems and suggest the following: (1) The reaction zones of mid-ocean ridge hydrothermal systems are enlarged by thermal instabilities that migrate laterally toward upflow zones. This will substantially increase the volume of rock involved in chemical reactions compared to steady

  13. Hydrothermal activity at the Arctic mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pedersen, Rolf B.; Thorseth, Ingunn H.; Nygård, Tor Eivind; Lilley, Marvin D.; Kelley, Deborah S.

    Over the last 10 years, hydrothermal activity has been shown to be abundant at the ultraslow spreading Arctic Mid-Ocean Ridges (AMOR). Approximately 20 active and extinct vent sites have been located either at the seafloor, as seawater anomalies, or by dredge sampling hydrothermal deposits. Decreasing spreading rates and decreasing influence of the Icelandic hot spot toward the north along the AMOR result in a north-south change from a shallow and magmatically robust to a deep and magmatically starved ridge system. This contrast gives rise to large variability in the ridge geology and in the nature of the associated hydrothermal systems. The known vent sites at the southern part of the ridge system are either low-temperature or white smoker fields. At the deep, northern parts of the ridge system, a large black smoker field has been located, and seawater anomalies and sulfide deposits suggest that black smoker-type venting is common. Several of these fields may be peridotite-hosted. The hydrothermal activity at parts of the AMOR exceeds by a factor of 2 to 3 what would be expected by extrapolating from observations on faster spreading ridges. Higher fracture/fault area relative to the magma volume extracted seems a likely explanation for this. Many of the vent fields at the AMOR are associated with axial volcanic ridges. Strong focusing of magma toward these ridges, deep rifting of the ridges, and subsequent formation of long-lived detachment faults that are rooted below the ridges may be the major geodynamic mechanisms causing the unexpectedly high hydrothermal activity.

  14. Hydrothermal activity at the Trans-Atlantic Geotraverse Hydrothermal Field, Mid-Atlantic Ridge crest at 26°N

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Thompson, G.; Mottl, M. J.; Karson, J. A.; Jenkins, W. J.; Graham, D.; Mallette, M.; von Damm, K.; Edmond, J. M.

    1984-12-01

    The first submersible observations of the only known active submarine hydrothermal field on a slow-spreading oceanic ridge are incorporated with results of 10 prior years of investigation to derive an understanding of periodicity, duration, and varying intensity of hydrothermal activity at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge crest near latitude 26°N. Hydrothermal activity has persisted at this location for at least 1×106 years based on the distribution of hydrothermal and hydrogenous mineralization with respect to crustal age. The hydrothermal activity has been cyclic, multistage, and episodic. Prior high-temperature hydrothermal venting stages with a periodicity of the order of 1×104 years and duration of the order of 101 years are deduced from the estimated ages of discrete sedimentary layers anomalously enriched in Cu, Fe, and Zn and correspond with the independently determined periodicity of volcanic eruptive cycles on the Mid-Atlantic Ridge. The most recent episode of high-temperature venting is inferred to have ceased in the recent past based on metal enrichment (Cu, Fe, Zn) in the surficial sediment layer. Low-temperature hydrothermal venting stages with a duration of the order of 1×104 years intervene between the short high-temperature stages and produce stratiform deposits of layered and earthy manganese oxide, iron oxide, hydroxide, and silicate. Bivalve-like forms with the characteristics of vent clams in various stages of dissolution are identified on bottom photographs. The fresh appearance of intact tubules composed of iron hydroxide that acted as vents on relict deposits, conductive heat flow anomalies in the sediment column, and the record of temperature anomalies and excess 3He in the near-bottom water column, suggest that the low-temperature hydrothermal discharge is intermittent at individual vents on a time scale of years.

  15. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    found at more than 40 locations throughout the Pacific, North Atlantic, and Indian Oceans (e.g., Van Dover et al., 2002) with further evidence - from characteristic chemical anomalies in the ocean water column - of its occurrence in even the most remote and slowly spreading ocean basins ( Figure 3), from the polar seas of the Southern Ocean (German et al., 2000; Klinkhammer et al., 2001) to the extremes of the ice-covered Arctic ( Edmonds et al., 2003). (61K)Figure 3. Schematic map of the global ridge crest showing the major ridge sections along which active hydrothermal vents have already been found (red circles) or are known to exist from the detection of characteristic chemical signals in the overlying water column (orange circles). Full details of all known hydrothermally active sites and plume signals are maintained at the InterRidge web-site: http://triton.ori.u-tokyo.ac.jp/~intridge/wg-gdha.htm The most spectacular manifestation of seafloor hydrothermal circulation is, without doubt, the high-temperature (>400 °C) "black smokers" that expel fluids from the seafloor along all parts of the global ocean ridge crest. In addition to being visually compelling, vent fluids also exhibit important enrichments and depletions when compared to ambient seawater. Many of the dissolved chemicals released from the Earth's interior during venting precipitate upon mixing with the cold, overlying seawater, generating thick columns of black metal-sulfide and oxide mineral-rich smoke - hence the colloquial name for these vents: "black smokers" (Figure 4). In spite of their common appearance, high-temperature hydrothermal vent fluids actually exhibit a wide range of temperatures and chemical compositions, which are determined by subsurface reaction conditions. Despite their spectacular appearance, however, high-temperature vents may only represent a small fraction - perhaps as little as 10% - of the total hydrothermal heat flux close to ridge axes. A range of studies - most notably

  16. Sulfide-Sulfate Mineralizations in Verzino Area (Crotone Basin, Southern Italy): New insights on localized hydrothermal fluid circulations and their relationship with tectonics.

    NASA Astrophysics Data System (ADS)

    Berardi, Gabriele; Lucci, Federico; Cozzupoli, Domenico; Pizzino, Luca; Cantucci, Barbara; Quattrocchi, Fedora

    2010-05-01

    C, characterizing an exalative-ephitermal facies condition for the genesis of the here presented mineralizations. The supposed hydrothermal genesis, together with the localization and oriented distribution of the vein/nodule systems, suggest a strong control on the fluid circulation by the very local fault systems characterizing the tectonic of the investigated area. A very close relationship between faults and fluids in Calabria region has been recently claimed by Italiano et al (2010); the presence of thermal and sulphur-rich ground-waters farther south and west of the study area (Belvedere di Spinello, Verzino, Casabona and Cotronei), strongly supports our inferences. The study area (and in general the Crotone basin) has suffered two destructive earthquakes in 1638 and 1832, with an estimated magnitude of 6.5-6.8. Moreover, recent paleoseismological studies (Galli and Bosi, 2003; Galli et al., 2008) re-evaluated the seismic hazard of the area, by detecting some historical strong earthquakes along previously unknown fault systems. This work, with the reported results on mineral associations developed by important fluid/fault interactions, highlights the role and the timing of both localized stress and pore pressures cycles in an active tectonic setting, and may represent a new interpretation key and a clue reference for a deeper understanding of a not well known italian seismic area characterized, at least, by the presence of three regional active master faults: the Marchesato Fault, the Lakes fault the Cerenzia-San Nicola-Strongoli Line. Geochemical and isotopic analyses on mineralizations, host rock and spring fluids are in progress to better define and understand the local hydrothermal system and to propose a model of time and control of the tectonic on the fluid circulation.

  17. Hydrothermal regimes of the dry active layer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Mamoru; Zhang, Yinsheng; Kadota, Tsutomu; Ohata, Tetsuo

    2006-04-01

    Evaporation and condensation in the soil column clearly influence year-round nonconductive heat transfer dynamics in the dry active layer underlying semiarid permafrost regions. We deduced this from heat flux components quantified using state-of-the-art micrometeorological data sets obtained in dry and moist summers and in winters with various snow cover depths. Vapor moves easily through large pores, some of which connect to the atmosphere, allowing (1) considerable active layer warming driven by pipe-like snowmelt infiltration, and (2) direct vapor linkage between atmosphere and deeper soils. Because of strong adhesive forces, water in the dry active layer evaporates with great difficulty. The fraction of latent heat to total soil heat storage ranged from 26 to 45% in dry and moist summers, respectively. These values are not negligible, despite being smaller than those of arctic wet active layer, in which only freezing and thawing were considered.

  18. Models of Martian Hydrothermal Circulation and Ice Melt with Implications for Surface Feature Formation

    NASA Astrophysics Data System (ADS)

    Craft, K. L.; Lowell, R. P.; Kraal, E.

    2011-03-01

    Here we investigate the amount of fluid provided to the martian surface by dike- and sill-driven hydrothermal systems with overlying ice layers. The resulting fluid flow rates are then compared to model estimates for formation of surface features on Mars.

  19. Soil gas composition from the 2001-2002 fissure in the Lakki Plain (Nisyros Island, Greece): evidences for shallow hydrothermal fluid circulation

    NASA Astrophysics Data System (ADS)

    Venturi, Stefania; Tassi, Franco; Kanellopoulos, Christos; Vaselli, Orlando; Caponi, Chiara; Ricci, Andrea; Raspanti, Alessio; Gallorini, Andrea; Cabassi, Jacopo; Vougioukalakis, Georges

    2016-04-01

    Nisyros volcano (Aegean Sea, Greece) is currently classified in the "Very High Threat" category (Kinvig et al., 2010). Although the last volcanic activity, consisting of phreatic eruptions, occurred in the 19th century, Nisyros experienced an intense seismic activity during 1996-1998 accompanied by ground deformation and changes in the chemistry of fumarolic gases (Chiodini et al., 2002), pointing to a renewed unrest. Between November 2001 and December 2002, a NNE-oriented 600 m long fissure opened in the vegetated central part of the Lakki Plain. The fissure, 1-5 m wide and up to 15-20 m deep, showed neither vertical displacements nor gas release. No changes in the seismic and volcanic activity were observed during or after this event, which was interpreted as related to collapse of the upper caldera floor fine sediment cover (<50 m thick) induced by hydrothermal fluid circulation (Vougioukalakis and Fytikas, 2005). In June 2015, diffuse CO2 flux measurements, in combination with sampling and chemical analysis of the interstitial soil gases, were performed in (i) the fissure bottom, (ii) the adjacent vegetated areas in the Lakki Plain, (iii) the near hydrothermal craters (Stefanos, Kaminakia, Lofos domes), and (iv) sites located outside the caldera (blank values). The fissure showed neither temperature (<30 °C) nor CO2 fluxes (<10 gm-2d-1) anomalies with respect to the blank sites and the Lakki Plain, with values strikingly lower than those measured in the hydrothermal craters (up to 98 °C and 208 gm-2d-1, respectively). Contrarily, the CO2 concentrations in the interstitial soil gases from the fissure (up to 513 mmol/mol) were markedly higher than the background values and comparable with those measured in the craters (up to 841 mmol/mol). Relatively high H2S, H2 and CH4 contents in soil gases from the fissure confirm the hydrothermal origin of these soil gases. However, their CH4/CO2 ratio were lower than those measured in the soil gases from the craters

  20. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity

  1. Patterns of Fluid Circulation and Steam Generation in Caldera-Hosted Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Barnard, M. E.; Cook, S. J.

    2009-05-01

    Steam formation is an important mechanism powering near surface phenomena in active hydrothermal systems (e.g., Yellowstone) and an established ore deposition mechanism in ancient equivalents (e.g., Creede). To gain insights into factors controlling steam formation and distribution in these systems, a series of steady-state numerical models were run on a hypothetical caldera-hosted system based on characteristics of a representative suite of calderas (e.g., Yellowstone, Valles, Creede). Base model conditions consisted of (1) a 10 km-wide caldera with a flat floor and rim height of 800 m; (2) a 500 C intrusion 1.5 km below the caldera centre; (3) a regional conductive heat flux twice continental average (0.10 W/m2); (4) host rock thermal conductivity of 2.5 W/m C, density 2650 kg/m3 and pore fraction 0.05. An impermeable intrusion was modeled with a 500 m wide surrounding region with a permeability (k) 10-3 m2 less than the system meant to represent a ductile region produced by elevated temperature (T > 350 C). The remainder of the system was given homogenous permeability. Cylindrical coordinates were used to represent caldera geometry. For these conditions, a minimum k = 10-15 m2 was required to achieve the target thermal condition of T approximately 220 C at 300 m below ground surface observed in active systems (e.g., Yellowstone). This model also resulted in a continuous steam plume originating at the intrusive contact that reached within 300 m of the surface along the edges of the caldera ~2 km from caldera centre. Models with k < 10-15 m2 produced steam, but at greater depths and failed to match the target conditions. Models with intrusion temperatures reduced by 20% shifted the steam plume toward the caldera centre and reduced its volume, but still achieved target conditions. Increasing intrusion temperature by 10% produced a second distinct plume at the caldera centre that also achieved target conditions. Increasing the rim height for these conditions

  2. Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-12-01

    Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at hydrothermal activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline hydrothermal vents on Earth like the Lost City Hydrothermal Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been identified in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of hydrothermal activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).

  3. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  4. Anisotropy of thermal contraction controls deep hydrothermal circulation at oceanic ridges

    NASA Astrophysics Data System (ADS)

    Boudier, F.; Nicolas, A.; Mainprice, D.; Baronnet, A.

    2003-04-01

    A deep and high-T (up to 1000^oC) hydrothermal contamination of the oceanic crust at the ridge axis has been documented in the Oman ophiolite. In the deep and hot gabbros, the main water channels are submillimetric microcracks with a dominantly vertical attitude (Nicolas et al, in press). Sr and O isotopic investigations point to seawater as the most likely hydrothermal contaminant (Bosch et al. submitted). We propose that the mechanism allowing seawater ingression at temperatures above 700^oC is anisotropy of thermal contraction, opening microcracks that are controlled by fabric. The exceptionally large anisotropy of thermal contraction of single crystal of calcic plagioclase, when introduced in the strong lattice fabrics in the lower gabbros results in finding the maximum thermal contraction direction parallel to maximum crystals elongation L1. This direction in the oceanic ridge referential is horizontal and perpendicular to microcracks dominant orientation. This high-T hydrothermal alteration in gabbros reaches the Moho. In the underlying peridotites, preliminary Sr isotopic data on clinopyroxene from wehrlites suggest that seawater was able to ingress at crystallization temperature for clinopyroxene. Interestingly, in these peridotites with horizontal foliation, thermal contraction, calculated as above from fabrics and thermal expansion coefficients in olivine, is vertical, being responsible for subhorizontal cracking, as deduced from serpentine dominant veining. Thus, during off-axis drifting of newly accreted lithosphere, thermal contraction opens vertical cracks, favoring seawater ingression down to the Moho. Below, in peridotites, the horizontal microcrack system would favor closing of hydrothermal circuit at Moho level.

  5. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  6. Effects of hydrothermal alteration on Pb in the active PACMANUS hydrothermal field, ODP Leg 193, Manus Basin, Papua New Guinea: A LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Beaudoin, Yannick; Scott, Steven D.; Gorton, Michael P.; Zajacz, Zoltan; Halter, Werner

    2007-09-01

    The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350 °C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are

  7. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    In 2010, IODP Expedition 331 was conducted in the Iheya North Field, the Okinawa Trough and drilled several sites in hydrothermally active subseafloor. In addition, during the IODP Expedition 331, four new hydrothermal vents were created. These post-drilling artificial hydrothermal vents provide excellent opportunities to investigate the physical, chemical and microbiological characteristics of the previously unexplored subseafloor hydrothermal fluid reservoirs, and to monitor and estimate how the anthropogenic drilling behaviors affect the deep-sea hydrothermal vent ecosystem. We were very much interested in the difference of hydrothermal fluid chemistry between the natural hydrothermal vents and the artificial hydrothermal vents. The IODP porewater chemistry of the cores pointed to the density-driven stratification of the phase-separated hydrothermal fluids and the natural vent fluids were likely derived only from the shallower vapor-enriched phases. However, the artificial hydrothermal vents had deeper fluid sources in the subseafloor hydrothermal fluid reservoirs composed of vapor-lost (Cl-enriched) phases. The fluids from the artificial hydrothermal vents were sampled by ROV at 5, 12 and 18 months after the IODP expedition. The artificial hydrothermal vent fluids were slightly enriched with Cl as compared to the natural hydrothermal vent fluids. Thus, the artificial hydrothermal vents successfully entrained the previously unexplored subseafloor hydrothermal fluids. The newly created hydrothermal vents also hosted the very quickly grown, enormous chimney structures, of which mineral compositions were highly variable among the vents. However, the quickly grown C0016B and C0016D vent chimneys were found to be typical Kuroko ore even though the chimney growth rates in the artificial vents were extremely faster than those in the natural vents. In addition, the IODP drilling operation not only created new hydrothermal vents by deep drilling but also induced the

  8. Coupled Porosity and Chemical Evolution of Hydrothermal Circulation: Implications for the Morphology of Vents and Recharge Zones at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Montesi, L.; Liao, Y.; Bai, H.; Ma, Z.; Tao, R.; Syverson, D. D.; Lowell, R. P.; Fischer, T. P.

    2015-12-01

    While the clearest evidence for hydrothermal circulation resides in focused upwellings at high-temperature vents, which form chimneys, circulation also features less-understood low-temperature diffuse flow and recharge zones. Flow focusing depends on the subsurface porosity and permeability structure, which, in the reactive environment of hydrothermal circulation, is likely influenced by mineral dissolution and precipitation from hydrothermal fluids. We developed two-dimensional Finite Element models of coupled reactive flow and porosity evolution and discuss how reactions may influence flow focusing and the morphology of upwellings and downwellings. This work can also address the chemical and thermal flux provided to the ocean, and the grade and volume of metal sulfide deposition. Our coupled system (See image) considers 1) Darcy flow driven by fluid buoyancy; 2) Heat transport in a porous medium; 3) Evolution of dissolved mineral concentration; 4) Evolution of porosity and permeability in response to mineral precipitation or dissolution. We also include an "ocean" layer, which allows hot fluid to escape the system without being forced to cool dramatically as they approach the seafloor. Absent porosity evolution, hydrothermal circulation forms flame-like upwellings that bend to avoid downdrafts. The circulation varies at the time scale of decades. Assuming thermodynamic equilibrium is maintained, precipitation of amorphous silica takes place in the upwellings as they rise and cool down. When coupled with porosity and permeability evolution, silicate precipitation forces the upwellings to flatten and become diffuse. Localized recharge zones stabilize and develop an armor of low porosity rocks where high temperature fluids cooled rapidly and deposited silica as they approach the recharge zone. This morphology of localized, armored recharge zone and diffuse upwellings does not match observations at natural vent fields, which implies that a critical element of the

  9. Hydrothermal activity and subsurface soil complexity: implication for outgassing processes at Solfatara crater, Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Mayer, Klaus; Scheu, Bettina; Isaia, Roberto; Mangiacapra, Annarita; Gresse, Marceau; Vandemeulebrouck, Jean; Moretti, Roberto; Dingwell, Donald B.

    2016-04-01

    The Solfatara area and its fumaroles are the main surface phenomena of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. The existing fault system appears to have a major control on outgassing which in turn leads to a strong alteration of the volcanic products. Moreover the maar-nature of the crater, and its filling by more recent volcanic deposits, resulted in a complex fractured and multilayered cap to the rising gases. As a consequence the hydrothermal alteration differently affects the rocks within the crater, including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias and lavas. The induced changes in both original microstructure and physical and mechanical properties of the rocks control the outgassing behavior. Here, we report results from a measurement survey conducted in July 2015, and aimed to characterize the in-situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties. The survey also included a mapping of the surficial hydrothermal features and their distributions. Chemical analyses and laboratory measurements (porosity, granulometry) of selected samples were additionally performed. Results show that the crater floor area comprises very different kinds of soils, from fine grained, thin laminated deposits around the two bubbling Fangaia mud pools, to crusted hummock formations along the SE and NE border of the crater. Dry and solid alunite-rich deposits are present in the western and southern part. Furthermore we observed evidences of a beginning of crust formation within the central part of the crater. A large range of surface temperatures, from boiling point to ambient temperature, were measured throughout the surveyed area. Outgassing occurs mainly along the crack system, which has also generated the crusted hummocks. Elsewhere the fluid circulation in the subsoil is favored by the presence of coarse and highly porous sulfur-hardened levels, whereas

  10. Boundary layer models of hydrothermal circulation on Mars and its relationship to geomorphic features

    NASA Astrophysics Data System (ADS)

    Craft, Kathleen L.; Lowell, Robert P.

    2012-05-01

    We apply steady state boundary layer theory to single phase, dike-driven hydrothermal systems beneath the surface of Mars to provide estimates of the heat and liquid water outputs over a range of crustal permeabilities and dike dimensions. Model results yielded a heat output of ˜1.8 × 1019 J/yr and a volumetric fluid flow rate of ˜15 km3/yr for a 1000 km long, 1 km tall dike-like intrusion injected into crust with a permeability of 10-11 m2. A similar, 10 km tall dike could generate a heat output of ˜5.6 × 1019 J/yr and ˜46 km3/yr of fluid flow. For dike half-widths of 10 and 100 m, total volume production of fluid ranged between ˜45 and ˜13,800 km3 along one side of the dike over the respective 3 and 300 year half-dike lifetimes. The calculated fluid flow rates are much less than those estimated for production of the outflow channel system, Athabasca Valles; yet, the total fluid volume produced is of the required magnitude. If fluid could be stored in a near surface reservoir until later episodic release(s), the water volume supplied by one side of a single, 100 m half-width, 200 km long, and 10 km tall dike emplaced into a region with permeability equal to 10-11 m2 could form the outflow channel. Hydrothermally generated meltwater from an overlying, near surface ice layer was found to contribute significantly to the fluid flow volume for this system.

  11. Disseminated sulphides in basalts from the northern Central Indian Ridge: implications on late-stage hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Banerjee, Ranadip; Ray, Dwijesh

    2015-04-01

    This study examined the mineralogy and mineral chemistry of disseminated sulphides (mainly chalcopyrite-pyrite) in partly altered basalts from the northern Central Indian Ridge, Indian Ocean in order to understand the role of hydrothermal alterations and infer possible sulphide formation history. Pyrite and chalcopyrite are dominant sulphide minerals and generally associated with the oxide phases including magnetite and often ilmenite. Close association of sulphide and oxide minerals suggests that they are paragenetically related. Sulphides also occur as late impregnated veins cutting through the basaltic hosts. The chemical compositions of pyrite (avg. Fe 46.3 wt%, S 53.7 wt%) and chalcopyrite (avg. Cu 34.4 wt%, Fe 30.7 wt%, S 34.7 wt%) are almost uniform, while the secondary ilmenite often shows MnO enrichment (up to 3.0-3.4 wt%). The associated altered minerals typically resemble the greenschist facies mineral assemblages—e.g. chlorite±epidote. Evidence of albitisation and silicification suggests low-temperature hydrothermal alteration processes. This is supported by the bulk Au content (up to 60 ppb) of host-altered basalts with pyrite mineralisation. Au is usually associated with late-stage pyrites and thus related with low-temperature hydrothermal activity. Close to the dredge location, tectonic activity around the Vityaz megamullion might have promoted hydrothermal circulation and subsequent alteration of the mineral constituents in basalts, eventually inducing the formation of late-stage disseminated sulphide minerals in these rocks.

  12. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    NASA Astrophysics Data System (ADS)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  13. Tidal Evolution and Hydrothermal Activity in IcyWorlds

    NASA Astrophysics Data System (ADS)

    Vance, S.; Hussmann, H.

    2008-09-01

    The tidal heating that sustains a subsurface ocean in Europa likely varied in intensity through the moons history due to the exchange of orbital angular momentum with the innermost Galilean satellite, Io [1]. Tidal interactions elsewhere in the solar system — e.g. in Neptunes moon Triton, and in Kuiper belt systems such as Pluto-Charon and the 2003 EL61 system (Santa-Rudolph-Blitzen) — highlight the potential for vigorously heated subsurface oceans and thus the existence of hydrothermal systems in icy worlds. Understanding the extent and nature of hydrothermal activity in such systems is important for assessing the availability of essential elements and organic compounds necessary sustain and, possibly, originate life [2, 3, 4, 5, 6, 7]. During periods of low tidal heating in such systems, hydrothermalism driven by serpentinization (reaction of water with ultramafic rock) may be extensive, with implications for seafloor production of hydrogen, methane and other potential nutrients, and elements necessary to originate and support life in icy world oceans. For Enceladus, an anomalously dense satellite for its size, radiogenic heating and overburden pressure in the mantle are sufficiently low to permit fracturing of the entirety of the moons rocky interior on long time scales [8]. Estimates of methane production from serpentinization of Enceladus interior, based on measured fluxes from the Lost City Hydrothermal Field [9], are an order of magnitude greater than fluxes observed at Enceladuss south polar plume by the Cassini Ion Neutral Mass Spectrometer [10]. For the largest icy worlds in the Solar System — Titan, Ganymede and Callisto—pressures at and below the H2Orock interface are likely too high to permit the formation of microfractures, so an alternative explanation is required if methane is endogenous. Aqueous alteration may be augmented from the above estimates if altered crust is rejuvenated during periods of increased tidal dissipation. Crustal

  14. Hydrothermal Activity on the Southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    German, C. R.; Connelly, D. P.; Evans, A. J.; Parson, L. M.

    2002-12-01

    close to a vent-site because this plume is particle laden as well as containing significant TDMn anomalies. Equivalent signals from the Broken Spur or SnakePit hydrothermal plumes (29N and 23N, MAR respectively) are only observed within 2-5km of those active vent-sites (German et al., Deep Sea Res. 1999).

  15. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    USGS Publications Warehouse

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  16. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    NASA Astrophysics Data System (ADS)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  17. Seafloor Hydrothermal Activity in the Southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Lundsten, L.; Zierenberg, R. A.; Troni, G.; Wheat, C. G.; Spelz, R. M.

    2015-12-01

    Active hydrothermal venting was previously unknown between Guaymas Basin and 21°N on the East Pacific Rise. MBARI AUV surveys and ROV dives in 2012 and 2015 discovered 7 hydrothermal vent sites with diverse and varied vent communities within that gap. One field in the Pescadero Basin vents clear shimmering fluids at 3685 m depth and four vigorous black smoker fields and several extinct chimney fields are between 2225 and 2400 m depth on the Alarcón Rise. Low-temperature vent sites are present on both of the Pescadero and Tamayo Transforms. The chimneys were discovered in 1-m resolution AUV bathymetric data, with some indicated to be active based on temperature anomalies in the AUV CTD data and confirmed during later ROV dives. The low-temperature vent sites on the transform faults were found on ROV dives while exploring young lava flows and sediment hills uplifted by sill intrusions. Pescadero Basin is a deep extensional basin in the southern Gulf. The smooth, subtly faulted floor is filled with at least 150 m of sediment, as determined from sub-bottom profiles collected by the AUV. Three large chimneys (named Auka by our Mexican collaborators) and several broad mounds are located on the SW margin of the basin. Temperatures to 290°C were measured, the fluids are clear, neutral pH, and contain elevated Na. The chimneys are delicate, white, predominantly Ca-carbonate; barite, sparse sulfides, and some aromatic hydrocarbons are also present. Three active vent fields (Ja Sít, Pericú, and Meyibó) at Alarcón Rise are located near the eruptive fissure of an extensive young sheet flow. The fourth field (Tzab-ek) is 1.1 km NW of the axis on older pillow lavas. The largest chimneys are in the Tzab-ek field: 31 and 33 m tall, with flanges and upside-down waterfalls. They rise from a sulfide mound, suggesting a long-lived hydrothermal system, in contrast to the near-axis fields where the chimneys grow directly on basalt. The Alarcón chimneys are Zn and Cu-rich sulfides

  18. Origin of fumarolic fluids at Vulcano (Italy). Insights from isotope data and numerical modeling of hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Todesco, Micol

    1997-10-01

    Hydrothermal activity is often associated with active volcanic systems. During quiescent times, geochemical monitoring of discharged fluids commonly is carried out to gain insights on the state of evolution of the whole volcanic system. The interest in geochemical monitoring derives from the observation that compositional variations of discharged fluids are commonly observed as a new eruptive phase is approaching. In particular, an increase in the gas components of direct magmatic origin may indicate a higher magma degassing rate at depth, potentially related to a renewal of explosive activity. Surveillance programs devoted to hazard mitigation in active volcanic areas generally include periodic analyses of discharged fluids at various locations on the volcanic edifice. Unfortunately, when significant changes are observed in gas composition, their correct interpretation in terms of system evolution is not always clear and straightforward. Several mechanisms may in fact be responsible for differences in the proportion of magmatic gases and shallower fluid components, and it is not always possible to recognize the magmatic gas fraction. Discrimination among fluids of different origin ideally is accomplished based on the isotope composition that each fluid acquires at the time of its generation. However, this isotope signature can be altered before the fluids reach the surface, because of mixing between fluids of different origin, or due to reactions that modify the original isotope composition. Thus, the interpretation of isotope data sometimes is quite complex and it can be highly misleading. In this work, the origin of the steam discharged at the hydrothermal system of Vulcano (Italy) was investigated by the means of a dual approach: first, the available isotope data on the discharged steam were analyzed. On the basis of on these and other data, a conceptual model of the hydrothermal system was developed and numerical simulations of a multiphase, multicomponent

  19. Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars

    USGS Publications Warehouse

    El Maarry, M.R.; Dohm, J.M.; Marzo, G.A.; Fergason, R.; Goetz, W.; Heggy, E.; Pack, A.; Markiewicz, W.J.

    2012-01-01

    A multidisciplinary approach involving various remote sensing instruments is used to investigate Apollinaris Mons, a prominent volcano on Mars, as well as the surrounding plains for signs of prolonged hydrologic and volcanic, and possibly hydrothermal activity. The main findings include (1) evidence from laser altimetry indicating the large thickness (1.5-2. km at some locations) of the fan deposits draping the southern flank contrary to previous estimates, coupled with possible layering which point to a significant emplacement phase at Apollinaris Mons, (2) corroboration of Robinson et al. (Robinson, M.S., Mouginis-Mark, P.J., Zimbelman, J.R., Wu, S.S.C., Ablin, K.K., Howington-Kraus, A.E. [1993]. Icarus 104, 301-323) hypothesis regarding the formation of incised valleys on the western flanks by density current erosion which would indicate magma-water interaction or, alternatively, volatile-rich magmas early in the volcano's history, (3) mounds of diverse geometric shapes, many of which display summit depressions and occur among faults and fractures, possibly marking venting, (4) strong indicators on the flanks of the volcano for lahar events, and possibly, a caldera lake, (5) ubiquitous presence of impact craters displaying fluidized ejecta in both shield-forming (flank and caldera) materials and materials that surround the volcano that are indicative of water-rich target materials at the time of impact, (6) long-term complex association in time among shield-forming materials and Medusae Fossae Formation.The findings point to a site of extensive volcanic and hydrologic activity with possibly a period of magma-water interaction and hydrothermal activity. Finally, we propose that the mound structures around Apollinaris should be prime targets for further in situ exploration and search for possible exobiological signatures. ?? 2011 Elsevier Inc..

  20. Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars

    USGS Publications Warehouse

    El Maarry, M. Ramy; Dohm, James M.; Marzo, Giuseppe A.; Fergason, Robin; Goetz, Walter; Heggy, Essam; Pack, Andreas; Markiewicz, Wojciech J.

    2012-01-01

    A multidisciplinary approach involving various remote sensing instruments is used to investigate Apollinaris Mons, a prominent volcano on Mars, as well as the surrounding plains for signs of prolonged hydrologic and volcanic, and possibly hydrothermal activity. The main findings include (1) evidence from laser altimetry indicating the large thickness (1.5–2 km at some locations) of the fan deposits draping the southern flank contrary to previous estimates, coupled with possible layering which point to a significant emplacement phase at Apollinaris Mons, (2) corroboration of Robinson et al. (Robinson, M.S., Mouginis-Mark, P.J., Zimbelman, J.R., Wu, S.S.C., Ablin, K.K., Howington-Kraus, A.E. [1993]. Icarus 104, 301–323) hypothesis regarding the formation of incised valleys on the western flanks by density current erosion which would indicate magma–water interaction or, alternatively, volatile-rich magmas early in the volcano’s history, (3) mounds of diverse geometric shapes, many of which display summit depressions and occur among faults and fractures, possibly marking venting, (4) strong indicators on the flanks of the volcano for lahar events, and possibly, a caldera lake, (5) ubiquitous presence of impact craters displaying fluidized ejecta in both shield-forming (flank and caldera) materials and materials that surround the volcano that are indicative of water-rich target materials at the time of impact, (6) long-term complex association in time among shield-forming materials and Medusae Fossae Formation. The findings point to a site of extensive volcanic and hydrologic activity with possibly a period of magma–water interaction and hydrothermal activity. Finally, we propose that the mound structures around Apollinaris should be prime targets for further in situ exploration and search for possible exobiological signatures.

  1. Genesis and preservation of a uranium-rich paleozoic epithermal system with a surface expression (Northern Flinders Ranges, South Australia): radiogenic heat driving regional hydrothermal circulation over geological timescales.

    PubMed

    Brugger, Joël; Wülser, Pierre-Alain; Foden, John

    2011-01-01

    The surface expressions of hydrothermal systems are prime targets for astrobiological exploration, and fossil systems on Earth provide an analogue to guide this endeavor. The Paleozoic Mt. Gee-Mt. Painter system (MGPS) in the Northern Flinders Ranges of South Australia is exceptionally well preserved and displays both a subsurface quartz sinter (boiling horizon) and remnants of aerial sinter pools that lie in near-original position. The energy source for the MGPS is not related to volcanism but to radiogenic heat produced by U-Th-K-rich host rocks. This radiogenic heat source drove hydrothermal circulation over a long period of time (hundreds of millions of years, from Permian to present), with peaks in hydrothermal activity during periods of uplift and high water supply. This process is reflected by ongoing hot spring activity along a nearby fault. The exceptional preservation of the MGPS resulted from the lack of proximal volcanism, coupled with tectonics driven by an oscillating far-field stress that resulted in episodic basement uplift. Hydrothermal activity caused the remobilization of U and rare earth elements (REE) in host rocks into (sub)economic concentrations. Radiogenic-heat-driven systems are attractive analogues for environments that can sustain life over geological times; the MGPS preserves evidence of episodic fluid flow for the past ∼300 million years. During periods of reduced hydrothermal activity (e.g., limited water supply, quiet tectonics), radiolytic H(2) production has the potential to support an ecosystem indefinitely. Remote exploration for deposits similar to those at the MGPS systems can be achieved by combining hyperspectral and gamma-ray spectroscopy.

  2. Enhanced hydrothermal activity along the East Pacific Rise during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.

    2015-12-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Scaling estimates [1-2] and model results [3-4] indicate that glacial-interglacial changes in sea level should modulate melt production at mid-ocean ridges, an idea that has been confirmed with detailed surveys of ridge bathymetry [4-5]. The nature and timing of associated changes in hydrothermal activity have remained unknown, however, precluding a clear understanding of whether ridge magmatism can act as a negative feedback on ice sheet size. Here we present multiple records of hydrothermal sedimentation spanning 1300 km of the East Pacific Rise (EPR). At each location, the flux of Fe, Mn, and As increased beginning at ~25 kyr BP, reached maximum values by 15 kyr BP, and then decreased into the Holocene. Lateral sediment focusing is an unlikely explanation given the similar signal in multiple cores and the lack of evidence for anomalous horizontal transport in 3He-based focusing factors. Coherent variations in Fe, Mn, and As suggest that diagenetic overprinting is not the primary driver of the down core signal. Elevated metal fluxes also occur during Termination II. The time series of hydrothermal sedimentation bear a strong resemblance to a record of seafloor bathymetry from 17ºS [5], suggesting that both have a common driver. The simplest explanation is glacial-interglacial variations in sea level, which apparently modulates sub-ridge melting, seafloor bathymetry, and hydrothermal activity at the EPR. Our results imply that geothermal heat flux from ridges increases during the last two glacial terminations, which should act to erode the deep ocean stratification, enhance the abyssal circulation, and transmit excess heat to the Southern Ocean, thereby setting the stage for deglaciation. [1] Lund and Asimow (2008) AGU Fall Meeting, Abstract #PP11D-08. [2] Huybers and Langmuir (2009) Earth and Planetary Science Letters 286, 479-491. [3] Lund and Asimow (2011

  3. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, Martin J.

    2006-02-01

    Formation of the Warrawoona Group are intimately associated with barite and chert precipitates from hydrothermal vents, suggesting that component microbes may have been chemoautotrophic hyperthermophiles. Evidence of shallow water to periodically exposed conditions, active growth faulting and soft sediment deformation indicates that the volcanogenic emissions were erupted into a shallow water, tectonically active caldera and concentrated therein to produce an extreme habitat for early life. Widespread conical and pseudocolumnar stromatolites in the c. 3400 Ma, Strelley Pool Chert at the base of the unconformably overlying Kelly Group occur in shallow marine platform carbonates. Silicification was the result of later hydrothermal circulation driven by heat from the overlying, newly erupted Euro Basalt. The markedly different morphology and geological setting of these only slightly younger stromatolites, compared with the Dresser Formation, suggests a diversity of microbial life on early Earth. The biogenicity of putative microfossils from this and younger hydrothermal silica veins in the Warrawoona Group remains controversial and requires further detailed study.

  4. Dynamic behavior of Kilauea Volcano and its relation to hydrothermal systems and geothermal energy

    USGS Publications Warehouse

    Kauhikaua, Jim; Moore, R.B.; ,

    1993-01-01

    Exploitation of hydrothermal systems on active basaltic volcanoes poses some unique questions about the role of volcanism and hydrothermal system evolution. Volcanic activity creates and maintains hydrothermal systems while earthquakes create permeable fractures that, at least temporarily, enhance circulation. Magma and water, possibly hydrothermal water, can interact violently to produce explosive eruptions. Finally, we speculate on whether volcanic behavior can be affected by high rates of heat extraction.

  5. Vein networks in hydrothermal systems provide constraints for the monitoring of active volcanoes.

    PubMed

    Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido

    2017-12-01

    Vein networks affect the hydrothermal systems of many volcanoes, and variations in their arrangement may precede hydrothermal and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the hydrothermal field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the hydrothermal processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 hydrothermal sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the hydrothermal source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in hydrothermal fields may reflect pressurization at depth potentially preceding hydrothermal explosions. This has significant implications for the long-term monitoring strategy of volcanoes.

  6. Post-Impact Hydrothermal Activity at the Haughton Impact Structure, Devon Island, Nunavut, Canada

    NASA Technical Reports Server (NTRS)

    Osinski, G. R.; Spray, J. G.; Bunch, T. E.; Grieve, R. A. F.; Schutt, J. W.; Lee, P.

    2000-01-01

    Evidence for impact-generated hydrothermal activity is reported from the Haughton crater, Canada. Two distinct settings have been found: (1) pipe structures with marcasite, pyrite and minor chalcopyrite; (2) cavity and fracture fillings with marcasite predominant.

  7. Role of tectonic and volcanic activity in hydrothermal systems at the southern Mariana Trough: detailed bathymetric characteristics of the hydrothermal sites

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Okino, K.; Asada, M.; Nogi, Y.; Mochizuki, N.; Nakamura, K.

    2012-12-01

    We present the detailed bathymetric characterization of field-scale geological features associated with hydrothermal systems in the southern Mariana Trough near 12°57'N, 143°37'E, using near-bottom swath mapping data collected by the autonomous underwater vehicle (AUV) Urashima during cruise YK09-08 and dive observation data acquired by the submersible Shinkai6500 during cruise YK10-11. In the study area, two of the hydrothermal sites are located on the active backarc spreading axis (the Snail and Yamanaka sites), one is located at the eastern foot of the axial high (the Archean site), and two are located on an off-axis knoll about 5 km from the spreading axis (the Pika and Urashima sites). We examined 1) the nature of' tectonic and volcanic controls on the hydrothermal systems, and 2) the relationship between geomorphological characteristics and hydrothermal activity based on the survey results (Yoshikawa et al., 2012). The two on-axis hydrothermal sites are possibly locally developed on a 4th order spreading segment, in association with diking events (on the basis of comparisons with previously studied cases on the East Pacific Rise). The three off-axis sites (the Archean, Urashima, and Pika sites) appear to represent locations of sustained hydrothermal activity that has created relatively large-scale hydrothermal features compared with those in the on-axis area. The formation of off-axis hydrothermal sites is likely to be closely related to an off-axis magma upwelling system, as evidenced by the absence of fault systems and the undeformed morphology of the mound and knoll. The three off-axis hydrothermal sites are composed mainly of breccia assemblages that probably originated from hydrothermal activity with black smoker venting. These areas are characterized by numerous ridge lines (height, mainly 1-6 m), conical mounds (height: < 100 m, diameter: < 300 m), and bumpy seabed. Most of the ridge lines have formed as a result of collapse of the seafloor. The

  8. Enceladus and Europa: How Does Hydrothermal Activity Begin at the Surface?

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    The question of how the surface hydrothermal activity (e.g., eruptive plumes and heat flow) is initiated can be addressed within the frame-work of our "Perrier Ocean" model. This model delivers the necessary heat and chemicals to support the heat flow and plumes observed by Cassini in Enceladus' South Polar Region. The model employs closed-loop circulation of water from a sub-surface ocean. The ocean is the main reservoir of heat and chemicals, including dissolved gases. As ocean water moves up toward the surface, pressure is re-duced and gases exsolve forming bubbles. This bub-bly mixture is less dense than the icy crust and the buoyant ocean-water mixture rises toward the surface. Near the surface, heat and chemicals, including some volatiles, are delivered to the chambers in which plumes form and also to shallow reservoirs that keep the surface ice "warm". (Plume operations, per se, are as described by Schmidt et al. and Postberg et al. and are adopted by us.) After transferring heat, the water cools, bubbles contract and dissolve, and the mixture is now relatively dense. It descends through cracks in the crust and returns to the ocean. Once the closed-loop circulation has started it is self-sustaining. Loss of water via the erupting plumes is relatively negligible compared to the amount needed to maintain the heat flow.We note that the activity described herein for the the "Perrier-Ocean" model could, a priori, apply to all small icy bodies that sheltered an interior ocean at some point in their history.

  9. Seismic structure and seismicity at the southern Mariana Trough with hydrothermal activities

    NASA Astrophysics Data System (ADS)

    Sato, T.; Mizuno, M.; Takada, H.; Yamada, T.; Isse, T.; Shinohara, M.

    2012-12-01

    The Southern Mariana Trough back-arc spreading system shows asymmetry spreading, and has high relief at spreading axes, which infers abundant melt supply. Furthermore, five hydrothermal vents that extrude different water contents, exist within 5 km near the spreading axis. To investigate upper mantle structure, crustal structure and hypocenter distribution provide important constraint on following four main points to understand the back-arc spreading system; 1) imaging melt delivery to the spreading axis and off axis seamount including volcanic arc, 2) production and character of the crust, 3) relationship between melt supply and crustal formation, and 4) pathway and heat source for hydrothermal circulation with related to its formation. We conducted a seismic reflection/refraction survey and seismicity observation at the hydrothermal area in the Southern Mariana Trough from August to November in 2010. We used 9 ocean bottom seismometers, an air gun (GI gun) and a single channel streamer cable. We took 7 parallel lines and 7 perpendicular lines to the spreading center. Line length was 15 km each, and line interval was 2.5 km. From the survey and observation, we obtained very low seismicity at the hydrothermal area in the 3 month's observation. The reflection survey shows that some reflectors exist under the hydrothermal area. In this presentation, we will also show seismic velocity structures from the refraction survey.

  10. Heat Flow on the Incoming Plate Offshore Nicoya, Costa Rica margin: Implications for Hydrothermal Circulation and the Thermal State of the Subducting Plate

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Harris, R. N.; Stein, C.; Wang, K.; Hutnak, M.; Cherkaoui, A.; Pfender, M.; Cleary, R.; Silver, E.; Wheat, C. G.; Bodzin, R.; Underwood, M.; Moser, C.; Kelly, R.; Friedmann, P.; Stewart, Y.; Jones, K.

    2001-12-01

    The TicoFlux I expedition was intended to determine the nature of hydrothermal activity and its influence on subduction processes offshore of the Nicoya Peninsula, Costa Rica margin, on 20-25 Ma lithosphere. Prior coverage in this region was sparse, but suggested that heat flow from crust created at the East Pacific Rise (EPR) as generally lower (by 50-70%) than expected for seafloor of 20-25 Ma. In contrast, heat flow through similarly-aged seafloor created at the Cocos-Nazca Ridge was at or greater than values predicted by standard lithospheric cooling models. One goal of our expedition was to confirm this overall pattern through collection of modern data at higher resolution along a series of transects coinciding with newly-acquired seismic profiles. A second goal was to determine the cause for the difference in heat flow, through evaluation of the lateral scale of the transition between higher and lower values. If the difference in heat flow is caused by variations in heat input at the base of the plate, the transition should be broad and gradual, with a wavelength that scales with plate thickness. If the difference in seafloor heat flow results from advective mining of heat from EPR-generated lithosphere, the transition should be abrupt, with a wavelength that scales with the depth of hydrothermal cooling. We crossed the transition in three places and in each case, the change from normal to anomalously-low heat flow values occurred over a distance of just a few kilometers, consistent with a shallow, fluid flow explanation. In addition, the survey identified an area of anomalously high heat flow (640 mW/m2) immediately above a deep, low-angle reflection that may be a crust-penetrating fault. High heat flow in this area may result from fluid circulation along the fault, carrying heat from depth. The heat flow survey also demonstrated that a low-heat flow area identified during an earlier survey, and drilled during ODP Leg 170, is surrounded on three sides by

  11. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor.

    PubMed

    Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-Ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2017-02-01

    Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ(13)C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.

  12. Major off-axis hydrothermal activity on the northern Gorda Ridge

    USGS Publications Warehouse

    Rona, Peter A.; Denlinger, Roger P.; Fisk, M. R.; Howard, K. J.; Taghon, G. L.; Klitgord, Kim D.; McClain, James S.; McMurray, G. R.; Wiltshire, J. C.

    1990-01-01

    The first hydrothermal field on the northern Gorda Ridge, the Sea Cliff hydrothermal field, was discovered and geologic controls of hydrothermal activity in the rift valley were investigated on a dive series using the DSV Sea Cliff. The Sea Cliff hydrothermal field was discovered where predicted at the intersection of axis-oblique and axis-parallel faults at the south end of a linear ridge at mid-depth (2700 m) on the east wall. Preliminary mapping and smpling of the field reveal: a setting nested on nearly sediment-free fault blocks 300 m above the rift valley floor 2.6 km from the axis; a spectrum of venting types from seeps to black smokers; high conductive heat flow estimated to be equivalent to the convective flux of multiple black smokers through areas of the sea floor sealed by a caprock of elastic breccia primarily derived from basalt with siliceous cement and barite pore fillings; and a vent biota with Juan de Fuca Ridge affinites. These findings demonstrate the importance of off-axis hydrothermal activity and the role of the intersection of tectonic lineations in controlling hydrothermal sites at sea-floor spreading centers.

  13. Hydrothermal Activity and Volcanism on the Southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Haase, K. M.; Scientific Party, M.

    2005-12-01

    In April 2005 four recently discovered different hydrothermal fields on the slow-spreading Mid-Atlantic Ridge (MAR) south of the Equator were studied and sampled using a remotely operated vehicle (ROV) during cruise METEOR 64/1. Three of these hydrothermally active fields (called Turtle Pits, Red Lion, and Wideawake) occur at about 3000 m water depth in the centre of a MAR segment at 4° 48'S which appears to be volcanically very active. The youngest lava flow partly covers the low-temperature, diffuse flow Wideawake mussel field and is thus probably only a few years old. The high-temperature Turtle Pits hydrothermal field with four active vent structures lies some 300 m west of the diffuse vent field and is characterized by boiling fluids with temperatures close to 400° C. The mineral assemblage recovered from inactive hydrothermal mounds includes massive magnetite+hematite+sulfate and differs from that of the presently active vents and indicates more oxidizing conditions during the earlier activity. The vent fluids at Turtle Pits contain relatively high contents of hydrogen which may have formed during iron oxidation processes when basaltic magmas crystallized. The high fluid temperatures, the change to more reducing conditions, and the relatively high hydrogen contents in the fluids are most likely due to the ascent of magmas from the mantle that fed the very recent eruption. The high-temperature Red Lion hydrothermal field lies some 2 km north of the Turtle Pits field and consists of at least four active black smokers surrounded by several inactive sulfide mounds. The composition of the Red Lion fluids differs significantly from the Turtle Pits fluids, possibly owing largely to a difference in the temperature of the two systems. The fourth hydrothermally active field on the southern MAR, the Liliput field, was discovered near 9° 33'S in a water depth of 1500 m and consists of several low-temperature vents. A shallow hydrothermal plume in the water column

  14. Discovery of Active Hydrothermal Sites Along the Mariana Volcanic Arc, Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Embley, R. W.; Resing, J. A.; Lupton, J. E.; Massoth, G. J.; de Ronde, C. E.; Nakamura, K.; Walker, S. L.

    2003-12-01

    Some 20,000 km of volcanic arcs, roughly one-third the total length of the global midocean ridge (MOR) system, rim the western Pacific Ocean. But compared to 25 years of hydrothermal investigations along MORs, exploration of similar activity on the estimated 600 submarine arc volcanoes is only beginning. In February 2003, as part of the Submarine Ring of Fire project funded by NOAA's Ocean Exploration Program, we made the first systematic survey of hydrothermal activity along the 1270-km-long Mariana intraoceanic volcanic arc, which lies almost entirely within the US EEZ. Prior fieldwork had documented active (but low-temperature) hydrothermal discharge on only three volcanoes: Kasuga 2, Kasuga 3, and Esmeralda Bank. During the cruise, we conducted 70 CTD operations over more than 50 individual volcanoes from 13° N to 23° N, plus a continuous CTD survey along 75 km of the back-arc spreading center (13° 15'N to 13° 41'N) adjacent to the southern end of the arc. We found evidence for active hydrothermal venting at 11 submarine volcanoes with summit (or caldera floor) depths ranging from 50 to 1550 m. Two additional sites were identified on the back-arc spreading center. Ongoing analyses of collected water samples could increase these totals. Our results confirmed continuing hydrothermal activity at Kasuga 2 (but not Kasuga 3) and Esmeralda Bank, in addition to newly discovered sites on nine other volcanoes. Many of these sites produce intense and widely dispersed plumes indicative of vigorous, high-temperature discharge. The volcanoes with active hydrothermal systems are about equally divided between those with and without summit calderas. The addition of the Marianas data greatly improves our view of hydrothermal sources along arcs. The 20,000 km of Pacific arcs can be divided between 6380 km of intraoceanic (i.e., mostly submarine) arcs and 13,880 km of island (i.e., mostly subaerial) arcs. At present, ˜15% of the total length of Pacific arcs has been surveyed

  15. Understanding hydrothermal circulation patterns at a low-enthalpy thermal spring using audio-magnetotelluric data: A case study from Ireland

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozar, Jan; Walsh, John; Rath, Volker

    2016-09-01

    Kilbrook spring is a thermal spring in east-central Ireland. The temperatures in the spring are the highest recorded for any thermal spring in Ireland (maximum of 25 °C). The temperature is elevated with respect to average Irish groundwater temperatures (9.5-10.5 °C), and represents a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon an audio-magnetotelluric (AMT) survey, and hydrochemical analysis including time-lapse temperature and chemistry measurements, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The three-dimensional (3-D) electrical resistivity model of the subsurface at Kilbrook spring was obtained by the inversion of AMT impedances and vertical magnetic transfer functions. The model is interpreted alongside high resolution temperature and electrical conductivity measurements, and a previous hydrochemical analysis. The hydrochemical analysis and time-lapse measurements suggest that the thermal waters have a relatively stable temperature and major ion hydrochemistry, and flow within the limestones of the Carboniferous Dublin Basin at all times. The 3-D resistivity model of the subsurface reveals a prominent NNW aligned structure within a highly resistive limestone lithology that is interpreted as a dissolutionally enhanced strike-slip fault, of Cenozoic age. The karstification of this structure, which extends to depths of at least 500 m directly beneath the spring, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 560 and 1000 m) within the limestone succession of the Dublin Basin. The results of this study support the hypothesis that the winter thermal maximum and simultaneous increased discharge at Kilbrook spring is the result of rapid infiltration, heating and

  16. Present-day submarine hydrothermal activity in the Taupo-Rotorua Zone (Bay of Plenty, New Zealand)

    SciTech Connect

    Osipenko, A.B.; Egorov, Yu.O.; Fazlullin, S.M.; Gavrilenko, G.M.; Shul`kin, V.I.; Chertkova, L.V.

