Science.gov

Sample records for active hydrothermal field

  1. Hydrothermal Activity on ultraslow Spreading Ridge: new hydrothermal fields found on the Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Deng, X.; Lei, J.; Wang, Y.; Zhang, K.; Zhou, J.; Liu, W.

    2014-12-01

    Ultraslow spreading ridge makes up about 25% of global mid-ocean ridge length. Previous studies believed that hydrothermal activity is not widespread on the ultraslow spreading ridge owing to lower magma supply. Southwest Indian ridge (SWIR) with the spreading rate between 1.2cm/a to 1.4cm/a, represents the ultraslow spreading ridge. In 2007, Chinese Cruise (CC) 19th discovered the Dragon Flag deposit (DFD) on the SWIR, which is the first active hydrothermal field found on the ultraslow spreading ridge. In recent years, over 10 hydrothermal fields have been found on the SWIR between Indomed and Gallieni transform faults by the Chinese team. Tao et al. (2012) implied that the segment sections with excess heat from enhanced magmatism and suitable crustal permeability along slow and ultraslow ridges might be the most promising areas for searching for hydrothermal activities. In 2014, CC 30thdiscovered five hydrothermal fields and several hydrothermal anomalies on the SWIR. Dragon Horn Area (DHA). The DHA is located on the southern of segment 27 SWIR, with an area of about 400 km2. The geophysical studies indicated that the DHA belongs to the oceanic core complex (OCC), which is widespread on the slow spreading ridges (Zhao et al., 2013). The rocks, such as gabbro, serpentinized peridotite, and consolidated carbonate were collected in the DHA, which provide the direct evidence with the existence of the OCC. However, all rock samples gathered by three TV-grab stations are basalts on the top of the OCC. A hydrothermal anomaly area, centered at 49.66°E,37.80° S with a range of several kms, is detected in the DHA. It is probably comprised of several hydrothermal fields and controlled by a NW fault. New discovery of hydrothermal fields. From January to April 2014, five hydrothermal fields were discovered on the SWIR between 48°E to 50°E during the leg 2&3 of the CC 30th, which are the Su Causeway field (48.6°E, 38.1°S), Bai Causeway field (48.8°E, 37.9 °S), Dragon

  2. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault

    NASA Astrophysics Data System (ADS)

    Humphris, Susan E.; Tivey, Margaret K.; Tivey, Maurice A.

    2015-11-01

    Over the last ten years, geophysical studies have revealed that the Trans-Atlantic Geotraverse (TAG) hydrothermal field (26°08‧N on the Mid-Atlantic Ridge) is located on the hanging wall of an active detachment fault. This is particularly important in light of the recognition that detachment faulting accounts for crustal accretion/extension along a significant portion of the Mid-Atlantic Ridge, and that the majority of confirmed vent sites on this slow-spreading ridge are hosted on detachment faults. The TAG hydrothermal field is one of the largest sites of high-temperature hydrothermal activity and mineralization found to date on the seafloor, and is comprised of active and relict deposits in different stages of evolution. The episodic nature of hydrothermal activity over the last 140 ka provides strong evidence that the complex shape and geological structure of the active detachment fault system exerts first order, but poorly understood, influences on the hydrothermal circulation patterns, fluid chemistry, and mineral deposition. While hydrothermal circulation extracts heat from a deep source region, the location of the source region at TAG is unknown. Hydrothermal upflow is likely focused along the relatively permeable detachment fault interface at depth, and then the high temperature fluids leave the low-angle portion of the detachment fault and rise vertically through the highly fissured hanging wall to the seafloor. The presence of abundant anhydrite in the cone on the summit of the TAG active mound and in veins in the crust beneath provides evidence for a fluid circulation system that entrains significant amounts of seawater into the shallow parts of the mound and stockwork. Given the importance of detachment faulting for crustal extension at slow spreading ridges, the fundamental question that still needs to be addressed is: How do detachment fault systems, and the structure at depth associated with these systems (e.g., presence of plutons and/or high

  3. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  4. Interactions Between Serpentinization, Hydrothermal Activity and Microbial Community at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Delacour, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Schaeffer, P.; Frank, M.; Gutjahr, M.; Kelley, D. S.

    2008-12-01

    Seafloor investigations of slow- and ultraslow-spreading ridges have reported many occurrences of exposed mantle peridotites and gabbroic rocks on the ocean floor. Along the Mid-Atlantic Ridge, these uplifted portions of oceanic crust host high-temperature black smoker-type hydrothermal systems (e.g., Rainbow, Logatchev, Saldanha), and the more distinct low-temperature Lost City Hydrothermal Field (LCHF). Built on a southern terrace of the Atlantis Massif, the LCHF is composed of carbonate-brucite chimneys that vent alkaline and low-temperature (40-90°C) hydrothermal fluids. These fluids are related to serpentinization of mantle peridotites, which together with minor gabbroic intrusions form the basement of the LCHF. Long-lived hydrothermal activity at Lost City led to extensive seawater-rock interaction in the basement rocks, as indicated by seawater-like Sr- and mantle to unradiogenic Nd-isotope compositions of the serpentinites. These high fluid fluxes in the southern part of the massif influenced the conditions of serpentinization and have obliterated the early chemical signatures in the serpentinites, especially those of carbon and sulfur. Compared to reducing conditions commonly formed during the first stages of serpentinization, serpentinization at Lost City is characterized by relatively oxidizing conditions resulting in a predominance of magnetite, the mobilization/dissolution and oxidation of igneous sulfides to secondary pyrite, and the incorporation of seawater sulfate, all leading to high bulk-rock S-isotope compositions. The Lost City hydrothermal fluids contain high concentrations in methane, hydrogen, and low-molecular weight hydrocarbons considered as being produced abiotically. In contrast, organic compounds in the serpentinites are dominated by the occurrences of isoprenoids (pristane, phytane, and squalane), polycyclic compounds (hopanes and steranes), and higher abundances of C16 to C20 n-alkanes indicative of a marine organic input. We

  5. The Sasquatch Hydrothermal Field: Linkages Between Seismic Activity, Hydrothermal Flow, and Geology

    NASA Astrophysics Data System (ADS)

    Glickson, D. A.; Kelley, D. S.; Delaney, J. R.

    2006-12-01

    The Sasquatch Hydrothermal Field is the most northern known vent field along the central Endeavour Segment of the Juan de Fuca Ridge, located 6 km north of the Main Endeavour Field (MEF) near 47° 59.8'N, 129° 4.0'W. It was discovered in 2000, after two large earthquake swarms in June 1999 and January 2000 caused increased venting temperatures in the MEF and significant changes in volatile composition along the entire axis [Johnson et al., 2000; Lilley et al., 2003; Proskurowski et al., 2004]. From 2004-2006, Sasquatch and the surrounding axial valley were comprehensively mapped with SM2000 multibeam sonar system and Imagenex scanning sonar at a resolution of 1-5 m. These data were combined with visual imagery from Alvin and ROV dives to define the eruptive, hydrothermal, and tectonic characteristics of the field and distal areas. Based on multibeam sonar results, bathymetric relief of the segment near Sasquatch is subdued. The broad axial valley is split by a central high that rises 30-40 m above the surrounding seafloor. Simple pattern analysis of the valley shows two fundamentally different regions, distinguished by low and high local variance. Areas of low variance correspond to a collapse/drainback landscape characterized by ropy sheet flow, basalt pillars, and bathtub rings capped by intact and drained lobate flows. Areas of high variance generally correspond to three types of ridge structures: 1) faulted basalt ridges composed of truncated pillow basalt, rare massive flows, and widespread pillow talus; 2) constructional basalt ridges composed of intact pillow flow fronts; and 3) extinct sulfide ridges covered by varying amounts of sulfide talus and oxidized hydrothermal sediment. Sasquatch is located in a depression among truncated pillow ridges, and is comprised of ~10, 1-6 m high, fragile sulfide chimneys that vent fluids up to 289°C. The active field extends only ~25 x 25 m, although a linear, N-S trending ridge of nearly continuous extinct sulfide

  6. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge

    SciTech Connect

    Rona, P.A. . Atlantic Oceanographic and Meteorological Labs.); Hannington, M.D. ); Raman, C.V. ); Thompson, G.; Tivey, M.K.; Humphris, S.E. ); Lalou, C. . Lab. CNRS-CEA); Petersen, S. Aachen Univ. of Technology )

    1993-12-01

    The TAG hydrothermal field is a site of major active and inactive volcanic-hosted hydrothermal mineralization in the rift valley of the slow-spreading Mid-Atlantic Ridge at 26[degree]N. The axial high is the principal locus of present magmatic intrusions. The TAG field contains three main areas of present and past hydrothermal activity: (1) an actively venting high-temperature sulfide mound; (2) two former high-temperature vent areas; (3) a zone of low-temperature venting and precipitation of Fe and Mn oxide deposits. The volcanic centers occur at the intersections between ridge axis-parallel normal faults and projected axis-transverse transfer faults. The intersections of these active fault systems may act as conduits both for magmatic intrusions from sources beneath the axial high that build the volcanic centers and for hydrothermal upwelling that taps the heat sources. Radiometric dating of sulfide samples and manganese crusts in the hydrothermal zones and dating of sediments intercalated with pillow lava flows in the volcanic center adjacent to the active sulfide mound indicate multiple episodes of hydrothermal activity throughout the field driven by heat supplied by episodic intrusions over a period of at least 140 [times] 10[sup 3] yr. The sulfide deposits are built by juxtaposition and superposition during relatively long residence times near episodic axial heat sources counterbalanced by mass wasting in the tectonically active rift valley of the slow-spreading oceanic ridge. Hydrothermal reworking of a relict hydrothermal zone by high-temperature hydrothermal episodes has recrystallized sulfides and concentrated the first visible primary gold reported in a deposit at an oceanic ridge.

  7. Temporal monitoring and quantification of hydrothermal activity from photomosaics and 3D video reconstruction: The Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Barreyre, T.; Escartin, J.; Cannat, M.; Garcia, R. A.

    2011-12-01

    Seafloor imagery provides detailed and accurate constrain on the distribution, geometry, and nature of hydrothermal outflow, and its links to the ecosystems that they sustain. Repeated surveys allow us to evaluate the temporal variability of these systems. Geo-referenced and co-registered photomosaics of the Lucky Strike hydrothermal field (Mid Atlantic Ridge, 37°N), derived from >60,000 seafloor images acquired in 1996, 2006, 2008 and 2009, using deep-towed and ROV vehicles. Newly-developed image processing techniques, specifically tailored to generate giga-mosaics in the underwater environment, include correction of illumination artifacts and removal of the edges between individual images so as to obtain a continuous and single mosaic image over a surface of up ~800x800 m and with a pixel resolution of 5-10 mm. Photomosaicing is complemented by 3D-reconstruction of hydrothermal edifices from video imagery, with the mapping of image texture over the 3D model surface. These image and video data can also be directly linked with high-resolution microbathymetry acquired near-bottom acoustic systems. Preliminary analysis of these mosaics reveals the distribution of low-temperature hydrothermal outflow, recognizable owing to its association with bacterial mats and hydrothermal deposits easily identifiable in the imagery. These low-temperature venting areas, often associated with high-temperature hydrothermal vents, are irregularly distributed throughout the site, defining clusters. In detail, the outflow geometry is largely controlled by the nature of the substrate (e.g., cracks and fissures, diffuse flow patches, existing hydrothermal constructs). The spatial relationships between the high- and diffuse venting as revealed by the imagery provide constraints on the shallow plumbing structure throughout the site.. Imagery provides constraints on temporal variability at two time-scales. First, we can identify changes in the distribution and presence of actively venting

  8. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    In 2010, IODP Expedition 331 was conducted in the Iheya North Field, the Okinawa Trough and drilled several sites in hydrothermally active subseafloor. In addition, during the IODP Expedition 331, four new hydrothermal vents were created. These post-drilling artificial hydrothermal vents provide excellent opportunities to investigate the physical, chemical and microbiological characteristics of the previously unexplored subseafloor hydrothermal fluid reservoirs, and to monitor and estimate how the anthropogenic drilling behaviors affect the deep-sea hydrothermal vent ecosystem. We were very much interested in the difference of hydrothermal fluid chemistry between the natural hydrothermal vents and the artificial hydrothermal vents. The IODP porewater chemistry of the cores pointed to the density-driven stratification of the phase-separated hydrothermal fluids and the natural vent fluids were likely derived only from the shallower vapor-enriched phases. However, the artificial hydrothermal vents had deeper fluid sources in the subseafloor hydrothermal fluid reservoirs composed of vapor-lost (Cl-enriched) phases. The fluids from the artificial hydrothermal vents were sampled by ROV at 5, 12 and 18 months after the IODP expedition. The artificial hydrothermal vent fluids were slightly enriched with Cl as compared to the natural hydrothermal vent fluids. Thus, the artificial hydrothermal vents successfully entrained the previously unexplored subseafloor hydrothermal fluids. The newly created hydrothermal vents also hosted the very quickly grown, enormous chimney structures, of which mineral compositions were highly variable among the vents. However, the quickly grown C0016B and C0016D vent chimneys were found to be typical Kuroko ore even though the chimney growth rates in the artificial vents were extremely faster than those in the natural vents. In addition, the IODP drilling operation not only created new hydrothermal vents by deep drilling but also induced the

  9. Hydrothermal fluid-mineral interactions within volcanic sediment layer revealed by shallow drilling in active seafloor hydrothermal fields in the mid-Okinawa

    NASA Astrophysics Data System (ADS)

    Ishibashi, J.; Miyoshi, Y.; Tanaka, K.; Omori, E.; Takahashi, Y.; Furuzawa, Y.; Yamanaka, T.; Kawagucci, S.; Yoshizumi, R.; Urabe, T.

    2012-12-01

    TAIGA11 Expedition of R/V Hakurei-maru No.2 was conducted in June, 2011 to study subseafloor environment below active hydrothermal fields using a shallow drilling system (called as Benthic Multi-coring System, BMS). Three active hydrothermal fields at Iheya North Knoll (27 47'N, 126 54'E), at Izena Hole Jade site (27 16'N, 127 05'E) and at Izena Hole Hakurei site (27 15'N, 127 04'E) were selected as exploration targets, to focus on a hydrothermal fluid circulation system that develops in sediment consists of volcaniclastic and hemipelagic materials. In this presentation, we will report mineralogy of hydrothermal precipitates and altered clay minerals together with geochemistry of pore fluids, to discuss hydrothermal interactions beneath an active hydrothermal field. In the Iheya North Knoll hydrothermal field, the BMS drilling successfully attained to 453 cmbsf at the station 200 meters apart from the central mound area. The obtained core consisted almost entirely of grayish white altered mud that was identified as kaolinite by XRD. Pore fluid from the corresponding depth showed enrichment in major cations (Na, K, Ca and Mg) and Cl, which may be explained as a result of involvement of water into the kaolinite. Since kaolinite is considered as stable in rather acidic environment, its abundant occurrence beneath the seafloor would be attributed to a unique hydrothermal interaction. A possible scenario is intrusion of the vapor-rich hydrothermal component that has experienced phase separation. In the Jade hydrothermal fields in the Izena Hole, the BMS drilling successfully attained to 529 cmbsf at the marginal part of a hydrothermal field. The obtained core comprised grayish white hydrothermal altered mud below 370 cmbsf. Occurrence of native sulphur is also identified. Unfortunately, pore fluid could not be extracted from the intense alteration layer. In the Hakurei hydrothermal fields in the Izena Hole, the BMS drilling successfully attained to 610 cmbsf near one of

  10. First Active Hydrothermal Vent Fields Discovered at the Equatorial Southern East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Tao, C.; Lin, J.; Wu, G.; German, C. R.; Yoerger, D. R.; Chen, Y. J.; Guo, S.; Zeng, Z.; Han, X.; Zhou, N.; Li, J.; Xia, S.; Wang, H.; Ding, T.; Gao, S.; Qian, X.; Cui, R.; Zhou, J.; Ye, D.; Zhang8, Y.; Zhang, D.; Li, L.; Zhang, X.; Li, Y.; Wu, X.; Li, S.; He, Y.; Huang, W.; Wang, Y.; Wang, T.; Li, X.; Wang, K.; Gai, Y.; Science Party, D.; Baker, E. T.; Nakamura14, K.

    2008-12-01

    The third leg of the 2008 Chinese DY115-20 expedition on board R/V Dayangyihao has successfully discovered, for the first time, active hydrothermal vent fields on the fast-spreading Southern East Pacific Rise (SEPR) near the equator. This expedition follows the work of a 2005 expedition by R/V Dayangyihao, during which water column turbidity anomalies were measured in the region. The newly discovered vent fields are located along a 22-km-long ridge segment of the SEPR at 102.655°W/2.22°S, 102.646°W/2.152°S, 102.619°W/2.078°S, and 102.62°W/2.02°S, respectively, as well as on an off-axial volcano near 102.456°W/1.369°S. A significant portion of the activity appears to be concentrated along the edges of a seafloor fissure system. Furthermore, water column turbidity anomalies were observed over off-axis volcanoes near 102.827°W/2.084°S and 102.58°W/2.019°S. Video footage of the vent fields and water column turbidity, temperature, and methane anomalies were recorded by a deep-towed integrated system consisting of video, still camera, CTD, and ADCP, and MAPR and METS sensors. Two active hydrothermal fields at 2.217°S and 2.023°S were then extensively photographed and surveyed using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution (WHOI). Four samples of hydrothermal chimneys were successfully obtained by a TV-guided grab in three locations, showing evidence of high-temperature hydrothermal venting.

  11. Investigating the active hydrothermal field of Kolumbo Volcano using CTD profiling

    NASA Astrophysics Data System (ADS)

    Eleni Christopoulou, Maria; Mertzimekis, Theo; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steve

    2014-05-01

    The submarine Kolumbo volcano NE of Santorini Island and the unique active hydrothermal vent field on its crater field (depth ~ 500 m) have been recently explored in multiple cruises aboard E/V Nautilus. ROV explorations showed the existence of extensive vent activity and almost completely absence of vent-specific macrofauna. Gas discharges have been found to be 99%-rich in CO2, which is sequestered at the bottom of the crater due to a special combination of physicochemical and geomorphological factors. The dynamic conditions existing along the water column in the crater have been studied in detail by means of temperature, salinity and conductivity depth profiles for the first time. CTD sensors aboard the ROV Hercules were employed to record anomalies in those parameters in an attempt to investigate several active and inactive vent locations. Temporal CTD monitoring inside and outside of the crater was carried out over a period of two years. Direct comparison between the vent field and locations outside the main cone, where no hydrothermal activity is known to exist, showed completely different characteristics. CTD profiles above the active vent field (NNE side) are correlated to Kolumbo's cone morphology. The profiles suggest the existence of four distinct zones of physicochemical properties in the water column. The layer directly above the chimneys exhibit gas discharges highly enriched in CO2. Continuous gas motoring is essential to identify the onset of geological hazards in the region.

  12. 30,000 years of hydrothermal activity at the lost city vent field.

    PubMed

    Früh-Green, Gretchen L; Kelley, Deborah S; Bernasconi, Stefano M; Karson, Jeffrey A; Ludwig, Kristin A; Butterfield, David A; Boschi, Chiara; Proskurowski, Giora

    2003-07-25

    Strontium, carbon, and oxygen isotope data and radiocarbon ages document at least 30,000 years of hydrothermal activity driven by serpentinization reactions at Lost City. Serpentinization beneath this off-axis field is estimated to occur at a minimum rate of 1.2 x 10(-4) cubic kilometers per year. The access of seawater to relatively cool, fresh peridotite, coupled with faulting, volumetric expansion, and mass wasting processes, are crucial to sustain such systems. The amount of heat produced by serpentinization of peridotite massifs, typical of slow and ultraslow spreading environments, has the potential to drive Lost City-type systems for hundreds of thousands, possibly millions, of years. PMID:12881565

  13. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  14. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  15. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  16. Hydrothermal Activity on the Mid-Cayman Rise: ROV Jason sampling and site characterization at the Von Damm and Piccard hydrothermal fields

    NASA Astrophysics Data System (ADS)

    German, C. R.

    2012-12-01

    In January 2012 our multi-national and multi-disciplinary team conducted a series of 10 ROV Jason dives to conduct first detailed and systematic sampling of the Mid Cayman Rise hydrothermal systems at the Von Damm and Piccard hydrothermal fields. At Von Damm, hydrothermal venting is focused at and around a large conical structure that is approximately 120 m in diameter and rises at least 80m from the surrounding, largely sedimented seafloor. Clear fluids emitted from multiple sites around the flanks of the mound fall in the temperature range 110-130°C and fall on a common mixing line with hotter (>200°C) clear fluids emitted from an 8m tall spire at the summit which show clear evidence of ultramafic influence. Outcrop close to the vent-site is rare and the cone itself appear to consist of clay minerals derived from highly altered host rock. The dominant fauna at the summit of Von Damm are a new species of chemosynthetic shrimp but elsewhere the site also hosts two distinct species of chemosynthetic tube worm as well as at least one species of gastropod. The adjacent Piccard site, at ~5000m depth comprises 7 distinct sulfide mounds, 3 of which are currently active: Beebe Vents, Beebe Woods and Beebe Sea. Beebe Vents consists of 5 vigorous black smoker chimneys with maximum temperatures in the range 400-403°C while at Beebe Woods a more highly colonized thicket of up to 8m tall chimneys includes predominantly beehive diffusers with rare black smokers emitting fluids up to 353°C. Beebe Sea a diffuse site emitting fluids at 38°C Tmax, is the largest of the currently active mounds and immediately abuts a tall (8m) rift that strikes NE-SW bisecting the host Axial Volcanic Ridge. The fauna at Piccard are less diverse than at Von Damm and, predominantly, comprise the same species of MCR shrimp, a distinct gastropod species and abundant anemones.

  17. Hg Isotopic Compositions of Chimneys and Pelagic Sediments at Active Submarine Hydrothermal Field in the Okinawa Trough, Japan

    NASA Astrophysics Data System (ADS)

    Takeuchi, A.; Marumo, K.; Tomiyasu, T.; Yamamoto, M.; Komuro, K.

    2012-12-01

    Mercury (Hg) is a globally distributed and highly toxic pollutant in the environment. It is known that a submarine hydrothermal activity is one of the natural processes to emit Hg to marine environment. In order to estimate the degree to which the Hg found in the marine environment is from anthropogenic versus natural sources, it is important to characterize the Hg from the hydrothermal vents. Samples of chimneys and a ~20 cm sediment core, collected by a deep-sea remotely operated vehicle, from Iheya North hydrothermal field in Okinawa Trough, Japan, were analyzed for Hg concentrations and Hg isotopic compositions. Total Hg concentrations of chimneys range between 8.2 and 16.9 mg/kg, whereas seafloor sediment total Hg concentrations are from 3.8 to 34.8 mg/kg. Approximately 0.4 to 1.1 μg/kg of monomethyl Hg (MMHg) was detected in the top 6 cm sediment cores. Hg isotopic compositions (δ202Hg) of chimneys are between -0.30 and -0.96 ‰, whereas δ202Hg values of sediment samples range from -0.85 to -1.60 ‰. Neither chimneys nor sediment samples exhibit the significant mass independent fractionations in Hg isotopes (Δ201Hg > ± 0.10). The chimney δ202Hg values are slightly higher than the δ202Hg values of sediments. This may indicate that the heavier Hg isotopes tend to be incorporated with mercury-bearing sulfides in chimneys, and the lighter isotopes tend to be remained in the hydrothermal fluid and distributed in the surrounding sediments. Also, the sediment samples from the upper portion of cores demonstrate approximately 0.4 - 0.5 ‰ lower δ202Hg values than those from the lower part. This isotopic fractionation may be resulted from a demethylated process of MMHg by microbes. Several studies have previously demonstrated the rapid demethylation of MMHg by microbes in Hg-contaminated aquatic sediments, and range of the isotopic fractionation is similar to that of the experimentally determined isotopic fractionation of MMHg by bacterial reduction

  18. Ongoing hydrothermal activities within Enceladus.

    PubMed

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-12

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus. PMID:25762281

  19. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  20. Geologic evolution of the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.

    2016-02-01

    The Lost City Hydrothermal Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent system over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. Hydrothermal activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. Hydrothermal activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of hydrothermal flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current hydrothermal activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.

  1. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    SciTech Connect

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  2. High-Temperature Hydrothermal Vent Field of Kolumbo Submarine Volcano, Aegean Sea: Site of Active Kuroko-Type Mineralization

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S.; Alexandri, M.; Vougioukalakis, G.; Croff, K.; Roman, C.; Sakellariou, D.; Anagnostou, C.; Rousakis, G.; Ioakim, C.; Gogou, A.; Ballas, D.; Misaridis, T.; Nomikou, P.

    2006-12-01

    Kolumbo submarine volcano is located 7 km north-east of the island of Santorini in the Hellenic arc (Greece), and comprises one of about twenty submarine cones in a NE-trending rift zone. Kolumbo erupted explosively in 1649-50AD, causing 70 fatalities on Santorini. Kolumbo's crater is 1700 m in diameter, with a crater rim at 10 m below sea level and crater floor at depth of 505 m. Recent marine geological investigations, using ROVs, reveal a very active high-temperature hydrothermal vent field in the northeastern part of the Kolumbo crater floor, about 25,000 m2. Vent chimneys up to 4 m high are vigorously emitting colorless gas plumes up to 10 m high in the water column. Temperatures up to 220oC are recorded in vent fluids. Some vents are in crater- like depressions, containing debris from collapsed extinct chimneys. The entire crater floor of Kolumbo is mantled by a reddish-orange bacterial mat, and bacterial filaments of a variety of colors cling to chimneys in dense clusters. Glassy tunicates and anemones are common in lower-temperature environments on the crater floor. Most chimneys show a high porosity, with a central conduit surrounded by an open and very permeable framework of sulfides and sulfates, aiding fluid flow through the chimney walls. In the sulfate-rich samples, blades of euhedral barite and anhydrite crystals coat the outside of the chimney wall, and layers of barite alternate with sulfide in the interior. The dominant sulfides are pyrite, sphalerite, wurtzite, marcasite and galena. Crusts on extinct and lower-temperature chimneys are composed of amorphous silica, goethite and halite. Sulfur isotope composition of sulfates is virtually at sea water values, whereas the sulfides are more depleted. Elevated levels of copper, gold and silver are observed in bulk composition of chimney samples. Both the structural setting, character of the vent field and sulfide/sulfate mineralogy and geochemistry indicate on-going Kuroko-type mineralization in the

  3. Discovery of Nascent Vents and Recent Colonization Associated with(Re)activated Hydrothermal Vent Fields by the GALREX 2011 Expedition on the Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Holden, J. F.; Herrera, S.; Munro, C.; Muric, T.; Lin, J.; Stuart, L.

    2011-12-01

    GALREX 2011 was a NOAA OER telepresence cruise that explored the diverse habitats and geologic settings of the deep Galápagos region. The expedition made12 Little Hercules ROV dives in July 2011.Abundant corals and a strong depth zonation of species (including deepwater coral communities) were found near 500 m depth on Paramount Seamount, likely influenced by past low sea level states, wave-cut terrace processes, and the historical presence of shallow reef structures. At fresh lava flows with associated (flocculent) hydrothermal venting near 88° W, now known as Uka Pacha and Pegasus Vent Fields, rocks were coated with white microbial mat and lacked sessile fauna, with few mobile fauna (e.g., bythograeid crabs, alvinocarid shrimp, polynoid worms, zoarcid fish, and dirivultid copepods). This suggests a recent creation of hydrothermal habitats through volcanic eruptions and/or diking events, which may have taken place over a 15 km span separating the two vent fields. The Rosebud vent field at 86°W was not observed and may have been covered with lava since last visited in 2005. A hydrothermal vent field near 86°W was discovered that is one of the largest vent fields known on the Rift (120m by 40m). Low-temperature vent habitats were colonized by low numbers of tubeworms including Riftia, Oasisia, and a potential Tevnia species (the latter not previously observed on the Galapagos Rift). Patches of tubeworms were observed with individuals less than 2cm in length, and the relatively few large Riftia had tube lengths near 70cm long. Large numbers of small (< 3cm long) bathymodiolin mussels lined cracks and crevices throughout the active part of the field. Live clams, at least four species of gastropod limpets, three species of polynoid polychaetes, juvenile and adult alvinocarid shrimp, actinostolid anemones, and white microbial communities were observed on the underside and vertical surfaces of basalt rock surfaces. There were at least 13 species of vent-endemic fauna

  4. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-05-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  5. Biogeography and Biodiversity in Sulfide Structures of Active and Inactive Vents at Deep-Sea Hydrothermal Fields of the Southern Mariana Trough▿ †

    PubMed Central

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-01-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  6. Introduction to Atlantic Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.; Thompson, Geoffrey

    1993-06-01

    Seafloor hydrothermal research has advanced rapidly from local to global scope through a sequence of discoveries. Hydrothermal research at seafloor spreading centers began in the mid-1960s with the discovery of hot metalliferous brines and sediments ponded in deeps along the slow spreading (half rate 1 cm yr-1) axis of the Red Sea [Chamock, 1964; Miller, 1964; Swallow and Crease, 1965; Miller et al., 1966; Hunt et al., 1967; Bischoff, 1969]. At the same time a hydrothermal metalliferous component was identified in sediments of the East Pacific Rise [Skomyakova, 1965; Arrhenins and Bonatti, 1965; Boström and Peterson, 1966]. Geophysicists recognized that heat flow measurements at spreading centers could only be explained by convective cooling of the crust with circulating seawater [Elder, 1967; Lister, 1972].

  7. Hydrothermal Alteration in the Logatchev Hydrothermal Field: Implications From Secondary Mineral Assemblages and Mineral Chemistry

    NASA Astrophysics Data System (ADS)

    Lackschewitz, K. S.; Augustin, N.; Devey, C. W.; Eisenhauer, A.; Garbe-Schoenberg, D.; James, R.

    2005-12-01

    We present new data on secondary mineral assemblages, clay and whole rock chemistry and clay mineral strontium and lithium isotopic compositions of altered rocks and sediments from the active, ultramafic-hosted Logatchev hydrothermal field reflecting various alteration conditions (e.g. fluid mixing, water-rock interaction). The altered ultramafic rocks are mainly consist of lizardite, chrysotile whereas magnetite and pyrite are minor minerals. Chlorite, chlorite-smectite mixed-layer (e.g., corrensite), smectite and talc are additional common phases in the clay fraction of most of these samples.Iron-hydroxides and iron sulfides are the main components of the hydrothermal crusts, with some amounts of pyroxene, chlorite, illite and pyrite. The hydrothermal sediments beneath the crusts are characterized by quartz, smectite and chlorite as main minerals. Analyses of clay separates representing a variety of alteration styles demonstrates that significant and characteristic changes in the bulk rock chemical composition are associated with various alteration conditions. The elements Cr, Cu, Pb and U appears to have a general enrichment in the lizardite and chlorite concentrates in comparison to a depleted mantle. 87Sr/86Sr ratios of clay concentrates vary between 0.7083 and 0.7096 suggesting that the clays either formed as a result of seawater alteration or hydrothermal alteration with various portions of seawater. The strontium isotopic ratio of a chlorite sample from hydrothermal sediments beneath the hydrothermal crust is much lower than the isotopic data reported for the lizardites suggesting precipitation from fluid with lower seawater content. The Li isotopic composition (δ7Li) of the clay separates varies between -5.4 and +6.4‰. Thus, the clays are enriched in 6Li relative to both seawater (~31‰) and hydrothermal vent fluids from the Logatchev field (~6‰) suggesting that 6Li is preferentially retained in alteration products. When considered together with the

  8. Using Hydrothermal Plumes and Their Chemical Composition to Identify and Understand Hydrothermal Activity at Explorer Ridge

    NASA Astrophysics Data System (ADS)

    Resing, J.; Lebon, G.; Baker, E.; Walker, S.; Nakamura, K.; Silvers, B.

    2002-12-01

    During June and July, 2002, an extensive survey of the hydrothermal systems of the Explorer Ridge was made aboard the R/V Thomas Thompson. This survey employed hydrocasts and the Autonomous Benthic Explorer (ABE) to locate and map hydrothermal vent fields. A total of 28 hydrocasts (17 verticals and 11 tow-yos) were used to search for hydrothermal activity from 49.5°N to 50.3°N on the Explorer Ridge. During the hydrocasts continuous measurements were made of conductivity, temperature, pressure, light backscatter, eH, Fe, Mn, and pH. Discrete samples were collected for total dissolved Fe and Mn, methane, pH, total CO2, and particulate matter. Most of the strong hydrothermal venting was near the Magic Mountain area of the Explorer Ridge at ~49.76° N, 130.26° W, where strong particulate backscatter signals (~0.130 NTUs) and moderate temperature anomalies (~ 0.05 °C) were detected. The particulate matter causing the backscatter was made up primarily of volatile particulate sulfur (PS) with little to no hydrothermal PFe. PS:PFe ratios exceeded 25 in the areas of most intense venting, . These PFe and PS data suggest that the hydrothermal Fe, if any, is deposited as sulfide minerals beneath the sea floor and that S is far in excess of Fe in the hydrothermal fluids. In the most intense plumes,total dissolvable Fe and Mn were between 20 and 30 nM, pH anomalies exceeded 0.025 pH units (indicating an increase of ~10uM CO2), and methane reached 16nM. These results suggest that the fluids exiting the sea floor are metal-poor and moderately gas-rich.

  9. Detection of active hydrothermal vent fields in the Pescadero Basin and on the Alarcon Rise using AUV multibeam and CTD data

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Troni, G.; Clague, D. A.; Paduan, J. B.; Martin, J. F.; Thomas, H. J.; Thompson, D.; Conlin, D.; Martin, E. J.; meneses-Quiroz, E.; Nieves-Cardoso, C.; Angel Santa Rosa del Rio, M.

    2015-12-01

    The MBARI AUV D. Allan B. collected high resolution bathymetry, sidescan, and subbottom profiles along the neovolcanic zone of the Alarcon Rise and across the southern Pescadero Basin during 2012 and 2015 MBARI expeditions to the Gulf of California (GOC). The combination of high resolution multibeam bathymetry and seawater temperature data has proven effective in identifying active high temperature vent fields, as validated by inspection and sampling during ROV dives. The AUV carries a 200 kHz multibeam sonar, 110 kHz chirp sidescan sonar, a 1-6 kHz chirp subbottom profiler, and a conductivity, temperature and depth (CTD) sensor for ~17-hour duration missions. Flying at 5.4 km/hr at 50 m altitude, the processed AUV bathymetry has a 0.1 m vertical precision and a 1 m lateral resolution. Chimneys taller than 1.5 m are sufficiently distinctive to allow provisional identification. The CTD temperature data have a nominal 0.002°C accuracy. Following calculation of potential temperature and correcting for average local variation of potential temperature with depth, anomalies greater than 0.05 °C can be reliably identified using a spike detection filter. MBARI AUV mapping surveys are typically planned using a 150 m survey line spacing, so the CTD data may be collected as much as 75 m away from any vent plume source. Five active high temperature vent fields were discovered in the southern GOC, with the Auka Field in the southern Pescadero Basin, and the Ja Sít, Pericú, Meyibó, and Tzab-ek Fields along the Alarcon Rise. In all five cases, hydrothermal vent chimneys are readily identifiable in the multibeam bathymetry, and temperature anomalies are observed above background variability. Other apparent hydrothermal chimneys were observed in the bathmetry that did not exhibit water temperature anomalies; most of these were visited during ROV dives and confirmed to be inactive sites. The maximum water column anomalies are 0.13°C observed above the Meyibó field and 0.25

  10. Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Lackschewitz, K. S.; Devey, C. W.; Stoffers, P.; Botz, R.; Eisenhauer, A.; Kummetz, M.; Schmidt, M.; Singer, A.

    2004-11-01

    During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ˜250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ˜300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly

  11. Hydrothermal activity at the Arctic mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pedersen, Rolf B.; Thorseth, Ingunn H.; Nygård, Tor Eivind; Lilley, Marvin D.; Kelley, Deborah S.

    Over the last 10 years, hydrothermal activity has been shown to be abundant at the ultraslow spreading Arctic Mid-Ocean Ridges (AMOR). Approximately 20 active and extinct vent sites have been located either at the seafloor, as seawater anomalies, or by dredge sampling hydrothermal deposits. Decreasing spreading rates and decreasing influence of the Icelandic hot spot toward the north along the AMOR result in a north-south change from a shallow and magmatically robust to a deep and magmatically starved ridge system. This contrast gives rise to large variability in the ridge geology and in the nature of the associated hydrothermal systems. The known vent sites at the southern part of the ridge system are either low-temperature or white smoker fields. At the deep, northern parts of the ridge system, a large black smoker field has been located, and seawater anomalies and sulfide deposits suggest that black smoker-type venting is common. Several of these fields may be peridotite-hosted. The hydrothermal activity at parts of the AMOR exceeds by a factor of 2 to 3 what would be expected by extrapolating from observations on faster spreading ridges. Higher fracture/fault area relative to the magma volume extracted seems a likely explanation for this. Many of the vent fields at the AMOR are associated with axial volcanic ridges. Strong focusing of magma toward these ridges, deep rifting of the ridges, and subsequent formation of long-lived detachment faults that are rooted below the ridges may be the major geodynamic mechanisms causing the unexpectedly high hydrothermal activity.

  12. Experimental constraints on hydrothermal activities in Enceladus

    NASA Astrophysics Data System (ADS)

    Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.

    2012-12-01

    One of the most remarkable findings by the Cassini-Huygens mission is perhaps water-rich plumes erupting from the south-pole region of Enceladus [1]. Given such geological activity and the detection of sodium salts in the plume, the interior of Enceladus is highly likely to contain an interior ocean interacting with the rock core [2]. A primary question regarding astrobiology and planetary science is whether Enceladus has (or had) hydrothermal activities in the interior ocean. Because N2 might be formed by thermal dissociation of primordial NH3 [3], the presence of N2 in the plume may be a possible indicator for the presence of hydrothermal activities in Enceladus. However, the Cassini UVIS revealed that the plumes do not contain large amounts of N2 [4]. Although these observations may not support the presence of hydrothermal activities, whether NH3 dissociation proceeds strongly depends on the kinetics of hydrothermal reactions and interactions with the rock components, which remain largely unknown. Furthermore, the Cassini CDA recently showed that small amounts of SiO2 might have been included in the plume dusts [5]. Formation of amorphous SiO2 usually occurs when high-temperature and/or high-pH solution with high concentrations of dissolved SiO2 cools and/or is neutralized. Thus, the presence of SiO2 in the plume dusts may suggest the presence of a temperature and/or pH gradient in the ocean. However, no laboratory experiments have investigated what processes control pH and SiO2 concentrations in hydrothermal fluids possibly existing in Enceladus. Here, we show the results of laboratory experiments simulating hydrothermal systems on Enceladus. As the initial conditions, we used both aqueous solution of high concentrations (0.01-2%) of NH3 and NaHCO3 and powdered olivine as an analog for the rock components. Our experimental results show that formation of N2 from NH3 is kinetically and thermodynamically inhibited even under high temperature conditions (< 400

  13. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin

    NASA Astrophysics Data System (ADS)

    Takai, Ken; Nunoura, Takuro; Ishibashi, Jun-Ichiro; Lupton, John; Suzuki, Ryohei; Hamasaki, Hiroshi; Ueno, Yuichiro; Kawagucci, Shinsuke; Gamo, Toshitaka; Suzuki, Yohey; Hirayama, Hisako; Horikoshi, Koki

    2008-06-01

    A newly discovered hydrothermal field called the Mariner field on the Valu Fa Ridge in the southern Lau Basin was explored and characterized with geochemical and microbiological analyses. The hydrothermal fluid discharging from the most vigorous vent (Snow Chimney, maximum discharge temperature 365°C) was boiling at the seafloor at a depth of 1908 m, and two distinct end-member hydrothermal fluids were identified. The fluid chemistry of the typical Cl-enriched and Cl-depleted hydrothermal fluids was analyzed, as was the mineralogy of the host chimney structures. The variability in the fluid chemistry was potentially controlled by the subseafloor phase-separation (vapor loss process) and the microbial community activities. Microbial community structures in three chimney structures were investigated using culture-dependent and -independent techniques. The small subunit (SSU) rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities on the chimney surfaces differed among three chimneys. Cultivation analysis demonstrated significant variation in the culturability of various microbial components among the chimneys, particularly of thermophilic H2-oxidizing (and S-oxidizing) chemolithoautotrophs such as the genera Aquifex and Persephonella. The physical and chemical environments of chimney surface habitats are still unresolved and do not directly extrapolate the environments of possible subseafloor habitats. However, the variability in microbial community found in the chimneys also provides an insight into the different biogeochemical interactions potentially affected by the phase separation of the hydrothermal fluids in the subseafloor hydrothermal habitats. In addition, comparison with other deep-sea hydrothermal systems revealed that the Mariner field microbial communities have unusual characteristics.

  14. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  15. Seismicity at the Kairei Hydrothermal Vent Field Near the Rodriguez Triple Junction in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Sato, T.; Takata, H.; Imai, Y.; Mori, T.; Noguchi, Y.; Kono, A.; Yamada, T.; Shinohara, M.

    2014-12-01

    1. Introduction In the first segment of the central Indian Ridge from the Rodriguez triple junction, the Kairei hydrothermal vent field exists and extrudes hydrothermal fluid with richer hydrogen content compared to other hydrothermal vents in the world. Around the Kairei hydrothermal field, serpentinized peridotite and troctolites, and gabbroic rocks were discovered. These deep-seated rocks exposed around the Kairei field may cause the enrichment of H2 in the Kairei fluids. At the Kairei field, a hydrogen-based subsurface microbial ecosystem and various hydrothermal vent macrofauna were found. In the "TAIGA" Project (Trans-crustal Advection and In situ reaction of Global sub-seafloor Aquifer), this area is a representative field of "TAIGA" of hydrogen. To investigate how the deep-seated rocks (originally situated at several kilometers below seafloor) are uplifted and exposed onto seafloor, and the hydrothermal fluids circulate in subsurface, we conducted a seismic refraction/reflection survey and seismicity observation with ocean bottom seismometers (OBSs). This presentation will show seismicity of the survey area. 2. Observation and results We conducted a seismic survey around the Kairei hydrothermal field from January 27 to March 19 in 2013 using S/V Yokosuka of Jamstec. We used 21 OBSs. From the 50 days seismicity observation, we found many micro earthquakes in this area. A swarm of micro earthquakes exists at a location about 1 km northwest of the Kairei field. The swarm has a NNW-SSE strike, parallel to the ridge axis. The depth of the swarm is very shallow (~4 km from seafloor). This swarm may be related to the hydrothermal activities of the Kairei field. At the first segment of the central Indian Ridge, many micro earthquakes occurred. The depth of these events is deeper than that of the swarm near the Kairei field.

  16. Pathways for abiotic organic synthesis at submarine hydrothermal fields

    PubMed Central

    McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.

    2015-01-01

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  17. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  18. Hydrothermal Alteration in the PACMANUS Hydrothermal Field: Implications From Secondary Mineral Assemblages and Mineral Chemistry, OPD Leg 193

    NASA Astrophysics Data System (ADS)

    Lackschewitz, K. S.; Kummetz, M.; Kummetz, M.; Ackermand, D.; Botz, R.; Devey, C. W.; Singer, A.; Stoffers, P.

    2001-12-01

    Leg 193 of the Ocean Drilling Program investigated the subsurface nature of the active PACMANUS hydrothermal field in the Manus backarc basin near Papua New Guinea. Drilling in different areas on the felsic neovolcanic Pual Ridge, including the high-temperature black smoker complex of Roman Ruins and the low-temperature Snowcap site with diffusive discharge yielded a complex alteration history with a regional primary alteration being overprinted by a secondary mineralogy. The intense hydrothermal alteration at both sites shows significant differences in the secondary mineralogy. At Roman Ruins, the upper 25 m of hydrothermally altered rocks are characterized by a rapid change from secondary cristobalite to quartz, implying a high temperature gradient. From 10 to 120 mbsf the clay mineralogy is dominated by illite and chlorite. The chlorite formation temperature calculated from oxygen isotope data lies at 250° C in 116 mbsf which is similar to the present fluid outflow temperatures of 240-250° C (Douville et al., 1999, Geochim. Cosmochim. Acta, 63, 627-643). Drilling in the Snowcap field recovered evidence for several stages of hydrothermal alteration. Between 50 and 150 mbsf, cristobalite and chlorite are the most abundant alteration minerals while hydrothermal pyrophyllite becomes abundant in some places At 67 mbsf, the isotopic composition of pyrophyllite gives a temperature for ist formation at 260° C whereas at 77 and 116 mbsf the pyrophyllite displays the highest temperatures of formation (>300° C). These temperatures are close to the maximum measured borehole temperatures of 313° C. The appearance of assemblages of chlorite, chlorite-vermiculite, chlorite-vermiculite-smectite and illite-smectite as well as the local development of corrensite below 150 mbsf suggests that the alteration at Snowcap may be more complex than that beneath Roman Ruins. Detailed geochemical studies of the authigenic clay mineral phases will provide further insights into the

  19. Petrology and Geochemistry of Hydrothermally Altered Volcanic Rocks in the Iheya North Hydrothermal Field, Middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.

    2015-12-01

    The Iheya North hydrothermal field is located in the middle Okinawa Trough, a young and actively spreading back-arc basin extending behind the Ryukyu arc-trench system in the southeastern margin of the East China Sea. In this hydrothermal field, two scientific drilling expeditions (IODP Exp 331 and SIP CK14-04) were conducted using a deep-sea drilling vessel "Chikyu," and samples from a total of 27 holes were taken. Through these expeditions, Kuroko-type volcanogenic massive sulfide deposits (VMS), hydrothermally altered volcanic rocks, and pumiceous and pelagic sediments were recovered. The recovered core provided important information about the relationship between hydrothermal activity, alteration, and ore mineralization. Whole-rock major element composition and trace element (TE) patterns of pumices were very similar to those of rhyolites in the middle Okinawa Trough (RMO). However, pumices were relatively enriched in chalcophile elements Sr and Nb, which suggest incipient mineralization. Volcanic rock generally demonstrated strong silicification and was greenish pale gray in color. Regardless of severe alteration, some rock displayed major element composition broadly similar to the RMO. Alteration was evidenced by an increase in the content of SiO2 and MgO, and decrease in Al2O3, Na2O, and K2O content. The most striking geochemical feature of altered volcanic rock was the discordance between texture and the degree of modification of TEs. Some samples showed decussate texture occupied by petal-like quartz with severe silicification, but no prominent disturbance of concentration and patterns of TEs were observed. In contrast, samples with well-preserved igneous porphyritic texture showed very low TE content and modification of TE patterns. These results suggest that the modification of texture and composition of TEs, as well as silicification, do not occur by a uniform process, but several processes. This may reflect the differences in temperature and the

  20. First hydrothermal active vent discovered on the Galapagos Microplate

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party

    2011-12-01

    The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and hydrothermal vent community were firstly confirmed on the GSC. Lots of hydrothermal fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new hydrothermal fields were confirmed. One is named 'Precious Stone Mountain', which is the first hydrothermal field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' hydrothermal field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. Hydrothermal fluids emitting from the fissures and hydrothermal fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. Hydrothermal fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' hydrothermal field. The result indicates that seafloor materials around the hydrothermal field can be characterized into three types, such as the fresh lava, hydrothermal sediment, and altered rock.

  1. Hydrothermal Activity in the Northern Guaymas Basin

    NASA Astrophysics Data System (ADS)

    Berndt, C.; Hensen, C.; Mortera-Gutierrez, C. A.; Sarkar, S.; Geilert, S.; Schmidt, M.; Liebetrau, V.; Kipfer, R.; Scholz, F.; Doll, M.; Muff, S.; Karstens, J.; Böttner, C.; Chi, W. C.; Moser, M.; Behrendt, R.; Fiskal, A.; Evans, T.; Planke, S.; Lizarralde, D.; Lever, M. A.

    2015-12-01

    Rift-related magmatism in the Guaymas Basin, Gulf of California induces hydrothermal activity within the basin sediments. Mobilized fluids migrate to the seafloor where they are emitted into the water column changing ocean chemistry and fuelling chemosynthetic ecosystems. New seismic and geochemical data from the northern rift arm of the Guaymas Basin document the variety of fluid expulsion phenomena from large-scale subsurface sediment mobilization related to contact metamorphosis to focused small-scale structures. The geochemical composition of emitted fluids depends largely on the age of the fluid escape structures with respect to the underlying intrusions. Whereas, old structures are dominated by methane emission, young vent sites are characterized by hot fluids that carry a wide range of minerals in solution. The overall high geothermal gradient within the basin (mainly between 160 and 260 °C/km) leads to a thin gas hydrate stability zone. Thus, deep hydrothermal fluid advection affects the gas hydrate system and makes it more dynamic than in colder sedimentary basins.

  2. U and Th Concentration and Isotopic Composition of Hydrothermal Fluids at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Shen, C.; Cheng, H.; Edwards, R.; Kelley, D. S.; Butterfield, D. A.

    2006-12-01

    Uranium and Th concentration and isotopic composition of hydrothermal fluids at the Lost City Hydrothermal Field (LCHF) were determined using multi-collector inductively coupled plasma mass spectrometry (MC-ICP- MS). The LCHF is an off-axis, serpentinite-hosted hydrothermal system located at 30°N near the Mid- Atlantic Ridge. Carbonate chimneys reaching 60 m in height vent alkaline (pH~10), calcium-rich fluids at 40- 91°C and the towers are home to dense microbial communities. Vent fluid and seawater U and Th concentration and isotopic composition data provide critical information for constraining U-Th chimney ages. The increased sensitivity (1-2%) of MC-ICP-MS combined with an Aridus nebulization system allows the precise measurement of small quantities of sample (~150 ml) with low concentrations (<<1ng/g) of U and Th. In this study, we have developed MC-ICP-MS techniques to measure the U and Th concentration and isotopic composition (234U, 238U, 230Th, and 232Th) of eight hydrothermal fluid samples. Endmember fluids with ~1mmol/kg Mg have ~0.02 ng/g U, confirming that end-member fluids contain near-zero values of both Mg and U. Thorium concentrations of fluids are close to deep seawater values. U and Th isotopic compositions are reported at the permil level. These data may provide new insights into the role of serpentinite-hosted hydrothermal systems in the budgets of U and Th in the ocean. Techniques presented in this study may be applied to other hydrothermal and seep environments.

  3. Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-12-01

    Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at hydrothermal activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline hydrothermal vents on Earth like the Lost City Hydrothermal Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been identified in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of hydrothermal activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).

  4. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    SciTech Connect

    Ridley, W.I.; Perfit, M.R.; Smith, M.F.; Jonasson, I.R.

    1994-06-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85{degree}49 feet W and 85{degree} 55 feet W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens` equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (<10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. 50 refs., 10 figs., 4 tabs.

  5. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  6. Seafloor Hydrothermal Activity in the Southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Lundsten, L.; Zierenberg, R. A.; Troni, G.; Wheat, C. G.; Spelz, R. M.

    2015-12-01

    Active hydrothermal venting was previously unknown between Guaymas Basin and 21°N on the East Pacific Rise. MBARI AUV surveys and ROV dives in 2012 and 2015 discovered 7 hydrothermal vent sites with diverse and varied vent communities within that gap. One field in the Pescadero Basin vents clear shimmering fluids at 3685 m depth and four vigorous black smoker fields and several extinct chimney fields are between 2225 and 2400 m depth on the Alarcón Rise. Low-temperature vent sites are present on both of the Pescadero and Tamayo Transforms. The chimneys were discovered in 1-m resolution AUV bathymetric data, with some indicated to be active based on temperature anomalies in the AUV CTD data and confirmed during later ROV dives. The low-temperature vent sites on the transform faults were found on ROV dives while exploring young lava flows and sediment hills uplifted by sill intrusions. Pescadero Basin is a deep extensional basin in the southern Gulf. The smooth, subtly faulted floor is filled with at least 150 m of sediment, as determined from sub-bottom profiles collected by the AUV. Three large chimneys (named Auka by our Mexican collaborators) and several broad mounds are located on the SW margin of the basin. Temperatures to 290°C were measured, the fluids are clear, neutral pH, and contain elevated Na. The chimneys are delicate, white, predominantly Ca-carbonate; barite, sparse sulfides, and some aromatic hydrocarbons are also present. Three active vent fields (Ja Sít, Pericú, and Meyibó) at Alarcón Rise are located near the eruptive fissure of an extensive young sheet flow. The fourth field (Tzab-ek) is 1.1 km NW of the axis on older pillow lavas. The largest chimneys are in the Tzab-ek field: 31 and 33 m tall, with flanges and upside-down waterfalls. They rise from a sulfide mound, suggesting a long-lived hydrothermal system, in contrast to the near-axis fields where the chimneys grow directly on basalt. The Alarcón chimneys are Zn and Cu-rich sulfides

  7. Major off-axis hydrothermal activity on the northern Gorda Ridge

    SciTech Connect

    Rona, P.A. ); Denlinger, R.P. ); Fisk, M.R.; Howard, K.J.; Taghon, G.L. ); Klitgord, K.D. ); McClain, J.S. ); McMurray, G.R. ); Wiltshire, J.C. )

    1990-06-01

    The first hydrothermal field on the northern Gorda Ridge, the Sea Cliff hydrothermal field, was discovered and geologic controls of hydrothermal activity in the rift valley were investigated on a dive series using the DSV Sea Cliff. The Sea Cliff hydrothermal field was discovered where predicted at the intersection of axis-oblique and axis-parallel faults at the south end of a linear ridge at mid-depth (2700 m) on on the east wall. Preliminary mapping and sampling of the field reveal: a setting nested on nearly sediment-free fault blocks 300 m above the rift valley floor 2.6 km from the axis; a spectrum of venting types from seeps to black smokers; high conductive heat flow estimated to be equivalent to the convective flux of multiple black smokers through areas of the sea floor sealed by a caprock of clastic breccia primarily derived from basalt with siliceous cement and barite pore fillings; and a vent biota with Juan de Fuca Ridge affinities. These findings demonstrate the importance of off-axis hydrothermal activity and the role of the intersection of tectonic lineations in controlling hydrothermal sites at sea-floor spreading centers.

  8. Macrofaunal communites at newly discovered hydrothermal fields in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Miyazaki, J.; Takai, K.; Nakamura, K.; Watanabe, H.; Noguchi, T.; Matsuzaki, T.; Watsuji, T.; Nemoto, S.; Kawagucci, S.; Shibuya, T.; Okamura, K.; Mochizuki, M.; Orihashi, Y.; Marie, D.; Koonjul, M.; Singh, M.; Beedessee, G.; Bhikajee, M.; Tamaki, K.

    2010-12-01

    In YK09-13 Leg1 cruise targeted on the segment 15 and 16 in Central Indian Ridge (CIR), we have successfully discovered two hydrothermal fields, DODO field and Solitaire field. We expected that there were unique macrofaunal communities in these hydrothermal fields, because there was in Kairei field on the segment 1 in CIR. Particularly, a gastropod, “scaly-foot”, which has sclerites covered with iron-sulfide has only discovered in Kairei field. Therefore, it was interesting whether this unique scaly-foot only exists in Kairei fields or widely expands in CIR. In DODO fields, there were 10 to 15 active chimneys. However, very few hydrothermal vent-endemic faunas were observed. We observed only crabs and shrimps but we did not found shells. As opposed to in the Dodo field, biomass and composition of macrofaunal communities were highly prosperous in the Solitaire field, being equal to Kairei field. Although we have an only one dive to explore the Solitaire field, many predominant taxa were sampled and observed, for example, Alviniconcha, mussels, vanacles and so on. However, the most outstanding feature was the presence of a new morphotype of ‘scaly-foot’ gastropod. Discovery of this new-morphytpe ‘scary-foot” disproved our knowledge. In this conference, I will present these observations. Especially characterization of two types of scaly-foot (Kairei-type and Solitaire-type) will be focused.

  9. Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry

    SciTech Connect

    Fouquet, Y.; Charlou, J.L.; Donval, J.P.; Foucher, J.P. ); von Stackelberg, U.; Wiedicke, M. ); Erzinger, J. ); Herzig, P. ); Muhe, R. ); Soakai, S. ); Whitechurch, H. )

    1991-04-01

    The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with hydrothermal circulation along the Valu Fa back-arc ridge behind the Tonga-Kermadec trench. The four diving areas, between lat21{degree}25'S and 22{degree}40'S in water{approximately}2000 m deep, were selected on the basis of results from cruises of the R/V Jean Charcot and R/V Sonne. The Nadir cruise provided proof of hydrothermal activity-in all for areas, over more than 100 km-as indicated by the widespread occurence of hydrothermal deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. Hydrothermal water chemistry and sulfide composition data presented here indicate that this hydrothermal field is very different from the hydrothermal fields in oceanic ridges. This difference is seen in water chemistry of the hydrothermal fluid (pH=2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).

  10. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    SciTech Connect

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  11. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  12. Bacterial and Archaeal Diversity in an Iron-Rich Coastal Hydrothermal Field in Yamagawa, Kagoshima, Japan

    PubMed Central

    Kawaichi, Satoshi; Ito, Norihiro; Yoshida, Takashi; Sako, Yoshihiko

    2013-01-01

    Physicochemical characteristics and archaeal and bacterial community structures in an iron-rich coastal hydrothermal field, where the temperature of the most active hot spot reaches above 100°C, were investigated to obtain fundamental information on microbes inhabiting a coastal hydrothermal field. The environmental settings of the coastal hydrothermal field were similar in some degree to those of deep-sea hydrothermal environments because of its emission of H2, CO2, and sulfide from the bottom of the hot spot. The results of clone analyses based on the 16S rRNA gene led us to speculate the presence of a chemo-synthetic microbial ecosystem, where chemolithoautotrophic thermophiles, primarily the bacterial order Aquificales, function as primary producers using H2 or sulfur compounds as their energy source and CO2 as their carbon source, and the organic compounds synthesized by them support the growth of chemoheterotrophic thermophiles, such as members of the order Thermales and the family Desulfurococcaceae. In addition, the dominance of members of the bacterial genus Herbaspirillum in the high temperature bottom layer led us to speculate the temporal formation of mesophilic zones where they can also function as primary producing or nitrogen-fixing bacteria. PMID:24256999

  13. Diffuse-flow hydrothermal field in an oceanic fracture zone setting, Northeast Pacific: Deposit composition

    USGS Publications Warehouse

    Hein, J.R.; Koski, R.A.; Embley, R.W.; Reid, J.; Chang, S.-W.

    1999-01-01

    This is the first reported occurrence of an active hydrothermal field in an oceanic fracture zone setting. The hydrothermal field occurs in a pull-apart basin within the Blanco Fracture Zone (BFZ), which has four distinct mineral deposit types: (1) barite mounds and chimneys, (2) barite stockwork breccia, (3) silica-barite beds, and (4) silica, barite, and Fe-Mn oxyhydroxide in sediments. All deposit types contain minor amounts of sulfides. In barite stockwork, silica-barite beds, and mineralized sediment, Ba, Ph, Ag, S, Au, Zn, Cu, Hg, TI, As, Mo, Sb, U, Cd, and Cu are enriched relative to unmineralized rocks and sediments of the BFZ. Fe and Mn are not enriched in the barite stockwork or silica-barite beds, but along with P, Co, and Mg are enriched in the mineralized sediments. Silver contents in deposits of the hydrothermal field range up to 86 ppm, gold to 0.7 ppm, zinc to 3.2%, copper to 0.8%, and barium to 22%. Mineralization occurred by diffuse, low to intermediate temperature (mostly <250??C) discharge of hydrothermal fluids through pillow lavas and ponds of mixed volcaniclastic and biosiliceous sediments. Bacterial mats were mineralized by silica, barite, and minor Fe hydroxides, or less commonly, by Mn oxyhydroxides. Pervasive mineralization of bacterial mats resulted in formation of silica-barite beds. Silica precipitated from hydrothermal fluids by conductive cooling and mixing with seawater. Sulfate, U, and rare earth elements (REEs) in barite were derived from seawater, whereas the REE content of hydrothermal silica deposits and mineralized sediments is associated with the aluminosilicate detrital fraction. Fe-, Zn-, Cu-, Pb-, and Hg-sulfide minerals, Ba in barite, and Eu in all mineralized deposits were derived from hydrothermal fluids. Manganese oxides and associated elements (Co, Sb, Mo, W, Cl, and Cu) and Fe oxides and associated elements (Be, B, P, and Mo) precipitated as the result of mixing of hydrothermal fluids with seawater. ?? 2001 Canadian

  14. Evaluation of nutrient sources for the sponges inhabited around seafloor hydrothermal fields in the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Nagashio, H.; Yamanaka, T.; Watanabe, H.; Yamagami, S.; Ise, Y.; Makita, H.

    2012-12-01

    Since discovery of seafloor hydrothermal vents, the dense and endemic animal communities inhabited around the hot vents have been the most impressive feature for many scientists. Such animals have been known as chemosynthesis-based species and studied many investigators. On the other hand, some benthic animals found on abyssal plain have been observed slightly high density at the adjacent area to active vent sites. It implies that those opportunistic benthoses may also rely on the chemosynthetic primary production and the hydrothermal chemosynthetic ecosystem may extend widely rather than previous expectation. In that case, it is an interesting issue how the dense sponge community is sustained around the hydrothermal fields. For clarifying the issue isotope geochemical study has been performed to evaluate food sources of the sponges and some other animals obtained from the deep seafloor in the Okinawa Trough. Stable isotope analysis for carbon, nitrogen, and sulfur of the sample organisms obtained from the Izena Hole, where active hydrothermal emission has been observed, show significant low d13C and d34S values for the sponge samples. Those results suggest plausible contribution of sulfur oxidizing bacteria as food source for the sponges because such low d13C and d34S values are often observed for thioautotrophic chemosynthesis-based animals. The sulfur isotopic ratios of the sponges are almost comparable with the ratio reported hydrogen sulfide emitted from the vents, implying that the source of sulfur for sulfur oxidizing bacteria is magmatic and/or hydrothermal in origin. On the other hand, the sponge sample obtained from the Tarama Knoll ,where active hydrothermal emission were not found yet, shows similar isotopic characteristics observed for the sponges from the Izena Hole. It may also imply the importance of sulfur oxidizing bacteria as food source for the sponge at the Tarama Knoll. Turbid water was often observed during dive studies by the ROV around the

  15. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P. M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment to evaluate the distribution of hydrothermal activity. The Lucky Strike segment hosts three active hydrothermal fields: Capelinhos, Ewan, and the known Main Lucky Strike Hydrothermal Field (MLSHF). Capelinhos is located 1.3 km E of the axis and the MLSHF, and consists of a ~20 m sulfide mound with black smoker vents. Ewan is located ~1.8 km south from the MLSHF along the axial graben, and displays only diffuse flow along and around scarps of collapse structures associated with fault scarps. At the MLSHF we have identified an inactive site, thus broadening the extent of this field. Heat flux estimates from these new sites are relatively low and correspond to ~10% of the heat flux estimated for the Main field, with an integrated heatflux of 200-1200 MW. Overall, most of the flux (up to 80-90%) is associated with diffuse outflow, with the Ewan site showing solely diffuse flow and Capelinhos mostly focused flow. Microbathymetry also reveals a large, off-axis (~2.4 km) hydrothermal field, similar to the TAG mound in size, on the flanks of a rifted volcano. The association of these fields to a central volcano, and the absence of indicators of hydrothermal activity along the ridge segment, suggest that sustained hydrothermal activity is maintained by the enhanced melt supply and the associated magma chamber(s) required to build central volcanoes. Hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal circulation in the shallow crust exploits permeable fault zones. Central volcanoes are thus associated with long-lived hydrothermal activity, and these sites may play a major role in the distribution and biogeography of vent communities.

  16. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    NASA Astrophysics Data System (ADS)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  17. Thermal and tectonic history in the steamboat hills geothermal field: Determination of the age of active hydrothermal activity by application of AFTA{sup {trademark}} (apatite fission track analysis)

    SciTech Connect

    Duddy, I.R.; Green, P.F.; Kamp, P.C. van de

    1995-12-31

    This study, in the Steamboat Hills area of the Carson segment of the northern Walker Lane Belt, was initiated to provide a regional thermal history framework and to investigate the age of the active local hydrothermal system. Seven outcrop samples, representing ?Cretaceous granodiorite and ?Triassic Peavine sequence metamorphosed volcanic flow and volcaniclastic rocks plus six samples of Peavine rocks in vertical sequence from an 0.8 km deep geothermal corehole have been analyzed using AFTA (apatite fission track analysis) and zircon fission track analysis.

  18. High-resolution near-bottom vector magnetic anomalies over Raven Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; Johnson, H. Paul; Salmi, Marie S.; Hutnak, Michael

    2014-10-01

    High-resolution, near-bottom vector magnetic data were collected by remotely operated vehicle Jason over the Raven hydrothermal vent field (47°57.3'N 129°5.75'W) located north of Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. The survey was part of a comprehensive heat flow study of the Raven site using innovative thermal blanket technology to map the heat flux and crustal fluid pathways around a solitary hydrothermal vent field. Raven hydrothermal activity is presently located along the western axial valley wall, while additional inactive hydrothermal deposits are found to the NW on the upper rift valley wall. Magnetic inversion results show discrete areas of reduced magnetization associated with both active and inactive hydrothermal vent deposits that also show high conductive heat flow. Higher spatial variability in the heat flow patterns compared to the magnetization is consistent with the heat flow reflecting the currently active but ephemeral thermal environment of fluid flow, while crustal magnetization is representative of the static time-averaged effect of hydrothermal alteration. A general NW to SE trend in reduced magnetization across the Raven area correlates closely with the distribution of hydrothermal deposits and heat flux patterns and suggests that the fluid circulation system at depth is likely controlled by local crustal structure and magma chamber geometry. Magnetic gradient tensor components computed from vector magnetic data improve the resolution of the magnetic anomaly source and indicate that the hydrothermally altered zone directly beneath the Raven site is approximately 15 × 106 m3 in volume.

  19. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P.-M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment, to evaluate the distribution of hydrothermal activity. We have identified a new on-axis site with diffuse flow, Ewan, and an active vent structure ∼1.2 km from the axis, Capelinhos. These sites are minor relative to the Main field, and our total heatflux estimate for all active sites (200-1200 MW) is only slightly higher than previously published estimates. We also identify fossil sites W of the main Lucky Strike field. A circular feature ∼200 m in diameter located on the flanks of a rifted off-axis central volcano is likely a large and inactive hydrothermal edifice, named Grunnus. We find no indicator of focused hydrothermal activity elsewhere along the segment, suggesting that the enhanced melt supply and the associated melt lenses, required to form central volcanoes, also sustain hydrothermal circulation to form and maintain large and long-lived hydrothermal fields. Hydrothermal discharge to the seafloor occurs along fault traces, suggesting focusing of hydrothermal circulation in the shallow crust along permeable fault zones.

  20. Particle dynamics in the rising plume at Piccard Hydrothermal Field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Estapa, M. L.; Breier, J. A.; German, C. R.

    2015-09-01

    Processes active in rising hydrothermal plumes, such as precipitation, particle aggregation, and biological growth, affect particle size distributions and can exert important influences on the biogeochemical impact of submarine venting of iron to the oceans and their sediments. However, observations to date of particle size distribution within these systems are both limited and conflicting. In a novel buoyant hydrothermal plume study at the recently discovered high-temperature (398°C) Piccard Hydrothermal Field, Mid-Cayman Rise, we report optical measurements of particle size distributions (PSDs). We describe the plume PSD in terms of a simple, power-law model commonly used in studies of upper and coastal ocean particle dynamics. Observed PSD slopes, derived from spectral beam attenuation and laser diffraction measurements, are among the highest found to date anywhere in the ocean and ranged from 2.9 to 8.5. Beam attenuation at 650 nm ranged from near zero to a rarely observed maximum of 192 m-1 at 3.5 m above the vent. We did not find large (>100 μm) particles that would settle rapidly to the sediments. Instead, beam attenuation was well-correlated to total iron, suggesting the first-order importance of particle dilution, rather than precipitation or dissolution, in the rising plume at Piccard. Our observations at Piccard caution against the assumption of rapid deposition of hydrothermal, particulate metal fluxes, and illustrate the need for more particle size and composition measurements across a broader range of sites, globally.

  1. Lipid biomarker and microbial community of 49.6°E hydrothermal field at Southwest Indian Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Lei, J.; Chu, F.; Yu, X.; Li, X.; Tao, C.

    2012-12-01

    In 2007, Chinese Research Cruises Discovered the First Active Hydrothermal Vent Field at the Ultraslow Spreading Southwest Indian Ridge. This study intent to get composition, evolution and origin information of lipid compounds in SWIR, and recognize the style of lipid biomarkers which have obviously indicative significance for community structure.Soluble organic matter were extracted from geological samples (including chimney sulfide, oxide, around hydrothermal vents) in Southwest Indian Ridge (SWIR), and divided into hydrocarbon, fatty acid component by column chromatography. GC, GC-MS, HPLC-MS were applied for composition and abundance analysis. Lipid in hydrothermal sulfide contains obvious isoprenoidal hydrocarbon biomarkers (Sq, IS40) and GDGTs (m/z=653) that associated with methanogenic archaea which belongs to Euryarchaeota, and iso /anti-iso fatty acid (iC15:0, aiC15:0, iC17:0, aiC17:0)which may originated from sulfate reducing bacteria (SRB).Lipids extracted from hydrothermal oxide lack isoprenoidal hydrocarbon, and Ph/C18 (0.57) is much lower than sulfide (1.22). Fatty acid compound of oxide include abundant saturated fatty (C16:0, C18:0) acid and mono-unsaturated fatty acids (C16:1n7, C18:1n7), but much less iso/anti-iso was detected. Lipid composition of hydrothermal oxide showed that archaea activity was seldom in hydrothermal oxide, and sulfur-oxidizing bacteria was the main microbial community.Study of Jaeschke (2010) showed that high temperature hydrothermal venting encompassed different microbial community from low temperature hydrothermal venting. Our study showed that in different stage of hydrothermal, microbial community structure may be distinct.

  2. Two hydrothermal fields at the southern Central Indian Ridge (CIR) - structural and magnetic investigations

    NASA Astrophysics Data System (ADS)

    Bartsch, C.; Barckhausen, U.

    2013-12-01

    fluids to rise to the seafloor. Also a magma body as a heat source must be present in the vicinity of hydrothermal fields. It is necessary that the dimension of the magma source is relatively small, because too much volcanic activity might block the pathways for the fluids. The active vent fields known today from the CIR are characterized by sheet flow lavas. They are located at the eastern ridge flanks which are the steeper ones and close to non-transform discontinuities at the section ends. In that case the normal faults and limited volcanic activity are channelways for the hydrothermal fluids. At two hydrothermal vent fields a more detailed magnetic dataset shows a clear decrease in magnetic susceptibility of the basaltic rocks in the vicinity of the known vent sites. Responsible for that decrease is a process called metal leaching which is part of the hydrothermal vent site evolution circle. 3-D forward modeling provides insight into the dimensions of the hydrothermally altered rock bodies at the two locations.

  3. A serpentinite-hosted ecosystem: the Lost City hydrothermal field.

    PubMed

    Kelley, Deborah S; Karson, Jeffrey A; Früh-Green, Gretchen L; Yoerger, Dana R; Shank, Timothy M; Butterfield, David A; Hayes, John M; Schrenk, Matthew O; Olson, Eric J; Proskurowski, Giora; Jakuba, Mike; Bradley, Al; Larson, Ben; Ludwig, Kristin; Glickson, Deborah; Buckman, Kate; Bradley, Alexander S; Brazelton, William J; Roe, Kevin; Elend, Mitch J; Delacour, Adélie; Bernasconi, Stefano M; Lilley, Marvin D; Baross, John A; Summons, Roger E; Sylva, Sean P

    2005-03-01

    The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from <40 degrees to 90 degrees C at pH 9 to 11, and carbonate chimneys 30 to 60 meters tall. A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems. PMID:15746419

  4. Temperature and volume estimation of under-seafloor fluid from the logging-while-drilling data beneath an active hydrothermal field

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.

    2015-12-01

    In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).

  5. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea

    USGS Publications Warehouse

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; Rosner, Martin

    2011-01-01

    Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 degrees C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 degrees C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 degrees C) fluid. All PACMANUS fluids are characterized by negative delta DH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 degrees C) values (~2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative delta 34SH2S values (down to -2.7 permille) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (-4.1 permille to -2.3 permille) than Vienna Woods (-5.2 permille to -5.7 permille), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus

  6. Hydrothermal activity in Tertiary Icelandic crust: Implication for cooling processes along slow-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pałgan, D.; Devey, C. W.; Yeo, I. A.

    2015-12-01

    Known hydrothermal activity along the Mid-Atlantic Ridge is mostly high-temperature venting, controlled by volcano-tectonic processes confined to ridge axes and neotectonic zones ~15km wide on each side of the axis (e.g. TAG or Snake Pit). However, extensive exploration and discoveries of new hydrothermal fields in off-axis regions (e.g. Lost City, MAR) show that hydrothermalism may, in some areas, be dominated by off-axis venting. Little is known about nature of such systems, including whether low-temperature "diffuse" venting dominates rather than high-temperature black-smokers. This is particularly interesting since such systems may transport up to 90% of the hydrothermal heat to the oceans. In this study we use Icelandic hot springs as onshore analogues for off-shore hydrothermal activity along the MAR to better understand volcano-tectonic controls on their occurrence, along with processes supporting fluid circulation. Iceland is a unique laboratory to study how new oceanic crust cools and suggests that old crust may not be as inactive as previously thought. Our results show that Tertiary (>3.3 Myr) crust of Iceland (Westfjords) has widespread low-temperature hydrothermal activity. Lack of tectonism (indicated by lack of seismicity), along with field research suggest that faults in Westfjords are no longer active and that once sealed, can no longer support hydrothermal circulation, i.e. none of the hot springs in the area occur along faults. Instead, dyke margins provide open and permeable fluid migration pathways. Furthermore, we suggest that the Reykjanes Ridge (south of Iceland) may be similar to Westfjords with hydrothermalism dominated by off-axis venting. Using bathymetric data we infer dyke positions and suggest potential sites for future exploration located away from neotectonic zone. We also emphasise the importance of biological observations in seeking for low-temperature hydrothermal activity, since chemical or optical methods are not sufficient.

  7. Discovering New Mantle-Hosted Submarine Ecosytems: The Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Kelley, D. S.; Karson, J. A.; Yoerger, D.; Fruh-Green, G. L.; Butterfield, D. A.; Lilley, M.

    2003-12-01

    environments. The large surface areas exposed to hydrothermal fluids along the gently dipping faults may provide important environments for microbiological communities within the subsurface. Stockwork systems and variably cemented breccias preserved along the steep walls immediately adjacent to the field are reminiscent of ancient ophicalcite deposits preserved in ophiolitic rocks since the Archean. The Lost City Field is an astounding, intensely beautiful area that hosts numerous composite chimneys that extend over an area >350 m in length. Many structures contain an array of delicate flanges, multiple pinnacles, and beehive deposits. The complex structure Poseidon dominates the field: it is over 60 m in height, >40 m in length and it hosts multiple active and inactive towers, smaller pinnacles, and flanges. It is unlikely that hydrothermal systems like Lost City are unique along the global mid-ocean ridge spreading network; where massifs similar to those at the Atlantis Fracture Zone are common. In these environments, intense long-lived faulting and seismic activity, coupled with serpentinization reactions act depth serve to promote hydrothermal flow.

  8. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.

    PubMed

    Singh, Satish C; Crawford, Wayne C; Carton, Hélène; Seher, Tim; Combier, Violaine; Cannat, Mathilde; Pablo Canales, Juan; Düsünür, Doga; Escartin, Javier; Miranda, J Miguel

    2006-08-31

    Crust at slow-spreading ridges is formed by a combination of magmatic and tectonic processes, with magmatic accretion possibly involving short-lived crustal magma chambers. The reflections of seismic waves from crustal magma chambers have been observed beneath intermediate and fast-spreading centres, but it has been difficult to image such magma chambers beneath slow-spreading centres, owing to rough seafloor topography and associated seafloor scattering. In the absence of any images of magma chambers or of subsurface near-axis faults, it has been difficult to characterize the interplay of magmatic and tectonic processes in crustal accretion and hydrothermal circulation at slow-spreading ridges. Here we report the presence of a crustal magma chamber beneath the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge. The reflection from the top of the magma chamber, centred beneath the Lucky Strike volcano and hydrothermal field, is approximately 3 km beneath the sea floor, 3-4 km wide and extends up to 7 km along-axis. We suggest that this magma chamber provides the heat for the active hydrothermal vent field above it. We also observe axial valley bounding faults that seem to penetrate down to the magma chamber depth as well as a set of inward-dipping faults cutting through the volcanic edifice, suggesting continuous interactions between tectonic and magmatic processes. PMID:16943836

  9. Sulphur Cycling at the Mid-Atlantic Ridge: Isotopic Evidence From the Logatchev and Turtle Pits Hydrothermal Fields

    NASA Astrophysics Data System (ADS)

    Eickmann, B.; Strauss, H.; Koschinsky, A.; Kuhn, T.; Petersen, S.; Schmidt, K.

    2005-12-01

    Mid-ocean ridges and associated hydrothermal vent systems represent a unique scenario in which the interaction of hydrosphere, lithosphere and biosphere and the related element cycling can be studied. Sulphur participates in inorganic and microbially driven processes and plays, thus, an important role at these vent sites. The sulphur isotopic compositions of different sulphur-bearing minerals as well as dissolved sulphur compounds provide a tool for identifying the sulphur source and pertinent processes of sulphur cycling. Here, we present sulphur isotope data from an ongoing study of the Logatchev hydrothermal field at 14°45' N and the Turtle Pits hydrothermal field at 4°48' S. The former is located in 2900 to 3060 m water depth, hosted by ultramafic rocks, while the latter is situated in 2990 m water depth, hosted by basaltic rocks. Different metal sulphides (chalcopyrite, pyrite, pyrrhotite, various copper sulphides), either particles from the emanating hot fluid itself or pieces of active and inactive black smokers, display δ34S values between +2 and +9 ‰. So far, no significant difference is discernible between mineral precipitates from both hydrothermal fields. However, differences exist between different generations of sulphide precipitates. Based on respective data from other sites of hydrothermal activity at mid-ocean ridges, this sulphur isotope range suggests that sulphur in the hydrothermal fluid and mineral precipitates represents a mixture between mantle sulphur and reduced seawater sulphate. Anhydrite precipitates from hydrothermal chimneys, located inside sulphide conduits, and obvious late stage gypsum needles from voids, yielded sulphur isotope values between +17.5 and +20.0 ‰. This clearly identifies seawater sulphate as the principal sulphur source. Variable, but generally low abundances of sulphide and sulphate in differently altered mafic and ultramafic rocks point to a complex fluid-rock interaction. Sulphur isotope values for total

  10. The characteristics of hydrothermal plumes observed in the Precious Stone Mountain hydrothermal field, the Galapagos spreading center

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.

    2014-12-01

    The Precious Stone Mountain hydrothermal field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of hydrothermal plumes and locate the hydrothermal vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong hydrothermal turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring system, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of hydrothermal plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by hydrothermal sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of hydrothermal plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of hydrothermal plume. Different from the distribution of hydrothermal plumes on the mid-ocean ridges, which was mostly

  11. Impact of hydrothermal activity on carbonate fossils in bottom sediments of the tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Gablina, I. F.; Dmitrenko, O. B.; Os'kina, N. S.; Khusid, T. A.; Popova, E. A.

    2015-02-01

    The chemical and mineral composition of the bottom sediments, as well as the assemblages of carbonate planktonic and benthic fossils (nannoplankton, foraminifers), were analyzed in two cores obtained in the North Atlantic within the Peterburgskoe hydrothermal ore field and beyond its limits. Their sections include the Upper Pleistocene and Holocene sediments with the boundary between them located at the depth of 20 cm. It is established that planktonic fossils (foraminifers and nannoplankton) reflect the replacement of subtropical conditions in the Late Pleistocene by tropical environments in the Holocene. It is shown that hydrothermal fluids significantly affect biogenic carbonate sediments in the ore formation zone of the Peterburgskoe field (core 33L159) resulting in dissolution of microfossils and their replacement by hydrothermal material. Their transformation patterns and vertical distribution indicate the influx of diffuse acid solutions to sediments from below. In background sediments constituting the core 33L148 section located 5 km away from the ore field, microfossils exhibit good preservation through its entire length. The sediments from the basal part of the section demonstrate the slight influence of the aggressive acid medium reflected in the disappearance of pteropod remains and changes in the abundance and taxonomic composition of benthic foraminifers and nannofossils. These data may be used as a criterion for defining potential nearby active hydrothermal sources.

  12. Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, S.; Sekine, Y.; Kempf, S.; Juhasz, A.; Horanyi, M.; Moragas-Klostermeyer, G.; Srama, R.

    2013-12-01

    Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor F. Postberg, H.-W. Hsu, Y. Sekine, S. Kempf, A. Juhasz, M. Horanyi, G. Moragas-Klostermeyer, R. Srama Silica serves as a unique indicator of hydrothermal activities on Earth as well as on Mars. Here we report the Cassini Cosmic Dust Analyser (CDA) observation of nanosilica particles from the Saturnian system. Based on their interaction with the solar wind electromagnetic fields, these charged nanosilica particles, so-called stream particles, are found to be originated in Saturn's E ring, indicating Enceladus being their ultimate source. CDA stream particle mass spectra reveal a metal-free but silicon-rich composition that is only plausible for nearly pure silica particles. The size range derived from our measurements confines the size of these particles to a radius of 2 - 8 nm. The unique properties of nano-grains with the observed composition and size are a well-known phenomenon on Earth and their formation requires specific hydrothermal rock-water interactions. The observation of Saturnian nanosilica particles thus serves as an evidence of hydrothermal activities at the interface of Enceladus subsurface ocean and its rocky core. Considering plasma erosion as the major mechanism of releasing embedded nanosilica particles from their carriers, the much larger E ring ice grains, our dynamical model and CDA observation provide a lower limit on the average nanosilica concentration in E ring grains. Together with dedicated hydrothermal experiments (Sekine at al., 2013) this can be translated into constraints on the hydrothermal activities on Enceladus. Measurements and experiments both point at dissolved silica concentrations at the ocean floor in the order of 1 - 3 mMol. The hydrothermal reactions likely take place with a pristine, chondritic rock composition at temperature higher than 130°C (Sekine at al. 2013). Colloidal nano-silica forms upon supersaturation during cooling of the

  13. On the global distribution of hydrothermal vent fields: One decade later

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with < 60 mm/yr full spreading rate. Discoveries at ultra-slow MORs in the past decade included the deepest known vent (Beebe at Mid-Cayman Rise) and high-temperature black smoker vents (e.g., Dragon at SWIR and Loki's Castle at Mohns Ridge), and the highest temperature vent was measured at the slow-spreading S MAR (Turtle Pits). Using a previously published equation for the linear relationship between the number of active vent fields per 100 km strike length (F_s) vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (< 40 mm/yr) and about 1/3 at intermediate rates (40-80 mm

  14. Mineralogy, chemical composition and structure of the MIR Mound, TAG Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Stepanova, T. V.; Krasnov, S. G.; Cherkashev, G. A.

    The study of samples collected from the surface of the MIR mound (TAG Hydrothermal Field) by video-controlled hydraulic grab allowed identification of a number of mineralogical types. These include pyrite-chalcopyrite (Py-Cp), bornite-chalcopyrite-opaline (Bn-Cp-Op) and sphalerite-opaline (Sp-Op) sulfide chimneys, massive sulfides composed of pyrite (Py), chalcopyrite-pyrite (Cp-Py), marcasite-pyrite-opaline (Mc-Py-Op), sphalerite-pyrite-opaline (Sp-Py-Op) and sphalerite-chalcopyrite-pyrite-opaline (Sp-Cp-Py-Op), as well as siliceous and Fe-Mn oxide hydrothermal deposits. Most of the minor elements (Ag, Au, Cd, Ga, Hg, Sb and Pb) are associated with Zn-rich massive sulfides, Co Bi, Pb, and As with Ferich ones, while Cu-rich sulfides are depleted of trace metals. Cu-enriched assemblages are concentrated in the northern part, Zn-enriched in the center, and siliceous rocks in the south of the MIR mound. According to paragenetic relations, the development of the mound started with the formation of quartz (originally opaline) rocks and dendritic assemblages of melnikovite-pyrite, followed by deposition of chalcopyrite and recrystallization of primary pyrite, subsequent generation of sphalerite-rich assemblages and final deposition of opaline rocks. The late renewal of hydrothermal activity led to local formation of Cu-rich chimneys enriched in Au, Ag, Hg and Pb probably due to their remobilization from inner parts of the deposit.

  15. Hydrothermal and magmatic couplings at mid-ocean ridges : controls on the locations of high-temperature hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Rabinowicz, M.; Fontaine, F. J.; Cannat, M.; Escartin, J.

    2012-12-01

    The heat output and thermal regime of oceanic spreading centers are strongly controlled by boundary layer processes between the hydrothermal system and the underlying crustal magma chamber, which remain to be fully understood. In thermal models, the dynamical interactions between the hydrothermal system and the deeper part of the lithosphere affected by processes such as magma chamber convection, magma crystallization and latent heat release, or simple conduction, is usually not considered and a ad-hoc temperature or heat flux is prescribed at the base of the hydrothermal layer. In this work we develop original two-dimensional numerical models of the interactions between a shallow cellular hydrothermal (porous) system at temperatures <700°C in the upper crust, and a deeper magmatic (viscous) layer at temperatures up to 1200°C representing the lower crust. Our formalism allows for a dynamical interface between the two layers, which is fluctuating according to the dynamics of each layer. We systematically investigate the range of permeability and viscosity that characterized the dynamics of the porous and magmatic systems, respectively. An intriguing and highly debated question that we investigate is about the genesis of focused (i.e., kilometer-wide), hundreds-of-mega-watt (MW) powerfull, high-temperature (300-400°C) hydrothermal fields such as those discovered along the East Pacific Rise at 9°50'N or along the Juan de Fuca ridge/Endeavour segment for example. One hypothesis is that these fields require the formation of "elongated" hydrothermal convection cells that cool the crust on 5-10 kms, but the processes controlling the formation of such large aspect ratio (length/height) are poorly constrain. Our models show that such cells naturally arise from the dynamical coupling between a « low-viscosity », convecting lower-crust and a low-permeability upper hydrothermal layer. They also predict along-axis variations in the depth of the axial magma lens (AMC

  16. Hydrothermal and magmatic couplings at mid-ocean ridges : controls on the locations of high-temperature hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice; Rabinowicz, Michel; Cannat, Mathilde; Escartin, Javier

    2013-04-01

    The heat output and thermal regime of oceanic spreading centers are strongly controlled by boundary layer processes between the hydrothermal system and the underlying crustal magma chamber, which remain to be fully understood. In thermal models, the dynamical interactions between the hydrothermal system and the deeper part of the lithosphere affected by processes such as magma chamber convection, magma crystallization and latent heat release, or simple conduction, is usually not considered and a ad-hoc temperature or heat flux is prescribed at the base of the hydrothermal layer. In this work we develop original two-dimensional numerical models of the interactions between a shallow cellular hydrothermal (porous) system at temperatures <700°C in the upper crust, and a deeper magmatic (viscous) layer at temperatures up to 1200°C representing the lower crust. Our formalism allows for a dynamical interface between the two layers, which is fluctuating according to the dynamics of each layer. We systematically investigate the range of permeability and viscosity that characterized the dynamics of the porous and magmatic systems, respectively. An intriguing and highly debated question that we investigate is about the genesis of focused (i.e., kilometer-wide), hundreds-of-mega-watt (MW) powerfull, high-temperature (300-400°C) hydrothermal fields such as those discovered along the East Pacific Rise at 9°50'N or along the Juan de Fuca ridge/Endeavour segment for example. One hypothesis is that these fields require the formation of "elongated" hydrothermal convection cells that cool the crust on 5-10 kms, but the processes controlling the formation of such large aspect ratio (length/height) are poorly constrain. Our models show that such cells naturally arise from the dynamical coupling between a « low-viscosity », convecting lower-crust and a low-permeability upper hydrothermal layer. They also predict along-axis variations in the depth of the axial magma lens (AMC

  17. Relationships between lava types, seafloor morphology, and the occurrence of hydrothermal venting in the ASHES vent field of Axial Volcano. [Axial Seamount Hydrothermal Emission Study

    SciTech Connect

    Hammond, S.R. )

    1990-08-10

    Deep-towed and submersible photographic surveys within the caldera of Axial Volcano have been integrated with high-resolution bathmetry to produce a geological map of the most active vent field in the caldera. Locations for over 2,000 photographs in and near the vent field were determined using a seafloor transponder network. Then each photograph was described utilizing a classification system which provides detailed information concerning lava type, hydrothermal activity, sediment cover, geological structure, and biology. Resulting data were entered into a digital data base, and computer-generated maps were created that portray spatial relationships between selected geological variables. In general, the entire ASHES field is characterized by pervasive low-temperature venting. The most vigorous venting is concentrated in an approximately 80 m {times} 80 m area where there are several high-temperature vents including some which are producing high-temperature vapor-phase fluids derived from a boiling hydrothermal system. Lava types within the ASHES vent field are grouped into three distinct morphologies: (1) smooth (flat-surfaced, ropy, and whorled) sheet flows, (2) lobate flows, and (3) jumbled-sheet flows. The most intense hydrothermal venting is concentrated in the smooth sheet flows and the lobate flows. The location of the ASHES field is mainly attributable to faulting which defines the southwest caldera wall, but the concentration of intense venting appears to be related also to the spatial distribution of lava types in the vent field and their contrasting permeabilities. Other structural trends of faults and fissures within the field also influence the location of individual events.

  18. Submarine Hydrothermal Systems - No Two Fields Are Alike

    NASA Astrophysics Data System (ADS)

    Kelley, D. S.

    2014-12-01

    Over 300 hydrothermal systems have been discovered since the first finding of Galapagos vents over three decades ago. The size, morphology, chemistry and associated biology show a rich diversity that is in part governed by their host rocks and tectonic setting. Each vent system is unique in terms of the morphology of black smoker edifices and associated diffuse flow, which suggests that local processes and feedback loops govern the nature and evolution of these dynamic systems. In fast-spreading environments (e.g. EPR), vent fields are spaced far apart and individual structures are small in number and size. In contrast, to date, the highest concentrations of fields per kilometer of ridge segment, and the largest individual black smokers occur in intermediate-spreading systems (e.g. Endeavour hosting 45 m-tall chimneys). The largest complexes occur in intermediate and slow-spreading environments (e.g. TAG at 200 m across). The highest temperature vents are transient, with temperature excursions at or above the critical point of seawater. Extremely high temperatures are associated with diking and eruptive events that likely vaporize subsurface fluids, forcing them across the two-phase boundary briefly. Along slow- and ultraslow-spreading ridges, the character of vents is strongly controlled by faulting, in particular, long-lived detachment faults that expose variably deformed and altered ultramafic rocks. Here, vent systems evolve from high-temperature black smokers within the axial valley with fluids rich in CO2, to black smokers with mantle and basaltic signatures along the axial valley walls, to end member systems such as the Lost City Field with chimneys and fluid chemistries never before seen: 60 m tall limestone towers that vent 90°C, metal-poor, pH 9-11 fluids devoid of CO2, yet rich in H2, CH4 and other low molecular weight hydrocarbons formed abiotically. This relatively stable environment, free from volcanic events, promotes venting for >150,000 years.

  19. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  20. Significant role of climatic trends on hydrothermal activity Coso Hot Springs, California

    SciTech Connect

    Lofgren, B.E. )

    1990-05-01

    The hydrothermal features of Coso Hot Springs have attracted visitors for 130 yr and scientific investigators for two decades. In 1978, anticipating effects of major geothermal developments nearby, the Naval Weapons Center (NWC) initiated a comprehensive monitoring program at a dozen hydrothermal sites in the Coso Hot Springs area. Nine years of monitoring preceded power production in the nearby Coso geothermal field in July 1987. During this period, steam was rising from numerous vents and gently boiling mud pots. Local rainfall caused increased boiling activity in several mud pots, with some overflowing during wet periods. Then in August 1988, a year after geothermal power production began major changes in hot spring activity commenced. Small mud pots and steamers started to grow and coalesce. In March 1989, mud-pot activity became more violent. Many buried wells failed causing surface activity in other areas to diminish. During ensuing months, large mud cones developed and much of the steam and boiling water occurred in a few major pots. Because the abrupt changes in hydrothermal activity followed so closely after nearby geothermal production began, the obvious cause has been attributed to geothermal developments. Studies of NWC baseline monitoring data indicate, however, that no effects of geothermal developments have been felt in the hot springs area. Rainfall and barometric effects account for most of the fluctuations in records of the past decade. Early accounts and field evidence suggest similar changes have occurred in the past.

  1. Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge.

    PubMed

    Zhou, Huaiyang; Li, Jiangtao; Peng, Xiaotong; Meng, Jun; Wang, Fengping; Ai, Yuncan

    2009-06-01

    Submarine hydrothermal vents are among the least-understood habitats on Earth but have been the intense focus of research in the past 30 years. An active hydrothermal sulfide chimney collected from the Dudley site in the Main Endeavour vent Field (MEF) of Juan de Fuca Ridge was investigated using mineralogical and molecular approaches. Mineral analysis indicated that the chimney was composed mainly of Fe-, Zn-and Cu-rich sulfides. According to phylogenetic analysis, within the Crenarchaeota, clones of the order Desulfurococcales predominated, comprising nearly 50% of archaeal clones. Euryarchaeota were composed mainly of clones belonging to Thermococcales and deep-sea hydrothermal vent Euryarchaeota (DHVE), each of which accounted for about 20% of all clones. Thermophilic or hyperthermophilic physiologies were common to the predominant archaeal groups. More than half of bacterial clones belonged to epsilon-Proteobacteria, which confirmed their prevalence in hydrothermal vent environments. Clones of Proteobacteria (gamma-, delta-, beta-), Cytophaga-Flavobacterium-Bacteroides (CFB) and Deinococcus-Thermus occurred as well. It was remarkable that methanogens and methanotrophs were not detected in our 16S rRNA gene library. Our results indicated that sulfur-related metabolism, which included sulfur-reducing activity carried out by thermophilic archaea and sulfur-oxidizing by mesophilic bacteria, was common and crucial to the vent ecosystem in Dudley hydrothermal site. PMID:19557339

  2. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    NASA Astrophysics Data System (ADS)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2016-02-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  3. Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; EscartíN, Javier; Gracias, Nuno; Olive, Jean-Arthur; Barreyre, Thibaut; Davaille, Anne; Cannat, Mathilde; Garcia, Rafael

    2012-04-01

    The relative heat carried by diffuse versus discrete venting of hydrothermal fluids at mid-ocean ridges is poorly constrained and likely varies among vent sites. Estimates of the proportion of heat carried by diffuse flow range from 0% to 100% of the total axial heat flux. Here, we present an approach that integrates imagery, video, and temperature measurements to accurately estimate this partitioning at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperatures, photographic mosaics of the vent site, and video sequences of fluid flow were acquired during the Bathyluck'09 cruise (Fall, 2009) and the Momarsat'10 cruise (Summer, 2010) to the Lucky Strike hydrothermal field by the ROV Victor6000 aboard the French research vessel the "Pourquoi Pas"? (IFREMER, France). We use two optical methods to calculate the velocities of imaged hydrothermal fluids: (1) for diffuse venting, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time, and (2) for discrete jets, Particle Image Velocimetry tracks eddies by cross-correlation of pixel intensities between subsequent images. To circumvent video blurring associated with rapid velocities at vent orifices, exit velocities at discrete vents are calculated from the best fit of the observed velocity field to a model of a steady state turbulent plume where we vary the model vent radius and fluid exit velocity. Our results yield vertical velocities of diffuse effluent between 0.9 cm s-1 and 11.1 cm s-1 for fluid temperatures between 3°C and 33.5°C above that of ambient seawater, and exit velocities of discrete jets between 22 cm s-1 and 119 cm s-1 for fluid temperatures between 200°C and 301°C above ambient seawater. Using the calculated fluid velocities, temperature measurements, and photo mosaics of the actively venting areas, we calculate a heat flux due to diffuse venting from thin fractures of 3.15 ± 2.22 MW, discrete venting of

  4. Reevaluation and comparison of energy source of chemosynthesis-based animals in each hydrothermal fields

    NASA Astrophysics Data System (ADS)

    Yamagami, S.; Fujikura, K.; Koito, T.; Inoue, K.; Yamanaka, T.

    2012-12-01

    Large biomass of dense benthic animals containing characteristic endemic species is often observed around seafloor cold seep and hydrothermal fluid vents. Parts of such animals rely on symbiotic microbes as their energy source. Those microbes are chemotrophic primary producer such as thioautotrophic and/or methanotrophic microbes. Therefore, it is commonly believed that those animals are supported only by geofluid that contains extremely high concentrations of reduced chemical species such as hydrogen sulfide and methane. However, geographical distribution of those animals is not limited nearby geofluid emitting area and is widely spreading around hydrothermal fields. Some communities are observed at an area where lack of detectable amount of reduced chemical species for sustaining the symbiotic animals. The purpose of this study, therefore, is reevaluation and comparison of the energy source quantitatively for chemotrophic primary production utilizing stable isotope signatures. We try to understand the origin of energy source for chemosynthesis-based benthic animals obtained from three areas, Okinawa Trough, Izu-Bonin Arc and Sagami Bay, where have different geological background and dominant animal species among each other. Samples of eight animal species were collected at the five geofluid fields, Iheya, Izena, Myojin, Suiyo and Sagami Bay, using RV/Natsushima and ROV/HyperDolphin during NT10-17 and NT11-09 cruise. In Okinawa Trough, the isotopic signature from the soft body parts of the thiotrophic animals who harbor sulfur-oxidizing microbes suggest that most of these animals assimilate not only originally geofluid-derived sulfide but also seawater-sulfate-derived sulfide through microbial sulfate-reducing activity. Furthermore, it seems that the methanotrophic species who harbor methane-oxidizing microbes do not rely only on their symbionts. It means that the animal species who harbor symbionts whether sulfur-oxidizing bacteria or methane-oxidizing bacteria

  5. Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice

    2016-06-01

    High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.

  6. A seismic anisotropy study of the Dragon Flag hydrothermal field (49°39'E ) on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhao, M.; Tong, V. C. H.; Qiu, X.

    2015-12-01

    Dragon Flag hydrothermal field located at 49°39'E on the Southwest Indian Ridge contains the active hydrothermal vents firstly discovered on the ultraslow spreading ridge (Tao et al, 2012). Anisotropic study in this area will provide important information tectonic activities. 65634 traveltime residuals from the three-dimensional isotropic inversion (Zhao et al., 2013), were divided into three groups, which correspond to quasi ocean crustal Layer 2 (qL2), quasi ocean crustal Layer 3 (qL3) and quasi uppermost mantle (qUM), respectively. Traveltime residuals at different depths show that there are obvious cosine relationships between traveltime residuals and azimuth of qL2, qL3 and qUM, indicating anisotropy existed in both crust and mantle beneath Dragon Flag hydrothermal field. The best fitted cosine curves indicate that the fast directions (negative traveltime residuals) corresponding to the general trend of ridge axis of N104°E. According to these results, we propose that there may be prevalent cracks penetrating into lower crust or even uppermost mantle. We argue that the hydrothermal convection of Dragon Flag hydrothermal field not only occurs perpendicular to ridge axis, but also occurs parallel to ridge axis. We reveal for the first time anisotropic characteristics of the ultraslow spreading ridge, which has profound scientific significance for the future research on global ocean lithospheric anisotropy. This research was granted by the Natural Science Foundation of China (91028002, 41176053, 91428204). Keywords: ultraslow spreading ridge, Southwest Indian Ridge, Dragon Flag hydrothermal field, P wave traveltime residuals, anisotropy References: Tao C H, Lin J, Guo S, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 2012, 40(1): 47~50. Zhao M H, Qiu X L, Li J B, et al. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39

  7. Sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge. Technical report

    SciTech Connect

    Little, S.A.; Stolzenbach, K.D.; Purdy, G.M.

    1990-08-10

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the calders wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 0.0001 Pa sq/Hz was noticed on two records taken within 3 m of the Inferno black smoker. The frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities. Keywords: Seamounts; Flow noise; Underwater acoustics; Acoustic measurement; Geothermy/noise; Ocean ridges; Underwater sound signals; Reprints; North Pacific Ocean. (EDC).

  8. Diethers enriched in 13C suggest carbon-limitation at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Bradley, A. S.; Hayes, J. M.; Summons, R. E.

    2004-12-01

    Active and inactive carbonate vent structures from the Lost City Hydrothermal Field (LCHF) contain up to 0.6% organic carbon including diverse lipids. Values of δ 13C for total organic carbon (TOC) range from -18.7‰ vs. VPDB at the active, high-temperature vent known as "The Beehive" (90° C), to -3.1‰ at Marker 7 (active, 70° C). Samples with relatively high levels of 13C also contained high amounts of isoprenoidal and nonisoprenoidal diethers. Samples more depleted in 13C lacked or contained low amounts of these diethers. The correlation between high 13C and abundant diethers is supported by compound-specific isotopic analyses. Archaeal and bacterial diethers are enriched in 13C relative to photosynthetically derived marine carbon. The biomarkers sn-2 hydroxyarchaeol, sn-3 hydroxyarchaeol, and dihydroxyarchaeol - considered diagnostic for methane-cycling archaea - had δ values ranging from -8.5 to +4.8‰ . Phylogenetic data confirms the presence at these vents of a single group of methanogens, related to the Methanosarcinales (Schrenk et al., 2004). Diethers with non-isoprenoidal alkyl chains are also present, are of presumed bacterial origin, and may indicated the presence of sulfate-reducing bacteria. Values of δ for these compounds range from -7.3 to +1.0‰ . At the Beehive vent, diether lipids are absent and the TOC is depleted in 13C. Coexistence of isotopically similar hydroxyarchaeols and nonisoprenoidal glycerol diethers is typical of marine, cold-seep environments at which concentrations of H2 are low and methane is oxidized anaerobically. At the LCHF, however, concentrations of H2 in pore waters reach 15 mM (Proskurowski et al., 2003). This H2, produced by serpentinization reactions, drives production (rather than oxidation) of methane. Simultaneously, sulfate-reducing bacteria can flourish as carbon-fixing autotrophs. Under such conditions, carbon may be the limiting substrate, its nearly complete consumption accounting for the enrichment of

  9. The scale of hydrothermal circulation of the Iheya-North field inferred from intensive heat flow measurements and ocean drilling

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Kinoshita, M.; Yamamoto, H.; Nakajima, R.; Kumagai, H.; Takai, K.

    2014-12-01

    Iheya-North hydrothermal field situated in the middle Okinawa trough backarc basin is one of the largest ongoing Kuroko deposits in the world. Active chimneys as well as diffuse ventings (maximum fluid temperature 311 °C) have been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and ~100 heat flow data in and around the field from 2002 to 2014. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 was carried out, and subbottom temperature data were obtained around the hydrothermal sites. During the JAMSTEC R/V Kaiyo cruise, KY14-01 in 2014, Iheya-North "Natsu" and "Aki" hydrothermal fields were newly found. The Iheya-Noth "Natsu" and "Aki" sites are located 1.2 km and 2.6 km south from the Iheya-North original site, respectively, and the maximum venting fluid temperature was 317 °C. We obtained one heat flow data at the "Aki" site. The value was 17 W/m2. Currently, the relationship between these hydrothermal sites are not well known. Three distinct zones are identified by heat flow values within 3 km from the active hydrothermal field. They are high-heat flow zone (>1 W/m2; HHZ), moderate-heat-flow zone (1-0.1 W/m2; MHZ); and low-heat-flow zone (<0.1 W/m2; LHZ). With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. In the LHZ, temperature at 37m below the seafloor (mbsf) was 6 °C, that is consistent with the surface low heat flow suggesting the recharge of seawater. However, between 70 and 90 mbsf, the coarser sediments were cored, and temperature increased from 25 °C to 40°C. The temperature was 905°C at 151 mbsf, which was measured with thermoseal strips. The low thermal gradient in the upper 40 m suggests downward fluid flow. We infer that a hydrothermal circulation in the scale of ~1.5 km horizontal vs. ~a few hundred meters vertical.

  10. Subaerial and sublacustrine hydrothermal activity at Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; de Ronde, Cornel E. J.; Scott, Bradley J.; Wilson, Nathaniel J.; Walker, Sharon L.; Lupton, John E.

    2016-03-01

    Lake Rotomahana is a crater lake in the Okataina Volcanic Centre (New Zealand) that was significantly modified by the 1886 Tarawera Rift eruption. The lake is host to numerous sublacustrine hydrothermal vents. Water column studies were conducted in 2011 and 2014 along with sampling of lake shore hot springs and crater lakes in Waimangu Valley to complement magnetic, seismic, bathymetric and heat flux surveys. Helium concentrations below 50 m depth are higher in 2014 compared to 2011 and represent some of the highest concentrations measured, at 6 × 10- 7 ccSTP/g, with an end-member 3He/4He value of 7.1 RA. The high concentrations of helium, when coupled with pH anomalies due to high dissolved CO2 content, suggest the dominant chemical input to the lake is derived from magmatic degassing of an underlying magma. The lake shore hot spring waters show differences in source temperatures using a Na-K geothermometer, with inferred reservoir temperatures ranging between 197 and 232 °C. Water δ18O and δD values show isotopic enrichment due to evaporation of a steam heated pool with samples from nearby Waimangu Valley having the greatest enrichment. Results from this study confirm both pre-1886 eruption hydrothermal sites and newly created post-eruption sites are both still active.

  11. Age, Episodicity and Migration of Hydrothermal Activity within the Axial Valley, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, J. W.; Hannington, M. D.; Kelley, D. S.; Clague, D. A.; Holden, J. F.; Tivey, M. K.; Delaney, J. R.

    2011-12-01

    Hydrothermal sulfide deposits record the history of high-temperature venting along the Endeavour Segment. Active venting is currently located within five discreet vent fields, with minor diffuse venting occurring between the fields. However, inactive and/or extinct sulfide structures are found throughout the entire axial valley of the ridge segment, suggesting that hydrothermal activity has been more vigorous in the past or focused venting has migrated with time. Here, we present age constraints from U-series dating of 44 sulfide samples collected by manned submersible from between the Mothra Field in the south to Sasquatch in the north. Samples are dated using 226Ra/Ba ratios from hydrothermal barite that precipitates along with the sulfide minerals. Most samples have been collected from within or near the active vent fields. Fifteen samples from the Main Endeavour Field (MEF) show a spectrum of ages from present to 2,430 years old, indicating that this field has been continuously active for at least ~2,400 years. MEF appears to be oldest currently active field. This minimum value for the age of hydrothermal activity also provides a minimum age of the axial valley itself. Ages from thirteen samples from the High-Rise Field indicate continuous venting for at least the past ~1,250 years. These age data are used in conjunction with age constraints of the volcanic flows to develop an integrated volcanic, hydrothermal and tectonic history of the Endeavour Segment. The total volume of hydrothermal sulfide within the axial valley, determined from high-resolution bathymetry, is used in conjunction with the age constraints of the sulfide material to determine the mass accumulation rates of sulfide along the Endeavour Segment. These data can be used to calibrate the efficiency of sulfide deposition from the hydrothermal vents, and provide a time-integrated history of heat, fluid and chemical fluxes at the ridge-segment scale. The comparison of time-integrated rates with

  12. Molecular evidence for microorganisms participating in Fe, Mn, and S biogeochemical cycling in two low-temperature hydrothermal fields at the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Li, Jiwei; Peng, Xiaotong; Zhou, Huaiyang; Li, Jiangtao; Sun, Zhilei

    2013-06-01

    We examined two low-temperature hydrothermal deposits rich in Fe-Si-Mn collected from the recently discovered hydrothermal fields at the Southwest Indian Ridge using mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses indicated that the low-temperature hydrothermal fields would provide a warm and chemical species-rich habitat for chemosynthetic-based hydrothermal ecosystems. Analyses of 16S rRNA sequences showed that ζ-Proteobacteria, Pseudoalteromonas, Leptothrix, and Pseudomonas were potential Fe and Mn oxidizers in the low-temperature hydrothermal environments, but they were not present in equal abundance among the subniches. Some potential Fe and Mn reducers were also recovered; they were more commonly found in the exterior black Fe-Mn oxides. The difference between the exterior black Fe-Mn oxides and the interior Opal-A could be related to differences in in situ physicochemical conditions. We also identified microbial players that may participate in sulfur (S) geochemical cycling in these low-temperature hydrothermal environments via analyses of 16S rRNA sequences and the aprA functional gene. The results indicated that members of γ-Proteobacteria and α-Proteobacteria were involved in the S oxidation process, while members of δ-Proteobacteria, Nitrospirae, Firmicutes, and Archaea might participate in the S reduction process. Fe, Mn, and S oxidizers and reducers might actively participate in hydrothermal biogeochemical processes, which could influence the transfer of chemical species and the formation of biogenic minerals.

  13. Fluid flow and sound generation at hydrothermal vent fields. Doctoral thesis

    SciTech Connect

    Little, S.A.

    1988-04-01

    Several experiments in this thesis examine methods to measure and monitor fluid flow from hydrothermal vent fields. Simultaneous velocity temperature, and conductivity data were collected in the convective flow emanating from a hydrothermal vent field located on the East Pacific rise. The horizontal profiles obtained indicate that the flow field approaches an ideal plume in the temperature and velocity distribution. Such parameters as total heat flow and maximum plume height can be estimated using either the velocity or the temperature information. The results of these independent calculations are in close agreement, yielding a total heat capacity and volume changes slightly alter the calculations applied to obtain these values. In Guaymas Basin, a twelve day time series of temperature data was collected from a point three centimeters above a diffuse hydrothermal flow area. Using concurrent tidal gauge data from the town of Guaymas it is shown that the effects of tidal currents can be strong enough to dominate the time variability of a temperature signal at a fixed point in hydrothermal flow and are a plausible explanation for the variations seen in the Guaymas Basin temperature data. The increase in power due to convected flow inhomogeneities, however, was lower in the near field than expected. Indirect evidence of hydrothermal sound fields showing anomalous high power and low frequency noise associated with vents is due to processes other than jet noise.

  14. Extensive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E. J.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N. J.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Kenner-Chavis, P.; Martinez-Lyons, A.; Sheehan, C.; Brian, R.

    2014-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning

  15. Hyperactive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Keener, P.; Martinez Lyons, A.; Sheehan, C.; Brian, R.

    2013-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning

  16. Scientific drilling to study the roots of active hydrothermal systems related to young magmatic intrusions. [Abstract only

    SciTech Connect

    Muffler, L.J.P.

    1983-03-01

    At present, hydrothermal-magma processes can be studied only inferentially, using observations on hot springs and volcanic rocks, data from shallow- and intermediate-depth drill holes, analogies with exhumed fossil systems, and extrapolation of laboratory investigations. The Thermal Regimes Panel of the Continental Scientific Drilling Committee in a draft report concludes that an understanding of active hydrothermal-magma systems requires drill-hole investigations of deeper and hotter levels than have been drilled and studied to date. The Panel groups hydrothermal-magma systems in the United States into five classes: (1) dominantly andesitic centers, (2) spreading ridges, (3) basaltic fields, (4) evolved basaltic centers, and (5) silicic caldera complexes. Application of eight scientific criteria and three social criteria leads to the conclusion that silicic caldera complexes should be the first target of a focused drilling program to investigate the hydrothermal-magma interface at depths of 5 to 7 km. Primary targets are the three young, silicic caldera systems in the western conterminous United States: Yellowstone (Wyoming), Valles (New Mexico), and Long Valley (California). Scientific drilling of these active hydrothermal-magma systems complements scientific drilling proposed for fossil systems such as Creede (Colorado). In addition, the roots of the Salton Sea geothermal system (California) present an opportunity for add-on deep drilling and scientific experiments to supplement geothermal drilling by industry in this active spreading-ridge environment.

  17. Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field.