    1994-09-01

    We made detailed descriptions of the structure and material composition of sedimentary and water columns in the vicinity of active submarine hydrothermal activity in the southern part of the Bay of Plenty (North Island, New Zealand). Geophysical methods revealed that the hydrothermal system is confined to a tectonically distinct zone with a sedimentary cover characterized by complex structure. Chemical and mineralogical investigations confirmed that the activity of underwater vents exerts no substantial regional influence on the composition and features of ore mineralization in these formations. It is shown that essentially hydrothermal formations distinguishable within areas of otherwise monotypic sediments directly coincide with zones of hydrothermal discharge in the ocean floor. The absence of pronounced hydrothermal anomalies, together with the presence of {open_quotes}tongues{close_quotes} of anomalous concentrations of water-soluble gases suggests that the discharges are primarily hydrothermal in character.

  17. Study of hydrothermal channels based on near-bottom magnetic prospecting: Application to Longqi hydrothermal area

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.

    2014-12-01

    Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.

  18. Characterising the hydrothermal circulation patterns beneath thermal springs in the limestones of the Carboniferous Dublin Basin, Ireland: a geophysical and geochemical approach.

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozár, Jan; Walsh, John; Rath, Volker

    2016-04-01

    A hydrogeological conceptual model of the sources, circulation pathways and temporal variations of two low-enthalpy thermal springs is derived from a multi-disciplinary approach. The springs are situated in the Carboniferous limestones of the Dublin Basin, in east-central Ireland. Kilbrook spring (Co. Kildare) has the highest recorded temperatures for any thermal spring in Ireland (maximum of 25.0 °C), and St. Gorman's Well (Co. Meath) has a complex and variable temperature profile (maximum of 21.8 °C). These temperatures are elevated with respect to average Irish groundwater temperatures (9.5 - 10.5 °C), and represent a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon audio-magnetotelluric (AMT) surveys, time-lapse temperature and chemistry measurements, and hydrochemical analysis, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The hydrochemical analysis indicates that the thermal waters flow within the limestones of the Dublin Basin, and there is evidence that Kilbrook spring receives a contribution from deep-basinal fluids. The time-lapse temperature, electrical conductivity and water level records for St. Gorman's Well indicate a strongly non-linear response to recharge inputs to the system, suggestive of fluid flow in karst conduits. The 3-D electrical resistivity models of the subsurface revealed two types of geological structure beneath the springs; (1) Carboniferous normal faults, and (2) Cenozoic strike-slip faults. These structures are dissolutionally enhanced, particularly where they intersect. The karstification of these structures, which extend to depths of at least 500 m, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 240 and 1,000 m) within the Dublin

  19. ESR dating of submarine hydrothermal activities using barite in sulfide deposition

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.

    2012-12-01

    The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). Determining the ages of the hydrothermal deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine hydrothermal deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine hydrothermal sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine hydrothermal area where the radiation level is much

  20. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Sleep, N.H.

    1983-01-01

    This chapter discusses the initial entry of hydrothermal seawater into deep levels of the oceanic crust, the effectiveness of hydrothermal circulation in cooling the crust, the geometry of hydrothermal circulation, the relationship between the hydrothermal circulation and the magma chamber, the reaction of the oceanic crust with the seawater, and the identification of the hydrothermal fluid which alters a rock sample. Topics considered include the crack front, observation relevant to the crack front, the limitations of the crack front hypothesis, the observed pattern of hydrothermal alteration, the nature of the hydrothermal fluid, the physics of large scale convection, and convection through crack zones. Knowledge of hydrothermal circulation at the ridge axis is based on sampling of the hydrothermal fluid, indirect geophysical measurements of the oceanic crust, and studies of rocks which are believed to have undergone hydrothermal alteration at the ridge axis. Includes 2 drawings.

  1. Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, S.; Sekine, Y.; Kempf, S.; Juhasz, A.; Horanyi, M.; Moragas-Klostermeyer, G.; Srama, R.

    2013-12-01

    Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor F. Postberg, H.-W. Hsu, Y. Sekine, S. Kempf, A. Juhasz, M. Horanyi, G. Moragas-Klostermeyer, R. Srama Silica serves as a unique indicator of hydrothermal activities on Earth as well as on Mars. Here we report the Cassini Cosmic Dust Analyser (CDA) observation of nanosilica particles from the Saturnian system. Based on their interaction with the solar wind electromagnetic fields, these charged nanosilica particles, so-called stream particles, are found to be originated in Saturn's E ring, indicating Enceladus being their ultimate source. CDA stream particle mass spectra reveal a metal-free but silicon-rich composition that is only plausible for nearly pure silica particles. The size range derived from our measurements confines the size of these particles to a radius of 2 - 8 nm. The unique properties of nano-grains with the observed composition and size are a well-known phenomenon on Earth and their formation requires specific hydrothermal rock-water interactions. The observation of Saturnian nanosilica particles thus serves as an evidence of hydrothermal activities at the interface of Enceladus subsurface ocean and its rocky core. Considering plasma erosion as the major mechanism of releasing embedded nanosilica particles from their carriers, the much larger E ring ice grains, our dynamical model and CDA observation provide a lower limit on the average nanosilica concentration in E ring grains. Together with dedicated hydrothermal experiments (Sekine at al., 2013) this can be translated into constraints on the hydrothermal activities on Enceladus. Measurements and experiments both point at dissolved silica concentrations at the ocean floor in the order of 1 - 3 mMol. The hydrothermal reactions likely take place with a pristine, chondritic rock composition at temperature higher than 130°C (Sekine at al. 2013). Colloidal nano-silica forms upon supersaturation during cooling of the

  2. Exploring an active hydrothermal system - An analogue study from the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Egli, Daniel; Herwegh, Marco; Berger, Alfons; Baron, Ludovic

    2016-04-01

    Understanding the detailed flow paths in hydrothermal reservoirs is crucial for successful exploration of naturally porous and permeable rock masses for energy production. However, due to the common inaccessibility of active hydrothermal systems of suitable depth, e.g. in the northern Alpine foreland of the European Alps, direct observations are normally impossible and the knowledge about such systems is still insufficient. For that reason, a known fault-bound hydrothermal system in the crystalline basement of the Aar Massif serves as an analogue for potential geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland. During summer 2015, a 125 m hole has been drilled across this active hydrothermal zone on the Grimsel Pass for in-situ characterization of its structural, petrophysical, mechanical as well as geophysical parameters. With this information, this project aims at improving the knowledge of natural hydrothermal systems as a potentially exploitable energy source. The investigated system is characterized by a central breccia zone surrounded by different types of cataclasites and localized high strain zones. The surrounding includes different altered and deformed granitoid host rocks. In this study, we focus on the ductile and brittle deformation (shear zones, fractures, joints) that provides the main fluid pathways. Their spatial distribution around a central water-bearing breccia zone as well as their continuity and permeability provide constraints on the water flow paths in such structurally controlled hydrothermal systems. The aim will be the connection of detailed structural data with petrophysical parameters such as porosities and permeabilities. The drillcore shows the high variability of deformation structures and related fluid pathways at different scales (millimeter-decameter) demonstrating the urgent need for an improved understanding of the link between mechanical evolution, associated deformation structures as well

  3. Formation of Hydrothermal nontronite associated with microbial activity at the South Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Ta, Kaiwen; Peng, Xiaotong; Chen, Shun; Xu, Hengchao; Li, Jiwei; Jiang, Lei; Du, Mengran

    2015-04-01

    Nontronite is an ubiquitous clay minerals in marine sediments, microbial mediation of hydrothermal nontronite have been increasing. The deposits collected from Southern Atlantic Ridge were very friable with an obvious laminated to stromatolitic to highly porous structure, varying from red, black to light yellow indicate redox condition may undergo range from micro-oxidizing to reducing. Although microbial activity are revealed to play an important role in the formation of clay minerals in sediment, little is currently known about microbial communities that reside in nontronite associated with hydrothermal activity. Here, we used Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), nano secondary ion mass spectrometer (nanoSIMS) and molecular techniques to focus on potential mediation role of microbial in the nontronite formation of low-temperature hydrothermal deposits in South Atlantic Mid-ocean ridge. Our data suggest that the presences of abundant lamellar nontronite structures, as well as microbe-like mineralized morphologies similar to consistent with a biogenic origin. Nontronite in the lower zone of Fe-Mn oxyhydroxides are inferred to have been suboxic environment and their formation appear to be significantly controlled by the locus of redox conditions. Keywords: Nontronite, Microbial activity, Hydrothermal deposits, Biogenic origin.

  4. A Fluorescein Tracer Release Experiment in the Hydrothermally Active Crater of Vailulu'u Volcano, Samoa

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Staudigel, H.; Workman, R.; Koppers, A.; Girard, A.

    2001-12-01

    the layer thickness at 61 percent of the peak concentration. Our data constrain K to be in the range 200-400 cm2/sec. This may be compared with a value of 0.3 cm2/sec measured at 300m in the open ocean and a value of 5-10 cm2/sec measured in the abyssal ocean near rough topography (Ledwell et al. 1998; 2000). Clearly the water in Vailulu'u crater is in active circulation, undoubtedly driven by hydrothermal inputs. Other physical characteristics attest to this as well - gradients in potential density are small below 850 m depth in the crater, with changes ranging from 0-80 parts per billion per meter; commonly the changes in density occur in staircase fashion, and occasionally the gradients are negative. The approximate thermal output of the crater can be estimated as follows. From analysis of water samples, the total Mn budget below 800 meters is 810 kg. With an eddy diffusivity of 300 cm2/sec, the crater will lose about 66 kg of Mn per day. The typical Mn output of a 5 megawatt hot smoker on a ridge is 28 kg/day. Thus it would take several hot smokers, or a thermal output of 10 megawatts, to maintain the observed Mn budget in the crater. We believe this would make John Edmond smile: the serendipitous exploration of an active submarine volcano, in tropical waters, using an icebreaker as a ship-of-opportunity, followed by post-cruise decompression in Tisa's Bare Foot bar, Pago Pago.

  5. Hydrothermal activity recorded in post Noachian-aged impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Turner, Stuart M. R.; Bridges, John C.; Grebby, Stephen; Ehlmann, Bethany L.

    2016-04-01

    Hydrothermal systems have previously been reported in ancient Noachian and Hesperian-aged craters on Mars using CRISM but not in Amazonian-aged impact craters. However, the nakhlite meteorites do provide evidence of Amazonian hydrothermal activity. This study uses CRISM data of 144 impact craters of ≥7 km diameter and 14 smaller craters (3-7 km diameter) within terrain mapped as Amazonian to search for minerals that may have formed as a result of impact-induced hydrothermal alteration or show excavation of ancient altered crust. No evidence indicating the presence of hydrated minerals was found in the 3-7 km impact craters. Hydrated minerals were identified in three complex impact craters, located at 52.42°N, 39.86°E in the Ismenius Lacus quadrangle, at 8.93°N, 141.28°E in Elysium, and within the previously studied Stokes crater. These three craters have diameters 20 km, 62 km, and 51 km. The locations of the hydrated mineral outcrops and their associated morphology indicate that two of these three impact craters—the unnamed Ismenius Lacus Crater and Stokes Crater—possibly hosted impact-induced hydrothermal systems, as they contain alteration assemblages on their central uplifts that are not apparent in their ejecta. Chlorite and Fe serpentine are identified within alluvial fans in the central uplift and rim of the Ismenius Lacus crater, whereas Stokes crater contains a host of Fe/Mg/Al phyllosilicates. However, excavation origin cannot be precluded. Our work suggests that impact-induced hydrothermalism was rare in the Amazonian and/or that impact-induced hydrothermal alteration was not sufficiently pervasive or spatially widespread for detection by CRISM.

  6. Deep-Sea Observatory EMSO-Azores (Lucky Strike, 37º17'N MAR): Impact of Fluid Circulation Pathway on Chemical Hydrothermal Fluxes

    NASA Astrophysics Data System (ADS)

    Chavagnac, V.; Leleu, T.; Boulart, C.; Barreyre, T.; Castillo, A.; Menjot, L.; Cannat, M.; Escartin, J.; Sarradin, P. M.

    2015-12-01

    The operational EMSO-Azores deep-sea observatory provides a unique opportunity combining yearly hydrothermal fluid sampling along with continuous monitoring of physical parameters (temperature, seismicity, pressure,…) to better constrain hydrothermal fluid flow dynamics both in time and space at the Lucky Strike vent field. Repeated sampling at this field since its discovery in the mid 90's shows persistent inter-site differences the end-member hot fluid compositions, revealing 4 groups of sites that possibly reflect various processes, such as phase separation, conductive cooling, tidal pumping, or magmatic activity. Three groups are at the main field, and a fourth one (Capelinhos) is 1,5 km to the E. We also identify a period of high CO2 content of hydrothermal fluids (up to 120 mmol/l), clearly showing replenishment of the magmatic chamber in 2008 and 2010. The Si-Cl geothermobarometer of the most vapor-dominated fluid (270 mmol/l, Capelinhos) gives a pressure of 370 bars and a temperature of ˜435ºC in the reaction zone. If hydrothermal cells operate in a cold hydrostatic pressure gradient, the transition between the reaction and upflow zones is located at about 2400 mbsf, with a magma lens at ˜3400 mbsf. Si-based geothermobarometry and empirical Fe/Mn geothermometry argue for P and T conditions close to seawater critical point at 300 bars (i.e. ˜1300mbsf) for Capelinhos. In contrast, the 3 other groups exhibit temperatures much lower than 380ºC, as well as reduced end-member Fe and Mn concentrations compared to those of Capelinhos. These physico-chemical features reflect the effects of conductive cooling along the upflow zone. Conductive cooling can vary spatially owing to variable substratum permeability across the hydrothermal field, a requisite to induce along-axis oriented hydrothermal cell. The end-member chemical features of the 4 groups suggest that local variations in tectonism and volcanism exert a strong control on heat, mass and chemical fluxes.

  7. Aqueous Volatiles in Hydrothermal fluids from the Main Endeavour Vent Field: Temporal Variability Following Earthquake Activity

    NASA Astrophysics Data System (ADS)

    Seewald, J. S.; Cruse, A. M.; Saccocia, P. J.

    2001-12-01

    Volatile species play a critical role in a broad spectrum of physical, chemical, and biological processes associated with hydrothermal circulation at oceanic spreading centers. Earthquake activity at the Main Endeavour vent field, northern Juan de Fuca Ridge in June 1999 [1] provided and opportunity to assess factors that regulate the flux of volatile species from the oceanic crust to the water column following a rapid change in subsurface reaction zone conditions. High temperature vent fluids were collected in gas-tight samplers at the Main Endeavour field in September 1999, approximately four months after the earthquakes, and again in July 2000, and were analyzed for the abundance of aqueous volatile and non-volatile species. Measured concentrations of aqueous H2, H2S, and CO2 increased substantially in September 1999 relative to pre-earthquake values [2,3], and subsequently decreased in July 2000, while aqueous Cl concentrations initially decreased in 1999 and subsequently increased in 2000. Concentrations of Cl in all fluids were depleted relative to seawater values. Aqueous CH4 and NH3 concentrations decreased in both the 1999 and 2000 samples relative to pre- earthquake values. Variations in Cl concentration of Endeavour fluids reflect varying degrees of phase separation under near critical temperature and pressure conditions. Because volatile species efficiently partition into the vapor phase, variations in their abundance as a function of Cl concentration can be used to constrain conditions of phase separation and fluid-rock interaction. For example, concentrations of volatile species that are not readily incorporated into minerals (CH4 and NH3) correlated weakly with Cl suggesting phase separation was occurring under supercritical conditions after the earthquake activity. In contrast, compositional data for fluids prior to the earthquakes indicate a strong negative correlation between these species and Cl suggesting phase separation under subcritical

  8. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

    PubMed

    Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S

    2013-07-01

    Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes.

  9. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research.

  10. The study of active submarine volcanoes and hydrothermal vents in the Southernmost Part of Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tsai, C.; Lee, C.

    2004-12-01

    The study area is located in the Southernmost Part of Okinawa Trough (SPOT), which is a back-arc basin formed by extension of Eurasian plate. Previous research indicated two extensional stages in SPOT area. Many normal-fault structures were come into existence during both extensional processes. The SPOT is presently in an activity tectonic episode. Therefore, the area becomes a frequent earthquake and abundant magmatism. The purpose of this study is to discuss which relationship between tectonics, submarine volcanoes and hydrothermal vents in SPOT area. The investigations are continued from 1998 to 2004, we have found at least twelve active hydrothermal vents in study area. Compare the locations hydrothermal vents with fault systems, we find both of them have highly correlated. We can distinguish them into two shapes, pyramidal shape and non-pyramidal shape. According to plumes height, we are able to divide these vents into two groups near east longitude 122.5° . East of this longitude, the hydrothermal plumes are more powerful and west of it are the weaker. This is closely related to the present extensional axis (N80° E) of the southern part of the Okinawa Trough. This can be explained the reason of why the more powerful vents coming out of the east group. The east group is associated with the present back-arc spreading system. West of 122.5° , the spreading system are in a primary stage. The andesitic volcanic island, the Turtle Island, is a result of N60° E extensional tectonism with a lot of faults. Besides the pyramidal shape, this can be proved indirectly. The vents located in the west side were occurred from previous extensional faults and are weaker than the eastern. Therefore, we suggest that if last the extension keeps going on, the hydrothermal vents located at the west side of the longitude 122.5° will be intensified.

  11. Coastal submarine hydrothermal activity of Northern Baja California 2. Evolutionary history and isotope geochemistry

    SciTech Connect

    Vidal, V.M.V.; Vidal, F.V.; Isaacs, J.D.

    1981-10-10

    A geochemical model of the Punta Banda submarine hydrothermal system (PBSHS) and Ensenada quadrangle subaerial hot springs is developed using /sup 18/O//sup 16/O, D/H, /sup 34/S//sup 32/S, /sup 3/H, water and gas chemistry. The PBSHS water is a primary high temperature, acid, reducing fluid of old seawater origin which has been titrated by cold, alkaline groundwater of meteoric origin. The final exiting solutions represent a 1:1 mixture of the two primary mixing components. In contrast, the subaerial hot spring waters are of unmixed meteoric origin. The subaerial hot spring gas is predominantly atmospheric N/sub 2/, while the PBSHS contains large amounts of CH/sub 4/ and N/sub 2/ derived from trapped marine sediments of Cretaceous age, deltaS/sup 34/ values of sampled hydrothermal waters are similar to Cretaceous marine sulfate values and suggest that the waters contacted Cretaceous marine sedimentary strata. The presence of the Alisitos and Rosario marine sedimentary formations of Cretaceous age within the Ensenada-Punta Banda quadrangel renders support to the above hypothesis. The data also demonstrate the pyrite mineralization and deposition in submarine hydrothermal environments result from the complexing of ferrous iron with elemental sulfur and sulfide and that submarine hydrothermal activity acts as a major source of silica, Ca/sup 2 +/, and trace metals and as a major sink for seawater Mg/sup 2 +/ and SO/sub 4//sup 2 -/.

  12. Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Fredriksson, Kurt; Goetzinger, Michael; Reimold, Wolf Uwe

    1989-01-01

    Quartz pebbles from the Roter Kamm impact crater (the Namib Desert, SWA/Namibia) were examined for evidence of impact-induced hydrothermal activity, using results from microprobe analyses, neutron activation analyses, transmission IR spectroscopy, and X-ray diffractometry. It was found that the pebbles consisted of pure quartz, which contains three different types of fluid inclusions. These were identified as primary inclusions (5-10 microns) that record the formation conditions of the quartz, very small (less than 1 micron) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. It is concluded that the quartz and the primary inclusions may provide evidence for a postimpact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  13. Significant role of climatic trends on hydrothermal activity Coso Hot Springs, California

    SciTech Connect

    Lofgren, B.E. )

    1990-05-01

    The hydrothermal features of Coso Hot Springs have attracted visitors for 130 yr and scientific investigators for two decades. In 1978, anticipating effects of major geothermal developments nearby, the Naval Weapons Center (NWC) initiated a comprehensive monitoring program at a dozen hydrothermal sites in the Coso Hot Springs area. Nine years of monitoring preceded power production in the nearby Coso geothermal field in July 1987. During this period, steam was rising from numerous vents and gently boiling mud pots. Local rainfall caused increased boiling activity in several mud pots, with some overflowing during wet periods. Then in August 1988, a year after geothermal power production began major changes in hot spring activity commenced. Small mud pots and steamers started to grow and coalesce. In March 1989, mud-pot activity became more violent. Many buried wells failed causing surface activity in other areas to diminish. During ensuing months, large mud cones developed and much of the steam and boiling water occurred in a few major pots. Because the abrupt changes in hydrothermal activity followed so closely after nearby geothermal production began, the obvious cause has been attributed to geothermal developments. Studies of NWC baseline monitoring data indicate, however, that no effects of geothermal developments have been felt in the hot springs area. Rainfall and barometric effects account for most of the fluctuations in records of the past decade. Early accounts and field evidence suggest similar changes have occurred in the past.

  14. Hydrothermal Petroleum in Active Continental Rift: Lake Chapala, Western Mexico, Initial Results.

    NASA Astrophysics Data System (ADS)

    Zarate-del Valle, P. F.; Simoneit, B. R.; Ramirez-Sanchez, H. U.

    2003-12-01

    Lake Chapala in western Mexico is located partially in the Citala Rift, which belongs to the well-known neotectonic Jalisco continental triple junction. The region is characterized by active volcanism (Ceboruco, Volcan de Fuego), tectonic (1995 earthquake, M=8, 40-50 mm to SW) and hydrothermal (San Juan Cosala & Villa Corona spas and La Calera sinter deposit) activities. Hydrothermal petroleum has been described in active continental rift (East African Rift) and marine spreading zones (Guaymas Basin, Gulf of California). In 1868 the Mexican local press reported that manifestations of bitumen were appearing in front of the Columba Cap on the mid south shore of Lake Chapala. This bitumen is linked to the lake bottom and when the water level decreases sufficiently it is possible to access these tar bodies as islands. Because of these manifestations the Mexican oil company (PEMEX) drilled an exploration well (2,348m) at Tizapan El Alto without success. Hydrothermal activity is evident in the tar island zone as three in-shore thermal springs (26.8 m depth, 48.5° C, pH 7.8 and oriented N-S). The preliminary analyses by GC-MS of the tar from these islands indicate hydrothermal petroleum derived from lake sedimentary organic matter, generated at low temperatures (150° -200° C). The tars contain no n-alkanes, no PAH or other aromatics, but a major UCM of branched and cyclic hydrocarbons and mature biomarkers derived from lacustrine biota. The biomarkers consist of mainly 17α (H),21β (H)-hopanes ranging from C27 to C34 (no C28), gammacerane, tricyclic terpanes (C20-C26), carotane and its cracking products, and drimanes (C14-C16). The biomarker composition indicates an organic matter source from bacteria and algae, typical of lacustrine ecosystems. 14C dating of samples from two tar islands yielded ages exceeding 40 kyrs, i.e., old carbon from hydrothermal/tectonic remobilization of bitumen from deeper horizons to the surface. The occurrence of hydrothermal petroleum in

  15. Seafloor hydrothermal activity and spreading rates - The Eocene carbon dioxide greenhouse revisited

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Eocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  16. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  17. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted.

    PubMed

    Kasting, J F; Richardson, S M

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  18. Three-dimensional modeling of outcrop-to-outcrop hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Winslow, D. M.; Fisher, A. T.; Stauffer, P. H.; Gable, C. W.; Zyvoloski, G. A.

    2016-03-01

    We present three-dimensional simulations of coupled fluid and heat transport in the ocean crust, to explore patterns and controls on ridge-flank hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge. Field studies have shown that there is large-scale fluid flow in the volcanic ocean crust in this region, including local convection and circulation between two basement outcrops separated by ~50 km. New simulations include an assessment of crustal permeability and aquifer thickness, outcrop permeability, the potential influence of multiple discharging outcrops, and a comparison between two-dimensional (profile) and three-dimensional representations of the natural system. Field observations that help to constrain new simulations include a modest range of flow rates between recharging and discharging outcrops, secondary convection adjacent to the recharging outcrop, crustal permeability determinations made in boreholes, and the lack of a regional seafloor heat flux anomaly as a consequence of advective heat loss from the crust. Three-dimensional simulations are most consistent with field observations when models use a crustal permeability of 3 × 10-13 to 2 × 10-12 m2, and the crustal aquifer is ≤300 m thick, values consistent with borehole observations. We find fluid flow rates and crustal cooling efficiencies that are an order of magnitude greater in three-dimensional simulations than in two-dimensional simulations using equivalent properties. Simulations including discharge from an additional outcrop can also replicate field observations but tend to increase the overall rate of recharge and reduce the flow rate at the primary discharge site.

  19. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization

    NASA Technical Reports Server (NTRS)

    Mautner, M. N.; Leonard, R. L.; Deamer, D. W.

    1995-01-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350 degrees C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 x 10(-3) N m-1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120 degrees C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of microorganisms to metabolize extraterrestrial organics.

  20. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.; Leonard, Robert L.; Deamer, David W.

    1995-02-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350°C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 × 10 -3 N m -1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120°C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of micro-organisms to metabolize extraterrestrial organics.

  1. Holocene carbonate record of Lake Kivu reflects the history of hydrothermal activity.

    PubMed

    Votava, Jillian E; Johnson, Thomas C; Hecky, Robert E

    2017-01-10

    The sediment record of Lake Kivu reveals a complex volcanogenic and climatic Holocene history. Investigation of the inorganic carbonate record dates the onset of carbonate deposition in the mid-Holocene in Kivu's deep northern and eastern basins and identifies conditions enabling deposition. The magnitude and timing of carbonate-rich sedimentation is not so much controlled by climate but, instead, linked strongly to hydrothermal activity in the basin. Sublacustrine springs supply the vast majority of the calcium and carbonate ions required for supersaturation with respect to aragonite. This major hydrothermal activity that permanently stratifies Lake Kivu today was initiated ∼3,100 y before present (3.1 ka), when carbonate-rich sediments first appeared in the Holocene record. Aragonite is the dominant CaCO3 mineral present in the lake deposits. Both δ(13)C and δ(18)O of the aragonite are enriched above the expected kinetic fractionation of meteoric waters, suggesting a volcanogenic influence on the formation waters. Repeated major fluctuations in the carbonate record after 3.1 ka therefore most likely reflect the historical variation in hydrothermal inputs.

  2. Holocene carbonate record of Lake Kivu reflects the history of hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Votava, Jillian E.; Johnson, Thomas C.; Hecky, Robert E.

    2017-01-01

    The sediment record of Lake Kivu reveals a complex volcanogenic and climatic Holocene history. Investigation of the inorganic carbonate record dates the onset of carbonate deposition in the mid-Holocene in Kivu’s deep northern and eastern basins and identifies conditions enabling deposition. The magnitude and timing of carbonate-rich sedimentation is not so much controlled by climate but, instead, linked strongly to hydrothermal activity in the basin. Sublacustrine springs supply the vast majority of the calcium and carbonate ions required for supersaturation with respect to aragonite. This major hydrothermal activity that permanently stratifies Lake Kivu today was initiated ˜3,100 y before present (3.1 ka), when carbonate-rich sediments first appeared in the Holocene record. Aragonite is the dominant CaCO3 mineral present in the lake deposits. Both δ13C and δ18O of the aragonite are enriched above the expected kinetic fractionation of meteoric waters, suggesting a volcanogenic influence on the formation waters. Repeated major fluctuations in the carbonate record after 3.1 ka therefore most likely reflect the historical variation in hydrothermal inputs.

  3. Identification and characterization of the active hydrothermal deposits in Okinawa Trough, SW Japan: Estimates from logging-while-drilling

    NASA Astrophysics Data System (ADS)

    Saito, S.; Sanada, Y.; Moe, K.; Kido, Y. N.; Hamada, Y.; Kumagai, H.; Nozaki, T.; Takai, K.; Suzuki, K.

    2015-12-01

    A scientific drilling expedition was conducted at an active hydrothermal field on the Iheya-North Knoll by D/V Chikyu in 2014 (Expedition 907) as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program. During the expedition logging while drilling (LWD) was deployed to constrain the area of the fluid reservoir beneath seafloor followed by three coring holes down to 150 meter below the seafloor (mbsf). The LWD system is composed of arcVISION for resistivity and natural gamma ray measurement and TeleScope for real-time transmission of drilling parameters and arcVISION data. Five sites (C9011-15) at the Iheya-North Original Site and one site (C9016) at Aki Site were drilled with LWD. At C9012 and C9016, the arcVISION detected temperature anomaly up to 84℃ at 234 mbsf and up to 39℃ at 80 mbsf, respectively. The temperature quickly increases at that depth and it would reflect the existence of high-temperature heat source along borehole. Due to the continuous fluid circulation during drilling, the measured temperature does not indicate in-situ temperature, but it reflects the heat disturbed by the cold circulated water instead. High quality resistivity and natural gamma ray data were acquired at six sites. The log curves at Site C9016 show characteristic response; the natural gamma ray log exhibits extremely high radiation (>500 gAPI) at 7-13 and 23-31 mbsf (Zone A). In the underlying interval of 31-40 mbsf, the resistivity log exhibits extremely low value (<0.2 ohm-m) (Zone B). Then the resistivity log exhibits higher value (~10 ohm-m) and the natural gamma ray log shows very low radiation (<50 gAPI) at the interval of 41-48 mbsf (Zone C). The log characteristics in Zone A, B, and C can be interpreted as a series of K-rich alteration zone, sulfide zone, and low-K hard (silicified) sediments, respectively. The LWD-based lithological interpretation was confirmed by the following core description

  4. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  5. Circulating polymerase chain reaction chips utilizing multiple-membrane activation

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Hao; Chen, Yi-Yu; Liao, Chia-Sheng; Hsieh, Tsung-Min; Luo, Ching-Hsing; Wu, Jiunn-Jong; Lee, Huei-Huang; Lee, Gwo-Bin

    2007-02-01

    This paper reports a new micromachined, circulating, polymerase chain reaction (PCR) chip for nucleic acid amplification. The PCR chip is comprised of a microthermal control module and a polydimethylsiloxane (PDMS)-based microfluidic control module. The microthermal control modules are formed with three individual heating and temperature-sensing sections, each modulating a specific set temperature for denaturation, annealing and extension processes, respectively. Micro-pneumatic valves and multiple-membrane activations are used to form the microfluidic control module to transport sample fluids through three reaction regions. Compared with other PCR chips, the new chip is more compact in size, requires less time for heating and cooling processes, and has the capability to randomly adjust time ratios and cycle numbers depending on the PCR process. Experimental results showed that detection genes for two pathogens, Streptococcus pyogenes (S. pyogenes, 777 bps) and Streptococcus pneumoniae (S. pneumoniae, 273 bps), can be successfully amplified using the new circulating PCR chip. The minimum number of thermal cycles to amplify the DNA-based S. pyogenes for slab gel electrophoresis is 20 cycles with an initial concentration of 42.5 pg µl-1. Experimental data also revealed that a high reproducibility up to 98% could be achieved if the initial template concentration of the S. pyogenes was higher than 4 pg µl-1. The preliminary results of the current paper were presented at the 19th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2006), Istanbul, Turkey, 22-26 January, 2006.

  6. Volcanic and Hydrothermal Activity of the North Su Volcano: New Insights from Repeated Bathymetric Surveys and ROV Observations

    NASA Astrophysics Data System (ADS)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.

    2013-12-01

    Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places

  7. European and Middle-East ferroan hydrothermal dolomites: lessons learnt with respect to crustal dynamics, fluid circulations and rock-fluid interactions

    NASA Astrophysics Data System (ADS)

    Nader, Fadi Henri; Gasparrini, Marta; Bachaud, Pierre

    2016-04-01

    Classical case studies of hydrothermal dolostones, which are known worldwide to provide excellent reservoirs for ores and hydrocarbons, often illustrate the presence of iron-rich dolomite phases. The world-class hydrothermal dolostones from the Basque-Cantabrian Basin (Northern Spain) exemplify the initiation of high temperature dolomitization (at about 200°C), with significant amount of ferroan dolomite phases (including up to 2% FeO). These dolomites are believed to be responsible for the pervasive replacement of the original limestone rocks - they are followed by non-ferroan dolomite phases. The associated fluids are supposed to have interacted with basement rocks, and travelled from deep-seated sources along major fault pathways. The geochemical traits of such fluids are also typically similar to, and probably associated with, mineralization fluids (e.g. Pb-Zn, MVT). In the Middle East, several observed dolostones show, on the contrary, a later phase of ferroan dolomite cements which occlude the inter-crystalline porosity of earlier non-ferroan matrix dolomites. Dolomitization occurred under increasingly higher temperatures (from 50 to 100°C) during burial. Here, the origin of iron-rich fluids and conditions of precipitation of associated dolomites do not necessarily involve interactions with basement rocks, but rather a relative Fe-enrichment with further reducing settings. Based on previous research projects concerning a variety of dolostones from Europe and the Middle-East, this contribution presents observational, analytical and computational results focused on ferroan dolomites. Recent numerical geochemical modelling emphasized the physico-chemical pre-requisites for crystallizing ferroan rather than non-ferroan dolomites (and vice-versa), allowing better understanding of related diagenetic processes. Besides, important larger-scale information on the crustal fluid circulations are demonstrated to be intimately associated to the parent-fluids sources and

  8. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass.

    PubMed

    Hao, Wenming; Björkman, Eva; Yun, Yifeng; Lilliestråle, Malte; Hedin, Niklas

    2014-03-01

    Particles of iron oxide (Fe3O4 ; 20–40 nm) were embedded within activated carbons during the activation of hydrothermally carbonized (HTC) biomasses in a flow of CO2. Four different HTC biomass samples (horse manure, grass cuttings, beer production waste, and biosludge) were used as precursors for the activated carbons. Nanoparticles of iron oxide formed from iron catalyst included in the HTC biomasses. After systematic optimization, the activated carbons had specific surface areas of about 800 m2g1. The pore size distributions of the activated carbons depended strongly on the degree of carbonization of the precursors. Activated carbons prepared from highly carbonized precursors had mainly micropores, whereas those prepared from less carbonized precursors contained mainly mesopores. Given the strong magnetism of the activated carbon–nano-Fe3O4 composites, they could be particularly useful for water purification.

  9. Hydrothermal mineralogy and fluid inclusions chemistry to understand the roots of active geothermal systems

    NASA Astrophysics Data System (ADS)

    Chambefort, I. S.; Dilles, J. H.; Heinrich, C.

    2013-12-01

    An integrated study to link magmatic textures, magmatic mineral compositions, hydrothermal alteration zoning, hydrothermal mineral chemistry, and fluid inclusion compositions has been undertaken to link an intrusive complex and its degassing alteration halo with their surface equivalent in an active geothermal system. Ngatamariki geothermal system, New Zealand, presents a unique feature in the Taupo Volcanic Zone (TVZ). Drilling intercepted an intrusive complex with a high temperature alteration halo similarly to what is observed in magmatic-derived ore deposits. Thus it presents the perfect opportunity to study the magmatic-hydrothermal transition of the TVZ by characterizing the nature of the deep magmatic fluids link to the heat source of the world known geothermal fields. The record of magmatic-hydrothermal fluid-rock interactions preserved at Ngatamariki may be analogous of processes presently occurring at depth beneath TVZ geothermal systems. The intrusive complex consists of over 5 km3 of tonalite, diorite, basalt and aplitic dykes. Evidence of undercooling subsolidus magmatic textures such as myrmekite and skeletal overgrowth are commonly observed and often linked to volatile loss. The fluids released during the crystallization of the intrusive complex are interpreted to be at the origin of the surrounding high temperature alteration halo. Advanced argillic to potassic alteration and high temperature acidic assemblage is associated with high-temperature quartz veining at depth and vuggy silica at the paleo-surface. Major element compositions of the white micas associated with the high temperature halo show a transition from, muscovite to phengite, muscovitic illite away from the intrusion, with a transition to pyrophyllite and/ or topaz, and andalusite characteristic of more acidic conditions. Abundant high-density (up to 59 wt% NaCl eq and homogenization temperatures of 550 degree Celsius and above) coexist with low-density vapor fluid inclusions. This

  10. The prothrombotic activity of cancer cells in the circulation.

    PubMed

    Mitrugno, Annachiara; Tormoen, Garth W; Kuhn, Peter; McCarty, Owen J T

    2016-01-01

    The hemostatic system is often subverted in patients with cancer, resulting in life-threatening venous thrombotic events. Despite the multifactorial and complex etiology of cancer-associated thrombosis, changes in the expression and activity of cancer-derived tissue factor (TF) - the principle initiator of the coagulation cascade - are considered key to malignant hypercoagulopathy and to the pathophysiology of thrombosis. However, many of the molecular and cellular mechanisms coupling the hemostatic degeneration to malignancy remain largely uncharacterized. In this review we discuss some of the tumor-intrinsic and tumor-extrinsic mechanisms that may contribute to the prothrombotic state of cancer, and we bring into focus the potential for circulating tumor cells (CTCs) in advancing our understanding of the field. We also summarize the current status of anti-coagulant therapy for the treatment of thrombosis in patients with cancer.

  11. Ammonium sulfide-assisted hydrothermal activation of palygorskite for enhanced adsorption of methyl violet.

    PubMed

    Tian, Guangyan; Wang, Wenbo; Kang, Yuru; Wang, Aiqin

    2016-03-01

    Herein, palygorskite (PAL) was activated via a simple hydrothermal process in the presence of ammonium sulfide, and the effects of activation on the microstructure, physico-chemical feature and adsorption behaviors of PAL were intensively investigated. The hydrothermal process evidently improved the dispersion of PAL crystal bundles, increased surface negative charges and built more active -Si-O(-) groups served as the new "adsorption sites". The adsorption property of the activated PAL for Methyl Violet (MV) was systematically investigated by optimizing the adsorption variables, including pH, ionic strength, contact time and initial MV concentration. The activated PAL exhibited a superior adsorption capability to the raw PAL for the removal of MV (from 156.05 to 218.11mg/g). The kinetics for MV adsorption followed pseudo second-order kinetic models, while the isotherm and thermodynamics results showed that the adsorption pattern well followed the Langmuir model. The structure analysis of PAL before and after adsorption demonstrated that electrostatic interaction and chemical association of -X-O(-) are the prominent driving forces for the adsorption process.

  12. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  13. 30,000 years of hydrothermal activity at the lost city vent field.

    PubMed

    Früh-Green, Gretchen L; Kelley, Deborah S; Bernasconi, Stefano M; Karson, Jeffrey A; Ludwig, Kristin A; Butterfield, David A; Boschi, Chiara; Proskurowski, Giora

    2003-07-25

    Strontium, carbon, and oxygen isotope data and radiocarbon ages document at least 30,000 years of hydrothermal activity driven by serpentinization reactions at Lost City. Serpentinization beneath this off-axis field is estimated to occur at a minimum rate of 1.2 x 10(-4) cubic kilometers per year. The access of seawater to relatively cool, fresh peridotite, coupled with faulting, volumetric expansion, and mass wasting processes, are crucial to sustain such systems. The amount of heat produced by serpentinization of peridotite massifs, typical of slow and ultraslow spreading environments, has the potential to drive Lost City-type systems for hundreds of thousands, possibly millions, of years.

  14. Hydrothermal Synthesis of Ultrasmall Pt Nanoparticles as Highly Active Electrocatalysts for Methanol Oxidation

    PubMed Central

    Ji, Wenhai; Qi, Weihong; Tang, Shasha; Peng, Hongcheng; Li, Siqi

    2015-01-01

    Ultrasmall nanoparticles, with sizes in the 1–3 nm range, exhibit unique properties distinct from those of free molecules and larger-sized nanoparticles. Demonstrating that the hydrothermal method can serve as a facile method for the synthesis of platinum nanoparticles, we successfully synthesized ultrasmall Pt nanoparticles with an average size of 2.45 nm, with the aid of poly(vinyl pyrrolidone) (PVP) as reducing agents and capping agents. Because of the size effect, these ultrasmall Pt nanoparticles exhibit a high activity toward the methanol oxidation reaction.

  15. Discovery of hydrothermally active and extinct talc mounds on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Hodgkinson, M.; Murton, B. J.; Roberts, S.

    2013-12-01

    Since 1977, hydrothermal vents have been the subject of intense scientific interest due to their role in cooling the oceanic crust and global geochemical cycles. Until now, two types of hydrothermal system have been identified: one, driven by magmatic heat extruding ';black smoker' fluids; and another, involving serpentinisation of ultramafic rocks and the precipitation of carbonate/brucite chimneys. Here, we present details of a new, off-axis type of hydrothermal system consisting of mounds of predominately botryoidal talc (a magnesium-silicate) with accessory silica and copper sulphides, and chimneys exhaling fluids of moderate temperature and pH. Discovered on the Mid-Cayman Rise (MCR) in 2010, the Von Damm Vent Field (VDVF) features a NNW-ESE-trending line of four overlapping cones, the largest of which is 75 m high by 150 m in diameter. The VDVF is hosted in the gabbroic footwall of the Mount Dent Oceanic Core Complex (MDOCC), which includes serpentinised peridotite at depth. The largest cone vents clear fluids from two main orifices at its summit, with primary temperatures of 215°C. Elsewhere, both focussed and diffuse flow areas emit fluids with temperatures of up to 150°C. The surrounding ~1 m thick pelagic sediment contains abundant pockmarks that emit methane-rich fluids at temperatures of less than 10°C. During the return to the MCR in early 2013, several other talc mounds were discovered within a kilometre of the active VDVF. These inactive mounds also comprise an assemblage of botryoidal talc, silica, disseminated sulphides (including chalcopyrite) and sulphates. One of these mounds (Mystic Mount) is double the volume of the active VDVF. The unique dominance of talc as the major mineral forming the hydrothermal structures indicates unusual vent fluid compositions that are able to carry both copper (at high-temperatures) and precipitate magnesium silicate. Thermodynamic modelling indicates that talc precipitates on mixing a moderately acidic, silica

  16. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits

    PubMed Central

    Frank, Kiana L.; Rogers, Karyn L.; Rogers, Daniel R.; Johnston, David T.; Girguis, Peter R.

    2015-01-01

    Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, SO42−, DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits. PMID:26733984

  17. Circulating immune complexes and disease activity in Crohn's disease.

    PubMed Central

    Fiasse, R; Lurhuma, A Z; Cambiaso, C L; Masson, P L; Dive, C

    1978-01-01

    Circulating immune complexes were determined in 59 consecutive patients with Crohn's disease and 100 blood donors by a double method based on the inhibition of the agglutinating activity of CIq and/or rheumatoid factor on the IgG-coated polystyrene particles. In patients, the incidence of positive immune complexes was 63% and 61% at first testing, 85% and 78% at subsequent determinations; there was a good correlation between the inhibition titres of CIq and those of rheumatoid factor (p less than 0.001). In blood donors, the incidence was 22% and 14% at low titre. The incidence of immune complexes was the lowest (36%) in the group of resected patients without signs of relapse; repeat determinations showed absence of immune complexes three months postoperatively. In patients medically treated for primary disease or relapse, rheumatoid factor titre higher than 1/1 was less frequent than in medically untreated patients with active disease (p less than 0.01). A significantly higher concentration of serum alpha-1-antitrypsin and orosomucoid, and a significantly lower level of serum iron were found in patients with an IC titre exceeding 1/1; longitudinal studies showed in most cases a concordance between the evolution of immune complex titres, inflammatory parameters and clinical status. PMID:308030

  18. Older Shallow Hydrothermal Activity Along the North Edge of the Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Larson, P. B.; Cosca, M.; Takeuchi, A.; Yano, R.

    2006-12-01

    The Grand Canyon of the Yellowstone River, Yellowstone Park, is incised into more than 300 vertical meters of hydrothermally altered post-caldera rhyolites (Tuff of Sulfur Creek and Canyon Flow, 480 ka). The alteration was produced by older hydrothermal activity that predates cutting of the canyon (latest Pleistocene?), not by the modern hot springs. The Seven Mile Hole area, in the canyon about 5 km below the lower falls of the Yellowstone River and located along the north edge of the caldera, is pervasively altered in the canyon walls north of the river. Two alteration assemblages have been found along and just below the modern rim that was very near the paleo-surface and exposes paleo-hot spring sinter, 1. Illite-silica (quartz and/or opal)-pyrite, and, 2. kaolinite-alunite-silica (quartz and/or opal)-pyrite. Quartz-sulfide veins and quartz and/or opal space fillings crosscut both assemblages. The alteration grades downward to pervasive vuggy silicification (quartz) with illite and disseminated pyrite, about 100 to 200 m below the canyon rim. One alunite sample yields an Ar-Ar age of 138 ka. Preliminary O isotope ratios for silica (quartz) space fillings associated with the alunite alteration range from 2.0 to -2.2 per mil. The mineral assemblages indicate that both acid-sulfate and alkali-chloride hydrothermal fluids altered the rocks in the Seven Mile Hole area. The silica O ratios suggest that the near- surface fluid had an O ratio less than -15 per mil. Projecting this fluid to depth along the hydrostatic boiling curve, accounting for batch steam separation, and ignoring near-surface mixing with shallow local meteoric groundwater, suggest a deep reservoir fluid O ratio less than -20 per mil. The Ar-Ar age shows that the hydrothermal system in this area of the Yellowstone caldera, located near and along the northern caldera wall, has been active for at least 138 ka, and may extend as far back as the age of the Tuff of Sulfur Creek at 480 ka.

  19. Extensive hydrothermal activity revealed by multi-tracer survey in the Wallis and Futuna region (SW Pacific)

    NASA Astrophysics Data System (ADS)

    Konn, C.; Fourré, E.; Jean-Baptiste, P.; Donval, J. P.; Guyader, V.; Birot, D.; Alix, A. S.; Gaillot, A.; Perez, F.; Dapoigny, A.; Pelleter, E.; Resing, J. A.; Charlou, J. L.; Fouquet, Y.

    2016-10-01

    The study area is close to the Wallis and Futuna Islands in the French EEZ. It exists on the western boundary of the fastest tectonic area in the world at the junction of the Lau and North-Fiji basins. At this place, the unstable back-arc accommodates the plate motion in three ways: (i) the north Fiji transform fault, (ii) numerous unstable spreading ridges, and (iii) large areas of recent volcanic activity. This instability creates bountiful opportunity for hydrothermal discharge to occur. Based on geochemical (CH4, TDM, 3He) and geophysical (nephelometry) tracer surveys: (1) no hydrothermal activity could be found on the Futuna Spreading Centre (FSC) which sets the western limit of hydrothermal activity; (2) four distinct hydrothermal active areas were identified: Kulo Lasi Caldera, Amanaki Volcano, Fatu Kapa and Tasi Tulo areas; (3) extensive and diverse hydrothermal manifestations were observed and especially a 2D distribution of the sources. At Kulo Lasi, our data and especially tracer ratios (CH4/3He 50×106 and CH4/TDM 4.5) reveal a transient CH4 input, with elevated levels of CH4 measured in 2010, that had vanished in 2011, most likely caused by an eruptive magmatic event. By contrast at Amanaki, vertical tracer profiles and tracer ratios point to typical seawater/basalt interactions. Fatu Kapa is characterised by a substantial spatial variability of the hydrothermal water column anomalies, most likely due to widespread focused and diffuse hydrothermal discharge in the area. In the Tasi Tulo zone, the hydrothermal signal is characterised by a total lack of turbidity, although other tracer anomalies are in the same range as in nearby Fatu Kapa. The background data set revealed the presence of a Mn and 3He chronic plume due to the extensive and cumulative venting over the entire area. To that respect, we believe that the joined domain composed of our active area and the nearby active area discovered in the East by Lupton et al. (2012) highly contribute to the

  20. Thermal History of an Oceanic Core Complex, Atlantis Bank, Southwest Indian Ridge: Evidence for Hydrothermal Activity 2.6 Myr Off-Axis

    NASA Astrophysics Data System (ADS)

    Schwartz, J. J.; John, B. E.; Cheadle, M. J.; Reiners, P. W.; Baines, G.

    2004-12-01

    We report 26 new (U-Th)/He zircon dates from the Atlantis Bank Oceanic Core Complex (OCC), Southwest Indian Ridge. The low (~200 °C) closure temperature of the (U-Th)/He isotopic system, together with higher temperature (850 °C) crystallization ages from U-Pb zircon dating, allow us to constrain the timescales and rates of lower crustal cooling in oceanic crust. Samples from the detachment fault surface exposed at the sea floor, indicate that the denuded crust cooled rapidly through 200 °C in <1 Myr, yielding mean cooling rates >1200 °C/Myr, consistent with existing models for cooling of oceanic crust. However, samples collected along post-detachment, N-S- and E-W-trending fault scarps record (U-Th)/He ages averaging 2.6 Myr younger than their corresponding igneous crystallization ages. These ages are inconsistent with steady-state conductive cooling models for lower oceanic crust and cannot be explained by simple monotonic cooling. Instead, they record cooling through 200 °C when the crust was well outside the rift valley, ~36 km off-axis assuming a half spreading rate of 14km/Myr. These samples display extensive post-crystallization greenschist-facies alteration and contain metamorphic mineral assemblages of chlorite + actinolite ± hornblende ± epidote ± serpentine ± clay, consistent with hydrothermal alteration. Therefore, we suggest that these anomalously young (U-Th)/He zircon ages record localized thermal heating events associated with high- temperature (>300 °C) hydrothermal fluid flow along transform-parallel and transform-normal faults that were active outside the rift valley during transtension along the bounding Atlantis II transform fault. A significant component of the heat driving hydrothermal fluid flow may have been derived from underplated mafic magmas emplaced during transtension. The young (U-Th)/He ages therefore delimit zones of hydrothermal upflow, and record evidence of protracted hydrothermal circulation up to ~3 Myr off-axis at

  1. Thermal History of an Oceanic Core Complex, Atlantis Bank, Southwest Indian Ridge: Evidence for Hydrothermal Activity 2.6 Myr Off-Axis

    NASA Astrophysics Data System (ADS)

    Schwartz, J. J.; John, B. E.; Cheadle, M. J.; Reiners, P. W.; Baines, G.

    2007-12-01

    We report 26 new (U-Th)/He zircon dates from the Atlantis Bank Oceanic Core Complex (OCC), Southwest Indian Ridge. The low (~200 °C) closure temperature of the (U-Th)/He isotopic system, together with higher temperature (850 °C) crystallization ages from U-Pb zircon dating, allow us to constrain the timescales and rates of lower crustal cooling in oceanic crust. Samples from the detachment fault surface exposed at the sea floor, indicate that the denuded crust cooled rapidly through 200 °C in <1 Myr, yielding mean cooling rates >1200 °C/Myr, consistent with existing models for cooling of oceanic crust. However, samples collected along post-detachment, N-S- and E-W-trending fault scarps record (U-Th)/He ages averaging 2.6 Myr younger than their corresponding igneous crystallization ages. These ages are inconsistent with steady-state conductive cooling models for lower oceanic crust and cannot be explained by simple monotonic cooling. Instead, they record cooling through 200 °C when the crust was well outside the rift valley, ~36 km off-axis assuming a half spreading rate of 14km/Myr. These samples display extensive post-crystallization greenschist-facies alteration and contain metamorphic mineral assemblages of chlorite + actinolite ± hornblende ± epidote ± serpentine ± clay, consistent with hydrothermal alteration. Therefore, we suggest that these anomalously young (U-Th)/He zircon ages record localized thermal heating events associated with high- temperature (>300 °C) hydrothermal fluid flow along transform-parallel and transform-normal faults that were active outside the rift valley during transtension along the bounding Atlantis II transform fault. A significant component of the heat driving hydrothermal fluid flow may have been derived from underplated mafic magmas emplaced during transtension. The young (U-Th)/He ages therefore delimit zones of hydrothermal upflow, and record evidence of protracted hydrothermal circulation up to ~3 Myr off-axis at

  2. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  3. Shallow water submarine hydrothermal activity - A case study in the assessment of ocean acidification and fertilization

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yoshida, K.; Hagiwara, T.; Nagao, K.; Kusakabe, M.; Wang, B.; Chen, C. A.

    2012-12-01

    Most natural Shallow Water submarine Hydrothermal activates (SWH) along coastlines are related to hydrothermal eruptions involving heating of groundwater with the volcanic gas. These SWHs supply nutrients such as phosphorus and micro nutrients like iron to the euphotic zone, contributing to the overall natural fertility and primary productivity of coastal waters. However, SWHs also have a negative effect, dispersing toxic materials such as mercury and arsenic, and affecting the acidification of the surrounding waters. In this study, we evaluate the impact of "iron supply" and "ocean acidification" on the primary production in a coastal marine environment, at a SWH area discovered off Gueshandao Island, northeast Taiwan. In the past three years, expeditions were conducted and observations made around this SWH site. Divers, small boats and a research vessel (R/V OR1, Ocean University National Taiwan) were used to survey successively larger areas around the site. Some of the results obtained are as follows. Hydrothermal vents are located in a hilly terrain rich with hot spring water with gas erupting intermittently. There are two types of vents, roughly divided by color, yellow hot spring water with higher temperature >110 degC ejected from sulfur chimneys of various sizes, and colorless water with lower temperature ~80 degC ejected directly from the crevices of the andesitic bedrock. Natural sulfur solidifying in the mouth of a small chimney was captured by a video camera, and explosions were also observed at intervals of a few minutes. Sediment, sand and particles of sulfur were deposited on the sides to a radius of about 50 m condensing around the chimney. The bottom type changes from sand/particles to outcrop/rock away from the vents. Moreover, gas samples were collected from the vents; the ratios of gas concentrations (N2/Ar) and isotopic composition of noble gas (3He/4He) suggest that these volcanic gases are mantle-derived. Hydrothermal fluid with high p

  4. Activity and hydrothermal stability of CeO₂-ZrO₂-WO₃ for the selective catalytic reduction of NOx with NH₃.

    PubMed

    Song, Zhongxian; Ning, Ping; Zhang, Qiulin; Li, Hao; Zhang, Jinhui; Wang, Yancai; Liu, Xin; Huang, Zhenzhen

    2016-04-01

    A series of CeO2-ZrO2-WO3 (CZW) catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction (SCR) of NO with NH3 over a wide temperature of 150-550°C. The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O. The fresh catalyst showed above 90% NOx conversion at 201-459°C, which is applicable to diesel exhaust NOx purification (200-440°C). The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures (below 300°C), while the activity was notably enhanced at high temperature (above 450°C). The aged CZW catalyst (hydrothermal aging at 700°C for 8 hr) showed almost 80% NOx conversion at 229-550°C, while the V2O5-WO3/TiO2 catalyst presented above 80% NOx conversion at 308-370°C. The effect of structural changes, acidity, and redox properties of CZW on the SCR activity was investigated. The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2-ZrO2 solid solution, amorphous WO3 phase and optimal acidity. In addition, the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased, resulting in the collapse of structure, which could further affect the acidity and redox properties.

  5. Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year timescales

    PubMed Central

    Dyl, Kathryn A.; Bischoff, Addi; Ziegler, Karen; Young, Edward D.; Wimmer, Karl; Bland, Phil A.

    2012-01-01

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water–rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water–rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water–rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H2O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa-1Al-1 exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1–10 y. This result has wide-ranging implications for the geological history of chondritic asteroids. PMID:23093668

  6. Early Solar System hydrothermal activity in chondritic asteroids on 1-10-year timescales.

    PubMed

    Dyl, Kathryn A; Bischoff, Addi; Ziegler, Karen; Young, Edward D; Wimmer, Karl; Bland, Phil A

    2012-11-06

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water-rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water-rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water-rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H(2)O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa(-1)Al(-1) exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1-10 y. This result has wide-ranging implications for the geological history of chondritic asteroids.

  7. Debris flow evolution and the activation of an explosive hydrothermal system; Te Maari, Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Procter, J. N.; Cronin, S. J.; Zernack, A. V.; Lube, G.; Stewart, R. B.; Nemeth, K.; Keys, H.

    2014-10-01

    Analysis of the pre- and post-eruption topography, together with observations of the avalanche deposition sequence, yields a triggering mechanism for the 6 August 2012 eruption of Upper Te Maari. The avalanche was composed of a wedge of c. 683 000-774 000 m3 of coarse breccia, spatter and clay-rich tuffs and diamictons which slid from the western flanks of the Upper Te Maari Crater, the failure plane is considered to be a hydrothermally altered clay layer. This landslide led to a pressure drop of up to 0.5 MPa, enough to generate an explosive eruption from the hydrothermal system below, which had been activated over the months earlier by additional heat and gas from a shallow intrusion. The landslide transformed after c. 700 m into a clay-rich cohesive debris flow, eroding soils from steep, narrow stretches of channel, before depositing on intermediate broad flatter reaches. After each erosive reach, the debris flow contained greater clay and mud contents and became more mobile. At c. 2 km flow distance, however, the unsaturated flow stopped, due to a lack of excess pore pressure. This volume controlled flow deposited thick, steep sided lobes behind an outer levee, accreting inward and upward to form a series of curved surface ridges.

  8. Shallow hydrothermal alteration and permeability changes in pyroclastic deposits: a case study at La Fossa cone (Vulcano island, Italy):

    NASA Astrophysics Data System (ADS)

    Cangemi, Marianna; Madonia, Paolo; Speziale, Sergio; Oliveri, Ygor

    2016-04-01

    La Fossa cone at Vulcano, the southernmost island of the Aeolian volcanic archipelago (Italy), has been characterized by an intense fumarolic activity since its last eruption dated 1888-90. Mineralogical alteration induced by shallow hydrothermal circulation has significantly reduced the permeability of the volcanic products, causing important feedbacks on the circulation of fluids in the shallowest portion of the volcanic edifice. The summit area of the cone is sealed by a quite continuous coating surface, fostering the condensation of hydrothermal fluids inside the volcanic edifice. The combination of fractures and volcano-stratigraphic discontinuities, conveying hydrothermal fluids, makes significant rock volumes prone to slide seaward, as occurred in 1988 during the main unrest experienced by Vulcano island since its last eruption. Similar instability conditions are found over the Forgia Vecchia crater rim area, formed by phreatic activity on the NE flank of the cone, where tensile fracturing and hydrothermal circulation interacts with mutual negative feedbacks. In the behalf of the DPC-INGV V3 Project 2012-15 we investigated the mineralogical composition and the hydraulic conductivity (under saturated conditions) of volcanic deposits potentially prone to hydrothermal fluid circulation, for evaluating their ability in retaining water, creating favourable conditions for gravitational instability. We also measured rainfall rate and volumetric soil moisture content in two automated stations located in different areas, with and without active hydrothermal circulation. We found that hydrothermal alteration transforms volcanic products into clay minerals, significantly reducing permeability of volcanic deposits. Argillified volcanic materials show background water contents, modulated by impulsive increments following rainfalls, higher than unaltered pyroclastic deposits, due to the combination of lower permeability and direct condensation of hydrothermal vapour. The

  9. Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study.

    PubMed

    Liu, Zhiguo; Wang, Yuanlin; Zu, Yuangang; Fu, Yujie; Li, Na; Guo, Na; Liu, Ruisi; Zhang, Yiming

    2014-09-01

    In this study, we report a facile, one-step hydrothermal method to synthesize PEI-functionalized Ag nanoparticles in which no extra reducing agent is needed and PEI serves as a reducing agent and a stabilizing agent. The obtained Ag colloids have been characterized by TEM, UV absorption spectra and laser particle size analyzer. We found that the size of Ag nanoparticles can be tuned through the alteration of the temperature and growth mode. Under an acidic condition, PEI-functionalized Ag nanoparticles are positively charged. More importantly, the Ag colloids exhibited stronger antibacterial activity in the bactericidal test. Its bactericidal efficiency exceeds the commonly used antibacterial agents such as Erythromycin, chloramphenicol and penicillin as well as AgNO3 solution. These results prove that our synthesis method is very efficient to produce a stable PEI-functionalized Ag colloid with excellent antibacterial activity.

  10. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions.

  11. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    PubMed Central

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  12. Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Morales-Gallardo, M. V.; Ayala, A. M.; Pal, Mou; Cortes Jacome, M. A.; Toledo Antonio, J. A.; Mathews, N. R.

    2016-09-01

    In this work, FeS2 nanorods were synthetized by hydrothermal method. The advantages of our process were the high yield, simplicity and reproducibility. The material was studied in detail using different experimental tools such as XRD, SEM, HRTEM, EDXS, XPS, Raman, and UV-vis reflectance. XRD pattern and Raman data revealed good crystalline quality for the as synthesized pyrite FeS2. SEM analysis displayed the rod-like morphologies of FeS2 which seemed to grow radially from a center giving a flower-like appearance. From TEM images the approximate length and diameter of nano-rods were determined as 275 and 15 nm respectively. The material showed excellent photocatalytic activity which was assessed from the degradation of the methlyene blue.

  13. Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dublyansky, Y. V.

    2012-11-01

    A unique conceptual model envisaging conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE not to consider hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. Evaluation shows that validation of the model by computational modeling and by observations at a natural analog site was unsuccessful. Due to the lack of validation, the reliance on this model must be discontinued and the scientific defensibility of decisions which rely on this model must be re-evaluated.

  14. Differentiating biotic from abiotic methane genesis in hydrothermally active planetary surfaces

    PubMed Central

    Oze, Christopher; Jones, L. Camille; Goldsmith, Jonas I.; Rosenbauer, Robert J.

    2012-01-01

    Molecular hydrogen (H2) is derived from the hydrothermal alteration of olivine-rich planetary crust. Abiotic and biotic processes consume H2 to produce methane (CH4); however, the extent of either process is unknown. Here, we assess the temporal dependence and limit of abiotic CH4 related to the presence and formation of mineral catalysts during olivine hydrolysis (i.e., serpentinization) at 200 °C and 0.03 gigapascal. Results indicate that the rate of CH4 production increases to a maximum value related to magnetite catalyzation. By identifying the dynamics of CH4 production, we kinetically model how the H2 to CH4 ratio may be used to assess the origin of CH4 in deep subsurface serpentinization systems on Earth and Mars. Based on our model and available field data, low H2/CH4 ratios (less than approximately 40) indicate that life is likely present and active. PMID:22679287

  15. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations.

    PubMed

    Lund, D C; Asimow, P D; Farley, K A; Rooney, T O; Seeley, E; Jackson, E W; Durham, Z M

    2016-01-29

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  16. Amino acids assisted hydrothermal synthesis of hierarchically structured ZnO with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Guo, Yanxia; Lin, Siwen; Li, Xuan; Liu, Yuping

    2016-10-01

    Novel hierarchically structured ZnO, including rose-like, dandelion-like and flower-like, have been synthesized through a simple hydrothermal process using different amino acids (glutamine, histidine and glycine) as structure-directing agents and urea as deposition agent, followed by subsequent calcination. Amino acids played a crucial role in the formation of hierarchically structured ZnO, and different amino acids could induce different exquisite shapes and assembly ways, as well as more oxygen defects. The prepared hierarchically structured ZnO exhibited excellent photocatalytic activities for the photodegradation of Rhodamine B, which was associated with their special hierarchical structures, large BET surface area and the existence of more oxygen defects. Amino acid-assisted growth mechanism of hierarchically structured ZnO was also discussed.

  17. ESR dating of barite in sulphide deposits formed by the sea-floor hydrothermal activities.

    PubMed

    Toyoda, Shin; Fujiwara, Taisei; Uchida, Ai; Ishibashi, Jun-ichiro; Nakai, Shun'ichi; Takamasa, Asako

    2014-06-01

    Barite is a mineral newly found to be practically useful for electron spin resonance (ESR) dating of sulphide deposits formed by the sea-floor hydrothermal activities. The recent studies for the properties of the ESR dating signal in barite are summarised in the present paper as well as the formulas for corrections for accurate dose-rate estimation are developed including the dose-rate conversion factors, shape correction for gamma-ray dose and decay of (226)Ra. Although development of the techniques for ESR dating of barite has been completed, further comparative studies with other dating techniques such as U-Th and (226)Ra-(210)Pb dating are necessary for the technique to be widely used.

  18. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.

    2016-01-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  19. Tracking Stress and Hydrothermal Activity Along Oceanic Spreading Centers Using Tomographic Images of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Dunn, R. A.; Conder, J. A.; Canales, J. P.

    2014-12-01

    Marine controlled-source seismic tomography experiments now utilize 50+ ocean-bottom seismographs and source grids consisting of many tens of seismic lines with <500 m shot spacing. These dense experiments focus on the upper 10 km of the lithosphere over areas approaching 9000 sq-km. Because of the dense sampling and large azimuthal coverage of ray paths (200,000+ travel time measurements possible), it is now feasible to solve for 3-D images of P-wave azimuthal anisotropy with resolving lengths approaching 1km. Recent examples include the L-SCAN and MARINER experiments, performed at the Eastern Lau Spreading Center and Mid-Atlantic Ridge (36N), respectively. In each case, background anisotropy of ~4% is found in the upper 3-4 km of lithosphere and is consistent with pervasive stress-aligned cracks and microcracks. The fast axes are generally oriented parallel to the trend of the spreading center, as expected for cracks that form in association with seafloor spreading. Three-dimensional images of anisotropy magnitude and orientation reveal variations interpreted as arising from changes in the ambient stress field. Near the ends of ridge segments, where the ridge axis jumps from one spreading center to the next, anisotropy is high with orientations that are out of alignment relative to the background trend. This agrees with numerical models and seafloor morphology that suggest tensile stress concentration and brittle crack formation in these areas. Anisotropy also increases in areas along the ridges where the underlying magma supply and hydrothermal output are greater. This is opposite the trend expected if simple tectonic stress models govern anisotropy. Increased hydrothermal activity, due to increased magma supply, can explain higher anisotropy via increased pore pressure and hydrofracturing. These studies provide the first evidence that images of seismic anisotropy can be used to map variations in hydrologic activity along the crests of oceanic spreading centers.

  20. Diversity of Active Seafloor Hydrothermal Mineralization in the Manus Back-Arc Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Gena, K.; Chiba, H.

    2004-12-01

    sulfidation mineralization is considered to be a product of magmatic degassing and is a typical example of an acid-sulphate type of hydrothermal activity developing on the seafloor.

  1. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  2. Age, Episodicity and Migration of Hydrothermal Activity within the Axial Valley, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, J. W.; Hannington, M. D.; Kelley, D. S.; Clague, D. A.; Holden, J. F.; Tivey, M. K.; Delaney, J. R.

    2011-12-01

    Hydrothermal sulfide deposits record the history of high-temperature venting along the Endeavour Segment. Active venting is currently located within five discreet vent fields, with minor diffuse venting occurring between the fields. However, inactive and/or extinct sulfide structures are found throughout the entire axial valley of the ridge segment, suggesting that hydrothermal activity has been more vigorous in the past or focused venting has migrated with time. Here, we present age constraints from U-series dating of 44 sulfide samples collected by manned submersible from between the Mothra Field in the south to Sasquatch in the north. Samples are dated using 226Ra/Ba ratios from hydrothermal barite that precipitates along with the sulfide minerals. Most samples have been collected from within or near the active vent fields. Fifteen samples from the Main Endeavour Field (MEF) show a spectrum of ages from present to 2,430 years old, indicating that this field has been continuously active for at least ~2,400 years. MEF appears to be oldest currently active field. This minimum value for the age of hydrothermal activity also provides a minimum age of the axial valley itself. Ages from thirteen samples from the High-Rise Field indicate continuous venting for at least the past ~1,250 years. These age data are used in conjunction with age constraints of the volcanic flows to develop an integrated volcanic, hydrothermal and tectonic history of the Endeavour Segment. The total volume of hydrothermal sulfide within the axial valley, determined from high-resolution bathymetry, is used in conjunction with the age constraints of the sulfide material to determine the mass accumulation rates of sulfide along the Endeavour Segment. These data can be used to calibrate the efficiency of sulfide deposition from the hydrothermal vents, and provide a time-integrated history of heat, fluid and chemical fluxes at the ridge-segment scale. The comparison of time-integrated rates with

  3. Active Circulation Control for Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Dumitrache, Alexandru; Dumitrescu, Horia; Preotu, Octavian

    2011-09-01

    A based method for modeling the aerodynamics of horizontal axis wind turbine has been developed. Circulation control is implemented by tangentially blowing a small high-velocity jet over a highly curved surface, such as a rounded trailing edge. This causes the boundary layer and the jet sheet to remain attached along the curved surface due to the Coanda effect and causing the jet to turn without separation. This analysis has been validated for the experimental data of a rotor tested at NASA Ames Research Center. Comparisons have been done against measurements for surface pressure distribution, force coefficients normal and tangential to the chord line, torque and root bending moments. This approach for enhancing the circulation around the airfoil sections (and hence L/D and power production) has been examined and found to produce useful increases in power at low wind speeds.

  4. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  5. Hydrothermal Processing

    SciTech Connect

    Elliott, Douglas C.

    2011-03-11

    This chapter is a contribution to a book on Thermochemical Conversion of Biomass being edited by Prof. Robert Brown of Iowa State University. It describes both hydrothermal liquefaction and hydrothermal gasification of biomass to fuels.

  6. Hydrothermal synthesis of ZTO/graphene nanocomposite with excellent photocatalytic activity under visible light irradiation.

    PubMed

    Ben Ali, Monaam; Yolcu, Haci Hasan; Elhouichet, Habib; Sieber, Brigitte; Addad, Ahmed; Boussekey, Luc; Moreau, Myriam; Férid, Mokhtar; Szunerits, Sabine; Boukherroub, Rabah

    2016-07-01

    A facile and efficient one-step hydrothermal approach for the synthesis of Zn2SnO4 nanoparticles/reduced graphene oxide (ZTO/rGO) nanocomposites using zinc acetate, tin chloride and graphene oxide (GO) as precursors, and sodium hydroxide as reducing agent has been developed. This approach allows simultaneous reduction of GO and growth of spinel ZTO nanoparticles (NPs) on the rGO sheets. The morphology and microstructure characterizations of ZTO/rGO nanocomposites revealed that this method leads to close interfacial contact of ZTO NPs and rGO and efficient dispersion of ZTO NPs on the surface of rGO sheets. The photocatalytic activity of the ZTO/rGO nanocomposite was investigated for the reduction of rhodamine B under visible light irradiation. Compared to pure ZTO NPs, ZTO/rGO nanocomposite exhibited superior photocatalytic activity with a full degradation of rhodamine B within 15min. The enhanced photocatalytic performance of ZTO/rGO was mainly attributed to excellent electron trapping and effective adsorption properties of rGO.

  7. Anomalous quartz from the Roter Kamm impact crater, Namibia: Evidence for post-impact hydrothermal activity

    SciTech Connect

    Koeberl, C. Univ. of Vienna ); Fredriksson, K. ); Goetzinger, M. ); Reimold, W.U. )

    1989-08-01

    Centimeter-sized quartz pebbles have been found on the rim of the Roter Kamm impact crater. The Roter Kamm crater has a diameter of about 2.5 km and is situated in the Namib Desert, SWA/Namibia. Because of the sand coverage, impact products are exposed exclusively in the form of ejecta on the crater rim. The quartz pebbles were found close to the main deposits of the impact breccias and show signs of wind abrasion. Thin sections revealed that the pebbles consist of individual quartz domains that are up to 1 mm in size. Under crossed nicols (polarized light), all individual domains show extinction almost simultaneously within {plus minus}2{degree}, which is a rare phenomenon. Microprobe studies, neutron activation analyses, and X-ray diffractometry confirmed that the material consists of pure quartz. The quartz contains three different types of fluid inclusions: primary inclusions that record the formation conditions of the quartz, very small (<1 {mu}m) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. Freezing point depression measurements of the primary inclusions indicate fluid salinities between 18.3 and 19.6 wt% NaCl. Homogenization temperatures (T{sub h}) for the primary inclusions range from 165 to 250{degree}C. The quartz and the primary inclusions may provide evidence for a post-impact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  8. A comparative Study of Circulation Patterns at Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  9. State of the hydrothermal activity of Soufrière of Guadeloupe volcano inferred by VLF surveys

    NASA Astrophysics Data System (ADS)

    Zlotnicki, J.; Vargemezis, G.; Mille, A.; Bruère, F.; Hammouya, G.

    2006-04-01

    La Soufrière (1467 m) is the active island arc volcano of Guadeloupe Island in the Lesser Antilles arc. Its historical eruptions are more or less violent phreatic outbursts the last of which, in 1976-1977, led to the evacuation of nearly 70 000 persons. The subsurface structure of the volcano consists of calderas, craters, and avalanche amphitheatres nested within the composite pile of eruptive products. Since the last magmatic eruption, dated ca. 1440 AD, the four phreatic eruptions have developed radial fractures on Soufrière dome favouring the development of a huge active hydrothermal system emphasized by a tropical environment. After the eruptions, the thermal state and the stable ground water flow are completely disorganised during several years during which the slow mineralization of rocks is becoming again preponderant. Sealing of fractures and decay of rocks permeability act as a cap for upward thermal transfers. Therefore Soufrière dome operates as a valve, resealing the hydrothermal system underlying the volcano thus providing over pressurization that could lead to the next phreatic eruption. In 1992 new small seismic swarms have appeared. Several of them are recorded every year while the emission of acid gas slowly increases. In order to recognise the superficial electrical resistive and conductive zones (less than 100 m depth) as well as the cavities on Soufrière volcano, we have made Very Low Frequency (VLF) surveys in 2000. Electrical conductive zones are clearly associated with major radial faults starting from the summit in which the hydrothermal activity takes place. In the continuation of these active hydrothermal fractures hot springs are located down slope. Conversely some of the resistive zones are associated with inactive clayed and sealed or opened faults. The distribution of the conductive zones allows detailing the state of the superficial part of the hydrothermal system of La Soufrière. The distribution of vertical clayed zones

  10. Improving Morphological Quality and Uniformity of Hydrothermally Grown ZnO Nanowires by Surface Activation of Catalyst Layer

    NASA Astrophysics Data System (ADS)

    Murillo, Gonzalo; Lozano, Helena; Cases-Utrera, Joana; Lee, Minbaek; Esteve, Jaume

    2017-01-01

    This paper presents a study about the dependence of the hydrothermal growth of ZnO nanowires (NWs) with the passivation level of the active surface of the Au catalyst layer. The hydrothermal method has many potential applications because of its low processing temperature, feasibility, and low cost. However, when a gold thin film is utilized as the seed material, the grown NWs often lack morphological homogeneity; their distribution is not uniform and the reproducibility of the growth is low. We hypothesize that the state or condition of the active surface of the Au catalyst layer has a critical effect on the uniformity of the NWs. Inspired by traditional electrochemistry experiments, in which Au electrodes are typically activated before the measurements, we demonstrate that such activation is a simple way to effectively assist and enhance NW growth. In addition, several cleaning processes are examined to find one that yields NWs with optimal quality, density, and vertical alignment. We find cyclic voltammetry measurements to be a reliable indicator of the seed-layer quality for subsequent NW growth. Therefore, we propose the use of this technique as a standard procedure prior to the hydrothermal synthesis of ZnO NWs to control the growth reproducibility and to allow high-yield wafer-level processing.

  11. Synthesis and Enhanced Photocatalytic Activity of Ce-Doped Zinc Oxide Nanorods by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Aisah, N.; Gustiono, D.; Fauzia, V.; Sugihartono, I.; Nuryadi, R.

    2017-02-01

    Zinc oxide (ZnO) is a n-type semiconductor material which has a wide direct band gap energy of ∼ 3.3 eV, and other interesting optical properties, hence it’s potentially applied to various fields such as electronics, optoelectronics, sensors, photonic devices, and also photocatalyst. Dopant in ZnO nanostructures is an effective way to improve ZnO’s structural properties in various applications. In this study, undoped and Ce doped ZnO nanorods were synthesized on ITO coated glass substrates by ultrasonic spray pyrolysis for seeding deposition and hydrothermal methods at a temperature of 95 0C for 2 hours for growth. X-ray diffraction, field emission scanning electron microscopy (FESEM), UV-VIS and Photoluminescence spectroscopy were used to characterize the crystal structure, surface morphology and optical properties of ZnO nanorods and the photocatalytic activity test for methylene blue degradation. The experimental results showed that 3% Cerium dopant has produced hexagonal morphology ZnO nanorod growing more uniform on (002) crystal planes, increased the intensity of ultraviolet absorbance thereby increase the degradation speed of methylene blue.

  12. Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dublyansky, Y. V.

    2014-08-01

    A unique conceptual model describing the conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE to keep from considering hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. The evaluation presented in this paper shows that no computational modeling results have yet produced a satisfactory match with the empirical benchmark data, specifically with age and fluid inclusion data that indicate high temperatures (up to ca. 80 °C) in the unsaturated zone of Yucca Mountain. Auxiliary sub-models complementing the DOE model, as well as observations at a natural analog site, have also been evaluated. Summarily, the model cannot be considered as validated. Due to the lack of validation, the reliance on this model must be discontinued and the appropriateness of decisions which rely on this model must be re-evaluated.

  13. Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African Rift

    SciTech Connect

    Tiercelin, J.J.; Mondeguer, A. ); Thouin, C. ); Kalala, T. )

    1989-11-01

    Massive sulfides and carbonate mineral deposits associated with sublacustrine thermal springs were recently discovered along the Zaire side of the north Tanganyika trough, western branch of the East African Rift. This hydrothermal activity, investigated by scuba diving at a maximum depth of 20 m, is located at the intersection of major north-south normal faults and northwest-southeast faults belonging to the Tanganyika-Rukwa-Malawi (TRM) strike-slip fault zone. The preliminary results presented here come from analyses of sulfide deposits, hydrothermal fluids, and associated hydrocarbons that result from geothermal activity in this part of the East African Rift filled by a thick pile of sediment, the north Tanganyika trough.

  14. P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method

    NASA Astrophysics Data System (ADS)

    Niu, Jinfen; Lu, Pan; Kang, Mei; Deng, Kunfa; Yao, Binghua; Yu, Xiaojiao; Zhang, Qian

    2014-11-01

    Phosphorous-doped anatase TiO2 powders (P-TiO2) were prepared by rapid microwave hydrothermal method. The resulting materials were characterized by XRD, SEM, XPS, DRS and N2 adsorption. P-doping decreased the band gap and enlarged the surface area of P-doped samples than that of undoped TiO2 samples. Therefore, the photocatalytic degradation of methyl blue (MB) and tetracycline hydrochloride (Tc) experiments showed that the P-TiO2 catalysts, especially the two-steps-controlling products P-TiO2-2, exhibited higher degradation efficiency than the undoped TiO2 and commercial P25 under visible-light irradiation. Hydroxyl radicals (rad OH) have been confirmed to be the active species during the photocatalytic oxidation reaction. The microwave hydrothermal method confirms to be very suitable for the synthesis of superior visible-light activity P-doped samples.

  15. Microearthquakes at the active Trans-Atlantic Geotraverse (TAG) hydrothermal mound, Mid-Atlantic Ridge, 26°08'N

    NASA Astrophysics Data System (ADS)

    Pontbriand, C.; Reves-Sohn, R. A.

    2010-12-01

    A small 200 m aperture network of five ocean bottom seismometers around the periphery the active TAG hydrothermal mound on the Mid-Atlantic Ridge (26°08’N) detected microearthquake events that may be associated with the subsurface hydraulics of the massive hydrothermal deposit. Seismic data were sampled at 100 Hz for a period of eight months spanning June, 2003 to February, 2004, during which time 24,191 locatable events were detected. Microearthquake hypocenters are concentrated within a 300 m radius of the sulfide mound in the top 250 m of crust, and exhibit a conical shape with the deepest events beneath the mound center. Event rates are steady at 180 events per day at the beginning of the study period and decline slightly to 116 events per day after whale calls elevate background noise levels about 2/3 of the way through the deployment. The mean local magnitude of events is -1.2 with a range of -2.9≦ML≦0.3. We suggest that events may be largely due to hydraulic fracturing of clogged flow conduits in the mineral deposit, which provides the possibility of using the microearthquake data to constrain subsurface flow parameters and the permeability structure of the active TAG deposit. Figure: A bathymetric map of the TAG area depicts a small aperture network of 5 ocean bottom seismometers (white triangles) around the periphery of the active TAG hydrothermal mound. High resolution bathymetry is from Roman and Singh, 2005.

  16. Photocatalytic activity of tungsten-doped TiO2 with hydrothermal treatment under blue light irradiation.

    PubMed

    Putta, Thapanan; Lu, Ming-Chun; Anotai, Jin

    2011-09-01

    Tungsten doping and hydrothermal treatment were found to significantly improve the visible-light photoactivity of TiO(2) synthesized by the sol-gel method. It was observed that TiO(2) doped with a 0.5% W:Ti mole ratio and treated with 4 h of hydrothermal curing showed photoactivity under blue light irradiation equal to 74% of the commercial Degussa P-25 under UV irradiation, i.e., 0.01 mM 2-chlorophenol was completely removed in 120 and 90 min, respectively. Light absorptivity and photocatalytic activity under blue light irradiation were not dependent on the crystallite structure of the TiO(2). The oxidation kinetics under blue light irradiation can be effectively explained by the Langmuir-Hinshelwood model with an apparent reaction rate constant and a Langmuir constant of 3.60 × 10(-4) mM min(-1) and 206.53 mM(-1), respectively.

  17. High Temperature Hydrothermal Circulation in the Deep Oceanic Crust - Sr Isotopes and Trace Elements Modelisation Constraints on the Origin of the Fluids

    NASA Astrophysics Data System (ADS)

    Bosch, D.; Lamour, M.; Jamais, M.; Bodinier, J.

    2003-12-01

    Previous field, petrological and geochemical works have identified high temperature hydrous alteration traces throughout the gabbros of the Samail ophiolite. Temperatures have been calibrated for the successive stages of alteration, starting with orthopyroxene-pargasite coronas (above 975 \\deg C) and ending with the low temperature (LT) lizardite serpentinisation (below 500 \\deg C). Sr isotopic analyses performed on massive gabbros, dikes and veins and associated minerals depart from typical mantle signatures and are characterized by radiogenic Sr isotopic ratios suggesting seawater as the most likely hydrothermal contaminant. The main water channels may be submillimetric microcracks with a dominantly vertical attitude and constituting the recharge hydrothermal system, whereas dikes and veins represent the discharge part. This model requires that these dikes have been generated by hydration of the crystallizing gabbros via seawater penetration, near the internal wall of the LVZ-magma chamber, i.e. at temperatures well above the near 1000 \\deg C temperature recorded so far. We used the numerical plate model of VerniŠres et al. (1997) to simulate the chemical evolution of Sr isotopes and some trace elements in fluids through the gabbro column. This approach takes into account mineralogical and porosity variations due to dissolution-precipitation processes, as well as variations of partition coefficients as a function of distance from the fluid source. The aim of modelling was twofold: (1) to provide estimates of the chemical evolution of fluids as a result of high-temperature interaction with gabbros, and (2) to constrain the fluid-rock ratios throughout the gabbros sequence. Such an approach sheds new lights on the importance of high temperature hydrothermal processes and on the geochemical modifications they induced during oceanic crust formation at fast spreading ridge. VerniŠres J., Godard M., Bodinier J.-L., 1997. A plate model for the simulation of trace

  18. Recent uplift and hydrothermal activity at Tangkuban Parahu volcano, west Java, Indonesia

    USGS Publications Warehouse

    Dvorak, J.; Matahelumual, J.; Okamura, A.T.; Said, H.; Casadevall, T.J.; Mulyadi, D.

    1990-01-01

    Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40-50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very

  19. Investigating microbial colonization in actively forming hydrothermal deposits using thermocouple arrays

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.; Reysenbach, A. L.; Hirsch, M.; Steinberg, J.; Flores, G. E.

    2010-12-01

    Investigations of microbial colonization of very young hydrothermal deposits were carried out in 2009 at hydrothermal vents in the Lau Basin (SW Pacific), and in Guaymas Basin, Gulf of California, with a test deployment at the Rainbow vent field on the Mid-Atlantic Ridge in 2008. Our method entailed razing active chimneys and placing arrays of temperature probes (8 titanium-encased probes with their tips placed within a titanium cage) over the active flow. The chimneys that grew back through each array, encasing the temperature probe tips, were recovered after 2 to 15 days, along with temperature records. Molecular phylogenetic methods are being used to reveal the members of the microbial communities that developed in each chimney of known age and thermal history. A total of 15 array deployments were made at 10 vents in 6 different vent fields. Similar morphology beehives (with porous fine-grained interiors and steep temperature gradients across the outermost more-consolidated “wall”) formed at 2 of the 3 vents in Guaymas Basin (in 2 and 5 days at one vent and 3 and 15 days at a second), and at one vent each in the Kilo Moana (in 3 days), Tahi Moana (in 2.5 days), and Tui Malila (in 3 and 8 days) vent fields in the Lau Basin. In contrast, open conduit, thin walled chimneys grew within arrays at the Mariner vent field, Lau Basin, at 3 different vents (in 3 days at one vent, in 3 and 11 days at a second vent, and in 13 days at a third vent). A lower temperature (<280C) diffuser/spire with a filamentous biofilm formed in 15 days in an array at a hydrocarbon-rich vent in the Guaymas Basin. A similar biofilm formed after 6 days within an array placed earlier at this same vent, with little mineralization. Preliminary diversity data from the 6 and 15 day Guaymas deployments show an increased diversity of bacteria with time with initial colonizers being primarily sulfur-oxidizing Epsilonproteobacteria, with members of the Aquificales and Deltaproteobacteria appearing

  20. High-resolution surveys along the hot spot-affected Gálapagos Spreading Center: 3. Black smoker discoveries and the implications for geological controls on hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Haymon, Rachel M.; White, Scott M.; Baker, Edward T.; Anderson, Peter G.; MacDonald, Ken C.; Resing, Joseph A.

    2008-12-01

    To explore effects of hot spots on mid-ocean ridge hydrothermal systems, we conducted nested sonar, hydrothermal plume, and near-bottom photographic surveys along the portion of the Galápagos Spreading Center (GSC) influenced by the Galápagos hot spot, from longitude 95°-89.5°W. We report the first active high-temperature black smokers to be found on the GSC, at longitudes 94°4.5'W and 91°56.2'-54.3'W; describe two areas of recently inactive smokers, at longitudes 91°23.4'-23.7'W and 91°13.8'W; and document an older inactive site, at longitude 90°33.4'W. All imaged vents issue either from dike-induced fissures along linear axial volcanic ridges and collapses or from a caldera. Magmatic control of hydrothermal systems also is revealed by spatial clustering of plumes within the topographically elevated middles of volcanic ridge segments with inferred centralized melt supply. In searched areas, smokers are more typical than diffuse flow vents, but total GSC plume incidence is half of that expected from the spreading rate. Why? Dike-fed fissures provide permeable pathways for efficient hydrothermal extraction of magmatic heat, but cones without calderas do not. Among many point-source cones surveyed, only the two with calderas had detectable plumes. Possibly, dominance of point-source over linear-source melt delivery on the GSC decreases plume incidence. Also, similar maturities of observed vents and their host lava flows indicate that hydrothermally active volcanic segments along the western GSC are contemporaneously in a waning phase of volcanic-hydrothermal activity. Perhaps ridge/hot spot interaction produces melt pulses that drive near-synchronous volcanic-hydrothermal activity on the volcanic segments spanning the hot spot. During active periods, hydrothermally active dike-fed fissures and calderas may be more abundant than we currently observe.

  1. American Issues Forum: Active Projects--Summary Report [And] Nationally Circulated Materials.

    ERIC Educational Resources Information Center

    National Endowment for the Humanities (NFAH), Washington, DC.

    These two reports briefly describe the active projects and nationally circulated mateirals associated with the American Issues Forum Bicentennial Programs. The summary report of active projects is designed to show how various national media, national and international organizations, corporations, and state and community groups are actively…

  2. Tectonic and magmatic control of hydrothermal activity along the slow-spreading Central Indian Ridge, 8°S-17°S

    NASA Astrophysics Data System (ADS)

    Son, Juwon; Pak, Sang-Joon; Kim, Jonguk; Baker, Edward T.; You, Ok-Rye; Son, Seung-Kyu; Moon, Jai-Woon

    2014-05-01

    complex geology and expansive axial valleys typical of slow-spreading ridges makes evaluating their hydrothermal activity a challenge. This challenge has gone largely unmet, as the most undersampled MOR type for hydrothermal activity is slow spreading (20-55 mm/yr). Here we report the first systematic hydrothermal plume survey conducted on the Central Indian Ridge (CIR, 8°S-17°S), the most extensive such survey yet conducted on a slow-spreading ridge. Using a combined CTD/Miniature Autonomous Plume Recorder (MAPR) package, we used 118 vertical casts along seven segments of the CIR (˜700 km of ridge length) to estimate the frequency of hydrothermal activity. Evidence for hydrothermal activity (particle and methane plumes) was found on each of the seven spreading segments, with most plumes found between 3000 and 3500 m, generally <1000 m above bottom. We most commonly found plumes on asymmetric ridge sections where ultramafic massifs formed along one ridge flank near ridge-transform intersections or nontransform offsets. The estimated plume incidence (ph) for axial and wall casts (ph=0.30, 35 of 118 casts) is consistent with the existing global trend, indicating that the long-term magmatic budget on the CIR is the primary control on the spatial frequency of hydrothermal venting. Our results show that the tectonic fabric of the CIR strongly determines where hydrothermal venting is expressed, and that using only near-axial sampling might underestimate hydrothermal activity along slow-spreading and ultraslow-spreading ridges. Serpentinization is a minor contributor to the plume inventory, based on 15 profiles with methane anomalies only, predominantly at depths above the local valley walls.

  3. Investigation of hydrothermal activity at Campi Flegrei caldera using 3D numerical simulations: Extension to high temperature processes

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Costa, Antonio; Chiodini, Giovanni

    2015-06-01

    Hydrothermal activity at Campi Flegrei caldera is simulated by using the multiphase code MUFITS. We first provide a brief description of the simulator covering the mathematical formulation and its applicability at elevated supercritical temperatures. Then we apply, for the first time, the code to hydrothermal systems investigating the Campi Flegrei caldera case. We consider both shallow subcritical regions and deep supercritical regions of the hydrothermal system. We impose sophisticated boundary conditions at the surface to provide a better description of the reservoir interactions with the atmosphere and the sea. Finally we carry out a parametric study and compare the simulation results with gas temperature and composition, gas and heat fluxes, and temperature measurements in the wells of that area. Results of the parametric study show that flow rate, composition, and temperature of the hot gas mixture injected at depth, and the initial geothermal gradient strongly control parameters monitored at Solfatara. The results suggest that the best guesses conditions for the gas mixture injected at 5 km depth correspond to a temperature of ~ 700 °C, a fluid mass flow rate of about 50-100 kg/s, and an initial geothermal gradient of ~ 120 °C/km.

  4. Modelling wildfire activity in Iberia with different Atmospheric Circulation WTs

    NASA Astrophysics Data System (ADS)

    Sousa, P. M.; Trigo, R.; Pereira, M. G.; Rasilla, D.; Gouveia, C.

    2012-04-01

    This work focuses on the spatial and temporal variability of burnt area (BA) for the entire Iberian Peninsula (IP) and on the construction of statistical models to reproduce the inter-annual variability, based on Weather Types Classification (WTC). A common BA dataset was assembled for the first time for the entire Iberian Peninsula, by merging BA records for the 66 administrative regions of Portugal and Spain. A normalization procedure was then applied to the various size regions before performing a k-means cluster analysis to identify large areas characterized by similar fire regimes. The most compelling results were obtained for 4 clusters (Northwestern, Northern, Southwestern and Eastern) whose spatial patterns and seasonal fire regimes are shown to be related with constraining factors such as topography, vegetation cover and climate conditions. The response of fire burnt surface at monthly time scales to both long-term climatic pre-conditions and short-term synoptic forcing was assessed through correlation and regression analysis using: (i) temperature and precipitation from 2 to 7 months in advance to fire peak season; (ii) synoptic weather patterns derived from 11 distinct classifications derived under the COSTaction-733. Different responses were obtained for each of the considered regions: (i) a relevant link between BA and short-term synoptic forcing (represented by monthly frequencies of WTC) was identified for all clusters; (ii) long-term climatic preconditioning was relevant for all but one cluster (Northern). Taking into account these links, we developed stepwise regression models with the aim of reproducing the observed BA series (i.e. in hindcast mode). These models were based on the best climatic and synoptic circulation predictors identified previously. All models were cross-validated and their performance varies between clusters, though models exclusively based on WTCs tend to better reproduce annual BA time series than those only based on pre

  5. Circadian fluctuations in circulating plasminogen activator inhibitor-1 are independent of feeding cycles in mice.

    PubMed

    Oishi, Katsutaka; Ohkura, Naoki; Yasumoto, Yuki; Yamamoto, Saori

    2017-01-01

    To evaluate the involvement of the day-night feeding cycle in the circadian regulation of circulating plasminogen activator inhibitor-1 (PAI-1) concentrations, mice were fed with a diet for eight hours during either daytime (DF) or nighttime (NF) for one week. The reversed feeding cycle did not affect the circadian phases of plasma PAI-1 levels as well as the nocturnal wheel-running activity, although the phase of Pai-1 mRNA expression was significantly advanced for 8.6 hours in the livers of DF, compared with NF mice. The day-night feeding cycle is not a critical Zeitgeber for circadian rhythm of circulating PAI-1.

  6. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity

    PubMed Central

    Wu, Shuisheng; Dai, Weili

    2017-01-01

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs. PMID:28336888

  7. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    PubMed

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  8. Role of lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy.

    PubMed

    Herrera, E; Lasunción, M A; Gomez-Coronado, D; Aranda, P; López-Luna, P; Maier, I

    1988-06-01

    The mechanism that induces maternal hypertriglyceridemia in late normal pregnancy, and its physiologic significance are reviewed as a model of the effects of sex steroids on lipoprotein metabolism. In the pregnant rat, maternal carcass fat content progressively increases up to day 19 of gestation, then declines at day 21. The decline may be explained by the augmented lipolytic activity in adipose tissue that is seen in late pregnancy in the rat. This change causes maternal circulating free fatty acids and glycerol levels to rise. Although the liver is the main receptor organ for these metabolites, liver triglyceride content is reduced. Circulating triglycerides and very-low-density lipoprotein (VLDL)-triglyceride levels are highly augmented in the pregnant rat, indicating that liver-synthesized triglycerides are rapidly released into the circulation. Similar increments in circulating VLDL-triglycerides are seen in pregnant women during the third trimester of gestation. This increase is coincident with a decrease in plasma postheparin lipoprotein lipase activity, indicating a reduced removal of circulating triglycerides by maternal tissues or a redistribution in their use among the different tissues. During late gestation in the rat, tissue lipoprotein lipase activity varies in different directions; it decreases in adipose tissue, the liver, and to a smaller extent the heart, but increases in placental and mammary gland tissue. These changes play an important role in the fate of circulating triglycerides, which are diverted from uptake by adipose tissue to uptake by the mammary gland for milk synthesis, and probably by the placenta for hydrolysis and transfer of released nonesterified fatty acids to the fetus. After 24 hours of starvation, lipoprotein lipase activity in the liver greatly increases in the rat in late pregnancy; this change is not seen in virgin animals. This alteration is similar to that seen in liver triglyceride content and plasma ketone body

  9. Observations of Flatfish "Spas" From Three Hydrothermally Active Seamounts in the Mariana Arc

    NASA Astrophysics Data System (ADS)

    Dower, J.; Tunnicliffe, V.; Tyler, J.; Juniper, K.; Stevens, C.; Kouris, A.; Takano, B.

    2006-12-01

    During a cruise to the Mariana Islands in spring 2004, dense aggregations of small flatfish were recorded from areas of diffuse flow on two hydrothermally active seamounts known as Kasuga-2 and Daikoku. This is quite novel, as flatfish are not known to be part of vent faunas elsewhere. Based on a single specimen, it was determined to be a new species of tonguefish in the genus Symphurus, and is currently under description. In October 2005, we returned to the Mariana Arc and collected about 60 specimens from Kasuga-2, Daikoku, and a third site, Nikko Seamount. Interestingly, the Nikko specimens were about twice as large as the flatfish from Kasuga-2 and Daikoku. Current molecular work (using the Barcode of Life Data System) will determine the relationship among these populations, and verify whether they are the same species. Under the microscope, the sandy sediments from the flatfish habitat were found to be full of tiny nematodes and polychaete worms. Our current hypothesis is that the fish are feeding on both and, thus, are ultimately supported by chemosynthesis, since the worms likely feed on bacteria in the sediments. However, during our most recent cruise in May 2006, we also observed several instances in which dead (or nearly dead) mid-water fish and shrimp fell out of the water column onto the bottom, after which they were almost immediately fed upon by the flatfish. This suggests that there may also be an additional energy subsidy to the seamount benthos from the water column. We hypothesize that sulfite (or some other toxic chemical) in the plume overlying these active volcanoes either kills or anesthetizes small pelagics that get advected over the seamount summit while feeding in near-surface waters at night. Stable isotope and lipid analysis of samples from these "fish spas" are currently underway to establish trophic relationships. We hope to use otolith microstructure analyses to quantify individual growth trajectories and population age structure of

  10. Galapagos rift at 86 /sup 0/W 5. Variations in volcanism, structure, and hydrothermal activity along a 30-kilometer segment of the rift valley

    SciTech Connect

    Ballard, R.D.; van Andel, T.H.; Holcomb, R.T.

    1982-02-10

    A 30-km segment of the Galapagos Rift near 86 /sup 0/W has been mapped in detail using the Angus towed camera system, the submersible Alvin, and multi-narrowbeam sonar data. Recent volcanic activity and active hydrothermal circulation are evident along the entire length of the segment mapped. There are, however, clear along-strike variations in these processes which render previous two-dimensional models obsolete. Although alternate explanations are possible, eruptive sequences appear to begin with the outpouring of surface-fed sheet flows and end with more channelized pillow flows. In the western portion of the rift studied, sheet flows dominate with the entire valley floor covered by recent flows associated with a broad shield volcano. The eastern portion, on the other hand, is narrower; consisting primarily of less voluminous pillow flows of apparently the same youthful age. Three possible models for the volcanic evolution of this rift segment are presented. According to the first model, the extrusive portion of the crust is formed by a distinct volcanic episode, followed by a long period of volcanic quiescence. The volcanic phase begins with voluminous sheet flows emerging from numerous eruptive fissures, which in time evolve into a narrow pillow ridge. Farther along-strike, where the flows are smaller and the extrusive zone narrow, the marginal portions undergo continued fissuring and subsequent uplift to form marginal highs and lows. This deformational activity also affects the extrusive zone once volcanic activity ends, converting the distinctly lobate topography of the active period into highly lineated fault-controlled terrain. According to the second model, extension and volcanism can be viewed as a continuous process without major periods of volcanic quiescence. The initial lava flows of a new eruptive sequence fill low areas, frequently spilling over local sills and flooding much of the rift valley.

  11. Constraints on Alpine hydrothermal activity and deformation from U-Th-Pb dating of cleft monazite and xenotime (Western Alps)

    NASA Astrophysics Data System (ADS)

    Grand'Homme, Alexis; Janots, Emilie; Bosse, Valerie; Seydoux-Guillaume, Anne-Magali; De Ascencao, Roger

    2016-04-01

    In this large-scale regional study, age of hydrothermal monazite (and xenotime) precipitation has been investigated through in-situ U-Th-Pb dating of crystals collected in 11 clefts (veins) taken in the internal and external massifs (Western Alps). The investigated clefts are composed of quartz, chlorite (± epidote), albite and millimetric accessory minerals (monazite, apatite, xenotime, anatase, rutile). Prior to dating, cleft monazite composition was thoroughly studied to reveal potential zoning. In-situ dating through different compositional domains of single monazite crystal yields well-resolved Th-Pb ages (typically with 0.1-0.3 Ma resolution) indicating for growth episodes with short duration. Comparison of U-Pb and Th-Pb dating indicates that the U-Pb systematics appears successful to date cleft monazite with low Th/U ratio (typically <30). In one cleft, in which monazite and xenotime coexist, xenotime was dated using the monazite analytical protocol. Hydrothermal xenotime has remarkably high Th/U ratio and U-Pb dating shows evidence of 206Pb excess. In comparison, Th-Pb dating gives robust ages (35.2 ± 0.8 Ma) that are close but higher than the monazite date obtained in the same cleft (32.3 ± 0.3 Ma). Brief episodic monazite crystallization is likely attributed to enhanced hydrothermal activity during periods of higher tectonic activity. Correlation with other geochronological data suggests that it occurs in a host-rock that already cooled down at temperature close or below to the zircon fission track. In the Belledonne massif, the new monazite ages confirm for two periods of hydrothermal activity at around 11-13 Ma and 8-6 Ma, respectively. Only one vertical cleft monazite was investigated in the Mont-Blanc massif but it gives an age that is similar to the early population of the Belledonne massif (11.1 ± 0.2 Ma). Monazite dating therefore suggests for similar late-stage tectonic activity from Belledonne up to the Aar massifs, likely due to dextral

  12. Volcanic and Tectonic Setting of Hydrothermal Activity on the Southern Mid-Atlantic Ridge, 4° - 11°S

    NASA Astrophysics Data System (ADS)

    Melchert, B.; Devey, C. W.; German, C. R.; Haase, K. M.; Koschinsky, A.; Lackschewitz, K.; Yoerger, D. R.

    2006-12-01

    The recurrence rate of volcanism at mid-ocean ridges should drop with spreading rate. Although the southern Mid-Atlantic Ridge, with a spreading full rate of ~3.6 cm/yr, might therefore be expected to show only sporadic magmatic activity, we present information on recently-discovered volcanically, tectonically and hydrothermally active areas south of the equator (at 4°48'S and 9°33'S, see also German et al. 2005; Haase et al. 2005 EOS Trans. AGU 86 (52) Fall Meet. Suppl. Abstr. OS21C-04 & -05). Around the 4°48'S area the median valley floor forms a ~10 km wide, hour-glass shaped, plateau with water depths of around 3000 m. Four closely-spaced vent fields (the high-temperature sites Turtle Pits, Red Lion and Comfortless Cove and the diffuse low-temperature Wideawake site) occur along a flat (total relief 50 m), volcanically and tectonically active 2 km section of this plateau (see German et al. 2005, Haase et al. 2005 op. cit. also Koschinsky et al. this meeting). The Turtle Pits site lies within a small depression associated with a fracture marked by aligned collapse pits. This central depression is surrounded by laminated sheet flows to the north and northwest, whereas jumbled flows are more prevalent to the east. Comfortless Cove is also associated with young volcanics and shows strong tectonic influence on vent location. Red Lion in contrast shows no clear tectonic control - it is characterised by four active chimneys which sit directly on a pillow lava floor. The 9°33'S area is situated on 11 km-thick crust (Bruguier et al. 2003 JGR 108 2093) at 1490 m water depth and is marked by fresh pillow lavas, sheet flows, lava lakes and collapse structures. Low- temperature, diffuse hydrothermal activity is abundant in the area (Haase et al. 2005; Koschinsky et al. 2006 op. cit.) as are larger extinct hydrothermal mounds suggesting more vigourous hydrothermalism in the past. All sites are located east of a large NNW trending escarpment flanking horst and graben

  13. Stratigraphic development and hydrothermal activity in the central western Cascade Range, Oregon

    SciTech Connect

    Cummings, M.L.; Bull, M.K. ); Pollock, J.M. ); Thompson, G.D. )

    1990-11-10

    Two volcanic sequences bounded by erosional unconformities compose the stratigraphy of the North Santiam mining district, Western Cascade Range, Oregon. Diorite, grandodiorite, and leucocratic quartz porphyry dikes, stocks, and sills intrude the breccias, flows, and tuffs of a volcanic center in the older Sardine Formation. Tourmaline-bearing breccia pipes are associated with the porphyritic granodiorite intrusions. An erosional unconformity separates the Sardine Formation from the overlying Elk Lake formation. The alteration patterns in the two formations are consistent with the development of hydrothermal systems during the eruption of each formation. However, the development of the two hydrothermal systems is separated by a period of erosion of the older volcanic pile. Early formation of mineralization that resembles porphyry copper deposits occurred within the Sardine Formation, and later, after eruption of the Elk Lake formation, epithermal veins and alteration developed along faults, fractures, and the margins of dikes in the Sardine Formation.