    PubMed

    Lang, S Q; Früh-Green, G L; Bernasconi, S M; Butterfield, D A

    2013-03-01

    The reaction of ultramafic rocks with water during serpentinization at moderate temperatures results in alkaline fluids with high concentrations of reduced chemical compounds such as hydrogen and methane. Such environments provide unique habitats for microbial communities capable of utilizing these reduced compounds in present-day and, possibly, early Earth environments. However, these systems present challenges to microbial communities as well, particularly due to high fluid pH and possibly the availability of essential nutrients such as nitrogen. Here we investigate the source and cycling of organic nitrogen at an oceanic serpentinizing environment, the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge). Total hydrolizable amino acid (THAA) concentrations in the fluids range from 736 to 2300 nm and constitute a large fraction of the dissolved organic carbon (2.5-15.1%). The amino acid distributions, and the relative concentrations of these compounds across the hydrothermal field, indicate they most likely derived from chemolithoautotrophic production. Previous studies have identified the presence of numerous nitrogen fixation genes in the fluids and the chimneys. Organic nitrogen in actively venting chimneys has δ(15) N values as low as 0.1‰ which is compatible with biological nitrogen fixation. Total hydrolizable amino acids in the chimneys are enriched in (13) C by 2-7‰ compared to bulk organic matter. The distribution and absolute δ(13) C(THAA) values are compatible with a chemolithoautotrophic source, an attribution also supported by molar organic C/N ratios in most active chimneys (4.1-5.5) which are similar to those expected for microbial communities. In total, these data indicate nitrogen is readily available to microbial communities at Lost City. PMID:23346942

  18. Galapagos rift at 86 /sup 0/W: 4. Structure and morphology of hydrothermal fields and their relationship to the volcanic and tectonic processes of the rift valley

    SciTech Connect

    Crane, K.; Ballard, R.D.

    1980-03-10

    The Angus camera system is used to investigate the detailed structure and morphology of the active hydrothermal vent fields of the Galapagos Rift. Precision navigational data are combined with microtopographic information and detailed geological and biological observations obtained from an analysis of the color bottom pictures to create a series of three-dimensional models for each vent field.

  19. Mapping the Piccard Hydrothermal Field - The World's Deepest Known Vent Area

    NASA Astrophysics Data System (ADS)

    Kinsey, J. C.; German, C. R.

    2012-12-01

    We report the recent mapping and exploration of the Piccard Hydrothermal Field on the Mid-Cayman Rise. Two previous expeditions in 2009 and 2010 led to the discovery of the site, which at 5000m hosts the world's deepest known vents. The site was mapped and explored in January 2012 and the Piccard Field was found to be larger than previously appreciated. The site includes 3 separate currently active hydrothermal mounts together with 4 additional extinct depo-centers. The 3 active centers are the Beebe Vents, Beebe Woods, and Beebe Sea sites. Beebe Vents is an active black smoker system with maximum temperatures of 400-403 degrees Celsius. Beebe Woods contains a set of tall beehive smokers with temperatures of approximately 353 degrees Celsius. Beebe Sea, the largest sulfide mound in the field, contains diffuse venting together with numerous extinct chimneys that indicate significant past active focused flow. Observations of the 4 extinct mounds indicate differences in their apparent ages based on the texture and morphology of the extinct sulfides at the summit of each mound. The entire field is located on top of an axial volcanic ridge with extrusive pillow mounds prominent. A major fault traverses the mound along its long axis, from Southwest to Northeast. Beebe Woods, Beebe Sea, and extinct Beebe mound D abut this fault directly with an apparent monotonic age progression from youngest (Beebe Woods) in the SW to relict mound 'D' in the NE. Similarly, the Beebe Vents site and mound is located at the SW limit of a parallel set of mounds, offset from the fault by approximately 100m, which also ages progressively through extinct Beebe Mounds 'E', 'F' and 'G'. The major fault that bisects the axial volcanic ridge at Piccard evidently serves as a controlling mechanism for the mounds abutting that fault however the mechanism for the second line of mounds remains to be determined. Bathymetry suggests the presence of a second, smaller fault which may serve as the control

  20. Long term ocean bottom pressure monitoring in the Logatchev Hydrothermal Field - indications for tremor, earthquakes, uplift and subsidence

    NASA Astrophysics Data System (ADS)

    Gennerich, H.-H.; Villinger, H.

    2009-04-01

    The mid oceanic spreading axes are centers of recent ore generation, accommodate little known chemotropic biological communities, 90 per cent of the global volcanism and contribute 25 per cent of the heat released from the earth. But little is known about these systems because their location in the depth of the oceans and much less about their changes in time. Target of a joint multidisciplinary approach to learn more about the temporal variations of a hydrothermal field has been the Logatchev Hydrothermal Field (LHF) at the Mid Atlantic Ridge in the framework of the SPP1144 of the German Research Foundation. It was chosen because of its high representativity with its moderate spreading rate, the mixture of basaltic and mantle rocks in the subsurface and its pronounced bathymetric relief. In the Logatchev Hydrothermal Field (LHF) hydrothermal activity is observed at several distinct sites. Focussed high-temperature outlets at black smokers were found as well as diffuse warm water outflow. Four locations in the LHF were equipped with instruments, to monitor physical parameters for about one year. At "OBP-site" an ocean-bottom-pressure-meter (OBP) and an ocean-bottom-tilt-meter (OBT) were installed, monitoring water pressure, temperature as well as the sea floor inclination. At "Mooring-site" a sensor chain scanned the temperatures of the bottom water every 6 minutes in 1 m intervals, from the sea floor to 25 m vertically above. The adjoining mussel fields Quest and Irina2 were instrumented with 12 temperature loggers each, registering the temperatures. In this poster data of the long term ocean bottom pressure monitoring are presented and discussed in context with temperature data regarding their meaning for tectonic processes. Earthquakes and very low frequency tremor activity are recognized. Temperature monitoring and CTD measurements help to separate sea floor uplift and subsidence from oceanographic signals.

  1. Hydrothermal mineralogy and fluid inclusions chemistry to understand the roots of active geothermal systems

    NASA Astrophysics Data System (ADS)

    Chambefort, I. S.; Dilles, J. H.; Heinrich, C.

    2013-12-01

    An integrated study to link magmatic textures, magmatic mineral compositions, hydrothermal alteration zoning, hydrothermal mineral chemistry, and fluid inclusion compositions has been undertaken to link an intrusive complex and its degassing alteration halo with their surface equivalent in an active geothermal system. Ngatamariki geothermal system, New Zealand, presents a unique feature in the Taupo Volcanic Zone (TVZ). Drilling intercepted an intrusive complex with a high temperature alteration halo similarly to what is observed in magmatic-derived ore deposits. Thus it presents the perfect opportunity to study the magmatic-hydrothermal transition of the TVZ by characterizing the nature of the deep magmatic fluids link to the heat source of the world known geothermal fields. The record of magmatic-hydrothermal fluid-rock interactions preserved at Ngatamariki may be analogous of processes presently occurring at depth beneath TVZ geothermal systems. The intrusive complex consists of over 5 km3 of tonalite, diorite, basalt and aplitic dykes. Evidence of undercooling subsolidus magmatic textures such as myrmekite and skeletal overgrowth are commonly observed and often linked to volatile loss. The fluids released during the crystallization of the intrusive complex are interpreted to be at the origin of the surrounding high temperature alteration halo. Advanced argillic to potassic alteration and high temperature acidic assemblage is associated with high-temperature quartz veining at depth and vuggy silica at the paleo-surface. Major element compositions of the white micas associated with the high temperature halo show a transition from, muscovite to phengite, muscovitic illite away from the intrusion, with a transition to pyrophyllite and/ or topaz, and andalusite characteristic of more acidic conditions. Abundant high-density (up to 59 wt% NaCl eq and homogenization temperatures of 550 degree Celsius and above) coexist with low-density vapor fluid inclusions. This

  2. Microbial Activity and Volatile Fluxes in Seafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Corrigan, R. S.; Lowell, R. P.

    2013-12-01

    Understanding geographically and biologically the production or utilization of volatile chemical species such as CO2, CH4, and H2 is crucial not only for understanding hydrothermal processes but also for understanding life processes in the oceanic crust. To estimate the microbial effect on the transport of these volatiles, we consider a double-loop single pass model as shown in Figure 1 to estimate the mass fluxes shown. We then use a simple mixing formulation: C4Q4 = C3 (Q1 -Q3)+ C2Q2, where C2 is the concentration of the chemical in seawater, C3 is the average concentration of the chemical in high temperature focused flow, C4 is the expected concentration of the chemical as a result of mixing, and the relevant mass flows are as shown in Figure 1. Finally, we compare the calculated values of CO2, CH4, and H2 in diffuse flow fluids to those observed. The required data are available for both the Main Endeavour Field on the Juan de Fuca Ridge and the East Pacific Rise 9°50' N systems. In both cases we find that, although individual diffuse flow sites have observed concentrations of some elements that are greater than average, the average concentration of these volatiles is smaller in all cases than the concentration that would be expected from simple mixing. This indicates that subsurface microbes are net utilizers of these chemical constituents at the Main Endeavour Field and at EPR 9°50' N on the vent field scale. Figure 1. Schematic of a 'double-loop' single-pass model above a convecting, crystallizing, replenished AMC (not to scale). Heat transfer from the vigorously convecting, cooling, and replenished AMC across the conductive boundary layer δ drives the overlying hydrothermal system. The deep circulation represented by mass flux Q1 and black smoker temperature T3 induces shallow circulation noted by Q2. Some black smoker fluid mixes with seawater resulting in diffuse discharge Q4, T4, while the direct black smoker mass flux with temperature T3 is reduced

  3. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Tao, Chunhui; Chen, Sheng; Baker, Edward T.; Li, Huaiming; Liang, Jin; Liao, Shili; Chen, Yongshun John; Deng, Xianming; Zhang, Guoyin; Gu, Chunhua; Wu, Jialin

    2016-06-01

    Seafloor hydrothermal polymetallic sulfide deposits are a new type of resource, with great potential economic value and good prospect development. This paper discusses turbidity, oxidation-reduction potential, and temperature anomalies of hydrothermal plumes from the Zouyu-1 and Zouyu-2 hydrothermal fields on the southern Mid-Atlantic Ridge. We use the known location of these vent fields and plume data collected in multiple years (2009, 2011, 2013) to demonstrate how real-time plume exploration can be used to locate active vent fields, and thus associated sulfide deposits. Turbidity anomalies can be detected 10 s of km from an active source, but the location precision is no better than a few kilometers because fine-grained particles are quasi-conservative over periods of many days. Temperature and oxidation-reduction potential anomalies provide location precision of a few hundred meters. Temperature anomalies are generally weak and difficult to reliably detect, except by chance encounters of a buoyant plume. Oxidation-reduction potential is highly sensitive (nmol concentrations of reduced hydrothermal chemicals) to discharges of all temperatures and responds immediately to a plume encounter. Real-time surveys using continuous tows of turbidity and oxidation-reduction potential sensors offer the most efficient and precise surface ship exploration presently possible.

  4. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    DOE Data Explorer

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  5. New hydrothermal fields found along the SWIR during the Legs 5-7 of the Chinese DY115-20 Expedition

    NASA Astrophysics Data System (ADS)

    Tao, C.; Wu, G.; Ni, J.; Zhao, H.; Su, X.; Zhou, N.; Li, J.; Chen, Y. J.; Cui, R.; Deng, X.; Egorov, I.; Dobretsova, I. G.; Sun, G.; Qiu, Z.; Deng, X.; Zhou, J.; Gu, C.; Li, J.; Yang, J.; Zhang, K.; Wu, X.; Chen, Z.; Lei, J.; Huang, W.; Zhou, P.; Ding, T.; Jin, W.; Li, H.; Lin, J.

    2009-12-01

    Six new hydrothermal fields and two water column hydrothermal anomalies have been found along the Southwest Indian Ridge (SWIR) during the Legs 5-7 of the Chinese DY115-20 expedition on R/V Dayangyihao from 2008 to 2009. An inactive hydrothermal field was found at 50.5°E (50.467°E, 37.658°S, 1,739m), the shallowest portion of Segment 27. Recovered samples include sulfide and opal chimneys, metalliferous sediments, basalt and relicts of hydrothermal vent-fauna. This field appears to become inactive recently. A carbonate field was found near 51°E (50.853°E, 37.650°S; 51°E, 37.608°S). This field extends about 15-km long in parallel to the ridge axis and locates at about 10-km off the ridge axis. Abundant different live and dead faunas were found. Many carbonate material and basalt samples were recovered. This new basalt-hosted carbonate field could represent a new category of ridge hydrothermal system. A hydrothermal field was found at 51.7°E (51.732°E, 37.466°S, 1,595m). Obvious Eh, Ch4 and turbidity anomalies were observed, while many alive fauna were also found. Massive sulfide and basalts were recovered, suggesting that this might be a large-scale hydrothermal field. Another hydrothermal field was found at 53.3°E (53.255°E, 36.101°S, 2,218m). Water column anomalies were observed and large amount of sponge, coral and anemone were captured. A hydrothermal field combined with ultramafic rocks was found at 63.5°E (63.541°E, 27.951°S). CH4, Eh, H2S and temperature anomalies were detected. Massive sulfide, oxidized chimney and sediment were sampled. Serpentinized ultramafic rocks were recovered at a nearby site. This would be the first ultramafic-hosted hydrothermal system found at SWIR. An active hydrothermal filed was found at 63.9°E (63.923°E, 27.851°S, 2,759m) west to Mt. Joundane. Large amount of alive faunas (anemone, crab, mussel and fish) was captured. Some hydrothermal oxides and anemones were collected. Three new hydrothermal vents were

  6. Methane- and Sulfur-Metabolizing Microbial Communities Dominate the Lost City Hydrothermal Field Ecosystem

    PubMed Central

    Brazelton, William J.; Schrenk, Matthew O.; Kelley, Deborah S.; Baross, John A.

    2006-01-01

    Hydrothermal venting and the formation of carbonate chimneys in the Lost City hydrothermal field (LCHF) are driven predominantly by serpentinization reactions and cooling of mantle rocks, resulting in a highly reducing, high-pH environment with abundant dissolved hydrogen and methane. Phylogenetic and terminal restriction fragment length polymorphism analyses of 16S rRNA genes in fluids and carbonate material from this site indicate the presence of organisms similar to sulfur-oxidizing, sulfate-reducing, and methane-oxidizing Bacteria as well as methanogenic and anaerobic methane-oxidizing Archaea. The presence of these metabolic groups indicates that microbial cycling of sulfur and methane may be the dominant biogeochemical processes active within this ultramafic rock-hosted environment. 16S rRNA gene sequences grouping within the Methylobacter and Thiomicrospira clades were recovered from a chemically diverse suite of carbonate chimney and fluid samples. In contrast, 16S rRNA genes corresponding to the Lost City Methanosarcinales phylotype were found exclusively in high-temperature chimneys, while a phylotype of anaerobic methanotrophic Archaea (ANME-1) was restricted to lower-temperature, less vigorously venting sites. A hyperthermophilic habitat beneath the LCHF may be reflected by 16S rRNA gene sequences belonging to Thermococcales and uncultured Crenarchaeota identified in vent fluids. The finding of a diverse microbial ecosystem supported by the interaction of high-temperature, high-pH fluids resulting from serpentinization reactions in the subsurface provides insight into the biogeochemistry of what may be a pervasive process in ultramafic subseafloor environments. PMID:16957253

  7. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field, Baja, California, Mexico

    SciTech Connect

    Valette-Silver, J.N.; Esquer-Patino, I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    Surface emissions from the Cerro Prieto geothermal reservoir are restricted to a 100 km/sup 2/ area on the western side of the field, near the volcano Cerro Prieto and the lake Laguna Vulcano. Some 57 surface emissions, explored in 1979, were classified into hot springs, mud pots, pools, fumaroles and geysers (Valette and Esquer-Patino, 1979). A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180/sup 0/C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristics of the discharge from high intensity geothermal fields.

  8. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    SciTech Connect

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    1996-01-24

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H2SO4 by atmospheric oxidation at the water table in a steam heated environment of H2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.

  9. Hydrothermal activity in the Lau back-arc basin:Sulfides and water chemistry

    NASA Astrophysics Data System (ADS)

    Fouquet, Yves; von Stackelberg, Ulrich; Charlou, Jean Luc; Donval, Jean Pierre; Foucher, Jean Paul; Erzinger, Jorg; Herzig, Peter; Mühe, Richard; Wiedicke, Michael; Soakai, Sione; Whitechurch, Hubert

    1991-04-01

    The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with hydrothermal circulation along the Valu Fa back-arc ridge behind the Tonga- Kermadec trench. The four diving areas, between lat 21°25‧S and 22°40‧S in water ˜2000 m deep, were selected on the basis of results from cruises of the R/V JeanCharcot and R/V Sonne. The Nadir cruise provided proof of hydrothermal activity—in all four areas, over more than 100 km—as indicated by the widespread occurrence of hydrothermal deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. Hydrothermal water chemistry and sulfide composition data presented here indicate that this hydrothermal field is very different from the hydrothermal fields in oceanic ridges. This difference is seen in the water chemistry of the hydrothermal fluid (pH = 2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).

  10. Actinide-series disequilibrium as a tool to establish the chronology of deep-sea hydrothermal activity

    SciTech Connect

    Lalou, C.; Reyss, J.L.; Brichet, E. )

    1993-03-01

    This paper describes the different radiochronological methods used to date geologically recent (i.e., <400,000 years) deep-sea hydrothermal deposits as well as the basic conditions necessary to obtain reliable dates. The limitations of the different techniques also are described. Using measurements of [sup 210]Pb/Pb, [sup 228]Th/[sup 228]Ra, [sup 230]Th/[sup 234]U, [sup 231]Pa/[sup 235]U, and [sup 228]Ra/[sup 226]Ra, the authors have undertaken an exhaustive chronological study of the hydrothermal deposits along the East Pacific Rise, the Mid-Atlantic Ridge, and in some back-arc basins. The objectives of this study were to obtain regional chronologies and to establish a general synthesis on the evolution of the hydrothermal processes at the scale of the mid-oceanic ridge system. Some results obtained by other authors are included in this synthesis. The dependence of the general trends of temporal development of the hydrothermal chimneys, edifices, and fields on their tectonic settings is discussed. This study demonstrates that hydrothermal activity does not represent a regular input of matter to the ocean, and that its pulsed character must be taken into account in all modeling attempts (chemical, biological, and tectonic) affected by hydrothermal processes. In areas of rapid spreading, like the East Pacific Rise, recent and fossil deposits are spatially separated. By contrast, at the slow spreading Mid-Atlantic Ridge, fossil and present activity are found in the same location. 54 refs., 5 figs., 4 tabs.

  11. Post-Impact Hydrothermal Activity at the Haughton Impact Structure, Devon Island, Nunavut, Canada

    NASA Technical Reports Server (NTRS)

    Osinski, G. R.; Spray, J. G.; Bunch, T. E.; Grieve, R. A. F.; Schutt, J. W.; Lee, P.

    2000-01-01

    Evidence for impact-generated hydrothermal activity is reported from the Haughton crater, Canada. Two distinct settings have been found: (1) pipe structures with marcasite, pyrite and minor chalcopyrite; (2) cavity and fracture fillings with marcasite predominant.

  12. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits

    PubMed Central

    Frank, Kiana L.; Rogers, Karyn L.; Rogers, Daniel R.; Johnston, David T.; Girguis, Peter R.

    2015-01-01

    Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, SO42−, DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits. PMID:26733984

  13. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits.

    PubMed

    Frank, Kiana L; Rogers, Karyn L; Rogers, Daniel R; Johnston, David T; Girguis, Peter R

    2015-01-01

    Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, [Formula: see text], DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits. PMID:26733984

  14. Analysis of the Magmatic - Hydrothermal volcanic field of Tacora Volcano, northern Chile, using passive seismic tomography

    NASA Astrophysics Data System (ADS)

    Pavez Orrego, Claudia; Comte, Diana; Gutierrez, Francisco; Gaytan, Diego

    2016-04-01

    The results of a passive seismic tomography developed in the Tacora Volcano, northern Chile, are presented. In this area, the main thermal manifestations are fumarolic fields mainly distributed in the western flank of the volcano. Around the volcanic area were installed 17 short period seismic stations, between August and December, 2014. Using the P and S wave arrival times of the seismicity record, a 3D velocity model was determined through a passive seismic tomography. For a better visualization of low and high velocity anomalies, the Leapfrog Viewer Software has been used. The areas of high Vp /Vs values, located directly under the volcanic chain, are interpreted as fluid-saturated areas, corresponding to the recharge zone of the hydrothermal system. Meanwhile, low Vp /Vs values represent the location of a magmatic reservoir and circulation networks of magmatic-hydrothermal fluids. The final model it was contrasted with available geochemical information showing a match between the low Vp/Vs areas (magma reservoirs / hydrothermal fluids), fumarolic fields and surface hydrothermal alteration. Finally, we present a cluster analysis using the percentage variation of %dVp, with which we have found a method for the identification of clay level areas related with the intermediate values of Vp/Vs (1.70 - 1.75) and the degassification zones.

  15. Distribution of Hydrothermal Activity at the Lau ISS: Possible Controlling Parameters

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Baker, E. T.; Resing, J. A.; Edwards, M. H.; Walker, S. L.; Buck, N.

    2008-12-01

    Seismic tomographic studies of intermediate to fast spreading rate mid-ocean ridges (MORs) interpret zones of rapid crustal cooling a few (3-4) km off axis surrounding the axial seismic low velocity zone (LVZ). These zones of rapid cooling also broadly correlate with the initiation and growth of large abyssal hill faults. The close association of both high thermal gradients and development of fault permeability at crustal scales suggests the hypothesis that these areas may be favorable locations for off-axis high temperature hydrothermal activity. In March-May 2008 on R/V Kilo Moana we conducted a near-bottom sidescan sonar and oceanographic survey along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the Lau back-arc basin to map the distribution of hydrothermal activity within this region. The survey utilized the deep-towed DSL120A (IMI120) sonar, an array of miniature autonomous plume recorders (MAPRs) attached to the tow cable and tethered beneath the sonar's depressor weight, an in situ chemical scanner (VISA) and 23 CTD hydrocasts (see Baker et al., this session). At the ELSC the survey spanned ~100 x 10 km area encompassing the ABE, Tow Cam and Kilo Moana vent fields with ~ 1 km spaced lines overall and ~500 m spaced lines in the area of the ABE vent field. On the VFR the survey spanned a distance of ~100 km along axis by ~5 km across axis with 700 m spaced lines encompassing the Vai Lili, Mariner and Tui Malila vent sites. Initial results identified particle plumes, indicative of high temperature venting, only within about a km of the ridge axis at the ELSC and VFR with possible diffuse venting indicated by MAPR oxidation-reduction potential (ORP) measurements at flank sites at VFR. The expanded sonar coverage better defines the volcano-tectonic context of the hydrothermal signals and previously mapped vent sites. Initial results suggest, however, no high-T venting more than about 1 km from the ridge axis, an apparently negative test of

  16. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  17. Antioxidant systems and lipid peroxidation in Bathymodiolus azoricus from Mid-Atlantic Ridge hydrothermal vent fields.

    PubMed

    Bebianno, M J; Company, R; Serafim, A; Camus, L; Cosson, R P; Fiala-Médoni, A

    2005-11-30

    Enzymatic defenses involved in protection from oxygen radical damage were determined in gills and mantle of Bathymodiolus azoricus collected from three contrasting Mid-Atlantic Ridge (MAR) hydrothermal vent fields (Menez-Gwen, Lucky Strike and Rainbow). The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx) (total and Se-dependent), and levels of total oxyradical scavenging capacity (TOSC), metallothioneins (MT) and lipid peroxidation (LPO) were determined in B. azoricus tissues and the impact of metal concentrations on these antioxidant systems and lipid peroxidation assessed. SOD, CAT, TOSC, MTs and LPO levels were higher in B. azoricus gills while glutathione peroxidases (total and Se-dependent) were higher in the mantle, and with the exception of CAT, were of the same order of magnitude as in other molluscs. TOSC levels from Menez-Gwen indicate that the vent environment at this site is less stressful and the formation of ROS in mussels is effectively counteracted by the antioxidant defense system. TOSC depletion indicates an elevated ROS production in molluscs at the other two vent sites. Cytosolic SOD, GPx and LPO were more relevant at Lucky Strike (Bairro Alto) where levels of essential (Cu and Zn) and toxic metals (Cd and Ag) were highest in the organisms. CAT activity and LPO were predominant at the Rainbow vent site, where an excess of Fe in mussel tissues and in vent fluids (the highest of all three vent sites) may have contributed to increased LPO. Therefore, three distinct pathways for antioxidant enzyme systems and LPO based on environmental metal speciation of MAR vent fields are proposed for Bathymodiolus gills. At Menez-Gwen, TOSC towards peroxyl and hydroxyl radicals and peroxynitrite are predominant, while at Lucky Strike cytosolic SOD activity and GPx are the main antioxidant mechanisms. Finally at Rainbow, catalase and lipid peroxidation are dominant, suggesting that resistance of mussels to metal toxicity at

  18. Field-based tests of geochemical modeling codes: New Zealand hydrothermal systems

    SciTech Connect

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions.

  19. Field-based tests of geochemical modeling codes using New Zealand hydrothermal systems

    SciTech Connect

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1994-06-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions.

  20. Discovery of hydrothermally active and extinct talc mounds on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Hodgkinson, M.; Murton, B. J.; Roberts, S.

    2013-12-01

    Since 1977, hydrothermal vents have been the subject of intense scientific interest due to their role in cooling the oceanic crust and global geochemical cycles. Until now, two types of hydrothermal system have been identified: one, driven by magmatic heat extruding ';black smoker' fluids; and another, involving serpentinisation of ultramafic rocks and the precipitation of carbonate/brucite chimneys. Here, we present details of a new, off-axis type of hydrothermal system consisting of mounds of predominately botryoidal talc (a magnesium-silicate) with accessory silica and copper sulphides, and chimneys exhaling fluids of moderate temperature and pH. Discovered on the Mid-Cayman Rise (MCR) in 2010, the Von Damm Vent Field (VDVF) features a NNW-ESE-trending line of four overlapping cones, the largest of which is 75 m high by 150 m in diameter. The VDVF is hosted in the gabbroic footwall of the Mount Dent Oceanic Core Complex (MDOCC), which includes serpentinised peridotite at depth. The largest cone vents clear fluids from two main orifices at its summit, with primary temperatures of 215°C. Elsewhere, both focussed and diffuse flow areas emit fluids with temperatures of up to 150°C. The surrounding ~1 m thick pelagic sediment contains abundant pockmarks that emit methane-rich fluids at temperatures of less than 10°C. During the return to the MCR in early 2013, several other talc mounds were discovered within a kilometre of the active VDVF. These inactive mounds also comprise an assemblage of botryoidal talc, silica, disseminated sulphides (including chalcopyrite) and sulphates. One of these mounds (Mystic Mount) is double the volume of the active VDVF. The unique dominance of talc as the major mineral forming the hydrothermal structures indicates unusual vent fluid compositions that are able to carry both copper (at high-temperatures) and precipitate magnesium silicate. Thermodynamic modelling indicates that talc precipitates on mixing a moderately acidic, silica

  1. Regeneration of granular activated carbon using hydrothermal technology

    SciTech Connect

    Sufnarski, M.D.

    1999-05-01

    The economic feasibility of using granular activated carbon (GAC) to remove organic contaminants from industrial and municipal wastewater is contingent upon its reuse during multiple adsorption-regeneration cycles. The most common process for the regeneration of GAC is the thermal method. Drawbacks associated with thermal regeneration include a 5--10% loss of carbon due to oxidation and attrition, a decrease in adsorption capacity, and high energy costs. The purpose of this study was to investigate the regeneration of GAC using hydrothermal technology. Phenol contaminated and non-contaminated GAC samples were regenerated using supercritical water (411 deg C and 26.2 MPa) with dissolved oxygen concentrations of 0 mg/L, 5 mg/L, and 100 mg/L. For comparative purposes, GAC was regenerated using subcritical water (300 deg C and 12.4 MPa) with a dissolved oxygen concentration of 5 mg/L. Regenerated GAC samples were evaluated in terms of adsorption capacity, BET surface area, pore volume, and average pore size. After four adsorption-regeneration cycles, using supercritical water (SCW) regeneration, the average adsorption capacity of regenerated GAC was found to be 90% of that of virgin GAC. Although a slightly higher adsorption capacity was achieved for regeneration with degassed water, the overall impact of dissolved oxygen was insignificant. The high adsorption capacity achieved for SCW was not observed for subcritical water regeneration. After four adsorption-regeneration cycles, only 67% of the original adsorption capacity was restored. The better results observed for SCW, as compared to subcritical water, were related to two factors. First, the higher regeneration temperatures of SCW resulted in increased thermal desorption. Second, the increased solubility of organic compounds and enhanced mass transfer rates in SCW resulted in a more efficient extraction process.

  2. Implication for horizontally-elongated fluid flow inferred from heat flow measurements in the Iheya-North hydrothermal field, Okinawa Trough back-arc basin

    NASA Astrophysics Data System (ADS)

    Masaki, Yuka; Kinoshita, Masataka; Kawada, Yoshifumi

    2010-05-01

    The Okinawa Trough is a back-arc basin located in the southwestern part of Japan. It is considered to be in the initial stage of rifting of continental crust, and the activity generates volcanic edifices in this area, accompanied by hydrothermal circulation. The Iheya-North is one of the most active hydrothermal fields among them. As a proposed drilling site for the Integrated ocean Drilling Program, extensive geophysical surveys have been carried out including single-channel seismic imaging, and precise side-scan sonar imaging by using autonomous underwater vehicle 'Urashima' of Japan Agency for Marine-Science and Technology. In the recent few years, we have measured heat flow in and around the Iheya-North hydrothermal field to understand the spatial of hydrothermal circulation in detail. 78 measurements show that heat flow is higher than 10 W/m2 with in 0.5 km of the hydrothermal vent complex, that it gradually decrease eastward to < 1 W/m2, and that very low heat flow around 0.01 W/m2 is observed at 1.5 km east from the hydrothermal field. The average heat flow outside of Iheya-North is ~0.1 W/m2. The low heat flow to the east is most likely caused by an inward flow of seawater into the formation. Seismic and side-scan sonar images as well as piston core samples suggest an impermeable sediment layer to a few hundreds meters below the seafloor in this area. This sediment layer should work as a hydrological barrier to suppress flow through the seafloor, whereas seawater can penetrate into the formation at 1.5 km east of the hydrothermal field, where sidescan images suggest coars sediments on the seafloor. We infer that the hydrothermal circulation within the Iheya-North involves one with a horizontally-elongated scale (~1.5 km horizontal vs. ~a few hundreds meters vertical). We performed numerical calculations of fluid flow and heat transportation to give constraints on the depth of hydrothermal circulation, the magnitude of darcy velocity, and the permeability at

  3. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre.

    PubMed

    Connelly, Douglas P; Copley, Jonathan T; Murton, Bramley J; Stansfield, Kate; Tyler, Paul A; German, Christopher R; Van Dover, Cindy L; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-Ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B; Plouviez, Sophie; Sands, Carla; Searle, Roger C; Stevenson, Peter; Taws, Sarah; Wilcox, Sally

    2012-01-01

    The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents. PMID:22233630

  4. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre

    PubMed Central

    Connelly, Douglas P.; Copley, Jonathan T.; Murton, Bramley J.; Stansfield, Kate; Tyler, Paul A.; German, Christopher R.; Van Dover, Cindy L.; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B.; Plouviez, Sophie; Sands, Carla; Searle, Roger C.; Stevenson, Peter; Taws, Sarah; Wilcox, Sally

    2012-01-01

    The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents. PMID:22233630

  5. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Flores, Gilberto E.; Campbell, James H.; Kirshtein, Julie D.; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I.; Seewald, Jeffrey S.; Tivey, Margaret Kingston; Voytek, Mary A.; Yang, Zamin K.; Reysenbach, Anna-Louise

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  6. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    SciTech Connect

    Flores, Gilberto E; Campbell, James H; Kirshtein, Julie D; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua; Seewald, Jeffrey S; Tivey, Margaret Kingston; Voytek, Mary A; Reysenbach, Anna-Louise; Yang, Zamin Koo

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37 17'N, 32 16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36 13'N, 33 54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  7. Structural and functional diversity of microbial communities beneath the hydrothermal vent at the Iheya North field of the Mid-Okinawa Trough (IODP Expedition 331)

    NASA Astrophysics Data System (ADS)

    Yanagawa, K.; Nunoura, T.; Kawagucci, S.; Hirai, M.; Sunamura, M.; Breuker, A.; Brandt, L.; House, C. H.; McAllister, S. M.; Moyer, C. L.; Takai, K.

    2012-12-01

    Complex and diverse microbial communities in deep-sea hydrothermal fluids are apparently different from those in ambient seawater, some of which are predicted to migrate along hydrothermal vein from "subvent biosphere". Subseafloor environment just beneath active hydrothermal vent has been expected to be one of the most conceivable habitats for metabolically active and diverse microbial community. We conducted the scientific ocean drilling (IODP Expedition 331) for the Iheya North hydrothermal field in the Mid-Okinawa Trough in Sept. 2010, and collected core samples from the subseafloor biosphere beneath the hydrothermal vent. IODP Site C0014 was located 450 m east off the main hydrothermal vent. Temperature exceeded the limit of life at the depth of approximately 40 m below the seafloor. Both microscopy and quantitative PCR analyses successfully detected microbial populations in the shallower zone above 15 mbsf. However, the cultivation attempts of (hyper-)thermophiles were unsuccessful all over the depth. Culture-independent molecular biological experiments showed that microbial community composition distinctly changed with depth, possibly because of physicochemical conditions such as methane, sulfate and temperature. Microbial activities of methanogenesis and anaerobic methane oxidation were in accordance with the geochemical profiles of methane and sulfate. These results indicated the presence of functionally active subseafloor microbial communities but those were different from expected members in subvent biosphere. Site C0017 located 1.6 km east off the hydrothermal vent is a potential seawater recharge zone of the hydrothermal system, where seawater penetrates into the oceanic crust. The lithostratigraphy consists of characteristic coarse angular pumiceous gravel, lying above and below hemipelagic mud, in which high permeability may allow entrainment of seawater. As is the case with sedimentary subsurface environments, uncultivated archaeal groups were

  8. U-Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Ludwig, Kristin A.; Shen, Chuan-Chou; Kelley, Deborah S.; Cheng, Hai; Edwards, R. Lawrence

    2011-04-01

    The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples containing only 2-21% ambient seawater (1.1-11 mmol/kg Mg), Th concentration is 0.11-0.13 pg/g and surrounding seawater concentrations average 0.133 ± 0.016 pg/g. The 230Th/ 232Th atomic ratios of the vent fluids range from 1 (±10) × 10 -6 to 11 (±5) × 10 -6, are less than those of seawater, and indicate that the vent fluids may contribute a minor amount of non-radiogenic 230Th to the LCHF carbonate chimney deposits. Chimney 238U concentrations range from 1 to 10 μg/g and the average chimney corrected initial δ 234U is 147.2 ± 0.8, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate 232Th concentrations range broadly from 0.0038 ± 0.0003 to 125 ± 16 ng/g and 230Th/ 232Th atomic ratios vary from near seawater values of 43 (±8) × 10 -6 up to 530 (±25) × 10 -3. Chimney ages, corrected for initial 230Th, range from 17 ± 6 yrs to 120 ± 13 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic

  9. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  10. Geologic form and setting of a hydrothermal vent field at latitude 10/sup 0/56'N, East Pacific Rise: a detailed study using Angus and Alvin

    SciTech Connect

    McConachy, T.F.; Ballard, R.D.; Mottl, M.J.; Von Herzen, R.P.

    1986-04-01

    A hydrothermal vent field, here called the Feather Duster site, occurs on the eastern marginal high near the edge of a narrow (95-m) and shallow (15-20-m) axial graben, within an area dominated by sheet flows and collapse features. The sheet flows are intermediate in relative age between younger fluid-flow lavas on the floor of the axial graben and older pillow (constructional) lavas on the marginal highs. Hydrothermal activity occurs in two zones within a 65 by 45 m area. The main zone is located where a fissure system and sulfide-sulfate chimneys vent warm (9-47/sup 0/C) and hot (347/sup 0/C) hydrothermal fluids. Here, two mounds of massive sulfide totaling about 200 t are forming. One occurs at the base of a 3-m-high scarp which is the wall of a drained lava lake; the other is perched on top of the scarp. 19 references, 4 figures.

  11. Discovery Of An Extensive Hydrothermal Sulfide/Sulfate Mounds Field In East Diamante Caldera, Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Hein, J. R.; de Ronde, C. E.; Ditchburn, R.; Leybourne, M. I.; Tamura, Y.; Stern, R. J.; Conrad, T. A.; Nichols, A. R.; Shukuno, H.; Embley, R. W.; Bloomer, S. H.; Ishizuka, O.; Hirahara, Y.; Senda, R.; Nunokawa, A.; Jordan, E.; Wada, I.

    2010-12-01

    An elongate field of hydrothermal mounds was discovered along the NE flank of a cluster of resurgent dacite domes in East Diamante Caldera using the ROV Hyper-Dolphin aboard the R.V. Natsushima in June 2009 and July 2010. East Diamante seamount lies about 80 km north of Saipan and is the northernmost volcano of the Southern Seamount Province of the Mariana magmatic arc. East Diamante is an irregular caldera about 10 km x 4 km that is breached on the north and south sides. The caldera floor has a maximum water depth of about 700 m. After caldera collapse, dacitic domes intruded into the center of the caldera providing the heat source for production and circulation of hydrothermal fluids that generated the large mounds field and two nearby chimney fields, one active and one inactive, found in 2004 during a NOAA Ring-of-Fire cruise. The mounds field is more than 100 m long and about 25-30 m wide and occurs along a NE-SW rift valley at water depths of about 365-400 m b.s.l. Individual hydrothermal mounds and ridges along this trend vary in size and the bases of the mounds are buried beneath hydrothermal sediment so that only minimum dimensions can be determined. Mounds are typically 1-3 m tall and 0.5-2 m wide, with lengths of about 3 to more than 5 m. The sulfide/sulfate mounds are layered and an iron- and manganese-oxide subsidiary mound venting low-temperature fluids caps some of them. Some mounds also support inactive sulfide/sulfate chimneys and spires; chimneys rarely occur as independent structures within the mounds field. The mounds are composed primarily of barite layers and sphalerite (high cadmium, low iron) plus galena layers with up to 470 ppm silver and 3 ppm gold. The subsidiary mounds are composed of 7A manganate and goethite that occur around a delicate network of 2-10 mm diameter anastomosing channels. Similar oxides cover the seabed throughout the mounds field and precipitated from diffuse fluid flow throughout the region, but formed by both diffuse

  12. Tectonic background of a unique hydrogen-rich Kairei Hydrothermal Field, Central Indian Ridge: Results from Taiga Project

    NASA Astrophysics Data System (ADS)

    Okino, K.; Nakamura, K.; Morishita, T.; SATO, H.; Sato, T.; Mochizuki, N.; Okamura, K.; Fukuba, T.; Sunamura, M.

    2012-12-01

    The Central Indian Ridge (CIR) is slow~intermediate spreading systems and its southern end forms a R-R-R triple junction with SWIR and SEIR. The southern CIR shows slow-spreading morphology, where the axial valley develops along the ridge crest and an oceanic core complex has been reported near the triple junction. Kairei Hydrothermal Field (KHF) is unique hydrothermal system, located at the southern end of CIR. The fluids venting from the KHF are characterized by its high concentration of hydrogen with low methane/hydrogen ratio, and a hydrogen-based hyperthermophilic subsurface lithoautotrophic microbial ecosystem was confirmed (Takai et al., 2004). The KHF lies on basaltic lava area on the shoulder of ridge axial wall, being different from other hydrogen-rich hydrothermal fields hosted by ultramafic rocks. We selected this area as an integrated site for the Taiga Project, and conducted series of research cruises to characterize this unique system and to understand how the tectonic setting controls the fluid and ecosystem. We discover that the KHF itself is located above basaltic lava field but gabbro and ultramafic rocks are widely exhumed around the KHF. Besides a previously known oceanic core complex, small oceanic core complexes exist just east of the KHF (Kumagai et al., 2008) and the NTO massif north of the KHF shows peridotite exposure on its top. The unique fluid geochemistry of the KHF can be attributed to serpentinization of troctolites around or beneath the KHF and subsequent hydrothermal reactions with basaltic wall rocks (Nakamura et al., 2009). We also find several small hills where we collect deep crustal and mantle rocks. These hills suggesting melt-limited environment extend mainly along 2nd order segment boundary from the axial valley to 30km off-axis, i.e. ~1.7 Ma. The regional surface geophysical mapping and deep-tow magnetic profiling show high mantle Bouguer anomaly and prominent asymmetric spreading in the southernmost CIR segment. These

  13. Origin of Magnetic High at Basalt-Ultramafic Hosted Hydrothermal Vent Field in the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Sato, T.; Sato, H.; Nakamura, K.

    2014-12-01

    Hydrothermal alteration processes can change crustal magnetization by destruction and creation of magnetic minerals. In the Yokoniwa hydrothermal vent field (YHVF), located at the NTO-massif in the Central Indian Ridge, a high magnetization zone (with ~12 A/m in ~200 m-scale) was discovered by previous deepsea AUV survey. Basalts and ultramafic rocks were found around the YHVF, however the origin of magnetic high and its relationship with hydrothermal activity are remains to be investigated. Therefore, we conducted additional magnetic field measurement, rock sampling, and geological observation using submersible Shinkai 6500 during the YK09-13 and YK13-03 cruises. Vector geomagnetic field were obtained along the dive tracks at an altitude of ~ 10 m. The crustal absolute magnetization is estimated using the 2D and 3D forward modeling technique. The values of magnetization show ~10 A/m just around the YHVF. This value is consistent with that of equivalent magnetization deduced from AUV data. Rock magnetic characters were measured for 8 basalts, 4 dolerites, 5 sulfides, and 30 serpentinized peridotites (SPs). The measurements of NRM, magnetic susceptibility, magnetic hysteresis, low (6-300K) and high (50-700°C) temperature magnetization curves were performed. The estimated magnetization values are 0.1-6 A/m in basalts, 0.2-0.6 A/m in dolerites, and <0.1 A/m in sulfides. The SPs show strong magnetization of 0.4-11 A/m. The magnetic grain sizes ranges over single domain to pseudo-single domain. The temperature-magnetization curves clearly show the Verway transition and Currie temperature of 580 °C, therefore magnetic carrier of SPs is supposed as pure magnetite, which is created during serpentinization process. Serpentinization degree (Sd) was also estimated by grain density measurement based on empirical formula from Oufi et al., 2002. Amount of magnetite was also estimated from saturation magnetization. The results show that the values of Sd vary in a range from 17

  14. Off-axis Submarine Massive Sulfide accumulation at the fault-controlled Logatchev 1 hydrothermal field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Andersen, Christine; Theissen-Krah, Sonja; Hannington, Mark

    2016-04-01

    The largest Submarine Massive Sulfide (SMS) deposits in Mid-ocean ridge settings are found along slow-spreading ridges, where tectonic processes dominate and long-lived faults control the circulation of hydrothermal fluids through the oceanic crust. Here we combine results from 2D fluid flow simulations of the off-axis (8km), fault-controlled, high-T Logatchev 1 hydrothermal field (LHF1) at the Mid-Atlantic Ridge with data on vent fluid chemistry and the associated SMS deposit, which give insights about its accumulation history. Modeled high vent temperatures of 360°C, as measured at the active LHF1, result in a total integrated mass-flow rate through the seafloor of ~36 kg/sec scaled to 28 vent orifices of 10x10cm, located in the 7 known high-T sites at the LHF1. About 42% of the vent fluids are hotter than 350°C, the minimum temperature required for efficient metal transport, with a mass-flow rate of 13 kg/sec. This corresponds to ~400 kilotons of potentially SMS-forming hydrothermal fluids leaving the vent field per year. Combined with a total H2S-SiO2-metal (Zn+Cu+Fe) concentration of 732 ppm, measured in the LHF1 vent fluids, this makes a flux of ~300 t of hydrothermal precipitates per year. The SMS deposit at LHF1 has been dated to 58.200 years and has an estimated tonnage of 135 kilotons. Applying the above modeled annual discharge rate over the dated time period, results in an SMS accumulation efficiency of ~0.8% for the SMS deposit at the Logatchev 1 field, which fits the range of estimated global average for MORs between <0.3% and 3%. Our predicted depositional efficiency is based on numerical modeling, which simulates continuous and ideal venting. Realistically, venting at LHF1 might well have been fluctuating, including periods of low temperature discharge, where metal transport is insufficient or periods of inactivity, compensated by periods with a higher depositional efficiency than 0.8%. Such fluctuations could have been caused by variations in

  15. Morphology of cone-fields in SW Elysium Planitia - Traces of hydrothermal venting on Mars?

    NASA Astrophysics Data System (ADS)

    Lanz, J. K.; Saric, M. B.

    2008-09-01

    Introduction Small cone-shaped features with summit pits can be found in several regions on Mars; mainly in Isidis Planitia; Elysium Planitia; Amazonis Planitia; Acidalia Planitia; in the Cydonia Region; in Cerberus Planum; the Phlegra Montes and on several volcanic flanks. They vary greatly in size and morphology and have been compared to terrestrial features of various origins; namely (1) cinder cones (e.g. [1]), (2) tuff cones or tuff rings (e.g. [2]), (3) rootless cones (pseudocraters) (e.g. [3], [4]), (4) pingos (e.g. [5], [6]) and (5) mud volcanoes (e.g. [7]). They are often found near volcanic centers and large lava fields or cluster in regions where the volatile content of the Martian regolith was/is supposedly high. This has led to the assumption that (ground-) water or ground ice was a trigger or driving force of cone formation. They could therefore, be an important indicator of the history of water on the planet. We have studied an area in western Elysium Planitia, bordering the Aeolis Planum plateau, which exhibits a large number of pitted cones, ridges and dome-like structures. Their distribution and morphology differs strongly from pitted cones elsewhere in Elysium Planitia, which have mainly been interpreted as hydrovolcanic rootless cones, and from other regions on Mars. Based on our observations, we present an alternative model for cone formation in the study area that might hint towards hydrothermal processes in the Aeolis Planum region and possibly young igneous activity. Aeolis Planum Cones The Aeolis Planum pitted cones (referred to as APCs from now on) cluster along the southern edges of the broad shallow valley that borders the Aeolis Planum Formation (APF) to the north. Cones along the northern edges of the valley are rare and can only be found in association with APF remnants where they strongly resemble the cones in the south. Along the southern border the cone coverage is almost continuous, describing a narrow band approximately 2 to 3 km

  16. Hydrothermal alteration mapping of Siberian gold-ore fields based on satellite spectroscopy data

    NASA Astrophysics Data System (ADS)

    Ananyev, Yu S.; Maskov, A. A.; Abramova, R. N.

    2015-11-01

    The mapping of the hydrothermal alterations in Urjahskoe and Fedorov-Kedrov gold-ore fields was conducted by applying channel relationship method (band ratio) based on ASTER spectral-zonal satellite image data. It was determined that the calculated mineral indices in ore-bearing structures are zonal. Outer ore-bearing structures revealed increased ferric mineral index values, while inner - high epidote- chlorite- calcite and muscovite- siderite mineral index values. Detected regularities could be used in identifying potential gold-ore bearing areas within identical fields based on remote sensing survey data.

  17. Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough

    NASA Astrophysics Data System (ADS)

    Webber, Alexander P.; Roberts, Stephen; Murton, Bramley J.; Hodgkinson, Matthew R. S.

    2015-09-01

    The Beebe Vent Field (BVF) is the world's deepest known hydrothermal system, at 4960 m below sea level. Located on the Mid-Cayman Spreading Centre, Caribbean, the BVF hosts high temperature (˜401°C) "black smoker" vents that build Cu, Zn and Au-rich sulfide mounds and chimneys. The BVF is highly gold-rich, with Au values up to 93 ppm and an average Au:Ag ratio of 0.15. Gold precipitation is directly associated with diffuse flow through "beehive" chimneys. Significant mass-wasting of sulfide material at the BVF, accompanied by changes in metal content, results in metaliferous talus and sediment deposits. Situated on very thin (2-3 km thick) oceanic crust, at an ultraslow spreading centre, the hydrothermal system circulates fluids to a depth of ˜1.8 km in a basement that is likely to include a mixture of both mafic and ultramafic lithologies. We suggest hydrothermal interaction with chalcophile-bearing sulfides in the mantle rocks, together with precipitation of Au in beehive chimney structures, has resulted in the formation of a Au-rich volcanogenic massive sulfide (VMS) deposit. With its spatial distribution of deposit materials and metal contents, the BVF represents a modern day analogue for basalt hosted, Au-rich VMS systems.

  18. Environmental controls on methanogen viability in the hydrothermal waters of the El Tatio geyser field, Chile.

    NASA Astrophysics Data System (ADS)

    Franks, M. A.; Bennett, P. C.; Omelon, C.; Engel, A. S.

    2007-12-01

    At the El Tatio geyser field, a unique hydrothermal site located in the Andes Mountains in Chile, methanogenic archaea were found in only two of the hundreds of hydrothermal features. Reported here is an investigation into the environmental and geochemical controls on the distribution of methanogenic archaea. Located in the hyper- arid Atacama Desert, El Tatio waters are characterized by high salinity (95-175mM), Na-Cl type waters and circum-neutral pH (6.5-7), with very low inorganic carbon (0.1-0.5 mM TIC), but very high concentrations of As and Sb (300-700 uM As, 10-30uM Sb). Extensive bacterial mats thrive in most of the shallow run-off streams originating from hydrothermal features. In order to determine geochemical controls on methanogen populations, major and trace elements, including As and Sb speciation and concentrations, were determined using IC and HPLC-ICP-MS methods. The structure of microbial communities was analyzed using MPN enumeration of methanogens, culturing, and phylogenetic analysis using molecular techniques. Here, as in many hydrothermal regions, temperature and geochemical gradients influence the microbial ecology. Results from MPN enumeration indicate methanogen populations are dominated by H2-utilizing (carbonate reducing) archaea at both of the sites, with some acetate-oxidizing archaea present. These sites contain comparatively high DIC concentrations; however, it is unclear whether this is a control or a product of methanogenic archaea. Water quality analyses also show a strong correlation between antimony concentrations and the presence of methanogens; methanogenic archaea being present only at sites with 17 uM Sb concentrations or less.

  19. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Yanagawa, Katsunori; Sunamura, Michinari; Takano, Yoshinori; Ishibashi, Jun-ichiro; Kakegawa, Takeshi; Utsumi, Motoo; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Kobayashi, Kensei; Moroi, Arimichi; Kimura, Hiroyuki; Kawarabayasi, Yutaka; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2009-12-01

    To extend knowledge of subseafloor microbial communities within the oceanic crust, the abundance, diversity and composition of microbial communities in crustal fluids at back-arc hydrothermal fields of the Southern Mariana Trough (SMT) were investigated using culture-independent molecular techniques based on 16S rRNA gene sequences. Seafloor drilling was carried out at two hydrothermal fields, on- and off-ridge of the back-arc spreading centre of the SMT. 16S rRNA gene clone libraries for bacterial and archaeal communities were constructed from the fluid samples collected from the boreholes. Phylotypes related to Thiomicrospira in the Gammaproteobacteria (putative sulfide-oxidizers) and Mariprofundus in the Zetaproteobacteria (putative iron-oxidizers) were recovered from the fluid samples. A number of unique archaeal phylotypes were also recovered. Fluorescence in situ hybridization (FISH) analysis indicated the presence of active bacterial and archaeal populations in the fluids. The Zetaproteobacteria accounted for up to 32% of the total prokaryotic cell number as shown by FISH analysis using a specific probe designed in this study. Our results lead to the hypothesis that the Zetaproteobacteria play a role in iron oxidation within the oceanic crust. PMID:19691504

  20. Present-day submarine hydrothermal activity in the Taupo-Rotorua Zone (Bay of Plenty, New Zealand)

    SciTech Connect

    Osipenko, A.B.; Egorov, Yu.O.; Fazlullin, S.M.; Gavrilenko, G.M.; Shul`kin, V.I.; Chertkova, L.V.

    1994-09-01

    We made detailed descriptions of the structure and material composition of sedimentary and water columns in the vicinity of active submarine hydrothermal activity in the southern part of the Bay of Plenty (North Island, New Zealand). Geophysical methods revealed that the hydrothermal system is confined to a tectonically distinct zone with a sedimentary cover characterized by complex structure. Chemical and mineralogical investigations confirmed that the activity of underwater vents exerts no substantial regional influence on the composition and features of ore mineralization in these formations. It is shown that essentially hydrothermal formations distinguishable within areas of otherwise monotypic sediments directly coincide with zones of hydrothermal discharge in the ocean floor. The absence of pronounced hydrothermal anomalies, together with the presence of {open_quotes}tongues{close_quotes} of anomalous concentrations of water-soluble gases suggests that the discharges are primarily hydrothermal in character.

  1. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat, III; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  2. Microbiological Oxidation Of Sulfide Chimney Promoted By Warm Diffusing Flow In CDE Hydrothermal Field In Eastern Lau Spreading Center

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Li, J.; Yang, Q.

    2008-12-01

    A hydrothermal field named as "CDE"(COMRA Discovery Expedition) at 176°11'W, 20° 40'S, about 4 miles south of known ABE hydrothermal field, was discovered by R/V DaYang YiHao in May, 2007. There are amounts of anemones and white microbe mats attached on some pillar sulfide chimneys (from less than one meter to more than 5 meters in height). Some crabs, fishes and microbe mats could be seen in/near chimney groups. Abnormal signatures of turbidity, temperature and CH4 are very strong shown by intensive surveys in deep waters above/near the CDE hydrothermal field by MAPR, CTD and onboard GC analysis of water samplers, respectively. Another prominent characteristics of the chimneys in the CDE is that they are cover with thick oxides/hydroxides crust. It is interesting to notice that there are considerable amounts of Fe oxidant bacteria (FeOB) clones exist in sample of oxide crust according to the phylogenetic analysis by 16S rRNA genes libraries construction. The FeOB clones have higher similarity (>94%) with those known Fe oxidant bacteria such as the genus of Gallionella and Mariprofundus ferrooxydans. In addition, abundant spiral, sheath-like textures known typical sign of FeOB are observed in the samples by Environmental Scanning Electron Microscope (ESEM). Optimum grow temperature of isolations similar to our clones is 20- 35°C. The heat, supporting to colonization of anemones, microbe mats and FeOB with oxides crust, could be supplied by probably neighboring high temperature active venting in the field as there are no visible black or white plumes associated with those video-imaged chimneys during our survey. Another alternative speculation is that those chimneys are warm. After extinction of high temperature venting, diffuse flow with a temperature lower than about 100°C are still active through porous structure in the chimney. The warm chimney provides the ideal habitats of some biologic colonization. In turn, oxidation promoted by FeOB activities makes a

  3. Evaluation of microbial community in hydrothermal field by direct DNA sequencing

    NASA Astrophysics Data System (ADS)

    Kawarabayasi, Y.; Maruyama, A.

    2002-12-01

    Many extremophiles have been discovered from terrestrial and marine hydrothermal fields. Some thermophiles can grow beyond 90°C in culture, while direct microscopic analysis occasionally indicates that microbes may survive in much hotter hydrothermal fluids. However, it is very difficult to isolate and cultivate such microbes from the environments, i.e., over 99% of total microbes remains undiscovered. Based on experiences of entire microbial genome analysis (Y.K.) and microbial community analysis (A.M.), we started to find out unique microbes/genes in hydrothermal fields through direct sequencing of environmental DNA fragments. At first, shotgun plasmid libraries were directly constructed with the DNA molecules prepared from mixed microbes collected by an in situ filtration system from low-temperature fluids at RM24 in the Southern East Pacific Rise (S-EPR). A gene amplification (PCR) technique was not used for preventing mutation in the process. The nucleotide sequences of 285 clones indicated that no sequence had identical data in public databases. Among 27 clones determined entire sequences, no ORF was identified on 14 clones like intron in Eukaryote. On four clones, tetra-nucleotide-long multiple tandem repetitive sequences were identified. This type of sequence was identified in some familiar disease in human. The result indicates that living/dead materials with eukaryotic features may exist in this low temperature field. Secondly, shotgun plasmid libraries were constructed from the environmental DNA prepared from Beppu hot springs. In randomly-selected 143 clones used for sequencing, no known sequence was identified. Unlike the clones in S-EPR library, clear ORFs were identified on all nine clones determined the entire sequence. It was found that one clone, H4052, contained the complete Aspartyl-tRNA synthetase. Phylogenetic analysis using amino acid sequences of this gene indicated that this gene was separated from other Euryarchaea before the

  4. Low-temperature hydrothermal synthesis of BiFeO{sub 3} microcrystals and their visible-light photocatalytic activity

    SciTech Connect

    Wei, Jie; Zhang, Chao; Xu, Zhuo

    2012-11-15

    Highlights: ► Urea-assisted hydrothermal synthesis of pure BiFeO{sub 3} at 120 °C was reported. ► Possible formation mechanism of pure phase BiFeO{sub 3} at low temperature was illuminated. ► BiFeO{sub 3} microcrystals exhibited efficient visible-light photocatalytic activity. -- Abstract: Pure BiFeO{sub 3} (BFO) microcrystals were synthesized at the temperature as low as 120 °C via a urea-assisted hydrothermal process. The crystal structure, morphology and photocatalytic property of BFO microcrystals were investigated. The analysis reveals that the hydrolysis of urea in the hydrothermal process plays a key role in the synthesis of pure phase BFO microcrystals. FE-SEM and TEM results show that these BFO microcrystals present a nearly spherical microstructure, and specially exhibit superstructures consisting of large amounts of small particles with the size of 100–150 nm by further observation. Moreover, these BFO microcrystals exhibit efficient photocatalytic activity under visible-light irradiation, suggesting their promising applications as photocatalysts and related fields.

  5. ESR dating of submarine hydrothermal activities using barite in sulfide deposition

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.

    2012-12-01

    The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). Determining the ages of the hydrothermal deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine hydrothermal deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine hydrothermal sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine hydrothermal area where the radiation level is much

  6. Adsorption of butanol vapor on active carbons with nitric acid hydrothermal modification.

    PubMed

    Cao, Yuhe; Wang, Keliang; Wang, Xiaomin; Gu, Zhengrong; Gibbons, William; Vu, Han

    2015-11-01

    Butanol can be produced from biomass via fermentation and used in vehicles. Unfortunately, butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Butanol can be efficiently removed from fermentation broth by gas stripping, thereby preventing its inhibitory effects. Original active carbon (AC) and AC samples modified by nitric acid hydrothermal modification were assessed for their ability to adsorb butanol vapor. The specific surface area and oxygen-containing functional groups of AC were tested before and after modification. The adsorption capacity of unmodified AC samples was the highest. Hydrothermal oxidation of AC with HNO3 increased the surface oxygen content, Brunauer-Emmett-Teller (BET) surface area, micropore, mesopore and total pore volume of AC. Although the pore structure and specific surface area were greatly improved after hydrothermal oxidization with 4M HNO3, the increased oxygen on the surface of AC decreased the dynamic adsorption capacity. PMID:26291412

  7. Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37°N on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Langmuir, C.; Humphris, S.; Fornari, D.; Van Dover, C.; Von Damm, K.; Tivey, M. K.; Colodner, D.; Charlou, J.-L.; Desonie, D.; Wilson, C.; Fouquet, Y.; Klinkhammer, G.; Bougault, H.

    1997-04-01

    The Lucky Strike hydrothermal field occurs in the summit basin of a large seamount that forms the shallow center of a 65 km long ridge segment near 37°N on the Mid-Atlantic Ridge. The depth and chemistry of the ridge segment are influenced by the Azores hot spot, and this hydrothermal field is the first Atlantic site found on crust that is dominated by a hot spot signature. Multiple hydrothermal vents occur over an area of at least 300 m by 700 m. Vent morphologies range from flanges and chimneys with temperatures of 200-212°C, to black smoker chimneys with temperatures up to 333°C. Cooler fluids from northern vents have higher chlorinities and lower gas volumes, while hotter, southern fluids have chlorinities 20% below seawater with higher gas volumes, suggesting phase separation has influenced their compositions. All gas volumes in fluids are higher than those at TAG and Snake Pit hydrothermal fields. Black smokers exhibit their typical mineralogy, except that barite is a major mineral, particularly at lower-temperature sites, which contrasts with previously investigated Atlantic sites. The fluid chemistry, distribution of the relict sulfide deposits on the seamount summit in the areas investigated using DSV Alvin, and contact relationships between active vent sites and surrounding basaltic and sulfide substrate suggest that the hydrothermal system has a long history and may have recently been rejuvenated. Fauna at the Lucky Strike vent sites are dominated by a new species of mussel, and include the first reported sea urchins. The Lucky Strike biological community differs considerably from other vent fauna at the species level and appears to be a new biogeographic province. The Lucky Strike field helps to constrain how variations in the basaltic substrate influence the composition of hydrothermal fluids and solids, because basalt compositions at Lucky Strike are 10-30 times enriched in incompatible elements compared to other Atlantic hydrothermal sites such as

  8. Exploring an active hydrothermal system - An analogue study from the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Egli, Daniel; Herwegh, Marco; Berger, Alfons; Baron, Ludovic

    2016-04-01

    Understanding the detailed flow paths in hydrothermal reservoirs is crucial for successful exploration of naturally porous and permeable rock masses for energy production. However, due to the common inaccessibility of active hydrothermal systems of suitable depth, e.g. in the northern Alpine foreland of the European Alps, direct observations are normally impossible and the knowledge about such systems is still insufficient. For that reason, a known fault-bound hydrothermal system in the crystalline basement of the Aar Massif serves as an analogue for potential geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland. During summer 2015, a 125 m hole has been drilled across this active hydrothermal zone on the Grimsel Pass for in-situ characterization of its structural, petrophysical, mechanical as well as geophysical parameters. With this information, this project aims at improving the knowledge of natural hydrothermal systems as a potentially exploitable energy source. The investigated system is characterized by a central breccia zone surrounded by different types of cataclasites and localized high strain zones. The surrounding includes different altered and deformed granitoid host rocks. In this study, we focus on the ductile and brittle deformation (shear zones, fractures, joints) that provides the main fluid pathways. Their spatial distribution around a central water-bearing breccia zone as well as their continuity and permeability provide constraints on the water flow paths in such structurally controlled hydrothermal systems. The aim will be the connection of detailed structural data with petrophysical parameters such as porosities and permeabilities. The drillcore shows the high variability of deformation structures and related fluid pathways at different scales (millimeter-decameter) demonstrating the urgent need for an improved understanding of the link between mechanical evolution, associated deformation structures as well

  9. 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt—Paleoarchean crust in cold environments

    PubMed Central

    de Wit, Maarten J.; Furnes, Harald

    2016-01-01

    Estimates of ocean temperatures on Earth 3.5 billion years ago (Ga) range between 26° and 85°C. We present new data from 3.47- to 3.43-Ga volcanic rocks and cherts in South Africa suggesting that these temperatures reflect mixing of hot hydrothermal fluids with cold marine and terrestrial waters. We describe fossil hydrothermal pipes that formed at ~200°C on the sea floor >2 km below sea level. This ocean floor was uplifted tectonically to sea level where a subaerial hydrothermal system was active at 30° to 270°C. We also describe shallow-water glacial diamictites and diagenetic sulfate mineral growth in abyssal muds. These new observations reveal that both hydrothermal systems operated in relatively cold environments and that Earth’s surface temperatures in the early Archean were similar to those in more recent times. PMID:26933677

  10. 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt-Paleoarchean crust in cold environments.

    PubMed

    de Wit, Maarten J; Furnes, Harald

    2016-02-01

    Estimates of ocean temperatures on Earth 3.5 billion years ago (Ga) range between 26° and 85°C. We present new data from 3.47- to 3.43-Ga volcanic rocks and cherts in South Africa suggesting that these temperatures reflect mixing of hot hydrothermal fluids with cold marine and terrestrial waters. We describe fossil hydrothermal pipes that formed at ~200°C on the sea floor >2 km below sea level. This ocean floor was uplifted tectonically to sea level where a subaerial hydrothermal system was active at 30° to 270°C. We also describe shallow-water glacial diamictites and diagenetic sulfate mineral growth in abyssal muds. These new observations reveal that both hydrothermal systems operated in relatively cold environments and that Earth's surface temperatures in the early Archean were similar to those in more recent times. PMID:26933677

  11. Hydrothermal activity in the Northwest Lau Backarc Basin: Evidence from water column measurements

    NASA Astrophysics Data System (ADS)

    Lupton, J. E.; Arculus, R. J.; Resing, J.; Massoth, G. J.; Greene, R. R.; Evans, L. J.; Buck, N.

    2012-05-01

    The Northwest Lau Backarc Basin, consisting of the Northwest Lau Spreading Center (NWLSC) and the Rochambeau Rifts (RR), is unique in having elevated 3He/4He ratios (up to 28 Ra) in the erupted lavas, clearly indicating a hot spot or ocean island basalt (OIB)-type signature. This OIB-type helium signature does not appear in any other part of the Lau Basin. Water column plume surveys conducted in 2008 and 2010 identified several sites of active hydrothermal discharge along the NWLSC-RR and showed that the incidence of hydrothermal activity is high, consistent with the high spreading rate of ˜100 mm/year. Hydrocasts into the Central Caldera and Southern Caldera of the NWLSC detected elevated3He/4He (δ3He = 55% and 100%, respectively), trace metals (TMn, TFe), and suspended particles, indicating localized hydrothermal venting at these two sites. Hydrocasts along the northern rift zone of the NWLSC also had excess δ3He, TMn, and suspended particles suggesting additional sites of hydrothermal activity. The RR are dominated by Lobster Caldera, a large volcano with four radiating rift zones. Hydrocasts into Lobster Caldera in 2008 detected high δ3He (up to 239%) and suspended particle and TMn signals, indicating active venting within the caldera. A repeat survey of Lobster in 2010 confirmed the site was still active two years later. Plumes at Lobster Caldera and Central Caldera have end-member3He/4He ratios of 19 Ra and 11 Ra, respectively, confirming that hot spot-type helium is also present in the hydrothermal fluids.

  12. [Field Learning Activities].

    ERIC Educational Resources Information Center

    Nolde Forest Environmental Education Center, Reading, PA.

    Seventy field activities, pertinent to outdoor, environmental studies, are described in this compilation. Designed for elementary and junior high school students, the activities cover many discipline areas--science, social studies, language arts, health, history, mathematics, and art--and many are multidisciplinary in use. Topics range from soil…

  13. Hydrothermal activity recorded in post Noachian-aged impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Turner, Stuart M. R.; Bridges, John C.; Grebby, Stephen; Ehlmann, Bethany L.

    2016-04-01

    Hydrothermal systems have previously been reported in ancient Noachian and Hesperian-aged craters on Mars using CRISM but not in Amazonian-aged impact craters. However, the nakhlite meteorites do provide evidence of Amazonian hydrothermal activity. This study uses CRISM data of 144 impact craters of ≥7 km diameter and 14 smaller craters (3-7 km diameter) within terrain mapped as Amazonian to search for minerals that may have formed as a result of impact-induced hydrothermal alteration or show excavation of ancient altered crust. No evidence indicating the presence of hydrated minerals was found in the 3-7 km impact craters. Hydrated minerals were identified in three complex impact craters, located at 52.42°N, 39.86°E in the Ismenius Lacus quadrangle, at 8.93°N, 141.28°E in Elysium, and within the previously studied Stokes crater. These three craters have diameters 20 km, 62 km, and 51 km. The locations of the hydrated mineral outcrops and their associated morphology indicate that two of these three impact craters—the unnamed Ismenius Lacus Crater and Stokes Crater—possibly hosted impact-induced hydrothermal systems, as they contain alteration assemblages on their central uplifts that are not apparent in their ejecta. Chlorite and Fe serpentine are identified within alluvial fans in the central uplift and rim of the Ismenius Lacus crater, whereas Stokes crater contains a host of Fe/Mg/Al phyllosilicates. However, excavation origin cannot be precluded. Our work suggests that impact-induced hydrothermalism was rare in the Amazonian and/or that impact-induced hydrothermal alteration was not sufficiently pervasive or spatially widespread for detection by CRISM.

  14. Plume indications from hydrothermal activity on Kawio Barat Submarine Volcano, Sangihe Talaud Sea, North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Makarim, S.; Baker, E. T.; Walker, S. L.; Wirasantosa, S.; Permana, H.; Sulistiyo, B.; Shank, T. M.; Holden, J. F.; Butterfield, D.; Ramdhan, M.; Adi, R.; Marzuki, M. I.

    2010-12-01

    Kawio Barat submarine volcano has formed in response to the active tectonic conditions in Sangihe Talaud, an area that lies in the subduction zone between the Molucca Sea Plate and Celebes Sea Plate. Submarine volcanic activity in the western Sangihe volcanic arc is controlled by the west-dipping Molucca Sea Plate as it subducts beneath the Sangihe Arc. A secondary faulting system on Kawio Barat is in a northwest - southeast direction, and creates a network of deep cracks that facilitate hydrothermal discharge in this area. Hydrothermal activity on Kawio Barat was first discovered by joint Indonesia/Australian cruises in 2003. In 2010, as part of the joint US/Indonesian INDEX-SATAL expedition, we conducted CTD casts that confirmed continuing activity. Hydrothermal plumes were detected by light -scattering (LSS) and oxidation-reduction potential (ORP) sensors on the CTD package. LSS anomalies were found between 1600-1900 m, with delta NTU levels of 0.020-0.040. ORP anomalies coincident with the LSS anomalies indicate strong concentrations of reduced species such as H2S and Fe, confirming the hydrothermal origin of the plumes. Images of hydrothermal vents on Kawio Barat Submarine volcano, recorded by high- definition underwater cameras on the ROV “Little Hercules” operated from the NOAA ship Okeanos Explorer, confirmed the presence and sources of the detected vent plumes in the northern and southwest part of the summit in 1800-1900 m depth. In southwest part of this summit chimney, drips of molten sulfur were observed in the proximity of microbal staining.

  15. Hydrothermal flow at Main Endeavour Field imaged and measured with Cable Operated Vent Imaging Sonar

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Bemis, K. G.; Xu, G.; Jackson, D. R.; Jones, C. D.

    2011-12-01

    Initial acoustic monitoring of hydrothermal flow in the Main Endeavour Field (MEF) captures the spatial distribution of diffuse and focused discharge and shows potential for flux determinations. Our Cabled Observatory Vent Imaging Sonar (COVIS) was connected to the NEPTUNE Canada Endeavour Observatory in September 2010. Using a customized Reson 7125 multi-beam sonar, COVIS acquired a 29 day time series of black smoker plume and associated diffuse hydrothermal flow from Grotto, a 30 m diameter vent cluster in the MEF, Juan de Fuca Ridge. Detection of the spatial patterns of diffuse flow utilizes phase decorrelation of the acoustic signal (200kHz) by buoyancy-driven turbulence (acoustic scintillation) to produce a time series of maps. Substantial fluctuation in the detected diffuse flow area (0.1 - 18 m^2) was observed over the 29 days of observation, although position remained stable. Acoustic imaging of focused flow (400 kHz) utilizes high volume backscatter (attributed to particles and turbulent sound speed fluctuations) to image in 3D the initial tens of meters of rise of buoyant plumes. Spectral analysis of bending inclination of a strong plume from multiple fast smokers on the NW end of Grotto (north tower) indicates that the dominant modes correspond with the ambient mixed semi-diurnal tide (based on current meter data at a mooring 2.9 km to the north and on a tidal model), with at least one secondary mode attributable to sub-inertial flow related to inflow to the axial valley. A weaker plume from several slower smokers is present on the NE end of Grotto. On first analysis, the bending inclination of the weaker plume appears to be affected by the stronger plume. Quantification of flow velocity and volume flux of plumes begins with measuring the Doppler phase shift through plume cross-sections beginning at 5 m above source vents where discharge merges. The volume flux measurements enable calculation of entrainment coefficients, which prior work on the same

  16. Iron-Based Microbial Ecosystem on and Below the Seafloor: A Case Study of Hydrothermal Fields of the Southern Mariana Trough

    PubMed Central

    Kato, Shingo; Nakamura, Kentaro; Toki, Tomohiro; Ishibashi, Jun-ichiro; Tsunogai, Urumu; Hirota, Akinori; Ohkuma, Moriya; Yamagishi, Akihiko

    2012-01-01

    Microbial community structures in deep-sea hydrothermal vents fields are constrained by available energy yields provided by inorganic redox reactions, which are in turn controlled by chemical composition of hydrothermal fluids. In the past two decades, geochemical and microbiological studies have been conducted in deep-sea hydrothermal vents at three geographically different areas of the Southern Mariana Trough (SMT). A variety of geochemical data of hydrothermal fluids and an unparalleled microbiological dataset of various samples (i.e., sulfide structures of active vents, iron-rich mats, borehole fluids, and ambient seawater) are available for comparative analyses. Here, we summarize the geochemical and microbiological characteristics in the SMT and assess the relationship between the microbial community structures and the fluid geochemistry in the SMT by thermodynamic modeling. In the high temperature vent fluids, aerobic sulfide-oxidation has the potential to yield large amounts of bioavailable energy in the vent fluids, which is consistent with the detection of species related to sulfide-oxidizing bacteria (such as Thiomicrospira in the Gammaproteobacteria and Sulfurimonas in the Epsilonproteobacteria). Conversely, the bioavailable energy yield from aerobic iron-oxidation reactions in the low-temperature fluids collected from man-made boreholes and several natural vents were comparable to or higher than those from sulfide-oxidation. This is also consistent with the detection of species related to iron-oxidizing bacteria (Mariprofundus in the Zetaproteobacteria) in such low-temperature samples. The results of combination of microbiological, geochemical, and thermodynamic analyses in the SMT provide novel insights into the presence and significance of iron-based microbial ecosystems in deep-sea hydrothermal fields. PMID:22435065

  17. Sulfur Metabolisms in Epsilon- and Gamma-Proteobacteria in Deep-Sea Hydrothermal Fields

    PubMed Central

    Yamamoto, Masahiro; Takai, Ken

    2011-01-01

    In deep-sea hydrothermal systems, super hot and reduced vent fluids from the subseafloor blend with cold and oxidized seawater. Very unique and dense ecosystems are formed within these environments. Many molecular ecological studies showed that chemoautotrophic epsilon- and gamma-Proteobacteria are predominant primary producers in both free-living and symbiotic microbial communities in global deep-sea hydrothermal fields. Inorganic sulfur compounds are important substrates for the energy conservative metabolic pathways in these microorganisms. Recent genomic and metagenomic analyses and biochemical studies have contributed to the understanding of potential sulfur metabolic pathways for these chemoautotrophs. Epsilon-Proteobacteria use sulfur compounds for both electron-donors and -acceptors. On the other hand, gamma-Proteobacteria utilize two different sulfur-oxidizing pathways. It is hypothesized that differences between the metabolic pathways used by these two predominant proteobacterial phyla are associated with different ecophysiological strategies; extending the energetically feasible habitats with versatile energy metabolisms in the epsilon-Proteobacteria and optimizing energy production rate and yield for relatively narrow habitable zones in the gamma-Proteobacteria. PMID:21960986

  18. A hydrographic transient above the Salty Dawg hydrothermal field, Endeavour segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Kellogg, J. P.; McDuff, R. E.

    2010-12-01

    During systematic repeat hydrography cruises to the Endeavour segment of the Juan de Fuca Ridge in the summers of 2004, 2005, and 2006, we encountered a transient increase in the water column heat content above the Salty Dawg hydrothermal field. First observed in July 2005 and mapped in greater detail in August 2005, this feature was not a typical event or megaplume since potential temperature anomalies were continuously elevated from the plume top to the seafloor. During the summer of 2005, the heat content in the waters above Salty Dawg was elevated ˜30 TJ, and the plume top was over 150 m higher in the water column than the other years measured. Based on scaling analyses, an order of magnitude increase in the volume flux from Salty Dawg would be required to generate a neutrally buoyant plume of this size. This observation was unexpected because no substantial earthquakes were detected in the time frame of this increased heat flux. The duration of the transient suggests possible forcing mechanisms: advancement of a cracking front, a small-scale dike intrusion, aseismic crustal movement, fracture of a flow constriction to a previously unaccessible reservoir, an increase of heat in an underlying magma chamber, or movement of melt within the axial magma chamber. The transient disappeared before returning in August 2006, likely due to thermal expansion of shallow host rock, decreasing the permeability. Should such increases in seafloor heat flux prove to be common, the rate of hydrothermal cooling could be faster than previously thought.

  19. Spatial distribution, diversity and composition of bacterial communities in sub-seafloor fluids at a deep-sea hydrothermal field of the Suiyo Seamount

    NASA Astrophysics Data System (ADS)

    Kato, Shingo; Hara, Kurt; Kasai, Hiroko; Teramura, Takashi; Sunamura, Michinari; Ishibashi, Jun-ichiro; Kakegawa, Takeshi; Yamanaka, Toshiro; Kimura, Hiroyuki; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2009-10-01

    Spatial distribution, diversity, and composition of bacterial communities within the shallow sub-seafloor at the deep-sea hydrothermal field of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific Ocean, were investigated. Fluids were sampled from four boreholes in this area. Each borehole was located near or away from active vents, the distance ranging 2-40 m from active vents. In addition, fluids discharging from a natural vent and ambient seawater were sampled in this area. We extracted DNA from each sample, amplified bacterial 16S rRNA genes by PCR, cloned the PCR products and sequenced. The total number of clones analyzed was 348. Most of the detected phylotypes were affiliated with the phylum Proteobacteria, of which the detection frequency in each clone library ranged from 84.6% to 100%. The bacterial community diversity and composition were different between hydrothermal fluids and seawater, between fluids from the boreholes and the vent, and even among fluids from each borehole. The relative abundances of the phylotypes related to Thiomicrospira, Methylobacterium and Sphingomonas were significantly different among fluids from each borehole. The phylotypes related to Thiomicrospira and Alcanivorax were detected in all of the boreholes and vent samples. Our findings provide insights into bacterial communities in the shallow sub-seafloor environments at active deep-sea hydrothermal vent fields.

  20. Synthesis of Nano-Crystalline CO3O4 Particles by Hydrothermal Method Under Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Deng, Xiaolong; Li, Ying; Zhu, Mingyuan; Jin, Hongming; Wang, Zhun; Zhu, Zhenzhen; Liu, Huakun

    Nanocrystalline CO3O4 particles were successfully synthesized by hydrothermal method under pulsed magnetic field. The effect of magnetic field and aging time on the morphology and microstructure were examined. Different morphologies were observed from SEM images for the samples fabricated with or without pulsed magnetic field. The pulsed magnetic field made CO3O4 sphere compact and more smooth surface. The hollow sphere morphology and refined grain of CO3O4 were formed after aging process.

  1. Noble Gas geochemistry of the newly discovered hydrothermal fields in the Gulf of California: preliminary He-isotope ratios from the Alarcon Rise and Pescadero basin vent sites

    NASA Astrophysics Data System (ADS)

    Spelz, R. M.; Lupton, J. E.; Evans, L. J.; Zierenberg, R. A.; Clague, D. A.; Neumann, F.; Paduan, J. B.

    2015-12-01

    Numerous submarine deep-sea hydrothermal vents related to volcanic activity of the East Pacific Rise (EPR) are situated along the Pacific margins of Mexico. Until recently, active hydrothermal venting was unknown between the Guaymas Basin and 21°N on the EPR. MBARI's recent oceanographic surveys have added 7 new active vent sites. In this study, we aimed to sample the high-temperature hydrothermal fluids emanating from two distinct vent sites, named Meyibo and Auka, located in the Alarcon Rise and Pescadero Basin, respectively. Mantle-derived He have long been identified in hydrothermal fluid releases. The presence of He in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA, where RA = air He or 1.4 x 10-6) indicates the presence of mantle-derived melts. Preliminary analyses of He-isotope ratios derived from the newly discovered Meyibo and Auka hydrothermal fields show high 3He/4He ratios (~8RA), typical of MORB's. Auka vent field, characterized by chimneys composed of light carbonate minerals and oil-like hydrocarbons, and temperatures between 250-290oC, show average values of ~7.87RA. In contrast, the black-smokers at the Meyibo field, composed of dark sulfide minerals and temperatures over 350oC, yielded a higher He ratio of ~8.24RA. Recently, it has become clear that regional maximum mantle He values correlate with the velocity structure in the mantle, therefore, He has the potential to map regions of the underlying mantle that are undergoing partial melting. Seismic records could then be compared with the geochemical He ratio signal and supply information regarding tectonics and other processes involved in the generation of these gases. The data presented here will be completing a totally new inventory of He results from hydrothermal vents in the EPR and fault-termination basins distributed along the P-NA plate boundary in the Gulf of California. The results will be further coupled with the analysis of other geochemical

  2. Mineral types of hydrothermal alteration zones in the Dukat ore field and their relationships to leucogranite and epithermal gold-silver ore, northeastern Russia

    NASA Astrophysics Data System (ADS)

    Filimonova, L. G.; Trubkin, N. V.; Chugaev, A. V.

    2014-05-01

    The paper considers the localization of potassic and propylitic hydrothermal alteration zones in the domal volcanic-plutonic structure controlling the position of the Dukat ore field with the eponymous unique epithermal Au-Ag deposit. Comprehensive mineralogical and geochemical data on rocks and minerals in hydrothermal alteration zones and associated intrusions have shown that quartz-jarosite-sericite, quartz-pyrite-sericite, and quartz-adularia-chlorite alterations were formed with the participation of fluid flows related to a fingerlike projection of a high-K leucogranite porphyry intrusion with large phenocrysts. These hydrothermal alterations developed in the rifted graben under conditions of divergent plate boundaries, whereas quartz-clinozoisite-calcite, epidote-chlorite, and garnet-calcite-chlorite alterations were linked to K-Na leucogranite intrusive bodies and developed under conditions of convergent plate boundaries reactivated as a result of formation of the marginal Okhotsk-Chukotka volcanic belt. Phase separation and coagulation of specific portions of ascending fluids resulted in the formation and stabilization of small-sized particles of native silver and other ore components, which enabled involvement in flows of secondary geothermal solutions and ore-forming fluids. The Sr, Nd, and Pb isotopic compositions of rocks and minerals from the hydrothermal alteration zones, associated intrusions, and economic orebodies at the Dukat deposit indicate that their components have been derived from the juvenile continental crust, which was altered in pre-Cretaceous periods of endogenic activity. The components of gangue minerals of potassic and propylitic hydrothertmal alterations and associated intrusions have been taken from deep sources differing in 87Sr/86Sr and 143Nd/144Nd at similar U/Pb and Th/Pb ratios. Chalcophile lead in products of hydrothermal activity and melanocratic inclusions in leucogranite has been taken from regions with elevated U/Pb and

  3. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research. PMID:27147438

  4. Lake-floor sediment texture and composition of a hydrothermally-active, volcanic lake, Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Pittari, A.; Muir, S. L.; Hendy, C. H.

    2016-03-01

    Young volcanic lakes undergo a transition from rapid, post-eruptive accumulation of volcaniclastic sediment to slower pelagic settling under stable lake conditions, and may also be influenced by sublacustrine hydrothermal systems. Lake Rotomahana is a young (129 year-old), hydrothermally-active, volcanic lake formed after the 1886 Tarawera eruption, and provides a unique insight into the early evolution of volcanic lake systems. Lake-bottom sediment cores, 20-46 cm in length, were taken along a transect across the lake and characterised with respect to stratigraphy, facies characteristics (i.e., grain size, componentry) and pore water silica concentrations. The sediments generally comprise two widespread facies: (i) a lower facies of light grey to grey, very fine lacustrine silt derived from the unconsolidated pyroclastic deposits that mantled the catchment area immediately after the eruption, which were rapidly reworked and redeposited into the lake basin; and (ii) an upper facies of dark, fine-sandy diatomaceous silt, that settled from the pelagic zone of the physically stable lake. Adjacent to sublacustrine hydrothermal vents, the upper dark facies is absent, and the upper part of the light grey to grey silt is replaced by a third localised facies comprised of hydrothermally altered pale yellow to yellowish brown, laminated silt with surface iron-rich encrustations. Microspheres, which are thought to be composed of amorphous silica, although some may be halloysite, have precipitated from pore water onto sediment grains, and are associated with a decrease in pore water silicon concentration. Lake Rotomahana is an example of a recently-stabilised volcanic lake, with respect to sedimentation, that shows signs of early sediment silicification in the presence of hydrothermal activity.

  5. Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Fredriksson, Kurt; Goetzinger, Michael; Reimold, Wolf Uwe

    1989-01-01

    Quartz pebbles from the Roter Kamm impact crater (the Namib Desert, SWA/Namibia) were examined for evidence of impact-induced hydrothermal activity, using results from microprobe analyses, neutron activation analyses, transmission IR spectroscopy, and X-ray diffractometry. It was found that the pebbles consisted of pure quartz, which contains three different types of fluid inclusions. These were identified as primary inclusions (5-10 microns) that record the formation conditions of the quartz, very small (less than 1 micron) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. It is concluded that the quartz and the primary inclusions may provide evidence for a postimpact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  6. PGE fractionation in seafloor hydrothermal systems: examples from mafic- and ultramafic-hosted hydrothermal fields at the slow-spreading Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Pašava, Jan; Vymazalová, Anna; Petersen, Sven

    2007-04-01

    The distribution of platinum group elements (PGEs) in massive sulfides and hematite-magnetite±pyrite assemblages from the recently discovered basalt-hosted Turtle Pits hydrothermal field and in massive sulfides from the ultramafic-hosted Logatchev vent field both on the Mid-Atlantic Ridge was studied and compared to that from selected ancient volcanic-hosted massive sulfide (VHMS) deposits. Cu-rich samples from black smoker chimneys of both vent fields are enriched in Pd and Rh (Pd up to 227 ppb and Rh up to 149 ppb) when compared to hematite-magnetite-rich samples from Turtle Pits (Pd up to 10 ppb, Rh up to 1.9 ppb). A significant positive correlation was established between Cu and Rh in sulfide samples from Turtle Pits. PGE chondrite-normalized patterns (with a positive Rh anomaly and Pd and Au enrichment), Pd/Pt and Pd/Au ratios close to global MORB, and high values of Pd/Ir and Pt/Ir ratios indicate mafic source rock and seawater involvement in the hydrothermal system at Turtle Pits. Similarly shaped PGE chondrite-normalized patterns and high values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides at Logatchev likely reflect a similar mechanism of PGE enrichment but with involvement of ultramafic source rocks.

  7. Distribution and composition of hydrothermal plume particles from the ASHES vent field at Axial Volcano, Juan de Fuca Ridge. [Axial Seamount Hydrothermal Emission Study

    SciTech Connect

    Feely, R.A.; Geiselman, T.L.; Baker, E.T.; Massoth, G.J. ); Hammond, S.R. )

    1990-08-10

    In 1986 and 1987, buoyant and neutrally buoyant hydrothermal plume particles from the ASHES vent field within Axial Volcano were sampled to study their variations in composition with height above the seafloor. Individual mineral phases were identified using standard X ray diffraction procedures. Elemental composition and particle morphologies were determined by X ray fluorescence spectrometry and scanning electron microscopy/X ray energy spectrometry techniques. The vent particles were primarily composed of sphalerite, anhydrite, pyrite, pyrrhotite, chalcopyrite, barite, hydrous iron oxides, and amorphous silica. Grain size analyses of buoyant plume particles showed rapid particle growth in the first few centimeters above the vent orifice, followed by differential sedimentation of the larger sulfide and sulfate minerals out of the buoyant plume. The neutrally buoyant plume consisted of a lower plume, which was highly enriched in Fe, S, Zn, and Cu, and an upper plume, which was highly enriched in Fe and Mn. The upper plume was enriched in Fe and Mn oxyhydroxide particles, and the lower plume was enriched in suspended sulfide particles in addition to the Fe and Mn oxyhydroxide particles. The chemical data for the water column particles indicate that chemical scavenging and differential sedimentation processes are major factors controlling the composition of the dispersing hydrothermal particles. Short-term sediment trap experiments indicate that the fallout from the ASHES vent field is not as large as some of the other vent fields on the Juan de Fuca Ridge.

  8. Hydrothermal Alteration Minerals of the Geysers Steam Field, California and their Potential Use in Exploration

    SciTech Connect

    Moore, Diane

    1980-12-16

    Little information has been published on the hydrothermal alteration minerals occurring at depth in the Geysers steam field, California. Steiner (1958) reported the occurrence of wairakite from a well; McNitt (1964) identified pyrite, sericite, calcite, quartz, siderite, apatite and chlorite in cores of Franciscan graywacke and greenstone. Recently, Union Oil Geothermal Division furnished a set of well cores from the cap rock overlying the steam reservoir for geophysical studies (Lockner -e t -a l . , 1980). Cores of metagraywacke and greenstone from 4 wells were compared to unaltered Franciscan metagraywacke from surface exposures. Several previously unreported alteration minerals were found in the cored rocks, including epidote, tremolite-actinolite, prehnite and tourmaline. This note describes the observed alteration minerals and some of the factors that controlled their growth.

  9. Replacive sulfide formation in anhydrite chimneys from the Pacmanus hydrothermal field, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Los, Catharina; Bach, Wolfgang; Plümper, Oliver

    2016-04-01

    Hydrothermal flow within the oceanic crust is an important process for the exchange of energy and mass between the lithosphere, hydrosphere and biosphere. Infiltrated seawater heats up and interacts with wall rock, causing mineral replacement reactions. These play a large role in the formation of ore deposits; at the discharge zone, a hot, acidic and metal-rich potential ore fluid exits the crust. It mixes with seawater and forms chimneys, built up of sulfate minerals such as anhydrite (CaSO4), which are subsequently replaced by sulfide minerals. Sulfide formation is related to fluid pathways, defined by cracks and pores in the sulfate chimney. Over time, these systems might develop into massive sulfide deposits. The big question is then: how is sulfate-sulfide replacement related to the evolution of rock porosity? To address this question, sulfide-bearing anhydrite chimneys from the Pacmanus hydrothermal field (Manus Basin, Papua New Guinea) were studied using X-ray tomography, EMPA, FIB-SEM and -TEM. The apparently massive anhydrite turns out highly porous on the micro scale, with sulfide minerals in anhydrite cleavage planes and along grain boundaries. The size of the sulfide grains relates to the pores they grew into, suggesting a tight coupling between dissolution (porosity generation) and growth of replacive minerals. Some of the sulfide grains are hollow and apparently used the dissolving anhydrite as a substrate to start growth in a pore. Another mode of sulfide development is aggregates of euhedral pyrite cores surrounded by colloform chalcopyrite. This occurrence implies that fluid pathways have remained open for some time to allow several stages of precipitation during fluid evolution. To start the replacement and to keep it going, porosity generation is crucial. Our samples show that dissolution of anhydrite occurred along pathways where fluid could enter, such as cleavage planes and grain boundaries. It appears that fluids ascending within the inner

  10. Hydrothermal Activity Along Multiple Ridge Segments of the Northern Central Indian Ridge, 8°-17°S

    NASA Astrophysics Data System (ADS)

    Son, J.; Kim, J.; Pak, S.; Son, S.; Moon, J.; Baker, E. T.

    2012-12-01

    We report the first systematic hydrothermal plume surveys conducted on the northern Central Indian Ridge (CIR, 8°-17°S), a slow spreading ridge with rates between ~35 and 40 mm/yr, during the CIR research program of KORDI between 2009 and 2011. Using a combined CTD/Miniature Autonomous Plume Recorder (MAPR) package we occupied 208 vertical casts and 82 tows along seven segments of the CIR totaling ~700 km of ridge length to estimate the frequency of hydrothermal activity on this slow-spreading ridge. Evidence for hydrothermal activity was found on each of the seven segments, with most plumes found between 3000 and 3500 m. Using only stations within the rift valley, the estimated value of plume incidence (ph=0.19) coincides with the global trend between the spatial density of hydrothermal plumes and full-spreading rate (an indicator of magmatic budget). However, there are also indications of possible discharge from hydrothermal activity or serpentinization from the ridge flanks (possible ocean core complexes), as has been observed along the Mid-Atlantic Ridge. For example, some sites show methane anomalies unaccompanied by any optical anomaly. Our preliminary results support the increasing role of tectonic control on hydrothermal activity as spreading rates decrease. Further examination of the plume signals, combined with chemical composition of sampled water and geological data, will provide valuable insights into hydrothermal activity on slow spreading ridges.

  11. Hydrothermal Petroleum in Active Continental Rift: Lake Chapala, Western Mexico, Initial Results.

    NASA Astrophysics Data System (ADS)

    Zarate-del Valle, P. F.; Simoneit, B. R.; Ramirez-Sanchez, H. U.

    2003-12-01

    Lake Chapala in western Mexico is located partially in the Citala Rift, which belongs to the well-known neotectonic Jalisco continental triple junction. The region is characterized by active volcanism (Ceboruco, Volcan de Fuego), tectonic (1995 earthquake, M=8, 40-50 mm to SW) and hydrothermal (San Juan Cosala & Villa Corona spas and La Calera sinter deposit) activities. Hydrothermal petroleum has been described in active continental rift (East African Rift) and marine spreading zones (Guaymas Basin, Gulf of California). In 1868 the Mexican local press reported that manifestations of bitumen were appearing in front of the Columba Cap on the mid south shore of Lake Chapala. This bitumen is linked to the lake bottom and when the water level decreases sufficiently it is possible to access these tar bodies as islands. Because of these manifestations the Mexican oil company (PEMEX) drilled an exploration well (2,348m) at Tizapan El Alto without success. Hydrothermal activity is evident in the tar island zone as three in-shore thermal springs (26.8 m depth, 48.5° C, pH 7.8 and oriented N-S). The preliminary analyses by GC-MS of the tar from these islands indicate hydrothermal petroleum derived from lake sedimentary organic matter, generated at low temperatures (150° -200° C). The tars contain no n-alkanes, no PAH or other aromatics, but a major UCM of branched and cyclic hydrocarbons and mature biomarkers derived from lacustrine biota. The biomarkers consist of mainly 17α (H),21β (H)-hopanes ranging from C27 to C34 (no C28), gammacerane, tricyclic terpanes (C20-C26), carotane and its cracking products, and drimanes (C14-C16). The biomarker composition indicates an organic matter source from bacteria and algae, typical of lacustrine ecosystems. 14C dating of samples from two tar islands yielded ages exceeding 40 kyrs, i.e., old carbon from hydrothermal/tectonic remobilization of bitumen from deeper horizons to the surface. The occurrence of hydrothermal petroleum in

  12. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    NASA Astrophysics Data System (ADS)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few

  13. Noble-metal mineralization in the Semenov-2 hydrothermal field (13°31'N), mid-atlantic ridge

    NASA Astrophysics Data System (ADS)

    Melekestseva, I. Yu.; Kotlyarov, V. A.; Khvorov, P. V.; Ivanov, V. N.; Beltenev, V. E.; Dobretsova, I. G.

    2010-12-01

    The porous fine-grained to microcrystalline copper-zinc ore of the Semenov-2 hydrothermal field, a site in the Semenov hydrothermal cluster discovered in 2007 (13°31'N, MAR), is anomalously enriched in Au (22-188 ppm) and Ag (127-1787 ppm). Chalcopyrite, isocubanite, würtzite, and opal are major minerals; sphalerite, marcasite, pyrite, and covellite are auxiliary; and galena, pyrrhotite, native gold, silver telluride, barite, and aragonite are sporadic. Gold containing 0.31 to 23.07 wt % Ag occurs as up to 9-μm-sized subhedral, dendritelike, and elongated grains mostly hosted in opal and less frequently in sphalerite and in pores within isocubanite-chalcopyrite aggregate. An elongated grain (2 × 4 μm in size) of the Ag-Te phase was found in a pore. So far only basalts have been dredged from the Semenov-2 field, but anomalous gold and silver concentrations suggest the influence of ultramafic rocks; the latter were found 1.5 km westward, in the Semenov-1 hydrothermal field. Mineral assemblage and morphology of gold particles indicate its primary origin in contrast to the hydrothermal fields hosted in basalts, where gold is a product of remobilization. Zonal gold grains, found on oceanic floor for the first time, are characterized by low Ag content in the cores and high Ag content in the outer rims, reflecting variation in formation conditions.

  14. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted.

    PubMed

    Kasting, J F; Richardson, S M

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates. PMID:11539654

  15. Seafloor hydrothermal activity and spreading rates - The Eocene carbon dioxide greenhouse revisited

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Eocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  16. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  17. Hydrothermal Activity and its Chemical Characteristics in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Lilley, M. D.; Baker, E. T.; Lupton, J. E.; Embley, R. W.; Buck, N.; Walker, S. L.; Olson, E. J.; Dziak, R. P.; Baumberger, T.

    2010-12-01

    The NE Lau Basin is a magmatically robust area with an abundance of hydrothermal activity. We conducted exploratory research to the NE Lau Basin during three cruises to the area in November 2008, May 2009, and May 2010. We have found an unusual density of hydrothermal activity in the area bounded by the NE Lau Spreading Center (NELSC) and the Tongan Magmatic arc. Aside from the magmatic activity at the NELSC and the Tonga Arc, this area includes a area of crustal extension, where nine elongate volcanoes (The Matas) lie in a 25km arc extending into the Tonga trench with the summits from ˜1200m to ˜ 2700m depth and a large volcanic feature (Volcano “O”) which is characterized by a caldera >10km diameter with an emergent dome in its SE quadrant. Finally, the basin bounded by the Matas, the NELSC, and Volcano “O” contain many large lava flows with elevated acoustic backscatter suggesting a relatively young age. During the cruise in 2008, two ongoing eruptions were encountered in the region, one at the NELSC and another at W Mata volcano. These eruptions were later confirmed using the Jason II submersible in 2009. W Mata has been continuously erupting over the course of our observations. In addition to the eruption on the NELSC, hydrothermal activity was also observed at Maka and Tafu volcanoes, which are south and north of the eruptive area respectively. Observations of hydrothermal activity at two sites were made within the caldera at Volcano “O” and on the volcanic arc at two depths on Niua Volcano. The cruise in May 2010, revealed dense hydrothermal activity along the Mata chain where eight of the nine Mata volcanoes were hydrothermally active, including W Mata. Hydrothermal activity in this region is very sulfur rich as documented by large amounts of elemental sulfur at “O”, Niua, and seven of the Matas (elemental sulfur is inferred from light scatter and particulate matter color; analyses are pending), by acidic magmatic volatiles at”O” and

  18. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Resing, Joseph A.; Haymon, Rachel M.; Tunnicliffe, Verena; Lavelle, J. William; Martinez, Fernando; Ferrini, Vicki; Walker, Sharon L.; Nakamura, Koichi

    2016-09-01

    Decades of exploration for venting sites along spreading ridge crests have produced global datasets that yield estimated mean site spacings of ∼ 12- 220 km. This conclusion demands that sites where hydrothermal fluid leaks from the seafloor are improbably rare along the 66 000 km global ridge system, despite the high bulk permeability of ridge crest axes. However, to date, exploration methods have neither reliably detected plumes from isolated low-temperature, particle-poor, diffuse sources, nor differentiated individual, closely spaced (clustered within a few kilometers) sites of any kind. Here we describe a much lower mean discharge spacing of 3-20 km, revealed by towing real-time oxidation-reduction-potential and optical sensors continuously along four fast- and intermediate-rate (>55 mm/yr) spreading ridge sections totaling 1470 km length. This closer spacing reflects both discovery of isolated sites discharging particle-poor plumes (25% of all sites) and improved discrimination (at a spatial resolution of ∼1 km) among clustered discrete and diffuse sources. Consequently, the number of active vent sites on fast- and intermediate-rate spreading ridges may be at least a factor of 3-6 higher than now presumed. This increase provides new quantitative constraints for models of seafloor processes such as dispersal of fauna among seafloor and crustal chemosynthetic habitats, biogeochemical impacts of diffuse venting, and spatial patterns of hydrothermal discharge.

  19. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Resing, Joseph A.; Haymon, Rachel M.; Tunnicliffe, Verena; Lavelle, J. William; Martinez, Fernando; Ferrini, Vicki; Walker, Sharon L.; Nakamura, Koichi

    2016-09-01

    Decades of exploration for venting sites along spreading ridge crests have produced global datasets that yield estimated mean site spacings of ∼ 12- 220 km. This conclusion demands that sites where hydrothermal fluid leaks from the seafloor are improbably rare along the 66 000 km global ridge system, despite the high bulk permeability of ridge crest axes. However, to date, exploration methods have neither reliably detected plumes from isolated low-temperature, particle-poor, diffuse sources, nor differentiated individual, closely spaced (clustered within a few kilometers) sites of any kind. Here we describe a much lower mean discharge spacing of 3-20 km, revealed by towing real-time oxidation-reduction-potential and optical sensors continuously along four fast- and intermediate-rate (>55 mm/yr) spreading ridge sections totaling 1470 km length. This closer spacing reflects both discovery of isolated sites discharging particle-poor plumes (25% of all sites) and improved discrimination (at a spatial resolution of ∼1 km) among clustered discrete and diffuse sources. Consequently, the number of active vent sites on fast- and intermediate-rate spreading ridges may be at least a factor of 3-6 higher than now presumed. This increase provides new quantitative constraints for models of seafloor processes such as dispersal of fauna among seafloor and crustal chemosynthetic habitats, biogeochemical impacts of diffuse venting, and spatial patterns of hydrothermal discharge.

  20. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with

  1. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Mendoza, Guillermo F.; Konotchick, Talina; Lee, Raymond

    2009-09-01

    Hydrothermal fluids passing through sediments create a habitat hypothesized to influence the community structure of infaunal macrobenthos. Here we characterize the density, biomass, species composition, diversity, distributions, lifestyle, and nutritional sources of macroinfauna in hydrothermal sediments in NE and SW Pacific settings, and draw comparisons in search of faunal attributes characteristic of this habitat. There is increasing likelihood that seafloor massive sulfide deposits, associated with active and inactive hydrothermal venting, will be mined commercially. This creates a growing imperative for a more thorough understanding of the structure, dynamics, and resilience of the associated sediment faunas, and has stimulated the research presented here. Macrobenthic assemblages were studied at Manus Basin (1430-1634 m, Papua New Guinea [PNG]) as a function of location (South Su vs. Solwara 1), and hydrothermal activity (active vs. inactive), and at Middle Valley (2406-2411 m, near Juan de Fuca Ridge) as a function of habitat (active clam bed, microbial mat, hot mud, inactive background sediment). The studies conducted in PNG formed part of the environmental impact assessment work for the Solwara 1 Project of Nautilus Minerals Niugini Limited. We hypothesized that hydrothermally active sites should support (a) higher densities and biomass, (b) greater dominance and lower diversity, (c) a higher fraction of deposit feeders, and (d) greater isotopic evidence for chemosynthetic food sources than inactive sites. Manus Basin macrofauna generally had low density (<1000 ind. m -2) and low biomass (0.1-1.07 g m -2), except for the South Su active site, which had higher density (3494 ind. m -2) and biomass (11.94 g m -2), greater dominance (R1D=76%), lower diversity and more spatial (between-core) homogeneity than the Solwara 1 and South Su inactive sites. Dominant taxa at Manus Basin were Spionidae ( Prionospio sp.) in active sediments, and tanaids and deposit

  2. Warrego Valles and Other Candidate Sites of Local Hydrothermal Activity Within The Thaumasia Region, Mars

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Tanaka, K. L.; Lias, J. H.; Hare, T. M.; Anderson, R. C.; Gulick, V. C.

    1998-01-01

    We have previously demonstrated for the Thaumasia region of Mars that: (1) valley formation peaked during the Noachian and declined substantially during the Hesperian and Amazonian Periods and (2) valleys, many of which form networking systems, largely occur near volcanoes, highly faulted terrains, and large impact craters of similar age, thus suggesting hydrothermal activity. In Tanaka et al, the various hypotheses for valley formation on Mars are presented, and a geologic explanation for valley erosion in the Thaumasia region is given that "best fits" the region's geographic and geologic datasets. That comprehensive GIS-based investigation suggests that hydrothermal and seismic activity were the primary causes of valley formation in the Thaumasia region; the data make widespread precipitation less likely as a major factor in valley formation, except perhaps during the Early Noachian, for which much of the geologic record has been destroyed. Based on the reconstruction of the stratigraphic, tectonic, volcanic, and erosional histories and the close association of valleys in time and space with Noachian to Early Hesperian volcanoes and rift systems and Hesperian to Early Amazonian impact craters less than 50 km in diameter, we propose 13 sites of hydrothermal activity within the Thaumasia region; these are the best examples of valleys associated with these geologic features, but there are other less pronounced correlations elsewhere in the region.

  3. Microbial anaerobic methane cycling in the subseafloor at the Von Damm hydrothermal vent field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Reveillaud, J. C.; Stepanauskas, R.; McDermott, J. M.; Sylva, S. P.; Seewald, J.

    2013-12-01

    The Mid-Cayman Rise (MCR) is Earth's deepest and slowest spreading mid-ocean ridge located in the western Caribbean. With an axial rift valley floor at a depth of ~4200-6500 m, it represents one of the deepest sections of ridge crest worldwide. In 2009, the world's deepest hydrothermal vents (Piccard at 4960 m) and an ultramafic-influenced system only 20 km away on top of an oceanic core complex (Von Damm at 2350 m) were discovered along the MCR. Each site is hosted in a distinct geologic setting with different thermal and chemical regimes. The Von Damm site is a particularly interesting location to examine chemolithoautotrophic subseafloor microbial communities due to the abundant hydrogen, methane, and organic compounds in the venting fluids. Here, we used a combination of stable isotope tracing, next-generation sequencing, and single cell techniques to determine the identity, activity, and genomic repertoire of subseafloor anaerobic archaea involved in methane cycling in hydrothermal fluids venting at the Von Damm site. Molecular sequencing of phylogenetic marker genes revealed the presence of diverse archaea that both generate and consume methane across a geochemical and thermal spectrum of vents. Stable isotope tracing experiments were used to detect biological utilization of formate and dissolved inorganic carbon, and methane generation at 70 °C under anaerobic conditions. Results indicate that methanogenesis with formate as a substrate is occurring at 70 °C at two Von Damm sites, Ginger Castle and the Main Orifice. The results are consistent with thermodynamic predictions for carbon speciation at the temperatures encountered at the ultramafic-hosted Von Damm, where formate is predicted to be thermodynamically stable, and may thus serve as a an important source of carbon. Diverse thermophilic methanogenic archaea belonging to the genera Methanothermococcus were detected at all vent sites with both 16S rRNA tag sequencing and single cell sorting. Other

  4. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction

    SciTech Connect

    Butterfield, D.A.; McDuff, R.E.; Lilley, M.D. ); Massoth, G.J. ); Lupton, J.E. )

    1990-08-10

    Hydrothermal fluids collected from the ASHES vent field in 1986, 1987, and 1988 exhibit a very wide range of chemical composition over a small area ({approximately} 60 m in diameter). Compositions range from a 300C, gas-enriched (285 mmol/kg CO{sub 2}), low-chlorinity ({approximately} 33% of seawater) fluid to a 328C, relatively gas-depleted (50 mmol/kg CO{sub 2}), high-chlorinity ({approximately} 116% of seawater) fluid. The entire range of measured compositions at ASHES is best explained by a single hydrothermal fluid undergoing phase separation while rising through the ocean crust, followed by partial segregation of the vapor and brine phases. Other mechanisms proposed to produce chlorinity variations in hydrothermal fluids (precipitation/dissolution of a chloride-bearing mineral or crustal hydration) cannot produce the covariation of chlorinity and gas content observed at ASHES. There is good argument of the measured fluid compositions generated by a simple model of phase separation, in which gases are partitioned according to Henry's law and all salt remains in the liquid phase. Significant enrichments in silica, lithium and boron in the low-chlorinity fluids over levels predicted by the model are attributed to fluid-rock interaction in the upflow zone. Depletions in iron and calcium suggest that these elements have been removed by iron-sulfide and anhydrite precipitation at some time in the history of the low-chlorinity fluids. The distribution of low- and high-chlorinity venting is consistent with mechanisms of phase segregation based on differential buoyancy or relative permeability. The relatively shallow depth of the seafloor (1,540 m) and the observed chemistry of ASHES fluids are consistent with phase separation in the sub-critical or near-critical region.

  5. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy

  6. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean

    PubMed Central

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F.; McWilliams, James C.

    2016-01-01

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth. PMID:26929376

  7. Hydrothermally Processed Photosensitive Field-Effect Transistor Based on ZnO Nanorod Networks

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Bhargava, Kshitij; Dixit, Tejendra; Palani, I. A.; Singh, Vipul

    2016-07-01

    Formation of a stable, reproducible zinc oxide (ZnO) nanorod-network-based photosensitive field-effect transistor using a hydrothermal process at low temperature has been demonstrated. K2Cr2O7 additive was used to improve adhesion and facilitate growth of the ZnO nanorod network over the SiO2/Si substrate. Transistor characteristics obtained in the dark resemble those of the n-channel-mode field-effect transistor (FET). The devices showed I on/I off ratio above 8 × 102 under dark condition, field-effect mobility of 4.49 cm2 V-1 s-1, and threshold voltage of -12 V. Further, under ultraviolet (UV) illumination, the FET exhibited sensitivity of 2.7 × 102 in off-state (-10 V) versus 1.4 in on-state (+9.7 V) of operation. FETs based on such nanorod networks showed good photoresponse, which is attributed to the large surface area of the nanorod network. The growth temperature for ZnO nanorod networks was kept at 110°C, enabling a low-temperature, cost-effective, simple approach for high-performance ZnO-based FETs for large-scale production. The role of network interfaces in the FET performance is also discussed.

  8. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean.

    PubMed

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F; McWilliams, James C

    2016-03-15

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth. PMID:26929376

  9. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization.

    PubMed

    Mautner, M N; Leonard, R L; Deamer, D W

    1995-01-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350 degrees C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 x 10(-3) N m-1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120 degrees C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of microorganisms to metabolize extraterrestrial organics. PMID:11538427

  10. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization

    NASA Technical Reports Server (NTRS)

    Mautner, M. N.; Leonard, R. L.; Deamer, D. W.

    1995-01-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350 degrees C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 x 10(-3) N m-1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120 degrees C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of microorganisms to metabolize extraterrestrial organics.

  11. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.; Leonard, Robert L.; Deamer, David W.

    1995-02-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350°C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 × 10 -3 N m -1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120°C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of micro-organisms to metabolize extraterrestrial organics.

  12. The relationships between volcanism, tectonism and hydrothermal activity on the Mid-Atlantic Ridge south of the equator

    NASA Astrophysics Data System (ADS)

    Devey, C. W.; German, C. R.; Haase, K. M.; Lackschewitz, K. S.; Melchert, B.; Connelly, D.; Parson, L. M.

    2009-04-01

    Using data from the complete bathymetric and side-scan (TOBI) coverage of the Mid-Atlantic Ridge 2-14 °S collected since 2004 in conjunction with the results of extensive prospecting for hydrothermal systems in this area we attempt to formulate a general model for the interplay between volcanism, tectonics and hydrothermalism on a slow-spreading ridge. The model defines three basic types of ridge morphology with specific hydrothermal characteristics: (a) A deep, tectonically-dominated rift valley where hydrothermalism is seldom associated with volcanism and much more likely confined to long-lived bounding faults (b) a shallower, segment-centre bulge where a combination of repeated magmatic activity and tectonism results in repeated, possibly temporally overlapping periods of hydrothermal activity on the ridge axis and (c) a very shallow, inflated axis beneath which temperatures in all but the uppermost crust are so high that deformation is ductile, inhibiting the formation of high-porosity deep fractures and severely depressing hydrothermal circulation. This model is used together with predicted bathymetry to provide forecasts of the best places to look for hydrothermal sites in the remaining unexplored regions of the South Atlantic

  13. Morphology of cone-fields in SW Elysium Planitia - Traces of hydrothermal venting on Mars?

    NASA Astrophysics Data System (ADS)

    Lanz, J. K.; Saric, M. B.