  14. Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method

    SciTech Connect

    Jitputti, Jaturong; Pavasupree, Sorapong; Suzuki, Yoshikazu; Yoshikawa, Susumu

    2007-05-15

    Nanocrystalline mesoporous TiO{sub 2} was synthesized by hydrothermal method using titanium butoxide as starting material. XRD, SEM, and TEM analyses revealed that the synthesized TiO{sub 2} had anatase structure with crystalline size of about 8 nm. Moreover, the synthesized titania possessed a narrow pore size distribution with average pore diameter and high specific surface area of 215 m{sup 2}/g. The photocatalytic activity of synthesized TiO{sub 2} was evaluated with photocatalytic H{sub 2} production from water-splitting reaction. The photocatalytic activity of synthesized TiO{sub 2} treated with appropriate calcination temperature was considerably higher than that of commercial TiO{sub 2} (Ishihara ST-01). The utilization of mesoporous TiO{sub 2} photocatalyst with high crystallinity of anatase phase promoted great H{sub 2} production. Furthermore, the reaction temperature significantly influences the water-splitting reaction. - Graphical abstract: Nanocrystalline mesoporous TiO{sub 2} was synthesized by hydrothermal method. The physical properties of the synthesized TiO{sub 2} were thoroughly studied in relation to its photocatalytic activity for H{sub 2} evolution from water-splitting reaction. It was found that the photocatalytic activity of synthesized TiO{sub 2} treated with appropriate calcination temperature was considerably higher than that of commercial TiO{sub 2} (Ishihara ST-01)

  15. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent

    PubMed Central

    Fortunato, Caroline S; Huber, Julie A

    2016-01-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched 13C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  16. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    PubMed

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent.

  17. Photocatalytic activity of BiFeO{sub 3} nanoparticles synthesized through hydrothermal method

    SciTech Connect

    Dhanalakshmi, Radhalayam; Muneeswaran, M.; Vanga, Pradeep Reddy; Ashok, M.; Giridharan, N. V.

    2015-06-24

    Multiferroic BiFeO{sub 3} (BFO) nanoparticles (Nps) were synthesized using hydrothermal method. From the X-Ray diffraction analysis (XRD), the synthesized Nps were found to having rhombohedral structure with R3c space group confirmed by Rietveld analysis. Fourier transform infrared spectroscopy (FTIR) analysis was carried out to identify the chemical bonds present in the BFO Nps. Photocatalytic properties of synthesized Nps were studied for the degradation of Methylene Blue (MB) dye under visible light of 150W.

  18. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    SciTech Connect

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  19. Impact cratering in H2O-bearing targets on Mars: Thermal field under craters as starting conditions for hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Ivanov, Boris A.; Pierazzo, Elisabetta

    2011-04-01

    We present a case modeling study of impact crater formation in H2O-bearing targets. The main goal of this work was to investigate the postimpact thermal state of the rock layers modified in the formation of hypervelocity impact craters. We present model results for a target consisting of a mixture of H2O-ice and rock, assuming an ice/water content variable with depth. Our model results, combined with results from previous work using dry targets, indicate that for craters larger than about 30 km in diameter, the onset of postimpact hydrothermal circulation is characterized by two stages: first, the formation of a mostly dry, hot central uplift followed by water beginning to flow in and circulate through the initially dry and hot uplifted crustal rocks. The postimpact thermal field in the periphery of the crater is dependent on crater size: in midsize craters, 30-50 km in diameter, crater walls are not strongly heated in the impact event, and even though ice present in the rock may initially be heated enough to melt, overall temperatures in the rock remain below melting, undermining the development of a crater-wide hydrothermal circulation. In large craters (with diameters more than 100 km or so), the region underneath the crater floor and walls is heated well above the melting point of ice, thus facilitating the onset of an extended hydrothermal circulation. These results provide preliminary constraints in characterizing the many water-related features, both morphologic and spectroscopic, that high-resolution images of Mars are now detecting within many Martian craters.

  20. Porosity evolution in Icelandic hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  1. Active upper-atmosphere chemistry and dynamics from polar circulation reversal on Titan.

    PubMed

    Teanby, Nicholas A; Irwin, Patrick G J; Nixon, Conor A; de Kok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B; Flasar, F Michael

    2012-11-29

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the co-location of peak haze production and the limit of dynamical transport by the circulation's upper branch. Here we report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  2. Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan

    NASA Technical Reports Server (NTRS)

    Teanby, Nicholas A.; Irwin, Patrick Gerard Joseph; Nixon, Conor A.; DeKok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B.; Flasar, Michael F.

    2012-01-01

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  3. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    The recent recognition that metallic mineral deposits are concentrated by hydrothermal processes at seafloor spreading centers constitutes a scientific breakthrough that opens active sites at seafloor spreading centers as natural laboratories to investigate ore-forming processes of such economically useful deposits as massive sulfides in volcanogenic rocks on land, and that enhances the metallic mineral potential of oceanic crust covering two-thirds of the Earth both beneath ocean basins and exposed on land in ophiolite belts. This paper reviews our knowledge of processes of hydrothermal mineralization and the occurrence and distribution of hydrothermal mineral deposits at the global oceanic ridge-rift system. Sub-seafloor hydrothermal convection involving circulation of seawater through fractured rocks of oceanic crust driven by heat supplied by generation of new lithosphere is nearly ubiquitous at seafloor spreading centers. However, ore-forming hydrothermal systems are extremely localized where conditions of anomalously high thermal gradients and permeability increase hydrothermal activity from the ubiquitous low-intensity background level (⩽ 200°C) to high-intensity characterized by high temperatures ( > 200-c.400°C), and a rate and volume of flow sufficient to sustain chemical reactions that produce acid, reducing, metal-rich primary hydrothermal solutions. A series of mineral phases with sulfides and oxides as high- and low-temperature end members, respectively, are precipitated along the upwelling limb and in the discharge zone of single-phase systems as a function of increasing admixture of normal seawater. The occurrence of hydrothermal mineral deposits is considered in terms of spatial and temporal frames of reference. Spatial frames of reference comprise structural features along-axis (linear sections that are the loci of seafloor spreading alternating with transform faults) and perpendicular to axis (axial zone of volcanic extrusion and marginal

  4. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  5. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    White, S. M.; Lee, A. J.; Rubin, K. H.

    2015-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  6. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    West, A. J.; Torres, M. A.; Nealson, K. H.

    2014-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  7. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  8. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  9. Record of archaeal activity at the serpentinite-hosted Lost City Hydrothermal Field.

    PubMed

    Méhay, S; Früh-Green, G L; Lang, S Q; Bernasconi, S M; Brazelton, W J; Schrenk, M O; Schaeffer, P; Adam, P

    2013-11-01

    Samples of young, outer surfaces of brucite-carbonate deposits from the ultramafic-hosted Lost City hydrothermal field were analyzed for DNA and lipid biomarker distributions and for carbon and hydrogen stable isotope compositions of the lipids. Methane-cycling archaeal communities, notably the Lost City Methanosarcinales (LCMS) phylotype, are specifically addressed. Lost City is unlike all other hydrothermal systems known to date and is characterized by metal- and CO2 -poor, high pH fluids with high H2 and CH4 contents resulting from serpentinization processes at depth. The archaeal fraction of the microbial community varies widely within the Lost City chimneys, from 1-81% and covaries with concentrations of hydrogen within the fluids. Archaeal lipids include isoprenoid glycerol di- and tetraethers and C25 and C30 isoprenoid hydrocarbons (pentamethylicosane derivatives - PMIs - and squalenoids). In particular, unsaturated PMIs and squalenoids, attributed to the LCMS archaea, were identified for the first time in the carbonate deposits at Lost City and probably record processes exclusively occurring at the surface of the chimneys. The carbon isotope compositions of PMIs and squalenoids are remarkably heterogeneous across samples and show highly (13) C-enriched signatures reaching δ(13) C values of up to +24.6‰. Unlike other environments in which similar structural and isotopic lipid heterogeneity has been observed and attributed to diversity in the archaeal assemblage, the lipids here appear to be synthesized solely by the LCMS. Some of the variations in lipid isotope signatures may, in part, be due to unusual isotopic fractionation during biosynthesis under extreme conditions. However, we argue that the diversity in archaeal abundances, lipid structure and carbon isotope composition rather reflects the ability of the LCMS archaeal biofilms to adapt to chemical gradients in the hydrothermal chimneys and possibly to perform either methanotrophy or methanogenesis

  10. Mass transfer constraints on the chemical evolution of an active hydrothermal system, Valles caldera, New Mexico

    USGS Publications Warehouse

    White, A.F.; Chuma, N.J.; Goff, F.

    1992-01-01

    Partial equilibrium conditions occur between fluids and secondary minerals in the Valles hydrothermal system, contained principally in the Tertiary rhyolitic Bandelier Tuff. The mass transfer processes are governed by reactive phase compositions, surface areas, water-rock ratios, reaction rates, and fluid residence times. Experimental dissolution of the vitric phase of the tuff was congruent with respect to Cl in the solid and produced reaction rates which obeyed a general Arrhenius release rate between 250 and 300??C. The 18O differences between reacted and unreacted rock and fluids, and mass balances calculations involving Cl in the glass phase, produced comparable water-rock ratios of unity, confirming the importance of irreversible reaction of the vitric tuff. A fluid residence time of approximately 2 ?? 103 years, determined from fluid reservoir volume and discharge rates, is less than 0.2% of the total age of the hydrothermal system and denotes a geochemically and isotopically open system. Mass transfer calculations generally replicated observed reservoir pH, Pco2, and PO2 conditions, cation concentrations, and the secondary mineral assemblage between 250 and 300??C. The only extraneous component required to maintain observed calcite saturation and high Pco2 pressures was carbon presumably derived from underlying Paleozoic limestones. Phase rule constraints indicate that Cl was the only incompatible aqueous component not controlled by mineral equilibrium. Concentrations of Cl in the reservoir directly reflect mass transport rates as evidenced by correlations between anomalously high Cl concentrations in the fluids and tuff in the Valles caldera relative to other hydrothermal systems in rhyolitic rocks. ?? 1992.

  11. Timing and duration of hydrothermal activity at the Los Bronces porphyry cluster: an update

    NASA Astrophysics Data System (ADS)

    Deckart, K.; Silva, W.; Spröhnle, C.; Vela, I.

    2014-06-01

    New geochronological data from the Los Bronces cluster of the Río Blanco-Los Bronces mega-porphyry Cu-Mo district establish a wide range of magmatism, hydrothermal alteration, and mineralization ages, both in terms of areal extent and time. The northern El Plomo and southernmost Los Piches exploration areas contain the oldest barren porphyritic intrusions with U-Pb ages of 10.8 ± 0.1 Ma and 13.4 ± 0.1 Ma, respectively. A hypabyssal barren intrusion adjacent northwesterly to the main pit area yields a slightly younger age of 10.2 ± 0.3 Ma (San Manuel sector, U-Pb), whereas in the Los Bronces (LB) open-pit area, the present day mineral extraction zone, porphyries range from 8.49 to 6.02 Ma (U-Pb). Hydrothermal biotite and sericite ages are up to 0.5 Ma younger but consistent with the cooling of the corresponding intrusion events of each area. Two quartz-molybdenite B-type veins from the LB open pit have Re-Os molybdenite ages of 5.65 ± 0.03 Ma and 5.35 ± 0.03 Ma consistent with published data for the contiguous Río Blanco cluster. The San Manuel exploration area within the Los Bronces cluster, located about 1.5-2 km southeast of the open-pit extraction zone, shows both the oldest hydrothermal biotite (7.70 ± 0.07 Ma; 40Ar/39Ar) and breccia cement molybdenite ages (8.36 ± 0.06 Ma; Re-Os) registered in the entire Río Blanco-Los Bronces district. These are also older than those reported from the El Teniente porphyry Cu(-Mo) deposit, suggesting that mineralization in the late Miocene to early Pliocene porphyry belt of Central Chile commenced 2 Ma before the previously accepted age of 6.3 Ma.

  12. Clearance of circulating activated platelets in polycythemia vera and essential thrombocythemia.

    PubMed

    Maugeri, Norma; Malato, Simona; Femia, Eti A; Pugliano, Mariateresa; Campana, Lara; Lunghi, Francesca; Rovere-Querini, Patrizia; Lussana, Federico; Podda, Gianmarco; Cattaneo, Marco; Ciceri, Fabio; Manfredi, Angelo A

    2011-09-22

    Essential thrombocythemia (ET) and polycythemia vera (PV) are characterized by persistent platelet activation. The mechanisms involved in their clearance are poorly characterized. In the present study, we report that leukocytes were actively involved in platelet disposal in 51 patients with ET and 30 with PV, but not in 70 age- and sex-matched controls. The fraction of circulating neutrophils and monocytes that had phagocytosed platelets, as assessed by flow cytometry, was significantly higher in patients with PV or ET, independently of hydroxyurea treatment, than in controls. Platelet phagocytosis by circulating leukocytes was confirmed by confocal and electron microscopy. The lack of effect of hydroxyurea, which disrupts the P-selectin/P-selectin glycoprotein ligand 1 (PSGL-1) interaction, suggests a P-selectin-independent mechanism. This hypothesis was confirmed in an ad hoc animal model based on the in vivo injection of activated platelets from P-selectin(+/+) and P-selectin(-/-) mice. P-selectin expression was associated with an earlier and effective clearance of platelets by neutrophils. A second delayed, P-selectin-independent phase actively involved monocytes. Our results suggest that phagocytic clearance of platelets by leukocytes occurs in PV and ET, possibly involving P-selectin-dependent and -independent pathways, thus representing a novel mechanism to remove activated platelets from the circulation.

  13. STAT3 activation in circulating monocytes contributes to neovascular age-related macular degeneration

    PubMed Central

    Chen, Mei; Lechner, Judith; Zhao, Jiawu; Toth, Levente; Hogg, Ruth; Silvestri, Giuliana; Kissenpfennig, Adrien; Chakravarthy, Usha; Xu, Heping

    2016-01-01

    Infiltrating macrophages are critically involved in pathogenic angiogenesis such as neovascular age-related macular degeneration (nAMD). Macrophages originate from circulating monocytes and three subtypes of monocyte exist in humans: classical (CD14+CD16-), non-classical (CD14-CD16+) and intermediate (CD14+CD16+) monocytes. The aim of this study was to investigate the role of circulating monocyte in neovascular age-related macular degeneration (nAMD). Flow cytometry analysis showed that the intermediate monocytes from nAMD patients expressed higher levels of CX3CR1 and HLA-DR compared to those from controls. Monocytes from nAMD patients expressed higher levels of phosphorylated Signal Transducer and Activator of Transcription 3 (pSTAT3), and produced higher amount of VEGF. In the mouse model of choroidal neovascularization (CNV), pSTAT3 expression was increased in the retina and RPE/choroid, and 49.24% of infiltrating macrophages express pSTAT3. Genetic deletion of the Suppressor of Cytokine Signalling 3 (SOCS3) in myeloid cells in the LysM-Cre+/-:SOCS3fl/fl mice resulted in spontaneous STAT3 activation and accelerated CNV formation. Inhibition of STAT3 activation using a small peptide LLL12 suppressed laser-induced CNV. Our results suggest that monocytes, in particular the intermediate subset of monocytes are activated in nAMD patients. STAT3 activation in circulating monocytes may contribute to the development of choroidal neovascularisation in AMD. PMID:27009107

  14. Enhanced Visible-Light Photocatalytic Activity of C/Ce-Codoped ZnO Nanoellipsoids Synthesized by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Ha, Luu Thi Viet; Dai, Luu Minh; Nhiem, Dao Ngoc; Van Cuong, Nguyen

    2016-08-01

    C/Ce-codoped ZnO nanomaterial has been synthesized by a hydrothermal method and its physical properties and characterization investigated using thermogravimetric and differential thermal analysis (TG-DTA), x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive x-ray (EDX) spectroscopy, UV-Vis diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the nanomaterial was examined using methylene blue as organic dye under visible-light source. The results show that the C/Ce-codoped ZnO nanomaterial exhibited higher photocatalytic activity under visible-light irradiation compared with undoped ZnO, Ce-doped ZnO or C-doped ZnO nanomaterials. Such enhancement of the photocatalytic activity of C/Ce-codoped ZnO under visible-light irradiation suggests that these nanoparticles might have good applications in optoelectronics and wastewater treatment.

  15. Geochemical Evidence for Submarine Hydrothermal Activity in the Gulf of Aden, Northwestern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Gamo, T.; Hasumoto, H.; Okamura, K.; Hatanaka, H.; Mori, M.; Chinen, M.; Tanaka, J.; Komatsu, D.; Tamaki, K.; Fujimoto, H.; Tsunogai, U.; Kouzuma, F.; Hirota, A.

    2001-12-01

    We searched for hydrothermal plumes along spreading axes in the Gulf of Aden, between 45\\deg36'E and 52\\deg42'E, using a CTD multi-water sampling system, mapping water column distributions of light transmission and chemical tracers (Mn, Fe, CH4 etc.) in December 2000 and January 2001. In addition to water sampling for chemical analysis, an in-situ chemical analyzer GAMOS was attached to the CTD-system to conduct tow-yo observations. We found typical hydrothermal plumes (anomalies of light transmission and chemical tracers) at 600-800 m depth over twin peak seamounts (60 miles southeast of Aden) which may be hot spot volcanoes associated with the Afar mantle plume. Strong light transmission anomalies imply the existence of black smoker fluids. The maximum concentrations of Mn, Fe, and CH4 are 46 nM, 251 nM, and 15 nM, respectively. An estimated \\delta13C(CH4) value for an endmember fluid of approximately -15\\permil indicates magmatic CH4 with little contribution of CH4 from organic material decomposition in sediments.

  16. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation.

    PubMed

    Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S

    2011-01-01

    active hydrothermal circulation produced primary mineral assemblages, including Fe sulfides, and was succeeded by a period dominated by oxidation and low-temperature hydration of primary minerals by surface waters. Active hydrothermal circulation can enable the rapid delivery of nutrients to microbes. Nutrient availability following the cessation of hydrothermal circulation is likely more restricted; therefore, the biological importance of chemical energy from hydrothermal mineral deposits increases with time. Weathering of primary hydrothermal deposits and dissolution and reprecipitation of mobile weathering products also create many potential habitats for endolithic microbes. They also provide a mechanism that may preserve biological materials, potentially over geological timescales.

  17. Observing a fictitious stressful event: haematological changes, including circulating leukocyte activation.

    PubMed

    Mian, Rubina; Shelton-Rayner, Graham; Harkin, Brendan; Williams, Paul

    2003-03-01

    The aim of this study was to assess the effect of watching a psychological stressful event on the activation of leukocytes in healthy human volunteers. Blood samples were obtained from 32 healthy male and female subjects aged between 20 and 26 years before, during and after either watching an 83-minute horror film that none of the subjects had previously seen (The Texas Chainsaw Massacre, 1974) or by sitting quietly in a room (control group). Total differential cell counts, leukocyte activation as measured by the nitroblue tetrazolium (NBT) test, heart rate and blood pressure (BP) measurements were taken at defined time points. There were significant increases in peripheral circulating leukocytes, the number of activated circulating leukocytes, haemoglobin (Hb) concentration and haematocrit (Hct) in response to the stressor. These were accompanied by significant increases in heart rate, systolic and diastolic BP (P<0.05 from baseline). This is the first reported study on the effects of observing a psychologically stressful, albeit fictitious event on circulating leukocyte numbers and the state of leukocyte activation as determined by the nitrotetrazolium test.

  18. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano.

    PubMed

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Komorowski, Jean-Christophe

    2016-09-15

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 10(6) m(3) to 7 × 10(6) m(3). However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8;-0.4] × 10(9) kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 10(9) kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.

  19. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano

    PubMed Central

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d’Ars, Jean; Komorowski, Jean-Christophe

    2016-01-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [−0.8;−0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir. PMID:27629497

  20. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano

    NASA Astrophysics Data System (ADS)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond D’Ars, Jean; Komorowski, Jean-Christophe

    2016-09-01

    Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow hydrothermal systems of low-energy active volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [‑0.8‑0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow hydrothermal reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.

  1. A national drilling program to study the roots of active hydrothermal systems related to young magmatic intrusions

    SciTech Connect

    Not Available

    1984-01-01

    The importance of studies of active hydrothermal-magma systems as part of a national continental scientific drilling program has been emphasized in numerous workshops and symposia. The present report, prepared by the Panel on Thermal Regimes of the Continental Scientific Drilling Committee, both reinforces and expands on earlier recommendations. The US Geodynamics Committee 1979 report of the Los Almos workshop, Continental Scientific Drilling Program, placed major emphasis on maximizing the scientific value of current and planned drilling by industry and government, supplementing these efforts with holes drilled solely for scientific purposes. Although the present report notes the importance of opportunities for scientific investigations that may be added on to current, mission-oriented drilling activities, the Panel on Thermal Regimes recognizes that such opportunities are limited and thus focused its study on holes dedicated to broad scientific objectives. 16 refs., 2 figs., 4 tabs.

  2. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  3. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    PubMed Central

    Ma, Ming-Guo

    2012-01-01

    Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of

  4. Evidence of hydrothermal activity on Marsili Seamount, Tyrrhenian Basin. Technical report

    SciTech Connect

    Uchupi, E.; Ballard, R.D.

    1989-01-01

    In this paper we describe the finding of what appears to be an extensive hydrothermal mineral deposit on the crest of Marsili Seamount in the Tyrrhenian Basin, western Mediterranean Sea. The deposit on the seamount was discovered during a study of the geology of the Tyrrhenian Basin with the Argo video system (HARRIS and BALLARD, 1986) aboard the R.V. Starella during June 1988. Mounted on the vehicle were three Silicon Intensified target (SIT) cameras, a digital charge Couple Device (CCD) camera and a 35 mm camera with a 16 mm lens. The site was revisited in mid August aboard the R.V. Knorr during a cruise to test the dynamic position system on the Knorr.

  5. Hydrothermal Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Shock, E.; Havig, J.; Windman, T.; Meyer-Dombard, D.; Michaud, A.; Hartnett, H.

    2006-12-01

    Life in hot spring ecosystems is confronted with diverse challenges, and the responses to those challenges have dynamic biogeochemical consequences over narrow spatial and temporal scales. Within meters along hot spring outflow channels at Yellowstone, temperatures drop from boiling, and the near-boiling conditions of hot chemolithotrophic communities, to those that permit photosynthesis and on down to conditions where nematodes and insects graze on the edges of photosynthetic mats. Many major and trace element concentrations change only mildly in the water that flows through the entire ecosystem, while concentrations of other dissolved constituents (oxygen, sulfide, ammonia, total organic carbon) increase or decrease dramatically. Concentrations of metals and micronutrients range from toxic to inadequate for enzyme synthesis depending on the choice of hot spring. Precipitation of minerals may provide continuous growth of microbial niches, while dissolution and turbulent flow sweeps them away. Consequently, microbial communities change at the meter scale, and even more abruptly at the photosynthetic fringe. Isotopic compositions of carbon and nitrogen in microbial biomass reflect dramatic and continuous changes in metabolic strategies throughout the system. Chemical energy sources that support chemolithotrophic communities can persist at abundant or useless levels, or change dramatically owing to microbial activity. The rate of temporal change depends on the selection of hot spring systems for study. Some have changed little since our studies began in 1999. Others have shifted by two or more units in pH over several years, with corresponding changes in other chemical constituents. Some go through daily or seasonal desiccation cycles, and still others exhibit pulses of changing temperature (up to 40°C) within minutes. Taken together, hydrothermal ecosystems provide highly manageable opportunities for testing how biogeochemical processes respond to the scale of

  6. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  7. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity

    PubMed Central

    Phromviyo, Nutthakritta; Boueroy, Parichart; Chompoosor, Apiwat

    2016-01-01

    Background There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. Methods AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in

  8. Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12°50′N core complex (Mid-Atlantic ridge): a new ultramafic-hosted seafloor hydrothermal deposit?

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Billstrom, Kjell; Kamenov, George D.; Shanks, Wayne C.; Stummeyer, Jens

    2011-01-01

    Dredging along the west wall of the core complex at 12°50′N Mid-Atlantic Ridge sampled a number of black oxyhydroxide crusts and breccias cemented by black and dark brown oxyhydroxide matrix. Black crusts found on top of basalt clasts (rubble) are mainly composed of Mn-oxides (birnessite, 10-Å manganates) with thin films of nontronite and X-ray amorphous FeOOH on their surfaces. Their chemical composition (low trace- and rare earth-element contents, high Li and Ag concentrations, rare earth element distribution patterns with negative both Ce and Eu anomalies), Sr–Nd–Pb-isotope systematic and O-isotope data suggest low-temperature (~ 20 °C) hydrothermal deposition from a diffuse vent area on the seafloor. Mineralogical, petrographic and geochemical investigations of the breccias showed the rock clasts were hydrothermally altered fragments of MORBs. Despite the substantial mineralogical changes caused by the alteration the Sr–Nd–Pb-isotope ratios have not been significantly affected by this process. The basalt clasts are cemented by dark brown and black matrix. Dark brown cement exhibits geochemical features (very low trace- and rare earth- element contents, high U concentration, rare earth element distribution pattern with high positive Eu anomaly) and Nd–Pb-isotope systematics (similar to that of MORB) suggesting that the precursor was a primary, high-temperature Fe-sulfide, which was eventually altered to goethite at ambient seawater conditions. The data presented in this work points towards the possible existence of high- and low-temperature hydrothermal activity at the west wall of the core complex at 12°50′N Mid-Atlantic Ridge. Tectonic setting at the site implies that the proposed hydrothermal field is possibly ultramafic-hosted.

  9. Global circulation as the main source of cloud activity on Titan.

    PubMed

    Rodriguez, Sébastien; Le Mouélic, Stéphane; Rannou, Pascal; Tobie, Gabriel; Baines, Kevin H; Barnes, Jason W; Griffith, Caitlin A; Hirtzig, Mathieu; Pitman, Karly M; Sotin, Christophe; Brown, Robert H; Buratti, Bonnie J; Clark, Roger N; Nicholson, Phil D

    2009-06-04

    Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes ( approximately 40 degrees ) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude approximately 40 degrees N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titan's equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected.

  10. Global circulation as the main source of cloud activity on Titan

    USGS Publications Warehouse

    Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Tobie, G.; Baines, K.H.; Barnes, J.W.; Griffith, C.A.; Hirtzig, M.; Pitman, K.M.; Sotin, C.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (40??) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude 40??N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titans equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  11. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  12. Solgel-hydrothermal synthesis of Tb/Tourmaline/TiO2 nano tubes and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Huang, Fengping; Guo, Yuyu; Wang, Shuai; Zhang, Shuang; Cui, Mengli

    2017-02-01

    In this study, we synthesized Tb/Tourmaline/TiO2 nano tubes (NTs) through a solgel-hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectromicroscope, scanning electron microscopy, transmission electron microscopy and UV-vis diffuse reflectance spectroscopy. The resulting Tb/Tourmaline/TiO2 NTs exhibited higher photocatalytic activity than pure TiO2 and TiO2 nano particles (NPs) in the degradation of menthyl orange under UV-light. Results revealed that doping rare earth element Tb could narrow the wide band gap of TiO2 and tourmaline could trap the photogenerated electron of TiO2 to inhibit the recombination of photogenerated electron-hole pairs.

  13. Metagenome and Metatranscriptome Revealed a Highly Active and Intensive Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin.

    PubMed

    He, Ying; Feng, Xiaoyuan; Fang, Jing; Zhang, Yu; Xiao, Xiang

    2015-01-01

    The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well-recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an integrated metagenomic and metatranscriptomic analysis on a chimney sample from Guaymas Basin to achieve a comprehensive study of each sulfur metabolic pathway and its hosting microorganisms and constructed the microbial sulfur cycle that occurs in the site. Our results clearly illustrated the stratified sulfur oxidation and sulfate reduction at the chimney wall. Besides, sulfur metabolizing is closely interacting with carbon cycles, especially the hydrocarbon degradation process in Guaymas Basin. This work supports that the internal sulfur cycling is intensive and the net sulfur budget is low in the hydrothermal ecosystem.

  14. Photocatalytic activity of Li-doped TiO{sub 2} nanoparticles: Synthesis via ionic liquid-assisted hydrothermal route

    SciTech Connect

    Ravishankar, T.N.; Nagaraju, G.; Dupont, Jairton

    2016-06-15

    Highlights: • TiO{sub 2}: Li nanoparticles were synthesized via an ionic liquid-assisted hydrothermal method. • The doping of Li to anatase TiO{sub 2} affects the properties of the resultant product. • TiO{sub 2}: Li nanoparticles were used as a photocatalyst for the degradation of dye. • TiO{sub 2}: Li nanoparticles were used as sensor, and antibacterial agent. • TiO{sub 2}: Li were used as reducing agent for the reduction of Cr{sup 6+} to Cr{sup 3+}. - Abstract: We have proposed a simple one pot synthesis of lithium-doped TiO{sub 2} nanoparticles (TiO{sub 2}:Li) via an ionic liquid-assisted hydrothermal method and their potential use as a photocatalyst for the degradation of organic dye, as well as the reduction of toxic Cr{sup 6+} to non toxic Cr{sup 3+}. The structure of TiO{sub 2}:Li nanoparticles was examined by XRD, FTIR, XPS, Raman, UV–vis, Photoluminescence spectroscopy and morphology by SEM and TEM. The incorporation of Li into anatase-phase TiO{sub 2} affected the optical properties of the resultant TiO{sub 2} nanoparticles. The photocatalytic activity of the TiO{sub 2}:Li nanoparticles was determined by degradation of trypan blue. Degradation studies showed improved photocatalytic activity of TiO{sub 2}:Li nanoparticles compared to TiO{sub 2} nanoparticles and bulk TiO{sub 2}. TiO{sub 2}:Li nanoparticles also functioned as a detoxification agent which was confirmed by the reduction of Cr{sup 6+} to Cr{sup 3+}.

  15. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface.

    PubMed

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun

    2015-04-04

    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts.

  16. Crosstalk between circulating peroxisome proliferator-activated receptor gamma, adipokines and metabolic syndrome in obese subjects

    PubMed Central

    2013-01-01

    Background Peroxisome proliferator-activated receptor gamma (PPARγ) has direct and indirect function in adipokines production process. We aimed to assess the possible influence of circulating PPARγ on relative risk of metabolic syndrome and also examine the association between circulating PPARγ and adipokines levels among obese subjects. Methods A total of 96 obese subjects (body mass index (BMI) ≥30) were included in the current cross-sectional study. We assessed the body composition with the use of Body Composition Analyzer BC-418MA - Tanita. The MetS (metabolic syndrome) was defined based on the National Cholesterol Education Program Adult Treatment Panel III. All baseline blood samples were obtained following an overnight fasting. Serum concentrations of adipokines including Retinol binding protein 4 (RBP4), omentin-1, vaspin, progranulin, nesfatin-1 and circulating PPARγ was measured with the use of an enzyme-linked immunosorbent assay method. Statistical analyses were performed using software package used for statistical analysis (SPSS). Results We found main association between circulating PPARγ and body composition in obese population. The risk of metabolic syndrome in subjects with higher concentration of PPARγ was 1.9 fold in compared with lower concentration of PPARγ after adjustment for age, sex and BMI. There was significant association between PPARγ and adipokines, specially nesfatin-1 and progranulin. Defined adipokines pattern among participants demonstrated the markedly higher concentration of vaspin, RBP4 and nesfatin-1 in participants with MetS compared to non-MetS subjects. Conclusions It appears all of studied adipokines might have association with PPARγ level and might simultaneously be involve in some common pathway to make susceptible obese subjects for MetS. PMID:24330836

  17. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field.

    PubMed

    Takai, Ken; Gamo, Toshitaka; Tsunogai, Urumu; Nakayama, Noriko; Hirayama, Hisako; Nealson, Kenneth H; Horikoshi, Koki

    2004-08-01

    Subsurface microbial communities supported by geologically and abiologically derived hydrogen and carbon dioxide from the Earth's interior are of great interest, not only with regard to the nature of primitive life on Earth, but as potential analogs for extraterrestrial life. Here, for the first time, we present geochemical and microbiological evidence pointing to the existence of hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) dominated by hyperthermophilic methanogens beneath an active deep-sea hydrothermal field in the Central Indian Ridge. Geochemical and isotopic analyses of gaseous components in the hydrothermal fluids revealed heterogeneity of both concentration and carbon isotopic compositions of methane between the main hydrothermal vent (0.08 mM and -13.8 per thousand PDB, respectively) and the adjacent divergent vent site (0.2 mM and -18.5 per thousand PDB, respectively), representing potential subsurface microbial methanogenesis, at least in the divergent vent emitting more 13C-depleted methane. Extremely high abundance of magmatic energy sources such as hydrogen (2.5 mM) in the fluids also encourages a hydrogen-based, lithoautotrophic microbial activity. Both cultivation and cultivation-independent molecular analyses suggested the predominance of Methanococcales members in the superheated hydrothermal emissions and chimney interiors along with the other major microbial components of Thermococcales members. These results imply that a HyperSLiME, consisting of methanogens and fermenters, occurs in this tectonically active subsurface zone, strongly supporting the existence of hydrogen-driven subsurface microbial communities.

  18. Bioimpedance Harmonic Analysis as a Diagnostic Tool to Assess Regional Circulation and Neural Activity

    NASA Astrophysics Data System (ADS)

    Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.

    2013-04-01

    The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.

  19. Circulating extracellular proteasome in the cerebrospinal fluid: a study on concentration and proteolytic activity.

    PubMed

    Mueller, Oliver; Anlasik, Timur; Wiedemann, Jonas; Thomassen, Jan; Wohlschlaeger, Jeremias; Hagel, Vincent; Keyvani, Kathy; Schwieger, Isabel; Dahlmann, Burkhardt; Sure, Ulrich; Sixt, Stephan Urs

    2012-03-01

    Alterations of the intracellular ubiquitin-proteasome pathway are found in neurodegenerative and inflammatory disorders of the central nervous system, as well as in its malignancies. Inhibitory substrates of the proteasomes represent promising approaches to control autoimmune inflammations and induction of apoptosis in cancer cells. Extracellular circulating proteasomes are positively correlated to outcome prognosis in hematogenic neoplasias and the outcome in critically ill patients. Previously, we reported raised levels of proteolytic active 20S proteasomes in the extracellular alveolar space in patients with acute respiratory distress syndrome (ARDS). For the cerebrospinal fluid, we assumed that extracellular circulating proteasomes with enzymatic activity can be found, too. Cerebrospinal fluid (CSF) samples of twenty-six patients (14 females, 12 males), who underwent diagnostic spinal myelography, were analyzed for leukocyte cell count, total protein content, lactate and interleukine-6 (Il-6) concentrations. CSF samples were analyzed for concentration and enzymatic activity of extracellular 20S proteasomes (fluorescenic substrate cleavage; femtokatal). Blood samples were analyzed with respect to concentration of extracellular circulating proteasomes. Choroidal plexus was harvested at autopsies and examined with immunoelectron microscopy (EM) for identification of possible transportation mechanisms. Statistical analysis was performed using SPSS (18.0.3). In all patients, extracellular proteasome was found in the CSF. The mean concentration was 24.6 ng/ml. Enzymatic activity of the 20S subunits of proteasomes was positively identified by the fluorescenic subtrate cleavage at a mean of 8.5 fkat/ml. Concentrations of extracellular proteasomes in the CSF, total protein content and Il-6 were uncorrelated. Immunoelectron microscopy revealed merging vesicles of proteasomes with the outer cell membrane suggestive of an exozytic transport mechanism. For the first time

  20. Modeling mid-ocean ridge hydrothermal response to earthquakes, tides, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Bemis, K. G.

    2014-12-01

    Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic

  1. Circulation types related to lightning activity over Catalonia and the Principality of Andorra

    NASA Astrophysics Data System (ADS)

    Pineda, N.; Esteban, P.; Trapero, L.; Soler, X.; Beck, C.

    In the present study, we use a Principal Component Analysis (PCA) to characterize the surface 6-h circulation types related to substantial lightning activity over the Catalonia area (north-eastern Iberia) and the Principality of Andorra (eastern Pyrenees) from January 2003 to December 2007. The gridded data used for classification of the circulation types is the NCEP Final Analyses of the Global Tropospheric Analyses at 1° resolution over the region 35°N-48°N by 5°W-8°E. Lightning information was collected by the SAFIR lightning detection system operated by the Meteorological Service of Catalonia (SMC), which covers the region studied. We determined nine circulation types on the basis of the S-mode orthogonal rotated Principal Component Analysis. The “extreme scores” principle was used previous to the assignation of all cases, to obtain the number of final types and their centroids. The distinct differences identified in the resulting mean Sea Level Pressure (SLP) fields enabled us to group the types into three main patterns, taking into account their scale/dynamical origin. The first group of types shows the different distribution of the centres of action at synoptic scale associated with the occurrence of lightning. The second group is connected to mesoscale dynamics, mainly induced by the relief of the Pyrenees. The third group shows types with low gradient SLP patterns in which the lightning activity is a consequence of thermal dynamics (coastal and mountain breezes). Apart from reinforcing the consistency of the groups obtained, analysis of the resulting classification improves our understanding of the geographical distribution and genesis factors of thunderstorm activity in the study area, and provides complementary information for supporting weather forecasting. Thus, the catalogue obtained will provide advances in different climatological and meteorological applications, such as nowcasting products or detection of climate change trends.

  2. The use of circulation weather types to predict upwelling activity along the Western Iberian Peninsula coast

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre M.; Cordeiro Pires, Ana; Sousa, Pedro M.; Trigo, Ricardo M.

    2013-04-01

    Coastal upwelling is a phenomenon that occurs in most western oceanic coasts due to the presence of mid-latitude high-pressure systems that generate equatorward winds along the coast and consequent offshore displacement of surface waters that in turn cause deeper, colder, nutrient-rich waters to arise. In western Iberian Peninsula (IP) the high-pressure system associated to northerly winds occurs mainly during spring and summer. Upwelling systems are economically relevant, being the most productive regions of the world ocean and crucial for fisheries. In this work, we evaluate the intra- and inter-annual variability of the Upwelling Index (UI) off the western coast of the IP considering four locations at various latitudes: Rias Baixas, Aveiro, Figueira da Foz and Cabo da Roca. In addition, the relationship between the variability of the occurrence of several circulation weather types (Ramos et al., 2011) and the UI variability along this coast was assessed in detail, allowing to discriminate which types are frequently associated with strong and weak upwelling activity. It is shown that upwelling activity is mostly driven by wind flow from the northern quadrant, for which the obtained correlation coefficients (for the N and NE types) are higher than 0.5 for the four considered test locations. Taking into account these significant relationships, we then developed statistical multi-linear regression models to hindcast upwelling series (April to September) at the four referred locations, using monthly frequencies of circulation weather types as predictors. Modelled monthly series reproduce quite accurately observational data, with correlation coefficients above 0.7 for all locations, and relatively small absolute errors. Ramos AM, Ramos R, Sousa P, Trigo RM, Janeira M, Prior V (2011) Cloud to ground lightning activity over Portugal and its association with Circulation Weather Types. Atmospheric Research 101:84-101. doi: 10.1016/j.atmosres.2011.01

  3. Older Hydrothermal Activity along the Northern Yellowstone Caldera Margin at Sulphur Creek, Yellowstone Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Manion, J. L.; Larson, P.

    2008-12-01

    The Tuff of Sulphur Creek (480 ka) is well exposed in the Seven Mile Hole area of the Grand Canyon of the Yellowstone River, Yellowstone National Park, Wyoming. The rhyolitic tuff erupted after the collapse of the Yellowstone Caldera (640 ka) and hosts more than 350 vertical meters of hydrothermal alteration. Two epithermal alteration assemblages with different mineral associations have been identified in the area: an illite-silica-pyrite phase and a kaolinite-alunite-silica-pyrite phase. Kaolinite and opal occur along the canyon rim, montmorillonite and other smectites are found at intermediate depths, and illite and sulfides (pyrite) are found deepest in the section. Our work on the north side of the Sevenmile Hole altered area has found a complex system of veining. The veins are concentrated in the eastern portion of the canyon and are less frequent to the west. Brecciated cross-cutting veins ranging from 2 to 30cm wide are found at the base of the canyon. Moving vertically up the canyons walls, the veining style becomes less complex. These veins are about 1 to 1.5cm wide and are not brecciated, occurring less frequently than the brecciated veins. The canyon walls and the canyon rim mainly contain millimeter-scale cross-cutting silica veinlets. These stockwork-like veinlets are the most abundant fracture filling that we find throughout the canyon walls. Veins at the base of the system, found in the stream bed, contain abundant sulfides (mainly pyrite). Sulfides are present in three forms: disseminated in a silica matrix, as massive pyrite in healed fractures, and encrusting clays and silica. The latter is the least common. Disseminated and massive sulfides are typically associated with the matrix in the brecciated veins. Breccias include angular clasts of altered tuff with argillized feldspar phenocrysts and fragments of earlier vein-filling opal. Sulfides are most abundant in the bottom of the canyon and in the western part of the field area. Hydrothermal

  4. Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico

    USGS Publications Warehouse

    Casadevall, Thomas J.; de la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.

    1984-01-01

    Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.

  5. Hydrothermal activity on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998

    NASA Astrophysics Data System (ADS)

    German, Christopher R.

    Evidence for hydrothermal activity on the eastern SWIR has been reported previously in the form of optical-backscatter anomalies interpreted to indicate the presence of hydrothermal plumes. Here, I report on a brief reconnaissance analysis of the geochemical composition of core-top samples collected from sites both beneath and away from those previously-reported plume signals to determine whether evidence for fall-out of hydrothermal plume material is discernible. Samples used for this study were collected using the deep-diving submersible SHINKAI 6500 in 1998 and from the tallow-coatings applied to lead sounding lines, 111 years earlier, aboard HMS Egeria. The data indicate hydrothermal input to all but one of eight SHINKAI 6500 cores along the length of the eastern SWIR rift-valley, including the site of strongest previously reported plume anomalies. Comparison with a recent MAR study suggests that the cores analyzed here, however, may predominantly lie distant from any current or recently-active source of venting.

  6. Hydrothermal activity on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998

    NASA Astrophysics Data System (ADS)

    German, Christopher R.

    2003-07-01

    Evidence for hydrothermal activity on the eastern SWIR has been reported previously in the form of optical-backscatter anomalies interpreted to indicate the presence of hydrothermal plumes. Here, I report on a brief reconnaissance analysis of the geochemical composition of core-top samples collected from sites both beneath and away from those previously-reported plume signals to determine whether evidence for fall-out of hydrothermal plume material is discernible. Samples used for this study were collected using the deep-diving submersible SHINKAI 6500 in 1998 and from the tallow-coatings applied to lead sounding lines, 111 years earlier, aboard HMS Egeria. The data indicate hydrothermal input to all but one of eight SHINKAI 6500 cores along the length of the eastern SWIR rift-valley, including the site of strongest previously reported plume anomalies. Comparison with a recent MAR study suggests that the cores analyzed here, however, may predominantly lie distant from any current or recently-active source of venting.

  7. Gravity monitoring of Tatun Volcanic Group activities and inference for underground fluid circulations

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Chao, Benjamin Fong; Hwang, Cheinway; Hsieh, Wen-Chi

    2016-12-01

    The Tatun Volcano Group (TVG), located on the northern coast of Taiwan adjacent to the city of Taipei, experiences active hydrothermalism but has no historical record of volcanic eruption. Yet recent studies suggest that TVG is dormant-active rather than extinct. To monitor mass transfers and to gain further understanding of this volcanic area, gravity variations have been recorded continuously since 2012 using a superconducting gravimeter, and once every few months since 2005 using absolute gravimeters. We analyze the continuous gravity time series and propose a model that best explains the gravity variations due to local groundwater redistribution. By correcting these variations, we identify gravity changes as large as 35 μGal that occurred concomitantly to fluid pressure-induced earthquakes and changes in the gas composition at Dayoukeng, one of TVG's fumaroles, over 2005-2007. We examine several fluid movements that can match the gravity observations, yet too few additional constraints exist to favor any of them. In particular, no significant ground displacements are observed when these gravity variations occurred. On the other hand, the model of gravity changes due to local groundwater redistribution can be routinely computed and removed from the ongoing time gravity measurements in order to quickly identify any unusual mass transfer occurring beneath TVG.

  8. Comparative study of photocatalytic activities of hydrothermally grown ZnO nanorod on Si(001) wafer and FTO glass substrates

    NASA Astrophysics Data System (ADS)

    Jeon, Eun Hee; Yang, Sena; Kim, Yeonwoo; Kim, Namdong; Shin, Hyun-Joon; Baik, Jaeyoon; Kim, Hyun Sung; Lee, Hangil

    2015-09-01

    ZnO nanorods have been grown on Si(001) wafer and fluorine-doped tin oxide (FTO) glass substrates for 1 and 4 h with the hydrothermal methods. The morphologies and photocatalytic activities of the ZnO nanorods were found to depend on the substrates. We investigated their properties by using spectroscopic analysis and demonstrated that the shape of nanorod and the ratios of external defects can be controlled by varying the substrates. Our experiments revealed that the nanorods grown on Si(001) have a single-crystalline wurtzite structure with (002) facets and that the number of surface oxygen defects increases with their length as the growth time increases. The nanorods grown on Si(001) have different facets, in particular wider (002) facets, and a higher ratio of the oxygen defect than the nanorods on FTO glass substrate. Moreover, the photocatalytic activities with respect to 2-aminothiophenol (2-ATP) of these nanorods were investigated with high-resolution photoemission spectroscopy (HRPES). We demonstrated that their photocatalytic activity is influenced by the ratios of surface oxygen defects, which varies with the substrate surface.

  9. Hydrothermal Activity on the Southern Mid-Atlantic Ridge: Tectonically- and Volcanically-Hosted High Temperature Venting at 2-7 Degrees S

    NASA Astrophysics Data System (ADS)

    German, C. R.; Parson, L. M.; Murton, B. J.; Bennett, S. A.; Connelly, D. P.; Evans, A. J.; Prien, R. D.; Ramirez-Llodra, E. Z.; Shank, T. M.; Yoerger, D. R.; Jakuba, M.; Bradley, A. M.; Baker, E. T.; Nakamura, K.

    2005-12-01

    We have conducted a systematic investigation for hydrothermal activity along the southern Mid-Atlantic Ridge, 2°30-6°50 S. Our initial approach was to use a combination of multi-beam swath mapping, deep-tow sidescan sonar imaging and water column plume-detection using MAPRs and CTD-rosette system to locate new sites of hydrothermal activity immediately south of the Romanche and Chain Fracture zones. We wanted to test whether these geologic features represent a significant barrier to gene-flow along-axis away from northern MAR vent ecosystems. During the first leg of our research cruise (RRS Charles Darwin cruise CD169, Feb-Mar 2005) we used this approach to identify two hydrothermally active regions, one in a non-transform discontinuity near 4°S and the other in a segment centre characterised by very fresh sheet-flows near 5°S. During Leg 2 we returned to the second of these areas and deployed ABE, WHOI's autonomous underwater vehicle, in a three-phase strategy to prospect for, locate, and image new hydrothermal fields. During Phase 1 two discrete target areas were located ca. 1km apart along strike within the segment centre. During Phase 2 these two areas were each mapped in detail using an SM2000 system while in situ optical back scatter, Eh, temperature, Mn and Fe(II) sensors were used to confirm the interception of buoyant hydrothermal plumes rising from the seafloor. Finally we redeployed ABE (Phase 3) to collect photo-mosaics of each of two new vent-areas whilst simultaneously sampling their buoyant plumes by CTD-rosette for TDMn, Fe and CH4 analyses.

  10. Microbial bio-mineralization processes in hydrothermal travertine: the case study of two active travertine systems (Tuscany, Italy).

    NASA Astrophysics Data System (ADS)

    Barilaro, Federica; Bontognali, Tomaso R. R.; Mc Kenzie, Judith A.; Vasconcelos, Crisogono

    2015-04-01

    Modern hydrothermal travertine deposits, occurring today at Bagni San Filippo (Radicofani Basin) and at Bagni di Saturnia (Albegna Valley) in Tuscany, Central Italy, have been investigated with the main purpose to improve the understanding of the processes that control calcium carbonate precipitation in hydrothermal-spring settings. Present-day thermal activity at Bagni di Saturnia is characterized by a 37.5°C thermal spring with a rate of about 800 l/s, with a pH of ca. 6.4. Thermal water discharges at Bagni San Filippo reach a rate of 20 litres per second at a maximum temperature of 50°C and a pH of ca. 7. The springs expel water enriched in H2S-CO2-SO42- and HCO3- and divalent cations (Ca and Mg). In the studied areas, travertine precipitation occurs in association with living microbial mats and biofilms, composed of a heterogeneous community of green algae, filamentous cyanobacteria and other types of prokaryotes, anoxygenic photosynthetic bacteria and heterotrophic heat-tolerant bacteria, with a variable amount of extracellular polymeric substances (EPS). Nine categories of fabric types, dominantly calcite and aragonite in composition, showing a wide range of macro- and micro-porosity, have been identified. High magnification analysis of dendritic and laminated boundstone, crystalline crust cementstone, raft boundstone, coated bubble boundstone, micrite mudstone and coated reed boundstone fabric types, suggests that precipitation occurs in association with organic matter. Diatoms, cyanobacteria filaments and other bacteria are then associated with the EPS and often appear totally or partially entombed (passively or actively) in it. Organic extracellular polymeric substances (EPS) and often the external surface of cyanobacterial sheaths are the location where the calcite minerals nucleate and grow. Precipitation begins with organomineral nano-globules consisting of nanometre-size, from sub-spherical to globular-like, raised structures (5 to 80 nm diameter

  11. Preliminary results of trace elements mobility in soils and plants from the active hydrothermal area of Nisyros island (Greece)

    NASA Astrophysics Data System (ADS)

    Daskalopoulou, Kyriaki; Calabrese, Sergio; Milazzo, Silvia; Brusca, Lorenzo; D'Alessandro, Walter; Kyriakopoulos, Konstantinos; Tassi, Franco; Parello, Francesco

    2014-05-01

    Trace elements, i.e. chemical constituents of rocks with concentration <1000 ppm, play a structural role in the organisms and use proteins as a carrier to their target site. Their toxicity depends on their concentration, speciation and reactions with other elements. In volcanic environments, significant amounts of trace elements discharged from gas emissions, contribute to produce air particulate. Nisyros Island is a stratovolcano located at the South Aegean active Volcanic Arc. Intense hydrothermal activity characterise the Lakki caldera. In particular, the fumaroles located in the craters of Stefanos, Kaminakia, Lofos Dome and the area comprising Phlegeton, Polyvotes Micros and Polyvotes Megalos discharge hydrothermal fluids rich in H2O (91- 99%), SO2 and H2S. Their temperatures are almost 100o C and H2S is highly abundant accounting for 8-26 % of the released dry gas phase. On June 2013, during a multidisciplinary field trip on Nisyros island, 39 samples of top soils and 31 of endemic plants (Cistus Creticus and Salvifolius and Erica Arborea and Manipuliflora) were collected in the caldera area, with the aim to investigate the distribution of concentrations of trace elements related to the contribution of deep originated fluids. Moreover, one sample of plant and soil was collected outside the caldera as local background, for comparison. All the soil samples were powdered avoiding metal contamination and they were extracted twice, using HNO3 + HCl for one extraction (closed microwave digestion) and ultrapure de- ionized water for the other one (leaching extraction). The leaves of plants were gently isolated, dried and powdered for acid microwave extraction (HNO3 + H2O2). All the solutions were analysed for major and trace elements contents by using ionic chromatography (IC) and inductively plasma spectrometry (ICP-MS and ICP-OES). The preliminary results showed high enrichment of many trace elements both in plant and soils respect to the local background, in

  12. Cooked Volatiles and the Origin of Titan's Atmosphere: Evidence of Deep Hydrothermal Activity?

    NASA Astrophysics Data System (ADS)

    Glein, C. R.

    2014-12-01

    As on the terrestrial planets, key clues to the origin of Titan's enigmatic atmosphere are contained in the abundances of noble gases and stable isotopes in the atmosphere. The Huygens GCMS measured the abundances of 40Ar, 36Ar, and 22Ne (tentatively); as well as the nitrogen and carbon isotopic compositions of atmospheric N2 and CH4, respectively. No isotopes of Kr or Xe were detected (<10 ppbv). Cassini CIRS has provided us with the D/H ratio in CH4. Here, I attempt to explain these data by developing the hypothesis that the noble gases, nitrogen, and methane originated in the rocky core of Titan [1]. The presence of 40Ar demonstrates that volatile species can be delivered from the deep interior to the atmosphere. Consistent with [2], I find that Titan's primordial core should have contained sufficient 36Ar and 22Ne to explain their reported abundances. By extrapolating this model, I provide a new explanation for why the GCMS failed to detect Kr or Xe, as the predicted mixing ratios of 84Kr and 132Xe are ~0.2 ppbv and ~0.01 ppbv, respectively. I find that nitrogen should be outgassed similarly to argon, while krypton can serve as a geochemical proxy for methane, given the similar volatilities of these pairs of substances. This allows me to deduce that geochemical reactions in Titan's core could have generated enough N2 and CH4 from accreted NH3 and CO2, respectively. A hydrothermal origin of atmospheric nitrogen is also supported by the similarity in N isotopes between Titan's N2 and cometary NH3 [3]. I find that the isotopic ratios in methane can be explained by low-temperature (~300 K) equilibria with liquid water and the alteration mineral calcite. Looking toward the future, this model predicts 12C/13C ≈ 84 in dry ice, and D/H ≈ 170 ppm in water ice on Titan's surface. References: [1] Glein C.R. (2014) Icarus, submitted; [2] Tobie G., et al. (2012) ApJ 752, 125; [3] Mandt K.E., et al. (2014) ApJ Lett. 788, L24.

  13. Impacts of mesoscale activity on the water masses and circulation in the Coral Sea

    NASA Astrophysics Data System (ADS)

    Rousselet, L.; Doglioli, A. M.; Maes, C.; Blanke, B.; Petrenko, A. A.

    2016-10-01

    The climatological vision of the circulation within the Coral Sea is today well established with the westward circulation of two main jets, the North Caledonian Jet (NCJ) and the North Vanuatu Jet (NVJ) as a consequence of the separation of the South Equatorial Current (SEC) on the islands of New Caledonia, Vanuatu, and Fiji. Each jet has its own dynamic and transports different water masses across the Coral Sea. The influence of mesoscale activity on mean flow and on water mass exchanges is not yet fully explored in this region of intense activity. Our study relies on the analysis of in situ, satellite, and numerical data. Indeed, we first use in situ data from the Bifurcation cruise and from an Argo float, jointly with satellite-derived velocities, to study the eddy influence on the Coral Sea dynamics. We identify an anticyclonic eddy as participating in the transport of NVJ-like water masses into the theoretical pathway of NCJ waters. This transfer from the NVJ to the NCJ is confirmed over the long term by a Lagrangian analysis. In particular, this numerical analysis shows that anticyclonic eddies can contribute up to 70-90% of the overall eddy transfer between those seemingly independent jets. Finally, transports calculated using S-ADCP measurements (0-500 m) show an eddy-induced sensitivity that can reach up to 15 Sv, i.e., the order of the transport of the jets.

  14. Atmospheric circulation of brown dwarfs and directly imaged extrasolar giant planets with active clouds

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam

    2016-10-01

    Observational evidence have suggested active meteorology in the atmospheres of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs). In particular, a number of surveys for brown dwarfs showed that near-IR brightness variability is common for L and T dwarfs. Directly imaged EGPs share similar observations, and can be viewed as low-gravity versions of BDs. Clouds are believed to play the major role in shaping the thermal structure, dynamics and near-IR flux of these atmospheres. So far, only a few studies have been devoted to atmospheric circulation and the implications for observations of BDs and directly EGPs, and yet no global model includes a self-consistent active cloud formation. Here we present preliminary results from the first global circulation model applied to BDs and directly imaged EGPs that can properly treat absorption and scattering of radiation by cloud particles. Our results suggest that horizontal temperature differences on isobars can reach up to a few hundred Kelvins, with typical horizontal length scale of the temperature and cloud patterns much smaller than the radius of the object. The combination of temperature anomaly and cloud pattern can result in moderate disk-integrated near-IR flux variability. Wind speeds can reach several hundred meters per second in cloud forming layers. Unlike Jupiter and Saturn, we do not observe stable zonal jet/banded patterns in our simulations. Instead, our simulated atmospheres are typically turbulent and dominated by transient vortices. The circulation is sensitive to the parameterized cloud microphysics. Under some parameter combinations, global-scale atmospheric waves can be triggered and maintained. These waves induce global-scale temperature anomalies and cloud patterns, causing large (up to several percent) disk-integrated near-IR flux variability. Our results demonstrate that the commonly observed near-IR brightness variability for BDs and directly imaged EGPs can be explained by the

  15. Regional and temporal variability of solar activity and galactic cosmic ray effects on the lower atmosphere circulation

    NASA Astrophysics Data System (ADS)

    Veretenenko, S.; Ogurtsov, M.

    2012-02-01

    In this work we studied the spatial and temporal structure of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation as well as possible reasons for the peculiarities of this structure. The study revealed a strong latitudinal and regional dependence of SA/GCR effects on pressure variations in the lower troposphere which seems to be determined by specific features of baric systems formed in different regions. The temporal structure of SA/GCR effects on the troposphere circulation at high and middle latitudes is characterized by a roughly 60-year periodicity which is apparently due to the epochs of the large-scale atmospheric circulation. It is suggested that a possible mechanism of long-term effects of solar activity and cosmic ray variations on the troposphere circulation involves changes in the evolution of the polar vortex in the stratosphere of high latitudes, as well as planetary frontal zones.

  16. Hydrothermal impacts on trace element and isotope ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    German, C. R.; Casciotti, K. A.; Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Schlitzer, R.; Tagliabue, A.; Turner, D. R.; Whitby, H.

    2016-11-01

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  17. Hydrothermal impacts on trace element and isotope ocean biogeochemistry

    PubMed Central

    Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Turner, D. R.; Whitby, H.

    2016-01-01

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’.

  18. Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    SciTech Connect

    Tan, Wai Kian; Abdul Razak, Khairunisak; Lockman, Zainovia; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ∼40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible

  19. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: Model-based evidence for significant POC supply to seafloor sediments

    NASA Astrophysics Data System (ADS)

    German, C. R.; Legendre, L. L.; Sander, S. G.; Niquil, N.; Luther, G. W.; Bharati, L.; Han, X.; Le Bris, N.

    2015-06-01

    Submarine hydrothermal venting has recently been identified to have the potential to impact ocean biogeochemistry at the global scale. This is the case because processes active in hydrothermal plumes are so vigorous that the residence time of the ocean, with respect to cycling through hydrothermal plumes, is comparable to that of deep ocean mixing caused by thermohaline circulation. Recently, it has been argued that seafloor venting may provide a significant source of bio-essential Fe to the oceans as the result of a close coupling between Fe and organic carbon in hydrothermal plumes. But a complementary question remains to be addressed: does this same intimate Fe-Corg association in hydrothermal plumes cause any related impact to the global C cycle? To address this, SCOR-InterRidge Working Group 135 developed a modeling approach to synthesize site-specific field data from the East Pacific Rise 9°50‧ N hydrothermal field, where the range of requisite data sets is most complete, and combine those inputs with global estimates for dissolved Fe inputs from venting to the oceans to establish a coherent model with which to investigate hydrothermal Corg cycling. The results place new constraints on submarine Fe vent fluxes worldwide, including an indication that the majority of Fe supplied to hydrothermal plumes should come from entrainment of diffuse flow. While this same entrainment is not predicted to enhance the supply of dissolved organic carbon to hydrothermal plumes by more than ∼10% over background values, what the model does indicate is that scavenging of carbon in association with Fe-rich hydrothermal plume particles should play a significant role in the delivery of particulate organic carbon to deep ocean sediments, worldwide.

  20. Effect of reaction parameters on photoluminescence and photocatalytic activity of zinc sulfide nanosphere synthesized by hydrothermal route

    NASA Astrophysics Data System (ADS)

    Chanu, T. Inakhunbi; Samanta, Dhrubajyoti; Tiwari, Archana; Chatterjee, Somenath

    2017-01-01

    Zinc Sulfide (ZnS) nanospheres have been synthesized using amino acid, L-Histidine as a capping agent by hydrothermal method. The as prepared ZnS have been characterised using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Photoluminescence (PL), Fourier Transform Infra-Red spectroscopy (FTIR), UV-vis absorption spectroscopy and X-ray Photo Electron Spectroscopy (XPS). Effect of reaction parameters on particle size has been investigated. The morphology and size of the ZnS can be tuned based on the reaction parameters. ZnS nanosphere with a particle size of 5 nm is obtained when the reaction parameters are kept at 120 °C for 3 h. The PL of ZnS shows multiple defect emissions arising from interstitials/vacancies. Particle size of ZnS nanoparticles plays an important role in determining the photo catalytic activity. A chronological study on synthesis of ZnS nanosphere and its photo catalytic activity under the sunlight are discussed here, which reveals the photo degradation of Rhodamine B (RhB) upto 87% as observed with ZnS nanosphere having a particle size of 5 nm.

  1. Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-04-01

    Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.

  2. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Rona, P.A.; Bostrom, K.; Laubier, L.; Smith, K.L.

    1983-01-01

    This book examines research on the description and interpretation of hydrothermal and associated phenomena at seafloor spreading centers. An interdisciplinary overview of the subject is presented, including geological, geophysical, geochemical, and biological discoveries. The implications of the discoveries for understanding the earth's heat transfer, geochemical mass balances and cycles, mineralization, and biological adaptation are discussed. Topics considered include geologic setting (e.g., the four dimensions of the spreading axis, geological processes of the mid-ocean ridge), hydrothermal convection (e.g., oxygen and hydrogen isotope studies, the basic physics of water penetration into hot rock), Iceland and oceanic ridges (e.g., chemical evidence from Icelandic geothermal systems, the physical environment of hydrothermal systems), mass balances and cycles (e.g., reduced gases and bacteria in hydrothermal fluids, the effects of hydrothermal activity on sedimentary organic matter), ferromanganese deposits, hydrothermal mineralization, and the biology of hydrothermal vents.

  3. Physical activity and cognitive-health content in top-circulating magazines, 2006-2008.

    PubMed

    Price, Anna E; Corwin, Sara J; Friedman, Daniela B; Laditka, Sarah B; Colabianchi, Natalie; Montgomery, Kara M

    2011-04-01

    Physical activity may promote cognitive health in older adults. Popular media play an important role in preventive health communication. This study examined articles discussing associations between physical activity and cognitive health in top-circulating magazines targeting older adults. 42,753 pages of magazines published from 2006 to 2008 were reviewed; 26 articles met inclusion criteria. Explanations regarding the link between physical activity and cognitive health were provided in 57.7% of articles. These explanations were generally consistent with empirical evidence; however, few articles included empirical evidence. Physical activity recommendations were presented in 80.8% of articles; a wide range was recommended (90-300 min of physical activity per wk). Socioeconomic status and education level were not mentioned in the text. Results suggest an opportunity for greater coverage regarding the role of physical activity in promoting cognitive health in popular media. Magazine content would benefit from including more empirical evidence, culturally sensitive content, and physical activity recommendations that are consistent with U.S. guidelines.

  4. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  5. Evidence of sub-vent biosphere: enzymatic activities in 308 °C deep-sea hydrothermal systems at Suiyo seamount, Izu Bonin Arc, Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Edazawa, Yae; Kobayashi, Kensei; Urabe, Tetsuro; Marumo, Katsumi

    2005-01-01

    A high-temperature deep-sea hydrothermal system related to dacitic arc-volcanism was drilled using a tethered, submarine rock-drill system as a part of the Archaean Park Project. The benthic multi-coring system (BMS) employed allowed for direct sampling of microorganisms, rocks and fluids beneath hydrothermal vents. The samples examined in this study were from sites APSK 05 and APSK 07 on the Suiyo Seamount of the Izu-Bonin Arc in the Pacific Ocean. Based on the vertical distribution of samples derived from this vigorous sub-vent environment, a model of deep-sea subterranean chemistry and biology was determined detailing optimal microbial activities. Deep-sea hydrothermal sub-vent core samples of dacitic arc-volcanism obtained at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific Ocean were analyzed for acid and alkaline phosphatase enzymatic activities. Useful biomarkers of acid phosphatase (ACP) and alkaline phosphatase (ALP) enzymatic activities were positively correlated against each other and was greatest at the partial middle core sequences; ACP and ALP activities determined were as high as 5.10 and 6.80 nmol/min/g rock, respectively. Biochemical indicators of ACP and ALP were consistent with the origin of biogenic amino acids occupied in the sub-vent region and microbial cell number in the fluid. The significant enzymatic activities demonstrated in this study provides crucial evidence that sub-vent regions represent part of the previously unknown extreme-environment biosphere, extending the known subterranean habitable spaces of, for example, extremophilic microbes. This boring trial was first example of discharging high temperature hydrothermal activities at the frontal arc volcanoes.

  6. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Martins, Inês; Romão, Célia V; Goulart, Joana; Cerqueira, Teresa; Santos, Ricardo S; Bettencourt, Raul

    2016-03-01

    Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism.

  7. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  8. The Lassen hydrothermal system

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length <50 m. Observational records of hydrothermal discharge are likely too short to document long-term transients, whether they are intrinsic to the system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  9. On the Interaction of a Vigorous Hydrothermal System with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.

    2009-12-01

    The extent of the interaction between hydrothermal systems and active magma chambers has long been of fundamental interest to the development of ore deposits, cooling of magma chambers, and dehydration of the subducting lithosphere. As volatiles build up in the residual magma in the trailing edge of magmatic solidification fronts, is it possible that volatiles are transferred from the active magma to the hydrothermal system and vice versa? Does the external fracture front associated with vigorous hydrothermal systems sometimes propagate into the solidification front, facilitating volatile exchange? Or is the magma always sealed at temperatures above some critical level related to rock strength and overpressure? The degree of hydrothermal interaction in igneous systems is generally gauged in post mortem studies of δ18O and δD, where it has been assumed that a fracture front develops about the magma collapsing inward with cooling. H.P. Taylor and D. Norton's (1979; J. Petrol.)seminal work inferred that rocks are sealed with approach to the solidus and there is little to no direct interaction with external volatiles in the active magma. In active lava lakes a fracture front develops in response to thermal contraction of the newly formed rock once the temperature drops to ~950°C (Peck and Kinoshita,1976;USGS PP935A); rainfall driven hydrothermal systems flash to steam near the 100 °C isotherm in the solidified lake and have little effect on the cooling history (Peck et al., 1977; AJS). Lava lakes are fully degassed magmas and until the recent discovery of the Puna Magma Chamber (Teplow et al., 2008; AGU) no active magma was known at sufficiently great pressure to contain original volatiles. During the course of routine drilling of an injection well at the Puna Geothermal Venture (PGV) well-field, Big Island, Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m, continued drilling to 2488 m encountered a melt

  10. Thermal Models of the Costa Rica - Nicaragua Subduction Zone: the Effect of a Three-Dimensional Oceanic Plate Structure and Hydrothermal Circulation in the Temperature Distribution and Mantle Wedge Dynamics

    NASA Astrophysics Data System (ADS)

    Rosas, J. C.; Currie, C. A.; He, J.

    2014-12-01

    Over the last years several 2D thermo-mechanical models of the Costa Rica - Nicaragua Subduction Zone (CNSZ) have studied the thermal distribution of sections of the fault. Such investigations allow us to understand temperature-related aspects of subduction zones, like volcanism and megathrust earthquake locations. However, certain features of the CNSZ limit the range of applicability of 2D models. In the CNSZ, geochemical trends and seismic anisotropy studies reveal a 3D mantle wedge flow that departs from the 2D corner flow. The origin of this flow are dip variations (20o to 25o between Nicaragua and Costa Rica) and the presence of a slab window in Panama that allows material to flow into the mantle wedge. Also, the Central America trench has abrupt variations in surface heat flux that contrasts with steady changes in plate age and convergence rate. These variations have been attributed to hydrothermal circulation (HC), which effectively removes heat from the oceanic crust.In this project we analyze the thermal structure of the CNSZ. The objective is to study dehydration and metamorphic reactions, as well as the length of the megathrust seismogenic zone. We created 3D finite-element models that employ a dislocation creep rheology for the mantle wedge. Two aspects make our models different from previous studies: an up-to-date 3D slab geometry, and an implementation of HC by introducing a conductive proxy in the subducting aquifer, allowing us to model convective heat transport without the complex, high-Rayleigh number calculations. A 3D oceanic boundary condition that resembles the along-strike changes in surface heat flux is also employed. Results show a maximum mantle wedge flow rate of 4.69 cm/yr in the along-strike direction, representing more than 50% of the slab convergence rate. With respect to 2D models, analysis shows this flow changes temperatures by ~100 C in the mantle wedge near areas of strong slab curvature. Along the subducting interface, there is

  11. Circulating B-lymphocytes as potential biomarkers of tuberculosis infection activity.

    PubMed

    Sebina, Ismail; Biraro, Irene A; Dockrell, Hazel M; Elliott, Alison M; Cose, Stephen

    2014-01-01

    Accurate biomarkers of Mycobacterium tuberculosis infection activity would significantly improve early diagnosis, treatment and management of M. tuberculosis infection. We hypothesised that circulating B-lymphocytes may be useful biomarkers of tuberculosis (TB) infection status in highly TB-endemic settings. Ex-vivo and in-vitro mycobacteria-specific B-cell ELISPOT assays were used to examine the plasmablast (PB) and memory B-cell (MBC) responses in the peripheral blood of adult, healthy, community controls (n = 151) and of active TB patients (n = 48) living in Uganda. Frequencies of mycobacteria-specific PBs were markedly higher in active TB patients compared to healthy controls, and, conversely, MBCs were markedly higher in the healthy controls compared to active TB patients. In addition, the community controls with evidence of latent TB infection had higher peripheral blood PB and MBC responses than those without evidence of TB infection. These data demonstrate that peripheral blood B-cell responses are differentially modulated during latent and active M. tuberculosis infection, and suggest that the PB to MBC ratio may be a useful biomarker of TB infection activity.

  12. Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity.

    PubMed

    Xing, Chaosheng; Wu, Zhudong; Jiang, Deli; Chen, Min

    2014-11-01

    Graphitic carbon nitride (g-C3N4) was hybridized by In2S3 to form a novel In2S3/g-C3N4 heterojunction photocatalyst via a hydrothermal method. TEM and HRTEM results reveal that In2S3 nanoparticles and g-C3N4 closely contact with each other to form an intimate interface. The as-obtained In2S3/g-C3N4 heterojunctions exhibit higher photocatalytic activity than those of pure g-C3N4 and In2S3 for the photodegradation of rhodamine B (RhB) under visible light irradiation. The enhanced photocatalytic performance of In2S3/g-C3N4 heterojunctions could be attributed to its wide absorption in the visible region and efficient electron-hole separation. On the basis of radical scavenger experiments, superoxide radicals and holes are suggested to play a critical role in RhB degradation over In2S3/g-C3N4 heterojunctions.

  13. Soluble inhibitors generated during hydrothermal pretreatment of oil palm mesocarp fiber suppressed the catalytic activity of Acremonium cellulase.

    PubMed

    Zakaria, Mohd Rafein; Hirata, Satoshi; Fujimoto, Shinji; Ibrahim, Izzudin; Hassan, Mohd Ali

    2016-01-01

    Oil palm mesocarp fiber was subjected to hydrothermal pretreatment under isothermal and non-isothermal conditions. The pretreated slurries were separated by filtration, pretreated liquids and solids were characterized. An enzymatic digestibility study was performed for both pretreated slurries and solids to understand the effect of soluble inhibitors generated during the pretreatment process. The highest glucose yield obtained from pretreated slurries was 70.1%, and gradually decreased with higher pretreatment severities. The highest glucose yield obtained in pretreated solids was 100%, after pretreatment at 210°C for 20min. In order to study the inhibitory effects of compounds generated during pretreatment with cellulase, technical grade solutions that mimic the pretreated liquid were prepared and their effect on Acremonium cellulase activity was monitored using Avicel. Xylo-oligomers and tannic acid were identified as powerful inhibitors of Acremonium cellulase, and the lowest hydrolysis rate of Avicel of 0.18g/g-glucose released/L/h was obtained from tannic acid.

  14. Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities.

    PubMed

    Chen, Ping; Xiao, Tian-Yuan; Li, Hui-Hui; Yang, Jing-Jing; Wang, Zheng; Yao, Hong-Bin; Yu, Shu-Hong

    2012-01-24

    Nitrogen-doped graphene (GN) has great potential applications in many fields because doping with nitrogen can alter the electrical properties of graphene. It is still a challenge to develop a convenient method for synthesis of GN sheets. In this paper, we first report the synthesis of a nitrogen-doped graphene/ZnSe nanocomposite (GN-ZnSe) by a one-pot hydrothermal process at low temperature using graphene oxide nanosheets and [ZnSe](DETA)(0.5) nanobelts as precursors. ZnSe nanorods composed of ZnSe nanoparticles were found to deposit on the surface of the GN sheets. The results demonstrated that [ZnSe](DETA)(0.5) nanobelts were used not only as the source of ZnSe nanoparticles but also as the nitrogen source. Interestingly, it was found that the as-prepared nanocomposites exhibit remarkably enhanced electrochemical performance for oxygen reduction reaction and photocatalytic activities for the bleaching of methyl orange dye under visible-light irradiation. This facile and catalyst-free approach for depositing ZnSe nanoparticles onto the graphene sheets may provide an alternative way for preparation of other nanocomposites based on GN sheets under mild conditions, which show their potential applications in wastewater treatment, fuel cells, energy storage, nanodevices, and so on.

  15. Ghrelin and adipokines as circulating markers of disease activity in patients with Takayasu arteritis

    PubMed Central

    2012-01-01

    Introduction The current markers of disease activity in Takayasu arteritis (TA) are insufficient for proper assessment. We investigated circulating levels of unacylated and acylated ghrelin, leptin and adiponectin and their relationships with disease activity in patients with TA. Methods This study included 31 patients with TA and 32 sex-, age- and body mass index-matched healthy controls. Disease activity was assessed in TA patients using various tools, including Kerr's criteria, disease extent index-Takayasu, physician's global assessment, radiological parameters, and laboratory markers. Plasma unacylated and acylated ghrelin, and serum leptin and adiponectin levels were measured using an enzyme-linked immunosorbent assay. Results Unacylated and acylated ghrelin levels were found to be significantly lower in TA patients than that in healthy controls. Patients with active disease had lower unacylated ghrelin levels than those with inactive disease and had lower acylated ghrelin levels than healthy controls. Ghrelin levels were negatively correlated with various parameters of disease activity. The leptin/ghrelin ratio was significantly higher in TA patients than controls. It was positively correlated with disease activity. There was a positive correlation between unacylated and acylated ghrelin and a negative correlation between leptin and ghrelin. There was no statistical difference in adiponectin levels between TA patients and controls. The radiological activity markers were positively correlated with other parameters of disease activity. Conclusions This study suggests that plasma unacylated and acylated ghrelin levels may be useful in monitoring disease activity and planning treatment strategies for patients with TA. The serum leptin level and leptin/ghrelin ratio may also be used to help assess the disease activity. PMID:23259466

  16. Hydrogeological structure of a seafloor hydrothermal system related to backarc rifting in a continental margin setting

    NASA Astrophysics Data System (ADS)

    Ishibashi, Jun-ichiro

    2016-04-01

    Seafloor hydrothermal systems in the Okinawa Trough backarc basin are considered as related to backarc rifting in a continental margin setting. Since the seafloor is dominantly covered with felsic volcaniclastic material and/or terrigenous sediment, hydrothermal circulation is expected to be distributed within sediment layers of significantly high porosity. Deep drilling through an active hydrothermal field at the Iheya North Knoll in the middle Okinawa Trough during IODP Expedition 331 provided a unique opportunity to directly access the subseafloor. While sedimentation along the slopes of the knoll was dominated by volcanic clasts of tubular pumice, intense hydrothermal alteration was recognized in the vicinity of the hydrothermal center even at very shallow depths. Detailed mineralogical and geochemical studies of hydrothermal clay minerals in the altered sediment suggest that the prevalent alteration is attributed to laterally extensive fluid intrusion and occupation within the sediment layer. Onboard measurements of physical properties of the obtained sediment revealed drastic changes of the porosity caused by hydrothermal interactions. While unaltered sediment showed porosity higher than 70%, the porosity drastically decreased in the layer of anhydrite formation. On the other hand, the porosity remained high (~50%) in the layer of only chlorite alteration. Cap rock formation caused by anhydrite precipitation would inhibit the ascent of high temperature fluids to the seafloor. Moreover, an interbedded nature of pelagic mud units and matrix-free pumice deposits may prompt formation of a tightly layered architecture of aquifers and aquicludes. This sediment architecture should be highly conducive to lateral flow pseudo-parallel to the surface topography. Occurrence of sphalerite-rich sulfides was recognized as associated with detrital and altered sediment, suggesting mineralization related to subsurface chemical processes. Moreover, the vertical profiles of

  17. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR.

    PubMed Central

    Kitareewan, S; Burka, L T; Tomer, K B; Parker, C E; Deterding, L J; Stevens, R D; Forman, B M; Mais, D E; Heyman, R A; McMorris, T; Weinberger, C

    1996-01-01

    RXR is a nuclear receptor that plays a central role in cell signaling by pairing with a host of other receptors. Previously, 9-cis-retinoic acid (9cRA) was defined as a potent RXR activator. Here we describe a unique RXR effector identified from organic extracts of bovine serum by following RXR-dependent transcriptional activity. Structural analyses of material in active fractions pointed to the saturated diterpenoid phytanic acid, which induced RXR-dependent transcription at concentrations between 4 and 64 microM. Although 200 times more potent than phytanic acid, 9cRA was undetectable in equivalent amounts of extract and cannot be present at a concentration that could account for the activity. Phytanic acid, another phytol metabolite, was synthesized and stimulated RXR with a potency and efficacy similar to phytanic acid. These metabolites specifically displaced [3H]-9cRA from RXR with Ki values of 4 microM, indicating that their transcriptional effects are mediated by direct receptor interactions. Phytol metabolites are compelling candidates for physiological effectors, because their RXR binding affinities and activation potencies match their micromolar circulating concentrations. Given their exclusive dietary origin, these chlorophyll metabolites may represent essential nutrients that coordinate cellular metabolism through RXR-dependent signaling pathways. PMID:8856661

  18. Interannual variability of tropical cyclone activity and regional Hadley circulation over the Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Gan; Wang, Zhuo

    2015-04-01

    The interannual variability of the regional Hadley circulation (HC) and tropical cyclone (TC) activity over the Northeastern Pacific (NEP) was investigated. The interannual variability of the HC in the NEP hurricane season is found dominated by a mode (M1EP) regulating the strength and meridional extent of the Intertropical Convergence Zone. M1EP has a more robust correlation with NEP TC activity than the El Niño-Southern Oscillation sea surface temperature indices. The strong correlation is attributed to the impacts of M1EP on environmental conditions. In addition, the leading mode of the Atlantic HC, which has an anticorrelation with M1EP, also strongly impacts NEP TC activity. The findings, together with Zhang and Wang (2013), highlight the role of the HC in controlling the variability of TC activity as well as the interbasin connection between the NEP and the Atlantic. The regional HC is thus recommended as a useful metric to benchmark models in simulating TC activity.

  19. Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals.

    PubMed

    Sharma, Rishabh; Uma; Singh, Sonal; Verma, Ajit; Khanuja, Manika

    2016-09-01

    In the present work, monoclinic bismuth vanadate (m-BiVO4) nanostructures have been synthesized via simple hydrothermal method and employed for visible light driven antimicrobial and photocatalytic activity. Morphology (octahedral) and size (200-300nm) of the m-BiVO4 are studied using transmission electron microscopy (TEM). The crystal structure of m-BiVO4 (monoclinic scheelite structure) is confirmed by high resolution-TEM (HRTEM) and X-ray diffraction (XRD) studies. The band gap of m-BiVO4 was estimated to be ca. 2.42eV through Kubelka-Munk function F(R∞) using diffuse reflectance spectroscopy (DRS). Antimicrobial action of m-BiVO4 is anticipated by (i) shake flask method, (ii) MTT [3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide] assay for cytotoxicity. SEM analysis has been carried on Escherichia coli (E.coli) before and after treatment with nanostructure materials to reveal the mechanism underlying the antimicrobial action. Antimicrobial activity is studied as a function of m-BiVO4 concentration viz. 20, 40, 60 and 80ppm. The bacterial growth is decreased 80% to 96%, with the increase in m-BiVO4 concentration from 20ppm to 80ppm, respectively, in 2h. Photocatalytic activity and rate kinetics of m-BiVO4 nanostructures have been studied as a function of time on methylene blue (MB) dye degradation which is one of the waste products of textile industries and responsible for water pollution.

  20. Discovery of new hydrothermal activity and chemosynthetic fauna on the Central Indian Ridge at 18°-20° S.

    PubMed

    Nakamura, Kentaro; Watanabe, Hiromi; Miyazaki, Junichi; Takai, Ken; Kawagucci, Shinsuke; Noguchi, Takuro; Nemoto, Suguru; Watsuji, Tomo-o; Matsuzaki, Takuya; Shibuya, Takazo; Okamura, Kei; Mochizuki, Masashi; Orihashi, Yuji; Ura, Tamaki; Asada, Akira; Marie, Daniel; Koonjul, Meera; Singh, Manvendra; Beedessee, Girish; Bhikajee, Mitrasen; Tamaki, Kensaku

    2012-01-01

    Indian Ocean hydrothermal vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean hydrothermal systems. In particular, since its discovery in 2001, much attention has been paid to a so-called 'scaly-foot' gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean hydrothermal vents, only two hydrothermal vent fields have been investigated in the Indian Ocean. Here we report two newly discovered hydrothermal vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR hydrothermal environments to date, and even identified previously unreported taxa. Moreover, a new morphotype of 'scaly-foot' gastropod has been found at the Solitaire field. The newly discovered 'scaly-foot' gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of 'scaly-foot' gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to 'scaly-foot' gastropods. Our new findings at the two newly discovered hydrothermal vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean.

  1. Coupling Magnetotellurics and Hydrothermal Modeling to Further Understand Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Folsom, M.; Pepin, J.; Kelley, S.; Person, M. A.; Blom, L.; Love, D.

    2015-12-01

    A comprehensive knowledge of the groundwater flow patterns associated with geothermal resources is critical to sustainable resource management and to discovering blind geothermal systems. Magnetotellurics (MT), which provides subsurface electrical conductivity information to substantial depths, has the ability to image geothermal reservoir features, such as conductive clay caps and hot, saline groundwater circulating within geothermal systems. We have used MT data along with 2D hydrothermal modeling, constrained by temperature, salinity and carbon-14 data, to explore possible deep groundwater circulation scenarios near the Sevilleta National Wildlife Refuge, in the Rio Grande Rift, central New Mexico. The area is underlain by a 100 to 150-m thick molten sill emplaced approximately 19 km below the surface. This sill is referred to locally as the Socorro Magma Body (SMB). Previous studies by Mailloux et al. (1999) and Pepin et al. (2015) suggest that the crystalline basement rocks in this region of the Rio Grande Rift can be significantly fractured to depths of 4-8 km and have permeabilities as high as 10-14 to 10-12 m2. The combination of high permeability conditions and the presence of the SMB makes this particular region a promising candidate for discovering a blind geothermal system at depth. We constructed a 2D hydrothermal model that traverses a 64-km zone of active uplift that is associated with the SMB. We also completed a 12-km long, 9-station MT transect across a portion of this profile, where land access was permitted and electromagnetic noise was minimal. Preliminary results suggest a deep convection-dominated system is a possibility, although further analysis of the MT data is necessary and ongoing. We hypothesize that using hydrothermal modeling in conjunction with MT surveys may prove to be an effective approach to discovering and managing deep regional hydrothermal resources.

  2. Computational studies of the effects of active and passive circulation enhancement concepts on wind turbine performance

    NASA Astrophysics Data System (ADS)

    Tongchitpakdee, Chanin

    With the advantage of modern high speed computers, there has been an increased interest in the use of first-principles based computational approaches for the aerodynamic modeling of horizontal axis wind turbine (HAWT). Since these approaches are based on the laws of conservation (mass, momentum, and energy), they can capture much of the physics in great detail. The ability to accurately predict the airloads and power output can greatly aid the designers in tailoring the aerodynamic and aeroelastic features of the configuration. First-principles based analyses are also valuable for developing active means (e.g., circulation control), and passive means (e.g., Gurney flaps) of reducing unsteady blade loads, mitigating stall, and for efficient capture of wind energy leading to more electrical power generation. In this present study, the aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Prior to its use in exploring these concepts, the flow solver is validated with the experimental data for the baseline case under yawed flow conditions. Results presented include radial distribution of normal and tangential forces, shaft torque, root flap moment, surface pressure distributions at selected radial locations, and power output. Results show that good agreement has been for a range of wind speeds and yaw angles, where the flow is attached. At high wind speeds, however, where the flow is fully separated, it was found that the fundamental assumptions behind this present methodology breaks down for the baseline turbulence model (Spalart-Allmaras model), giving less accurate results. With the implementation of advanced turbulence model, Spalart-Allmaras Detached Eddy Simulation (SA-DES), the

  3. Active anatase (0 0 1)-like surface of hydrothermally synthesized titania nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Mogilevsky, Gregory; Wagner, George W.; Forstater, Jacob; Kleinhammes, Alfred; Wu, Yue

    2009-11-01

    Using 31P and 13C NMR with DFT calculations we demonstrate the exposed surface of titania nanotubes (TiNTs) is a stable, unterminated anatase (0 0 1)-like surface and is catalytically active under ambient conditions. We find that methanol dissociatively adsorbs on the surface of TiNTs agreeing with the predicted activity of surface dissociation of organic molecules on the crystalline (0 0 1)-anatase surface. We further examined the catalytic activity of anatase power, TiNT, and nanosheets in catalytic hydrolysis of S-[2-(diisopropylamino)ethyl]- O-ethyl methylphosphonothioate (VX) via 31P NMR and demonstrate that titanate-like nanosheets are inactive in the reaction owing to their hydroxylated (0 0 1) surface.

  4. Vapor Discharges On Nevado Del Ruiz During The Recent Activity: Clues On The Composition Of The Deep Hydrothermal System And Its Effects On Thermal Springs

    NASA Astrophysics Data System (ADS)

    Inguaggiato, S.; Federico, C.; Chacon, Z.; Londono, J. M.; Alzate, D. M.; Gil, E.

    2015-12-01

    The Nevado del ruiz volcano (NdR, 5321m asl), one of the most active in Colombia, threatens about 600,000 people. The existence of an ice cap and several streams channeling in some main rivers increase the risk of lahars and mudflows in case of unrest, as occurred during the November 1985 eruption, which caused 20,000 casualties. The involvement of the local hydrothermal system has also produced in the past phreatic and phreatomagmatic activity, as in 1985 and 1989. After more than 7 years of relative stability, since 2010, the still ongoing phase of unrest has produced two small eruption in 2012, and still maintains in high levels of seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and streamwater, located at 2600-5000 m asl, analyzed for water chemistry and stable isotopes. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of steam discharging in the different steam-heated springs. The composition of the hottest thermal spring (Botero Londoño) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250°C and low salinity (Cl ~1500 mg/l), which suggest a chiefly meteoric origin, as also confirmed by the isotope composition retrieved for the hydrothermal water. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesised to be separated from a high-temperature hyrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, as well as its pH and fO2. The vapour feeding Nereidas would separate from a byphasic hydrothermal system characterised by the follow parameters: t= 315°C, P=19 MPa, NaCl= 15 %, CO2 = 9%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, we obtain pH=2, fO2 fixed by FeO-Fe2O3 buffer, and [Cl]=12000 mg/l. Changes

  5. Higher and lower active circulating VWF levels: different facets of von Willebrand disease.

    PubMed

    Casonato, Alessandra; Pontara, Elena; Morpurgo, Margherita; Sartorello, Francesca; De Groot, Philip G; Cattini, Maria G; Daidone, Viviana; De Marco, Luigi

    2015-12-01

    Most circulating von Willebrand factor (VWF) is normally inactive and incapable of binding platelets, but numerous disorders may modify the proportion of active VWF. We explored active VWF levels in patients with von Willebrand disease (VWD) whose VWF had a higher affinity for platelet glycoprotein (GP)Ib, but different susceptibilities to ADAMTS13 and multimer patterns (9 patients lacking large multimers, 10 with a normal pattern); 12 patients with VWF C2362F and R1819_C1948delinsS mutations, which make VWF resistant to ADAMTS13 were also studied. Type 2B patients with abnormal or normal multimers had significantly more active VWF (3·33 ± 1·6 and 3·74 ± 0·74, respectively; normal 0·99 ± 0·23). The type of VWF mutation influenced VWF activation: V1316M was associated with the highest levels in patients with abnormal multimers, and R1341W in those with normal multimers. Pregnancy induced gradually rising active VWF levels and declining platelet counts in one type 2B VWD patient without large multimers. Active VWF levels dropped significantly in patients homozygous for the C2362F mutation or heterozygous for R1819_C1948delinsS mutations (0·2 ± 0·03 and 0·23 ± 0·1, respectively), and less in cases heterozygous for the VWF C2362F mutation (0·55 ± 0·17). We demonstrate that VWF may be more or less activated, with or without any direct involvement of the A1 domain, and regardless of ADAMTS13.

  6. Acoustic stratigraphy and hydrothermal activity within Epi Submarine Caldera, Vanuatu, New Hebrides Arc

    USGS Publications Warehouse

    Greene, H. Gary; Exon, N.F.

    1988-01-01

    Geological and geophysical surveys of active submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an active submarine volcano off the southeastern tip of Epi) lavas. ?? 1988 Springer-Verlag New York Inc.

  7. Extreme Hydrothermal Conditions Near an Active Geological Fault, DFDP-2B Borehole, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Sutherland, R.; Townend, J.; Toy, V.; Allen, M.; Baratin, L. M.; Barth, N. C.; Beacroft, L.; Benson, A.; Boese, C. M.; Boles, A.; Boulton, C. J.; Capova, L.; Carpenter, B. M.; Celerier, B. P.; Chamberlain, C. J.; Conze, R.; Cooper, A.; Coussens, J.; Coutts, A.; Cox, S.; Craw, L.; Doan, M. L.; Eccles, J. D.; Faulkner, D.; Grieve, J.; Grochowski, J.; Gulley, A.; Henry, G.; Howarth, J. D.; Jacobs, K. M.; Jeppson, T.; Kato, N.; Keys, S.; Kirilova, M.; Kometani, Y.; Lukács, A.; Langridge, R.; Lin, W.; Little, T.; Mallyon, D.; Mariani, E.; Marx, R.; Massiot, C.; Mathewson, L.; Melosh, B.; Menzies, C. D.; Moore, J.; Morales, L. F. G.; Morgan, C.; Mori, H.; Niemeijer, A. R.; Nishikawa, O.; Nitsch, O.; Paris Cavailhes, J.; Pooley, B.; Prior, D. J.; Pyne, A.; Sauer, K. M.; Savage, M. K.; Schleicher, A.; Schmitt, D. R.; Shigematsu, N.; Taylor-Offord, S.; Tobin, H. J.; Upton, P.; Valdez, R. D.; Weaver, K.; Wiersberg, T.; Williams, J. N.; Yeo, S.; Zimmer, M.; Broderick, N.

    2015-12-01

    The DFDP-2B borehole sampled rocks above and within the upper part of the Alpine Fault, New Zealand, to a depth of 893 m in late 2014. The experiment was the first to drill a major geological fault zone that is active and late in its earthquake cycle. We determined ambient fluid pressures 8-10% above hydrostatic and a geothermal gradient of 130-150 °C/km in rocks above the fault. These unusual ambient conditions can be explained by a combination of: rock advection that transports heat from depth by uplift and oblique slip on the fault; and fluid advection through fractured rock, driven by topographic forcing, which concentrates heat and causes fluid over-pressure in the valley. Highly-anomalous ambient conditions can exist in the vicinity of active faults, and earthquake and mineralization processes occur within these zones.

  8. A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on microfilter

    PubMed Central

    Xu, Tong; Lu, Bo; Tai, Yu-Chong; Goldkorn, Amir

    2010-01-01

    Circulating tumor cells (CTCs) quantified in cancer patients’ blood can predict disease outcome and response to therapy. However, the CTC analysis platforms commonly used cannot capture live CTCs and only apply to tumors of epithelial origin. To address these limitations, we have developed a novel cancer detection platform which measures telomerase activity from live CTCs captured on a Parylene-C slot microfilter. Using a constant low-pressure delivery system, the new microfilter platform was capable of cell capture from 1 ml of whole blood in less than 5 minutes, achieving 90% capture efficiency, 90% cell viability and 200-fold sample enrichment. Importantly, the captured cells retained normal morphology by scanning electron microscopy and could be readily manipulated, further analyzed, or expanded on or off filter. Telomerase activity – a well-recognized universal cancer marker – was reliably detected by qPCR from as few as 25 cancer cells spiked into 7.5 ml whole blood and captured on microfilter. Moreover, significant telomerase activity elevation also was measured from patient blood samples and from single cancer cells lifted off the microfilter. Live CTC capture and analysis is fast and simple yet highly quantitative, versatile, and applicable to nearly all solid tumor types, making this a highly promising new strategy for cancer detection and characterization. PMID:20663903

  9. Circulating estradiol and the activation of male and female copulatory behavior in Japanese quail (Coturnix japonica).

    PubMed

    Watson, J T; Abdelnabi, M; Wersinger, S; Ottinger, M A; Adkins-Regan, E

    1990-02-01

    Previous experiments using systemic and preoptic area (POA) hormone treatments have shown that aromatization of testosterone (T) to estrogen (E) is essential for activation of male-typical copulatory behavior in castrated male Japanese quail (Coturnix japonica). Two experiments were conducted to determine whether circulating estrogen levels characteristic of normal intact males are high enough to activate male-typical or female-typical copulatory behavior. In Experiment 1, blood samples were drawn every 4 hr from groups of sexually active male quail housed under a 16L:8D light-dark cycle, and assayed for estradiol (E2) concentration. The mean +/- SEM serum E2 was 54.2 +/- 3.6 pg/ml, and no daily cycle in serum E2 was seen. The males were then tested for sexual behavior; 88% mounted females, and 23% crouched when mounted by males. In Experiment 2, 51 males were castrated and implanted with Silastic tubes containing estradiol benzoate (EB) and/or cholesterol designed to produce five different levels of serum E2, then tested for male- and female-typical copulatory behavior and bled. The serum E2 in EB-implanted quail which mounted (253 +/- 30 pg/ml) was significantly higher than that of intact quail in Experiment 1, and only 10.2% of intact males had serum E2 as high as the minimum associated with mounting in EB-implanted males. These results show that serum E2 levels in intact males are not high enough to support male-typical copulation, and that aromatization in the POA to produce locally high E2 levels may be required. In addition, it was found that the threshold serum E2 to elevate receptivity significantly was 3.6 times the intact male level, and only slightly higher than serum E2 reported for intact females. Thus the lack of receptivity in intact males is probably due to insufficient circulating E2, and the male is not defeminized with respect to sensitivity to E2 for activation of receptivity.

  10. Associations of objective physical activity with insulin sensitivity and circulating adipokine profile: the Framingham Heart Study.

    PubMed

    Spartano, N L; Stevenson, M D; Xanthakis, V; Larson, M G; Andersson, C; Murabito, J M; Vasan, R S

    2017-04-01

    The purpose of this study was to explore the relation of physical activity (PA) and sedentary time (SED) to insulin sensitivity and adipokines. We assessed PA and SED using Actical accelerometers and insulin resistance (HOMA-IR) in 2109 participants (free of type 1 and 2 diabetes mellitus) from Framingham Generation 3 and Omni 2 cohorts (mean age 46 years, 54% women). Systemic inflammation (C-reactive protein [CRP]) and circulating adipokines were measured 6 years earlier. Steps per day, moderate-to-vigorous PA (MVPA) and SED per wear time (%SED) were predictor variables in multivariable regression analyses, with HOMA-IR, CRP and circulating adipokines as outcome measures. We reported that higher MVPA and more steps per day were associated with lower HOMA-IR, adjusting for %SED (β = -0.036, P = 0.002; β = -0.041, P = 0.005). Steps were inversely associated with CRP, but were directly associated with insulin-like growth factor (IGF)-1 levels (β = -0.111, P = 0.002; β = 3.293, P = 0.007). %SED was positively associated with HOMA-IR (β = 0.033, P < 0.0001), but non-significant after adjusting for MVPA (P = 0.13). %SED was associated with higher ratio of leptin/leptin receptor (sOB-R) and higher adipocyte fatty acid-binding protein (FABP)4 (β = 0.096, P < 0.0001; β = 0.593, P = 0.002). Our findings suggest differential influences of PA vs. SED on metabolic pathways, with PA modulating insulin resistance and inflammation, whereas SED influences FABPs.

  11. Synthesis of large surface area nano-sized BiVO{sub 4} by an EDTA-modified hydrothermal process and its enhanced visible photocatalytic activity

    SciTech Connect

    Sun Wanting; Xie Mingzheng; Jing Liqiang; Luan Yunbo; Fu Honggang

    2011-11-15

    In this work, monoclinic scheelite-type BiVO{sub 4} nanoparticle with large surface area has been successfully synthesized, using Bi(NO{sub 3}){sub 3} and NH{sub 4}VO{sub 3} as raw materials, through a hydrothermal process in the presence of ethylene diamine tetraacetic acid (EDTA). It is demonstrated that the nanoparticle size of as-prepared BiVO{sub 4} becomes small by decreasing hydrothermal temperature, shortening hydrothermal reaction time and increasing EDTA amount used. The resulting BiVO{sub 4} nanoparticle with large surface area exhibits a good photocatalytic performance for degrading phenol solution as a model organic pollutant under visible illumination. The key of this method is the chelating role of EDTA group in the synthetic process that it can greatly control the concentration of Bi{sup 3+}, leading to the growth inhibition of BiVO{sub 4} crystallite. The work provides a route for the synthesis of Bi-containing nano-sized composite oxides with large surface area. - Graphical abstract: High visible active nano-sized BiVO{sub 4} photocatalyst with large surface area is successfully synthesized, which is attributed to the chelating role of EDTA group inhibiting the growth of BiVO{sub 4} crystallites. Highlights: > Monoclinic scheelite-type BiVO{sub 4} nanoparticle with large surface area has been synthesized by a hydrothermal process. > Key of this method is the chelating role of EDTA group inhibiting the growth of BiVO{sub 4} crystallites. > Resulting nano-sized BiVO{sub 4} exhibits a good photocatalytic activity for degrading phenol under visible illumination.

  12. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites

    NASA Astrophysics Data System (ADS)

    Wirsen, Carl O.; Jannasch, Holger W.; Molyneaux, Stephen J.

    1993-06-01

    Chemosynthetic production of microbial biomass, determined by 14CO2 fixation and enzymatic (RuBisCo) activity, at the Mid-Atlantic Ridge (MAR) 23° and 26°N vent sites was found in various niches: warm water emissions, loosely rock-attached flocculent material, dense morphologically diverse bacterial mats covering the surfaces of polymetal sulfide deposits, and filamentous microbes on the carapaces of shrimp (Rimicaris exoculata). The bacterial mats on polymetal sulfide surfaces contained unicellular and filamentous bacteria which appeared to use as their chemolithotrophic electron or energy source either dissolved reduced minerals from vent emissions, mainly sulfur compounds, or solid metal sulfide deposits, mainly pyrite. Moderately thermophilic Chemosynthetic activity was observed in carbon dioxide fixation experiments and in enrichments, but no thermophilic aerobic sulfur oxidizers could be isolated. Both obligate and facultative chemoautotrophs growing at mesophilic temperatures were isolated from all chemosynthetically active surface scrapings. The obligate autotrophs could oxidize sterilized MAR natural sulfide deposits as well as technical pyrite at near neutral pH, in addition to dissolved reduced sulfur compounds. While the grazing by shrimp on the surface mats of MAR metal sulfide deposits was observed and deemed important, the animals' primary occurrence in dense swarms near vent emissions suggests that they were feeding at these sites, where conditions for Chemosynthetic growth of their filamentous microbial epiflora were optimal. The data show that the transformation of geothermal energy at the massive polymetal sulfide deposits of the MAR is based on the lithoautotrophic oxidation of soluble sulfides and pyrites into microbial biomass.

  13. Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Xu, S. J.; Chua, S. J.; Liu, B.; Gan, L. M.; Chew, C. H.; Xu, G. Q.

    1998-07-01

    Cu-, Eu-, or Mn-doped ZnS nanocrystalline phosphors were prepared at room temperature using a chemical synthesis method. Transmission electron microscopy observation shows that the size of the ZnS clusters is in the 3-18 nm range. New luminescence characteristics such as strong and stable visible-light emissions with different colors were observed from the doped ZnS nanocrystals at room temperature. These results strongly suggest that impurities, especially transition metals and rare-earth metals-activated ZnS nanoclusters form a new class of luminescent materials.

  14. U/Th geochronology of hydrothermal activity in Long Valley caldera: Little Hot Creek and the Blue Chert

    SciTech Connect

    Sturchio, N.C.; Binz, C.M.; Sorey, M.L.

    1986-01-01

    To better define the evolution of the Long Valley hydrothermal system, we have embarked on a program of U/Th age determinations of hydrothermal products from outcrops and drill cores within the caldera. The U/Th system is appropriate for determining ages less than about 350 Ka in suitable materials. Results presented are from dense chalcedonic silica veins, collected from base to top of the outcrop beginning 40 m N of hot spring LHC-1 in Little Hot Creek canyon, and from samples of the Blue Chert.

  15. A discussion of 'Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?'

    NASA Technical Reports Server (NTRS)

    Roedder, Edwin

    1990-01-01

    This paper presents arguments against the statement made by Koeberl et al. (1989) to the effect that various differences between the quartz of the three quartz pebbles from the Roter Kamm impact crater (Namibia) and the quartz of the pegmatites present in the basement rocks of this crater can be best interpreted as evidence that the pebbles were formed (or 'recrystallized') by a post-impact hydrothermal system. Arguments are presented that suggest that the three quartz pebbles are, most likely, fragments of a preimpact vein quartz of hydrothermal origin.

  16. Oxygen isotope mapping of the Archean Sturgeon Lake caldera complex and VMS-related hydrothermal system, Northwestern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Holk, Gregory J.; Taylor, Bruce E.; Galley, Alan G.