    2008-09-01

    Introduction Small cone-shaped features with summit pits can be found in several regions on Mars; mainly in Isidis Planitia; Elysium Planitia; Amazonis Planitia; Acidalia Planitia; in the Cydonia Region; in Cerberus Planum; the Phlegra Montes and on several volcanic flanks. They vary greatly in size and morphology and have been compared to terrestrial features of various origins; namely (1) cinder cones (e.g. [1]), (2) tuff cones or tuff rings (e.g. [2]), (3) rootless cones (pseudocraters) (e.g. [3], [4]), (4) pingos (e.g. [5], [6]) and (5) mud volcanoes (e.g. [7]). They are often found near volcanic centers and large lava fields or cluster in regions where the volatile content of the Martian regolith was/is supposedly high. This has led to the assumption that (ground-) water or ground ice was a trigger or driving force of cone formation. They could therefore, be an important indicator of the history of water on the planet. We have studied an area in western Elysium Planitia, bordering the Aeolis Planum plateau, which exhibits a large number of pitted cones, ridges and dome-like structures. Their distribution and morphology differs strongly from pitted cones elsewhere in Elysium Planitia, which have mainly been interpreted as hydrovolcanic rootless cones, and from other regions on Mars. Based on our observations, we present an alternative model for cone formation in the study area that might hint towards hydrothermal processes in the Aeolis Planum region and possibly young igneous activity. Aeolis Planum Cones The Aeolis Planum pitted cones (referred to as APCs from now on) cluster along the southern edges of the broad shallow valley that borders the Aeolis Planum Formation (APF) to the north. Cones along the northern edges of the valley are rare and can only be found in association with APF remnants where they strongly resemble the cones in the south. Along the southern border the cone coverage is almost continuous, describing a narrow band approximately 2 to 3 km

  14. IODP Expedition 331: Strong and Expansive Subseafloor Hydrothermal Activities in the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Mottl, M. J.; Nielsen, S. H. H.; IODP Expedition 331 Scientists, the

    2012-04-01

    Integrated Ocean Drilling Program (IODP) Expedition 331 drilled into the Iheya North hydrothermal system in the middle Okinawa Trough in order to investigate active subseafloor microbial ecosystems and their physical and chemical settings. We drilled five sites during Expedition 331 using special guide bases at three holes for reentry, casing, and capping, including installation of a steel mesh platform with valve controls for postcruise sampling of fluids. At Site C0016, drilling at the base of the North Big Chimney (NBC) mound yielded low recovery, but core included the first Kuroko-type black ore ever recovered from the modern subseafloor. The other four sites yielded interbedded hemipelagic and strongly pumiceous volcaniclastic sediment, along with volcanogenic breccias that are variably hydrothermally altered and mineralized. At most sites, analyses of interstitial water and headspace gas yielded complex patterns with depth and lateral distance of only a few meters. Documented processes included formation of brines and vapor-rich fluids by phase separation and segregation, uptake of Mg and Na by alteration minerals in exchange for Ca, leaching of K at high temperature and uptake at low temperature, anhydrite precipitation, potential microbial oxidation of organic matter and anaerobic oxidation of methane utilizing sulfate, and methanogenesis. Shipboard analyses have found evidence for microbial activity in sediments within the upper 10-30 m below seafloor (mbsf) where temperatures were relatively low, but little evidence in the deeper hydrothermally altered zones and hydrothermal fluid regime. doi:10.2204/iodp.sd.13.03.2011

  15. A Paleoarchean coastal hydrothermal field inhabited by diverse microbial communities: the Strelley Pool Formation, Pilbara Craton, Western Australia.

    PubMed

    Sugitani, K; Mimura, K; Takeuchi, M; Yamaguchi, T; Suzuki, K; Senda, R; Asahara, Y; Wallis, S; Van Kranendonk, M J

    2015-11-01

    The 3.4-Ga Strelley Pool Formation (SPF) at the informally named 'Waterfall Locality' in the Goldsworthy greenstone belt of the Pilbara Craton, Western Australia, provides deeper insights into ancient, shallow subaqueous to possibly subaerial ecosystems. Outcrops at this locality contain a thin (<3 m) unit of carbonaceous and non-carbonaceous cherts and silicified sandstones that were deposited in a shallow-water coastal environment, with hydrothermal activities, consistent with the previous studies. Carbonaceous, sulfide-rich massive black cherts with coniform structures up to 3 cm high are characterized by diverse rare earth elements (REE) signatures including enrichment of light [light rare earth elements (LREE)] or middle rare earth elements and by enrichment of heavy metals represented by Zn. The massive black cherts were likely deposited by mixing of hydrothermal and non-hydrothermal fluids. Coniform structures in the cherts are characterized by diffuse laminae composed of sulfide particles, suggesting that unlike stromatolites, they were formed dominantly through physico-chemical processes related to hydrothermal activity. The cherts yield microfossils identical to previously described carbonaceous films, small and large spheres, and lenticular microfossils. In addition, new morphological types such as clusters composed of large carbonaceous spheroids (20-40 μm across each) with fluffy or foam-like envelope are identified. Finely laminated carbonaceous cherts are devoid of heavy metals and characterized by the enrichment of LREE. This chert locally contains conical to domal structures characterized by truncation of laminae and trapping of detrital grains and is interpreted as siliceous stromatolite formed by very early or contemporaneous silicification of biomats with the contribution of silica-rich hydrothermal fluids. Biological affinities of described microfossils and microbes constructing siliceous stromatolites are under investigation. However, this

  16. Mineralogy and Acid-Extractable Geochemistry from the Loki's Castle Hydrothermal Field, Norwegian Sea at 74 degrees N (South Knipovich Ridge)

    NASA Astrophysics Data System (ADS)

    Barriga, F. J.; Fonseca, R.; Dias, S.; Cruz, I.; Carvalho, C.; Relvas, J. M.; Pedersen, R.

    2010-12-01

    The Loki’s Castle hydrothermal vent field was discovered in the summer of 2008 during a cruise led by the Centre of Geobiology of the University of Bergen, integrated in the H2Deep Project (Eurocores, ESF; see Pedersen et al., 2010, AGU Fall Meeting, Session OS26). Fresh volcanic glasses analyzed by EPMA are basalts. The vent site is composed of several active, over 10 m tall chimneys, producing up to 320 C fluid, at the top of a very large sulfide mound (estimated diameter 200 m). Mineralogy: The main sulfide assemblage in chimneys consists of sphalerite (Sp), pyrite (Py) and pyrrhotite, with lesser chalcopyrite (Ccp). Sulphide-poor selected samples collected at the base of chimneys are mostly composed of anhydrite (Anh), gypsum and talc (Tlc). Association of quartz, anhydrite, gypsum and barite were also found in some of the samples. The sulphide-poor samples from the base of the chimneys denote seawater interaction with the hydrothermal fluid and consequent decrease in temperature, precipitating sulfates. Sphalerite compositions are Zn(0.61-0.70)Fe(0.39-0.30)S. The variations in Fe content are consistent with those of hot, reduced hydrothermal fluids. The observed sulfide assemblage is consistent with the temperature of 320C measured in Loki’s Castle vents. Compositional zonation in sphalerites suggests different pulses of activity of the hydrothermal system, with higher contents of Zn in the center of the crystals. Geochemistry: Here we report preliminary data part of a major analytical task of sequential extraction of metals from sediments in the vicinity of Loki’s Castle, in an attempt to detect correlations with microbial populations and/or subseafloor mineralized intervals. The abundances of Cu, Pb, Ni, Cr, Zn, Fe, Mn and Co in sediments were determined by aqua regia extraction on subsamples from 7 gravity cores. Several anomalous intervals were sampled, in which Cu<707ppm, Ni shows many weak peaks (<50ppm), Cr shows 6 peaks (<121ppm), Zn shows 4 well

  17. Intra-field variability in microbial community associated with phase-separation-controlled hydrothermal fluid chemistry in the Mariner field, the southern Lau Basin

    NASA Astrophysics Data System (ADS)

    Takai, K.; Ishibashi, J.; Lupton, J.; Ueno, Y.; Nunoura, T.; Hirayama, H.; Horikoshi, K.; Suzuki, R.; Hamasaki, H.; Suzuki, Y.

    2006-12-01

    A newly discovered hydrothermal field called the Mariner field at the northernmost central Valu Fa Ridge (VFR) in the Lau Basin was explored and characterized by geochemical and microbiological surveys. The hydrothermal fluid (max. 365 u^C) emitting from the most vigorous vent site (Snow chimney) was boiling just beneath the seafloor at a water depth of 1908 m and two end-members of hydrothermal fluid were identified. Mineral and fluid chemistry of typical brine-rich (Snow chimney and Monk chimney) and vapor-rich (Crab Restaurant chimney) hydrothermal fluids and the host chimney structures were analyzed. Microbial community structures in three chimney structures were also investigated by culture-dependent and - independent analyses. The 16S rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities at the chimney surface zones were different among three chimneys. The bacterial and archaeal rRNA gene communities of the Snow chimney surface were very similar with those in the dead chimneys, suggesting concurrence of metal sulfide deposition at the inside and weathering at the surface potentially due to its large structure and size. Cultivation analysis demonstrated the significant variation in culturability of various microbial components, particularly of thermophilic H2- and/or S-oxidizing chemolithoautotrophs such as the genera Aquifex and Persephonella, among the chimney sites. The culturability of these chemolithoautotrophs might be associated with the input of gaseous energy and carbon sources like H2S, H2 and CH4 from the hydrothermal fluids, and might be affected by phase-separation- controlled fluid chemistry. In addition, inter-fields comparison of microbial community structures determined by cultivation analysis revealed novel characteristics of the microbial communities in the Mariner field of the Lau Basin among the global deep-sea hydrothermal systems.

  18. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Martins, Inês; Romão, Célia V; Goulart, Joana; Cerqueira, Teresa; Santos, Ricardo S; Bettencourt, Raul

    2016-03-01

    Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism. PMID:26790096

  19. Chemical and biochemical transformations in hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Lilley, Marvin D.; Feely, Richard A.; Trefry, John H.

    Hydrothermal plumes integrate the heat and mass flux originating at seafloor hydrothermal vents thereby providing both a means of detecting hydrothermal activity and estimating hydrothermal fluxes. Many chemical species are introduced into the deep sea via hydrothermal plumes (Figure 1) in concentrations many orders of magnitude higher than that existing in background seawater (e.g. H2, CH4 3He, Mn, Fe) while others are scavenged from seawater by hydrothermal particles (e.g. PO4-3, V, As, rare earth elements, Th). Dilution by entrainment of background seawater in the buoyant portion of the plume is very rapid (see chapters by Lupton and McDuff, this volume) such that the hydrothermal component in the near-field portion of the neutrally buoyant plume represents only about 0.01% of the mixture. Nevertheless, chemical tracers such as 3He, CH4, and Mn are widely utilized in addition to temperature, salinity, and light transmission anomalies to detect hydrothermal venting and to draw inferences about the nature of the underlying geochemistry of the hydrothermal system. Many other chemical tracers can be utilized during plume studies to provide additional information about the nature of the venting. These include particles, H2, Al, and radioisotopes, among others.

  20. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs

  1. Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12°50′N core complex (Mid-Atlantic ridge): a new ultramafic-hosted seafloor hydrothermal deposit?

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Billstrom, Kjell; Kamenov, George D.; Shanks, Wayne C.; Stummeyer, Jens

    2011-01-01

    Dredging along the west wall of the core complex at 12°50′N Mid-Atlantic Ridge sampled a number of black oxyhydroxide crusts and breccias cemented by black and dark brown oxyhydroxide matrix. Black crusts found on top of basalt clasts (rubble) are mainly composed of Mn-oxides (birnessite, 10-Å manganates) with thin films of nontronite and X-ray amorphous FeOOH on their surfaces. Their chemical composition (low trace- and rare earth-element contents, high Li and Ag concentrations, rare earth element distribution patterns with negative both Ce and Eu anomalies), Sr–Nd–Pb-isotope systematic and O-isotope data suggest low-temperature (~ 20 °C) hydrothermal deposition from a diffuse vent area on the seafloor. Mineralogical, petrographic and geochemical investigations of the breccias showed the rock clasts were hydrothermally altered fragments of MORBs. Despite the substantial mineralogical changes caused by the alteration the Sr–Nd–Pb-isotope ratios have not been significantly affected by this process. The basalt clasts are cemented by dark brown and black matrix. Dark brown cement exhibits geochemical features (very low trace- and rare earth- element contents, high U concentration, rare earth element distribution pattern with high positive Eu anomaly) and Nd–Pb-isotope systematics (similar to that of MORB) suggesting that the precursor was a primary, high-temperature Fe-sulfide, which was eventually altered to goethite at ambient seawater conditions. The data presented in this work points towards the possible existence of high- and low-temperature hydrothermal activity at the west wall of the core complex at 12°50′N Mid-Atlantic Ridge. Tectonic setting at the site implies that the proposed hydrothermal field is possibly ultramafic-hosted.

  2. Hydrothermal activity in the Lau back arc basin: Plumes and hot fluids chemistry

    SciTech Connect

    Charlou, J.L.; Donval, J.P.; Caprais, M.P.; Fouquet, Y. ); Erzinger, J. ); Von Stackelberg, U. )

    1990-06-01

    During the French-German cruise Nautile(April-May 1989), 22 dives have been completed to understand the processes of seafloor arc formation associated with hydrothermal circulation along the volcanic Valu FA ridge. The CTD recordings, obtained in real time inside the Nautile, show the narrow relation between the geological structure and the temperature anomalies. The anomalies' amplitude and intensity permit the precise localization of hot hydrothermal discharges (Vai Lili site), diffuse (Hine Hina field) and nonperceptible inputs. Buoyant plumes producing entrainment and vertical transport up to 200 m above the seafloor are clearly identified with high CH{sub 4} (up to 4.4 {mu}l/L) and Mn (up to 90 {mu}mol/Kg) concentrations. For the first time, black smokers (240{degree} to 334{degree}C) were collected in a back arc environment. The samples (more than 90% pure hydrothermal fluid) have end member pH (1.8), among the lowest ever measured in oceanic hydrothermal fluids. The calculated end-member concentrations are enriched for Cl(0.65-0.75 mol/kg), Na (0.52-0.58 mol/Kg), Ca (30 mmol/Kg), K (55-67 mmol/Kg), Sr (123 {mu}mol/Kg), Rb (72-92 {mu}mol/kg), Li (690 {mu}mol/Kg). Compared with other hydrothermal waters, Si is slightly depleted (12-14 mmol/Kg), Fe (1.12.5 mmol/Kg), Mn (5.8-6.9 mmol/Kg), Cu (16-43 {mu}mol/Kg), Zn (1.2- 3 mmol/Kg) concentrations are high. The Vai Lili site fluid concentrations in B (twice seawater), Ba (up to 40 {mu}mol/Kg), Zn (up to 3 mmol/Kg), Pb (up to 7 {mu}mol/kg). As (up to 11 {mu}mol/Kg) as well as the molar Cs/Rb and Fe/Mn ratios of respectively 0.024 and 0.2 are unexpected.

  3. Extensive and Diverse Submarine Volcanism and Hydrothermal Activity in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Merle, S. G.; Lupton, J. E.; Resing, J.; Baker, E. T.; Lilley, M. D.; Arculus, R. J.; Crowhurst, P. V.

    2009-12-01

    The northeast Lau basin, the NE “corner” of the Tonga subduction zone, has an unusual concentration of young submarine volcanism and hydrothermal activity. The area is bounded on the west by overlapping spreading centers opening at rates up to 120 mm/yr, on the north by the E-W trending Tonga trench and on the east by the Tofua arc front. From the south, the Fonualei rift spreading center (FRSC) overlaps with the southern rift of The Mangatolo triple junction spreading center (MTJSC). The northern arm of the MTJSC overlaps with the northeast Lau spreading center (NELSC). Surveys of the area with an EM300 sonar system in November 2008 show high backscatter over the 10-20 km wide neovolcanic zones of the FRSC, MTJSC and NELSC. High backscatter is also associated with: (1) a 10-km diameter, hydrothermally active, volcanic caldera/cone (Volcano “O”) lying between the NELSC and the northern Tofua arc front; (2) a rift zone extending north from volcano “O” and intersecting the NELSC near the Tonga trench; and (3) a series of volcanoes constructed along SW-NE trending crustal tears in the northernmost backarc near the east-west portion of the Tonga Trench. Two eruptions were detected in November 2008 during hydrothermal plume surveys of the area. Subsequent dives with the remotely operated vehicle Jason 2 in May 2009 revealed that the southern NELSC eruption was a short-lived, primarily effusive eruption. The second eruption was detected on the summit of the largest SW-NE trending volcano (West Mata) and was ongoing when Jason 2 arrived on site more than 6 months later. It was producing both pillow lavas and abundant volcaniclastic debris streams that have a characteristic appearance on the sonar backscatter map. There is also an unusual series of lava flows emanating from ridges and scarps between Volcano “O” and West Mata. These flows contain drained-out lava ponds up to 2 km in diameter. The apparent high level of volcanic activity in the NE Lau basin

  4. Stable isotope fractionation at a glacial hydrothermal field: implications for biogeochemistry and biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Cousins, C.; Bowden, R.; Fogel, M.; Cockell, C.; Crawford, I.; Gunn, M.; Karlsson, M. T.; Thorsteinsson, T.

    2012-12-01

    Hydrothermal environments that arise through the interaction between volcanogenic heat and glacial ice are ideal sites for understanding microbial biogeochemical processes on Earth, and also potentially on Mars where similar volcano-cryosphere interactions are thought to have occurred in the past. The Kverkfjöll subglacial basaltic volcano in central Iceland is geographically isolated, with little influence from flora, fauna, and human activity. Major environmental inputs include geothermal heat, meltwater from ice and snow, and outgassing of CO2, H2S, and SO2. Large physiochemical gradients exist, from steaming fumaroles and boiling hydrothermal pools, to frozen geothermal ground and glacial ice. Stable isotope measurements of total organic carbon, total sulphur, and total nitrogen were coupled with metagenomic analysis of the residing microbial communities, with the aim to identify biogeochemical relationships and processes operating within the Kverkfjöll geothermal environment, and also to identify any isotopic biosignatures that could be preserved within geothermal sediments. This study focused on a variety of samples taken along a hot spring stream that fed into a large ice-confined geothermal lake. Samples analysed range from unconsolidated hot spring sediments, well-developed microbial mats, and dissolved sulphate from hot spring fluids. From the anoxic spring source, the stream water increases in dissolved oxygen, decreases in temperature, yet maintains a pH of ~4. The spring environment is dominated by dissolved sulphate (~2.3 mM), with lower levels of nitrate (~50 μM), phosphorus (~5μM), and ammonium (~1.5 μM). Stable S isotope analysis reveals a fractionation of ~3.2 ‰ between sediment sulphide (as pyrite; δ34S ~0‰), and dissolved water sulphate (δ34S ~3.2 ‰) consistently along the hot spring stream, indicating the presence of an active sulphur cycle, although not one dominated by sulphate reduction (e.g. very negative sulphide δ34S). This

  5. Temporal and spatial variation in temperature experienced by macrofauna at Main Endeavour hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Lee, Raymond W.; Robert, Katleen; Matabos, Marjolaine; Bates, Amanda E.; Juniper, S. Kim

    2015-12-01

    A significant focus of hydrothermal vent ecological studies has been to understand how species cope with various stressors through physiological tolerance and biochemical resistance. Yet, the environmental conditions experienced by vent species have not been well characterized. This objective requires continuous observations over time intervals that can capture environmental variability at scales that are relevant to animals. We used autonomous temperature logger arrays (four roughly parallel linear arrays of 12 loggers spaced every 10-12 cm) to study spatial and temporal variations in the thermal regime experienced by hydrothermal vent macrofauna at a diffuse flow vent. Hourly temperatures were recorded over eight months from 2010 to 2011 at Grotto vent in the Main Endeavour vent field on the Juan de Fuca Ridge, a focus area of the Ocean Networks Canada cabled observatory. The conspicuous animal assemblages in video footage contained Ridgeia piscesae tubeworms, gastropods (primarily Lepetodrilus fucensis), and polychaetes (polynoid scaleworms and the palm worm Paralvinella palmiformis). Two dimensional spatial gradients in temperature were generally stable over the deployment period. The average temperature recorded by all arrays, and in some individual loggers, revealed distinctive fluctuations in temperature that often corresponded with the tidal cycle. We postulate that this may be related to changes in bottom currents or fluctuations in vent discharge. A marked transient temperature increase lasting over a period of days was observed in April 2011. While the distributions and behavior of Juan de Fuca Ridge vent invertebrates may be partially constrained by environmental temperature and temperature tolerance, except for the one transient high-temperature event, observed fluid temperatures were generally similar to the thermal preferences for some species, and typically well below lethal temperatures for all species. Average temperatures of the four arrays

  6. Microwave hydrothermal synthesis of AgInS{sub 2} with visible light photocatalytic activity

    SciTech Connect

    Zhang, Wenjuan; Li, Danzhen; Chen, Zhixin; Sun, Meng; Li, Wenjuan; Lin, Qiang; Fu, Xianzhi

    2011-07-15

    Highlights: {yields} AgInS{sub 2} nanoparticles were synthesized by a microwave hydrothermal method. {yields} This method involves no organic solvents, catalysts, or surfactants. {yields} AgInS{sub 2} showed higher activity for photocatalytic degradation MO than TiO{sub 2-x}N{sub x}. {yields} Holes, O{sub 2}{center_dot}{sup -}, and H{sub 2}O{sub 2} played an important role in the photocatalytic process. -- Abstract: AgInS{sub 2} nanoparticles with superior visible light photocatalytic activity were successfully synthesized by a microwave hydrothermal method. This method is a highly efficient and rapid route that involves no organic solvents, catalysts, or surfactants. The photocatalytic activity of AgInS{sub 2} nanoparticles was investigated through the degradation of dyes under visible light irradiation. Compared with TiO{sub 2-x}N{sub x}, AgInS{sub 2} has exhibited a superior activity for photocatalytic degradation MO under the same condition. The experiment results showed that superoxide radicals (O{sub 2}{center_dot}{sup -}), hydrogen peroxides (H{sub 2}O{sub 2}) and holes (h{sup +}) were the mainly active species for the degradation of organic pollutants over AgInS{sub 2}. Through the determination of flat band potential, the energy band structure of the sample was obtained. A possible mechanism for the degradation of organic pollutant over AgInS{sub 2} was proposed.

  7. Characteristics and source of inorganic and organic compounds in the sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Li, Jiwei; Zhou, Huaiyang; Wu, Zijun; Li, Jiangtao; Chen, Shun; Yao, Huiqiang

    2011-05-01

    A combined inorganic and organic geochemical study was carried out on sediments collected from the Kairei hydrothermal field on the Central Indian Ridge (CIR) and the Logatchev hydrothermal field on the Mid Atlantic Ridge (MAR). Analysis of the major and trace elements as well as the minerals shows that the Kairei hydrothermal sediments are formed by the mixing of silica-rich hydrothermal fluids with Mg-rich seawaters, but the Logatchev sediments are associated with pelagic carbonate oozes containing some precipitates derived from hydrothermal plume fall-out. The rare earth element (REE) patterns of Kairei sediments show a character of light REE (LREE) enrichment and positive Eu anomaly, whereas two of the three Logatchev sediment samples lack positive Eu anomaly and have negative Ce anomaly. Patterns of aliphatic hydrocarbon fractions in the sediments from both hydrothermal fields exhibit high relative concentrations of volatile resolved components, smooth n-alkane distributions and high concentrations of the isoprenoids pristane and phytane. The composition of organic matter and C isotope composition of individual n-alkanes indicate that they come from marine photosynthetic autotrophs and hydrothermal organisms, as well as terrestrial inputs in the Kairei and the Logatchev hydrothermal fields. Several parameters of organic geochemistry, used for assessing the maturity of bitumen, are well correlated with one another. In general, these parameters indicate that the Kairei sediments are more mature than the Logatchev sediments. The relationship between the inorganic parameters (REE/Fe and Eu/Eu ∗) and the organic parameter (bitumen maturity) might reflect changes of the hydrothermal influence on the sediments. The results of this study provide an insight into the variation of inorganic and organic geochemistry in deep-sea hydrothermal systems.

  8. On the interpretation of gravity variations in the presence of active hydrothermal systems: Insights from the Nisyros Caldera, Greece

    NASA Astrophysics Data System (ADS)

    Gottsmann, J.; Rymer, H.; Wooller, L. K.

    2005-12-01

    We report on short-term (over tens of minutes) residual gravity changes recorded at the restless Nisyros caldera in Greece via a series of discrete measurements at benchmarks within or in proximity to a hydrothermal area located along the caldera floor. The obtained time series reveal sinusoidal gravity variations with amplitudes of up to 25 μGal and wavelengths of 40-50 min. Degassing of a magmatic source coupling into (shallow) hydrothermal systems including the ascent of steam pockets and transient pressure variations during steam/liquid interface propagation appear to be the most likely causative process for the observed short-term variations. We assess standard protocols of microgravity surveys for hazard assessment in volcanic areas in the light of these findings and propose additional techniques, such as continuous gravimetry, for the discrimination of hydrothermal signals from deeper-seated, i.e. magmatic, signals during gravity monitoring of restless volcanoes hosting active hydrothermal systems.

  9. Tide-related variability of TAG hydrothermal activity observed by deep-sea monitoring system and OBSH

    NASA Astrophysics Data System (ADS)

    Fujioka, Kantaro; Kobayashi, Kazuo; Kato, Kazuhiro; Aoki, Misumi; Mitsuzawa, Kyohiko; Kinoshita, Masataka; Nishizawa, Azusa

    1997-12-01

    Hydrothermal activities were monitored by an ocean bottom seismometer with hydrophone (OBSH) and a composite measuring system (Manatee) including CTD, current meter, transmission meter and cameras at a small depression on the TAG hydrothermal mound in the Mid-Atlantic Ridge. Low-frequency pressure pulses detected by the hydrophone with semi-diurnal periodicity seem to correspond to cycles of hydrothermal upflow from a small and short-lived smoker vent close to the observing site. The peaks of pressure pulses are synchronous with the maximum gradient of areal strain decrease due to tidal load release. Microearthquakes with very near epicenters occur sporadically and do not appear to be directly correlatable to hydrothermal venting. Temporal variations in bottom water temperature also have semi-diurnal periodicity but are more complicated than the pressure events. Temperatures may be affected both by upwelling of hot water and by lateral flow of the bottom current changing its directions with ocean tide.

  10. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    NASA Astrophysics Data System (ADS)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  11. On the Interaction of a Vigorous Hydrothermal System with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.

    2009-12-01

    The extent of the interaction between hydrothermal systems and active magma chambers has long been of fundamental interest to the development of ore deposits, cooling of magma chambers, and dehydration of the subducting lithosphere. As volatiles build up in the residual magma in the trailing edge of magmatic solidification fronts, is it possible that volatiles are transferred from the active magma to the hydrothermal system and vice versa? Does the external fracture front associated with vigorous hydrothermal systems sometimes propagate into the solidification front, facilitating volatile exchange? Or is the magma always sealed at temperatures above some critical level related to rock strength and overpressure? The degree of hydrothermal interaction in igneous systems is generally gauged in post mortem studies of δ18O and δD, where it has been assumed that a fracture front develops about the magma collapsing inward with cooling. H.P. Taylor and D. Norton's (1979; J. Petrol.)seminal work inferred that rocks are sealed with approach to the solidus and there is little to no direct interaction with external volatiles in the active magma. In active lava lakes a fracture front develops in response to thermal contraction of the newly formed rock once the temperature drops to ~950°C (Peck and Kinoshita,1976;USGS PP935A); rainfall driven hydrothermal systems flash to steam near the 100 °C isotherm in the solidified lake and have little effect on the cooling history (Peck et al., 1977; AJS). Lava lakes are fully degassed magmas and until the recent discovery of the Puna Magma Chamber (Teplow et al., 2008; AGU) no active magma was known at sufficiently great pressure to contain original volatiles. During the course of routine drilling of an injection well at the Puna Geothermal Venture (PGV) well-field, Big Island, Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m, continued drilling to 2488 m encountered a melt

  12. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  13. Brevirhabdus pacifica gen. nov., sp. nov., isolated from deep-sea sediment in a hydrothermal vent field.

    PubMed

    Wu, Yue-Hong; Xu, Lin; Zhou, Peng; Wang, Chun-Sheng; Oren, Aharon; Xu, Xue-Wei

    2015-10-01

    A Gram-stain-negative, motile, aerobic bacterial strain, designated 22DY15T, was isolated from a deep-sea sediment sample collected from a hydrothermal vent field located in the East Pacific Rise. The isolate was a short rod with a single flagellum and was positive for catalase and oxidase activities. Q-10 was the predominant respiratory quinone. The major polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphoglycolipid, one aminolipid and three unidentified phospholipids. The principal fatty acid (>70 %) was C18 : 1ω7c. The genomic DNA G+C content was 64.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22DY15T represents a distinct lineage within the family Rhodobacteraceae. The closest relatives were species of the genera Aliiroseovarius (93.3–96.0 % 16S rRNA gene sequence similarity), Sulfitobacter (94.0–96.0 %) and Loktanella (92.0–95.9 %). Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain 22DY15T could be differentiated from its most closely related genera. Therefore, it is proposed that strain 22DY15T represents a novel species in a new genus of the family Rhodobacteraceae, for which the name Brevirhabdus pacifica gen. nov., sp. nov. is proposed. The type strain of the type species is 22DY15T ( = JCM 19489T = DSM 27767T = CGMCC 1.12416T = MCCC 1K00276T). PMID:26198580

  14. Microbial Diversity of Carbonate Chimneys at the Lost City Hydrothermal Field: Implications for Life-Sustaining Systems in Peridotite Seafloor Environments

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Cimino, P.; Kelley, D. S.; Baross, J. A.

    2002-12-01

    The Lost City Hydrothermal Field (LCHF) is a novel peridotite-hosted vent environment discovered in Dec. 2000 at 30 N near the Mid-Atlantic Ridge. This field contains multiple large (up to 60 m), carbonate chimneys venting high pH (9-10), moderate temperature (45-75 C) fluids. The LCHF is unusual in that it is located on 1.5 my-old oceanic crust, 15 km from the nearest spreading axis. Hydrothermal flow in this system is believed to be driven by exothermic serpentinization reactions involving iron-bearing minerals in the underlying seafloor. The conditions created by such reactions, which include significant quantities of dissolved methane and hydrogen, create habitats for microbial communities specifically adapted to this unusual vent environment. Ultramafic, reducing hydrothermal environments like the LCHF may be analogous to geologic settings present on the early Earth, which have been suggested to be important for the emergence of life. Additionally, the existence of hydrothermal environments far away from an active spreading center expands the range of potential life-supporting environments elsewhere in the solar system. To study the abundance and diversity of microbial communities inhabiting the environments that characterize the LCHF, carbonate chimney samples were analyzed by microscopic and molecular methods. Cell densities of between 105 and 107 cells/g were observed within various samples collected from the chimneys. Interestingly, 4-11% of the microbial population in direct contact with vent fluids fluoresced with Flavin-420, a key coenzyme involved in methanogenesis. Enrichment culturing from chimney material under aerobic and anaerobic conditions yielded microorganisms in the thermophilic and mesophilic temperature regimes in media designed for methanogenesis, methane-oxidation, and heterotrophy. PCR analysis of chimney material indicated the presence of both Archaea and Eubacteria in the carbonate samples. SSU rDNA clone libraries constructed from the

  15. Hydrothermal activity and subsurface soil complexity: implication for outgassing processes at Solfatara crater, Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Mayer, Klaus; Scheu, Bettina; Isaia, Roberto; Mangiacapra, Annarita; Gresse, Marceau; Vandemeulebrouck, Jean; Moretti, Roberto; Dingwell, Donald B.

    2016-04-01

    The Solfatara area and its fumaroles are the main surface phenomena of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. The existing fault system appears to have a major control on outgassing which in turn leads to a strong alteration of the volcanic products. Moreover the maar-nature of the crater, and its filling by more recent volcanic deposits, resulted in a complex fractured and multilayered cap to the rising gases. As a consequence the hydrothermal alteration differently affects the rocks within the crater, including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias and lavas. The induced changes in both original microstructure and physical and mechanical properties of the rocks control the outgassing behavior. Here, we report results from a measurement survey conducted in July 2015, and aimed to characterize the in-situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties. The survey also included a mapping of the surficial hydrothermal features and their distributions. Chemical analyses and laboratory measurements (porosity, granulometry) of selected samples were additionally performed. Results show that the crater floor area comprises very different kinds of soils, from fine grained, thin laminated deposits around the two bubbling Fangaia mud pools, to crusted hummock formations along the SE and NE border of the crater. Dry and solid alunite-rich deposits are present in the western and southern part. Furthermore we observed evidences of a beginning of crust formation within the central part of the crater. A large range of surface temperatures, from boiling point to ambient temperature, were measured throughout the surveyed area. Outgassing occurs mainly along the crack system, which has also generated the crusted hummocks. Elsewhere the fluid circulation in the subsoil is favored by the presence of coarse and highly porous sulfur-hardened levels, whereas

  16. Estimating the Heat and Mass Flux at the ASHES Hydrothermal Vent Field with the Sentry Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Kinsey, J. C.; Crone, T. J.; Mittelstaedt, E. L.; Medagoda, L.; Fourie, D.; Nakamura, K.

    2014-12-01

    Hydrothermal venting influences ocean chemistry, the thermal and chemical structure of the oceanic crust, the style of accretion at mid-ocean ridges, and the evolution of unique and diverse chemosynthetic ecosystems. Surprisingly, only a few studies have attempted to constrain the volume and heat flux of entire hydrothermal vent fields given that axially-hosted hydrothermal systems are estimated to be responsible for ~20-25% of the total heat flux out of the Earth's interior, as well as potentially playing a large role in global and local biogeochemical cycles. However, same-site estimates can vary greatly, such as at the Lucky Strike Field where estimates range from 100 MW to 3800 MW. We report a July 2014 field program with the Sentry AUV that obtains the water velocity and heat measurements necessary to estimate the total heat and mass flux emanating from the ASHES hydrothermal vent field. We equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV) with an inertial measurement unit attached, two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, to measure the temperature and water velocity. This sensing suite provided more accurate measurements than previous AUV based studies. A control volume approach was employed in which Sentry was pre-programmed to survey a 150m by 150m box centered over the vent field flying a "mowing the lawn" pattern at 5m trackline spacing followed by a survey of the perimeter. During a 40 hour survey, the pattern was repeated 9 times allowing us to obtain observations over multiple tidal cycles. Concurrent lowered ADCP (LADCP) measurements were also obtained. Water velocity data obtained with Sentry was corrected for platform motion and then combined with the temperature measurements to estimate heat flux. Analysis of this data is on-going, however these experiments permit us to quantify the heat and mass exiting the control volume, and potentially provide the most accurate and highest resolution heat

  17. Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method

    NASA Astrophysics Data System (ADS)

    Xing, Weinan; Ni, Liang; Huo, Pengwei; Lu, Ziyang; Liu, Xinlin; Luo, Yingying; Yan, Yongsheng

    2012-10-01

    A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.

  18. Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies

    USGS Publications Warehouse

    Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.

    2008-01-01

    controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite-smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite-smectite are hydrothermal alteration products of the background turbiditic sediment. ?? 2007 Elsevier B.V. All rights reserved.

  19. Microearthquakes beneath the Hydrothermal Vent Fields on the Endeavour Segment of the Juan de Fuca Ridge: Results from the Keck Seismic/Hydrothermal Observatory

    NASA Astrophysics Data System (ADS)

    Bowman, D.; Parker, J.; Wilcock, W.; Hooft, E.; Barclay, A.; Toomey, D.; McGill, P.; Stakes, D.; Schmidt, C.; Patel, H.

    2005-12-01

    The W.M. Keck Foundation is supporting the operation of a small seismic network in the vicinity of the hydrothermal vent fields on the central portion of the Endeavour Segment of the Juan de Fuca Ridge. This is part of a program to conduct prototype seafloor observatory experiments to monitor the relationships between episodic deformation, fluid venting and microbial productivity at oceanic plate boundaries. The Endeavour seismic network was installed in the summer of 2003 and comprises seven GEOSense three-component short-period corehole seismometers and one buried Guralp CMG-1T broadband seismometer. A preliminary analysis of the first year of data was undertaken as part of an undergraduate research apprenticeship class taught at the University of Washington's Friday Harbor Laboratories and additional analysis has since been completed by two of the apprentices and by two IRIS undergraduate interns. Over 12,000 earthquakes were located along the ridge-axis of the Endeavour, of which ~3,000 occur within or near the network and appear to be associated with the hydrothermal systems. The levels of seismicity are strongly correlated with the intensity of venting with particularly high rates of seismicity beneath the Main and High Rise Fields and substantially lower rates to the north beneath the relatively inactive Salty Dawg and Sasquatch fields. We have used both HYPOINVERSE and a grid search algorithm to investigate the distribution of focal depths assuming a variety of one-dimensional velocity models. The preliminary results show that the majority of earthquakes occur within a narrow depth range and may represent an intense zone of seismicity within a reaction overlying the axial magma chamber at ~2.5 km depth. However, the mean focal depth is strongly dependent on the relative weights assigned to the S arrivals. We infer from the inspection of residuals that no combination of the P- and S-wave velocity models we have so far investigated are fully consistent with

  20. Enhanced hydrothermal activity along the East Pacific Rise during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.

    2015-12-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Scaling estimates [1-2] and model results [3-4] indicate that glacial-interglacial changes in sea level should modulate melt production at mid-ocean ridges, an idea that has been confirmed with detailed surveys of ridge bathymetry [4-5]. The nature and timing of associated changes in hydrothermal activity have remained unknown, however, precluding a clear understanding of whether ridge magmatism can act as a negative feedback on ice sheet size. Here we present multiple records of hydrothermal sedimentation spanning 1300 km of the East Pacific Rise (EPR). At each location, the flux of Fe, Mn, and As increased beginning at ~25 kyr BP, reached maximum values by 15 kyr BP, and then decreased into the Holocene. Lateral sediment focusing is an unlikely explanation given the similar signal in multiple cores and the lack of evidence for anomalous horizontal transport in 3He-based focusing factors. Coherent variations in Fe, Mn, and As suggest that diagenetic overprinting is not the primary driver of the down core signal. Elevated metal fluxes also occur during Termination II. The time series of hydrothermal sedimentation bear a strong resemblance to a record of seafloor bathymetry from 17ºS [5], suggesting that both have a common driver. The simplest explanation is glacial-interglacial variations in sea level, which apparently modulates sub-ridge melting, seafloor bathymetry, and hydrothermal activity at the EPR. Our results imply that geothermal heat flux from ridges increases during the last two glacial terminations, which should act to erode the deep ocean stratification, enhance the abyssal circulation, and transmit excess heat to the Southern Ocean, thereby setting the stage for deglaciation. [1] Lund and Asimow (2008) AGU Fall Meeting, Abstract #PP11D-08. [2] Huybers and Langmuir (2009) Earth and Planetary Science Letters 286, 479-491. [3] Lund and Asimow (2011

  1. Carbon Species in Serpentinites and Gabbros Underlying the Lost City Hydrothermal Field, Southern Atlantis Massif (30°N, MAR)

    NASA Astrophysics Data System (ADS)

    Delacour, A.; Schaeffer, P.; Bernasconi, S. M.; Frueh-Green, G. L.

    2006-12-01

    Serpentinization of oceanic peridotites results in the production of volatile-rich (methane and hydrogen) fluids and other light hydrocarbons, and is characteristic of the low-temperature (<90°C) fluids actively venting at the Lost City Hydrothermal Field (LCHF; 30°N near the MAR). Carbon contents and carbon isotope compositions have been measured from serpentinized peridotites and gabbros in the basement of the LCHF with the goal to better understand carbon sources and carbon cycling during serpentinization and hydrothermal venting. The serpentinites have total carbon contents (TC) of 60 to 820 ppm, and up to 1.7 wt% in samples containing carbonate veins. C-isotope compositions of the TC range from -24.9 to +2.3‰, whereby positive δ13C values are correlated with serpentinites with carbonate veins and indicate a marine carbon input. The non-carbonate carbon content (TOC: total organic carbon and graphite residual after HCl dissolution) of the serpentinites is from 55 to 280 ppm, with δ13CTOC ranging from -29.5 to -21.5‰. The gabbros show a wider range of TC and δ13CTC, but have δ13CTOC in the same range as the serpentinites. The TOC isotopic compositions may reflect hydrocarbon production during serpentinization or the presence of organic compounds within the samples. To constrain the origin further, organic compounds were extracted from selected serpentinites. The saturated hydrocarbon fractions show a predominance of n-alkanes and an unresolved complex mixture. Long chain n- alkanes show no odd over even carbon number predominance, indicating no contamination by higher plants waxes from recent material. Although n-alkanes can be biogenic or be produced abiotically by Fischer Tropsch-type reactions, the occurrence of the isoprenoids norpristane, pristane, phytane and squalane clearly indicate a biogenic origin, possibly incorporated into the serpentinites during fluid-rock interaction. Compound- specific C-isotope analyses show relatively constant

  2. Dynamics of the Yellowstone hydrothermal system

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-09-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  3. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  4. Variability in microbial community composition between geochemically distinct hydrothermal features at El Tatio geyser field

    NASA Astrophysics Data System (ADS)

    Franks, M. A.; Bennett, P.

    2010-12-01

    The distinctive geochemistry of the hydrothermal waters at El Tatio Geyser Field (ETGF), which includes the highest reported naturally occurring concentrations of arsenic, is a unique environment where diverse microbial mat communities inhabit many of its features. As(III) in fact is the most abundant bioavailable electron donor at ETGF and could represent an energy source for chemolithoautotrophic microorganisms. Found at concentrations of ~0.5 mM, As levels exceed the concentrations often used in microbial toxicity experiments, which suggests that novel, As-resistant taxa might be found here. This study examines four sites at ETGF, each with distinct physical and geochemical constraints. Two low temperature (~30°C) and two high temperature (~65°C) sites were included, and the geochemical variables include salinity, As and Sb concentrations, As speciation, dissolved inorganic carbon concentration, and dissolved hydrogen concentration. The microbial community at each site was determined using a combination of shotgun cloning and pyrosequencing to determine the archaeal and bacterial taxa present. Relationships between microbial community composition and water chemistry variables were tested using Unifrac to determine if any statistically significant correlations were present. Two analyses were completed; in the first, community composition was defined in terms of populations of metabolic guilds (particularly methanogenic Archaea), and in the second, phylogenetic affiliation was used. Results show that bacterial diversity exceeds archaeal diversity at each of the four sites tested, and that methanogens dominate the Archaea found at each site except one, which was mostly comprised of Crenarchaea. While each site tested had a unique microbial community composition, construction of a maximum likelihood phylogenetic tree shows ETGF sequences group together, despite differences in water chemistry. Additionally, both tree construction and BLAST results indicate the

  5. Pontibacter amylolyticus sp. nov., isolated from a deep-sea sediment hydrothermal vent field.

    PubMed

    Wu, Yue-Hong; Zhou, Peng; Jian, Shu-Ling; Liu, Zhen-Sheng; Wang, Chun-Sheng; Oren, Aharon; Xu, Xue-Wei

    2016-04-01

    A Gram-stain-negative, short rod-shaped bacterium, designated 9-2T, was isolated from a sediment sample collected from a hydrothermal vent field on the south-west Indian Ridge. It formed red colonies, produced carotenoid-like pigments and did not produce bacteriochlorophyll a. Strain 9-2T was positive for hydrolysis of DNA, gelatin and starch, but negative for hydrolysis of aesculin and Tween 60. The sole respiratory quinone was menaquinone-7 (MK-7). The main polar lipids consisted of phosphatidylethanolamine, one unidentified phospholipid and two unidentified polar lipids. The principal fatty acids (>5%) were summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B), iso-C15:0 and iso-C17:0 3-OH. The genomic DNA G+C content was 49.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 9-2T should be assigned to the genus Pontibacter. Levels of 16S rRNA gene sequence similarity between the new isolate and the type strains of Pontibacter species with validly published names were in the range 94.0-96.5%. On the basis of phenotypic and genotypic data, strain 9-2T represents a novel species of the genus Pontibacter, for which the name Pontibacter amylolyticus sp. nov. is proposed. The type strain is 9-2T (=CGMCC 1.12749T=JCM 19653T=MCCC 1K00278T). PMID:26827710

  6. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field

    NASA Astrophysics Data System (ADS)

    Barbieri, Roberto; Cavalazzi, Barbara

    2014-11-01

    Despite the success in knowledge gained by the Mars missions in the last two decades, the search for traces of life on Mars is still in progress. The reconstruction of (paleo-) environments on Mars have seen a dramatic increase, in particular with regard to the potentially habitable conditions, and it is now possible to recognize a significant role to subaerial hydrothermal processes. For this reason, and because the conditions of the primordial Earth - when these extreme environments had to be common - probably resembled Mars during its most suitable time to host life, research on terrestrial extreme hydrothermal habitats may assist in understanding how to recognize life on Mars. A number of geological and environmental reasons, and logistics opportunities, make the geothermal field of El Tatio, in the Chilean Andes an ideal location to study.

  7. The sulphur springs geothermal field, St. Lucia, lesser Antilles: Hydrothermal mineralogy of wells SL-1 and SL-2

    NASA Astrophysics Data System (ADS)

    Battaglia, S.; Gianelli, G.; Rossi, R.; Cavarretta, G.

    Two wells have been drilled to depths of 1413 and 2213 meters in the geothermal field of Sulphur Springs, St. Lucia, and reveal a complex volcanic sequence characterized by collapse episodes followed by the emplacement of dacite domes. The geothermal reservoir consists of fractured volcanic rocks and produces superheated steam. Well-bottom temperatures are around 270-290°C. The hydrothermal alteration found in both the productive SL-2 well and the non-productive SL-1 is strongly reminiscent of that of porphyry copper deposits, with (1) an inner, high-temperature potassic zone characterized by the occurrence of dravitic tourmaline, quartz, and biotite, (2) an outer propylitic alteration zone that is partly superimposed on (3) a potassic alteration zone. The alteration mineral assemblages indicate that the hydrothermal system has cooled at the levels sampled.

  8. Rare earth element systematics in hydrothermal fluids

    SciTech Connect

    Michard, A. )

    1989-03-01

    Rare earth element concentrations have been measured in hydrothermal solutions from geothermal fields in Italy, Dominica, Valles Caldera, Salton Sea and the Mid-Atlantic Ridge. The measured abundances show that hydrothermal activity is not expected to affect the REE balance of either continental or oceanic rocks. The REE enrichment of the solutions increases when the pH decreases. High-temperature solutions (> 230{degree}C) percolating through different rock types may show similar REE patterns.

  9. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  10. Towards a Genome-Enabled Sensor for In Situ Monitoring of Microbial Communities in Hydrothermal Vent Fields

    NASA Astrophysics Data System (ADS)

    Shi, X.; Wu, J.; Gao, W.; Chao, S.; Zhang, W.; Meldrum, D. R.

    2008-12-01

    We report the progress towards a genome-enabled instrument to monitor variations in microbial community in hydrothermal vent fields for long durations. Our long-term goal is to deploy an in situ microarray device embedded in a lab-on-a-chip device. The microarray detects both the 16S rRNA to identify prokaryotic species and cDNA (converted from mRNA) of selected functional genes to understand activities and dynamics of ocean microbial communities. Each automated, self-contained instrument contains a stack of disposable lab-on-a-chip devices. All measurements are performed on individual chips, starting with pumping seawater through on-chip filter to collect microbes, lysing cells to release nucleic acids, and then analyzing their genomic information. To aid the effort of building the first functional microarray, we participated in the TN-221 cruise funded by the National Science Foundation's Ocean Observatories Initiative to map the seafloor in areas of high scientific interest. During the cruise, multiple deep-sea water samples were collected. The microbes were filtered, frozen and shipped to our laboratory for molecular analysis. The DNA was isolated from these samples and a detailed metagenomic analysis is ongoing for samples of one site (80 km offshore of Oregon coast, 380 km away from the Axial Seamount vent field, and 5 meters above the 780- meter deep seafloor). From the isolated chromosomal DNA the 16S rRNA clone library was constructed and resultant clones were sequenced. Although the fluorescence microscopic analyses showed the density of biomass is relatively low, phylogenetic results suggested high diversity in these microbial communities. In addition, efforts were made to isolate mRNA directly from these deep-sea ocean samples. The information obtained from these analyses will be essential for development of oligonucleotide probes for the microarray device. First two authors contributed equally.

  11. Shallow water submarine hydrothermal activity - A case study in the assessment of ocean acidification and fertilization

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yoshida, K.; Hagiwara, T.; Nagao, K.; Kusakabe, M.; Wang, B.; Chen, C. A.

    2012-12-01

    Most natural Shallow Water submarine Hydrothermal activates (SWH) along coastlines are related to hydrothermal eruptions involving heating of groundwater with the volcanic gas. These SWHs supply nutrients such as phosphorus and micro nutrients like iron to the euphotic zone, contributing to the overall natural fertility and primary productivity of coastal waters. However, SWHs also have a negative effect, dispersing toxic materials such as mercury and arsenic, and affecting the acidification of the surrounding waters. In this study, we evaluate the impact of "iron supply" and "ocean acidification" on the primary production in a coastal marine environment, at a SWH area discovered off Gueshandao Island, northeast Taiwan. In the past three years, expeditions were conducted and observations made around this SWH site. Divers, small boats and a research vessel (R/V OR1, Ocean University National Taiwan) were used to survey successively larger areas around the site. Some of the results obtained are as follows. Hydrothermal vents are located in a hilly terrain rich with hot spring water with gas erupting intermittently. There are two types of vents, roughly divided by color, yellow hot spring water with higher temperature >110 degC ejected from sulfur chimneys of various sizes, and colorless water with lower temperature ~80 degC ejected directly from the crevices of the andesitic bedrock. Natural sulfur solidifying in the mouth of a small chimney was captured by a video camera, and explosions were also observed at intervals of a few minutes. Sediment, sand and particles of sulfur were deposited on the sides to a radius of about 50 m condensing around the chimney. The bottom type changes from sand/particles to outcrop/rock away from the vents. Moreover, gas samples were collected from the vents; the ratios of gas concentrations (N2/Ar) and isotopic composition of noble gas (3He/4He) suggest that these volcanic gases are mantle-derived. Hydrothermal fluid with high p

  12. Stable isotope geochemistry of clay minerals from fossil and active hydrothermal systems, southwestern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Marumo, Katsumi; Longstaffe, Fred J.; Matsubaya, Osamu

    1995-06-01

    Miocene submarine to Quaternary terrestrial volcanism in southwestern Hokkaido, Japan, is associated with hydrothermal clay alteration and mineralization, including Kuroko-type deposits at Kagenosawa (14.2 Ma, Cu > Zn, Pb > Au) and Minamishiraoi (12.5 Ma, Ba > Zn, Pb, Cu), vein-style mineralization at Date (5.2 Ma, Au-Ag-Cu-Pb-Zn) and Chitose (3.6 Ma, Au-Ag), and geothermal activity at Noboribetsu (≤1.8 Ma). The δD and δ 18O values of mica (sericite), mica-smectite, chlorite, chlorite-smectite, nacrite, dickite, kaolinite, and smectite were used to deduce the type(s) of hydrothermal fluid at each locality. Calculated compositions for Minamishiraoi and Kagenosawa fluids suggest that seawater was dominant, but some mixing with magmatic water is also indicated, particularly for the polymetallic Kagenosawa deposit. Hydrothermal fluids at Date, Chitose, and the Noboribetsu geothermal area were dominated by meteoric water. Minor involvement of magmatic water during mineralization at Date cannot be ruled out, but evolution of local meteoric water along an evaporation trend and/or an 18O-shift due to hydrothermal rock-meteoric water interaction also could have produced appropriate fluid compositions. The δD and δ 18O values of modern hot-spring waters at Noboribetsu closely parallel fluid compositions calculated for the clay alteration at Date, Chitose, and Noboribetsu. Because relatively poor reproducibility was obtained for the δD values of the swelling clays, additional tests were conducted. Stepwise heating showed that, for some smectitic clays, water evolved between 200 and 300°C had anomalously high δD values because of residual interlayer water. This error can be minimized by sufficiently long preheating (in vacuo) at ≤200°C. In vacuo TG patterns of other smectitic clays suggested gradual loss of hydroxyl-groups beginning near 200°C, rather than the more typical distinct separation between interlayer water at <200°C and hydroxyl-groups at > 400

  13. Hydrothermal activity on near-arc sections of back-arc ridges: Results from the Mariana Trough and Lau Basin

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Massoth, Gary J.; Nakamura, Ko-Ichi; Embley, Robert W.; de Ronde, Cornel E. J.; Arculus, Richard J.

    2005-09-01

    The spatial density of hydrothermal venting is strongly correlated with spreading rate on mid-ocean ridges (with the interesting exception of hot spot-affected ridges), evidently because spreading rate is a reliable proxy for the magma budget. This correlation remains untested on spreading ridges in back-arc basins, where the magma budget may be complicated by subduction-induced variations of the melt supply. To address this uncertainty, we conducted hydrothermal plume surveys along slow-spreading (40-60 mm/yr) and arc-proximal (10-60 km distant) sections of the southern Mariana Trough and the Valu Fa Ridge (Lau Basin). On both sections we found multiple plumes overlying ˜15-20% of the total length of each section, a coverage comparable to mid-ocean ridges spreading at similar rates. These conditions contrast with earlier reported results from the two nearest-arc segments of a faster spreading (60-70 mm/yr) back-arc ridge, the East Scotia Ridge, which approaches no closer than 100 km to its arc. There, hydrothermal venting is relatively scarce (˜5% plume coverage) and the ridge characteristics are distinctly slow-spreading: small central volcanic highs bookended by deep median valleys, and axial melt lenses restricted to the volcanic highs. Two factors may contribute to an unexpectedly low hydrothermal budget on these East Scotia Ridge segments: they may lie too far from the adjacent arc to benefit from near-arc sources of melt supply, and subduction-aided migration of mantle from the Bouvet hot spot may reduce hydrothermal circulation by local crustal warming and thickening, analogous to the Reykjanes Ridge. Thus the pattern among these three ridge sections appears to mirror the larger global pattern defined by mid-ocean ridges: a well-defined trend of spreading rate versus hydrothermal activity on most ridge sections, plus a subset of ridge sections where unusual melt delivery conditions diminish the expected hydrothermal activity.

  14. Hydrothermal activity in the Lau Basin: First results from the NAUTILAU Cruise

    NASA Astrophysics Data System (ADS)

    NAUTILAU Group

    The Lau Basin, a back arc spreading center, is one of the most active hydrothermal areas in the ocean. A scientific team from France, Germany, and Tonga investigated the southern Lau Basin near Tonga in 1989 to study the processes of seafloor ore-mineral formation associated with hydrothermal circulation along the volcanic Valu Fa ridge (Ride de Valu Fa in Figure 1), which lies in back of the Tonga-Kermadec trench.Between April 17 and May 10 scientists on the R/V Nadir used the submersible Nautile to make 22 dives in the southern Lau Basin. The cruise was called NAUTILAU, for Nautile in Lau Basin. In addition to the standard equipment of the submersible (video and photo cameras, and temperature probe), a CTD (conductivity-temperature-depth) instrument was integrated with a “mini rosette” water sampling device used for the first time on the Nautile to obtain correlations between the geological observations and the physical and chemical anomalies measured in the seawater.

  15. Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year timescales

    PubMed Central

    Dyl, Kathryn A.; Bischoff, Addi; Ziegler, Karen; Young, Edward D.; Wimmer, Karl; Bland, Phil A.

    2012-01-01

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water–rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water–rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water–rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H2O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa-1Al-1 exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1–10 y. This result has wide-ranging implications for the geological history of chondritic asteroids. PMID:23093668

  16. Microearthquakes in the black smoker hydrothermal field, East Pacific Rise at 21/sup 0/N

    SciTech Connect

    Riedesel, M.; Orcutt, J.A.; MacDonald, K.C.; McClain, J.S.