    2008-08-01

    The hydrothermal and magmatic evolution of the Sturgeon Lake caldera complex is graphically documented by a regional-scale (525 km2) analysis of oxygen isotopes. Spatial variations in whole-rock oxygen isotope compositions provide a thermal map of the cumulative effects of multiple stages of hydrothermal metasomatism before, during, and after volcanogenic massive sulfide (VMS) mineralization. There is a progressive, upward increase in δ18O from less than 2‰ to greater than 15‰ through a 5-km-thick section above the Biedelman Bay subvolcanic intrusive complex. This isotopic trend makes it clear that at least the earlier phases of this intrusive complex were coeval with the overlying VMS-hosting cauldron succession and provided thermal energy to drive a convective hydrothermal circulation system. The sharp contrast in δ18O values between late stage phases of the Biedelman Bay intrusion and immediate hanging wall strata indicates that the main phase of VMS-related hydrothermal activity took place before late-stage resurgence in the cauldron-related magmatic activity. Mineralogical and isotopic evidence indicates the presence of both syn- and postmineralization hydrothermal activity defined by the presence of widespread semiconformable and more restricted discordant alteration zones that affect the pre- and syncauldron strata. The semiconformable alteration zones formed during early stages of hydrothermal circulation and are defined by widespread silicification and carbonatization in association with relatively high δ18O values. The discordant alteration assemblages, containing Al-silicate minerals with chloritoid and/or Fe-rich carbonate or chlorite, centered on synvolcanic faults represent restricted zones of both seawater inflow and hydrothermal fluid upflow. A rapid increase in δ18O values (˜7-9‰) over a short distance (<200 m) suggests marked cooling of hydrothermal fluid from ˜350°C to less than 130°C either just before or during discharge onto the

  17. Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust

    USGS Publications Warehouse

    McCubbin, Francis M.; Boyce, Jeremy W.; Novak-Szabo, Timea; Santos, Alison; Tartese, Romain; Muttik, Nele; Domokos, Gabor; Vazquez, Jorge A.; Keller, Lindsay P.; Moser, Desmond E.; Jerolmack, Douglas J.; Shearer, Charles K.; Steele, Andrew; Elardo, Stephen M.; Rahman, Zia; Anand, Mahesh; Delhaye, Thomas; Agee, Carl B.

    2016-01-01

    The timing and mode of deposition for Martian regolith breccia Northwest Africa (NWA) 7034 were determined by combining petrography, shape analysis, and thermochronology. NWA 7034 is composed of igneous, impact, and brecciated clasts within a thermally annealed submicron matrix of pulverized crustal rocks and devitrified impact/volcanic glass. The brecciated clasts are likely lithified portions of Martian regolith with some evidence of past hydrothermal activity. Represented lithologies are primarily ancient crustal materials with crystallization ages as old as 4.4 Ga. One ancient zircon was hosted by an alkali-rich basalt clast, confirming that alkalic volcanism occurred on Mars very early. NWA 7034 is composed of fragmented particles that do not exhibit evidence of having undergone bed load transport by wind or water. The clast size distribution is similar to terrestrial pyroclastic deposits. We infer that the clasts were deposited by atmospheric rainout subsequent to a pyroclastic eruption(s) and/or impact event(s), although the ancient ages of igneous components favor mobilization by impact(s). Despite ancient components, the breccia has undergone a single pervasive thermal event at 500–800°C, evident by groundmass texture and concordance of ~1.5 Ga dates for bulk rock K-Ar, U-Pb in apatite, and U-Pb in metamict zircons. The 1.5 Ga age is likely a thermal event that coincides with rainout/breccia lithification. We infer that the episodic process of regolith lithification dominated sedimentary processes during the Amazonian Epoch. The absence of pre-Amazonian high-temperature metamorphic events recorded in ancient zircons indicates source domains of static southern highland crust punctuated by episodic impact modification.

  18. Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust

    NASA Astrophysics Data System (ADS)

    McCubbin, Francis M.; Boyce, Jeremy W.; Novák-Szabó, Tímea; Santos, Alison R.; Tartèse, Romain; Muttik, Nele; Domokos, Gabor; Vazquez, Jorge; Keller, Lindsay P.; Moser, Desmond E.; Jerolmack, Douglas J.; Shearer, Charles K.; Steele, Andrew; Elardo, Stephen M.; Rahman, Zia; Anand, Mahesh; Delhaye, Thomas; Agee, Carl B.

    2016-10-01

    The timing and mode of deposition for Martian regolith breccia Northwest Africa (NWA) 7034 were determined by combining petrography, shape analysis, and thermochronology. NWA 7034 is composed of igneous, impact, and brecciated clasts within a thermally annealed submicron matrix of pulverized crustal rocks and devitrified impact/volcanic glass. The brecciated clasts are likely lithified portions of Martian regolith with some evidence of past hydrothermal activity. Represented lithologies are primarily ancient crustal materials with crystallization ages as old as 4.4 Ga. One ancient zircon was hosted by an alkali-rich basalt clast, confirming that alkalic volcanism occurred on Mars very early. NWA 7034 is composed of fragmented particles that do not exhibit evidence of having undergone bed load transport by wind or water. The clast size distribution is similar to terrestrial pyroclastic deposits. We infer that the clasts were deposited by atmospheric rainout subsequent to a pyroclastic eruption(s) and/or impact event(s), although the ancient ages of igneous components favor mobilization by impact(s). Despite ancient components, the breccia has undergone a single pervasive thermal event at 500-800°C, evident by groundmass texture and concordance of 1.5 Ga dates for bulk rock K-Ar, U-Pb in apatite, and U-Pb in metamict zircons. The 1.5 Ga age is likely a thermal event that coincides with rainout/breccia lithification. We infer that the episodic process of regolith lithification dominated sedimentary processes during the Amazonian Epoch. The absence of pre-Amazonian high-temperature metamorphic events recorded in ancient zircons indicates source domains of static southern highland crust punctuated by episodic impact modification.

  19. Response to"Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky

    SciTech Connect

    Houseworth, J.E.; Hardin, E.

    2008-11-17

    This paper presents a rebuttal to Dublyansky (2007), which misrepresents technical issues associated with hydrothermal activity at the proposed Yucca Mountain nuclear waste repository and their importance to the long-term performance of the repository. In this paper, questions associated with hydrothermal activity are reviewed and the justification for exclusion of hydrothermal activity from performance assessment is presented. The hypothesis that hydrothermal upwelling into the present-day unsaturated zone has occurred at Yucca Mountain is refuted by the unambiguous evidence that secondary minerals and fluid inclusions in the unsaturated zone formed in an unsaturated environment from downward percolating meteoric waters. The thermal history at Yucca Mountain, inferred from fluid inclusion and isotopic data, is explained in terms of the tectonic extensional environment and associated silicic magmatism. The waning of tectonic extension over millions of years has led to the present-day heat flux in the Yucca Mountain region that is below average for the Great Basin. The long time scales of tectonic processes are such that any effects of a resumption of extension or silicic magmatism on hydrothermal activity at Yucca Mountain over the 10,000-year regulatory period would be negligible. The conclusion that hydrothermal activity was incorrectly excluded from performance assessment as asserted in Dublyansky (2007) is contradicted by the available technical and regulatory information.

  20. Hydrothermal Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of Hydrothermal Influences on the Evolution of Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Neveu, Marc Francois Laurent

    Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the

  1. High-resolution near-bottom vector magnetic anomalies over Raven Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; Johnson, H. Paul; Salmi, Marie S.; Hutnak, Michael

    2014-10-01

    High-resolution, near-bottom vector magnetic data were collected by remotely operated vehicle Jason over the Raven hydrothermal vent field (47°57.3'N 129°5.75'W) located north of Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. The survey was part of a comprehensive heat flow study of the Raven site using innovative thermal blanket technology to map the heat flux and crustal fluid pathways around a solitary hydrothermal vent field. Raven hydrothermal activity is presently located along the western axial valley wall, while additional inactive hydrothermal deposits are found to the NW on the upper rift valley wall. Magnetic inversion results show discrete areas of reduced magnetization associated with both active and inactive hydrothermal vent deposits that also show high conductive heat flow. Higher spatial variability in the heat flow patterns compared to the magnetization is consistent with the heat flow reflecting the currently active but ephemeral thermal environment of fluid flow, while crustal magnetization is representative of the static time-averaged effect of hydrothermal alteration. A general NW to SE trend in reduced magnetization across the Raven area correlates closely with the distribution of hydrothermal deposits and heat flux patterns and suggests that the fluid circulation system at depth is likely controlled by local crustal structure and magma chamber geometry. Magnetic gradient tensor components computed from vector magnetic data improve the resolution of the magnetic anomaly source and indicate that the hydrothermally altered zone directly beneath the Raven site is approximately 15 × 106 m3 in volume.

  2. Molecular Diversity and Activity of Methanogens in the Subseafloor at Deep-Sea Hydrothermal Vents of the Pacific Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Merkel, A.; Holden, J. F.; Lilley, M. D.; Butterfield, D. A.

    2009-12-01

    Methanogenesis is thought to represent one of the most ancient metabolic pathways on Earth, and methanogens may serve as important primary producers in warm crustal habitats at deep-sea hydrothermal vents. Many of these obligate chemolithoautotrophs depend solely on geochemically-derived energy and carbon sources and grow at high temperatures under strictly anaerobic conditions. A combined geochemical and microbiological approach was used to determine the distribution and molecular diversity of methanogens in low temperature diffuse vent fluids from the Endeavour Segment R2K ISS site, as well as Axial Seamount and volcanoes of the Mariana Arc. Geochemical data from hot and adjacent warm diffuse vent fluids provided chemical indicators to guide sample selection for detailed polymerase chain reaction (PCR)-based analysis of the key enzyme for methane formation, methyl-coenzyme M reductase (mcrA), as well as archaeal 16S rRNA genes. At most Endeavour vent sites, hydrogen concentrations were too low to support hydrogenotrophic methanogensis directly and only one diffuse site, Easter Island, had a positive signal for the mcrA gene. These sequences were most closely related to members of the order Methanococcales, as well as anaerobic methane oxidizers (ANME-1). The presence of ANME, which are rarely found in non-sedimented marine environments, is another line of evidence supporting the occurrence of buried sediments at Endeavour. At Axial, a number of diffuse vents have strong chemical indicators of methanogenesis. Methanogenic communities were detected at 3 sites on the southeast side of the caldera: the northern end of the 1998 lava flow, the International District, and on the pre-1987 lava flow. Time series work at Marker 113 showed that in 4 different years over the last 6 years methanogenic communities are active and abundant, suggesting a stable anaerobic, warm subseafloor habitat. Results show that members of the order Methanococcales dominate at this site

  3. Relationship between free-living daily physical activity and peripheral circulation in patients with intermittent claudication.

    PubMed

    Gardner, A W; Killewich, L A; Katzel, L I; Womack, C J; Montgomery, P S; Otis, R B; Fonong, T

    1999-04-01

    The purpose of this study was to determine the relationship between free-living daily physical activity and peripheral circulation under resting, reactive hyperemia, and maximal exercise conditions in peripheral arterial occlusive disease (PAOD) patients with intermittent claudication. Sixty-one PAOD patients (age = 70 +/- 6 years, ankle/brachial index [ABI] = 0.57 +/- 0.24) were recruited from the Vascular Clinic at the Baltimore Veterans Affairs Medical Center and from radio and newspaper advertisements. Free-living daily physical activity was measured as the energy expenditure of physical activity (EEPA), determined from doubly labeled water and indirect calorimetry. Patients also were characterized on ankle/brachial index, calf blood flow, calf transcutaneous oxygen tension (TcPO2), and calf transcutaneous heating power (TcHP). ABI and calf blood flow served as markers of the macrocirculation of the lower extremity, while TcPO2 and TcHP served as markers of the microcirculation. The claudication patients were sedentary, reflected by a mean EEPA value of 486 +/- 274 kcal/day. EEPA was related to calf TcHP at rest (282 +/- 24 mW; r = -0.413, p = 0.002), after postocclusion reactive hyperemia (275 +/- 22 mW; r = -0.381, p = 0.004), and after maximal exercise (276 +/- 20 mW; r = -0.461, p<0.001). ABI, calf blood flow, and calf TcPO2 were not related to EEPA under any condition. In conclusion, higher levels of free-living daily physical activity were associated with better microcirculation of the calf musculature in older PAOD patients with intermittent claudication.

  4. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.

    PubMed

    Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W

    2003-01-16

    Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.

  5. Prehypertension-Associated Elevation in Circulating Lysophosphatidlycholines, Lp-PLA2 Activity, and Oxidative Stress

    PubMed Central

    Kim, Minjoo; Jung, Saem; Kim, Su Yeon; Lee, Sang-Hyun; Lee, Jong Ho

    2014-01-01

    Prehypertension is a risk factor for atherosclerosis. We investigated alterations in plasma metabolites that are associated with prehypertension. A group of 53 individuals was identified who remained within the range of prehypertension during repeated measurements in a 3-year period. This group was compared with the control group of 53 normotensive subjects who were matched for age and gender. Metabolomic profiles were analyzed with UPLC-LTQ-Orbitrap mass spectrometry. The prehypertensive group showed higher levels of lysophosphatidylcholines (lysoPCs) containing C14:0, C16:1, C16:0, C18:2, C18:1, C18:0, C20:5, C20:4, C20:3, and C22:6, higher circulating Lp-PLA2 activity, oxidized LDL (ox-LDL), interleukin 6 (IL-6), urinary 8-epi-PGF2α, and higher brachial-ankle pulse wave velocity (ba-PWV), before and after adjusting for BMI, WHR, smoking, alcohol consumption, serum lipid profiles, glucose, and insulin. LysoPC (16:0) was the most important plasma metabolite for evaluating the difference between control and prehypertensive groups, with a variable important in the projection (VIP) value of 17.173, and it showed a positive and independent association with DBP and SBP. In the prehypertensive group, the levels of lysoPC (16:0) positively and significantly correlated with ox-LDL, Lp-PLA2 activity, 8-epi-PGF2α, ba-PWV, and IL-6 before and after adjusting for confounding variables. Prehypertension-associated elevations in lysoPCs, Lp-PLA2 activity, ox-LDL, urinary 8-epi-PGF2α, IL-6, and ba-PWV could indicate increased oxidative stress from Lp-PLA2-catalyzed PC hydrolysis during increased LDL oxidation, thereby enhancing proinflammation and arterial stiffness. PMID:24800806

  6. Characterization of the circulating hemocytes in mud crab (Scylla olivacea) revealed phenoloxidase activity.

    PubMed

    Mangkalanan, Seksan; Sanguanrat, Piyachat; Utairangsri, Tanatchaporn; Sritunyalucksana, Kallaya; Krittanai, Chartchai

    2014-05-01

    This study focused on an isolation and characterization of the circulating hemocytes in mud crab, Scylla olivacea. Isolation of specific cell types of hemocytes from crab hemolymph was accomplished by using 60% Percoll density gradient centrifugation. Four separated bands of the hemocytes were successfully obtained. Characterization of these isolated hemocytes by light microscope using trypan blue-rose bengal staining, rose bengal-hematoxilin staining, and phase contrast revealed four distinct types of hemocyte cells. Using their specific morphology and granularity, they were identified as hyaline cell (HC), small granular cell (SGC), large granular cell (LGC) and mixed granular cell (MGC). Transmission electron microscopy (TEM) revealed more details on specific cell size, size of cytoplasmic granule, and nuclear to cytoplasmic ratio, and confirmed the classification. Relative abundance of these cells types in the hemolymph of an adult crab were 15.50±8.22% for HC, 55.50±7.15% for SGC, 13.50±5.28% for LGC, and 15.50±3.50% for MGC. Proteomic analysis of protein expression for each specific cell types by two-dimensional electrophoresis identified two highly abundant proteins, prophenoloxidase (ProPO) and peroxinectin in LGC. Determination of phenoloxidase (PO) activity in each isolated cell types using in vitro and in situ chemical assays confirmed the presence of PO activity only in LGC. Based on an increased PO activity of crab hemolymph during the course of White Spot Syndrome Virus (WSSV) infection, these results suggest that prophenoloxidase pathway was employed for host defense mechanism against WSSV and it may link to the role of large granular hemocyte.

  7. Activated Circulating T Follicular Helper Cells Are Associated with Disease Severity in Patients with Psoriasis

    PubMed Central

    Wang, Ying; Yang, Haoyu; Yuan, Weichang; Ren, Jingyi

    2016-01-01

    Circulating T follicular helper (cTfh) cells are known to be involved in numerous immune-mediated diseases, but their pathological role in psoriasis is less fully investigated. Herein, we aimed to identify whether cTfh cells contributed to the pathogenesis of psoriasis. The frequency and function of cTfh cells were compared between patients with psoriasis vulgaris and healthy controls, and the infiltration of Tfh cells was detected between lesional and nonlesional skin tissues of psoriasis patients. Moreover, the dynamic change of cTfh cells before and after acitretin treatment was evaluated. Our results showed both increased frequency and activation (indicated by higher expression of ICOS, PD-1, HLA-DR, and Ki-67 and increased production of IL-21, IL-17, and IFN-γ) of cTfh cells in psoriasis patients. Compared with nonlesional skin tissues of psoriasis patients, the number of infiltrated Tfh cells was significantly increased in psoriasis lesions. In addition, positive correlations between the percentage of cTfh, functional markers on cTfh cells in peripheral blood and disease severity were noted. Furthermore, the frequency of cTfh cells and the levels of cytokines secreted by cTfh cells were all significantly decreased after 1-month treatment. PMID:27774460

  8. Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity.

    PubMed

    Watanabe, Y; Cornélissen, G; Halberg, F; Otsuka, K; Ohkawa, S I

    2001-01-01

    Helio-geomagnetic influences on the human circulation are investigated on the basis of an 11-year-long record from a clinically healthy cardiologist, 35 years of age at the start of monitoring. He measured his blood pressure and heart rate around the clock with an ambulatory monitor programmed to inflate an arm cuff, mostly at intervals of 15-30 minutes, with only few interruptions, starting in August 1987. While monitoring is continuing, data collected up to July 1998 are analyzed herein by cosinor rhythmometry and cross-spectral coherence with matching records of solar activity, gauged by Wolf numbers (WN) and of the geomagnetic disturbance index, Kp. A direct association between heart rate (HR) and WN is found to be solar cycle stage-dependent, whereas an inverse relationship between heart rate variability (HRV) and WN is found consistently. An inverse relation is also observed between WN and the variability in systolic blood pressure (SBP), and to a lesser extent, diastolic blood pressure (DBP). Moreover, HR is cross-spectrally coherent with WN at a frequency of one cycle in about 7.33 months. The results support previously reported associations on morbidity and mortality statistics, extending their scope to human physiology monitored longitudinally.

  9. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis

    PubMed Central

    Solcà, Manuela S.; Andrade, Bruno B.; Abbehusen, Melissa Moura Costa; Teixeira, Clarissa R.; Khouri, Ricardo; Valenzuela, Jesus G.; Kamhawi, Shaden; Bozza, Patrícia Torres; Fraga, Deborah Bittencourt Mothé; Borges, Valeria Matos; Veras, Patrícia Sampaio Tavares; Brodskyn, Claudia Ida

    2016-01-01

    Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of biomarkers and anti–sand fly saliva IgG were measured in canine sera. Assessment of protein expression of profile biomarkers identified a distinct biosignature that could cluster separately animal groups with different clinical scores. Increasing severity scores were associated with a gradual decrease of LTB4 and PGE2, and a gradual increase in CXCL1 and CCL2. Discriminant analyses revealed that combined assessment of LTB4, PGE2 and CXCL1 was able to distinguish dogs with different clinical scores. Dogs with the highest clinical score values also exhibited high parasite loads and higher concentrations of anti-saliva antibodies. Our findings suggest CVL clinical severity is tightly associated with a distinct inflammatory profile hallmarked by a differential expression of circulating eicosanoids and chemokines. PMID:27595802

  10. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis.

    PubMed

    Solcà, Manuela S; Andrade, Bruno B; Abbehusen, Melissa Moura Costa; Teixeira, Clarissa R; Khouri, Ricardo; Valenzuela, Jesus G; Kamhawi, Shaden; Bozza, Patrícia Torres; Fraga, Deborah Bittencourt Mothé; Borges, Valeria Matos; Veras, Patrícia Sampaio Tavares; Brodskyn, Claudia Ida

    2016-09-06

    Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of biomarkers and anti-sand fly saliva IgG were measured in canine sera. Assessment of protein expression of profile biomarkers identified a distinct biosignature that could cluster separately animal groups with different clinical scores. Increasing severity scores were associated with a gradual decrease of LTB4 and PGE2, and a gradual increase in CXCL1 and CCL2. Discriminant analyses revealed that combined assessment of LTB4, PGE2 and CXCL1 was able to distinguish dogs with different clinical scores. Dogs with the highest clinical score values also exhibited high parasite loads and higher concentrations of anti-saliva antibodies. Our findings suggest CVL clinical severity is tightly associated with a distinct inflammatory profile hallmarked by a differential expression of circulating eicosanoids and chemokines.

  11. Three-dimensional sea-urchin-like hierarchical TiO{sub 2} microspheres synthesized by a one-pot hydrothermal method and their enhanced photocatalytic activity

    SciTech Connect

    Zhou, Yi; Huang, Yan; Li, Dang; He, Wenhong

    2013-07-15

    Graphical abstract: SEM images of the samples synthesized at different hydrothermal temperatures for 8 h: (a) 75; (b) 100; (c) 120; and (d) 140°C, followed by calcination at 450 °C for 2 h. Highlights: ► Effects of calcination temperature on the phase transformation were studied. ► Effects of hydrothermal temperature and time on the morphology growth were studied. ► A two-stage reaction mechanism for the formation was presented. ► The photocatalytic activity was evaluated under sunlight irradiation. ► Effects of calcination temperature on the photocatalytic activity were studied. - Abstract: Novel three-dimensional sea-urchin-like hierarchical TiO{sub 2} superstructures were synthesized on a Ti plate in a mixture of H{sub 2}O{sub 2} and NaOH aqueous solution by a facile one-pot hydrothermal method at a low temperature, followed by protonation and calcination. The results of series of electron microscopy characterizations suggested that the hierarchical TiO{sub 2} superstructures consisted of numerous one-dimensional nanostructures. The microspheres were approximately 2–4 μm in diameter, and the one-dimensional TiO{sub 2} nanostructures were up to 600–700 nm long. A two-stage reaction mechanism, i.e., initial growth and then assembly, was proposed for the formation of these architectures. The three-dimensional sea-urchin-like hierarchical TiO{sub 2} microstructures showed excellent photocatalytic activity for the degradation of Rhodamine B aqueous solution under sunlight irradiation, which was attributed to the special three-dimensional hierarchical superstructure, and increased number of surface active sites. This novel superstructure has promising use in practical aqueous purification.

  12. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J.; Pflumio, C.; Castrec, M.

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  13. Geophysical image of the hydrothermal system of Merapi volcano

    NASA Astrophysics Data System (ADS)

    Byrdina, S.; Friedel, S.; Vandemeulebrouck, J.; Budi-Santoso, A.; Suhari; Suryanto, W.; Rizal, M. H.; Winata, E.; Kusdaryanto

    2017-01-01

    We present an image of the hydrothermal system of Merapi volcano based on results from electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT models identify two distinct low-resistivity bodies interpreted as two parts of a probably interconnected hydrothermal system: at the base of the south flank and in the summit area. In the summit area, a sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive hydrothermal system (20-50 Ω m) from the resistive andesite lava flows and pyroclastic deposits (2000-50,000 Ω m). The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The significative diffuse CO2 degassing (with a median value of 400 g m-2 d-1) is observed in a narrow vicinity of the active crater rim and close to the ancient rim of Pasar-Bubar. The total CO2 degassing across the accessible summital area with a surface of 1.4 ṡ 105 m2 is around 20 t d-1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200-230 t d-1). This drop in the diffuse degassing from the summit area can be related to the decrease in the magmatic activity, to the change of the summit morphology, to the approximations used by Toutain et al. (2009), or, more likely, to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100,000 Ω m, resistivity as low as 10 Ω m has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the hydrothermal system. No evidence of the hydrothermal system is found on the basis of the north flank at the same depth. This asymmetry might be caused by the asymmetry of the heat supply source of Merapi whose activity is moving south or/and to the asymmetry in

  14. Aberrant expression of circulating Th17, Th1 and Tc1 cells in patients with active and inactive ulcerative colitis.

    PubMed

    Dong, Zhaogang; Du, Lutao; Xu, Xiaofei; Yang, Yongmei; Wang, Haiyan; Qu, Ailin; Qu, Xun; Wang, Chuanxin

    2013-04-01

    Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease, yet its etiology and pathogenesis remain poorly understood. The aberrant expression of T lymphocytes plays an essential role in the progression of UC. This study aimed to evaluate the expression profile of circulating Th17, Th1 and Tc1 cells in patients with active and inactive UC. Our results revealed that the percentage of circulating Th17 cells (CD3+CD8-IL-17+) was significantly increased in patients with active UC when compared with the percentage in patients with inactive UC, Crohn's disease (CD) and healthy controls. The percentages of circulating Th1 (CD3+CD8-IFN-γ+) and Tc1 (CD3+CD8+IFN-γ+) cells were also higher in patients with active UC when compared with the percentages in patients with inactive UC and normal controls, although levels were lower than that in CD. Further analysis showed that Th17 cells were positively correlated with Th1 cells, but not with Tc1 cells. Notably, the three cells had a positive correlation with disease activity, extent of disease, detection of erythrocyte sedimentation rate and c-reactive protein in active UC. Moreover, plasma IL-17 was higher in patients with active UC, and a similar trend applied to the mRNA levels of RORγt and T-bet in peripheral blood mononuclear cells (PBMCs). The levels of p-STAT3 and p-STAT5 in PBMCs, as well as the ratio of p-STAT3/p-STAT5, were also elevated in active UC patients. Taken together, our findings revealed that elevated circulating Th17, Th1 and Tc1 cells and the aberrant activation of the STAT pathway may be implicated in the progression of UC. These findings may provide preliminary experimental clues for the development of new therapies for UC.

  15. Active ingredients in Chinese medicines promoting blood circulation as Na+/K+-ATPase inhibitors

    PubMed Central

    Chen, Ronald JY; Jinn, Tzyy-rong; Chen, Yi-ching; Chung, Tse-yu; Yang, Wei-hung; Tzen, Jason TC

    2011-01-01

    The positive inotropic effect of cardiac glycosides lies in their reversible inhibition on the membrane-bound Na+/K+-ATPase in human myocardium. Steroid-like compounds containing a core structure similar to cardiac glycosides are found in many Chinese medicines conventionally used for promoting blood circulation. Some of them are demonstrated to be Na+/K+-ATPase inhibitors and thus putatively responsible for their therapeutic effects via the same molecular mechanism as cardiac glycosides. On the other hand, magnesium lithospermate B of danshen is also proposed to exert its cardiac therapeutic effect by effectively inhibiting Na+/K+-ATPase. Theoretical modeling suggests that the number of hydrogen bonds and the strength of hydrophobic interaction between the effective ingredients of various medicines and residues around the binding pocket of Na+/K+-ATPase are crucial for the inhibitory potency of these active ingredients. Ginsenosides, the active ingredients in ginseng and sanqi, substantially inhibit Na+/K+-ATPase when sugar moieties are attached only to the C-3 position of their steroid-like structure, equivalent to the sugar position in cardiac glycosides. Their inhibitory potency is abolished, however, when sugar moieties are linked to C-6 or C-20 position of the steroid nucleus; presumably, these sugar attachments lead to steric hindrance for the entrance of ginsenosides into the binding pocket of Na+/K+-ATPase. Neuroprotective effects of cardiac glycosides, several steroid-like compounds, and magnesium lithospermate B against ischemic stroke have been accordingly observed in a cortical brain slice-based assay model, and cumulative data support that effective inhibitors of Na+/K+-ATPase in the brain could be potential drugs for the treatment of ischemic stroke. PMID:21293466

  16. The Role of Siliceous Hydrothermal Breccias in the Genesis of Volcanic Massive Sulphide Deposits - Ancient and Recent Systems

    NASA Astrophysics Data System (ADS)

    Costa, I. A.; Barriga, F. J.; Fouquet, Y.

    2014-12-01

    Siliceous hydrothermal breccias were sampled in two Mid-Atlantic Ridge active sites: Lucky Strike and Menez Gwen. These hydrothermal fields are located in the border of the Azorean plateau, southwest of the Azores islands where the alteration processes affecting basaltic rocks are prominent (Costa et al., 2003). The hydrothermal breccias are genetically related with the circulation of low temperature hydrothermal fluids in diffuse vents. The groundmass of these breccias precipitates from the fluid and consolidates the clastic fragments mostly composed of basalt. The main sources are the surrounding volcanic hills. Breccias are found near hydrothermal vents and may play an important role in the protection of subseafloor hydrothermal deposits forming an impermeable cap due to the high content in siliceous material. The amorphous silica tends to precipitate when the fluid is conductively cooled as proposed by Fouquet et al. (1998) after Fournier (1983). The process evolves gradually from an initial stage where we have just the fragments and circulating seawater. The ascending hydrothermal fluid mixes with seawater, which favours the precipitation of the sulphide components. Sealing of the initially loose fragments begins, the temperature rises below this crust, and the processes of mixing fluid circulation and conductive cooling are simultaneous. At this stage the fluid becomes oversaturated with respect to amorphous silica. This form of silica can precipitate in the open spaces of the porous sulphides and seal the system. Normally this can happen at low temperatures. At this stage the hydrothermal breccia is formed creating a progressively less permeable, eventually impermeable cap rock at the surface. Once the fluid is trapped under this impermeable layer, conductive cooling is enhanced and mixing with seawater is restricted, making the precipitation of amorphous silica more efficient. Since the first discovery and description of recent mineralized submarine

  17. The non-transform discontinuity on the Central Indian Ridge at 11°S: The transtensional basin formation and hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Pak, S. J.; Kim, H. S.; Son, J.; Kim, J.; Moon, J. W.; Son, S. K.

    2014-12-01

    The bathymetric and magnetic survey, hydrocasting and seabed sampling have been carried out in the middle portion of the Central Indian Ridge (MCIR) between 7°S and 17°S. The MCIR constitutes six first-order segments and seven second-order segments with four non-transform discontinuities (NTDs) and twelve ocean core complexes (OCCs). These segments are characterized by asymmetric accretion that corresponds to about 70% of the surveyed MCIR segment. One of the outstanding NTD in the area is a basin like NTD3-1 at 11°S (50km in length) which strike at 035°, approximately 45° oblique in a clockwise direction to the orientation of two adjoining second-order segments. The hydrothermal activity is recognized at the tips of NTD3-1. No abyssal hills paralleling to basin-shape NTD3-1 are observed. Anomalous depth of the basin, lack of positive magnetic anomaly across the basin and rare seismic activities in the basin floor suggests that extensional tectonism with a sparse volcanism is the dominant process occurring along the NTD3-1. Based on the previous researches that the counterclockwise rotation of ridge is predominant in the area, the region of NTD3-1 largely accommodates shear strain by left-lateral sense motion and consequently forms a transtensional basin, i.e., a pull-apart basin. The strong and frequent hydrothermal plume signals, and highly tectonized rocks in both tips of the NTD3-1 are reflective of the dilation zones or tensional fractures accompanied by the pull-apart basin formation. It is the first identification of a pull-apart basin associated with hydrothermal activity in the Central Indian Ridge.

  18. SeaVOICE: Sea-going Experiments to Test Potential Linkages among Sea Level Change, Ocean Ridge Volcanism, and Hydrothermal Activity.

    NASA Astrophysics Data System (ADS)

    Langmuir, C. H.; Carbotte, S. M.; Huybers, P. J.; McManus, J. F.; Mukhopadhyay, S.; Winckler, G.; Boulahanis, B.; Costa, K.; Ferguson, D.; Katz, R. F.; Li, Y.; Middleton, J. L.

    2015-12-01

    Changes in sea level influence the pressure of the solid Earth over entire ocean basins. While the absolute changes in sea level caused by glacial cycles are small relative to ocean depths, the temporal variations in sea level can lead to pressure changes of similar order to mantle upwelling rates, with the potential to significantly perturb short term rates of melt production at ocean ridges (Huybers and Langmuir, EPSL, 2009). Such changes could then lead to fluctuations in crustal thickness, magma composition and hydrothermal activity. To investigate possible relationships between glacial cycles and ocean ridge processes, we carried out an 18 day cruise of mapping and sediment coring to the Cleft Segment of the Juan de Fuca ridge. High resolution bathymetry was obtained on the west side of the ridge axis to beyond 1Ma to test whether abyssal hill fabric shows periodicities consistent with glacial cycles. Nine successful piston cores up to 7.6m in length provide a sedimentary record back to more than 600kyr to test for spatial and temporal variations in hydrothermal activity. Oxygen isotope stratigraphy on these cores is systematic and provides good age constraints. Short cores near the ridge axis provide a record of the current trace of hydrothermal activity in youngest sediments. Several of the cores impacted basement and recovered a basement sample. Above basement, basaltic glass shards were recovered in the bottom meter of sediment, raising the possibility of temporal records of basalt chemical compositions using the age constraints the sediments provide. The glass samples provide a unique and new perspective on ridge volcanism, since previous off-axis samples were restricted to dredging old fault scarps. Cores can be taken anywhere, raising the potential for global time series studies of ridge volcanism. The coupled bathymetry, sediment geochemistry and magmatic glass compositions hold the promise of a definitive advance in our understanding of the

  19. Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: generation of a transient, warm, wet oasis

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Spray, John G.

    2001-05-01

    Field studies and analytical scanning electron microscopy indicate that a hydrothermal system was created by the interaction of water with hot, impact-generated rocks following formation of the 24 km-diameter, 23 Ma Haughton impact structure. Hydrothermal alteration is recognized in two settings: within polymict impact breccias overlying the central portion of the structure, and within localized pipes in impact-generated concentric fault systems. The intra-breccia alteration comprises three varieties of cavity and fracture filling: (a) sulfide with carbonate, (b) sulfate, and (c) carbonate. These are accompanied by subordinate celestite, barite, fluorite, quartz and marcasite. Selenite is also developed, particularly in the lower levels of the impact breccia sheet. The fault-related hydrothermal alteration occurs in 1-7 m diameter subvertical pipes that are exposed for lengths of up 20 m. The pipes are defined by a monomict quartz-carbonate breccia showing pronounced Fe-hydroxide alteration. Associated sulfides include marcasite, pyrite and chalcopyrite. We propose three distinct stages in the evolution of the hydrothermal system: (1) Early Stage (>200 degC), with the precipitation of quartz (vapour phase dominated); (2) Main Stage (200-100 deg C), with the development of a two phase (vapour plus liquid) zone, leading to calcite, celestite, barite, marcasite and fluorite precipitation, and (3) Late Stage (<100 degC), with selenite and fibroferrite development through liquid phase-dominanted precipitation. We estimate that it took several tens of thousands of years to cool below 50 deg C following impact. During this time, Haughton supported a 14 km diameter crater lake and subsurface water system, providing a warmer, wetter niche relative to the surrounding terrain. The results also reveal how understanding the internal structure of impact craters is necessary in order to determine their plumbing and cooling systems.

  20. Preliminary results on the reproduction of a deep-sea snailfish Careproctus rhodomelas around the active hydrothermal vent on the Hatoma Knoll, Okinawa, Japan.

    PubMed

    Takemura, A; Tamotsu, S; Miwa, T; Yamamoto, H

    2010-11-01

    Deep-sea snailfish Careproctus rhodomelas were collected from an active hydrothermal vent using a remotely operated vehicle (R.O.V. Hyper-dolphin) and a pressurized device (Deep-Aquarium). Careproctus rhodomelas exhibited a cystovarian-type ovary containing a small number of developing oocytes at different stages, suggesting that the fish is a batch-spawner that spawns large eggs (c. 6·0 mm) several times within its life span. In vitro culture of the oocytes in the presence of human chorionic gonadotropin showed that oestradiol-17β production fluctuated with oocyte development, suggesting that the oocytes were at the vitellogenic stage.

  1. Activation of Poly(ADP-Ribose) Polymerase by Myocardial Ischemia and Coronary Reperfusion in Human Circulating Leukocytes

    PubMed Central

    Tóth-Zsámboki, Emese; Horváth, Eszter; Vargova, Katarina; Pankotai, Eszter; Murthy, Kanneganti; Zsengellér, Zsuzsanna; Bárány, Tamás; Pék, Tamás; Fekete, Katalin; Kiss, Róbert Gábor; Préda, István; Lacza, Zsombor; Gerö, Domokos; Szabó, Csaba

    2006-01-01

    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 24 and 96 h later, we determined serum hydrogen peroxide concentrations, plasma levels of the oxidative DNA adduct 8-hydroxy-2′-deoxyguanosine (8OHdG), tyrosine nitration, PARP activation, and translocation of apoptosis-inducing factor (AIF) in circulating leukocytes. Plasma 8OHdG levels and leukocyte tyrosine nitration were rapidly increased by PCI. Similarly, poly(ADP-ribose) content of the leukocytes increased in cells isolated just after PCI, indicating immediate PARP activation triggered by reperfusion of the myocardium. In contrast, serum hydrogen peroxide concentrations and the translocation of AIF gradually increased over time and were most pronounced at 96 h. Reperfusion-related oxidative/nitrosative stress triggers DNA damage, which leads to PARP activation in circulating leukocytes. Translocation of AIF and lipid peroxidation occurs at a later stage. These results represent the first direct demonstration of PARP activation in human myocardial infarction. Future work is required to test whether pharmacological inhibition of PARP may offer myocardial protection during primary PCI. PMID:17225870

  2. Activation of poly(ADP-ribose) polymerase by myocardial ischemia and coronary reperfusion in human circulating leukocytes.

    PubMed

    Tóth-Zsámboki, Emese; Horváth, Eszter; Vargova, Katarina; Pankotai, Eszter; Murthy, Kanneganti; Zsengellér, Zsuzsanna; Bárány, Tamás; Pék, Tamás; Fekete, Katalin; Kiss, Róbert Gábor; Préda, István; Lacza, Zsombor; Gerö, Domokos; Szabó, Csaba

    2006-01-01

    Reactive free radical and oxidant production leads to DNA damage during myocardial ischemia/reperfusion. Consequent overactivation of poly(ADP-ribose) polymerase (PARP) promotes cellular energy deficit and necrosis. We hypothesized that PARP is activated in circulating leukocytes in patients with myocardial infarction and reperfusion during primary percutaneous coronary intervention (PCI). In 15 patients with ST segment elevation acute myocardial infarction, before and after primary PCI and 24 and 96 h later, we determined serum hydrogen peroxide concentrations, plasma levels of the oxidative DNA adduct 8-hydroxy-2'-deoxyguanosine (8OHdG), tyrosine nitration, PARP activation, and translocation of apoptosis-inducing factor (AIF) in circulating leukocytes. Plasma 8OHdG levels and leukocyte tyrosine nitration were rapidly increased by PCI. Similarly, poly(ADP-ribose) content of the leukocytes increased in cells isolated just after PCI, indicating immediate PARP activation triggered by reperfusion of the myocardium. In contrast, serum hydrogen peroxide concentrations and the translocation of AIF gradually increased over time and were most pronounced at 96 h. Reperfusion-related oxidative/nitrosative stress triggers DNA damage, which leads to PARP activation in circulating leukocytes. Translocation of AIF and lipid peroxidation occurs at a later stage. These results represent the first direct demonstration of PARP activation in human myocardial infarction. Future work is required to test whether pharmacological inhibition of PARP may offer myocardial protection during primary PCI.

  3. Fine-Scale Volcano-Tectonic Patterns Along the Hotspot and Non-Hotspot Influenced Fastest Spreading Parts of the East Pacific Rise, and Their Relation to Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Hey, R.; Baker, E.; Lupton, J.; Kleinrock, M.; Martinez, F.; Naar, D.; Bohnenstiehl, D.; Pardee, D.; Massoth, G.; Rodrigo, C.; Gegg, S.; Reed, T.; Andersson, A.

    2001-12-01

    A broad Easter mantle plume appears to be having a major long-term effect on the evolution of the giant duelling propagator system between the Easter and Juan Fernandez microplates. It is driving long-term propagation of the West ridge of this system toward the south, although there are occasional episodes of duelling propagation of the East ridge towards the north. The West ridge segment nearest the hotspot is the most highly inflated segment and contains several intense hydrothermal vent areas, although the East ridge segment farthest from the hotspot has a higher percentage of axis with active hydrothermal activity. DSL-120 sidescan sonar and bathymetry data collected along the EPR segment axes between the Easter and Juan Fernandez microplates have been compiled into a Quicktime movie. This presentation method provides a fast overview of an immense amount of data, and facilitates comparisons between the hotspot influenced and non-hotspot influenced segments, as well as correlations between the structural data and hydrothermal patterns, with implications for hydrothermal prospecting along mid-ocean ridges. For example, in addition to strong correlations with axial inflation and spreading rate, hydrothermal activity frequently correlates with areas of recent voluminous low-backscatter flows pouring out of axial fissures. Hydrothermal activity shows good correlation with presence of axial summit collapse structures, but not with the presence of an axial summit graben (sensu strictu). Although on a million year timescale the hotspot influence on the West ridge has a dominant effect on the tectonic evolution of this area, on the shorter timescales governing hydrothermal activity the hotspot influence is much less important than individual magmatic inflation events along individual ridge segments.

  4. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-04-01

    Little is known about nitrogen (N) transformations in general, and the elimination of N in particular, at diffuse vents where anoxic hydrothermal fluids have mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N-loss pathways (denitrification, anammox) and dissimilative nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e. temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N-loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always <5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to 152 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlation existed between fixed N-loss (i.e., denitrification, anammox) rates and in-situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N-loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence

  5. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-11-01

    Little is known about fixed nitrogen (N) transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox) and dissimilatory nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always < 5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to ~150 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlations were found between fixed N loss (i.e., denitrification, anammox) rates and in situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated

  6. Geochemical Evidence for Recent Hydrothermal Alteration of Marine Sediments in Mid-Okinawa Trough, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Abe, G.; Yamaguchi, K. E.

    2014-12-01

    Recent studies have shown that submarine hydrothermal system supports diverse microbial life. Bio-essential metals supporting such microbial communities were released from basalts by high-temperature water-rock interaction in deeper part of the oceanic crust and carried by submarine fluid flow. Its total quantity in global hydrothermal settings has been estimated to be on the order of ~1019 g/yr, which is surprisingly on the same order of the total river flows (Urabe et al., 2011). Therefore, it is important to explore how submarine river system works, i.e., to understand mechanism and extent of elemental transport, which should lead to understanding of the roles of hydrothermal circulation in oceanic crust in controlling elemental budget in the global ocean and geochemical conditions to support deep hot biosphere.  We performed REE analysis of marine sediments influenced by submarine hydrothermal activity in Mid-Okinawa Trough. The sediment samples used in this study are from IODP site at Iheya North region and JADE site at Izena region. The samples show alternation between volcanic and clastic sediments. Hydrothermal fluids of this area contain elevated concentrations of volatile components such as H2, CO2, CH4, NH4+, and H2S, supporting diverse chemoautotrophic microbial community (Nakagawa et al., 2005). The purpose of this study is to examine the effect of hydrothermal activity on the REE signature of the sediments. Chondrite-normalized REE patterns of the samples show relative enrichment of light over heavy REEs, weak positive Ce anomalies, and variable degrees of negative Eu anomalies. The REE patterns suggest the sediments source was mainly basalt, suggesting insignificant input of continental materials. Negative Eu anomalies found in the IODP site become more pronounced with increasing depth, suggesting progressive increase of hydrothermal alteration where Eu was reductively dissolved into fluids by decomposition of feldspars. Contrary, at the JADE site

  7. Cerebral sympathetic nerve activity has a major regulatory role in the cerebral circulation in REM sleep.

    PubMed

    Cassaglia, Priscila A; Griffiths, Robert I; Walker, Adrian M

    2009-04-01

    Sympathetic nerve activity (SNA) in neurons projecting to skeletal muscle blood vessels increases during rapid-eye-movement (REM) sleep, substantially exceeding SNA of non-REM (NREM) sleep and quiet wakefulness (QW). Similar SNA increases to cerebral blood vessels may regulate the cerebral circulation in REM sleep, but this is unknown. We hypothesized that cerebral SNA increases during phasic REM sleep, constricting cerebral vessels as a protective mechanism against cerebral hyperperfusion during the large arterial pressure surges that characterize this sleep state. We tested this hypothesis using a newly developed model to continuously record SNA in the superior cervical ganglion (SCG) before, during, and after arterial pressure surges occurring during REM in spontaneously sleeping lambs. Arterial pressure (AP), intracranial pressure (ICP), cerebral blood flow (CBF), cerebral vascular resistance [CVR = (AP - ICP)/CBF], and SNA from the SCG were recorded in lambs (n = 5) undergoing spontaneous sleep-wake cycles. In REM sleep, CBF was greatest (REM > QW = NREM, P < 0.05) and CVR was least (REM < QW = NREM, P < 0.05). SNA in the SCG did not change from QW to NREM sleep but increased during tonic REM sleep, with a further increase during phasic REM sleep (phasic REM > tonic REM > QW = NREM, P < 0.05). Coherent averaging revealed that SNA increases preceded AP surges in phasic REM sleep by 12 s (P < 0.05). We report the first recordings of cerebral SNA during natural sleep-wake cycles. SNA increases markedly during tonic REM sleep, and further in phasic REM sleep. As SNA increases precede AP surges, they may serve to protect the brain against potentially damaging intravascular pressure changes or hyperperfusion in REM sleep.

  8. Chlorine isotope and Cl-Br fractionation in fluids of Poás volcano (Costa Rica): Insight into an active volcanic-hydrothermal system

    NASA Astrophysics Data System (ADS)

    Rodríguez, Alejandro; Eggenkamp, H. G. M.; Martínez-Cruz, María; van Bergen, Manfred J.

    2016-10-01

    Halogen-rich volcanic fluids issued at the surface carry information on properties and processes operating in shallow hydrothermal systems. This paper reports a long-term record of Cl-Br concentrations and δ37Cl signatures of lake water and fumaroles from the active crater of Poás volcano (Costa Rica), where surface expressions of magmatic-hydrothermal activity have shown substantial periodic changes over the last decades. Both the hyperacid water of its crater lake (Laguna Caliente) and subaerial fumaroles show significant temporal variability in Cl-Br concentrations, Br/Cl ratios and δ37Cl, reflecting variations in the mode and magnitude of volatile transfer. The δ37Cl signatures of the lake, covering the period 1985-2012, show fluctuations between + 0.02 ± 0.06‰ and + 1.15 ± 0.09‰. Condensate samples from adjacent fumaroles on the southern shore, collected during the interval (2010-2012) with strong changes in gas temperature (107-763°C), display a much larger range from - 0.43 ± 0.09‰ to + 14.09 ± 0.08‰. Most of the variations in Cl isotope, Br/Cl and concentration signals can be attributed to interaction between magma-derived gas and liquid water in the volcanic-hydrothermal system below the crater. The δ37Cl were lowest and closest to magmatic values in (1) fumarolic gas that experienced little or no interaction with subsurface water and followed a relatively dry pathway, and (2) water that captured the bulk of magmatic halogen output so that no phase separation could induce fractionation. In contrast, elevated δ37Cl can be explained by partial scavenging and fractionation during subsurface gas-liquid interaction. Hence, strong Cl isotope fractionation leading to very high δ37Cl in Poás' fumaroles indicates that they followed a wet pathway. Highest δ37Cl values in the lake water were found mostly in periods when it received a significant input from subaqueous fumaroles or when high temperatures and low pH caused HCl evaporation. It is

  9. Modeling of Perturbations in Mid-Ocean Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Singh, S.; Lowell, R. P.

    2013-12-01

    Mid-ocean ridge hydrothermal systems are complex fluid circulation systems straddling the locations of formation of oceanic crust. Due to the dynamic nature of the crust building process, these systems are episodically subject to magmatic and seismic perturbations. Magma may be emplaced deep or shallow in the oceanic crust thereby changing the thermal structure and permeability of the system. Such events would enhance hydrothermal venting resulting in an increase in vent temperature and heat output along with a decrease in vent salinity in a phase separating system. Event plumes, which may be associated with dike intrusions into the shallow crust, are an important class of such perturbations. In this case, the formation of low salinity vapor may add to the thermal buoyancy flux and allow the plume to rise rapidly to a considerable height above the seafloor. Additionally, seismic or tectonic disturbances may occur both deep and shallow in the crust, changing the fluid-flow structure in the system. Upon knowledge of a major magmatic or seismotectonic event, temporary surveillance at the respective mid ocean ridge site is often increased as a result of rapid response cruises. One of the most common observations made after such events is the temperature of vent fluids, which is then correlated to time of observed activity and used to estimate the residence time of fluids in the system. However, our numerical results indicate that for deep-seated perturbations, surface salinity may show quicker response than temperature. This result serves as our motivation to seek better understanding of propagation mechanism of perturbations through hydrothermal systems. We construct analytical models for fluid flow, heat and salt transfer in both single cracks and through porous media to investigate how perturbations affect both heat and salt transfer to the surface. Our preliminary results for simplified fluid circulation systems tend to support the results from numerical modeling

  10. Morphology of hydrothermally synthesized ZnO nanoparticles tethered to carbon nanotubes affects electrocatalytic activity for H2O2 detection

    PubMed Central

    Wayu, Mulugeta B.; Spidle, Ryan T.; Devkota, Tuphan; Deb, Anup K.; Delong, Robert K.; Ghosh, Kartik C.; Wanekaya, Adam K.; Chusuei, Charles C.

    2013-01-01

    We describe the synthesis of zinc oxide (ZnO) nanoparticles and demonstrate their attachment to multiwalled carbon tubes, resulting in a composite with a unique synergistic effect. Morphology and size of ZnO nanostructures were controlled using hydrothermal synthesis, varying the hydrothermal treatment temperature, prior to attachment to carboxylic acid functionalized multi-walled carbon nanotubes for sensing applications. A strong dependence of electrocatalytic activity on nanosized ZnO shape was shown. High activity for H2O2 reduction was achieved when nanocomposite precursors with a roughly semi-spherical morphology (no needle-like particles present) formed at 90 °C. A 2.4-fold increase in cyclic voltammetry current accompanied by decrease in overpotential from the composites made from the nanosized, needle-like-free ZnO shapes was observed as compared to those composites produced from needle-like shaped ZnO. Electrocatalytic activity varied with pH, maximizing at pH 7.4. A stable, linear response for H2O2 concentrations was observed in the 1–20 mM concentration range. PMID:25684785

  11. Synthesis of Bi2WO6/Bi2O3 composite with enhanced photocatalytic activity by a facile one-step hydrothermal synthesis route.

    PubMed

    Wang, Tianye; Zhang, Fengjun; Xiao, Guosheng; Zhong, Shuang; Lu, Cong

    2015-01-01

    In this study, the characterization and photocatalytic activity of Bi2WO6/Bi2O3 under visible-light irradiation was investigated in detail. The results suggested that Bi2WO6/Bi2O3 can be synthesized by a facile one-pot hydrothermal route using a super big 200 mL Teflon-lined autoclave with optimal sodium oleate/Bi molar ratio of 1.25. Through the characterization of Bi2WO6/Bi2O3 by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, UV-vis diffuse reflectance spectra and Photoluminescence spectra, it was found that the as-prepared composite possessed smaller crystallite size and higher visible-light responsive than the pure Bi2WO6. Moreover, it was expected that the as-prepared composites exhibited enhanced photocatalytic activity for the degradation of Rhodamine B under visible-light irradiation, which could be ascribed to their improved light absorption property and the reduced recombination of the photogenerated electrons and holes during the photocatalytic reaction. In general, this study could provide a principle method to synthesize Bi2WO6/Bi2O3 with enhanced photocatalytic activity by one-step hydrothermal synthesis route for environmental purification.

  12. Hydrothermal fabrication of N-doped (BiO)2CO3: Structural and morphological influence on the visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dong, Fan; Wang, Rui; Li, Xinwei; Ho, Wing-Kei

    2014-11-01

    Various 3D N-doped (BiO)2CO3 (N-BOC) hierarchical superstructures self-assembled with 2D nanosheets were fabricated by one-step hydrothermal treatment of bismuth citrate and urea. The as-obtained samples were characterized by XRD, XPS, FT-IR, SEM, N2 adsorption-desorption isotherms and UV-vis DRS. The hydrothermal temperature plays a crucial role in tuning the crystal and morphological structure of the samples. Adjusting the reaction temperature to 150, 180 and 210 °C, we obtained N-doped (BiO)2CO3 samples with corresponding attractive persimmon-like, flower-like and nanoflakes nano/microstructures. The photocatalytic activities of the samples were evaluated by removal of NO under visible and solar light irradiation. The results revealed that the N-doped (BiO)2CO3 hierarchical superstructures showed enhanced visible light photocatalytic activity compared to pure (BiO)2CO3 and TiO2-based visible light photocatalysts. The outstanding photocatalytic performance of N-BOC samples can be ascribed to the doped nitrogen and the special hierarchical structure. The present work could provide new perspectives in controlling the morphological structure and photocatalytic activity of photocatalyst for better environmental pollution control.