    1982-12-10

    In July and August 1980, an array of five ocean bottom seismographs was deployed within 3 km of the 350 /sup 0/C hydrothermal vents at the Rivera submersible experiment (RISE) site at 21/sup 0/N, on the East Pacific Rise. Two of these instruments were placed within 600 m of the vents, using a transponder navigation network. The array detected four basic types of events. The first type consisted of local, very small microearthquakes. Locations obtained for 11 of these events place three within 1 km of the vents, with the others elsewhere along the rise crest. They appear to originate either from movement on the faults in the area or from the hydrothermal system beneath this area. A study of the S-P times of this type indicates a maximum hypocentral depth of 2-3 km, implying a similar limit to the depth of hydrothermal circulation and brittle fracturing in the vicinity of the vents. The second type of event found consisted of emergent earthquakes that have many of the characteristics of volcanic harmonic tremor. The frequency of these events falls in the 1-5 Hz range and are similar in appearance to those seen at Mount St. Helens prior to and during its May 1980 eruption. They may be either hydrothermal or volcanic in origin. The third type of event produced a very monochromatic, high-frequency seismogram, with the energy concentrated at 20 Hz. These events also appear to have a local origin.

  17. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    PubMed Central

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  18. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  19. Low-temperature hydrothermal synthesis of S-doped TiO{sub 2} with visible light photocatalytic activity

    SciTech Connect

    Ho Wingkei; Yu, Jimmy C. . E-mail: jimyu@cuhk.edu.hk; Lee, Shuncheng

    2006-04-15

    A one-step low-temperature hydrothermal route was developed for the synthesis of S-doped TiO{sub 2} photocatalysts from TiS{sub 2} and HCl. Crystalline TiO{sub 2} was formed and sulfur could be efficiently doped into the anatase lattice under hydrothermal conditions. When the initial TiS{sub 2} concentration is increased, the content of S-dopant and optical absorption in the visible region also increase. The photocatalytic activity of the S-doped TiO{sub 2} was evaluated through the degradation of 4-chlorophenol under visible light irradiation. Our results show that the S-doped TiO{sub 2} prepared by this hydrothermal approach possesses much higher photocatalytic activity than that obtained by the traditional high-temperature thermal annealing method.

  20. An Overview of the Lost City Vent Field: An Extensive Off-Axis, Serpentinite-Hosted Hydrothermal Field, 30° N, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Kelley, D. S.; Karson, J. A.; Blackman, D. K.; Fruh-Green, G. L.; Butterfield, D. A.; Roe, K. K.; Lilley, M. D.; Olson, E. J.; Schrenk, M. O.; Camino, P. J.; Baross, J. A.; Participants, M. C.

    2001-12-01

    The Lost City Vent Field (LCVF) is notably different from all other known seafloor hydrothermal fields in that it is 1) the first major occurrence of active carbonate-magnesium hydroxide chimneys to be documented along a mid-ocean ridge, 2) located on 1.5 my-old crust, nearly 15 km west of the spreading axis and 3) the only known major active field that appears to be sustained solely by exothermic serpentinization reactions. In addition, the LCVF is extensive, hosting at least 30 active and extinct carbonate chimneys that rise up to 60 m above the seafloor. The aragonite-calcite-brucite structures appear to be the surface expression of 40-75° C, high pH (9-10), methane- and hydrogen-enriched fluids emanating from fault zones that tap a region of active serpentinization in the underlying peridotites. Fluids from the LCVF are enriched in Ca (21-23 mmol/kg), but K is within 3% of the ambient seawater. Reactive silicate (measured after 2 weeks of refrigerated storage) is lower than ambient seawater in the 40° C samples, but is slightly higher than seawater in the 75° C sample. Silica is only a very trace component within the chimney minerals. Over 64 micromol/kg of total H2S was detected after 14 days in storage, and SO4 is in excess over values predicted from mixing seawater and an upwelling end-member with zero Mg and SO4. Na and Cl are both within 10% of the seawater value. The high Ca, low-Mg, and near-ambient silica content are consistent with peridotite-dominated fluid-rock interaction producing an alkaline fluid that precipitates carbonates and hydroxides upon mixing with seawater. Interaction of mantle material with seawater during serpentinization is further supported by stable isotope analyses of carbonate in the structures (\\delta13C = 1.0 to 2.1 per mil). Similar structures with distinctive fluid chemistries may be widespread along the rift-mountains of the MAR. Diffusely venting structures support dense and diverse microbial communities, which show

  1. The Anatomy of a Fumarole inferred from a 3-D High-Resolution Electrical Resistivity Image of Solfatara Hydrothermal System (Phlegrean Fields, Italy)

    NASA Astrophysics Data System (ADS)

    Gresse, M.; Vandemeulebrouck, J.; Chiodini, G.; Byrdina, S.; Lebourg, T.; Johnson, T. C.

    2015-12-01

    Solfatara, the most active crater in the Phlegrean Fields volcanic complex, shows since ten years a remarkable renewal of activity characterized by an increase of CO2 total degassing from 1500 up to 3000 tons/day, associated with a large ground uplift (Chiodini et al., 2015). In order to precisely image the structure of the shallow hydrothermal system, we performed an extended electrical DC resistivity survey at Solfatara, with about 40 2-D profiles of length up to 1 km, as well as soil temperature and CO2 flux measurements over the area. We then realized a 3-D inversion from the ~40 000 resistivity data points, using E4D code (Johnson et al., 2010). At large scale, results clearly delineate two contrasted structures: - A very conductive body (resistivity < 5 Ohm.m) located beneath the Fangaia mud pools, and likely associated to a mineralized liquid rich plume. - An elongated more resistive body (20-30 Ohm.m) connected to the main fumarolic area and interpreted as the gas reservoir feeding the fumaroles. At smaller scale, our resistivity model originally highlights the 3-D anatomy of a fumarole and the interactions between condensate layers and gas chimneys. This high-resolution image of the shallow hydrothermal structure is a new step for the modeling of this system.

  2. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  3. Hydrothermal systems in two areas of the Jemez volcanic field: Sulphur Springs and the Cochiti mining district

    SciTech Connect

    WoldeGabriel, G.

    1989-03-01

    K/Ar dates and oxygen isotope data were obtained on 13 clay separates (<2 ..mu..m) of thermally altered mafic and silicic rocks from the Cochiti mining district (SE Jemez Mountains) and Continental Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, Valles caldera). Illite with K/sub 2/O contents of 6.68%--10.04% is the dominant clay in the silicic rocks, whereas interstratified illite/smectites containing 1.4%--5.74% K/sub 2/O constitute the altered andesites. Two hydrothermal alteration events are recognized at the Cochiti area (8.07 m.y., n = 1, and 6.5--5.6 m.y., n = 6). The older event correlates with the waning stages of Paliza Canyon Formation andesite volcanism (greater than or equal to13 to less than or equal to8.5 m.y.), whereas the younger event correlates with intrusions and gold- and silver-bearing quartz veins associated with the Bearhead Rhyolite (7.54--5.8 m.y.). The majority of K/Ar dates in the hydrothermally altered, caldera-fill rocks of core hole VC-2A (0.83--0.66 m.y., n = 4) indicate that hydrothermal alteration developed contemporaneously with resurgence and ring fracture Valles Rhyolite domes (0.89--0.54 m.y.). One date of 0 +- 0.10 m.y. in acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole probably correlates with Holocene hydrothermal activity possibly associated with the final phases of the Valles Rhyolite (0.13 m.y.).

  4. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  5. ESR dating of barite in sulphide deposits formed by the sea-floor hydrothermal activities.

    PubMed

    Toyoda, Shin; Fujiwara, Taisei; Uchida, Ai; Ishibashi, Jun-ichiro; Nakai, Shun'ichi; Takamasa, Asako

    2014-06-01

    Barite is a mineral newly found to be practically useful for electron spin resonance (ESR) dating of sulphide deposits formed by the sea-floor hydrothermal activities. The recent studies for the properties of the ESR dating signal in barite are summarised in the present paper as well as the formulas for corrections for accurate dose-rate estimation are developed including the dose-rate conversion factors, shape correction for gamma-ray dose and decay of (226)Ra. Although development of the techniques for ESR dating of barite has been completed, further comparative studies with other dating techniques such as U-Th and (226)Ra-(210)Pb dating are necessary for the technique to be widely used. PMID:24795384

  6. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.

    2016-01-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  7. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations.

    PubMed

    Lund, D C; Asimow, P D; Farley, K A; Rooney, T O; Seeley, E; Jackson, E W; Durham, Z M

    2016-01-29

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges. PMID:26823422

  8. Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dublyansky, Y. V.

    2012-11-01

    A unique conceptual model envisaging conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE not to consider hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. Evaluation shows that validation of the model by computational modeling and by observations at a natural analog site was unsuccessful. Due to the lack of validation, the reliance on this model must be discontinued and the scientific defensibility of decisions which rely on this model must be re-evaluated.

  9. Dramatic activity of mixed-phase TiO2 photocatalyst synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Li, Huiquan; Xu, Bolian; Fan, Yining

    2013-02-01

    The mixed-phase TiO2 photocatalysts with different anatase/rutile/brookite ratios and high specific surface area (157-218 m2/g) were prepared by hydrothermal method at 100 °C and the effect of rutile content in TiO2 on the BET surface area, light absorption and separation efficiency of photogenerated charge carriers was studied and correlated to the photocatalytic activity of TiO2. Rutile content increased from 0% to 100% by increasing the amount of TiCl4 in aqueous phase and the initial pH value of reaction solution played an important role in the phase composition of TiO2. The photocatalytic mechanism of mixed-phase TiO2 was discussed.

  10. Moytirra: Discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores

    NASA Astrophysics Data System (ADS)

    Wheeler, A. J.; Murton, B.; Copley, J.; Lim, A.; Carlsson, J.; Collins, P.; Dorschel, B.; Green, D.; Judge, M.; Nye, V.; Benzie, J.; Antoniacomi, A.; Coughlan, M.; Morris, K.

    2013-10-01

    Geological, biological, morphological, and hydrochemical data are presented for the newly discovered Moytirra vent field at 45oN. This is the only high temperature hydrothermal vent known between the Azores and Iceland, in the North Atlantic and is located on a slow to ultraslow-spreading mid-ocean ridge uniquely situated on the 300 m high fault scarp of the eastern axial wall, 3.5 km from the axial volcanic ridge crest. Furthermore, the Moytirra vent field is, unusually for tectonically controlled hydrothermal vents systems, basalt hosted and perched midway up on the median valley wall and presumably heated by an off-axis magma chamber. The Moytirra vent field consists of an alignment of four sites of venting, three actively emitting "black smoke," producing a complex of chimneys and beehive diffusers. The largest chimney is 18 m tall and vigorously venting. The vent fauna described here are the only ones documented for the North Atlantic (Azores to Reykjanes Ridge) and significantly expands our knowledge of North Atlantic biodiversity. The surfaces of the vent chimneys are occupied by aggregations of gastropods (Peltospira sp.) and populations of alvinocaridid shrimp (Mirocaris sp. with Rimicaris sp. also present). Other fauna present include bythograeid crabs (Segonzacia sp.) and zoarcid fish (Pachycara sp.), but bathymodiolin mussels and actinostolid anemones were not observed in the vent field. The discovery of the Moytirra vent field therefore expands the known latitudinal distributions of several vent-endemic genera in the north Atlantic, and reveals faunal affinities with vents south of the Azores rather than north of Iceland.

  11. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.

    2008-08-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  12. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    USGS Publications Warehouse

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  13. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    hydrocarbon species characteristic of these metalliferous sediments. These systems are also characterized by sharp physicochemical gradients that have been shown to have a pronounced effect on microbial ecology and activity. Sediments were collected from a Middle Valley field with relatively high concentrations of short-chain alkanes and incubated in anaerobic batch reactors with each individual alkane (C1, C2, C3 and C4, respectively) at a range of temperatures (25, 55 and 75 °C) to mimic environmental physico-chemical conditions in a closed system. Stable carbon isotope ratios and radiotracer incubations provide clear evidence for C2-C4 alkane oxidation in the sediments over time. Upon identifying sediments with anaerobic alkane oxidation activity, microbial communities were screened via 16S rRNA pyrosequencing, and key phylotypes were then quantified using both molecular and microscopic methods. There were shifts in overall community composition and putative alkane-oxidizing phylotypes after the incubation period with the alkane substrates. These are the first evidence to date indicating that anaerobic C2-C4 alkane oxidation occurs across a broad range of temperatures in metalliferous sediments.

  14. Hydrothermal systematics, alteration, and mineralization in the Grant Canyon, Bacon Flat, and Blackburn Oil Fields, Nevada - Intriguing Parallels with Carlin-Type gold deposits

    SciTech Connect

    Hulen, J.B.; Nielson, D.L. )

    1993-08-01

    Nevada's three known thermally active oil reservoirs-Blackburn, Bacon Flat, and Grand Canyon-share a surprisingly long list of essential attributes with the Carlin-type, low-grade, sediment-hosted gold deposits, particularly those of the Alligator Ridge mining district. Like these rich precious-metal ore bodies, the three fields (1) are hosted by Paleozoic carbonate and calcareous silici-clastic strata; (2) occur in structural or structural/stratigraphic traps sealed beneath shales or hydrothermally argillized and silicified tuffs and epiclastic debris, (3) have undergone intense fracturing and brecciation, as well as massive hydrothermal decalcification as major porosity-creating processes; (4) occupy rocks partly altered to or veined by the secondary-mineral assemblage quartz-kaolin-barite-pyrite-marcasite; (5) have a direct geothermal connection; (6) are enriched in the elements arsenic, antimony, mercury, thallium, and even contain significant traces of gold-up 50 ppb in altered Mississippian Chainmain Shale in the Blackburn field. Moreover, measured temperatures, as well as late-stage, fluid-inclusion homogenization temperatures (T[sub h]) at the fields-all in the range 100-135[degrees]C-fall within the fluid-inclusion T[sub h] span of 90-165[degrees]C recorded for multiple Alligator Ridge deposits. Fracture-controlled live oil and oil-bearing fluid inclusions in some of the Alligator Ridge ores provide further evidence of genetic similarities with the oil reservoirs. The authors suggest that the three oil fields could represent either weakly mineralized analogs of the gold deposits or an incipient phase in their evolution ultimately leading to ore mineralization.

  15. Characteristics of Microbial Communities in Crustal Fluids in a Deep-Sea Hydrothermal Field of the Suiyo Seamount

    PubMed Central

    Kato, Shingo; Nakawake, Michiyuki; Kita, Junko; Yamanaka, Toshiro; Utsumi, Motoo; Okamura, Kei; Ishibashi, Jun-ichiro; Ohkuma, Moriya; Yamagishi, Akihiko

    2013-01-01

    To directly access the sub-seafloor microbial communities, seafloor drilling has been done in a deep-sea hydrothermal field of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. In the present study, crustal fluids were collected from the boreholes, and the bacterial and archaeal communities in the fluids were investigated by culture-independent molecular analysis based on 16S rRNA gene sequences. Bottom seawater, sands, rocks, sulfide mound, and chimneys were also collected around the boreholes and analyzed for comparisons. Comprehensive analysis revealed the characteristics of the microbial community composition in the crustal fluids. Phylotypes closely related to cultured species, e.g., Alteromonas, Halomonas, Marinobacter, were relatively abundant in some crustal fluid samples, whereas the phylotypes related to Pelagibacter and the SUP05-group were relatively abundant in the seawater samples. Phylotypes related to other uncultured environmental clones in Alphaproteobacteria and Gammaproteobacteria were relatively abundant in the sand, rock, sulfide mound, and chimney samples. Furthermore, comparative analysis with previous studies of the Suiyo Seamount crustal fluids indicates the change in the microbial community composition for 3 years. Our results provide novel insights into the characteristics of the microbial communities in crustal fluids beneath a deep-sea hydrothermal field. PMID:23626587

  16. Novel insights into methane cycling, lateral gene transfer, and the rare biosphere within carbonate chimneys of the Lost City Hydrothermal Field (Invited)

    NASA Astrophysics Data System (ADS)

    Brazelton, W. J.; Ludwig, K. A.; Schrenk, M. O.; Kelley, D. S.; Sogin, M. L.; Baross, J. A.

    2010-12-01

    The Lost City Hydrothermal Field, an ultramafic-hosted system located 15 km west of the Mid-Atlantic Ridge, has experienced at least 30,000 years of hydrothermal activity. Previous studies have shown that its carbonate chimneys form by mixing of ~90°C, pH 9-11 hydrothermal fluids and cold seawater. Flow of methane and hydrogen-rich hydrothermal fluids through the carbonate chimneys supports dense microbial biofilm communities. This presentation will describe recent studies using new techniques that have provided greater insight into the microbial ecology and biogeochemistry of Lost City chimneys. We have investigated the archaeal and bacterial communities of Lost City carbonate chimneys that vary in age between ~30 and ~1200 years, as determined by U-Th isotope systematics. Using next-generation pyrosequencing technology, we collected >200,000 sequences of the V6 region of 16S rRNA genes. This extremely deep sequencing effort enabled detection of very rare organisms as well as abundant organisms detected by previous studies. The taxonomic composition of the archaeal and bacterial communities clearly differed in chimneys of different ages, and many of the rare sequences in young chimneys were more abundant in older chimneys, indicating that members of the rare biosphere can become dominant members of the ecosystem when environmental conditions change. These results suggest that a long history of selection over many cycles of chimney growth has resulted in numerous closely related species at Lost City, each of which is pre-adapted to a particular set of re-occurring environmental conditions. In this model, the rare biosphere can be considered a repository for genes that are not currently advantageous but have been in the past and may be again in the future. Interestingly, metagenomic sequencing at Lost City has indicated the potential for frequent lateral gene transfer among organisms inhabiting the chimney biofilms. Specifically, the Lost City metagenomic dataset

  17. Multidimensional Field Mapping of Gaseous C-H-O-S Species in Hydrothermal Systems: Distinguishing Potential Sites for Hydrocarbon Generation

    NASA Astrophysics Data System (ADS)

    Schwandner, F. M.; Dunn, E. E.; Shock, E. L.

    2005-12-01

    Organic compounds in hydrothermal gas emissions have been documented since the mid-1800's, yet their origin is still a matter of some debate. Thermal alteration such as maturation and cracking can produce thermogenic hydrocarbons from pre-existing organic matter in hydrothermal systems. Gas-phase radical reactions and catalytic hydrogenation reactions of CO2 and CO to methane and higher hydrocarbons have also been suggested as being responsible for observations of organic compounds in hydrothermal emissions. Recently published data indicated that some organic signatures in volcanic-hydrothermal systems cannot be explained by pre-existing organic matter alone, and more representative analyses are now required to shed light on this question. Choosing a representative site within a hydrothermal field for sampling is in itself a complicated task, and heterogeneities can be easily missed. Spatial analysis of the distribution of C-O-H-S species in the gas phase can potentially indicate possible sites of increased hydrocarbon generation potentials via the catalytic hydrogenation pathway. This approach offers the advantage of providing information in the field that can be used to judge appropriate sampling locations prior to the more complex and costly standard organic analyses of gaseous emissions. A portable multi-sensor system with electrochemical and infrared sensors can in a short time provide large spatial data sets that yield potential target areas for selectively sampling organic compounds. Statistical methods, including probability tests and spatial correlation of concentrations and fluxes of selected species, can be applied later to yield information on the number of populations as well as genetic relationships between different populations. This approach was tested at three acid-sulfate sites in Yellowstone National Park, USA. The chosen sites were the Greater Obsidian Pool area (GOPA, Mud Volcanoes hot spring group), the Sylvan Springs area, and the Washburn

  18. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Massoth, Gary J.

    1987-09-01

    Deep CTD/transmissometer tows and water bottle sampling were used during 1985 to map the regional distribution of the neutrally-buoyant plumes emanating from each of two major vent fields on the Southern Symmetrical Segment (SSS) and Endeavour Segment (ES) of the Juan de Fuca Ridge. At both vent fields, emissions from point and diffuse hydrothermal sources coalesced into a single 200-m-thick plume elongated in the direction of current flow and with characteristic temperature anomalies of 0.02-0.05°C and light-attenuation anomalies of 0.01-0.08 m -1 (10-80 μg/l above background). Temperature anomalies in the core of each plume were uniform as far downcurrent as the plumes were mapped (10-15 km). Downcurrent light-attenuation trends were non-uniform and differed between plumes, apparently because different vent fluid chemistries at each field cause significant differences in the settling characteristics of the hydrothermal precipitates. Vent fluids from the SSS are metal-dominated and mostly precipitate very fine-grained hydrous Fe-oxides that remain suspended in the plume. Vent fluids from the ES are sulfur-dominated and precipitate a high proportion of coarser-grained Fe-sulfides that rapidly settle from the plume. The integrated flux of each vent field was estimated from measurements of the advective transport of each plume. Heat flux was 1700 ± 1100 MW from the ES and 580 ± 351 MW from the SSS. Particle flux varied from 546 ± 312 g/s to 204 ± 116 g/s at the ES depending on distance from the vent field, and was 92 ± 48 g/s from the SSS.

  19. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Opoku, Charles; Singh Dahiya, Abhishek; Oshman, Christopher; Daumont, Christophe; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas

    2015-09-01

    The production of large quantities of single crystalline semiconducting ZnO nanowires (NWs) at low cost can offer practical solutions to realizing several novel electronic/optoelectronic and sensor applications on an industrial scale. The present work demonstrates high-density single crystalline NWs synthesized by a multiple cycle hydrothermal process at ˜100 °C. The high carrier concentration in such ZnO NWs is greatly suppressed by a simple low cost thermal annealing step in ambient air at ˜450 °C. Single ZnO NW FETs incorporating these modified NWs are characterized, revealing strong metal work function-dependent charge transport, unobtainable with as-grown hydrothermal ZnO NWs. Single ZnO NW FETs with Al as source and drain (s/d) contacts show excellent performance metrics, including low off-state currents (fA range), high on/off ratio (105-107), steep subthreshold slope (<600 mV/dec) and excellent field-effect carrier mobility (5-11 cm2/V-s). Modified ZnO NWs with platinum s/d contacts demonstrate excellent Schottky transport characteristics, markedly different from a reference ZnO NW device with Al contacts. This included abrupt reverse bias current-voltage saturation characteristics and positive temperature coefficient (˜0.18 eV to 0.13 eV). This work is envisaged to benefit many areas of hydrothermal ZnO NW research, such as NW FETs, piezoelectric energy recovery, piezotronics and Schottky diodes.

  20. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  1. Preliminary results of trace elements mobility in soils and plants from the active hydrothermal area of Nisyros island (Greece)

    NASA Astrophysics Data System (ADS)

    Daskalopoulou, Kyriaki; Calabrese, Sergio; Milazzo, Silvia; Brusca, Lorenzo; D'Alessandro, Walter; Kyriakopoulos, Konstantinos; Tassi, Franco; Parello, Francesco

    2014-05-01

    Trace elements, i.e. chemical constituents of rocks with concentration <1000 ppm, play a structural role in the organisms and use proteins as a carrier to their target site. Their toxicity depends on their concentration, speciation and reactions with other elements. In volcanic environments, significant amounts of trace elements discharged from gas emissions, contribute to produce air particulate. Nisyros Island is a stratovolcano located at the South Aegean active Volcanic Arc. Intense hydrothermal activity characterise the Lakki caldera. In particular, the fumaroles located in the craters of Stefanos, Kaminakia, Lofos Dome and the area comprising Phlegeton, Polyvotes Micros and Polyvotes Megalos discharge hydrothermal fluids rich in H2O (91- 99%), SO2 and H2S. Their temperatures are almost 100o C and H2S is highly abundant accounting for 8-26 % of the released dry gas phase. On June 2013, during a multidisciplinary field trip on Nisyros island, 39 samples of top soils and 31 of endemic plants (Cistus Creticus and Salvifolius and Erica Arborea and Manipuliflora) were collected in the caldera area, with the aim to investigate the distribution of concentrations of trace elements related to the contribution of deep originated fluids. Moreover, one sample of plant and soil was collected outside the caldera as local background, for comparison. All the soil samples were powdered avoiding metal contamination and they were extracted twice, using HNO3 + HCl for one extraction (closed microwave digestion) and ultrapure de- ionized water for the other one (leaching extraction). The leaves of plants were gently isolated, dried and powdered for acid microwave extraction (HNO3 + H2O2). All the solutions were analysed for major and trace elements contents by using ionic chromatography (IC) and inductively plasma spectrometry (ICP-MS and ICP-OES). The preliminary results showed high enrichment of many trace elements both in plant and soils respect to the local background, in

  2. Synthesis of PbMoO4 nanoparticles by microwave-assisted hydrothermal process and their photocatalytic activity.

    PubMed

    Song, Young In; Lim, Kwon Taek; Lee, Gun Dae; Lee, Man Sig; Hong, Seong-Soo

    2014-11-01

    Lead molybdate (PbMoO4) was successfully synthesized using a microwave-assisted method and characterized by XRD, Raman spectroscopy, SEM, PL and DRS. We also investigated the photocatalytic activity of these materials for the decomposition of Rhodamin B under UV-light irradiation. The XRD and Raman results revealed the successful synthesis of 42-52 nm, well-crystallized PbMoO4 crystals with the microwave-assisted hydrothermal method. The PbMoO4 catalysts prepared using the microwave-assisted process enhanced the photocatalytic activity compared to that prepared by hydrothermal method and the catalysts prepared at a solution pH = 11 and temperature of 105 degrees C showed the highest photocatalytic activity. The PL peaks appeared at about 540 nm for all catalysts and the excitonic PL signal was proportional to the photocatalytic activity for the decomposition of Rhodamin B. PMID:25958553

  3. Deep-Sea Magnetics on Active and Fossil Hydrothermal Sites: a Tool to Detect and Characterize Submarine Ore Deposits

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Szitkar, F.; Fouquet, Y.; Choi, Y.

    2011-12-01

    Since the first discoveries of hydrothermal sites at mid-ocean ridges in the 70s, international efforts in the deep seafloor exploration have unravelled a wide variety of hydrothermal sites in terms of geological settings, physical parameters, and biological communities as well. Such efforts, coordinated in the InterRidge program since 1992, are becoming even more important when the increasing need in metals for developing economies makes the exploitation of metal sulfides accumulated at deep-sea hydrothermal sites a realistic target. The usual method to find hydrothermal sites is to detect the associated chemical plumes enriched in manganese, methane, hydrogen, helium 3, in the water column. How efficient it has been proven, such a method is limited to the search for active hydrothermal vents. Active vents, however, are not the best places for mining the seafloor, because (1) they host massive sulfides deposits in the making and may not represent the largest accumulation; (2) they are still very hot and would rapidly damage the mining tools; and, last but not the least, (3) they host fragile and precious ecosystem that could be dramatically affected by mining operations. Methods to find fossil hydrothermal sites (i.e. colder and devoid of specific ecosystems) include systematic rock sampling - a very tedious endeavour - and high resolution, near seafloor geophysical surveys. Existing magnetic surveys on basalt-hosted, peridotite-hosted and sediment-hosted sites revealed different types of signatures, which reflect the magnetizations of the host rock and the ore deposit, among others. Basalt-hosted sites exhibit negative magnetic anomalies, i.e. a deficit of magnetization, due to thermal demagnetization and hydrothermal alteration of the highly magnetic basalt, whereas both peridotite-hosted and sediment-hosted sites show positive anomalies, i.e. an excess of magnetization, clearly associated with the ore deposit. Results from recent cruises Serpentine (R

  4. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough.

    PubMed

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has

  5. Post-Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea Hydrothermal System, the Iheya North Field, Okinawa Trough

    PubMed Central

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area

  6. Deep-sea magnetic vector anomalies over the Hakurei hydrothermal field and the Bayonnaise knoll caldera, Izu-Ogasawara arc, Japan

    NASA Astrophysics Data System (ADS)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo

    2013-10-01

    We conducted deep-sea magnetic measurements using autonomous underwater vehicles in the Bayonnaise knoll caldera, the Izu-Ogasawara island arc, which hosts the large Hakurei hydrothermal field. We improved the conventional correction method applied for removing the effect of vehicle magnetization, thus greatly enhancing the precision of the resulting vector anomalies. The magnetization distribution obtained from the vector anomaly data shows a ˜2 km wide belt of high magnetization, trending NNW-SSE going through the caldera, and a low-magnetization zone ˜300 m by ˜500 m in area, extending over the Hakurei site. Comparison between the results obtained using the vector anomaly and the total intensity anomaly shows that the magnetic field is determined more accurately, especially in areas of sparse data distribution, when the vector anomaly rather than the total intensity anomaly is used. We suggest a geologically motivated model that basaltic volcanism associated with the back-arc rifting occurred after the formation of the caldera, resulting in the formation of the high-magnetization belt underneath the silicic caldera. The Hakurei hydrothermal field lies in the intersection of the basaltic volcanism belt and the caldera wall fault, suggesting a mechanism that hot water generated by the heat of the volcanic activity has been spouting out through the caldera wall fault. The deposit apparently extends beyond the low-magnetization zone, climbing up the caldera wall. This may indicate that hot water rising from the deep through the alteration zone is transported laterally when it comes near the seafloor along fissures and fractures in the caldera wall.

  7. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Melchert, B.; Devey, C. W.; German, C. R.; Lackschewitz, K. S.; Seifert, R.; Walter, M.; Mertens, C.; Yoerger, D. R.; Baker, E. T.; Paulick, H.; Nakamura, K.

    2008-10-01

    During segment-scale studies of the southern Mid-Atlantic Ridge (MAR), 7-12° S, we found evidence in the water column for high-temperature hydrothermal activity, off-axis, east of Ascension Island. Extensive water column and seafloor work using both standard CTD and deep submergence AUV and ROV deployments led to the discovery and sampling of the "Drachenschlund" ("Dragon Throat") black smoker vent at 8°17.87' S/13°30.45' W in 2915 m water depth. The vent is flanked by several inactive chimney structures in a field we have named "Nibelungen". The site is located 6 km south of a non-transform offset between two adjacent 2nd-order ridge-segments and 9 km east of the presently-active, northward-propagating A2 ridge-segment, on a prominent outward-facing fault scarp. Both vent-fluid compositions and host-rock analyses show this site to be an ultramafic-hosted system, the first of its kind to be found on the southern MAR. The thermal output of this single vent, based on plume rise-height information, is estimated to be 60 ± 15 MW. This value is high for a single "black smoker" vent but small for an entire field. The tectonic setting and low He content of the vent fluids imply that high-temperature off-axis venting at "Drachenschlund" is driven not by magmatic processes, as at the majority of on-axis hydrothermal systems, but by residual heat "mined" from the deeper lithosphere. Whether this heat is being extracted from high-temperature mantle peridotites or deep crustal cumulates formed at the "duelling" non-transfrom offset is unclear, in either case the Drachenschlund vent provides the first direct observations of how cooling of deeper parts of the lithosphere, at least at slow-spreading ridges, may be occurring.

  8. Seawater bicarbonate removal during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  9. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been

  10. Hydrothermal Processing

    SciTech Connect

    Elliott, Douglas C.

    2011-03-11

    This chapter is a contribution to a book on Thermochemical Conversion of Biomass being edited by Prof. Robert Brown of Iowa State University. It describes both hydrothermal liquefaction and hydrothermal gasification of biomass to fuels.

  11. Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field - a multidisciplinary deep-sea observatory approach.

    PubMed

    Cuvelier, Daphne; Legendre, Pierre; Laes, Agathe; Sarradin, Pierre-Marie; Sarrazin, Jozée

    2014-01-01

    The NEPTUNE cabled observatory network hosts an ecological module called TEMPO-mini that focuses on hydrothermal vent ecology and time series, granting us real-time access to data originating from the deep sea. In 2011-2012, during TEMPO-mini's first deployment on the NEPTUNE network, the module recorded high-resolution imagery, temperature, iron (Fe) and oxygen on a hydrothermal assemblage at 2186 m depth at Main Endeavour Field (North East Pacific). 23 days of continuous imagery were analysed with an hourly frequency. Community dynamics were analysed in detail for Ridgeia piscesae tubeworms, Polynoidae, Pycnogonida and Buccinidae, documenting faunal variations, natural change and biotic interactions in the filmed tubeworm assemblage as well as links with the local environment. Semi-diurnal and diurnal periods were identified both in fauna and environment, revealing the influence of tidal cycles. Species interactions were described and distribution patterns were indicative of possible microhabitat preference. The importance of high-resolution frequencies (<1 h) to fully comprehend rhythms in fauna and environment was emphasised, as well as the need for the development of automated or semi-automated imagery analysis tools. PMID:24810603

  12. Spatial distribution of microbial communities in the shallow submarine alkaline hydrothermal field of the Prony Bay, New Caledonia.

    PubMed

    Quéméneur, Marianne; Bes, Méline; Postec, Anne; Mei, Nan; Hamelin, Jérôme; Monnin, Christophe; Chavagnac, Valérie; Payri, Claude; Pelletier, Bernard; Guentas-Dombrowsky, Linda; Gérard, Martine; Pisapia, Céline; Gérard, Emmanuelle; Ménez, Bénédicte; Ollivier, Bernard; Erauso, Gaël

    2014-12-01

    The shallow submarine hydrothermal field of the Prony Bay (New Caledonia) discharges hydrogen- and methane-rich fluids with low salinity, temperature (< 40°C) and high pH (11) produced by the serpentinization reactions of the ultramafic basement into the lagoon seawater. They are responsible for the formation of carbonate chimneys at the lagoon seafloor. Capillary electrophoresis single-strand conformation polymorphism fingerprinting, quantitative polymerase chain reaction and sequence analysis of 16S rRNA genes revealed changes in microbial community structure, abundance and diversity depending on the location, water depth, and structure of the carbonate chimneys. The low archaeal diversity was dominated by few uncultured Methanosarcinales similar to those found in other serpentinization-driven submarine and subterrestrial ecosystems (e.g. Lost City, The Cedars). The most abundant and diverse bacterial communities were mainly composed of Chloroflexi, Deinococcus-Thermus, Firmicutes and Proteobacteria. Functional gene analysis revealed similar abundance and diversity of both Methanosarcinales methanoarchaea, and Desulfovibrionales and Desulfobacterales sulfate-reducers in the studied sites. Molecular studies suggest that redox reactions involving hydrogen, methane and sulfur compounds (e.g. sulfate) are the energy driving forces of the microbial communities inhabiting the Prony hydrothermal system. PMID:25756120

  13. Constraints on biotic and abiotic role in the formation of Fe-Si oxides from the PACMANUS hydrothermal field

    NASA Astrophysics Data System (ADS)

    Yang, Baoju; Zeng, Zhigang; Qi, Haiyan; Wang, Xiaoyuan; Ma, Yao; Rong, Kunbo

    2015-12-01

    Fe-Si oxide deposits were recovered from the PACMANUS (Papua New Guinea-Australia-Canada-Manus) hydrothermal field in Eastern Manus basin. Samples were loose and fragile. Optical and scanning electron microscopy showed that the samples had abundant rod-like or twisted filamentous and granular structures. Electron probe microanalysis revealed that these filaments and grains were mainly composed of Fe and Si. The presence of spherical grains on the surface of the filaments suggests the intergrowth of biotic and abiotic reactions. Biotic and abiotic kinetics competition always exists in the redox gradient. Based on the physico-chemical conditions of PACMANUS hydrothermal fluids, we calculated a strict abiotic oxidation rate of Fe2+ to Fe3+, which is approximately 0.0123 g/min. If the fluids had been erupting consistently and the concentration of Fe2+ was constant, 3.232 kg per year of Fe would be deposited in this vent. The amount of Fe oxides around the studied vent was larger than the amount determined by strict abiotic kinetic calculation. Bacteria may also play an important role in Fe oxidation. A mesh-like microenvironment constructed by biogenic filaments ensured adequate Fe2+ and low oxygen content for the growth of bacteria. Moreover, this structure promoted the deposition of abiotic Fe-Si oxides.

  14. Anomalous quartz from the Roter Kamm impact crater, Namibia: Evidence for post-impact hydrothermal activity

    SciTech Connect

    Koeberl, C. Univ. of Vienna ); Fredriksson, K. ); Goetzinger, M. ); Reimold, W.U. )

    1989-08-01

    Centimeter-sized quartz pebbles have been found on the rim of the Roter Kamm impact crater. The Roter Kamm crater has a diameter of about 2.5 km and is situated in the Namib Desert, SWA/Namibia. Because of the sand coverage, impact products are exposed exclusively in the form of ejecta on the crater rim. The quartz pebbles were found close to the main deposits of the impact breccias and show signs of wind abrasion. Thin sections revealed that the pebbles consist of individual quartz domains that are up to 1 mm in size. Under crossed nicols (polarized light), all individual domains show extinction almost simultaneously within {plus minus}2{degree}, which is a rare phenomenon. Microprobe studies, neutron activation analyses, and X-ray diffractometry confirmed that the material consists of pure quartz. The quartz contains three different types of fluid inclusions: primary inclusions that record the formation conditions of the quartz, very small (<1 {mu}m) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. Freezing point depression measurements of the primary inclusions indicate fluid salinities between 18.3 and 19.6 wt% NaCl. Homogenization temperatures (T{sub h}) for the primary inclusions range from 165 to 250{degree}C. The quartz and the primary inclusions may provide evidence for a post-impact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  15. Hydrothermal synthesis of ZTO/graphene nanocomposite with excellent photocatalytic activity under visible light irradiation.

    PubMed

    Ben Ali, Monaam; Yolcu, Haci Hasan; Elhouichet, Habib; Sieber, Brigitte; Addad, Ahmed; Boussekey, Luc; Moreau, Myriam; Férid, Mokhtar; Szunerits, Sabine; Boukherroub, Rabah

    2016-07-01

    A facile and efficient one-step hydrothermal approach for the synthesis of Zn2SnO4 nanoparticles/reduced graphene oxide (ZTO/rGO) nanocomposites using zinc acetate, tin chloride and graphene oxide (GO) as precursors, and sodium hydroxide as reducing agent has been developed. This approach allows simultaneous reduction of GO and growth of spinel ZTO nanoparticles (NPs) on the rGO sheets. The morphology and microstructure characterizations of ZTO/rGO nanocomposites revealed that this method leads to close interfacial contact of ZTO NPs and rGO and efficient dispersion of ZTO NPs on the surface of rGO sheets. The photocatalytic activity of the ZTO/rGO nanocomposite was investigated for the reduction of rhodamine B under visible light irradiation. Compared to pure ZTO NPs, ZTO/rGO nanocomposite exhibited superior photocatalytic activity with a full degradation of rhodamine B within 15min. The enhanced photocatalytic performance of ZTO/rGO was mainly attributed to excellent electron trapping and effective adsorption properties of rGO. PMID:27054768

  16. Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities.

    PubMed

    Chen, Ping; Xiao, Tian-Yuan; Li, Hui-Hui; Yang, Jing-Jing; Wang, Zheng; Yao, Hong-Bin; Yu, Shu-Hong

    2012-01-24

    Nitrogen-doped graphene (GN) has great potential applications in many fields because doping with nitrogen can alter the electrical properties of graphene. It is still a challenge to develop a convenient method for synthesis of GN sheets. In this paper, we first report the synthesis of a nitrogen-doped graphene/ZnSe nanocomposite (GN-ZnSe) by a one-pot hydrothermal process at low temperature using graphene oxide nanosheets and [ZnSe](DETA)(0.5) nanobelts as precursors. ZnSe nanorods composed of ZnSe nanoparticles were found to deposit on the surface of the GN sheets. The results demonstrated that [ZnSe](DETA)(0.5) nanobelts were used not only as the source of ZnSe nanoparticles but also as the nitrogen source. Interestingly, it was found that the as-prepared nanocomposites exhibit remarkably enhanced electrochemical performance for oxygen reduction reaction and photocatalytic activities for the bleaching of methyl orange dye under visible-light irradiation. This facile and catalyst-free approach for depositing ZnSe nanoparticles onto the graphene sheets may provide an alternative way for preparation of other nanocomposites based on GN sheets under mild conditions, which show their potential applications in wastewater treatment, fuel cells, energy storage, nanodevices, and so on. PMID:22136425

  17. Abundance of volatile and organic species in intermediate temperature fluids from the Von Damm and Piccard deep sea hydrothermal fields, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; Reeves, E. P.; German, C. R.; Sylva, S. P.; Klein, F.

    2012-12-01

    Two recently discovered submarine hydrothermal systems at the ultra-slow spreading Mid-Cayman Rise provide a unique opportunity to investigate how mixing and cooling influence hydrothermal fluid chemistry at the deepest-yet discovered, basalt-hosted Piccard vent field (4960m) and at the Von Damm vent field (2300m), postulated to be ultramafic-hosted. Vent fluids were collected in January 2012 during R/V Atlantis cruise AT18-16 with gas-tight samplers deployed by the ROV Jason II, allowing the characterization and quantification of redox-reactive volatile species and organic compounds. Von Damm vent fluids ranged in temperature from 21 to 226°C, whereas Piccard fluids ranged from 45 to 398°C. A key feature of these systems is the variety of fluids that were actively venting from the seafloor at 100 to 200°C, substantially cooler than the hottest fluids observed at either site. The lower temperatures reflect subsurface seawater mixing and/or conductive heat loss. Fluids venting within this temperature range have rarely been sampled at other systems, and the Cayman fluids thus present an excellent opportunity to study the effect of cooling and mixing processes on enriched volatile species such as H2, H2S, CO2 and CH4. Three dominant processes are thought to affect volatile and organic species in intermediate temperature fluids. These include microbial consumption or production, thermal alteration of biomass, and abiotic reactions. The effect of these processes on fluid compositions carries implications for carbon utilization and metabolic activity of modern microbial populations hosted within hydrothermal mineral deposits and ascending plumes, carbon cycling within hydrothermal systems, and net geochemical fluxes to the ocean. Endmember CO2 concentrations at Von Damm range from slightly enriched relative to seawater in the highest temperature fluids, to measurably depleted in the cooler fluids. Such CO2 depletions have not been previously observed in other acidic

  18. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  19. Thermal zonation of microbial biogeography in the hydrothermal fields of Guaymas Basin: insights into the limits of life

    NASA Astrophysics Data System (ADS)

    Mckay, L. J.; Klokman, V.; Teske, A.

    2013-12-01

    Hydrothermally active sediments at Guaymas Basin are rich in organic substrates and host a wide range of shallow subsurface temperatures: from 3°C to 200°C in the upper 45 centimeters. High temperatures and hydrothermal flow cause upward compression of metabolic zones in Guaymas Basin seafloor sediments. Using push core samples collected by the Alvin submersible (Cruises AT15-40 and 56 in 2008 and 2009) we are investigating thermal structure and carbon and sulfur substrate utilization and their influence on microbial biogeography. As a proxy for viable microbial life total RNA is being extracted from seven high temperature cores that approach, and in three of the cores surpass the upper temperature limit for life at 122°C (Takai et al., 2008). We are using reverse transcription PCR and subsequent pyrosequencing of the V5-V8 region of 16S rRNA to determine key hyperthermophilic archaeal and bacterial groups as well as the upper thermal limit for microbial life in situ. Porewater concentrations of sulfur species and concentrations and isotopic values of carbon species have been investigated in parallel to our high temperature cores. A combination of pyrosequencing data and porewater geochemistry profiles of carbon and sulfur species will help to elucidate the boundaries of life and provide insight into physiological mechanisms under extreme environmental conditions.

  20. The Role of Polyvinylpyrrolidone in Hydrothermally Synthesized Ag/ZnO Nanocomposites and Their Photocatalytic Activities.

    PubMed

    Mavrič, Tina; Emin, Saim; Valant, Matjaž; Peng, Wenqin; Stangar, Urkaška Lavrenčič

    2015-09-01

    Here we present a simple hydrothermal route for the preparation of photoactive ZnO and Ag/ZnO nanoparticles (NPs) synthesized in the presence and absence of polyvinylpyrrolidone (PVP). The low temperature synthesis is carried out in ethylene glycol (EG) medium at 180 degrees C, where EG is used as a reducing agent for the Ag+ ions. PVP is exploited as a size confining matrix for the Ag NPs. The present synthetic protocol allows the preparation of ZnO nanorods (NRs) with typical lengths of -200 nm and Ag/ZnO NPs with typical sizes of -100 nm. The photocatalytic activity of the as-prepared nanomaterials was tested for degradation of model pollutant methyl orange (MO) dye and terephthalic acid (TPA). We found that the Ag/ZnO NPs synthesized in PVP showed higher photoactivity than the commercial TiO2 (P25) powder or ZnO and Ag/ZnO NPs synthesized without PVP. PMID:26716210

  1. Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dublyansky, Y. V.

    2014-08-01

    A unique conceptual model describing the conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE to keep from considering hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. The evaluation presented in this paper shows that no computational modeling results have yet produced a satisfactory match with the empirical benchmark data, specifically with age and fluid inclusion data that indicate high temperatures (up to ca. 80 °C) in the unsaturated zone of Yucca Mountain. Auxiliary sub-models complementing the DOE model, as well as observations at a natural analog site, have also been evaluated. Summarily, the model cannot be considered as validated. Due to the lack of validation, the reliance on this model must be discontinued and the appropriateness of decisions which rely on this model must be re-evaluated.

  2. P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method

    NASA Astrophysics Data System (ADS)

    Niu, Jinfen; Lu, Pan; Kang, Mei; Deng, Kunfa; Yao, Binghua; Yu, Xiaojiao; Zhang, Qian

    2014-11-01

    Phosphorous-doped anatase TiO2 powders (P-TiO2) were prepared by rapid microwave hydrothermal method. The resulting materials were characterized by XRD, SEM, XPS, DRS and N2 adsorption. P-doping decreased the band gap and enlarged the surface area of P-doped samples than that of undoped TiO2 samples. Therefore, the photocatalytic degradation of methyl blue (MB) and tetracycline hydrochloride (Tc) experiments showed that the P-TiO2 catalysts, especially the two-steps-controlling products P-TiO2-2, exhibited higher degradation efficiency than the undoped TiO2 and commercial P25 under visible-light irradiation. Hydroxyl radicals (rad OH) have been confirmed to be the active species during the photocatalytic oxidation reaction. The microwave hydrothermal method confirms to be very suitable for the synthesis of superior visible-light activity P-doped samples.

  3. Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African Rift

    NASA Astrophysics Data System (ADS)

    Tiercelin, Jean-Jacques; Thouin, Catherine; Kalala, Tchibangu; Mondeguer, André

    1989-11-01

    Massive sulfides and carbonate mineral deposits associated with sublacustrine thermal springs were recently discovered along the Zaire side of the north Tanganyika trough, western branch of the East African Rift. This hydrothermal activity, investigated by scuba diving at a maximum depth of 20 m, is located at the intersection of major north-south normal faults and northwest-southeast faults belonging to the Tanganyika-Rukwa-Malawi (TRM) strike-slip fault zone. The preliminary results presented here come from analyses of sulfide deposits, hydrothermal fluids, and associated hydrocarbons that result from geothermal activity in this part of the East African Rift filled by a thick pile of sediment, the north Tanganyika trough.

  4. Using the VentCam and Optical Plume Velocimetry to Measure High-Temperature Hydrothermal Fluid Flow Rates in the ASHES Vent Field on Axial Volcano

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Mittelstaedt, E. L.; Fornari, D. J.

    2014-12-01

    Fluid flow rates through high-temperature mid-ocean ridge hydrothermal vents are likely quite sensitive to poroelastic forcing mechanisms such as tidal loading and tectonic activity. Because poroelastic deformation and flow perturbations are estimated to extend to considerable depths within young oceanic crust, observations of flow rate changes at seafloor vents have the potential to provide constraints on the flow geometry and permeability structure of the underlying hydrothermal systems, as well as the quantities of heat and chemicals they exchange with overlying ocean, and the potential biological productivity of ecosystems they host. To help provide flow rate measurements in these challenging environments, we have developed two new optical flow oriented technologies. The first is a new form of Optical Plume Velocimetry (OPV) which relies on single-frame temporal cross-correlation to obtain time-averaged image velocity fields from short video sequences. The second is the VentCam, a deep sea camera system that can collect high-frame-rate video sequences at focused hydrothermal vents suitable for analysis with OPV. During the July 2014 R/V Atlantis/Alvin expedition to Axial Seamount, we deployed the VentCam at the ~300C Phoenix vent within the ASHES vent field and positioned it with DSRV Alvin. We collected 24 seconds of video at 50 frames per second every half-hour for approximately 10 days beginning July 22nd. We are currently applying single-frame lag OPV to these videos to estimate relative and absolute fluid flow rates through this vent. To explore the relationship between focused and diffuse venting, we deployed a second optical flow camera, the Diffuse Effluent Measurement System (DEMS), adjacent to this vent at a fracture within the lava carapace where low-T (~30C) fluids were exiting. This system collected video sequences and diffuse flow measurements at overlapping time intervals. Here we present the preliminary results of our work with VentCam and OPV

  5. Identification and characterization of the active hydrothermal deposits in Okinawa Trough, SW Japan: Estimates from logging-while-drilling

    NASA Astrophysics Data System (ADS)

    Saito, S.; Sanada, Y.; Moe, K.; Kido, Y. N.; Hamada, Y.; Kumagai, H.; Nozaki, T.; Takai, K.; Suzuki, K.

    2015-12-01

    A scientific drilling expedition was conducted at an active hydrothermal field on the Iheya-North Knoll by D/V Chikyu in 2014 (Expedition 907) as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program. During the expedition logging while drilling (LWD) was deployed to constrain the area of the fluid reservoir beneath seafloor followed by three coring holes down to 150 meter below the seafloor (mbsf). The LWD system is composed of arcVISION for resistivity and natural gamma ray measurement and TeleScope for real-time transmission of drilling parameters and arcVISION data. Five sites (C9011-15) at the Iheya-North Original Site and one site (C9016) at Aki Site were drilled with LWD. At C9012 and C9016, the arcVISION detected temperature anomaly up to 84℃ at 234 mbsf and up to 39℃ at 80 mbsf, respectively. The temperature quickly increases at that depth and it would reflect the existence of high-temperature heat source along borehole. Due to the continuous fluid circulation during drilling, the measured temperature does not indicate in-situ temperature, but it reflects the heat disturbed by the cold circulated water instead. High quality resistivity and natural gamma ray data were acquired at six sites. The log curves at Site C9016 show characteristic response; the natural gamma ray log exhibits extremely high radiation (>500 gAPI) at 7-13 and 23-31 mbsf (Zone A). In the underlying interval of 31-40 mbsf, the resistivity log exhibits extremely low value (<0.2 ohm-m) (Zone B). Then the resistivity log exhibits higher value (~10 ohm-m) and the natural gamma ray log shows very low radiation (<50 gAPI) at the interval of 41-48 mbsf (Zone C). The log characteristics in Zone A, B, and C can be interpreted as a series of K-rich alteration zone, sulfide zone, and low-K hard (silicified) sediments, respectively. The LWD-based lithological interpretation was confirmed by the following core description

  6. Development And Application Of A Hydrothermal Model For The Salton Sea Geothermal Field, California

    SciTech Connect

    Kasameyer, P.; Younker, L.; Hanson, J.

    1984-01-01

    A simple lateral flow model adequately explains many of the features associated with the Salton Sea Geothermal Field. Earthquake swarms, a magnetic anomaly, and aspects of the gravity anomaly are all indirect evidence for the igneous activity which is the ultimate source of heat for the system. Heat is transferred from this area of intrusion by lateral spreading of hot water in a reservoir beneath an impermeable cap rock. A two dimensional analytic model encompassing this transport mechanism matches general features of the thermal anomaly and has been used to estimate the age of the presently observed thermal system. The age is calculated by minimizing the variance between the observed surface heat-flow data and the model. Estimates of the system age for this model range from 3,000 to 20,000 years.

  7. Calcium isotope (δ 44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14°45'N)

    NASA Astrophysics Data System (ADS)

    Amini, Marghaleray; Eisenhauer, Anton; Böhm, Florian; Fietzke, Jan; Bach, Wolfgang; Garbe-Schönberg, Dieter; Rosner, Martin; Bock, Barbara; Lackschewitz, Klas S.; Hauff, Folkmar

    2008-08-01

    We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45'N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca] SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca] HydEnd) and thereby adopts a δ 44/40Ca HydEnd of -0.95 ± 0.07‰ relative to seawater (SW) and a 87Sr/ 86Sr isotope ratio of 0.7034(4). We demonstrate that δ 44/40Ca HydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a δ 44/40Ca of -1.17 ± 0.04‰ (SW) for the host-rocks in the reaction zone and -1.45 ± 0.05‰ (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed δ 44/40Ca for Bulk Earth of -0.92 ± 0.18‰ (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about Δ 44/40Ca = -0.5‰ relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low

  8. A Fluorescein Tracer Release Experiment in the Hydrothermally Active Crater of Vailulu'u Volcano, Samoa

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Staudigel, H.; Workman, R.; Koppers, A.; Girard, A.

    2001-12-01

    Vailulu'u (Rockne) volcano marks the active end of the Samoa hotspot chain. The volcano is 4400 meters high, with a summit crater 2000 meters wide by 400 meters deep and summit peaks reaching to within 600 meters of the sea surface. The crater is hydrothermally active, as witnessed by intense particulate concentrations in the water column (values to 1.4 NTU's), a particulate smog ``halo'' surrounding the summit and extending out many kilometers, high Mn concentrations and 3He/4He ratios (values to 3.8 ppb and 8.6 Ra, respectively), and bottom-water temperature anomalies of 0.5oC. Basalts from the crater have been dated in the range 5-50 years, and likely reflect eruptions associated with a 1995 earthquake swarm. On April 3, 2001, we released a 20 kg point-source charge of fluorescein dye 30 meters above the 975m deep crater floor. The dye was dissolved in a 180 liter mixture of propanol and water, adjusted to a density 1.3 per mil heavier than the ambient water at the release depth. Released from a rubberized bag by means of a galvanic link. First detection of the released dye was 39 hours after the deployment; the dye was in a 50 meter thick layer, with a concentration peak at 900 meters (relative to the release depth of 945m). Tracking was carried out by a CTD-based fluorometer operated in tow-yo mode from the U.S.C.G. Icebreaker Polar Sea. The detection limit was 25 picograms/gram, and the maximum detected concentration was 18,000 pg/g (if evenly dispersed in the lower 150 meters of water in the crater, the expected concentration would be approx. 130 pg/g). While the dye pool was only surveyed for 4 days due to ship-transit constraints, significant horizontal and vertical dispersion was apparent. Vertical dispersion velocities were typically 0.05 cm/sec; horizontal velocities were typically higher by a factor of 10. An approximate diapycnal or eddy diffusivity, K, can be calculated from the rate of vertical spreading of the dye layer: K = Z2/2(t-t0), where Z is

  9. Recent Investigation of In-Situ pH in Hydrothermal Vent Fluids at Main Endeavour Field (MEF) and ASHES Vent Field (ASHES): Implications for Dynamic Changes in Subseafloor Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Ding, K.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.

    2014-12-01

    In-situ pH is among the key factors affecting chemical reactions involved with fluid-rock interaction and metal transport in hydrothermal systems. A small variation in pH will often result in a large difference in dissolved metal concentrations. For instance, at 400oC, a decrease of ~0.15 pH unit will cause dissolved Fe concentration to double in fluid coexisting with a Fe-bearing mineral assemblage. This parameter also offers us an opportunity to better understand processes controlling the temporal evolution of hydrothermal vent fluid chemistry at mid-ocean ridges. During our recent cruise AT 26-17 with newly upgraded DSV2 Alvin, in-situ measurements of pH were carried out along with gas-tight sampling of vent fluids. Our efforts were focused at MEF and ASHES on the Juan de Fuca Ridge. These hydrothermal systems have been shown to be particularly responsive to subseafloor seismic and magmatic events. The measured fluid temperature was approximately 333˚C and 300˚C at Dante vent orifice of MEF and Inferno vent orifice of ASHES, respectively. The corresponding measured in-situ pH values for both vents are: 4.94 and 4.88, respectively. Dissolved gases and other species were also measured from gas-tight fluid samples providing a means of comparison with the in-situ data. As we have known the earthquake and magmatic activity often places the system at higher temperature and more reducing conditions in connection with a new evolutionary cycle. Comparing these relatively low in-situ pH values with those measured in the past, especially with the ones obtained at MEF in 1999 after an intense swarm of earthquakes, we see the system trending towards more acidic conditions along with decreasing temperature and dissolved H2 and H2S. Taking an example from Dante vent site, in-situ pH value of 5.15 was recorded with a measured temperature of 363oC two month after the event in 1999, which gives 0.2 pH unit greater than the more recent data. Measured dissolved H2 and H2S

  10. Enceladus and Europa: How Does Hydrothermal Activity Begin at the Surface?

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    The question of how the surface hydrothermal activity (e.g., eruptive plumes and heat flow) is initiated can be addressed within the frame-work of our "Perrier Ocean" model. This model delivers the necessary heat and chemicals to support the heat flow and plumes observed by Cassini in Enceladus' South Polar Region. The model employs closed-loop circulation of water from a sub-surface ocean. The ocean is the main reservoir of heat and chemicals, including dissolved gases. As ocean water moves up toward the surface, pressure is re-duced and gases exsolve forming bubbles. This bub-bly mixture is less dense than the icy crust and the buoyant ocean-water mixture rises toward the surface. Near the surface, heat and chemicals, including some volatiles, are delivered to the chambers in which plumes form and also to shallow reservoirs that keep the surface ice "warm". (Plume operations, per se, are as described by Schmidt et al. and Postberg et al. and are adopted by us.) After transferring heat, the water cools, bubbles contract and dissolve, and the mixture is now relatively dense. It descends through cracks in the crust and returns to the ocean. Once the closed-loop circulation has started it is self-sustaining. Loss of water via the erupting plumes is relatively negligible compared to the amount needed to maintain the heat flow.We note that the activity described herein for the the "Perrier-Ocean" model could, a priori, apply to all small icy bodies that sheltered an interior ocean at some point in their history.

  11. Older Hydrothermal Activity along the Northern Yellowstone Caldera Margin at Sulphur Creek, Yellowstone Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Manion, J. L.; Larson, P.

    2008-12-01

    The Tuff of Sulphur Creek (480 ka) is well exposed in the Seven Mile Hole area of the Grand Canyon of the Yellowstone River, Yellowstone National Park, Wyoming. The rhyolitic tuff erupted after the collapse of the Yellowstone Caldera (640 ka) and hosts more than 350 vertical meters of hydrothermal alteration. Two epithermal alteration assemblages with different mineral associations have been identified in the area: an illite-silica-pyrite phase and a kaolinite-alunite-silica-pyrite phase. Kaolinite and opal occur along the canyon rim, montmorillonite and other smectites are found at intermediate depths, and illite and sulfides (pyrite) are found deepest in the section. Our work on the north side of the Sevenmile Hole altered area has found a complex system of veining. The veins are concentrated in the eastern portion of the canyon and are less frequent to the west. Brecciated cross-cutting veins ranging from 2 to 30cm wide are found at the base of the canyon. Moving vertically up the canyons walls, the veining style becomes less complex. These veins are about 1 to 1.5cm wide and are not brecciated, occurring less frequently than the brecciated veins. The canyon walls and the canyon rim mainly contain millimeter-scale cross-cutting silica veinlets. These stockwork-like veinlets are the most abundant fracture filling that we find throughout the canyon walls. Veins at the base of the system, found in the stream bed, contain abundant sulfides (mainly pyrite). Sulfides are present in three forms: disseminated in a silica matrix, as massive pyrite in healed fractures, and encrusting clays and silica. The latter is the least common. Disseminated and massive sulfides are typically associated with the matrix in the brecciated veins. Breccias include angular clasts of altered tuff with argillized feldspar phenocrysts and fragments of earlier vein-filling opal. Sulfides are most abundant in the bottom of the canyon and in the western part of the field area. Hydrothermal

  12. Hypnocyclicus thermotrophus gen. nov., sp. nov. isolated from a microbial mat in a hydrothermal vent field.

    PubMed

    Roalkvam, Irene; Bredy, Florian; Baumberger, Tamara; Pedersen, Rolf-B; Steen, Ida Helene

    2015-12-01

    The bacterial strain, IR-2T, was isolated from a microbial mat sampled near a hydrothermal vent in the Greenland Sea. Phylogenetic analysis, based on the 16S rRNA gene, showed that the closest relatives of IR-2T were Ilyobacter tartaricus, Ilyobacter insuetus, Propionigenium modestum and Fusobacterium varium (91 % 16S rRNA gene sequence similarity). The cells of the novel strain were Gram-stain-negative and pleomorphic; changing from long motile rods to non-motile ring structures during the growth cycle. Growth occurred at 20-55 °C (optimally at 48 °C), with 1-6 % (w/v) NaCl (optimally with 2 %), and at pH 5.3-8.0 (optimally at pH 6.0-8.0). The strain had obligate fermentative growth on various sugars and yeast extract. The DNA G+C content of strain IR-2T was 25.7 mol%. The cell sugars comprised mainly ribose, mannose and glucose, while the main polar lipids were glycolipids, phospholipids, phosphatidylglycerol and diphosphatidylglycerol. The fatty acid content of strain IR-2 was dominated by saturated and unsaturated iso-branched or anteiso-branched forms. Strain IR-2 represents a novel genus and species, for which the name Hypnocyclicus thermotrophus gen. nov., sp. nov. is proposed. The type strain is IR-2T ( = DSM 100055 = JCM 30901). PMID:26373292

  13. Active Volcanic and Hydrothermal Processes at NW Rota-1 Submarine Volcano: Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Butterfield, D. A.; Chadwick, W. W.; de Ronde, C.; Dower, J.; Evans, L.; Hein, J.; Juniper, K.; Lebon, G.; Lupton, J. E.; Merle, S.; Metaxas, A.; Nakamura, K.; Resing, J. E.; Roe, K.; Stern, R.; Tunnicliffe, V.

    2004-12-01

    Dives with the remotely operated vehicle ROPOS in March/April 2004 documented a volcanic eruption at NW Rota-1, a submarine volcano of basaltic composition located at 14\\deg 36.0'N, 144\\deg 46.5'E lying 65 km northwest of Rota Island in the Commonwealth of the Northern Mariana Islands. The site was chosen as a dive target because of the of the high concentrations of H2S and alunite in the hydrothermal plume overlying its summit in February 2003. The summit of the volcano is composed of curvilinear volcanic ridge oriented NW-SE bounded by NE-SW trending normal faults. Lavas collected on the upper part of the edifice are primitive to moderately fractionated basalts (Mg# = 51-66). The eruptive activity is occurring within a small crater (Brimstone Pit) located on the upper south flank of the volcano at 550 m, about 30 m below the summit. The crater is approximately 15 m wide and at least 20 meters deep. The ROPOS's cameras observed billowing clouds of sulfur-rich fluid rising out of the crater, punctuated by frequent bursts of several minutes duration that entrained glassy volcanic ejecta up to at least 2 cm in diameter. ROPOS recorded a temperature of 38\\degC within the plume. The volcanic activity had substantial temporal variability on the scale of minutes. ROPOS was sometimes completely enveloped by the plume while on the rim of the crater, and its surfaces were coated with large sulfur droplets. Black glassy fragments were entrained in the plume up to least 50 m above the crater and deposits of this material were on ledges and tops of outcrops up to several hundred meters from Brimstone Pit. The pit crater fluids have an extremely high content of particulate sulfur and extremely acidic, with pH around 2.0. This strongly implicates magmatic degassing of SO2 and disproportionation into elemental S and sulfuric acid. Diffuse venting of clear fluids was also present on the summit of the volcano, with temperatures exceeding 100\\degC in volcaniclastic sands

  14. Relations between electrical resistivity, carbon dioxide flux, and self-potential in the shallow hydrothermal system of Solfatara (Phlegrean Fields, Italy).

    NASA Astrophysics Data System (ADS)

    Byrdina, Svetlana; Vandemeulebrouck, Jean; Cardellini, Carlo; Legaz, Aurelie; Camerlynck, Christian; Chiodini, Giovanni; Lebourg, Thomas; Letort, Jean; Motos, Ghislan; Carrier, Aurore; Bascou, Pascale

    2014-05-01

    In the frame of the Geo-Supersite Med-Suv project, we present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, Phlegrean Fields, Italy. This ensemble of methods aims to image the hydrothermal system of Solfatara, understand the geometry of the fluid circulation, and precise the extension of the hydrothermal plume evidenced by Bruno et al. (2007). Solfatara is the most active crater of Phlegrean Fields, characterized by an intense carbon dioxide degassing, about 1500 T/day (Chiodini et al, 2005). Its main structures are Bocca Grande fumarole and several lesser fumaroles aligned along two normal faults, and Fangaia mud pool where the aquifer reaches the surface. Solfatara appears as a globally conductive structure, with resistivity in the range 1 - 100 Ohmm. Comparison between spatial variations of resistivity and gas flux rate indicates that resistivity changes at depth are related to gas ratio content and the fluid temperature. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of the Bocca Grande suggests a significant downward flow of condensing liquid water. Our results delineate several distinct zones: 1) a vegetation-covered area, relatively undisturbed by a hydrothermal activity and characterized by a high resistivity (up to 100 Ohm-m) of the shallow layer (vadose zone), and low carbon dioxide flux. In this area, self-potential takes zero or positive values with little spatial variations. 2) In the central part, below a superficial vadose zone, a resistive layer (20 - 100 Ohm-m), between 30 - 100 m depth, interpreted as a gas-saturated body, is systematically overlain by a conductive aquifer (1 - 5 Ohm-m). In this area, the self-potential displays a negative anomaly with an average value of -100 mV and the carbon dioxide flux is > 1000 g m-2day-1. 3) Close to Bocca Grande fumarole, the

  15. Recent uplift and hydrothermal activity at Tangkuban Parahu volcano, west Java, Indonesia

    USGS Publications Warehouse

    Dvorak, J.; Matahelumual, J.; Okamura, A.T.; Said, H.; Casadevall, T.J.; Mulyadi, D.

    1990-01-01

    Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40-50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very

  16. Discovery of New Hydrothermal Activity and Chemosynthetic Fauna on the Central Indian Ridge at 18°–20°S

    PubMed Central

    Nakamura, Kentaro; Watanabe, Hiromi; Miyazaki, Junichi; Takai, Ken; Kawagucci, Shinsuke; Noguchi, Takuro; Nemoto, Suguru; Watsuji, Tomo-o; Matsuzaki, Takuya; Shibuya, Takazo; Okamura, Kei; Mochizuki, Masashi; Orihashi, Yuji; Ura, Tamaki; Asada, Akira; Marie, Daniel; Koonjul, Meera; Singh, Manvendra; Beedessee, Girish; Bhikajee, Mitrasen; Tamaki, Kensaku

    2012-01-01

    Indian Ocean hydrothermal vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean hydrothermal systems. In particular, since its discovery in 2001, much attention has been paid to a so-called ‘scaly-foot’ gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean hydrothermal vents, only two hydrothermal vent fields have been investigated in the Indian Ocean. Here we report two newly discovered hydrothermal vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR hydrothermal environments to date, and even identified previously unreported taxa. Moreover, a new morphotype of ‘scaly-foot’ gastropod has been found at the Solitaire field. The newly discovered ‘scaly-foot’ gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of ‘scaly-foot’ gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to ‘scaly-foot’ gastropods. Our new findings at the two newly discovered hydrothermal vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean. PMID:22431990

  17. Platelet-like hexagonal SrFe12O19 particles: Hydrothermal synthesis and their orientation in a magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Peng, Xiaoling; Li, Jing; Yang, Yanting; Xu, Jingcai; Wang, Panfeng; Jin, Dingfeng; Jin, Hongxiao; Hong, Bo; Wang, Xinqing; Ge, Hongliang

    2016-08-01

    Platelet-like hexagonal SrFe12O19 particles were prepared by hydrothermal synthesis, and the effects of molar ratio of Fe/Sr (RFe/Sr) on the phase compositions, morphologies and magnetic properties of as-prepared samples were investigated. The optimum RFe/Sr is identified as 8:1. The hexagonal platelet-like particles are nano-scale in thickness and micro-scale in diameter. The low coercivity is a consequence of the large shape anisotropy of the as-synthesized particles. The platelet-like hexagonal SrFe12O19 particles were then dispersed in epoxy resin and formed ordered arrangement structure which took root in the curing epoxy matrix under an external magnetic field of 8000 Oe. The microstructures, morphologies and magnetic properties of the bulk samples orientated and nonaligned were studied. The platelet-like particles arrange with the platelet perpendicular to the magnetic field direction in the orientated samples. This demonstrates that the easy axis of the particle is perpendicular to the platelet, and that the magnetocrystalline anisotropy still plays a leading role in the changing effective anisotropy with the rapidly growing shape anisotropy. The remanence (Mr) of the bulk samples is changed obviously after orientation, while the coercivity nearly remains constant. That is, the maximum energy products (BH)max can be effectively adjusted by given a suitable magnetic field.

  18. Conductive heat flow at the TAG Active Hydrothermal Mound: Results from 1993-1995 submersible surveys

    NASA Astrophysics Data System (ADS)

    Becker, K.; Von Herzen, R.; Kirklin, J.; Evans, R.; Kadko, D.; Kinoshita, M.; Matsubayashi, O.; Mills, R.; Schultz, A.; Rona, P.

    We report 70 measurements of conductive heat flow at the 50-m-high, 200-m-diameter TAG active hydrothermal mound, made during submersible surveys with Alvin in 1993 and 1995 and Shinkai 6500 in 1994. The stations were all measured with 5-thermistor, 0.6- or 1-m-long Alvin heat flow probes, which are capable of determining both gradient and thermal conductivity, and were transponder-navigated to an estimated accuracy of ±5-10 m relative to the 10-m-diameter central complex of black smokers. Within 20 m of this complex, conductive heat flow values are extremely variable (0.1- > 100 W/m²), which can only be due to local spatial and possible temporal variability in the immediate vicinity of the vigorous discharge sites. A similar local variability is suggested in the “Kremlin” area of white smokers to the southeast of the black smoker complex. On the south and southeast side of the mound, there is very high heat flow (3.7- > 25 W/m²) on the sedimented terraces that slope down from the Kremlin area. Heat flow is also high (0.3-3 W/m²) in the pelagic carbonate sediments on the surrounding seafloor within a few tens of meters of the southwest, northwest, and northeast sides of the mound. On the west side of the sulfide rubble plateau that surrounds the central black smoker peak, there is a coherent belt of very low heat flow (<20 mW/m²) 20-50 m west of the smokers, suggestive of local, shallow recharge of bottom water. The three submersible surveys spanned nearly two years, but showed no indication of any temporal variability in conductive heat flow over this time scale, whether natural or induced by ODP drilling in 1994.

  19. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: Evidence from trace and rare earth element composition

    NASA Astrophysics Data System (ADS)

    Zeng, Zhigang; Chen, Chen-Tung A.; Yin, Xuebo; Zhang, Xueying; Wang, Xiaoyuan; Zhang, Guoliang; Wang, Xiaomei; Chen, Daigeng

    2011-01-01

    We first report the trace and rare earth element compositions of native sulfur ball with sulfur contents varying from 97.08 wt.% to 99.85 wt.% from the Kueishantao hydrothermal field, off NE Taiwan. We then discuss the sources of trace and rare earth elements incorporated into the native sulfur ball during formation. Comparison of our results with native sulfur from crater lakes and other volcanic areas shows the sulfur content of native sulfur ball from the Kueishantao hydrothermal field is very high, and that the rare earth element (REE) and trace element constituents of the native sulfur balls are very low (∑REE < 35 ppb). In the native sulfur ball, V, Cr, Co, Ni, Nb, Rb, Cs, Ba, Pb, Th, U, Al, Ti and REE are mostly derived from andesite; Mg, K and Mn are mostly derived from seawater; and Fe, Cu, Zn and Ni are partly derived from magma. Based on the sulfur contents, trace and rare earth element compositions, and local environment, we suggest that the growth of the native sulfur ball is significantly slower than that of native sulfur chimneys, which results in the relatively higher contents of trace and rare earth element contents in the native sulfur ball than in the native sulfur chimneys from the Kueishantao hydrothermal field. Finally, we suggest a "glue pudding" growth model for understanding the origin of the native sulfur ball in the Kueishantao hydrothermal field, whereby the native sulfur ball forms from a mixture of oxygenated seawater and acidic, low-temperature hydrothermal fluid with H 2S and SO 2 gases, and is subsequently shaped by tidal and/or bottom currents.

  20. Novel Barite Chimneys at the Loki's Castle Vent Field Shed Light on Key Factors Shaping Microbial Communities and Functions in Hydrothermal Systems

    PubMed Central

    Steen, Ida H.; Dahle, Håkon; Stokke, Runar; Roalkvam, Irene; Daae, Frida-Lise; Rapp, Hans Tore; Pedersen, Rolf B.; Thorseth, Ingunn H.

    2016-01-01

    In order to fully understand the cycling of elements in hydrothermal systems it is critical to understand intra-field variations in geochemical and microbiological processes in both focused, high-temperature and diffuse, low-temperature areas. To reveal important causes and effects of this variation, we performed an extensive chemical and microbiological characterization of a low-temperature venting area in the Loki's Castle Vent Field (LCVF). This area, located at the flank of the large sulfide mound, is characterized by numerous chimney-like barite (BaSO4) structures (≤ 1 m high) covered with white cotton-like microbial mats. Results from geochemical analyses, microscopy (FISH, SEM), 16S rRNA gene amplicon-sequencing and metatranscriptomics were compared to results from previous analyses of biofilms growing on black smoker chimneys at LCVF. Based on our results, we constructed a conceptual model involving the geochemistry and microbiology in the LCVF. The model suggests that CH4 and H2S are important electron donors for microorganisms in both high-temperature and low-temperature areas, whereas the utilization of H2 seems restricted to high-temperature areas. This further implies that sub-seafloor processes can affect energy-landscapes, elemental cycling, and the metabolic activity of primary producers on the seafloor. In the cotton-like microbial mats on top of the active barite chimneys, a unique network of single cells of Epsilonproteobacteria interconnected by threads of extracellular polymeric substances (EPS) was seen, differing significantly from the long filamentous Sulfurovum filaments observed in biofilms on the black smokers. This network also induced nucleation of barite crystals and is suggested to play an essential role in the formation of the microbial mats and the chimneys. Furthermore, it illustrates variations in how different genera of Epsilonproteobacteria colonize and position cells in different vent fluid mixing zones within a vent field

  1. Intertidal rocky shore seaweed communities subject to the influence of shallow water hydrothermal activity in São Miguel (Azores, Portugal)

    NASA Astrophysics Data System (ADS)

    Wallenstein, Francisco M.; Couto, Ruben P.; Torrão, Daniel F.; Neto, Ana I.; Rodrigues, Armindo S.; Wilkinson, Martin

    2013-09-01

    The volcanic origin of the Azores archipelago (Portugal) gives rise to active deep sea and shallow water hydrothermal activity that affects benthic communities. Intertidal seaweed surveys were conducted at two shores affected by intense shallow water hydrothermal vents. Water temperature, acidity and salinity were monitored. Seaweed communities were found to be species poor and have a disproportionally larger number of filamentous early successional species on shores that are subject to the effect of hot and acidic freshwater of volcanic origin. There is an ecological resemblance between hydrothermally affected seaweed communities in the Azores and those affected by acid mine drainage in the UK, thus indicating that hydrothermalism can be a useful scenario for pollution studies under conditions of ocean warming and acidification.

  2. Investigation of hydrothermal activity at Campi Flegrei caldera using 3D simulations: extension to high temperature processes

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Costa, Antonio; Chiodini, Giovanni

    2015-04-01

    Hydrothermal activity at Campi Flegrei caldera is simulated by using the multiphase code MUFITS (www.mufits.imec.msu.ru). We provide a brief description of the simulator covering the mathematical formulation and its applicability at elevated supercritical temperatures. Then we apply, for the first time, the code to hydrothermal systems investigating the Campi Flegrei caldera case. We consider both shallow subcritical regions and deep supercritical regions of the hydrothermal system. We impose sophisticated boundary conditions at the surface to provide a better description of the reservoir interactions with the atmosphere and the sea. Finally we carry out a parametric study and compare the simulation results with gas temperature and composition, gas and heat fluxes, and temperature measurements in the wells of that area. Results of the parametric study show that flow rate, composition, and temperature of the hot gas mixture injected at depth, and the initial geothermal gradient strongly control parameters monitored at Solfatara. Comparisons with observations show a very good match and suggest that the best guesses for the injected hot (~700 C) fluid mass flow rate is about 50-100 kg/s and the initial geothermal gradient is 120 C/km. Of particular interest resulted the comparison between the simulated thermal profiles and those measured in geothermal wells. Keeping in mind the uncertainties due to the heterogeneities of the system, the good match obtained for the wells in the eastern and north sectors of the caldera (located some km far from Solfatara) suggest that the model can reproduce the gross features of the Campi Flegrei hydrothermal system and implicitly support the hypothesis of a single (or major) deep source of magmatic fluid located close to the centre of the caldera. Surprising results were also obtained by comparing simulated and observed (Agnano well) temperature profiles in a zone close to the gas plume: in this case the simulations clearly suggested

  3. Geochemistry of fluid phases and sediments: Relevance to hydrothermal circulation in Middle Valley, ODP Legs 139 and 169

    USGS Publications Warehouse

    Gieskes, J.M.; Simoneit, B.R.T.; Shanks, Wayne C., III; Goodfellow, W.D.; James, R.H.; Baker, P.A.; Ishibashi, J.-I.

    2002-01-01

    Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill hydrothermal sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the hydrothermal systems reflect non-steady state conditions, the data allow an assessment of the history of the hydrothermal processes. Sediment K/A1 ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog hydrothermal field has been, and still is, active. In contrast, similar data in the Bent Hill hydrothermal field indicate a waning of hydrothermal activity. Pore fluid and hydrothermal vent data in the Dead Dog hydrothermal field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of hydrothermal activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of hydrothermal fluids at greater depths in this area. This suggests the origin of the hydrothermal fluids found to be emanating from Hole 1035F, which constitutes one of the first man made hydrothermal vents in the Middle Valley hydrothermal system. Similarly, CORKed Hole 858G, because of seal failures, has acted as a hydrothermal vent, with sulfide deposits forming inside the CORK. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Correlation of wireline log characteristics with hydrothermal alteration and other reservoir properties of the Salton Sea and Westmorland geothermal fields, Imperial Valley, California, USA

    SciTech Connect

    Muramoto, F.S.; Elders, W.A.

    1984-05-01

    A detailed study of wireline logs from 11 wells in the Salton Sea and Westmorland geothermal systems was undertaken in order to determine the effects of hydrothermal alteration on the response of electrical and gamma-gamma density well logs. For the Salton Sea geothermal field, definite correspondence between log responses and hydrothermal mineralogy is evident, which in turn is related to the physical properties of the rocks. Three hydrothermal and one unaltered zone can be identified from log data on shales. These are: (1) the unaltered montmorillonite zone (<100/sup 0/ to 190/sup 0/C); (2) the illite zone (100/sup 0/ to 190/sup 0/C to 230/sup 0/ to 250/sup 0/C); (3) the chlorite zone (230/sup 0/ to 250/sup 0/C to 290/sup 0/ to 300/sup 0/C); and (4) the feldspar zone (>290/sup 0/ to 300/sup 0/C). The characteristic responses on well logs by which these zones are identified result primarily from changes in clay mineralogy of the shales and increases in density with progressive hydrothermal metamorphism. In the Westmorland geothermal field, differentiating mineral zones from log responses was only partially successful. However, analyses of both well log and petrologic data for wells Landers 1 and Kalin Farms 1 suggest that the former is heating up and the latter is cooling.

  5. Characteristics of a ridge-transform inside corner intersection and associated mafic-hosted seafloor hydrothermal field (14.0°S, Mid-Atlantic Ridge)

    NASA Astrophysics Data System (ADS)

    Li, Bing; Yang, Yaomin; Shi, Xuefa; Ye, Jun; Gao, Jingjing; Zhu, Aimei; Shao, Mingjuan

    2014-03-01

    Morphotectonic analysis of the inside corner intersection (14.0°S) between the southern Mid-Atlantic Ridge and the Cardno fracture zone indicate a young rough massif emerging after the termination of a previous oceanic core complex. The massif, which hosts an off-axis hydrothermal field, is characterized by a magmatic inactive volcanic structure, based on geologic mapping and sample studies. Mineralogical analyses show that the prominent hydrothermal deposit was characterized by massive pyrite-marcasite breccias with silica-rich gangue minerals. Geochemical analyses of the sulfide breccias indicate two element groups: the Fe-rich ore mineral group and silica-rich gangue mineral group. Rare earth element distribution patterns showing coexistence of positive Eu anomalies and negative Ce anomalies suggest that sulfides were precipitated from diffused discharge resulted from mixing between seawater and vent fluids. Different from several low temperature hydrothermal systems occurring on other intersection dome-like massifs that are recognized as detachment fault surfaces associated with variably metamorphosed ultramafic rocks, the 14.0°S field, hosted in gabbroic-basaltic substrate, is inferred to be of a high temperature system and likely to be driven by deep high temperature gabbroic intrusions. Additionally, the subsurface fossil detachment fault is also likely to play an important role in focusing hydrothermal fluids.

  6. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  7. Short-term temperature variability in the Rose Garden hydrothermal vent field: an unstable deep-sea environment

    NASA Astrophysics Data System (ADS)

    Johnson, Kenneth S.; Childress, James J.; Beehler, Carl L.

    1988-10-01

    Temperature was measured within the animal communities of the Rose Garden hydrothermal vent field with three thermistors that were left in place for a period of 72 h. The highest mean temperature (5.54°C) was measured at a thermistor placed in the central clump of vestimentiferan worms, while the lowest mean value (2.26°C) was recorded over the basaltic substrate. The temperature of the ambient water in the field was 2.07°C. The site with the highest temperature was characterized by extreme variability in the temperature, with minimum values of 2.16°C and maximum values of 14.81°C. The temperature fluctuated over all of the time scales studied from 1 s to 72 h. There was no clear periodicity to the temperature fluctuations, however. These temperature fluctuations must have significant impacts on adaptations, by the animals of the vent community. In fact, the variability in temperature may be more important to the community than the mean temperature value to which they are exposed.

  8. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  9. Observations of Flatfish "Spas" From Three Hydrothermally Active Seamounts in the Mariana Arc

    NASA Astrophysics Data System (ADS)

    Dower, J.; Tunnicliffe, V.; Tyler, J.; Juniper, K.; Stevens, C.; Kouris, A.; Takano, B.

    2006-12-01

    During a cruise to the Mariana Islands in spring 2004, dense aggregations of small flatfish were recorded from areas of diffuse flow on two hydrothermally active seamounts known as Kasuga-2 and Daikoku. This is quite novel, as flatfish are not known to be part of vent faunas elsewhere. Based on a single specimen, it was determined to be a new species of tonguefish in the genus Symphurus, and is currently under description. In October 2005, we returned to the Mariana Arc and collected about 60 specimens from Kasuga-2, Daikoku, and a third site, Nikko Seamount. Interestingly, the Nikko specimens were about twice as large as the flatfish from Kasuga-2 and Daikoku. Current molecular work (using the Barcode of Life Data System) will determine the relationship among these populations, and verify whether they are the same species. Under the microscope, the sandy sediments from the flatfish habitat were found to be full of tiny nematodes and polychaete worms. Our current hypothesis is that the fish are feeding on both and, thus, are ultimately supported by chemosynthesis, since the worms likely feed on bacteria in the sediments. However, during our most recent cruise in May 2006, we also observed several instances in which dead (or nearly dead) mid-water fish and shrimp fell out of the water column onto the bottom, after which they were almost immediately fed upon by the flatfish. This suggests that there may also be an additional energy subsidy to the seamount benthos from the water column. We hypothesize that sulfite (or some other toxic chemical) in the plume overlying these active volcanoes either kills or anesthetizes small pelagics that get advected over the seamount summit while feeding in near-surface waters at night. Stable isotope and lipid analysis of samples from these "fish spas" are currently underway to establish trophic relationships. We hope to use otolith microstructure analyses to quantify individual growth trajectories and population age structure of

  10. Two-phase mixture model simulation of the hydro-thermal behavior of an electrical conductive ferrofluid in the presence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Aminfar, H.; Mohammadpourfard, M.; Mohseni, F.

    2012-03-01

    This paper presents a numerical investigation of the hydro-thermal behavior of a ferrofluid (sea water and 4 vol% Fe3O4) in a rectangular vertical duct in the presence of different magnetic fields, using two-phase mixture model and control volume technique. Considering the electrical conductivity of the ferrofluid, in addition to the ferrohydrodynamics principles, the magnetohydrodynamics principles have also been taken into account. Three cases for magnetic field have been considered to study mixed convection of the ferrofluid: non-uniform axial field (negative and positive gradient), uniform transverse field and another case when both fields are applied simultaneously. The results indicate that negative gradient axial field and uniform transverse field act similarly and enhance both the Nusselt number and the friction factor, while positive gradient axial field decreases them. It is also concluded that, under the influence of both fields by increasing the intensity of uniform transverse field the effect of non-uniform axial fields decrease.

  11. Changes in thermal activity in the Rotorua geothermal field

    SciTech Connect

    Cody, A.D. ); Lumb, J.T. )

    1992-04-01

    During a period when geothermal fluid was being withdrawn for energy use at an increasing rate, the level of natural hydrothermal activity in the Rotorua geothermal field declined in an all-time low in the mid 1980s. total heatflow from a major hot-spring area fell by almost 50 percent, springs ceased their flow, and geysers displayed abnormal behavior consistent with a low aquifer pressure. since the enforced closure of bores within 1.5 km of Pohutu Geyser, sings of recovery, including a return to normal behavior of Pohutu and Waikorohihi Geysers, a resumption of activity at Kereru Geyser, and an increase in water flow from some springs are presented in this paper.

  12. PGE distribution in massive sulfides from the PACMANUS hydrothermal field, eastern Manus basin, Papua New Guinea: implications for PGE enrichment in some ancient volcanogenic massive sulfide deposits

    NASA Astrophysics Data System (ADS)

    Paå¡Ava, Jan; Vymazalová, Anna; Petersen, Sven; Herzig, Peter

    2004-11-01

    The distribution of platinum group elements (PGE) in Cu- and Zn-rich samples from the Roman Ruins and Satanic Mills vent sites in the PACMANUS hydrothermal field (Papua New Guinea) was studied and compared to that from selected ancient volcanogenic massive sulfide (VMS) deposits. Samples from the Satanic Mills site are enriched in Pd and Rh when compared to samples from Roman Ruins and reach highest values in active and inactive Cu-rich black smoker chimneys and chalcopyrite-cemented dacite breccias (up to 356 ppb Pd and up to 145 ppb Rh). A significant positive correlation was established between Cu and Pd and Rh in samples from both vent sites. Comparisons of chondrite normalized patterns and values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides and probable source rocks (felsic volcanic rocks/MORB) along with the evidence for a magmatic component in the PACMANUS hydrothermal system indicate that leaching of back-arc volcanic rocks together with addition of magmatic volatiles to the convecting hydrothermal system was the most important factor for PGE enrichment at PACMANUS and likely at some PGE-enriched ancient VMS deposits.

  13. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    PubMed

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  14. Stratigraphic development and hydrothermal activity in the central western Cascade Range, Oregon

    SciTech Connect

    Cummings, M.L.; Bull, M.K. ); Pollock, J.M. ); Thompson, G.D. )

    1990-11-10

    Two volcanic sequences bounded by erosional unconformities compose the stratigraphy of the North Santiam mining district, Western Cascade Range, Oregon. Diorite, grandodiorite, and leucocratic quartz porphyry dikes, stocks, and sills intrude the breccias, flows, and tuffs of a volcanic center in the older Sardine Formation. Tourmaline-bearing breccia pipes are associated with the porphyritic granodiorite intrusions. An erosional unconformity separates the Sardine Formation from the overlying Elk Lake formation. The alteration patterns in the two formations are consistent with the development of hydrothermal systems during the eruption of each formation. However, the development of the two hydrothermal systems is separated by a period of erosion of the older volcanic pile. Early formation of mineralization that resembles porphyry copper deposits occurred within the Sardine Formation, and later, after eruption of the Elk Lake formation, epithermal veins and alteration developed along faults, fractures, and the margins of dikes in the Sardine Formation.

  15. Photocatalytic activity of BiFeO{sub 3} nanoparticles synthesized through hydrothermal method

    SciTech Connect

    Dhanalakshmi, Radhalayam; Muneeswaran, M.; Vanga, Pradeep Reddy; Ashok, M.; Giridharan, N. V.

    2015-06-24

    Multiferroic BiFeO{sub 3} (BFO) nanoparticles (Nps) were synthesized using hydrothermal method. From the X-Ray diffraction analysis (XRD), the synthesized Nps were found to having rhombohedral structure with R3c space group confirmed by Rietveld analysis. Fourier transform infrared spectroscopy (FTIR) analysis was carried out to identify the chemical bonds present in the BFO Nps. Photocatalytic properties of synthesized Nps were studied for the degradation of Methylene Blue (MB) dye under visible light of 150W.

  16. Seismic structure at the Kairei Hydrothermal vent field near the Rodriguez Triple Junction in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Takata, H.; Sato, T.; Imai, Y.; Mori, T.; Noguchi, Y.; Kono, A.; Yamada, T.; Shinohara, M.

    2014-12-01

    Central Indian Ridge is located at the north of the Rodriguez Triple Junction and shows slow-intermediate spreading rate. The Kairei hydrothermal Field (KHF) was discovered in the first segment of Central Indian Ridge near the Rodriguez Triple Junction. The vent fluid which is extruding at the KHF has higher H2 content compared with other hydrothermal vent fluid in the world. Although The KHF itself exists above a basaltic rock massif, gabbro and mafic rocks were discovered on the seafloor around the KHF. These deep-seated rocks may contribute to the high H2concentration of the Kairei vent fluid .To understand how gabbro and mafic rocks are uplifted and exhumed on the seafloor, we conducted a seismic refraction/reflection survey using ocean bottom seismograms (OBSs). We conducted the seismic refraction/reflection survey from January 27 to March 19 in 2013 using S/V Yokosuka of Jamstec. In the experiment, we used 21 OBSs, an air gun (G.I.gun) and a single channel steamer cable. We obtained 5 survey lines NNW-SSE direction parallel to the ridge axis, 5 lines E-W direction and 5 lines NNE-SSW direction. In addition to these lines, we acquired other 5 lines passing through the point above the KHF or Yokoniwa Rise, which is the north of the KHF. In analysis of refraction data, firstly, we estimated 2D velocity model under survey lines, which are parallel to the ridge axis, using the progressive model development method developed by Sato and Kennett (2000). Then, we constructed a 3D initial model and run the 3D tomographic method developed by Zelt and Barton (1998). The 1D velocity profile of the KHF seems to be similar to that of mid ocean ridges such as Mid Atlantic Ridge, East Pacific Rise. Seismic velocities under the KHF and Yokoniwa Rise reach about 6km/s at depth of 1~2 km below seafloor, probably indicating uplift of deep-seated rocks. In this presentation we will show 3D seismic structure of this area.

  17. Viral Genomics and Evolution in Subseafloor Diffuse Flow Viral Communities in the Main Endeavour Hydrothermal Field, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Anderson, R. E.; Baross, J. A.

    2010-04-01

    In the dynamic environment of hydrothermal vents, transduction may play a crucial role in microbial evolution. Metagenomic analysis of diffuse flow viral communities may elucidate the nature and extent of transduction in these ancient ecosystems.

  18. Fluid flow rate, temperature and heat flux at Mohns Ridge vent fields: evidence from isosampler measurements for phase separated hydrothermal circulation along the arctic ridge system

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Pedersen, R. B.; Thorseth, I. H.; Taylor, P.; Flynn, M.

    2005-12-01

    An expedition to the Mohns Ridge in the Norwegian-Greenland sea was carried out in July-August 2005 as part of BIODEEP, lead by University of Bergen (UoB). UoB had previously detected water column methane along this very slow spreading ridge. Previous ROV observations along the ridge (71 deg 18'N, 5 deg 47'W, 605 mbsl) near Jan Mayen had uncovered a broad area of ferric hydroxide-rich bacterial/mineral assemblages, comprising large populations of gallionella bacteria. This area was revisted in 2005. Characteristic of sections of this area ("Gallionella Garden") are chimney-like structures standing ~15 cm tall, often topped by a sea lily (heliometra glacialis). The interior of the structures comprised quasi-concentric bands with vertically-oriented channels. The Oregon State University/Cardiff University Isosampler sensor determined that some of these assemblages support fluid flow through their interior. The outflow from the chimney structures was typically +0.5 deg C, against background temperatures of -0.3 deg C. Flow anomalies were also identified atop extensive bacterial mats. Gallionella Gardens is several km in extent with active, albeit extremely low temperature hydrothermal flow. A field of active high temperature smoker chimney structures was located near Gallionella Garden at 540 mbsl. This field extends ~500 m along a scarp wall, with hydrothermal mounds extending along faults running perpendicular to the scarp, each of which has multiple smoker vents and areas of diffuse flow. There was evidence for phase separation, with a negatively buoyant fluid phase exiting some vent orifices and descending along the vent wall; and evidence for gas phase condensing after leaving some vent orifices. Gas bubble emissions were not uncommon. Isosampler sensors were available that were configured for lower temperature measurements at Gallionella Garden. While capable of detecting variations in effluent at the 4 millidegree level, the temperature ceiling for the sensor

  19. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    NASA Astrophysics Data System (ADS)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  20. Hydrothermal activity at Campi Flegrei caldera: rock mechanical properties and implications for outgassing and possible phreatic eruptions

    NASA Astrophysics Data System (ADS)

    Mayer, K.; Montanaro, C.; Scheu, B.; Isaia, R.; Mangiacapra, A.; Gresse, M.; Vandemeulebrouck, J.; Moretti, R.; Dingwell, D. B.

    2015-12-01

    The Solfatara and Pisciarelli fumaroles are the main surface manifestations of the vigorous hydrothermal activity within the Campi Flegrei caldera system. The existing fault system appears to have a major control on outgassing and leads to a strong alteration of the volcanic products in both areas. Consistent with the volcanic history of the area, Solfatara and Pisciarelli are posited as having the highest probability for the opening of new vents, and in particular for possible phreatic activity within the Campi Flegrei system. Hydrothermal alteration deeply affects all the rocks exposed within Solfatara sector, including lava domes, breccias, as well as pyroclastic fallout ash beds and pyroclastic density current deposits. This results in changes of the volcanic rock's original microstructure and of their physical and mechanical properties, which in turn control both the outgassing and their fragmentation behaviors. Here, samples from the wall rocks in the vicinity of the Solfatara and Pisciarelli fumaroles have been subjected to geochemical, physical and mechanical properties characterization. In addition, surficial Solfatara crater floor deposits were characterized and their properties, in particular permeability, were mapped. Results show that hydrothermal alteration increases porosity and permeability of the crater wall samples favoring outgassing, while decreasing the rock strength. At the crater floor the outgassing occurs mainly along the crack system, which has also generated crusted hummocks. Elsewhere the fluid circulation in the subsoil is favored by the presence of coarse and sulfur-hardened levels, whereas their surfacing is hindered by compacted fine-grained, low permeability layers. Decompression experiments were performed to simulate a phreatic eruption at shallow depth. We used crater-wall samples representing the rocks in the proximity of high degassing areas. Changes in the fragmentation behavior and ejection dynamics, depending on the

  1. The influence of vent fluid chemistry on trophic structure at two deep-sea hydrothermal vent fields on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah; Van Dover, Cindy; Coleman, Max

    2014-05-01

    The two known deep-sea hydrothermal vent fields along the Mid-Cayman Rise are separated by a distance of only 21 km, yet their chemistry and faunal diversity are distinct. The deeper of the two vent fields, Piccard (with active venting from Beebe Vents, Beebe Woods and Beebe Sea), at 4980 m is basalt hosted. The shallower vent field, Von Damm, at 2300 m appears to have an ultramafic influence. The Von Damm vent field can be separated into two sites: The Spire and The Tubeworm Field. The dominant vent fluids at the Tubeworm Field are distinct from those at the Spire, as a result of fluid modification in the sub-surface. Von Damm and Piccard vent fields support abundant invertebrates, sharing the same biomass-dominant shrimp species, Rimicaris hybisae. Although there are some other shared species (squat lobsters (Munidopsis sp.) and gastropods (Provanna sp. and Iheyaspira sp.)) between the vent fields, they are much more abundant at one site than the other. In this study we have examined the bulk carbon, nitrogen and sulfur isotope composition of microbes and fauna at each vent field. With these data we have deduced the trophic structure of the communities and the influence of vent fluid chemistry. From stable isotope data and end-member vent fluid chemistry, we infer that the basis of the trophic structure at Piccard is dominated by sulfur, iron, and hydrogen-oxidizing microbial communities. In comparison, the basis of the Von Damm trophic structure is dominated by microbial communities of sulfur and hydrogen oxidizers, sulfate reducers and methanotrophs. This microbial diversity at the base of the trophic structure is a result of chemical variations in vent fluids and processes in the sub-surface that alter the vent fluid chemistry. These differences influence higher trophic levels and can be used to explain some of the variability as well as similarity in fauna at the vent sites. Part of this work was performed at the Jet Propulsion Laboratory, California

  2. The productive performance prediction of some wells in Hachijojima hydrothermal field, Japan

    SciTech Connect

    Nobuhiro Demboya; Jun-ichi Ishikawa; Nobuyuki Iwai; Yoneko Tada

    1993-01-28

    New Energy and Industrial Technology Development Organization (NEDO) did "Geothermal Development Promotion Survey" in the Hachijojima Island which is a volcanic island with 70km² located in the Izu-Mariana Island Arc. In that national project, NEDO drilled 8 wells in the field and the maximum temperature of the field was 317°C at 1200m depth of a well. Of these survey NEDO confirmed the existence of geothermal reservoir, and using a well named HJ-5, NEDO did short time discharge test. The authors calculated borehole temperature and pressure under production the of the well in comparison with the measured data. The authors also calculated productive performance of another well named HJ-8.

  3. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    West, A. J.; Torres, M. A.; Nealson, K. H.

    2014-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  4. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    White, S. M.; Lee, A. J.; Rubin, K. H.

    2015-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  5. Comparing Carbonate-Depositing Hydrothermal Systems Along the Mid-Atlantic Ridge at Lost City Hydrothermal Field and Along the Rio Grande rift in the Southwestern US: Geochemistry, Geomicrobiology and Mineralogy

    NASA Astrophysics Data System (ADS)

    Cron, B. R.; Crossey, L.; Hall, J.; Takacs-Vesbach, C.; Dahm, K.; Northup, D.; Karlstrom, K.

    2008-12-01

    Both continental and marine rift settings are characterized by hydrothermal vents (smokers) that include important components of mantle-derived "endogenic" fluids. These fluids ascend along extensional faults and provide unique biologic settings. We hypothesize that deep crustal processes support near-surface metabolic strategies by delivering chemically reduced constituents to partially oxidized surface environments. Lost City hydrothermal field, a marine vent system located 15 km west of the Mid-Atlantic ridge, exhibits a range of temperatures (40 to 75°C), pH (9-9.8), and mineral compositions (carbonate rather than sulfide-dominated) that were originally thought to be non-existent in marine vent systems. Travertine depositing CO2 springs within the Rio Grande rift, NM exhibit striking similarities in many respects to vents in Lost City. Previous research has already determined the importance of methanogenic and sulfur metabolizing microorganisms in carbonate structures at Lost City. Phylogenetic analysis of 16S rRNA genes from a terrestrial CO2 spring was performed. In addition, cells from bacteria and fungi were also cultured with oligotrophic media. Both archaeal phylotypes from the terrestrial spring grouped within Marine Group I of the Crenarchaeota, a clade dominated by sequences from hydrothermal marine vents, including some from Lost City. We will report comparative analyses of sequences from Lost City and both cultured and environmental clone libraries from the terrestrial spring using UniFrac. Geochemical modeling of data (water and gas chemistry from both locations) is used to rank the energy available for dozens of metabolic reactions. SEM and microprobe data are presented to compare mineral compositions. Our results will be discussed in respect to the tectonic setting, microbial community distributions, and the geochemical composition and textural properties of the carbonates that are precipitated in each of these systems.

  6. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    zones of active extension) common to all spreading centers, regional tectonic setting determined by stage (early, advanced), and rate (slow, intermediate-to-fast) of opening of an ocean basin about a spreading center, and local tectonic sub-setting that incorporates anomalous structural and thermal conditions conducive to mineral concentration (thermal gradient, permeability, system geometry, leaky versus tight hydrothermal systems). Temporal frames of reference comprise the relation between mineral concentration and timing of regional plutonic, volcanic and tectonic cycles and of episodic local physical and chemical events (transient stress, fluctuating heat transfer, intrusion-extrusion, fracturing, sealing, etc.). Types of hydrothermal deposits are not uniquely associated with specific tectonic settings and subsettings. Similar types of hydrothermal deposits may occur in different tectonic settings as a consequence of convergence of physical and chemical processes of concentration. Local tectonic sub-settings with conditions conducive to hydrothermal mineralization at slow-spreading centers (half rate ≤ 2cm y -1; length c. 28,000 km), characterized by an estimated average convective heat transfer of 15.1·10 8 cal. cm -2, deep-level ( > 3 km), relative narrow (< 5 km wide at base) magma chambers, and high topographic relief (1-5 km) are: (1) basins along linear sections of the axial zone of volcanic extrusion near transform faults at an early stage of opening, represented by a large stratiform sulfide deposit (estimated 32.5·10 6 metric tons) of the Atlantis II Deep of the Red Sea; (2) the wall along linear sections of the rift valley in the marginal zone of active extension at an advanced stage of opening, represented by encrustations and layered deposits of manganese and iron oxides, hydroxides and silicates inferred to be underlain by stockwork sulfides at the TAG Hydrothermal Field at latitude 26°C on the Mid-Atlantic Ridge; (3) transform faults, especially

  7. Mass transfer constraints on the chemical evolution of an active hydrothermal system, Valles caldera, New Mexico

    USGS Publications Warehouse

    White, A.F.; Chuma, N.J.; Goff, F.

    1992-01-01

    Partial equilibrium conditions occur between fluids and secondary minerals in the Valles hydrothermal system, contained principally in the Tertiary rhyolitic Bandelier Tuff. The mass transfer processes are governed by reactive phase compositions, surface areas, water-rock ratios, reaction rates, and fluid residence times. Experimental dissolution of the vitric phase of the tuff was congruent with respect to Cl in the solid and produced reaction rates which obeyed a general Arrhenius release rate between 250 and 300??C. The 18O differences between reacted and unreacted rock and fluids, and mass balances calculations involving Cl in the glass phase, produced comparable water-rock ratios of unity, confirming the importance of irreversible reaction of the vitric tuff. A fluid residence time of approximately 2 ?? 103 years, determined from fluid reservoir volume and discharge rates, is less than 0.2% of the total age of the hydrothermal system and denotes a geochemically and isotopically open system. Mass transfer calculations generally replicated observed reservoir pH, Pco2, and PO2 conditions, cation concentrations, and the secondary mineral assemblage between 250 and 300??C. The only extraneous component required to maintain observed calcite saturation and high Pco2 pressures was carbon presumably derived from underlying Paleozoic limestones. Phase rule constraints indicate that Cl was the only incompatible aqueous component not controlled by mineral equilibrium. Concentrations of Cl in the reservoir directly reflect mass transport rates as evidenced by correlations between anomalously high Cl concentrations in the fluids and tuff in the Valles caldera relative to other hydrothermal systems in rhyolitic rocks. ?? 1992.

  8. Stable isotope geochemistry of clay minerals from fossil and active hydrothermal systems, southwestern Hokkaido, Japan

    SciTech Connect

    Marumo, Katsumi; Longstaffe, F.J.; Matsubaya, Osamu

    1995-06-01

    Miocene submarine to Quaternary terrestrial volcanism in southwestern Hokkaido, Japan, is associated with hydrothermal clay alteration and mineralization, including Kuroko-type deposits at Kagenosawa (14.2 Ma, Cu > Zn, Pb > Au) and Minamishiraoi (12.5 Ma, Ba > Zn, Pb, Cu), vein-style at Noboribetsu ({le} 1.8 Ma). The {delta}D and {delta}{sup 18}O values of mica (sericite), mica-smectite, chlorite, chlorite-smectite, nacrite, dickite, kaolinite, and smectite were used to deduce the type(s) of hydrothermal fluid at each locality. Calculated compositions for Minamishiraoi and Kagenosawa fluids suggest that seawater was dominant, but some mixing with magmatic water is also indicated, particularly for the polymetallic Kagenosawa deposit. Hydrothermal fluids at Date, Chitose, and the Noboribetsu geothermal area were dominated by meteoric water. The {delta}D and {delta}{sup 18}O values of modern hot-spring waters at Noboribetsu closely parallel fluid compositions calculated for the clay alteration at Date, Chitose, and Noboribetsu. In vacuo TG patterns of other smectitic clays suggested gradual loss of hydroxyl-groups beginning near 200{degrees}C, rather than the more typical distinct separation between interlayer water at <200{degrees}C and hydroxyl-groups at >400{degrees}C. This behaviour constrains the maximum temperature that can be used for in vacuo preheating. Furthermore, shifts to lower {delta}D values (by as much as 19{per_thousand}) were obtained when this smectite was dispersed in low-D water for three weeks, perhaps indicating isotopic exchange. However, with appropriate care, {delta}D values obtained by conventional procedures (including preheating to {le}200{degrees}C) normally reproduced natural compositions of the smectitic clays with acceptable accuracy and precision.

  9. Polyphenolic contents and antioxidant activities of Lawsonia inermis leaf extracts obtained by microwave-assisted hydrothermal method.

    PubMed

    Zohourian, Tayyebeh Haleh; Quitain, Armando T; Sasaki, Mitsuru; Goto, Motonobu

    2011-01-01

    Extracts obtained by microwave-assisted hydrothermal extraction of Lawsonia inermis leaves were evaluated for the presence of polyphenolic compounds and antioxidant activities. Extraction experiments were performed in temperature-controlled mode at a range of 100 to 200 degrees C, and extraction time of 5 to 30 min, and microwave-controlled mode at a power from 300-700 W, in irradiation time of 30 to 120 s. Polyphenolic contents were measured using Folin-Ciocalteau method, while antioxidant properties were analyzed using DPPH radical scavenging activities (RSA) expressed in BHA equivalents. Results showed that best values of RSA were obtained at mild temperature range of 100-120 degrees C. Controlling microwave power at short irradiation time gave better results than temperature-controlled treatment as well. Furthermore, comparison with the result obtained at room temperature confirmed that the use of microwave was more effective for extracting polar components that normally possess higher antioxidant activities. PMID:24428109

  10. Enhanced Visible-Light Photocatalytic Activity of C/Ce-Codoped ZnO Nanoellipsoids Synthesized by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Ha, Luu Thi Viet; Dai, Luu Minh; Nhiem, Dao Ngoc; Van Cuong, Nguyen

    2016-05-01

    C/Ce-codoped ZnO nanomaterial has been synthesized by a hydrothermal method and its physical properties and characterization investigated using thermogravimetric and differential thermal analysis (TG-DTA), x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive x-ray (EDX) spectroscopy, UV-Vis diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the nanomaterial was examined using methylene blue as organic dye under visible-light source. The results show that the C/Ce-codoped ZnO nanomaterial exhibited higher photocatalytic activity under visible-light irradiation compared with undoped ZnO, Ce-doped ZnO or C-doped ZnO nanomaterials. Such enhancement of the photocatalytic activity of C/Ce-codoped ZnO under visible-light irradiation suggests that these nanoparticles might have good applications in optoelectronics and wastewater treatment.

  11. Enhanced Visible-Light Photocatalytic Activity of C/Ce-Codoped ZnO Nanoellipsoids Synthesized by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Ha, Luu Thi Viet; Dai, Luu Minh; Nhiem, Dao Ngoc; Van Cuong, Nguyen

    2016-08-01

    C/Ce-codoped ZnO nanomaterial has been synthesized by a hydrothermal method and its physical properties and characterization investigated using thermogravimetric and differential thermal analysis (TG-DTA), x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive x-ray (EDX) spectroscopy, UV-Vis diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the nanomaterial was examined using methylene blue as organic dye under visible-light source. The results show that the C/Ce-codoped ZnO nanomaterial exhibited higher photocatalytic activity under visible-light irradiation compared with undoped ZnO, Ce-doped ZnO or C-doped ZnO nanomaterials. Such enhancement of the photocatalytic activity of C/Ce-codoped ZnO under visible-light irradiation suggests that these nanoparticles might have good applications in optoelectronics and wastewater treatment.

  12. Volcano-hydrothermal activity detected by precise levelling surveys at the Tatun volcano group in Northern Taiwan during 2006-2013

    NASA Astrophysics Data System (ADS)

    Murase, Masayuki; Lin, Cheng-Hong; Kimata, Fumiaki; Mori, Hitoshi; Pu, Hsin-Chieh

    2014-10-01

    Precise levelling surveys were conducted from 2006 to 2013 on three levelling routes in the Tatun volcano group (TVG) located approximately 15 km northeast of Taipei, to detect deformation in relation to the volcano-hydrothermal activities of the TVG. Uplift was detected around the most active fumarole, Tayoukeng fumarole, throughout the period 2007 to 2011; the uplift rate throughout the period from March 2009 to March 2011 was reduced in comparison to the rate between 2007 and 2009. Following this, a dormant state or a small amount of subsidence was detected in the period March 2011 to March 2013. And throughout the period from June 2006 to March 2013, subsidence was centred on an area 0.5 km east of the summit of Mt. Cising, the highest peak in the TVG. A model of two spherical sources was therefore estimated from the deformation recorded from August 2007 to March 2011, using a genetic algorithm. A deflation source was obtained about 0.5 km northeast of Mt. Cising at a depth of 2 km; and an inflation source was situated approximately 1 km south of the Tayoukeng fumarole at a depth of 0.7 km. Based on previous seismic and AMT studies, the estimated sources are interpreted as being hydrothermal reservoirs. Because almost all the benchmarks around Mt. Cising show subsidence at a constant speed, we conclude that the deeper hydrothermal reservoir at a depth of 2 km may have been releasing hydrothermal fluid at a constant rate throughout the period from 2006 to 2013. However, it was suggested that in 2011 the shallower hydrothermal reservoir at a depth of 0.7 km changed from an inflation state to a dormant state (or small deflation) based on temporal vertical changes around Tayoukeng fumarole. A possible model for the volcano-hydrothermal system is therefore proposed. It is considered that the hydrothermal fluid may be supplied intermittently from the magma chamber to the deeper hydrothermal reservoir at a depth of 2 km (although this type of fluid input event may not

  13. Effluent from diffuse hydrothermal venting. 1: A simple model of plumes from diffuse hydrothermal sources

    SciTech Connect

    Trivett, D.A.

    1994-09-01

    This paper focuses on modeling the fate of effluent from diffuse seafloor hydrothermal activity after it has been vented into the water column. The model was formulated using a number of simplifying assumptions which permit direct application of this model to field measurements. I have limited the configurations to those where the hydrothermal outflow velocities are smaller than horizontal current. I assume that the entrainment of ambient seawater into the plume is constant over the length of the plume. This permits formulation of a first-order relation for the rise height and dilution in a diffuse hydrothermal plume as a function of downstream distance. The analytic model is compared with a simple laboratory simulation of the hydrothermal flow. The results suggest that diffuse hydrothermal effluent will penetrate to a height in the water column that is proportional to the overall dimension of the diffuse vent patch, multiplied by a dimensionless plume intensity parameter. I also ahow relations for plume dilution which will be compared with field data in part 2 of this work.

  14. A U Th calcite isochron age from an active geothermal field in New Zealand

    NASA Astrophysics Data System (ADS)

    Grimes, Stephen; Rickard, David; Hawkesworth, Chris; van Calsteren, Peter; Browne, Patrick

    1998-05-01

    We report here the first U-Th disequilibrium age for a hydrothermal mineral from an active geothermal system in New Zealand. Vein calcite recovered from a depth of 389 m in Well Thm-1 at the Tauhara geothermal field has an age of 99±44 ka BP. This age was determined using a leachate-leachate isochron technique on four silicate containing sub-samples of calcite from a single vein. Although the error on this isochron age is considerable, it is significantly younger than the earlier estimated age of ˜200 ka BP for the onset of activity at the Tauhara system and probably records the date of brecciation and veining, which may be associated with volcanic activity at the adjacent dacitic Tauhara Volcanic Complex. These results demonstrate that hydrothermal vein calcite can now be dated directly, and opens the way for more detailed studies of the evolution of the New Zealand geothermal systems.