  13. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-05-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  14. Constrained circulation at Endeavour ridge facilitates colonization by vent larvae.

    PubMed

    Thomson, Richard E; Mihály, Steven F; Rabinovich, Alexander B; McDuff, Russell E; Veirs, Scott R; Stahr, Frederick R

    2003-07-31

    Understanding how larvae from extant hydrothermal vent fields colonize neighbouring regions of the mid-ocean ridge system remains a major challenge in oceanic research. Among the factors considered important in the recruitment of deep-sea larvae are metabolic lifespan, the connectivity of the seafloor topography, and the characteristics of the currents. Here we use current velocity measurements from Endeavour ridge to examine the role of topographically constrained circulation on larval transport along-ridge. We show that the dominant tidal and wind-generated currents in the region are strongly attenuated within the rift valley that splits the ridge crest, and that hydrothermal plumes rising from vent fields in the valley drive a steady near-bottom inflow within the valley. Extrapolation of these findings suggests that the suppression of oscillatory currents within rift valleys of mid-ocean ridges shields larvae from cross-axis dispersal into the inhospitable deep ocean. This effect, augmented by plume-driven circulation within rift valleys having active hydrothermal venting, helps retain larvae near their source. Larvae are then exported preferentially down-ridge during regional flow events that intermittently over-ride the currents within the valley.

  15. An Active Flow Circulation Controlled Flap Concept for General Aviation Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Viken, Sally A.; Washburn, Anthony E.; Jenkins, Luther N.; Cagle, C. Mark

    2002-01-01

    A recent focus on revolutionary aerodynamic concepts has highlighted the technology needs of general aviation and personal aircraft. New and stringent restrictions on these types of aircraft have placed high demands on aerodynamic performance, noise, and environmental issues. Improved high lift performance of these aircraft can lead to slower takeoff and landing speeds that can be related to reduced noise and crash survivability issues. Circulation Control technologies have been around for 65 years, yet have been avoided due to trade offs of mass flow, pitching moment, perceived noise etc. The need to improve the circulation control technology for general aviation and personal air-vehicle applications is the focus of this paper. This report will describe the development of a 2-D General Aviation Circulation Control (GACC) wing concept that utilizes a pulsed pneumatic flap.

  16. Active and inactive phases of the South Pacific Convergence Zone and changes in global circulation patterns - A case study

    NASA Technical Reports Server (NTRS)

    Huang, H.-J.; Vincent, D. G.

    1988-01-01

    A set of FGGE Level III-b analyses produced at the NASA Goddard Laboratory for Atmospheres (GLA) is used to examine changes that occur in the global-scale circulation features during the period, January 10 - February 13,1979. In the first two weeks of this period, the South Pacific Convergence Zone (SPCZ) and its convective cloud band were observed to be dominant features of the circulation. Subsequent to January 24, there were marked changes in the global-scale circulation, particularly in the Southern Hemisphere tropics. Concomitant with these changes was the disappearance of the SPCZ and its cloud band. The primary purpose of this study is to compare some general circulation parameters, which frequently correspond to deep convection, for two 15-day periods: January 10-24, when the SPCZ was very convectively active, and January 28 - February 11 when it was inactive. Daily variations of some parameters are also shown. It is seen that distinct changes occur in each parameter by the end of the first period, particularly in the vicinity of the SPCZ. Suggestions are offered regarding mechanisms which might be responsible for the observed changes.

  17. Geochemical and Visual Indicators of Hydrothermal Fluid Flow through a Sediment-Hosted Volcanic Ridge in the Central Bransfield Basin (Antarctica)

    PubMed Central

    Aquilina, Alfred; Connelly, Douglas P.; Copley, Jon T.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura E.; Huvenne, Veerle A. I.; Marsh, Leigh; Mills, Rachel A.; Tyler, Paul A.

    2013-01-01

    In the austral summer of 2011 we undertook an investigation of three volcanic highs in the Central Bransfield Basin, Antarctica, in search of hydrothermal activity and associated fauna to assess changes since previous surveys and to evaluate the extent of hydrothermalism in this basin. At Hook Ridge, a submarine volcanic edifice at the eastern end of the basin, anomalies in water column redox potential (Eh) were detected close to the seafloor, unaccompanied by temperature or turbidity anomalies, indicating low-temperature hydrothermal discharge. Seepage was manifested as shimmering water emanating from the sediment and from mineralised structures on the seafloor; recognisable vent endemic fauna were not observed. Pore fluids extracted from Hook Ridge sediment were depleted in chloride, sulfate and magnesium by up to 8% relative to seawater, enriched in lithium, boron and calcium, and had a distinct strontium isotope composition (87Sr/86Sr  = 0.708776 at core base) compared with modern seawater (87Sr/86Sr ≈0.70918), indicating advection of hydrothermal fluid through sediment at this site. Biogeochemical zonation of redox active species implies significant moderation of the hydrothermal fluid with in situ diagenetic processes. At Middle Sister, the central ridge of the Three Sisters complex located about 100 km southwest of Hook Ridge, small water column Eh anomalies were detected but visual observations of the seafloor and pore fluid profiles provided no evidence of active hydrothermal circulation. At The Axe, located about 50 km southwest of Three Sisters, no water column anomalies in Eh, temperature or turbidity were detected. These observations demonstrate that the temperature anomalies observed in previous surveys are episodic features, and suggest that hydrothermal circulation in the Bransfield Strait is ephemeral in nature and therefore may not support vent biota. PMID:23359806

  18. Temperature and volume estimation of under-seafloor fluid from the logging-while-drilling data beneath an active hydrothermal field

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.

    2015-12-01

    In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).

  19. Administration of Traditional Chinese Blood Circulation Activating Drugs for Microvascular Complications in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    He, Lisha; Wang, Han; Gu, Chengjuan; He, Xinhui

    2016-01-01

    Traditional Chinese medicine (TCM) is an important complementary strategy for treating diabetes mellitus (DM) in China. Traditional Chinese blood circulation activating drugs are intended to guide an overall approach to the prevention and treatment of microvascular complications of DM. The core mechanism is related to the protection of the vascular endothelium and the basement membrane. Here, we reviewed the scientific evidence underpinning the use of blood circulation activating drugs to prevent and treat DM-induced microvascular complications, including diabetic nephropathy (DN), diabetic peripheral neuropathy (DPN), and diabetic retinopathy (DR). Furthermore, we summarized the effects and mechanism of TCM on improving blood rheology, inhibiting aggregation of platelet, forming advanced glycation end products (AGEs), regulating oxidative stress, reducing blood fat, and improving lipid metabolism. The paper provides a new theoretical basis for the clinical practice of TCM in the prevention and treatment of DM and its microvascular complications. PMID:27830156

  20. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes

    USGS Publications Warehouse

    Shanks, Wayne C.

    2001-01-01

    The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.

  1. Geochemical constraints on the diversity and activity of H2 -oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent.

    PubMed

    Perner, Mirjam; Petersen, Jillian M; Zielinski, Frank; Gennerich, Hans-Hermann; Seifert, Richard

    2010-10-01

    Mixing processes of reduced hydrothermal fluids with oxygenated seawater and fluid-rock reactions contribute to the chemical signatures of diffuse venting and likely determine the geochemical constraints on microbial life. We examined the influence of fluid chemistry on microbial diversity and activity by sampling diffuse fluids emanating through mussel beds at two contrasting hydrothermal vents. The H(2) concentration was very low at the basalt-hosted Clueless site, and mixing models suggest O(2) availability throughout much of the habitat. In contrast, effluents from the ultramafic-hosted Quest site were considerably enriched in H(2) , while O(2) is likely limited to the mussel layer. Only two different hydrogenase genes were identified in clone libraries from the H(2) -poor Clueless fluids, but these fluids exhibited the highest H(2) uptake rates in H(2) -spiked incubations (oxic conditions, at 18 °C). In contrast, a phylogenetically diverse H(2) -oxidizing potential was associated with distinct thermal conditions in the H(2) -rich Quest fluids, but under oxic conditions, H(2) uptake rates were extremely low. Significant stimulation of CO(2) fixation rates by H(2) addition was solely illustrated in Quest incubations (P-value <0.02), but only in conjunction with anoxic conditions (at 18 °C). We conclude that the factors contributing toward differences in the diversity and activity of H(2) oxidizers at these sites include H(2) and O(2) availability.

  2. Effects of hydrothermal unrest on stress and deformation: insights from numerical modeling and application to Vulcano Island (Italy)

    NASA Astrophysics Data System (ADS)

    Currenti, Gilda; Napoli, Rosalba; Coco, Armando; Privitera, Emanuela

    2017-04-01

    A numerical approach is proposed to evaluate stress and deformation fields induced by hydrothermal fluid circulation and its influence on volcano-flank stability. The numerical computations have been focused on a conceptual model of Vulcano Island, where geophysical, geochemical, and seismic signals have experienced several episodes of remarkable changes likely linked to the hydrothermal activity. We design a range of numerical models of hydrothermal unrest and computed the associated deformation and stress field arising from rock-fluid interaction processes related to the thermo-poroelastic response of the medium. The effects of model parameters on deformation and flank stability are explored considering different multilayered crustal structures constrained by seismic tomography and stratigraphy investigations. Our findings highlight the significant role of model parameters on the response of the hydrothermal system and, consequently, on the amplitudes and the timescale of stress and strain fields. Even if no claim is made that the model strictly applies to the crisis episodes at Vulcano, the numerical results are in general agreement with the pattern of monitoring observations, characterized by an enhancing of gas emission and seismic activity without significant ground deformation. The conceptual model points to a pressurization and heating of the shallow hydrothermal system (1-0.25 km bsl) fed by fluid of magmatic origin. However, for the assumed values of model material and source parameters (rate of injection, fluid composition, and temperature), the pressure and temperature changes do not affect significantly the flank stability, which is mainly controlled by the gravitational force.

  3. Novel phosphatidylethanolamine derivatives accumulate in circulation in hyperlipidemic ApoE−/− mice and activate platelets via TLR2

    PubMed Central

    Biswas, Sudipta; Xin, Liang; Panigrahi, Soumya; Zimman, Alejandro; Wang, Hua; Yakubenko, Valentin P.; Byzova, Tatiana V.; Salomon, Robert G.

    2016-01-01

    A prothrombotic state and increased platelet reactivity are common in dyslipidemia and oxidative stress. Lipid peroxidation, a major consequence of oxidative stress, generates highly reactive products, including hydroxy-ω-oxoalkenoic acids that modify autologous proteins generating biologically active derivatives. Phosphatidylethanolamine, the second most abundant eukaryotic phospholipid, can also be modified by hydroxy-ω-oxoalkenoic acids. However, the conditions leading to accumulation of such derivatives in circulation and their biological activities remain poorly understood. We now show that carboxyalkylpyrrole-phosphatidylethanolamine derivatives (CAP-PEs) are present in the plasma of hyperlipidemic ApoE−/− mice. CAP-PEs directly bind to TLR2 and induces platelet integrin αIIbβ3 activation and P-selectin expression in a Toll-like receptor 2 (TLR2)-dependent manner. Platelet activation by CAP-PEs includes assembly of TLR2/TLR1 receptor complex, induction of downstream signaling via MyD88/TIRAP, phosphorylation of IRAK4, and subsequent activation of tumor necrosis factor receptor–associated factor 6. This in turn activates the Src family kinases, spleen tyrosine kinase and PLCγ2, and platelet integrins. Murine intravital thrombosis studies demonstrated that CAP-PEs accelerate thrombosis in TLR2-dependent manner and that TLR2 contributes to accelerate thrombosis in mice in the settings of hyperlipidemia. Our study identified the novel end-products of lipid peroxidation, accumulating in circulation in hyperlipidemia and inducing platelet activation by promoting cross-talk between innate immunity and integrin activation signaling pathways. PMID:27015965

  4. Human T cell microparticles circulate in blood of hepatitis patients and induce fibrolytic activation of hepatic stellate cells

    PubMed Central

    Kornek, Miroslaw; Popov, Yury; Libermann, Towia A.; Afdhal, Nezam H.; Schuppan, Detlef

    2010-01-01

    Microparticles (MP) are small cell membrane vesicles which are released from cells during apoptosis or activation. While circulating platelet MP have been studied in some detail, the existence and functional role of T cell MP remain elusive. We show that blood from patients with active hepatitis C (ALT>100 IU/ml) contains elevated numbers of T cell MP compared to patients with mild hepatitis C (ALT<40 IU/ml) and healthy controls. T cell MP fuse with cell membranes of hepatic stellate cells (HSC), the major effector cells for excess matrix deposition in liver fibrosis and cirrhosis. MP uptake is partly ICAM-1 dependent and leads to activation of NFkB and ERK1/2 and subsequent upregulation of fibrolytic genes in HSC, to downregulation of procollagen α1(I) mRNA, and blunting of profibrogenic activities of TGFβ1. Ex vivo the induced fibrolytic activity is evident in MP derived from activated CD4+ T cells, and highest with MP from activated and apoptotic CD8+ T cells. Mass spectrometry, FACS analysis and function blocking antibodies revealed CD147/Emmprin as candidate transmembrane molecule in HSC fibrolytic activation by CD8+ T cell MP. We conclude that 1) circulating T cell MP are a novel diagnostic marker for inflammatory liver diseases, and 2) in vivo induction of T cell MP may be a novel strategy to induce regression of liver fibrosis. PMID:20979056

  5. High-temperature hydrothermal activities around suboceanic Moho: An example from diopsidite and anorthosite in Wadi Fizh, Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Akizawa, Norikatsu; Tamura, Akihiro; Fukushi, Keisuke; Yamamoto, Junji; Mizukami, Tomoyuki; Python, Marie; Arai, Shoji

    2016-10-01

    Reaction products between hydrothermal fluids and uppermost mantle harzburgite-lowermost crustal gabbro have been reported along Wadi Fizh, northern Oman ophiolite. They are named mantle diopsidite (MD) or crustal diopsidite (CD) depending on the stratigraphic level. They construct network-like dikes crosscutting structures of the surrounding harzburgite or gabbro. The MD is mainly composed of diopsidic clinopyroxene, whereas the CD is of diopsidic clinopyroxene and anorthitic plagioclase. Here, we report a new reaction product, crustal anorthosite (CA), from the lowermost crustal section. The CA is always placed in the center of the CD network, and mainly consists of anorthitic plagioclase with minor titanite and chromian minerals such as chromite and uvarovite. Aqueous fluid inclusions forming negative crystals are evenly distributed in minerals of the CA. The fluid inclusions contain angular-shaped or rounded daughter minerals as calcite or calcite-anhydrite composite, which were identified by Raman spectroscopic analysis. We estimated their captured temperature at 530 °C at least by conducting microthermometric analysis of the fluid inclusions. Furthermore, we examined their chemical characteristics by direct laser-shot sampling conducted by laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS). The results indicate that the trapped aqueous fluids contain an appreciable amount of Na, but no K and Cr. Hydrothermal fluids involved in the CA formation transported Cr, which was probably taken up from chromite seams in the uppermost mantle section. Cr got soluble by forming complexes with anions as SO42-, CO32- and Cl-. In addition, these hydrothermal fluids transported Fe, Mg and trace elements (Ti, Sr, Y, Zr and rare-earth elements) governing whole-rock chemical compositions of the MDs, CDs and CAs. Our estimation for the condition of CA formation yielded rather low temperatures (530-600 °C), which indicates a later stage production of the CA

  6. [Role of biologically active substances in the formation of cardiogenic reflex effects on circulation].

    PubMed

    Pavliuchenko, V B; Moĭbenko, O O; Datsenko, V V

    2001-01-01

    Analysis of the literary and own authors data about the participation some endogenous bioregulators (prostacyclin, bradykinin, nitric oxide) in the cardiogenic depressor reflexes formation is represented in this review. Possibility of chemosensitivity of the vagal afferent fibers for this substances and its role in the formation of cardiogenic effects on circulation is discussed.

  7. Association of circulating active and total ghrelin concentrations with dry matter intake, growth, and carcass characteristics of finishing beef cattle.

    PubMed

    Foote, A P; Hales, K E; Lents, C A; Freetly, H C

    2014-12-01

    Ghrelin is a gut peptide that when acylated is thought to stimulate appetite. Circulating ghrelin concentrations could potentially be used as a predictor of DMI in cattle. The objective of this experiment was to determine the association of circulating ghrelin concentrations with DMI and other production traits. Steers and heifers were fed a finishing diet, and individual intake was recorded for 84 d. Blood samples were collected via jugular venipuncture following the DMI and ADG measurement period. Plasma active ghrelin and total ghrelin were quantified using commercial RIA. Active ghrelin was not correlated to DMI (P=0.36), but when DMI was modeled using a multivariate analysis including plasma metabolites and sex, active ghrelin was shown to be positively associated with DMI (P<0.01) and accounted for 6.2% of the variation accounted for by the regression model (R2=0.33). Total ghrelin was negatively correlated to DMI (P<0.01), but was not significant in a multivariate regression analysis (P=0.13). The ratio of active:total ghrelin was positively associated with DMI (P<0.01) and accounted for 10.2% of the variation in the model (R2=0.35). Active ghrelin was positively associated with ADG (P<0.05), while total ghrelin was negatively associated with ADG (P<0.01), and the ratio of active:total ghrelin was positively associated with ADG (P<0.01). Active ghrelin was not associated with G:F (P=0.88), but total ghrelin concentrations were negatively associated with G:F (P<0.01) and accounted for 10.24% of the variation (R2=0.25). Heifers consumed less feed than steers (P<0.01), tended to have greater active ghrelin concentrations (P=0.06), and had greater total ghrelin concentrations than steers (P=0.04). Total ghrelin concentrations were not different between sire breeds (P=0.80), but active ghrelin concentrations and the ratio of active:total ghrelin differed between breeds (P<0.01), indicating that genetics have an effect on the amount and form of circulating ghrelin

  8. Investigating fossil hydrothermal systems by means of fluid inclusions and stable isotopes in banded travertine: an example from Castelnuovo dell'Abate (southern Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Rimondi, Valentina; Costagliola, Pilario; Ruggieri, Giovanni; Benvenuti, Marco; Boschi, Chiara; Brogi, Andrea; Capezzuoli, Enrico; Morelli, Guia; Gasparon, Massimo; Liotta, Domenico

    2016-03-01

    Southern Tuscany (Italy) hosts geothermal anomalies with associated widespread CO2 gas-rich manifestations and active travertine-deposing thermal springs. Geothermal anomalies have been active since the Late Miocene and have led to the formation of widespread Late Miocene-Pleistocene travertine deposits and meso- and epithermal mineralizations. This study investigates the travertine deposit exposed in the Castelnuovo dell'Abate area of southern Tuscany. Here, a fissure-ridge type travertine deposit and its feeding conduits, currently filled with banded calcite veins (i.e. banded travertine), represent a spectacular example of fossil hydrothermal circulation in the peripheral area of the exploited Monte Amiata geothermal field. The Castelnuovo dell'Abate travertine deposit and associated calcite veins were analysed to establish the characteristics of the parent hydrothermal fluids, and the age of this circulation. The focus of the study was on fluid inclusions, rarely considered in travertine studies, but able to provide direct information on the physico-chemical characteristics of the original fluid. Uranium-thorium geochronological data provided further constraints on the: (1) age of tectonic activity; (2) age of the hydrothermal circulation; and (3) evolution of the Monte Amiata geothermal anomaly. Results indicate that brittle deformation (NW- and SE-trending normal to oblique-slip faults) was active during at least the Middle Pleistocene and controlled a hydrothermal circulation mainly characterized by fluids of meteoric origin, and as old as 300-350 ka. This is the oldest circulation documented to date in the Monte Amiata area. The fluid chemical composition is comparable to that of fluids currently exploited in the shallow reservoir of the Monte Amiata geothermal field, therefore suggesting that fluid composition has not changed substantially over time. These fluids, however, have cooled by about 70 °C in the last 300-350 ka, corresponding to a cooling rate

  9. The mechanics of active clays circulated by salts, acids and bases

    NASA Astrophysics Data System (ADS)

    Gajo, Alessandro; Loret, Benjamin

    2007-08-01

    A model that accounts for electro-chemo-mechanical couplings in clays, due to the presence of dissolved salts and acids and bases, is developed and applied to simulate experimental data. Chemically sensitive clays are viewed as two-phase multi-species saturated porous media circulated by an electrolyte. To the authors' best knowledge, no other comprehensive project to embody the effects of pH in the elastic-plastic behavior of geomaterials has been attempted so far. The developments are embedded in the framework of the thermodynamics of multi-phase multi-species porous media. This approach serves to structure the model, and to motivate constitutive equations. The present extension capitalizes upon the earlier developments by Gajo et al. [2002. Electro-chemo-mechanical couplings in saturated porous media: elastic-plastic behaviour of heteroionic expansive clays. Int. J. Solids Struct. 39, 4327-4362] and Gajo and Loret [2004. Transient analysis of ionic replacement in elastic-plastic expansive clays. Int. J. Solids Struct. 41(26), 7493-7531], which were devoted to modeling chemo-mechanical couplings at constant pH. Four transfer mechanisms between the solid and fluid phases are delineated in the model: (1) hydration, (2) ion exchange, (3) acidification, (4) alkalinization. Thus all fundamental exchanges at particle level are fully taken into account. Only mineral dissolution is neglected, since experimental observations indicate a negligible role of mineral dissolution for active clays at room temperature. In particular, the newly considered mechanisms of acidification and alkalinization directly affect the electrical charge of clay particles and thus have a key role in the electro-chemo-mechanical couplings. These four mechanisms are seen as controlling both elastic and elasto-plastic behaviors. Depending on concentrations and ionic affinities to the clay mineral, the transfer mechanisms either compete or cooperate to modify the compressibility and strength of the

  10. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  11. Magmatism, Hydrothermal Cooling and Asymmetric Accretion at Slow-spreading Ridges

    NASA Astrophysics Data System (ADS)

    Bai, H.; Montesi, L.

    2014-12-01

    Asymmetric spreading is common at slow-spreading mid-ocean ridges when an active detachment fault accommodates a portion of the total plate separation. Basalts erupted along asymmetric segments have lower Ca, higher Fe, Na, K than the ones collected from symmetric segments, indicating higher pressures of fractionation and lower extents of partial melting of the mantle [Langmuir et al., AGU, 2013]. Seismic evidence also shows a thicker and colder axial lithosphere at asymmetric sections of the ridge [Escartín et al., 2008]. This phenomenon is most obvious when the asymmetric spreading centers are also oblique to its opening direction. The reduced melt supply beneath asymmetric spreading segments may be attributed to distorted mantle upwelling, enhanced hydrothermal cooling, and enriched compositional heterogeneities in the upper mantle. We construct two-dimensional thermo-mechanical models of symmetric and asymmetric spreading centers, and test the effects of asymmetric accretion and hydrothermal circulation on mantle melting. A temperature-dependent mantle viscosity is used. The hydrothermal circulation is implemented as an enhanced thermal conductivity limited by cutoff depth and temperature. The effect of oblique spreading is incorporated in the model as reduced effective spreading rate. Mantle flow and thermal structure are solved in the commercial finite element software COMSOL Multiphysics®. Melt production and flux are estimated in Matlab® using a nonlinear melting function [Katz et al., 2003]. We show that the asymmetric accretion alone does not affect the extent of melting or reduce the melt flux significantly. Hydrothermal cooling can plays an important role in deepening the melting depth and lowering the melt extent. Therefore, the difference in the extent of melting between asymmetric and symmetric spreading models can be explained by an enhanced hydrothermal circulation at asymmetric segments. This correlation is supported by the observation made at

  12. Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

    PubMed Central

    Ochodo, Eleanor A; Gopalakrishna, Gowri; Spek, Bea; Reitsma, Johannes B; van Lieshout, Lisette; Polman, Katja; Lamberton, Poppy; Bossuyt, Patrick Mm; Leeflang, Mariska Mg

    2015-01-01

    Background Point-of-care (POC) tests for diagnosing schistosomiasis include tests based on circulating antigen detection and urine reagent strip tests. If they had sufficient diagnostic accuracy they could replace conventional microscopy as they provide a quicker answer and are easier to use. Objectives To summarise the diagnostic accuracy of: a) urine reagent strip tests in detecting active Schistosoma haematobium infection, with microscopy as the reference standard; and b) circulating antigen tests for detecting active Schistosoma infection in geographical regions endemic for Schistosoma mansoni or S. haematobium or both, with microscopy as the reference standard. Search methods We searched the electronic databases MEDLINE, EMBASE, BIOSIS, MEDION, and Health Technology Assessment (HTA) without language restriction up to 30 June 2014. Selection criteria We included studies that used microscopy as the reference standard: for S. haematobium, microscopy of urine prepared by filtration, centrifugation, or sedimentation methods; and for S. mansoni, microscopy of stool by Kato-Katz thick smear. We included studies on participants residing in endemic areas only. Data collection and analysis Two review authors independently extracted data, assessed quality of the data using QUADAS-2, and performed meta-analysis where appropriate. Using the variability of test thresholds, we used the hierarchical summary receiver operating characteristic (HSROC) model for all eligible tests (except the circulating cathodic antigen (CCA) POC for S. mansoni, where the bivariate random-effects model was more appropriate). We investigated heterogeneity, and carried out indirect comparisons where data were sufficient. Results for sensitivity and specificity are presented as percentages with 95% confidence intervals (CI). Main results We included 90 studies; 88 from field settings in Africa. The median S. haematobium infection prevalence was 41% (range 1% to 89%) and 36% for S. mansoni (range 8

  13. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging.

    PubMed

    Su, Wenkang; Li, Zhenguo; Peng, Yue; Li, Junhua

    2015-11-21

    The relative framework stability of Cu/CHA zeolites (SAPO-34 and SSZ-13) was studied during hydrothermal aging at 800 °C, and the fundamental mechanism for the framework change was investigated. Additionally, the relationship between the variation in the framework and active SCR reaction sites was established. SAPO-34 showed stronger stability during hydrothermal aging than SSZ-13. The results showed that dealumination occurred in the SSZ-13 zeolite, leading to the loss of crystallinity and a severe decrease of the Brönsted acid sites. Simultaneously, the detached Al(OH)3 species deactivated the Cu species by the transformation of isolated Cu(2+) ions to CuAlOx species. While the vacancy in the SAPO-34 framework caused by desilication could be healed with the migration of extra-framework Al and P atoms to the defects. And the Cu species showed a certain degree of aggregation with the improved redox ability of the aged Cu/SAPO-34 zeolite and the acidic properties were well maintained.

  14. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  15. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-16

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  16. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  17. Hydrothermal activity and its paleoecological implications in the latest Miocene to Middle Pleistocene lacustrine environments of the Baza Basin (Betic Cordillera, SE Spain)

    NASA Astrophysics Data System (ADS)

    García-Aguilar, José Manuel; Guerra-Merchán, Antonio; Serrano, Francisco; Palmqvist, Paul; Flores-Moya, Antonio; Martínez-Navarro, Bienvenido

    2014-07-01

    The continental sedimentary record of the Baza Basin (Guadix-Baza Depression, Betic Cordillera, SE Spain) shows six sedimentary units of lacustrine origin deposited from the latest Miocene to the Middle Pleistocene. Depending on the interval considered, the lacustrine deposits are mainly composed of marls, carbonates or gypsiferous evaporites, showing lithological, mineralogical and geochemical features (i.e., magnesium, strontium and sulfur contents, celestine deposits and travertine growths) that are evidence of intense, tectonically-induced hydrothermal activity. According to the high concentrations of strontium and sulfur as well as the abundance of travertines and magnesium clays, the supply of hot waters was greater during the Zanclean, the Gelasian and the Calabrian, as a result of tectonic activity. Hydrothermal activity has continued until the present time and is responsible of the hot springs that are nowadays active in the Guadix-Baza Depression. The paleoenvironmental consequences of these sublacustrine hot springs were that during some intervals the lakes maintained a relatively permanent water table, not subject to periodic desiccations in the dry season, and warmer temperatures throughout the year. This resulted in a high level of organic productivity, especially for the Calabrian, which allowed the development of a rich and well diversified mammalian community, similar to those of modern African savannas with tree patches. In this mild environment, the permanent water sheet favored the presence of drought intolerant megaherbivores such as the giant extinct hippo Hippopotamus antiquus. The high standing crop biomass of ungulates resulted in the availability of abundant carcasses for scavengers such as hyenas and hominins, which explains the very high densities of skeletal remains preserved in the sediments distributed along the lake surroundings.

  18. Sericitic alteration at the La Crocetta deposit (Elba Island, Italy): interplay between magmatism, tectonics and hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Maineri, Cinzia; Benvenuti, Marco; Costagliola, Pilar; Dini, Andrea; Lattanzi, Pierfranco; Ruggieri, Giovanni; Villa, Igor M.

    2003-01-01

    The La Crocetta mine near Porto Azzurro (Elba Island, Tuscany, Italy) is an important producer of raw material for the ceramic industry. Exploitation focuses on a pervasively sericitized porphyritic aplite of the Tuscan Magmatic Province, locally known as "eurite", which underwent significant potassium enrichment during sericitic alteration. Eurites are located along the hanging wall of the Elba Centrale Fault, a low-angle extensional lineament of regional significance. A later carbonatization stage, apparently associated with high-angle extensional tectonics, locally overprinted the sericitized facies. It is expressed by carbonate ± pyrite ± quartz veins, with adverse effects on ore quality. Sericitization was accompanied by addition of potassium, and loss of Na (± Ca, Fe). Rubidium was not enriched along with potassium during sericitization, contrary to what would be expected for interaction with late-magmatic fluids. New 40Ar-39Ar data from eurites provide an isochron age of about 6.7 Ma for the sericitization, whereas the age of the unaltered protolith is ca. 8.8 Ma. Field evidence indicates the Elba Centrale Fault to be the main channel for the hydrothermal fluids. On the other hand, the involvement of heat and/or fluids contributed by the Porto Azzurro pluton, which crops out in the La Crocetta area, is ruled out by field, geochemical and geochronological data (40Ar-39Ar age of Porto Azzurro =5.9 Ma, i.e. significantly younger than the sericitization event). Fluid inclusion studies suggest that sericitization was associated with a low-temperature (<250 °C) hydrothermal system. Fluids were locally boiling, of variable salinity (4-17 wt% NaCl equiv.), and contained some CO2 ( XCO2≤0.027). Their ultimate source is not unequivocally constrained; meteoric and/or magmatic contributions may be possible. Low-salinity (≤2.6 wt% NaCl equiv.), low-temperature (<250 °C) fluids are associated with the late carbonate veining. They are considered to be of

  19. Metal Transport in Hydrothermal Vent Fluids Across an Eruption: 9°46'-9°52'N East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Meana Prado, M. F.; Bryce, J. G.

    2012-12-01

    Elements carried in hydrothermal fluids circulating within the oceanic crust constitute an important component of marine geochemical budgets and a significant mechanism for supporting unique chemosynthetic ecosystems along ridge axes. Temporal variabilities in hydrothermal fluid compositions are well documented and linked with proximity to magmatic activity [1]. In fast spreading ridges, such as the East Pacific Rise, eruptions can change hydrothermal fluid pathways, significantly and temporarily influencing metal transport if phase separation increases. Metal transport in fluids may be enhanced as well if hydrothermal fluid circulation occurs through freshly emplaced basalt. A well documented magmatic eruption in late 2005/early 2006 disrupted the hydrothermal system and offered the ideal opportunity to study how metal transport would be impacted and how long it would take for the hydrothermal metal transport to return to pre-eruptive rates. Accordingly, we have carried out analyses of transition metals across the eruptive cycle on a time series of fluids collected from 10 hydrothermal vent sites spanning ~8 km of ridge segment trending north-south along the axial summit trough. Hydrothermal fluids were sampled from the same vents in November 2004 (pre-eruptive) and then (post-eruptive) June 2006, November 2006, and December 2007. Analyses of Mn, Fe, Cu and Zn were carried out for all three hydrothermal fluid fractions: dissolved via flame atomic adsorption, filtered particulates and 'dregs' via HR-ICP-MS. Resulting data, coupled with existing data (exit temperature, major elemental, and modeled peak pressure and temperature), allow for the identification of the key factors influencing metal abundance in high temperature fluids. Briefly, phase separation was the most significant process influencing metal abundance in dissolved fluids. Exceptions to this generalization were for the immediate post-eruptive fluids issued from BioVent, the northernmost of the studied

  20. Microbial and Mineral Descriptions of the Interior Habitable Zones of Active Hydrothermal Chimneys from the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Holden, J. F.; Lin, T.; Ver Eecke, H. C.; Breves, E.; Dyar, M. D.; Jamieson, J. W.; Hannington, M. D.; Butterfield, D. A.; Bishop, J. L.; Lane, M. D.

    2013-12-01

    Actively venting hydrothermal chimneys and their associated hydrothermal fluids were collected from the Endeavour Segment, Juan de Fuca Ridge to determine the mineralogy, chemistry and microbial community composition of their interiors. To characterize the mineralogy, Mössbauer, FTIR, VNIR and thermal emission spectroscopies were used for the first time on this type of sample in addition to thin-section petrography, x-ray diffraction and elemental analyses. A chimney from the Bastille edifice was Fe-sulfide rich and composed primarily of chalcopyrite, marcasite-sphalerite, and pyrrhotite while chimneys from the Dante and Hot Harold edifices were Fe-sulfide poor and composed primarily of anhydrite. The bulk emissivity and reflectance spectroscopies corroborated well with the petrography and XRD analyses. The microbial community in the interior of Bastille was most closely related to mesophilic-to-thermophilic anaerobes of the deltaproteobacteria and hyperthermophilic archaea while those in the interiors of Dante and Hot Harold were most closely related to mesophilic-to-thermophilic aerobes of the beta-, gamma- and epsilonproteobacteria. The fluid temperatures (282-321°C) and chemistries of the three chimneys were very similar suggesting that differences in mineralogy and microbial community compositions were more dependent on fluid flow characteristics and paragenesis within the chimney. Thin-section petrography of the interior of another hydrothermal chimney collected from the Dante edifice (emitting 336°C fluid) shows a thin coat of Fe3+ oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The Fe-sulfide minerals were likely oxidized to ferrihydrite with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-based most-probable-number estimates of

  1. Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon

    USGS Publications Warehouse

    Zierenberg, R.A.; Shanks, Wayne C.; Seyfried, W.E.; Koski, R.A.; Strickler, M.D.

    1988-01-01

    The Turner-Albright sulfide deposit, part of the Josephine ophiolite, formed on and below the seafloor during Late Jurassic volcanism at a back arc spreading center. Ore fluids were probably localized by faults which were active on the seafloor at the time of sulfide deposition. The uppermost massive sulfide formed on the seafloor at hydrothermal vents. The bulk of the sulfide mineralization formed below the seafloor within olivine basalt hyaloclastite erupted near the time of mineralization. Infiltration of hydrothermal fluid into the hyaloclastite altered the rock. The fluid responsible for the hydrothermal alteration was evolved seawater with low pH and Mg and high Fe. The average value of sulfide and the difference between sulfide and contemporaneous seawater sulfate values are similar to ophiolite-hosted sulfide deposits in Cyprus. Mudstone and clinopyroxene basalt above the sulfide horizons were not altered by the ore-transporting hydrothermal fluid, but these rocks were hydrothermally metamorphosed by altered seawater heated by deep circulation into hot oceanic crust. This subseafloor metamorphism produced a mineral assemblage typical of prehnite-pumpellyite facies metamorphism. Exchange with altered seawater increased the whole-rock ??18O of the basalts to values of 9.4-11.2%. -from Authors

  2. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  3. Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4 5°S

    NASA Astrophysics Data System (ADS)

    German, C. R.; Bennett, S. A.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Parson, L. M.; Prien, R. D.; Ramirez-Llodra, E.; Jakuba, M.; Shank, T. M.; Yoerger, D. R.; Baker, E. T.; Walker, S. L.; Nakamura, K.

    2008-09-01

    We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3-7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02'S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48'S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an ˜ 18 km 2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005-06 at the East Pacific Rise, 9°50'N and reference to global seismic catalogues reveals that a swarm of large (M 4.6-5.6) seismic events was centred on the 5°S segment over a ˜ 24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at ˜ 3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.

  4. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc

    NASA Astrophysics Data System (ADS)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo; Asada, Akira

    2016-06-01

    Myojin Knoll caldera, one of the submarine silicic calderas lying on the volcanic front of the northern Izu-Ogasawara arc, has attracted increasing attention since the discovery of a large hydrothermal field called the Sunrise deposit. Although numerous submersible surveys have been conducted in Myojin Knoll caldera, they have not sufficiently explored areas to produce a complete picture of the caldera and understand the origin of the Sunrise deposit. We conducted comprehensive deep-sea surveys using an autonomous underwater vehicle and obtained high-resolution bathymetric and magnetic data and sonar images from ~70% of the caldera. The detailed bathymetric map revealed that faulting and magma eruptions, possibly associated with an inflation-deflation cycle of the magma reservoir during postcaldera volcanism, had generally occurred in the caldera wall. The main dome of the central cone was covered with lava flows and exhibits exogenous growth, which is unusual for rhyolitic domes. The magnetization distribution in the central cone indicates preferential magma intrusion along a NW-SE direction. It is presumed that magma migrated along this direction and formed a rhyolite dome at the foot of the southeastern caldera wall, where the Sunrise deposit occurs. The Sunrise deposit is composed mainly of three ridges extending in slope directions and covers ~400 × ~400 m. Magnetization reduction in the deposit area is small, indicating that the alteration zone beneath the Sunrise deposit is slanting rather than vertical. It is presumed that several slanting and near-vertical volcanic vents serve as pathways of hydrothermal fluid in Myojin Knoll caldera.

  5. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.

  6. Discovery of Nascent Vents and Recent Colonization Associated with(Re)activated Hydrothermal Vent Fields by the GALREX 2011 Expedition on the Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Holden, J. F.; Herrera, S.; Munro, C.; Muric, T.; Lin, J.; Stuart, L.

    2011-12-01

    GALREX 2011 was a NOAA OER telepresence cruise that explored the diverse habitats and geologic settings of the deep Galápagos region. The expedition made12 Little Hercules ROV dives in July 2011.Abundant corals and a strong depth zonation of species (including deepwater coral communities) were found near 500 m depth on Paramount Seamount, likely influenced by past low sea level states, wave-cut terrace processes, and the historical presence of shallow reef structures. At fresh lava flows with associated (flocculent) hydrothermal venting near 88° W, now known as Uka Pacha and Pegasus Vent Fields, rocks were coated with white microbial mat and lacked sessile fauna, with few mobile fauna (e.g., bythograeid crabs, alvinocarid shrimp, polynoid worms, zoarcid fish, and dirivultid copepods). This suggests a recent creation of hydrothermal habitats through volcanic eruptions and/or diking events, which may have taken place over a 15 km span separating the two vent fields. The Rosebud vent field at 86°W was not observed and may have been covered with lava since last visited in 2005. A hydrothermal vent field near 86°W was discovered that is one of the largest vent fields known on the Rift (120m by 40m). Low-temperature vent habitats were colonized by low numbers of tubeworms including Riftia, Oasisia, and a potential Tevnia species (the latter not previously observed on the Galapagos Rift). Patches of tubeworms were observed with individuals less than 2cm in length, and the relatively few large Riftia had tube lengths near 70cm long. Large numbers of small (< 3cm long) bathymodiolin mussels lined cracks and crevices throughout the active part of the field. Live clams, at least four species of gastropod limpets, three species of polynoid polychaetes, juvenile and adult alvinocarid shrimp, actinostolid anemones, and white microbial communities were observed on the underside and vertical surfaces of basalt rock surfaces. There were at least 13 species of vent-endemic fauna

  7. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Jiang, Wei; Wang, Yujiao; Shen, Ping; Li, Fengsheng; Li, Pingyun; Zhao, Fengqi; Gao, Hongxu

    2014-06-01

    Fe2O3/graphene nanocomposite was prepared by a facile hydrothermal method, during which graphene oxides (GOs) were reduced to graphene with hydrazine and Fe2O3 nanoparticles were simultaneously anchored on graphene sheets. The morphology of the obtained Fe2O3/graphene nanocomposite was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). It was revealed by TEM images that Fe2O3 nanoparticles grew well on the surfaces of graphene. As much as I know, this new nanocomposite has not been investigated as a catalyst on the thermal decomposition of AP yet. In this work, the catalytic performance of the synthesized material on the thermal decomposition of ammonium perchlorate (AP) was investigated creatively by differential scanning calorimetry (DSC). The results of DSC indicated that graphene obviously improved the catalytic activity of Fe2O3 on the thermal decomposition of AP due to its high specific area.

  8. Hydrothermal versus active margin sediment supply to the eastern equatorial Pacific over the past 23 million years traced by radiogenic Pb isotopes: Paleoceanographic and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Höfig, Tobias W.; Hoernle, Kaj; Hauff, Folkmar; Frank, Martin

    2016-10-01

    changes in atmospheric circulation, when the studied sites crossed the Intertropical Convergence Zone due to tectonic drift and concurrent climate cooling. Eolian transport has played a major role in the supply of detrital material over the entire Neogene and Quaternary. The delivery of hydrothermal Pb originating from the East Pacific Rise to the easternmost tropical Pacific has been a persistent feature that is attributed to a remarkably stable central and eastern Pacific deep-water flow pattern over millions of years. Thus, deep ocean circulation did not change significantly either (1) as a consequence of an Early Miocene closure of the deep gateway between the Caribbean and eastern Central Pacific or because (2) a Late Miocene to Pliocene closure of the Central American Seaway had no impact at all.

  9. Hydrothermal synthesis and photocatalytic activities of Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} composite micro-platelets

    SciTech Connect

    Zhao, Wei Wang, Hongxing; Feng, Xiangning; Jiang, Wangyang; Zhao, Dan; Li, Jiyuan

    2015-10-15

    Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} composite was fabricated by combining hydrothermal reaction and molten salt method. • Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} exhibits higher photocatalytic activity than pure Bi{sub 4}Ti{sub 3}O{sub 12}. • The absorption light of Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} has been broadened to visible light. - Abstract: In this study, Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} micro-platelets were successfully synthesized by using hydrothermal and molten salt methods, and the morphology and photocatalytic degradation performance of Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} was characterized. The results indicated a much higher degradation rate of methylene blue and methylene orange, reaching more than 90% and 65%, respectively, within 3 h under visible-light irradiation. Compared with pure Bi{sub 4}Ti{sub 3}O{sub 12}, the photocatalytic activity of Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} was significantly better, due to the micron–submicron heterojunction with SrTiO{sub 3} reducing the band gap of Bi{sub 4}Ti{sub 3}O{sub 12}. In addition, the perovskite structure layer facilitates the mobility of the photogenerated carriers and hampers their recombination, which were affected the photocatalytic properties.

  10. Active and Passive Microwave Determination of the Circulation and Characteristics of Weddell and Ross Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Liu, Xiang

    2000-01-01

    A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.

  11. Linking storm surge activity and circulation variability along the Spanish coast through a synoptic pattern classification

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, Domingo; Garcia Codrón, Juan Carlos

    2010-05-01

    The potentially negative consequences resulting from the estimations of global sea level rising along the current century are a matter of serious concern in many coastal areas worldwide. Most of the negative consequences of the sea level variability, such as flooding or erosion, are linked to episodic events of strong atmospheric forcing represented by deep atmospheric disturbances, especially if they combine with extreme astronomical high tides. Moreover, the interaction between the prevailing flows during such events and the actual orientation of the coast line might accelerate or mitigate such impacts. This contribution analyses sea surge variations measured at five tide-gauge stations located around the Iberian Peninsula and their relationships with regional scale circulation patterns with local-scale winds. Its aim is to improve the knowledge of surge related-coastal-risks by analysing the relationship between surges and their atmospheric forcing factors at different spatial scales. The oceanographic data set consists of hourly data from 5 tide gauge stations (Santander, Vigo, Bonanza, Málaga, Valencia and Barcelona) disseminated along the Spanish coastline, provided by Puertos del Estado. To explore the atmospheric mechanisms responsible for the sign and magnitude of sea surges, a regional Eulerian approach (a synoptic typing) were combined with a larger-scale Lagrangian method, based on the analysis of storm-tracks over the Atlantic and local information (synop reports) obtained from the closest meteorological stations to the tide gauges. The synoptic catalogue was obtained following a procedure that combines Principal Component Analysis (PCA) for reduction purposes and clustering (Ward plus K-means) to define the circulation types. Sea level pressure, surface 10m U and V wind components gridded data were obtained from NCEP Reanalysis, while storm tracks and cyclone statistics were extracted from the CDC Map Room Climate Products Storm Track Data (http

  12. Pathways for abiotic organic synthesis at submarine hydrothermal fields

    PubMed Central

    McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.

    2015-01-01

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  13. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  14. Stimulation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) activity by low concentrations of circulating glucose in perfused rat liver.

    PubMed Central

    Moreno, F J; Sánchez-Urrutia, L; Medina, J M; Sánchez-Medina, F; Mayor, F

    1975-01-01

    1. After nicotinic acid treatment, rat liver glycogen is depleted and phosphoenolpyruvate carboxykinase activity increased, to about twice the initial value. 2. The increase in phosphoenolpyruvate carboxykinase activity promoted by nicotinic acid is prevented by cycloheximide or actinomycin D, suggesting that this effect is produced by synthesis of the enzyme de novo. 3. Despite the enhancement of phosphoenolpyruvate carboxykinase activity and glycogen depletion, which occurs 5h after the injection of nicotinic acid, the gluconeogenic capacity of liver is low and considerably less than the values found in rats starved for 48h. 4. When the livers of well-fed rats are perfused in the presence of low concentrations of glucose, the activity of phosphoenolpyruvate carboxykinase significantly increases compared with the control. 5. This increase is not related to the glycogen content, but seems to be also the result of synthesis of the enzyme de novo, since this effect is counteracted by previous treatment with cycloheximide or actinomycin D. 6. Phosphoenolpyruvate carboxykinase activity is not increased in the presence of low concentrations of circulating glucose when 40 mM-imidazole (an activator of phosphodiesterase) is added to the perfusion medium. 7. Addition of dibutyryl cyclic AMP to the perfusion medium results in an increase in phosphoenolpyruvate carboxykinase activity, in spite of the presence of normal concentrations of circulating glucose. On the other hand, the concentration of cyclic AMP in the liver increases when that of glucose in the medium is low. 8. These results suggest that, in the absence of hormonal factors, the regulation of phosphoenolpyruvate carboxykinase can be accomplished by glucose itself, inadequate concentrations of it resulting in the induction of the enzyme. The mediator in this regulation, as in hormonal regulation, seems to be cyclic AMP. PMID:173301

  15. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect

    Not Available

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  16. Magnetic Structure of Backarc Spreading Axis with Hydrothermal Vents; the Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Mochizuki, N.; Honsho, C.; Szitkar, F.; Dyment, J.; Nakamura, K.

    2012-12-01

    Seafloor hydrothermal systems are important in relation to global heat and chemical fluxes as well as habitat of microbial communities. The substantial variation of hydrothermal systems in various tectonic settings has important implications for the magnetic structure of oceanic crust. It has been very difficult to detect the geophysical signature of hydrothermal systems from sea-surface data because the small scale of hydrothermal systems is below the limit of resolution. The advance of near-bottom survey methods using a submersible, deep-tow, ROV and AUV has made possible high-resolution geophysical mapping around hydrothermal areas. Near-bottom magnetic surveys can provide direct information on the magnetization of the shallower oceanic crust, implying hydrothermal alteration both in active and fossil vent sites. Near-bottom three component magnetic measurements on submersible Shinkai 6500 were carried out at hydrothermal fields in the Southern Mariana Trough, a slow spreading backarc basin. Fourteen dive surveys were conducted during cruises YK11-10 and YK10-11. We investigated the magnetic structure of four hydrothermal systems located at on- and off-axis to clarify how the geophysical and geological setting controls the fluid circulation at small scale. Recent researches at slow spreading ridges showed a relationship between crustal magnetic structure and host rock around hydrothermal vents (e.g. Tivey and Dyment, 2010), but no observation at backarc spreading axis has been reported so far. We carefully corrected the effects of induced and permanent magnetizations of the submersible by applying the method of Isezaki [1986] with dumped least-square method (Honsho et al., 2009). After subtracting the IGRF from the corrected observed data, we obtained geomagnetic vector anomalies in geographical coordinate. For three transects of the axis, we applied three methods; 2D inversion technique (Parker and Huestis, 1972), 2D forward modeling technique (Honsho et al

  17. Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Lackschewitz, K. S.; Devey, C. W.; Stoffers, P.; Botz, R.; Eisenhauer, A.; Kummetz, M.; Schmidt, M.; Singer, A.

    2004-11-01

    During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ˜250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ˜300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly

  18. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng

    2016-11-01

    Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.

  19. Hydrothermal synthesis of Ag@TiO2-Fe3O4 nanocomposites using sonochemically activated precursors: magnetic, photocatalytic and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Bokare, Anuja; Singh, Hema; Pai, Mrinal; Nair, Roopa; Sabharwal, Sushma; Athawale, Anjali A.

    2014-12-01

    Fe3O4-TiO2 nanocomposites have been synthesized by hydrothermal method using sonochemically activated precursors. X-ray diffraction analysis of the samples reveals the formation of pure phase composites. The optical properties of the composites are superior to TiO2 as noted from the red shift in the diffused reflectance spectra of the composites. The presence of nanocubes of Fe3O4, nanospheres of TiO2 and heterojunctions of the two in the composite samples have been observed in transmission electron micrographs. The magnetic properties of the samples were determined with the help of vibrating sample magnetometry (VSM) and magnetic force microscopy (MFM). The photocatalytic activity of the samples was investigated in terms of degradation of methyl orange (MO) dye. The composites could be easily separated from the reaction mixture after photocatalysis due to their magnetic behaviour. However, the photocatalytic activity of the composites was observed to be lower compared to bare TiO2. The composite (15% Fe3O4-TiO2) when modified by coating it with Ag showed enhanced photocatalytic activity. Further, the antibacterial activities of the samples were also examined using E. coli as a model organism. Positive results were obtained only for the Ag coated composite with lower MIC (minimum inhibition concentration) values.

  20. Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37 degrees N).

    PubMed

    Sarradin, Pierre-Marie; Waeles, Matthieu; Bernagout, Solène; Le Gall, Christian; Sarrazin, Jozée; Riso, Ricardo

    2009-01-01

    The objective of this study was to determine the concentrations of different fractions of dissolved copper (after filtration at 0.45 microm) along the cold part of the hydrothermal fluid-seawater mixing zone on the Tour Eiffel edifice (MAR). Dissolved copper was analyzed by stripping chronopotentiometry (SCP) after chromatographic C(18) extraction. Levels of total dissolved copper (0.03 to 5.15 microM) are much higher than those reported for deep-sea oceanic waters but in accordance with data previously obtained in this area. Speciation measurements show that the hydrophobic organic fraction (C(18)Cu) is very low (2+/-1%). Dissolved copper is present mainly as inorganic and hydrophilic organic complexes (nonC(18)Cu). The distribution of copper along the pH gradient shows the same pattern for each fraction. Copper concentrations increase from pH 5.6 to 6.5 and then remain relatively constant at pH>6.5. Concentrations of oxygen and total sulphides demonstrate that the copper anomaly corresponds to the transition between suboxic and oxic waters. The increase of dissolved copper should correspond to the oxidative redissolution of copper sulphide particles formed in the vicinity of the fluid exit. The presence of such a secondary dissolved copper source, associated with the accumulation of metal sulphide particles, could play a significant role in the distribution of fauna in the different habitats available at vents.

  1. Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework

    NASA Astrophysics Data System (ADS)

    Ay, Burak; Yildiz, Emel; Felts, Ashley C.; Abboud, Khalil A.

    2016-12-01

    A novel metal-organic framework, (H2pip)n[Sm2(pydc)4(H2O)2]n (1) (H2pydc=2,6-pyridinedicarboxylic acid, H2pip=piperazine) has been synthesized under hydrothermal conditions and characterized by the elemental analysis, inductively coupled plasma (ICP) spectrometer, fourier transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA), single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). The structure of 1 was determined to be three-dimensional, linked along Sm-O-Sm chains. The asymmetric unit consisted of one singly anionic fragment consisting of Sm(III) coordinated to two H2pydc ligands and one water, and one half of a protonated H2pip, which sits on an inversion center. 1 exhibited luminescence emission bands at 534 nm at room temperature when excited at 440 nm. Its thermal behavior and catalytic performance were investigated and the selectivity was measured as 100% for the oxidation of thymol to thymoquinone.

  2. Microbial sulfate reduction within the Iheya North subseafloor hydrothermal system constrained by quadruple sulfur isotopes

    NASA Astrophysics Data System (ADS)

    Aoyama, Shinnosuke; Nishizawa, Manabu; Takai, Ken; Ueno, Yuichiro

    2014-07-01

    support the significant contribution of subseafloor microbial sulfate reduction, potentially corresponding to approximately 20% of the total sulfide mineral formation. Active microbial sulfate reduction below the seafloor may be promoted by significant input of seawater to the habitats through the vigorous hydrothermal circulation in vicinity of Iheya North field.

  3. Impacts of multi-scale solar activity on climate. Part I: Atmospheric circulation patterns and climate extremes

    NASA Astrophysics Data System (ADS)

    Weng, Hengyi

    2012-07-01

    The impacts of solar activity on climate are explored in this two-part study. Based on the principles of atmospheric dynamics, Part I propose an amplifying mechanism of solar impacts on winter climate extremes through changing the atmospheric circulation patterns. This mechanism is supported by data analysis of the sunspot number up to the predicted Solar Cycle 24, the historical surface temperature data, and atmospheric variables of NCEP/NCAR Reanalysis up to the February 2011 for the Northern Hemisphere winters. For low solar activity, the thermal contrast between the low- and high-latitudes is enhanced, so as the mid-latitude baroclinic ultra-long wave activity. The land-ocean thermal contrast is also enhanced, which amplifies the topographic waves. The enhanced mid-latitude waves in turn enhance the meridional heat transport from the low to high latitudes, making the atmospheric "heat engine" more efficient than normal. The jets shift southward and the polar vortex is weakened. The Northern Annular Mode (NAM) index tends to be negative. The mid-latitude surface exhibits large-scale convergence and updrafts, which favor extreme weather/climate events to occur. The thermally driven Siberian high is enhanced, which enhances the East Asian winter monsoon (EAWM). For high solar activity, the mid-latitude circulation patterns are less wavy with less meridional transport. The NAM tends to be positive, and the Siberian high and the EAWM tend to be weaker than normal. Thus the extreme weather/climate events for high solar activity occur in different regions with different severity from those for low solar activity. The solar influence on the midto high-latitude surface temperature and circulations can stand out after removing the influence from the El Niño-Southern Oscillation. The atmospheric amplifying mechanism indicates that the solar impacts on climate should not be simply estimated by the magnitude of the change in the solar radiation over solar cycles when it is

  4. Antimicrobial activity of various immunomodulators: independence from normal levels of circulating monocytes and natural killer cells. Technical report

    SciTech Connect

    Morahan, P.S.; Dempsey, W.L.; Volkman, A.; Connor, J.

    1986-01-01

    The effects of /sup 89/Sr treatment on the natural host resistance of CD-1 mice and the enhancement of resistance by immunomodulators to infection with Listeria monocytogenes or herpes simplex virus type 2 (HSV-2) were determined. In the CD-1 mouse, single-dose treatment with /sup 89/Sr caused a profound decrease in the number of circulating monocytes (Mo), lymphocytes, and polymorphonuclear leukocytes (PMN) within 1 week. There was also marked functional impairment of the Mo inflammatory response, as well as markedly decreased spontaneous and activatable cytoxicity by splenic natural killer (NK) cells. Despite this profound cellular suppression, there was no significant change in natural resistance of CD-1 mice to L. monocytogenes of HSV-2 infection. Furthermore, prophylactic treatment of mice with the biologic immunomodulator Corynebacterium parvum or the synthetic immunomodulators maleic anhydride-divinyl ether or avridine in liposomes resulted in comparable enhancement of resistance in /sup 89/Sr-treated and normal mice. These data indicate that natural and immunomodulator-enhanced resistance of CD-1 mice to microbail infections do not depend on normal levels of Mo, PMN, or NK cells. The resistance enhancement may rely on activated tissue macrophages. In contrast to the early changes in circulating leukocytes, the residenet peritoneal cell populations were not markedly altered until after day 30. There then was a distinct decline in lymphocytes and a gradual decline in activated tissue macrophages.

  5. Effects of TiO2 content on the microstructure, mechanical properties and photocatalytic activity of three dimensional TiO2-Graphene composite prepared by hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Shi, Xiangru; Chen, Jian; Wang, Wenxiu; Wang, Zengmei; Zhang, Yao; Guo, Xinli

    2016-07-01

    A series of three dimensional (3D) porous TiO2-graphene (TGR) hydrogel samples with different mass ratio of graphene to TiO2 were obtained using a one-step hydrothermal method. Their microstructure, mechanical properties, and photocatalytic activity were investigated. The TGR samples exhibited well defined interconnected 3D porous network microstructure and good mechanical strength. Moreover, the pore size and the compressive strength could be easily adjusted by changing the content of TiO2, showing a decreasing tendency with the increase of the relative content of TiO2. The results of the photodegradation of methylene blue indicated that the photocatalytic activity of the TGR samples can be significantly enhanced, compared to the pure TiO2 nanoparticles. The TGR sample also showed good durability and reusability. The mechanisms resulting in the improvement of photocatalytic activity were investigated with DRS, PL spectra, and adsorption experiment under dark conditions. It was found that adsorption is the dominant factor for the enhanced photocatalytic activity.

  6. Microwave assisted hydrothermal synthesis of Ag/AgCl/WO{sub 3} photocatalyst and its photocatalytic activity under simulated solar light

    SciTech Connect

    Adhikari, Rajesh; Gyawali, Gobinda; Sekino, Tohru; Wohn Lee, Soo

    2013-01-15

    Simulated solar light responsive Ag/AgCl/WO{sub 3} composite photocatalyst was synthesized by microwave assisted hydrothermal process. The synthesized powders were characterized by X-Ray Diffraction (XRD) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and BET surface area analyzer to investigate the crystal structure, morphology, chemical composition, optical properties and surface area of the composite photocatalyst. This photocatalyst exhibited higher photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation. Dye degradation efficiency of composite photocatalyst was found to be increased significantly as compared to that of the commercial WO{sub 3} nanopowder. Increase in photocatalytic activity of the photocatalyst was explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the composite photocatalyst. Highlights: Black-Right-Pointing-Pointer Successful synthesis of Ag/AgCl/WO{sub 3} nanocomposite. Black-Right-Pointing-Pointer Photocatalytic experiment was performed under simulated solar light. Black-Right-Pointing-Pointer Nanocomposite photocatalyst was very active as compared to WO{sub 3} commercial powder. Black-Right-Pointing-Pointer SPR effect due to Ag nanoparticles enhanced the photocatalytic activity.

  7. Controls on Martian Hydrothermal Systems: Application to Valley Network and Magnetic Anomaly Formation

    NASA Technical Reports Server (NTRS)

    Harrison, Keith P.; Grimm, Robert E.

    2002-01-01

    Models of hydrothermal groundwater circulation can quantify limits to the role of hydrothermal activity in Martian crustal processes. We present here the results of numerical simulations of convection in a porous medium due to the presence of a hot intruded magma chamber. The parameter space includes magma chamber depth, volume, aspect ratio, and host rock permeability and porosity. A primary goal of the models is the computation of surface discharge. Discharge increases approximately linearly with chamber volume, decreases weakly with depth (at low geothermal gradients), and is maximized for equant-shaped chambers. Discharge increases linearly with permeability until limited by the energy available from the intrusion. Changes in the average porosity are balanced by changes in flow velocity and therefore have little effect. Water/rock ratios of approximately 0.1, obtained by other workers from models based on the mineralogy of the Shergotty meteorite, imply minimum permeabilities of 10(exp -16) sq m2 during hydrothermal alteration. If substantial vapor volumes are required for soil alteration, the permeability must exceed 10(exp -15) sq m. The principal application of our model is to test the viability of hydrothermal circulation as the primary process responsible for the broad spatial correlation of Martian valley networks with magnetic anomalies. For host rock permeabilities as low as 10(exp -17) sq m and intrusion volumes as low as 50 cu km, the total discharge due to intrusions building that part of the southern highlands crust associated with magnetic anomalies spans a comparable range as the inferred discharge from the overlying valley networks.

  8. Methanocaldococcus bathoardescens sp. nov., a hyperthermophilic methanogen isolated from a volcanically active deep-sea hydrothermal vent.

    PubMed

    Stewart, Lucy C; Jung, Jong-Hyun; Kim, You-Tae; Kwon, Soon-Wo; Park, Cheon-Seok; Holden, James F

    2015-04-01

    A hyperthermophilic methanogen, strain JH146(T), was isolated from 26 °C hydrothermal vent fluid emanating from a crack in basaltic rock at Marker 113 vent, Axial Seamount in the northeastern Pacific Ocean. It was identified as an obligate anaerobe that uses only H2 and CO2 for growth. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain is more than 97% similar to other species of the genus Methanocaldococcus . Therefore, overall genome relatedness index analyses were performed to establish that strain JH146(T) represents a novel species. For each analysis, strain JH146(T) was most similar to Methanocaldococcus sp. FS406-22, which can fix N2 and also comes from Marker 113 vent. However, strain JH146(T) differs from strain FS406-22 in that it cannot fix N2. The average nucleotide identity score for strain JH146(T) was 87%, the genome-to-genome direct comparison score was 33-55% and the species identification score was 93%. For each analysis, strain JH146(T) was below the species delineation cut-off. Full-genome gene synteny analysis showed that strain JH146(T) and strain FS406-22 have 97% genome synteny, but strain JH146(T) was missing the operons necessary for N2 fixation and assimilatory nitrate reduction that are present in strain FS406-22. Based on its whole genome sequence, strain JH146(T) is suggested to represent a novel species of the genus Methanocaldococcus for which the name Methanocaldococcus bathoardescens is proposed. The type strain is JH146(T) ( = DSM 27223(T) = KACC 18232(T)).

  9. Different TDM/CH4 hydrothermal plume signatures: TAG site at 26N and serpentinized ultrabasic diapir at 15 degrees 05'N on the Mid-Atlantic ridge

    SciTech Connect

    Charlou, J.L.; Bougault, H. ); Appriou, P. ); Nelsen, T.; Rona, P. )

    1991-11-01

    As a part of the 1988 NOAA VENTS Program, CH{sub 4} and Mn tracers were used to identify and compare hydrothermal plumes found above the TAG Field (26{degrees}N) and in the rift valley at 15{degrees}N close to the eastern intersection of the ridge axis with the 15{degrees}20'N Fracture Zone at the Mid-Atlantic Ridge (MAR). Active hydrothermal venting was confirmed at TAG, based on elevated concentrations of total dissolved Mn (TDM up to 30 nmol/kg), high CH{sub 4} concentrations (up to 200 nL/L), and elevated nephelometry signals. Plumes of a different composition were identified at 15{degree}N with high CH{sub 4} concentrations (up to 400 nL/L), low total dissolved Mn concentrations (TDM < 1 nmol/kg) and no significant nephelometry signal. The different properties of these tracers and the different tracer ratios can be used to deduce vent fluid characteristics and compare one hydrothermal area to another. TDM/CH{sub 4} and Nephel/CH{sub 4} ratios at TEG are of the same order of magnitude as those observed at other spreading axis hydrothermal fields. At 15{degrees}N, the low TDM/CH{sub 4} ratio provides evidence of fluid circulation into ultrabasic rocks and offers a potentially useful and single method of exploring for hydrothermal activity associated with serpentinization. Mantle degassing through hydrothermal activity associated with serpentinization is an important process with respect to chemical and thermal exchanges between the upper mantle and the ocean. Different ratios of hydrothermal tracers (i.e., TDM/CH{sub 4}) provide a useful framework for identifying subseafloor processes along mid-oceanic ridges.

  10. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity.

    PubMed

    Wang, Dong-Hong; Jia, Li; Wu, Xi-Lin; Lu, Li-Qiang; Xu, An-Wu

    2012-01-21

    N-doped TiO(2) nanoparticles modified with carbon (denoted N-TiO(2)/C) were successfully prepared by a facile one-pot hydrothermal treatment in the presence of L-lysine, which acts as a ligand to control the nanocrystal growth and as a source of nitrogen and carbon. As-prepared nanocomposites were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), electron paramagnetic resonance (EPR) spectra, and N(2) adsorption-desorption analysis. The photocatalytic activities of the as-prepared photocatalysts were measured by the degradation of methyl orange (MO) under visible light irradiation at λ≥ 400 nm. The results show that N-TiO(2)/C nanocomposites increase absorption in the visible light region and exhibit a higher photocatalytic activity than pure TiO(2), commercial P25 and previously reported N-doped TiO(2) photocatalysts. We have demonstrated that the nitrogen was doped into the lattice and the carbon species were modified on the surface of the photocatalysts. N-doping narrows the band gap and C-modification enhances the visible light harvesting and accelerates the separation of the photo-generated electrons and holes. As a consequence, the photocatalytic activity is significantly improved. The molar ratio of L-lysine/TiCl(4) and the pH of the hydrothermal reaction solution are important factors affecting the photocatalytic activity of the N-TiO(2)/C; the optimum molar ratio of L-lysine/TiCl(4) is 8 and the optimum pH is ca. 4, at which the catalyst exhibits the highest reactivity. Our findings demonstrate that the as-obtained N-TiO(2)/C photocatalyst is a better and more promising candidate than well studied N-doped TiO(2) alternatives as visible light photocatalysts for

  11. Synergistic effect of 5-HT1A and σ1 receptor activation on prefrontal dopaminergic transmission under circulating steroid deficiency.

    PubMed

    Hiramatsu, Naoki; Ago, Yukio; Hasebe, Shigeru; Nishimura, Akira; Mori, Kazuya; Takuma, Kazuhiro; Matsuda, Toshio

    2013-12-01

    Serotonin (5-HT)1A and σ1 receptors have been implicated in psychiatric disorders. We previously found that combined 5-HT reuptake inhibition and σ1 receptor activation has a synergistic effect on prefrontal dopaminergic transmission in adrenalectomized/castrated mice lacking circulating steroid hormones. In the present study, we examined the mechanisms underlying this neurochemical synergism. Systemic administration of fluvoxamine, a selective 5-HT reuptake inhibitor with agonistic activity towards the σ1 receptor, increased prefrontal dopamine (DA) levels, and adrenalectomy/castration potentiated this fluvoxamine-induced increase in DA. This enhancement of DA release was blocked by WAY100635 (a 5-HT1A receptor antagonist), but not by ritanserin (a 5-HT2 receptor antagonist), azasetron (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). Individually, osemozotan (a 5-HT1A receptor agonist) and (+)-SKF-10,047 (a σ1 receptor agonist) did not alter prefrontal monoamine levels in adrenalectomized/castrated and sham-operated mice differentially. In contrast, co-administration of these drugs increased prefrontal DA levels to a greater extent in adrenalectomized/castrated mice than in sham-operated animals. Furthermore, co-administration of osemozotan and (+)-SKF-10,047 increased expression of the neuronal activity marker c-Fos in the ventral tegmental area of adrenalectomized/castrated mice, but not in sham-operated animals. These findings suggest that combined activation of 5-HT1A and σ1 receptors has a synergistic effect on prefrontal dopaminergic transmission under circulating steroid deficiency, and that this interaction may play an important role in the regulation of the prefrontal DA system.

  12. Thermal and tectonic history in the steamboat hills geothermal field: Determination of the age of active hydrothermal activity by application of AFTA{sup {trademark}} (apatite fission track analysis)

    SciTech Connect

    Duddy, I.R.; Green, P.F.; Kamp, P.C. van de

    1995-12-31

    This study, in the Steamboat Hills area of the Carson segment of the northern Walker Lane Belt, was initiated to provide a regional thermal history framework and to investigate the age of the active local hydrothermal system. Seven outcrop samples, representing ?Cretaceous granodiorite and ?Triassic Peavine sequence metamorphosed volcanic flow and volcaniclastic rocks plus six samples of Peavine rocks in vertical sequence from an 0.8 km deep geothermal corehole have been analyzed using AFTA (apatite fission track analysis) and zircon fission track analysis.

  13. Hydrothermal synthesis of graphitic carbon nitride-BiVO4 composites with enhanced visible light photocatalytic activities and the mechanism study

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Shi, Weilong; Lin, Xue; Che, Guangbo

    2014-11-01

    Novel graphitic carbon nitride (C3N4) and bismuth vanadate (BiVO4) composite photocatalysts were successfully synthesized by a facile hydrothermal method. The scanning electron microscopy (SEM) revealed that an intimate interface between C3N4 and BiVO4 formed in the composites. Compared with the pure C3N4 and BiVO4, the C3N4-BiVO4 photocatalysts showed remarkably the higher photocatalytic activities in degrading rhodamine B (Rh B). The best active heterojunction proportion was 0.5C3N4-0.5BiVO4. Over this catalyst, the 100% degradation of Rh B (0.002 mmol L-1) was obtained under visible light irradiation (λ>420 nm) for 40 min. The active species in Rh B degradation were examined by adding a series of scavengers. The study on photocatalytic mechanism revealed that the electrons injected directly from the conduction band of C3N4 to that of BiVO4, resulting in the production of superoxide radical (O2•-) and hydroxyl radical (OH•) in the conduction band of BiVO4. Simultaneously, the rich holes in the valence band of g-C3N4 oxidized Rh B directly to promote the photocatalytic degradation reaction.

  14. Preparation and improved photocatalytic activity of mesoporous WS{sub 2} using combined hydrothermal-evaporation induced self-assembly method

    SciTech Connect

    Vattikuti, S.V. Prabhakar Byon, Chan Reddy, Ch. Venkata

    2016-03-15

    Highlights: • One-step method for synthesis of mesoporous WS{sub 2} was proposed. • Role of CTAB surfactant on formation of mesoporous WS{sub 2} was elucidated. • Possible growth mechanism of the mesoporous structure is also reported. • 0.1 wt% mesoporous WS{sub 2} catalyst exhibited high photocatalytic activity under UV light. - Abstract: In this paper, we report mesoporous WS{sub 2} nanosheets with a crystalline network that were synthesized using CTAB as a structure-directing agent via self-assembly induced by hydrothermal and thermal evaporation. Powder X-ray diffraction, Raman spectra, and high-resolution X-ray photoelectron spectroscopy results confirmed the formation of WS{sub 2} structures. Scanning electron microscopy and transmission electron microscopy were used to observe the as-prepared mesoporous frameworks. The mesoporous WS{sub 2} nanosheets have a surface area of 197 m{sup 2} g{sup −1}. A possible growth mechanism is reported for these mesoporous WS{sub 2} nanosheets. The mesoporous WS{sub 2} nanosheets demonstrate high photocatalytic activity. Among different concentrations, 0.1 wt% mesoporous WS{sub 2} shows superior catalytic activity compared to pristine WS{sub 2} nanosheets.

  15. Complement activation on platelets correlates with a decrease in circulating immature platelets in patients with immune thrombocytopenic purpura.

    PubMed

    Peerschke, Ellinor I B; Andemariam, Biree; Yin, Wei; Bussel, James B

    2010-02-01

    The role of the complement system in immune thrombocytopenic purpura (ITP) is not well defined. We examined plasma from 79 patients with ITP, 50 healthy volunteers, and 25 patients with non-immune mediated thrombocytopenia, to investigate their complement activation/fixation capacity (CAC) on immobilized heterologous platelets. Enhanced CAC was found in 46 plasma samples (59%) from patients with ITP, but no samples from patients with non-immune mediated thrombocytopenia. Plasma from healthy volunteers was used for comparison. In patients with ITP, an enhanced plasma CAC was associated with a decreased circulating absolute immature platelet fraction (A-IPF) (<15 x 10(9)/l) (P = 0.027) and thrombocytopenia (platelet count < 100 x 10(9)/l) (P = 0.024). The positive predictive value of an enhanced CAC for a low A-IPF was 93%, with a specificity of 77%. The specificity and positive predictive values increased to 100% when plasma CAC was defined strictly by enhanced C1q and/or C4d deposition on test platelets. Although no statistically significant correlation emerged between CAC and response to different pharmacological therapies, an enhanced response to splenectomy was noted (P < 0.063). Thus, complement fixation may contribute to the thrombocytopenia of ITP by enhancing clearance of opsonized platelets from the circulation, and/or directly damaging platelets and megakaryocytes.

  16. Activation of circulated immune cells and inflammatory immune adherence are involved in the whole process of acute venous thrombosis

    PubMed Central

    Wang, Le-Min; Duan, Qiang-Lin; Yang, Fan; Yi, Xiang-Hua; Zeng, Yu; Tian, Hong-Yan; Lv, Wei; Jin, Yun

    2014-01-01

    Objective: To investigate localization and distribution of integrin subunit β1, β2 and β3 and morphological changes of ligand-recepter binding in thrombi of acute pulmonary embolism (PE) patients and explore activation of circulated immune cells, inflammatory immune adherence and coagulation response in acute venous thrombosis. Methods: Thrombi were collected from patients with acute PE. Immunohistochemistry was done to detect the expression and distribution of integrin β1, β2 and β3 in cells within thrombi, and ligands of integrin subunit β1, β2 and β3 were also determined by immunohistochemistry within the thrombi. Results: 1) Acute venous thrombi were red thrombi composed of skeletons and filamentous mesh containing large amounts of red blood cells and white blood cells; 2) Integrin subunit β1, β2 and β3 were expressed on lymphocytes, neutrophils and platelets; 3) No expression of integrin β1 ligands: Laminin, Fibronectin, Collagen I or Collagen-II on lymphocytes; integrin β2 ligands including ICAM, factor X and iC3b are distributed on neutrophils, and ligand fibrinogen bound to neutrophils; integrin β3 was expressed on platelets which form the skeleton of thrombi and bound to fibrinogen to construct mesh structure; 4) Factor Xa was expressed on the filamentous mesh; 5) Filamentous mesh was fully filled with red blood cell dominant blood cells. Conclusion: Acute venous thrombosis is an activation process of circulated lymphocytes, neutrophils and platelets mainly, and a whole process including integrin subunit β2 and β3 binding with their ligands. Activation of immune cells, inflammatory immune adherence and coagulation response are involved in the acute venous thrombosis. PMID:24753749

  17. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kavithaa, Krishnamoorthy; Paulpandi, Manickam; Ponraj, Thondhi; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni

    2016-03-01

    Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as

  18. Circulating myeloid-derived suppressor cells predict disease activity and treatment response in patients with immune thrombocytopenia

    PubMed Central

    Zhou, J.; Zhou, Y.; Wen, J.; Sun, X.; Zhang, X.

    2017-01-01

    Immune thrombocytopenia (ITP) is a disease characterized by isolated thrombocytopenia. Abnormal effector T cell activation is an important mechanism in the pathogenesis of ITP. Regulatory T cells (Treg) have a strong immunosuppressive function for T cell activation and their importance in the pathophysiology and clinical treatment of ITP has been confirmed. Myeloid-derived suppressor cells (MDSCs) are other immunosuppressive cells, which can also suppress T cell activation by secreting arginase, iNOS and ROS, and are essential for Treg cells’ differentiation and maturation. Therefore, we speculate that MDSCs might also be involved in the immune-dysregulation mechanism of ITP. In this study, we tested MDSCs and Treg cells in peripheral blood samples of twenty-five ITP patients and ten healthy donors. We found that MDSCs and Treg cells decreased simultaneously in active ITP patients. Relapsed ITP patients showed lower MDSCs levels compared with new patients. All patients received immunosuppressive treatment including dexamethasone alone or in combination with intravenous immune globulin. We found that MDSCs’ level after treatment correlated with platelet recovery. Our study is the first that focused on MDSCs’ role in ITP. Based on our results, we concluded that circulating MDSCs could predict disease activity and treatment response in ITP patients. This preliminary conclusion indicates a substantial significance of MDSCs in the pathophysiology and clinical treatment of ITP, which deserves further investigation. PMID:28225866

  19. Enhanced photocatalytic activity of hydrothermally grown BiFeO3 nanostructures and role of catalyst recyclability in photocatalysis based on magnetic framework

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, Radhalayam; Muneeswaran, M.; Vanga, Pradeep Reddy; Ashok, M.; Giridharan, N. V.

    2016-01-01

    The photocatalytic activity of bismuth ferrite (BiFeO3: BFO) nanostructures on the degradation of methyl violet 2B (MV) is demonstrated for the first time under sunlight irradiation with the efficiency of 97.6 %. The photocatalytic BFO nanostructures have been successfully synthesized through hydrothermal method. Initial characterization of BFO nanostructures such as structural, functional, morphological, optical, and magnetic properties has been performed. From the X-ray diffraction analysis, the synthesized nanostructures are found to have rhombohedral structure with R3c space group confirmed by Rietveld analysis. The formation of perovskite structure is confirmed through FTIR analysis. Nanostructures were found to have rod-like morphology with the length between 15 and 20 nm and diameter of about 2-3 nm measured through HR-TEM. The surface area and N2 adsorption-desorption isotherms have been preformed through BET analysis. The optical band gap investigation shows that the E g value of BFO is about 2.1 eV. The magnetization measurements revealed a weak ferromagnetic behavior at room temperature, and the same has been confirmed through ABK plot. The photocatalytic activity of BFO is tested on the degradation of harmful MV dye under the irradiation of direct sunlight, influences of oxygen, and hydrogen peroxide. The photodecomposition kinetics of MV has been described through Langmuir-Hinshelwood model. The stability and recyclability of catalyst have also been studied.

  20. Hydrothermal fabrication of multi-functional Eu3+ and Tb3+ co-doped BiPO4: Photocatalytic activity and tunable luminescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Huang, Hongwei; Quan, Chaoming; Tian, Na; Zhang, Yihe

    2016-01-01

    We demonstrated for first time the tunable photoluminescence (PL) properties and photocatalytic activity of the Tb3+ and Eu3+ co-doped BiPO4 assemblies. They are fabricated via a facile hydrothermal approach. Through co-doping of Eu3+ and Tb3+ ions and changing the doping ratio, the emission color of the co-doped BiPO4 phosphors can be tuned precisely from green to yellow and red. Meanwhile, a very efficient energy transfer from Tb3+ to Eu3+ can be observed. Fascinatingly, a warmwhite color has been realized in the co-doped sample by tuning the ratio of Tb3+/Eu3+ to a certain value as displayed in the CIE chromaticity diagram. The doped BiPO4 samples also exhibit significantly enhanced photocatalytic activity compared to the pristine BiPO4 pertaining to Rhodamine (RhB) degradation under UV light. This enhancement should be attributed to the trapping electron effect induced by ion doping that endows BiPO4 with high separation of photoinduced electron-hole pairs, thereby greatly promoting the photocatalytic reactivity. It was corroborated by the electrochemical impedance spectra (EIS). Moreover, the crystal structure, microstructure and optical properties of as-prepared samples were investigated in details.

  1. Rapid microwave hydrothermal synthesis of ZnGa2O4 with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Li, Danzhen; Zhang, Wenjuan; Chen, Zhixin; Huang, Hanjie; Li, Wenjuan; He, Yunhui; Fu, Xianzhi

    2012-06-01

    ZnGa2O4 was synthesized from Ga(NO3)3 and ZnCl2 via a rapid and facile microwave-assisted hydrothermal method. The photocatalytic properties of the as-prepared ZnGa2O4 were evaluated by the degradation of pollutants in air and aqueous solution under ultraviolet (UV) light illumination. The results demonstrated that ZnGa2O4 had exhibited efficient photocatalytic activities higher than that of commercial P25 (Degussa Co.) in the degradation of benzene, toluene, and ethylbenzene, respectively. In the liquid phase degradation of dyes (methyl orange, Rhodamine B, and methylene blue), ZnGa2O4 has also exhibited remarkable activities higher than that of P25. After 32 min of UV light irradiation, the decomposition ratio of methyl orange (10 ppm, 150 mL) over ZnGa2O4 (0.06 g) was up to 99%. The TOC tests revealed that the mineralization ratio of MO (10 ppm, 150 mL) was 88.1% after 90 min of reaction. A possible mechanism of the photocatalysis over ZnGa2O4 was also proposed.

  2. Hydrothermal Synthesis g-C3N4/Nano-InVO4 Nanocomposites and Enhanced Photocatalytic Activity for Hydrogen Production under Visible Light Irradiation.

    PubMed

    Hu, Bo; Cai, Fanpeng; Chen, Tianjun; Fan, Mingshan; Song, Chengjie; Yan, Xu; Shi, Weidong

    2015-08-26

    We synthesized g-C3N4/nano-InVO4 heterojunction-type photocatalyts by in situ growth of InVO4 nanoparticles onto the surface of g-C3N4 sheets via a hydrothermal process. The results of SEM and TEM showed that the obtained InVO4 nanoparticles 20 nm in size dispersed uniformly on the surface of g-C3N4 sheets, which revealed that g-C3N4 sheets was probably a promising support for in situ growth of nanosize materials. The achieved intimate interface promoted the charge transfer and inhibited the recombination rate of photogenerated electron-hole pairs, which significantly improved the photocatalytic activity. A possible growth process of g-C3N4/nano-InVO4 nanocomposites was proposed based on different mass fraction of g-C3N4 content. The obtained g-C3N4/nano-InVO4 nanocomposites could achieve effective separation of charge-hole pairs and stronger reducing power, which caused enhanced H2 evolution from water-splitting compared with bare g-C3N4 sheets and g-C3N4/micro-InVO4 composites, respectively. As a result, the g-C3N4/nano-InVO4 nanocomposite with a mass ratio of 80:20 possessed the maximum photocatalytic activity for hydrogen production under visible-light irradiation.

  3. Hydrothermal Manganese Mineralization Near the Samoan Hotspot

    NASA Astrophysics Data System (ADS)

    Hein, J. R.; Staudigel, H.; Koppers, A.; Hart, S. R.; Dunham, R.

    2006-12-01

    The thickest beds of hydrothermal manganese oxides recovered to date from the global ocean were collected from a volcanic cone in the south Pacific. In April 2005, samples were dredged aboard the R.V. Kilo Moana from a volcanic cone on the lower flank of Tulaga seamount (about 2,700 m water depth; 14° 39.222' S; 170° 1.730' W), located 115 km SW of Vailulu'u, the volcanically and hydrothermally active center of the Samoan hotspot. Additional hydrothermal manganese samples were collected off Ofu Island (dredge Alia 107), 72 km to the WSW of Vailulu'u. Manganese-oxide beds up to 9 cm thick are composed of birnessite and 10 Å manganates. Some layers consist of Mn-oxide columnar structures 4 cm long and 1 cm wide, which have not been described previously. The mean Mn and Fe contents of 18 samples are 51 weight percent and 0.76 weight percent, respectively. Elevated concentrations of Li (mean 0.11 wt. percent) are indicators of a hydrothermal origin, and distinguishes these samples, along with the high Mn and low Fe contents, from hydrogenetic Fe-Mn crusts. Other enriched elements include Ba (mean 0.14 percent), Cu (249 ppm), Mo (451 ppm), Ni (400 ppm), Zn (394 ppm), V (214 ppm), and W (132 ppm). Chondrite-normalized REE patterns show large negative Ce anomalies and LREE enrichments, both characteristic of hydrothermal Mn deposits. Small negative Eu anomalies are not typical of hydrothermal deposits and can be explained either by the absence of leaching of plagioclase by the hydrothermal fluids or by the precipitation of Eu-rich minerals, such as barite and anhydrite, at depth. The high base-metal contents indicate that sulfides are not forming deeper in the hydrothermal system or that such deposits are being leached by the ascending fluids. Textures of the thickest Mn deposits indicate that the Mn oxides formed below the seabed from ascending fluids during multiple phases of waxing and waning hydrothermal pulses. The deposits were later exposed at the seafloor by

  4. Detection of active hydrothermal vent fields in the Pescadero Basin and on the Alarcon Rise using AUV multibeam and CTD data

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Troni, G.; Clague, D. A.; Paduan, J. B.; Martin, J. F.; Thomas, H. J.; Thompson, D.; Conlin, D.; Martin, E. J.; meneses-Quiroz, E.; Nieves-Cardoso, C.; Angel Santa Rosa del Rio, M.

    2015-12-01

    The MBARI AUV D. Allan B. collected high resolution bathymetry, sidescan, and subbottom profiles along the neovolcanic zone of the Alarcon Rise and across the southern Pescadero Basin during 2012 and 2015 MBARI expeditions to the Gulf of California (GOC). The combination of high resolution multibeam bathymetry and seawater temperature data has proven effective in identifying active high temperature vent fields, as validated by inspection and sampling during ROV dives. The AUV carries a 200 kHz multibeam sonar, 110 kHz chirp sidescan sonar, a 1-6 kHz chirp subbottom profiler, and a conductivity, temperature and depth (CTD) sensor for ~17-hour duration missions. Flying at 5.4 km/hr at 50 m altitude, the processed AUV bathymetry has a 0.1 m vertical precision and a 1 m lateral resolution. Chimneys taller than 1.5 m are sufficiently distinctive to allow provisional identification. The CTD temperature data have a nominal 0.002°C accuracy. Following calculation of potential temperature and correcting for average local variation of potential temperature with depth, anomalies greater than 0.05 °C can be reliably identified using a spike detection filter. MBARI AUV mapping surveys are typically planned using a 150 m survey line spacing, so the CTD data may be collected as much as 75 m away from any vent plume source. Five active high temperature vent fields were discovered in the southern GOC, with the Auka Field in the southern Pescadero Basin, and the Ja Sít, Pericú, Meyibó, and Tzab-ek Fields along the Alarcon Rise. In all five cases, hydrothermal vent chimneys are readily identifiable in the multibeam bathymetry, and temperature anomalies are observed above background variability. Other apparent hydrothermal chimneys were observed in the bathmetry that did not exhibit water temperature anomalies; most of these were visited during ROV dives and confirmed to be inactive sites. The maximum water column anomalies are 0.13°C observed above the Meyibó field and 0.25

  5. Hydrothermal Vents in Yellowstone Lake: Chemical Fluxes, Siliceous Deposits, and Collapse Structures

    NASA Astrophysics Data System (ADS)

    Shanks, W. P.; Morgan, L. A.; Balistrieri, L.; Alt, J.; Meeker, G.

    2002-12-01

    The geochemistry of Yellowstone Lake is strongly influenced by sublacustrine hydrothermal vent activity. The hydrothermal source fluid is identified using Cl and dD data on water column and sublacustrine hydrothermal vent fluid samples. Silica-rich hydrothermal deposits occur on the lake bottom near active and presently inactive hydrothermal vents. Pipe- and flange-like deposits contain cemented and recrystallized diatoms and represent pathways for hydrothermal fluid migration. Another major type of hydrothermal deposit comprises hard, porous siliceous spires up to 7 m tall that occur in 15 m of water in Bridge Bay. Bridge Bay spires are hydrothermal silica deposits formed in place by growth of chimney-like features from lake-bottom hydrothermal vents. The Cl concentrations indicate that Yellowstone Lake water is about 1 percent hydrothermal source fluid and 99 percent inflowing stream water and that the flux is about 10 percent of the total hydrothermal water flux in Yellowstone National Park. With recent swath-sonar mapping studies that show numerous new hydrothermal features, Yellowstone Lake should now be considered one of the most significant hydrothermal basins in the Park. Many lake-bottom hydrothermal vents occur in small depressions that are clearly imaged on multibeam sonar, some of which are interpreted as collapse structures based on seismic reflection data. Sediments collected from such vents show chemical evidence of leaching of 60-70 wt. percent SiO2, which may result in volume reductions up to 80 percent and provides a mechanism for vent structure formation.

  6. Isolation of circulating tumor cells by immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS) for molecular profiling.

    PubMed

    Magbanua, Mark Jesus M; Park, John W

    2013-12-01

    Circulating tumor cells (CTCs) are cells shed by the primary tumor into the blood stream capable of initiating distant metastasis. In the past decade, numerous assays have been developed to reliably detect these extremely rare cells. However, methods for purification of CTCs with little or no contamination of normal blood cells for molecular profiling are limited. We have developed a novel protocol to isolate CTCs by combining immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS). The two-part assay includes (1) immunomagnetic capture using magnetic beads conjugated to monoclonal antibody against an epithelial cell adhesion marker (EpCAM) to enrich for tumor cells; and (2) FACS analysis using EpCAM to purify tumor cells away from mononuclear cells of hematopoietic lineage. Downstream molecular analyses of single and pooled cells confirmed the isolation of highly pure CTCs with characteristics typical that of malignant cells.

  7. Preferential Elimination of Older Erythrocytes in Circulation and Depressed Bone Marrow Erythropoietic Activity Contribute to Cadmium Induced Anemia in Mice.

    PubMed

    Chatterjee, Sreoshi; Saxena, Rajiv K

    2015-01-01

    Feeding cadmium chloride (50 or 1000 ppm CdCl2 in drinking water, ad libitum) to C57BL/6 mice resulted in a significant and sustained fall in blood erythrocyte count and hemoglobin levels that started 4 and 3 weeks after the start of 50 and 1000 ppm cadmium doses respectively. A transient yet significant reticulocytosis occurred during the first 4 weeks of cadmium treatment. Using the recently developed double in vivo biotinylation (DIB) technique, turnover of erythrocyte cohorts of different age groups was simultaneously monitored in control and cadmium treated mice. A significant accumulation of younger erythrocytes and a concomitant decline in the relative proportions of older erythrocytes in circulation was observed in both 50 and 1000 ppm cadmium groups indicating that older erythrocytes were preferentially eliminated in cadmium induced anemia. A significant increase in the erythropoietin levels in plasma was seen in mice exposed to 1000 ppm cadmium. Levels of inflammatory cytokines (IL1A, IL6, TNFα, IFNγ) were however not significantly altered in cadmium treated mice. A significant increase in cellular levels of reactive oxygen species (ROS) was observed in older erythrocytes in circulation but not in younger erythrocytes. Erythropoietic activity in the bone marrows and spleens of cadmium treated mice was examined by monitoring the relative proportion of cells belonging to the erythroid line of differentiation in these organs. Erythroid cells in bone marrow declined markedly (about 30%) in mice in the 1000 ppm cadmium group but the decline was not significant in the 50 ppm cadmium group. Cells representing various stages of erythroid differentiation in bone marrow and spleen were enumerated flow cytometrically by double staining with anti-Ter119 and anti-transferrin receptor (CD71) monoclonal antibodies. Decline of erythroid cells was essentially confined to pro-erythroblast and erythroblast-A, along with a concurrent increase in the splenic erythroid

  8. Fast preparation of Bi{sub 2}GeO{sub 5} nanoflakes via a microwave-hydrothermal process and enhanced photocatalytic activity after loading with Ag nanoparticles

    SciTech Connect

    Li, Zhao-Qian; Lin, Xin-Shan; Zhang, Lei; Chen, Xue-Tai; Xue, Zi-Ling

    2012-09-15

    Highlights: ► Bi{sub 2}GeO{sub 5} nanoflakes were successfully synthesized via a microwave-assisted solution-phase approach. ► Ag nanoparticles were deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. ► Catalytic activity of the Ag/Bi{sub 2}GeO{sub 5} nanocomposite in the photo-degradation of rhodamine B (RhB) was much higher than that of pure Bi{sub 2}GeO{sub 5}. -- Abstract: In this work, a facile and rapid microwave-assisted hydrothermal route has been developed to prepare Bi{sub 2}GeO{sub 5} nanoflakes. Ag nanoparticles were subsequently deposited on the Bi{sub 2}GeO{sub 5} nanoflakes by a photoreduction procedure. The phases and morphologies of the products were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectroscopy. Photocatalytic experiments indicate that such Ag/Bi{sub 2}GeO{sub 5} nanocomposite possesses higher photocatalytic activity for RhB degradation under UV light irradiation in comparison to pure Bi{sub 2}GeO{sub 5}. The amount of Ag in the nanocomposite affects the catalytic activity, and 3 wt% Ag showed the highest photodegradation efficiency. Moreover, the catalyst remains active after four consecutive tests. The present study provides a new strategy to design composite materials with enhanced photocatalytic activity.

  9. Thermal mapping: the hydrothermal system of a volcano used to map faults and palaeostructures within stratified ground. The Yasur-Yenkahe volcanic complex (Vanuatu)

    NASA Astrophysics Data System (ADS)

    Amin Douillet, Guilhem; Peltier, Aline; Finizola, Anthony; Brothelande, Elodie; Garaebiti, Esline

    2014-05-01

    Subsurface thermal measurements provide a valuable tool to map hydrothermal-fluid release zones in activevolcanic areas. On explosive volcanoes, where ash fall layers deposit parallel to the ground surface, hydrothermal fluids are trapped in the stratification due to the variations in permeability in deposits of the different explosive phases. Thermal fluids thus travel parallel to the surface close to the ground. This horizontal flux can only escape when faults break the seals of stratification. On the Yasur-Yenkahe volcanic complex (Tanna Island, Vanuatu archipelago), fumaroles andhot springs abound, signs of upraising heat fluxes associated to a well-developed hydrothermal activity. Combinationof high resolution mapping of ground thermal anomalies with geomorphological analysis allows thecharacterization of the structural relationships between the active Yasur volcano and the Yenkahe resurgent dome. A complex system of heat release and hydrothermal fluid circulation below the Yasur-Yenkahe complex isevidenced. Circulation, though propagating vertically as a whole, is funneled by stratification. Thus, the main thermal fluid release is almost exclusively concentrated along structural limits that break the seals inducedby the stratified nature of the ground. Three types of medium/high temperature anomalies have beenevidenced: (1) broad hydrothermalized areas linked with planar stratification that favor lateral spreading,(2) linear segments that represent active faults, and (3) arcuate segments related to paleo-crater rims. Thelimit between the Yasur volcano and the Yenkahe resurgent dome is characterized by an active fault systemaccommodating both the rapid uplift of the Yenkahe block and the overloading induced by the volcanoweight. In such a setting, faults converge below the cone of Yasur, which acts as a focus for the faults. Evidenceof such structures, sometimes hidden in the landscape but detected by thermal measurements, iscritical for risk assessment of

  10. Geophysical imaging of shallow degassing in a Yellowstone hydrothermal system

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Holbrook, W. S.; Carr, B. J.; Sims, K. W. W.

    2016-12-01

    The Yellowstone Plateau Volcanic Field, which hosts over 10,000 thermal features, is the world's largest active continental hydrothermal system, yet very little is known about the shallow "plumbing" system connecting hydrothermal reservoirs to surface features. Here we present the results of geophysical investigations of shallow hydrothermal degassing in Yellowstone. We measured electrical resistivity, compressional-wave velocity from refraction data, and shear wave velocity from surface-wave analysis to image shallow hydrothermal degassing to depths of 15-30 m. We find that resistivity helps identify fluid pathways and that Poisson's ratio shows good sensitivity to saturation variations, highlighting gas-saturated areas and the local water table. Porosity and saturation predicted from rock physics modeling provide critical insight to estimate the fluid phase separation depth and understand the structure of hydrothermal systems. Finally, our results show that Poisson's ratio can effectively discriminate gas- from water-saturated zones in hydrothermal systems.

  11. Circulating ADAM17 Level Reflects Disease Activity in Proteinase-3 ANCA-Associated Vasculitis.

    PubMed

    Bertram, Anna; Lovric, Svjetlana; Engel, Alissa; Beese, Michaela; Wyss, Kristin; Hertel, Barbara; Park, Joon-Keun; Becker, Jan U; Kegel, Johanna; Haller, Hermann; Haubitz, Marion; Kirsch, Torsten

    2015-11-01

    ANCA-associated vasculitides are characterized by inflammatory destruction of small vessels accompanied by enhanced cleavage of membrane-bound proteins. One of the main proteases responsible for ectodomain shedding is disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). Given its potential role in aggravating vascular dysfunction, we examined the role of ADAM17 in active proteinase-3 (PR3)-positive ANCA-associated vasculitis (AAV). ADAM17 concentration was significantly increased in plasma samples from patients with active PR3-AAV compared with samples from patients in remission or from other controls with renal nonvascular diseases. Comparably, plasma levels of the ADAM17 substrate syndecan-1 were significantly enhanced in active AAV. We also observed that plasma-derived ADAM17 retained its specific proteolytic activity and was partly located on extracellular microparticles. Transcript levels of ADAM17 were increased in blood samples of patients with active AAV, but those of ADAM10 or tissue inhibitor of metalloproteinases 3, which inhibits ADAMs, were not. We also performed a microRNA (miR) screen and identified miR-634 as significantly upregulated in blood samples from patients with active AAV. In vitro, miR-634 mimics induced a proinflammatory phenotype in monocyte-derived macrophages, with enhanced expression and release of ADAM17 and IL-6. These data suggest that ADAM17 has a prominent role in AAV and might account for the vascular complications associated with this disease.

  12. Circulating ADAM17 Level Reflects Disease Activity in Proteinase-3 ANCA-Associated Vasculitis

    PubMed Central

    Bertram, Anna; Lovric, Svjetlana; Engel, Alissa; Beese, Michaela; Wyss, Kristin; Hertel, Barbara; Park, Joon-Keun; Becker, Jan U.; Kegel, Johanna; Haller, Hermann; Haubitz, Marion

    2015-01-01

    ANCA-associated vasculitides are characterized by inflammatory destruction of small vessels accompanied by enhanced cleavage of membrane-bound proteins. One of the main proteases responsible for ectodomain shedding is disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). Given its potential role in aggravating vascular dysfunction, we examined the role of ADAM17 in active proteinase-3 (PR3)-positive ANCA-associated vasculitis (AAV). ADAM17 concentration was significantly increased in plasma samples from patients with active PR3-AAV compared with samples from patients in remission or from other controls with renal nonvascular diseases. Comparably, plasma levels of the ADAM17 substrate syndecan-1 were significantly enhanced in active AAV. We also observed that plasma-derived ADAM17 retained its specific proteolytic activity and was partly located on extracellular microparticles. Transcript levels of ADAM17 were increased in blood samples of patients with active AAV, but those of ADAM10 or tissue inhibitor of metalloproteinases 3, which inhibits ADAMs, were not. We also performed a microRNA (miR) screen and identified miR-634 as significantly upregulated in blood samples from patients with active AAV. In vitro, miR-634 mimics induced a proinflammatory phenotype in monocyte-derived macrophages, with enhanced expression and release of ADAM17 and IL-6. These data suggest that ADAM17 has a prominent role in AAV and might account for the vascular complications associated with this disease. PMID:25788529

  13. Impact Crater Hydrothermal Niches for Life on Mars: Question of Scale

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.

    2000-01-01

    A major focus in the search for fossil life on Mars is on ancient hydrothermal deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of hydrothermal activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized hydrothermal deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential hydrothermal sites on Mars. Such a strategy is being developed for volcanogenic hydrothermal systems, and a similar strategy is needed for impact hydrothermal systems.

  14. Alkali-dependent synthesis of flower-like ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method

    NASA Astrophysics Data System (ADS)

    Sun, Lin; Shao, Rong; Chen, Zhidong; Tang, Lanqin; Dai, Yong; Ding, Jianfei

    2012-05-01

    Flower-like ZnO structures with high photocatalytic performance were successfully synthesized via a facile hydrothermal method. Alkaline environment played a critical role during the morphological transformation. When the molar ratio of Zn(CH3COO)2·2H2O to NaOH was set as 1:8 in the presence of triethanolamine (TEA), and the molar ratio of Zn2+ to TEA was 1:9, the flower-like ZnO product was produced. The hexagonal sphere-like, oblate-like, and hexagonal biprism-like samples were also obtained by adjusting the molar ratio of Zn2+ to NaOH as 1:2, 1:5 and 1:12 with the presence of invariable amount of TEA, respectively. The prepared ZnO products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. Photodegradation experiments of the samples were carried out by choosing Methylene Blue (MB) as a model target under UV irradiation with homemade photocatalytic apparatus. Among these products, flower-shaped samples exhibited the highest photocatalytic activity.

  15. Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Klubnuan, Sarunya; Suwanboon, Sumetha; Amornpitoksuk, Pongsaton

    2016-03-01

    The dependence of the crystallite size and the band tail energy on the optical properties, particle shape and oxygen vacancy of different ZnO nanostructures to catalyse photocatalytic degradation was investigated. The ZnO nanoplatelets and mesh-like ZnO lamellae were synthesized from the PEO19-b-PPO3 modified zinc acetate dihydrate using aqueous KOH and CO(NH2)2 solutions, respectively via a hydrothermal method. The band tail energy of the ZnO nanostructures had more influence on the band gap energy than the crystallite size. The photocatalytic degradation of methylene blue increased as a function of the irradiation time, the amount of oxygen vacancy and the intensity of the (0 0 0 2) plane. The ZnO nanoplatelets exhibited a better photocatalytic degradation of methylene blue than the mesh-like ZnO lamellae due to the migration of the photoelectrons and holes to the (0 0 0 1) and (0 0 0 -1) planes, respectively under the internal electric field, that resulted in the enhancement of the photocatalytic activities.

  16. In-Situ Hydrothermal Synthesis of Bi-Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Kar, Prasenjit; Maji, Tuhin Kumar; Nandi, Ramesh; Lemmens, Peter; Pal, Samir Kumar

    2017-04-01

    Bismuth containing nanomaterials recently received increasing attention with respect to environmental applications because of their low cost, high stability and nontoxicity. In this work, Bi-Bi2O2CO3 heterojunctions were fabricated by in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets via a simple hydrothermal synthesis approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to confirm the morphology of the nanosheet-like heterostructure of the Bi-Bi2O2CO3 composite. Detailed ultrafast electronic spectroscopy reveals that the in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets exhibit a dramatically enhanced electron-hole pair separation rate, which results in an extraordinarily high photocatalytic activity for the degradation of a model organic dye, methylene blue (MB) under visible light illumination. Cycling experiments revealed a good photochemical stability of the Bi-Bi2O2CO3 heterojunction under repeated irradiation. Photocurrent measurements further indicated that the heterojunction incredibly enhanced the charge generation and suppressed the charge recombination of photogenerated electron-hole pairs.

  17. The Search for Dietary Supplements to Elevate or Activate Circulating Paraoxonases

    PubMed Central

    Lou-Bonafonte, José M.; Gabás-Rivera, Clara; Navarro, María A.; Osada, Jesús

    2017-01-01

    Low levels of paraoxonase 1 (PON1) have been associated with the development of several pathological conditions, whereas high levels have been shown to be anti-atherosclerotic in mouse models. These findings suggest that PON1 could be a good surrogate biomarker. The other members of the family, namely PON2 and PON3, the role of which has been much less studied, deserve more attention. This paper provides a systematic review of current evidence concerning dietary supplements in that regard. Preliminary studies indicate that the response to dietary supplements may have a nutrigenetic aspect that will need to be considered in large population studies or in clinical trials. A wide range of plant preparations have been found to have a positive action, with pomegranate and some of its components being the best characterized and Aronia melanocarpa one of the most active. Flavonoids are found in the composition of all active extracts, with catechins and genistein being the most promising agents for increasing PON1 activity. However, some caveats regarding the dose, length of treatment, bioavailability, and stability of these compounds in formulations still need to be addressed. Once these issues have been resolved, these compounds could be included as nutraceuticals and functional foods capable of increasing PON1 activity, thereby helping with the long-term prevention of atherosclerosis and other chronic ailments. PMID:28212288

  18. Circulating plasma cholesteryl ester transfer protein activity and blood pressure tracking in the community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clinical trials using cholesteryl ester transfer protein (CETP) inhibitors to raise high-density lipoprotein cholesterol