  15. Activity and hydrothermal stability of CeO2-ZrO2-WO3 for the selective catalytic reduction of NOx with NH3.

    PubMed

    Song, Zhongxian; Ning, Ping; Zhang, Qiulin; Li, Hao; Zhang, Jinhui; Wang, Yancai; Liu, Xin; Huang, Zhenzhen

    2016-04-01

    A series of CeO2-ZrO2-WO3 (CZW) catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction (SCR) of NO with NH3 over a wide temperature of 150-550°C. The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O. The fresh catalyst showed above 90% NOx conversion at 201-459°C, which is applicable to diesel exhaust NOx purification (200-440°C). The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures (below 300°C), while the activity was notably enhanced at high temperature (above 450°C). The aged CZW catalyst (hydrothermal aging at 700°C for 8hr) showed almost 80% NOx conversion at 229-550°C, while the V2O5-WO3/TiO2 catalyst presented above 80% NOx conversion at 308-370°C. The effect of structural changes, acidity, and redox properties of CZW on the SCR activity was investigated. The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2-ZrO2 solid solution, amorphous WO3 phase and optimal acidity. In addition, the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased, resulting in the collapse of structure, which could further affect the acidity and redox properties. PMID:27090708

  16. The Hydrothermal System at the Grand Canyon of the Yellowstone River: Exposed and Hidden

    NASA Astrophysics Data System (ADS)

    Jaworowski, C.; Heasler, H. P.; Susong, D. D.; Neale, C. M.; Sivarajan, S.; Masih, A.

    2012-12-01

    Combining calibrated and corrected night-time, airborne thermal infrared imaging with field information from the 2008 drilling of the Canyon borehole strainmeter (B206) in Yellowstone National Park emphasizes the extensive nature of Yellowstone's hydrothermal system. Both studies contributed to an understanding of the vertical and horizontal flow of heat and fluids through the bedrock in this area. Night-time, airborne thermal infrared imagery, corrected for emissivity and atmosphere clearly shows north-trending faults and fractures transmitting heat and fluids through the rhyolitic bedrock and into the overlying glacial sediments near the Canyon borehole. Along the Grand Canyon of the Yellowstone, the Clear Lake hydrothermal area is an example of hydrothermal alteration at the ground surface. The numerous hydrothermal features exposed in the nearby Grand Canyon of the Yellowstone River and its hydrothermally altered walls are clear evidence of the exposed hydrothermal system. The bedrock geology, geologic processes, and hydrothermal activity combined to form the dramatic Grand Canyon of the Yellowstone. The night-time thermal infrared imagery provides a new view of this exposed hydrothermal system for scientists and visitors. Scientists and Yellowstone Park managers carefully sited the Canyon borehole strainmeter in a green, grassy meadow to insure successful completion of the borehole in a non-hydrothermal area. The closest hydrothermal feature to the drilling site was about 2.5 km to the east. Although excellent exposures of hydrothermal altered bedrock are present about 1.5 km east at the Lower Falls and the Grand Canyon of the Yellowstone River, the connection between exposed hydrothermal areas and the borehole site was not obvious. After drilling through 9 m of brown-gray muds and 113 m of rock, a bottom hole temperature of 81.2 degrees Celsius precluded drilling the hole any deeper than 122 m. The post-drilling data collected from B206 and the airborne

  17. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (<1%) to pre-production CO 2

  18. Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia).

    PubMed

    Bes, Méline; Merrouch, Mériem; Joseph, Manon; Quéméneur, Marianne; Payri, Claude; Pelletier, Bernard; Ollivier, Bernard; Fardeau, Marie-Laure; Erauso, Gaël; Postec, Anne

    2015-08-01

    A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 × 3.0-5.0 μm) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 °C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5 g l- 1 NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Yeast extract, peptone, tryptone, Casamino acids, crotonate, pyruvate, galactose, maltose, sucrose, ribose, trehalose and glucose were used as carbon sources. Glucose fermentation led to acetate, H2 and CO2 formation. Arginine, serine, histidine, lysine, methionine and cysteine improved growth, but the Stickland reaction was negative for the combinations of amino acids tested. The major metabolic products from yeast extract fermentation were H2, CO2, acetate, butyrate, isobutyrate, isovalerate and propionate. The predominant cellular fatty acids were C16  :  0, C16  :  1cis9, C14  :  0 and C16  :  1cis7 (>5 % of total fatty acids). The G+C content of the genomic DNA was 32.9 mol%. Phylogenetic analysis revealed that strain ST07-YET was most closely related to Clostridium sticklandii DSM 519T and Acetoanaerobium noterae NOT-3T (96.7 % and 96.8 % 16S rRNA gene sequence similarity, respectively). On the basis of phylogenetic, chemotaxonomic and physiological properties, strain ST07-YET is proposed to represent a novel species of the genus Acetoanaerobium (order Clostridiales, phylum Firmicutes) with the name Acetoanaerobium pronyense sp. nov. The type strain is ST07-YET ( = DSM 27512T = JCM 19400T). PMID:25948619

  19. Time Series Measurements of Diffuse Hydrothermal Flow at the ASHES Vent Field Reveal Tidally Modulated Heat and Volume Flux

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E. L.; Fornari, D. J.; Crone, T. J.

    2015-12-01

    Existing time-series measurements of temperature and velocity of diffuse hydrothermal fluids exhibit variability over a range of periods from seconds to days. Frequency analysis of these measurements reveals differences between studies and field locations including nearly white spectra, as well as spectra with peaks at tidal and inertial periods. Based upon these results, previous authors have suggested several processes that may control diffuse flow rates, including tidally induced currents and 'tidal pumping', and have also suggested that there are no systematic controls. To further investigate the processes that control variability in diffuse flow, we use data from a new, deep-sea camera and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), deployed during the July, 2014 cruise of the R/V Atlantis. The DEMS was deployed with DSV Alvin above a fracture network at the Phoenix vent within the ASHES vent field (Axial Seamount, 1541 mbsl). The system collected 20 seconds of imagery at 20 Hz and 24 seconds of temperature measurements at 1 Hz each hour over the period between July 22 and August 2nd. Velocities of the upwelling fluids were calculated using Diffuse Fluid Velocimetry (DFV; Mittelstaedt et al., 2010). DFV is a cross correlation technique that tracks moving index of refraction anomalies (i.e., hot parcels of fluid) through time. Over the ~12 day deployment, median flow rates ranged from 0.5 cm/s to 6 cm/s and mean fluid temperature anomalies from 0°C up to ~6.5°C, yielding an average heat flux density of 0.23 MW/m2. Spectral analysis of both the measured temperatures and calculated velocities yield a peak in normalized power at the semi-diurnal lunar period (M2, 12.4hrs), but no other spectral peaks above the 95% confidence level. Here, we present these results and discuss their implications for the tidal current and tidal pressure models of diffuse flow variability at the ASHES vent field.

  20. Tunable ZnO spheres with high anti-biofilm and antibacterial activity via a simple green hydrothermal route.

    PubMed

    Patrinoiu, Greta; Calderón-Moreno, José Maria; Chifiriuc, Carmen Mariana; Saviuc, Crina; Birjega, Ruxandra; Carp, Oana

    2016-01-15

    A family of distinct ZnO morphologies - hollow, compartmented, core-shell and full solid ZnO spheres, dispersed or interconnected - is obtained by a simple hydrothermal route, in the presence of the starch biopolymer. The zinc-carbonaceous precursors were characterized by infrared spectroscopy, thermal analysis and scanning electron microscopy, while the ZnO spheres, obtained after the thermal processing, were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, UV-VIS spectroscopy, photoluminescence measurements, antimicrobial, anti-biofilm and flow cytometry tests. The formation mechanism proposed for this versatile synthesis route is based on the gelling ability of amylose, one of the starch template constituents, responsible for the effective embedding of zinc cations into starch prior to its hydrothermal carbonization. The simple variation of the raw materials concentration dictates the type of ZnO spheres. The micro-sized ZnO spheres exhibit high antibacterial and anti-biofilm activity against Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa) reference and methicillin resistant clinical strains especially for Gram-negative biofilms (P. aeruginosa), demonstrating great potential for new ZnO anti-biofilm formulations. PMID:26433479

  1. A national drilling program to study the roots of active hydrothermal systems related to young magmatic intrusions

    SciTech Connect

    Not Available

    1984-01-01

    The importance of studies of active hydrothermal-magma systems as part of a national continental scientific drilling program has been emphasized in numerous workshops and symposia. The present report, prepared by the Panel on Thermal Regimes of the Continental Scientific Drilling Committee, both reinforces and expands on earlier recommendations. The US Geodynamics Committee 1979 report of the Los Almos workshop, Continental Scientific Drilling Program, placed major emphasis on maximizing the scientific value of current and planned drilling by industry and government, supplementing these efforts with holes drilled solely for scientific purposes. Although the present report notes the importance of opportunities for scientific investigations that may be added on to current, mission-oriented drilling activities, the Panel on Thermal Regimes recognizes that such opportunities are limited and thus focused its study on holes dedicated to broad scientific objectives. 16 refs., 2 figs., 4 tabs.

  2. Microwave-assisted hydrothermal synthesis of Cu/Cu2O hollow spheres with enhanced photocatalytic and gas sensing activities at room temperature.

    PubMed

    Zou, Xinwei; Fan, Huiqing; Tian, Yuming; Zhang, Mingang; Yan, Xiaoyan

    2015-05-01

    Cu/Cu2O nano-heterostructure hollow spheres with a submicron diameter (200-500 nm) were prepared by a microwave-assisted hydrothermal method using Cu(OAc)2·H2O, PVP and ascorbic acid solution as the precursors. The morphology of the products could evolve with the hydrothermal time from solid spheres to thick-shell hollow spheres, then to thin-shell hollow spheres, and finally to nanoparticles. Moreover, the content of Cu in the products could be controlled by adjusting the hydrothermal time. The spontaneous forming of the hollow structure spheres was found to result from the Ostwald ripening effect during the low temperature (100 °C) hydrothermal reaction process. The photocatalytic degradation activities on MO under visible-light irradiation and the gas sensing activities toward the oxidizing NO2 gas of different Cu/Cu2O nano-heterostructure hollow spheres were investigated. As a result, the Cu/Cu2O nano-heterostructure hollow spheres obtained at the hydrothermal time of 30 min, with a rough/porous thin-shell structure and a Cu content of about 10.5 wt%, exhibited the best photocatalytic and gas sensing performances compared with others. PMID:25820327

  3. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    PubMed Central

    Ma, Ming-Guo

    2012-01-01

    Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of

  4. The magnetic signature of hydrothermal systems in slow spreading environments

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; Dyment, Jérôme

    Slow spreading mid-ocean ridges like the Mid-Atlantic Ridge host a remarkable diversity of hydrothermal systems including vent systems located on the neovolcanic axis, large axial volcanoes, in transform faults and nontransform offsets, and associated with low-angle detachment faults, now recognized as a major tectonic feature of slow spreading environments. Hydrothermal systems are hosted in various lithologies from basalt to serpentinized peridotite and exposed lower oceanic crust. The substantial variations of hydrothermal processes active in these environments have important implications for the magnetic structure of oceanic crust and upper mantle. Hydrothermal processes can both destroy the magnetic minerals in basalt, diabase, and gabbro and create magnetic minerals by serpentinization of ultramafic rocks and deposition of magnetic minerals. We report on the diversity of magnetic anomaly signatures over the vent systems at slow spreading ridges and show that the lateral scale of hydrothermal alteration is fundamentally a local phenomenon. This highly focused process leads to magnetic anomalies on the scale of individual vent fields, typically a few hundreds of meters or less in size. To detect such features, high-resolution, near-bottom magnetic surveys are required rather than sea surface surveys. High-resolution surveys are now more tractable with deep-towed systems, dynamically positioned ships, and with the recent development of autonomous underwater vehicles, which allow detailed mapping of the seafloor on a scale relevant to hydrothermal activity. By understanding these present-day active hydrothermal systems, we can explore for yet to be discovered buried deposits preserved off-axis, both to determine past history of hydrothermal activity and for resource assessment.

  5. Magnesium-hydroxide-sulfate-hydrate formation at 200°C: Implications for sulfur fixation at the Lost City hydrothermal field

    NASA Astrophysics Data System (ADS)

    Grozeva, N. G.; Syverson, D. D.; Seyfried, W. E.

    2010-12-01

    Serpentinization reactions at ultramafic-hosted hydrothermal systems have been shown to be important sinks for sulfur in the oceanic crust. Indeed, the high sulfate content of serpentinized peridotites beneath the Lost City hydrothermal field and moderately low dissolved sulfate concentrations of the vent fluids suggest a sulfate mineral may precipitate at depth during seawater entrainment into the hydrothermal system. While it has long been proposed that anhydrite provides the primary control on partitioning of SO42- between fluid and rock, other sulfate removal mechanisms need to be considered. This is especially true in light of the high pH fluids and magnesium-rich protolith at Lost City. Examining the stability of alternative sulfate phases, such as magnesium-hydroxide-sulfate-hydrate (MHSH), would therefore yield a better understanding of sulfur fixation in the oceanic crust and the influence of hydrothermal circulation on the global sulfur cycle. Hydrothermal experiments were conducted to investigate the potential for MHSH formation at inferred reaction zone temperatures for Lost City (150-250°C). An evolved seawater solution containing MgSO4 was heated to 200°C at steam saturation pressure, and its fluid chemistry was analyzed by IC and ICP-OES upon quenching. Results suggest removal of SO42- and B with precipitation of Mg(OH)2 from solution. Thermodynamic calculations, however, indicate that precipitation of the previously characterized MHSH(0.75) and MHSH(0.625) is unfavorable under the reaction conditions. Observed incorporation of SO42- into the Mg(OH)2 structure thus demonstrates the formation of MHSH of different stoichiometry and points to the occurrence of a more extensive solid solution between Mg(OH)2 and MgSO4 than previously thought. Experiments have also examined the uptake of SO42- and B by serpentine, a product of olivine hydrolysis. Findings suggest no incorporation of sulfate occurs either within the serpentine structure or as an adsorbed

  6. Evidence of hydrothermal activity on Marsili Seamount, Tyrrhenian Basin. Technical report

    SciTech Connect

    Uchupi, E.; Ballard, R.D.

    1989-01-01

    In this paper we describe the finding of what appears to be an extensive hydrothermal mineral deposit on the crest of Marsili Seamount in the Tyrrhenian Basin, western Mediterranean Sea. The deposit on the seamount was discovered during a study of the geology of the Tyrrhenian Basin with the Argo video system (HARRIS and BALLARD, 1986) aboard the R.V. Starella during June 1988. Mounted on the vehicle were three Silicon Intensified target (SIT) cameras, a digital charge Couple Device (CCD) camera and a 35 mm camera with a 16 mm lens. The site was revisited in mid August aboard the R.V. Knorr during a cruise to test the dynamic position system on the Knorr.

  7. Geological framework of an active hydrothermal site in the North Fiji Basin: Starmer cruise of the submersible Nautile

    SciTech Connect

    Auzende, J. )

    1990-06-01

    During the summer of 1989 the French submersible Nautile carried out a diving cruise on the North Fiji Basin ridge axis in the frame of the Starmer French-Japanese joint project. The diving sites were selected using the Seapso 3, Kaiyo 87, and Kaiyo 88 cruises Seabeam surveys. They are located around 17{degree}S in the axial graben at the northern end of the N15 ridge. The axis consists of an 18 km wide, N15 elongated dome cut by a 2 km wide axial graben. The elevation of the dome with respect to adjacent oceanic floor is 500-600 m. It culminates at less than 1,900 m, which is higher than a normal oceanic ridge. The axial graben width (2 km) is also unusual compared to oceanic ridge with intermediate spreading rates such as the EPR at 21{degree}N. Six Nautile dives have been devoted to the detailed exploration of the axial graben between 16{degree}58'S and 17{degree}00'S in order to locate the hydrothermal vents in the inferred most active part of the axial graben. A structural map has been established on the basis of dive observation. Between 17{degree}S and 16{degree}58'S, the axis shows a succession of N15-trending horsts and grabens paralleling the main orientation of the ridge. Two main lateral grabens and a central graben can be recognized. The central graben shows remarkably constant width (200 m) and depth (2,000 m). It is bounded by two small horsts, few tens of meters wide. Observed tectonic features include N15 normal fault scarps and abundant open fissures with the same direction. The whole area is dusted with sediments indicating that volcanism was not active recently. Evidence of recent hydrothermal activity such as oxide staining, dead munch, dead chimney is abundant all along the central graben.

  8. Hydrothermal minerals and microstructures in the Silangkitang geothermal field along the Great Sumatran fault zone, Sumatra, Indonesia

    USGS Publications Warehouse

    Moore, Diane E.; Hickman, S.; Lockner, D.A.; Dobson, P.F.

    2001-01-01

    Detailed study of core samples of silicic tuff recovered from three geothermal wells along the strike-slip Great Sumatran fault zone near Silangkitang, North Sumatra, supports a model for enhanced hydrothermal circulation adjacent to this major plate-boundary fault. Two wells (A and C) were drilled nearly vertically ??1 km southwest of the eastern (i.e., the principal) fault trace, and the third, directional well (B) was drilled eastward from the site of well A to within ??100 m of the principal fault trace. The examined core samples come from depths of 1650-2120 m at measured well temperatures of 180-320 ??C. The samples collected near the principal fault trace have the highest temperatures, the largest amount of secondary pore space that correlates with high secondary permeability, and the most extensive hydrothermal mineral development. Secondary permeability and the degree of hydrothermal alteration decrease toward the southwestern margin of the fault zone. These features indicate episodic, localized flow of hot, possibly CO2-rich fluids within the fault zone. The microstructure populations identified in the core samples correlate to the subsidiary fault patterns typical of strike-slip faults. The geothermal reservoir appears to be centered on the fault zone, with the principal fault strands and adjoining, highly fractured and hydrothermally altered rock serving as the main conduits for vertical fluid flow and advective heat transport from deeper magmatic sources.

  9. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    PubMed

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents. PMID:16820492

  10. Compositional and isotopic properties of nitrogen in subseafloor hydrothermal environments at the Iheya North field in the mid-Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Nishizawa, M.; Takai, K.

    2012-12-01

    Nitrogen is one of the essential elements as a substrate for energy metabolism and a building block of protein and nucleic acids. However, little is known about biogeodynamics of nitrogen in the subseafloor hydrothermal environments. Here, we report compositional and isotopic properties of nitrogen in pore water from 0 mbsf to 150 mbsf at the Iheya North hydrothermal field. At the site C0014 (450 meter east from the North Big Chimney), ammonia is the most abundant nitrogen compound, while nitrate is detected in a certain depth interval. In the depth interval around 10 mbsf, the ammonia concentration steeply increased from 0.3 mM to 1.5 mM downwards. In the same interval, potassium concentration profile showed the same trend as ammonia, while sulfate and magnesium concentration profiles showed the opposite trends. These profiles suggest binary mixing of shallower early diagenetic fluid and deeper hydrothermal fluid at the depth around 10 mbsf, where ammonia oxidation coupled with sulfate reduction can potentially occur. Further, Cl-depleted pore water at 40 mbsf was slightly enriched in ammonia relative to Cl-enriched pore water, probably originating from elemental fractionation during phase separation. By combining isotopic and compositional data, we will discuss the nitrogen biogeodynamics.

  11. An Assessment of Changes in Kunzea ericoides var . microflora and Other Hydrothermal Vegetation at the Wairakei-Tauhara Geothermal Field, New Zealand

    NASA Astrophysics Data System (ADS)

    van Manen, Saskia M.; Reeves, Robert

    2012-10-01

    Hydrothermal ecosystems are of high conservation and scientific value, but they are sensitive to external perturbations that result from development. This study examines the composition of vegetation at four plots at the Wairakei-Tauhara geothermal field, New Zealand, using the Scott height-frequency method, ground temperatures at 0.1- and 1-m depth, soil pH, and photographic surveys. It highlights the response of plant communities, in particular that of Kunzea ericoides var. microflora, in terms of composition, structure, and biomass index values, measures changes in ground temperature, as well as provides baseline data against which to compare future changes. It was found that optimal growing conditions for K. ericoides var. microflora are at temperatures above background conditions with a slightly acidic pH. Plots with cooler, less acidic conditions support more diverse plant communities, which also promote the establishment of invasive species. This suggests that the largest threats to thermotolerant vegetation in New Zealand, including K. ericoides var. microflora, are further decreases in ground temperature because the establishment of invasive species may result in thermolerant vegetation being out-competed in hydrothermal ecosystems. Recognising and understanding the ecological diversity and dynamics of hydrothermal ecosystems, as well as acknowledging the competing interests between development and conservation, is key to the management and protection of these areas.

  12. High-Silica Rocks and Soils at Gusev Crater, Mars: Distribution, Spectra, and Implications for Past Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Rice, M. S.; Bell, J. F.; Wang, A.; Cloutis, E. A.

    2008-12-01

    The Mars Exploration Rover (MER) Spirit has discovered surprisingly high concentrations of amorphous silica in the Inner Basin of the Columbia Hills. As described by Squyres et al. (2008, Science, 320, 1063), within a topographic lowland called Eastern Valley, Spirit's Alpha Particle X-Ray Spectrometer (APXS) measured a composition of >90 wt.% silica at the soil feature "Gertrude Weise", a record high for Mars. The Mössbauer spectrum of this target is featureless. APXS measurements of light-toned nodular outcrops also show high silica concentrations (up to ~72 wt.%), which in some locations co-exist with sulfur-rich soils. Miniature Thermal Emission Spectrometer (Mini-TES) results from the soils and nodules are consistent with opal-A. These deposits have been found adjacent to "Home Plate", a layered plateau interpreted as the product of explosive volcanism. The silica-rich soils and nodules are consistent with sinters and/or residues formed in a hydrothermal system, and may be related to the same hydrovolcanic activity that produced Home Plate. We have begun to map the distribution of high-silica materials in Gusev Crater more extensively using remote sensing, in order to understand the regional extent of possible hydrothermal activity. Spirit's Pancam instrument has collected visible to near-infrared relative reflectance spectra of the region in 11 unique wavelengths. We find that a distinct absorption feature at the longest Pancam wavelength (1009 nm) appears to be characteristic of the high-silica soils and nodules. By mapping the occurrence of this feature with other spectral parameters in Pancam images, we can remotely identify potential amorphous silica deposits elsewhere in the Columbia Hills. Here we present a map with our proposed regional distribution of silica-rich materials within the rover's Gusev Crater traverse area. The mineralogic origin of the 1009nm feature is enigmatic; reflectance spectra of amorphous silica are typically featureless in near

  13. Initiation and collapse of active circulation in a hydrothermal system at the Mid-Atlantic Ridge, 23°N

    NASA Astrophysics Data System (ADS)

    Gallinatti, Barbara Cosens

    1984-05-01

    Gabbro and basalt, collected from an area south of the Kane Fracture Zone along the Mid-Atlantic Ridge, have three stages of alteration which record the cooling of a hydrothermal system: (1) Stage 1. Penetration of seawater began between 400° and 550°C, altering pyroxene to fibrous green amphibole. (2) Stage 2. Propylitic alteration formed along connected fractures between 250° and 300°C. As fracture density increased, the Fe/Mg ratio of chlorite increased, the final result being an Fe chlorite-quartz-sulfide breccia. (3) Stage 3. Late smectite veinlets formed at low temperatures (≤200°C) after active circulation ceased The study focuses on stage 2 alteration. By assuming local equilibrium between alteration minerals and the hydrothermal fluid, constraints can be placed on the fluid composition responsible for stage 2 alteration, the stage associated with deposition of sulfides. The following activities of species in solution were determined for the system FeO Na2O-CaO-MgO-Al2O3-SiO2-H2O at 350 bars and 250°C: log a (Ca++)/a2 (H+) = 8.0, log a (Na+)/a (H+) = 5.0, log a (Fe++)/a2 (H+) = 1.7, log a (Mg++)/a2 (H+) = 6.0. Log a (SiO2) was set at quartz saturation (-2.3 at 350 bars and 250°C). Fluid inclusions record the introduction of a low temperature, seawater-salinity fluid during formation of the latest quartz veins associated with stage 2 alteration. Mixing of this and the hydrothermal fluid caused a drop in temperature and increase in oxidation state, resulting in increased precipitation of quartz, pyrite and chalcopyrite. The salinities of fluid inclusions trapped in quartz during stage 2 alteration are as much as 3 times that of seawater. Concentration of a fluid initially of seawater salinity may be the result of boiling at ≥350°C and ≤3000 m depth.

  14. Observation of hydrothermal flows with acoustic video camera

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Asada, A.; Tamaki, K.; Scientific Team Of Yk09-13 Leg 1

    2010-12-01

    To evaluate hydrothermal discharging and its diffusion process along the ocean ridge is necessary for understanding balance of mass and flux in the ocean, ecosystem around hydrothermal fields and so on. However, it has been difficult for us to measure hydrothermal activities without disturbance caused by observation platform ( submersible, ROV, AUV ). We wanted to have some observational method to observe hydrothermal discharging behavior as it was. DIDSON (Dual-Frequency IDentification SONar) is acoustic lens-based sonar. It has sufficiently high resolution and rapid refresh rate that it can substitute for optical system in turbid or dark water where optical systems fail. DIDSON operates at two frequencies, 1.8MHz or 1.1MHz, and forms 96 beams spaced 0.3° apart or 48 beams spaced 0.6° apart respectively. It images out to 12m at 1.8MHz and 40m at 1.1MHz. The transmit and receive beams are formed with acoustic lenses with rectangular apertures and made of polymethylpentene plastic and FC-70 liquid. This physical beam forming allows DIDSON to consume only 30W of power. DIDSON updates its image between 20 to 1 frames/s depending on the operating frequency and the maximum range imaged. It communicates its host using Ethernet. Institute of Industrial Science, University of Tokyo ( IIS ) has understood DIDSON’s superior performance and tried to find new method for utilization of it. The observation systems that IIS has ever developed based on DIDSON are waterside surveillance system, automatic measurement system for fish length, automatic system for fish counting, diagnosis system for deterioration of underwater structure and so on. A next challenge is to develop an observation method based on DIDSON for hydrothermal discharging from seafloor vent. We expected DIDSON to reveal whole image of hydrothermal plume as well as detail inside the plume. In October 2009, we conducted seafloor reconnaissance using a manned deep-sea submersible Shinkai6500 in Central Indian

  15. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  16. Antioxidant activities of crude extracts of fucoidan extracted from Sargassum glaucescens by a compressional-puffing-hydrothermal extraction process.

    PubMed

    Huang, Chun-Yung; Wu, Shu-Jing; Yang, Wen-Ning; Kuan, Ai-Wei; Chen, Cheng-Yo

    2016-04-15

    Fucoidan, a multifunctional marine polymer, is normally extracted from brown algae via extensive use of acid, solvent or high temperature water and a long reaction time. In present study, we developed a novel compressional-puffing-hydrothermal extraction (CPHE) process which primarily decomposes the cellular structure of algae and facilitates the release of fucoidan by hot water extraction. The CPHE process provides a number of advantages including simple procedure, reactant-saving, reduced pollution, and feasibility for continuous production. Sargassum glaucescens (SG) was utilized in this study, and the maximum extraction yield of polysaccharide was approximately 9.83 ± 0.11% (SG4). Thin layer chromatography (TLC), Fourier transform infrared (FTIR) analysis, and measurements of monosaccharide composition, fucose, sulfate, and uronic acid contents revealed that the extracted polysaccharide showed characteristics of fucoidan. All extracts exhibited antioxidant activities, and thus, further exploration of these extracts as potential natural and safe antioxidant agents is warranted. PMID:26675848

  17. Hydrothermal iron flux variability following rapid sea level changes

    NASA Astrophysics Data System (ADS)

    Middleton, Jennifer L.; Langmuir, Charles H.; Mukhopadhyay, Sujoy; McManus, Jerry F.; Mitrovica, Jerry X.

    2016-04-01

    Sea level changes associated with Pleistocene glacial cycles have been hypothesized to modulate melt production and hydrothermal activity at ocean ridges, yet little is known about fluctuations in hydrothermal circulation on time scales longer than a few millennia. We present a high-resolution record of hydrothermal activity over the past 50 ka using elemental flux data from a new sediment core from the Mir zone of the TAG hydrothermal field at 26°N on the Mid-Atlantic Ridge. Mir sediments reveal sixfold to eightfold increases in hydrothermal iron and copper deposition during the Last Glacial Maximum, followed by a rapid decline during the sea level rise associated with deglaciation. Our results, along with previous observations from Pacific and Atlantic spreading centers, indicate that rapid sea level changes influence hydrothermal output on mid-ocean ridges. Thus, climate variability may discretize volcanic processing of the solid Earth on millennial time scales and subsequently stimulate variability in biogeochemical interactions with volcanic systems.

  18. Effect of temperature and concentration of precursors on morphology and photocatalytic activity of zinc oxide thin films prepared by hydrothermal route

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Hakola, H.; Huttunen-Saarivirta, E.; Kannisto, M.; Hyvärinen, L.; Järveläinen, M.; Levänen, E.

    2016-04-01

    Zinc oxide (ZnO) is an important semiconductive material due to its potential applications, such as conductive gas sensors, transparent conductive electrodes, solar cells, and photocatalysts. Photocatalytic activity can be exploited in the decomposition of hazardous pollutants from environment. In this study, we produced zinc oxide thin films on stainless steel plates by hydrothermal method varying the precursor concentration (from 0.029 M to 0.16 M) and the synthesis temperature (from 70 °C to 90 °C). Morphology of the synthesized films was examined using field-emission scanning electron microscopy (FESEM) and photocatalytic activity of the films was characterized using methylene blue decomposition tests. It was found that the morphology of the nanostructures was strongly affected by the precursor concentration and the temperature of the synthesis. At lower concentrations zinc oxide grew as thin needlelike nanorods of uniform length and shape and aligned perpendicular to the stainless steel substrate surface. At higher concentrations the shape of the rods transformed towards hexagon shaped units and further on towards flaky platelets. Temperature changes caused variations in the coating thickness and the orientation of the crystal units. It was also observed, that the photocatalytic activity of the prepared films was clearly dependent on the morphology of the surfaces.

  19. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc

    NASA Astrophysics Data System (ADS)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo; Asada, Akira

    2016-06-01

    Myojin Knoll caldera, one of the submarine silicic calderas lying on the volcanic front of the northern Izu-Ogasawara arc, has attracted increasing attention since the discovery of a large hydrothermal field called the Sunrise deposit. Although numerous submersible surveys have been conducted in Myojin Knoll caldera, they have not sufficiently explored areas to produce a complete picture of the caldera and understand the origin of the Sunrise deposit. We conducted comprehensive deep-sea surveys using an autonomous underwater vehicle and obtained high-resolution bathymetric and magnetic data and sonar images from ~70% of the caldera. The detailed bathymetric map revealed that faulting and magma eruptions, possibly associated with an inflation-deflation cycle of the magma reservoir during postcaldera volcanism, had generally occurred in the caldera wall. The main dome of the central cone was covered with lava flows and exhibits exogenous growth, which is unusual for rhyolitic domes. The magnetization distribution in the central cone indicates preferential magma intrusion along a NW-SE direction. It is presumed that magma migrated along this direction and formed a rhyolite dome at the foot of the southeastern caldera wall, where the Sunrise deposit occurs. The Sunrise deposit is composed mainly of three ridges extending in slope directions and covers ~400 × ~400 m. Magnetization reduction in the deposit area is small, indicating that the alteration zone beneath the Sunrise deposit is slanting rather than vertical. It is presumed that several slanting and near-vertical volcanic vents serve as pathways of hydrothermal fluid in Myojin Knoll caldera.

  20. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method.

    PubMed

    Liu, S X; Chen, X Y; Chen, X

    2007-05-01

    In the present work, a TiO2/activated carbon (AC) photocatalyst with high activity and easy separation was prepared using a hydrothermal method. Phenol, methyl orange (MO) and Cr(VI) were used as target pollutants to test the activity and decantability. SEM, XRD, FTIR, diffuse reflectance spectra (UV/DRS) and N2 adsorption isotherms were used to characterize the crystalline and electronic structure. Results show that the AC composite has a significant effect on the TiO2 activity. With suitable AC content, the TiO2/xAC catalysts prepared were much more active. The TiO2/5AC catalyst exhibited easy separation and less deactivation after several runs, and was less sensitive to pH changes. UV/DRS revealed that no electronic bandgap changes in TiO2 occurred on addition of the AC. SEM and XRD results suggest that better TiO2 distribution can be achieved when an optimal AC content is used. A Ti-O-C bond was formed and a slight conjugation effect appeared between the AC bulk and TiO2. The advantages of the obtained TiO2/5AC catalyst revealed its great practical potential in wastewater treatment. PMID:17049160

  1. Zn isotope composition in hydrothermal systems on the mid-ocean ridge and its implication for oceanic cycling of Zinc

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Wang, Jianqiang; Lei, Jijiang; Yu, Xing; Wang, Hao; Chu, Fengyou

    2016-04-01

    Seafloor hydrothermal systems play an important role on the oceanic biogeochemical cycles of Zn and its isotopes. However, for the Zn isotopic systems in hydrothermal systems we know too little of the distribution of Zn isotopes in variable hydrothermal products and its impact on modern oceanic mass balance. We have measured Zn isotopes in hydrothermal products such as oxidation products of chimney sulfides and hydrothermal sediments from the active hydrothermal field on the Mid-Atlantic Ridge in order to better understand the oceanic biogeochemical cycles of Zn isotopes. We present isotopic data for Zn in sulfides and sediments, which yield δ66Zn=+0.11±0.08‰(2SD,n=23)and range from -0.14‰ to +0.38‰.We found that δ66Zn values of our samples were lighter or similar to chimney sulfides from the high-temperature hydrothermal vent, but much lighter than hydrothermal fluids and chimney sulfides from the low-temperature hydrothermal vent. We also compared our results with δ66Zn values of the Fe-Mn crusts, nodules and oceanic carbonate as heavy Zn isotope sink, which implies that Zn isotopes output to hydrothermal sediment and oxidation products of chimney sulfides as a missing light sink can explain the heavy isotopic composition of the oceans.

  2. Castro ring zone: a 4,500-km2 fossil hydrothermal system in the Challis volcanic field, central Idaho.

    USGS Publications Warehouse

    Criss, R.E.; Ekren, E.B.; Hardyman, R.F.

    1984-01-01

    The largest fossil hydrothermal system occupying a 4500 km2 area in central Idaho is revealed by delta 18O studies. The remains of this meteoric-hydrothermal system are preserved within a sharply bounded, 15 km wide, 70-km-diameter annulus of low delta 18O rock (+2.0 to -8.8per mille) termed the Castro ring zone. The zone is centred on a less depleted (+4.5) core zone consisting of granitic rocks of the Castro pluton. This 700-km2 Eocene subvolcanic batholith has intruded, domed, and hydrothermally metamorphosed a thick sequence of Challis Volcanics, the stratigraphically low rocks in the 2000-km2 Van Horn Peak and the 1000-km2 Thunder Mountain cauldron complexes being most strongly altered. Less extreme 18O depletions occur in the youngest major ash-flow sheets of these complexes, indicating a vertical 18O gradient. Water/rock ratios of geothermal systems are surprisingly insensitive to the circulation scale.-L.-di H.

  3. Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

    2012-12-01

    Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5°C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located

  4. Fluid Geochemistry of the Capelinhos Vent Site. A Key to Understand the Lucky Strike Hydrothermal Vent Field (37°N, MAR).

    NASA Astrophysics Data System (ADS)

    Leleu, T.; Chavagnac, V.; Cannat, M.; Ceuleneer, G.; Castillo, A.; Menjot, L.

    2015-12-01

    The Lucky Strike hydrothermal field is situated at the mid-Atlantic ridge, south of the Azores, on top of a central volcano within the axial valley. The volcano is composed of a fossil lava lake surrounded by three volcanic cones. An Axial Magma Chamber (AMC) is reported 3.4km below the seafloor. The active venting sites are situated around the fossil lava lake and are directly linked to the heat supplied by the AMC. High temperature fluids from the Lucky Strike field were sampled in 2013, 2014 and 2015 in order to document the depth of the reaction zone, subsurface mixing, geographical control and magmatic degassing. A new active site named Capelinhos was discovered approximately 1.5km eastward from the lava lake, during exploration by ROV Victor6000 - MoMARsat cruise, 2013. It is composed of 10m-high chimneys discharging black smoker-type fluid. Fluid temperatures were 328°C in 2013 and decreased to 318°C in 2014 and 2015. Capelinhos fluids are Cl-depleted by 55% compared to seawater indicating phase separation at depth. In comparison, the other sites range from 6% enrichment (2608/Y3 site) to 22% depletion (Eiffel tower site). Si geothermobarometry of Y3 site estimates quartz equilibration at P=300 bars and T=360-380°C, coherent with Fe/Mn geothermometer (T=370±10°C). For Capelinhos, Fe/Mn suggests 398°C (±10°C) which is close to the critical point of seawater (P=300 bars and T=407°C). Other geothermobarometer uses Si/Cl vapor-like fluid to constrain depth of the top of reaction zone and predicts significant bias due to mixing along the up-flow zone. Application gives P=~370 bars, T=~435°C at Capelinhos and P=~390 bars, T=~440°C at Eiffel tower. This is further sustained by end-member 87Sr/86Sr=0.7038, which indicates little interaction of Capelinhos vent fluids with seawater-derived fluid, compared to other vapor-like sites with 87Sr/86Sr=0.7043. Because of its external location, Capelinhos site isn't influenced by the complex tectonic context of the

  5. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.

    2015-11-01

    In nearly four decades since the discovery of deep-sea vents, one-third of the length of global oceanic spreading ridges has been surveyed for hydrothermal activity. Active submarine vent fields are now known along the boundaries of 46 out of 52 recognized tectonic plates. Hydrothermal survey efforts over the most recent decade were sparked by national and commercial interests in the mineral resource potential of seafloor hydrothermal deposits, as well as by academic research. Here we incorporate recent data for back-arc spreading centers and ultraslow- and slow-spreading mid-ocean ridges (MORs) to revise a linear equation relating the frequency of vent fields along oceanic spreading ridges to spreading rate. We apply this equation globally to predict a total number of vent fields on spreading ridges, which suggests that ~900 vent fields remain to be discovered. Almost half of these undiscovered vent fields (comparable to the total of all vent fields discovered during 35 years of research) are likely to occur at MORs with full spreading rates less than 60 mm/yr. We then apply the equation regionally to predict where these hydrothermal vents may be discovered with respect to plate boundaries and national jurisdiction, with the majority expected to occur outside of states' exclusive economic zones. We hope that these predictions will prove useful to the community in the future, in helping to shape continuing ridge-crest exploration.

  6. High Connectivity of Animal Populations in Deep-Sea Hydrothermal Vent Fields in the Central Indian Ridge Relevant to Its Geological Setting

    PubMed Central

    Beedessee, Girish; Watanabe, Hiromi; Ogura, Tomomi; Nemoto, Suguru; Yahagi, Takuya; Nakagawa, Satoshi; Nakamura, Kentaro; Takai, Ken; Koonjul, Meera; Marie, Daniel E. P.

    2013-01-01

    Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province. PMID:24358117

  7. High connectivity of animal populations in deep-sea hydrothermal vent fields in the Central Indian Ridge relevant to its geological setting.

    PubMed

    Beedessee, Girish; Watanabe, Hiromi; Ogura, Tomomi; Nemoto, Suguru; Yahagi, Takuya; Nakagawa, Satoshi; Nakamura, Kentaro; Takai, Ken; Koonjul, Meera; Marie, Daniel E P

    2013-01-01

    Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province. PMID:24358117

  8. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field.

    PubMed

    Eickmann, B; Thorseth, I H; Peters, M; Strauss, H; Bröcker, M; Pedersen, R B

    2014-07-01

    Barite chimneys are known to form in hydrothermal systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ∆36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86 Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2- and CH4-rich high-temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low-temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on

  9. Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico

    USGS Publications Warehouse

    Casadevall, Thomas J.; de la Cruz-Reyna, Servando; Rose, William I., Jr.; Bagley, Susan; Finnegan, David L.; Zoller, William H.

    1984-01-01

    Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) hydrothermal fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.

  10. Drill core-based facies reconstruction of a deep-marine felsic volcano hosting an active hydrothermal system (Pual Ridge, Papau New Guinea, ODP Leg 193)

    NASA Astrophysics Data System (ADS)

    Paulick, H.; Vanko, D. A.; Yeats, C. J.

    2004-02-01

    Pual Ridge is a deep-marine, felsic volcanic edifice in the eastern Manus back-arc basin (Papua New Guinea) with an estimated volume of ˜6 to 9 km 3. It is 1-1.5 km wide, 20 km long and rises 500-600 m above the surrounding ocean floor. The active PACMANUS hydrothermal field on the crest of Pual Ridge at 1640-1690 m below sea level was the target of Ocean Drilling Program Leg 193. Variably altered dacite lavas have been recovered from the subsurface of a low-T discharge site (Snowcap) and a high-T black smoker site (Roman Ruins) reaching a maximum depth of 380 m below seafloor (mbsf). Volcanic facies interpretation of these cores is difficult due to incomplete recovery and widespread pseudoclastic textures generated by fracturing and multi-phase, incomplete fluid-dacite interaction. However, distinction of genuine volcaniclastic facies and facies with alteration-related clastic appearance is important in order to define paleo-seafloor positions within the volcanic stratigraphy, that may be prospective for massive sulfide mineralization. This has been accomplished using remnant primary characteristics indicative of transportation such as polymictic composition, grading or textural evidence for differential movement of individual clasts. Three phases of volcanic activity can be distinguished and a proximal facies association dominated by coherent facies of dacite lavas exists below Snowcap. At Roman Ruins, a medial facies association consists of lava flows with about equal proportions of coherent and volcaniclastic facies. Endogenous growth was an important process during lava flow emplacement and groundmass textures such as perlite, flow banding and spherulites indicate that cooling rates were variable, locally allowing for high-temperature devitrification. A tube pumice breccia unit is interpreted as the resedimented facies of a quench fragmented, highly vesicular dacite lava carapace. Sulfide accumulations in the subsurface are restricted to Roman Ruins

  11. Microbial bio-mineralization processes in hydrothermal travertine: the case study of two active travertine systems (Tuscany, Italy).

    NASA Astrophysics Data System (ADS)

    Barilaro, Federica; Bontognali, Tomaso R. R.; Mc Kenzie, Judith A.; Vasconcelos, Crisogono

    2015-04-01

    Modern hydrothermal travertine deposits, occurring today at Bagni San Filippo (Radicofani Basin) and at Bagni di Saturnia (Albegna Valley) in Tuscany, Central Italy, have been investigated with the main purpose to improve the understanding of the processes that control calcium carbonate precipitation in hydrothermal-spring settings. Present-day thermal activity at Bagni di Saturnia is characterized by a 37.5°C thermal spring with a rate of about 800 l/s, with a pH of ca. 6.4. Thermal water discharges at Bagni San Filippo reach a rate of 20 litres per second at a maximum temperature of 50°C and a pH of ca. 7. The springs expel water enriched in H2S-CO2-SO42- and HCO3- and divalent cations (Ca and Mg). In the studied areas, travertine precipitation occurs in association with living microbial mats and biofilms, composed of a heterogeneous community of green algae, filamentous cyanobacteria and other types of prokaryotes, anoxygenic photosynthetic bacteria and heterotrophic heat-tolerant bacteria, with a variable amount of extracellular polymeric substances (EPS). Nine categories of fabric types, dominantly calcite and aragonite in composition, showing a wide range of macro- and micro-porosity, have been identified. High magnification analysis of dendritic and laminated boundstone, crystalline crust cementstone, raft boundstone, coated bubble boundstone, micrite mudstone and coated reed boundstone fabric types, suggests that precipitation occurs in association with organic matter. Diatoms, cyanobacteria filaments and other bacteria are then associated with the EPS and often appear totally or partially entombed (passively or actively) in it. Organic extracellular polymeric substances (EPS) and often the external surface of cyanobacterial sheaths are the location where the calcite minerals nucleate and grow. Precipitation begins with organomineral nano-globules consisting of nanometre-size, from sub-spherical to globular-like, raised structures (5 to 80 nm diameter

  12. Hydrothermal pretreatment of coal

    SciTech Connect

    Loo, Bock; Ross, D.S.

    1990-08-14

    We are examining the effects on composition and behavior of Argonne-supplied Wyodak coal under both thermal (no added water/N{sub 2}) and hydrothermal (liquid water/N{sub 2}) conditions at 350{degree}C for periods of 30 min and 5 hr, with emphasis during this period on the longer treatment. Field ionization mass spectrometry (FIMS) of the untreated, thermally treated, and hydrothermally treated coals is conducted at conditions where the samples are heated from ambient to 500{degree}C at 2.5{degree}/min. In the 5 hr work the volatilities of the coals are 24%, 16%, and 25% respectively. Solvent swelling studies with the recovered coals do not demonstrate the expected lower degree of crosslinking in the hydrothermal case. Both the thermal and hydrothermal treatments yield products with a decreased swelling ratio, but the ratio for the product from the aqueous treatment is slightly lower than that from thermal treatment. At present we cannot reconcile this result with our other data. 4 refs., 6 figs.

  13. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Field activities. 4100.3 Section 4100.3 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities....

  14. Cooked Volatiles and the Origin of Titan's Atmosphere: Evidence of Deep Hydrothermal Activity?

    NASA Astrophysics Data System (ADS)

    Glein, C. R.

    2014-12-01

    As on the terrestrial planets, key clues to the origin of Titan's enigmatic atmosphere are contained in the abundances of noble gases and stable isotopes in the atmosphere. The Huygens GCMS measured the abundances of 40Ar, 36Ar, and 22Ne (tentatively); as well as the nitrogen and carbon isotopic compositions of atmospheric N2 and CH4, respectively. No isotopes of Kr or Xe were detected (<10 ppbv). Cassini CIRS has provided us with the D/H ratio in CH4. Here, I attempt to explain these data by developing the hypothesis that the noble gases, nitrogen, and methane originated in the rocky core of Titan [1]. The presence of 40Ar demonstrates that volatile species can be delivered from the deep interior to the atmosphere. Consistent with [2], I find that Titan's primordial core should have contained sufficient 36Ar and 22Ne to explain their reported abundances. By extrapolating this model, I provide a new explanation for why the GCMS failed to detect Kr or Xe, as the predicted mixing ratios of 84Kr and 132Xe are ~0.2 ppbv and ~0.01 ppbv, respectively. I find that nitrogen should be outgassed similarly to argon, while krypton can serve as a geochemical proxy for methane, given the similar volatilities of these pairs of substances. This allows me to deduce that geochemical reactions in Titan's core could have generated enough N2 and CH4 from accreted NH3 and CO2, respectively. A hydrothermal origin of atmospheric nitrogen is also supported by the similarity in N isotopes between Titan's N2 and cometary NH3 [3]. I find that the isotopic ratios in methane can be explained by low-temperature (~300 K) equilibria with liquid water and the alteration mineral calcite. Looking toward the future, this model predicts 12C/13C ≈ 84 in dry ice, and D/H ≈ 170 ppm in water ice on Titan's surface. References: [1] Glein C.R. (2014) Icarus, submitted; [2] Tobie G., et al. (2012) ApJ 752, 125; [3] Mandt K.E., et al. (2014) ApJ Lett. 788, L24.

  15. Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    SciTech Connect

    Tan, Wai Kian; Abdul Razak, Khairunisak; Lockman, Zainovia; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ∼40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible

  16. Low Temperature Hydrothermal Synthesis of Visible-Light-Activated I-Doped TiO2 for Improved Dye Degradation.

    PubMed

    Wang, Dongting; Li, Jianwen; Zhou, Guangsheng; Wang, Wenxu; Zhang, Xianxi; Pan, Xu

    2016-06-01

    Iodine doped TiO2 with different iodine/Ti molar ratios has been firstly synthesized with a low temperature hydrothermal route and has been studied systematically in photocatalysis under visible light condition. The resulting iodine doped TiO2 were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (TEM), diffuse reflectance spectrum (DRS), and X-ray photoelectron spectroscopy (XPS). The photocatalytic performance investigations were conducted by means of the degradation of Rhodamine B (RhB) under the visible light irradiation in aqueous solution. Under an optimized I/Ti doping ratio of 10 mol%, the photocatalytic performance is greatly better, with degradation efficiency of 95%, which is almost double that of pure TiO2. The superior photocatalytic activity of iodine-doped TiO2 could be mainly attributed to extended visible light absorption originated from the formation of continuous states existed in the band gap of the doped TiO2 introduced by iodine. Active oxygen species, that is, *OH and O2-, were evidenced to be involved in the degradation process and a possible mechanism was also proposed. PMID:27427614

  17. Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Klubnuan, Sarunya; Suwanboon, Sumetha; Amornpitoksuk, Pongsaton

    2016-03-01

    The dependence of the crystallite size and the band tail energy on the optical properties, particle shape and oxygen vacancy of different ZnO nanostructures to catalyse photocatalytic degradation was investigated. The ZnO nanoplatelets and mesh-like ZnO lamellae were synthesized from the PEO19-b-PPO3 modified zinc acetate dihydrate using aqueous KOH and CO(NH2)2 solutions, respectively via a hydrothermal method. The band tail energy of the ZnO nanostructures had more influence on the band gap energy than the crystallite size. The photocatalytic degradation of methylene blue increased as a function of the irradiation time, the amount of oxygen vacancy and the intensity of the (0 0 0 2) plane. The ZnO nanoplatelets exhibited a better photocatalytic degradation of methylene blue than the mesh-like ZnO lamellae due to the migration of the photoelectrons and holes to the (0 0 0 1) and (0 0 0 -1) planes, respectively under the internal electric field, that resulted in the enhancement of the photocatalytic activities.

  18. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Rona, P.A.; Bostrom, K.; Laubier, L.; Smith, K.L.

    1983-01-01

    This book examines research on the description and interpretation of hydrothermal and associated phenomena at seafloor spreading centers. An interdisciplinary overview of the subject is presented, including geological, geophysical, geochemical, and biological discoveries. The implications of the discoveries for understanding the earth's heat transfer, geochemical mass balances and cycles, mineralization, and biological adaptation are discussed. Topics considered include geologic setting (e.g., the four dimensions of the spreading axis, geological processes of the mid-ocean ridge), hydrothermal convection (e.g., oxygen and hydrogen isotope studies, the basic physics of water penetration into hot rock), Iceland and oceanic ridges (e.g., chemical evidence from Icelandic geothermal systems, the physical environment of hydrothermal systems), mass balances and cycles (e.g., reduced gases and bacteria in hydrothermal fluids, the effects of hydrothermal activity on sedimentary organic matter), ferromanganese deposits, hydrothermal mineralization, and the biology of hydrothermal vents.

  19. Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.

    2014-04-01

    Yellowstone National Park (YNP) displays numerous and extensive hydrothermal features. Although hydrothermal alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of field and drill core samples to provide constraints on the geometry of hydrothermal alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that hydrothermal zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by hydrothermal alteration processes. Such demagnetization is confirmed by measurements of rock samples from hydrothermal areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in hydrothermal areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of hydrothermal activity and mapped alteration.

  20. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

    PubMed

    Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S

    2013-07-01

    Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes. PMID:23647923

  1. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.

    PubMed

    Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc

    2014-12-01

    Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents. PMID:25244359

  2. Thermo-physical rock properties and the impact of advancing hydrothermal alteration - A case study from the Tauhara geothermal field, New Zealand

    NASA Astrophysics Data System (ADS)

    Mielke, Philipp; Nehler, Mathias; Bignall, Greg; Sass, Ingo

    2015-08-01

    The thermo-physical rock properties density, porosity, matrix permeability, thermal conductivity and specific heat capacity of 418 orientated rock plugs cut from 233 cores recovered from geothermal investigation wells THM12, THM13, THM14, THM17, THM18, THM19, and TH18 at the Tauhara geothermal field, New Zealand were measured and a statistical database was set up. The lithotype of each sample was classified, and the hydrothermal alteration rank and intensity was determined by optical microscopy. The hydrothermal clays (typically smectite, smectite-illite, illite) were analysed by the methylene blue dye adsorption test and short wave infrared spectroscopy. Investigated stratigraphic units are the Huka Falls Formation with its sub members upper, middle and lower Huka Falls Formation, the Wairora Formation, Spa Andesite and its associated breccias, and Racetrack rhyolite and its associated breccias. Lithotypes are clay-altered tuff and intercalated mudstone/siltstone (cap rock for the Tauhara geothermal system); tuffaceous sandstones, sedimentary and pyroclastic breccias and pumiceous ash tuff (reservoir-hosting units); and rhyolitic and andesitic lavas, and their associated breccias. The obtained rock property data indicate a common porosity range of 30% to 45% for sediments, volcaniclastics and lava breccias, an average of 10% for andesite lava, and 39% for rhyolite lava. Matrix permeability of mudstone, siltstone, breccias and lavas is commonly < 1 mD, while sandstone, tuff and brecciated lavas have two to three orders of magnitude higher permeabilities. Both porosity and permeability decrease with depth. Thermal conductivity decreases with increasing porosity, and is similar for most lithotypes (0.7 W m- 1 K- 1 to 1 W m- 1 K- 1), while lavas have higher values (0.9 W m- 1 K- 1 to 1.4 W m- 1 K- 1). Specific heat capacity is similar for all lithotypes (0.6 kJ kg- 1 K- 1 to 0.8 kJ kg- 1 K- 1). Advancing hydrothermal alteration decreases the porosity of sandstone and

  3. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn{sub 2}S{sub 4} microspheres and their visible light photocatalytic activity

    SciTech Connect

    Chen Zhixin; Li Danzhen; Xiao Guangcan; He Yunhui; Xu Yijun

    2012-02-15

    Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 Degree-Sign C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn{sub 2}S{sub 4}, which shows that the ZnIn{sub 2}S{sub 4} sample synthesized at 195 Degree-Sign C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a fast microwave-assisted hydrothermal method at 80-195 Degree-Sign C with a very short reaction time of 10 min. The as-prepared ZnIn{sub 2}S{sub 4} sample can be used as visible light photocatalyst for degradation of organic dyes. Highlights: Black-Right-Pointing-Pointer ZnIn{sub 2}S{sub 4} microspheres were synthesized by microwave-assisted hydrothermal method. Black-Right-Pointing-Pointer The crystal structure and optical property of the products were almost the same. Black-Right-Pointing-Pointer Increment of the temperature renders high surface area due to the bubbling effect. Black-Right-Pointing-Pointer The ZnIn{sub 2}S{sub 4} synthesized at 195 Degree-Sign C shows the best visible catalytic activity for MO.

  4. Rhythms and Community Dynamics of a Hydrothermal Tubeworm Assemblage at Main Endeavour Field – A Multidisciplinary Deep-Sea Observatory Approach

    PubMed Central

    Cuvelier, Daphne; Legendre, Pierre; Laes, Agathe; Sarradin, Pierre-Marie; Sarrazin, Jozée

    2014-01-01

    The NEPTUNE cabled observatory network hosts an ecological module called TEMPO-mini that focuses on hydrothermal vent ecology and time series, granting us real-time access to data originating from the deep sea. In 2011–2012, during TEMPO-mini’s first deployment on the NEPTUNE network, the module recorded high-resolution imagery, temperature, iron (Fe) and oxygen on a hydrothermal assemblage at 2186 m depth at Main Endeavour Field (North East Pacific). 23 days of continuous imagery were analysed with an hourly frequency. Community dynamics were analysed in detail for Ridgeia piscesae tubeworms, Polynoidae, Pycnogonida and Buccinidae, documenting faunal variations, natural change and biotic interactions in the filmed tubeworm assemblage as well as links with the local environment. Semi-diurnal and diurnal periods were identified both in fauna and environment, revealing the influence of tidal cycles. Species interactions were described and distribution patterns were indicative of possible microhabitat preference. The importance of high-resolution frequencies (<1 h) to fully comprehend rhythms in fauna and environment was emphasised, as well as the need for the development of automated or semi-automated imagery analysis tools. PMID:24810603

  5. Insights into life-history traits of Munidopsis spp. (Anomura: Munidopsidae) from hydrothermal vent fields in the Okinawa Trough, in comparison with the existing data

    NASA Astrophysics Data System (ADS)

    Nakamura, Masako; Chen, Chong; Mitarai, Satoshi

    2015-06-01

    Squat lobsters in the genus Munidopsis are commonly found at, and near, hydrothermal vents. However, the reproductive traits of most Munidopsis spp. are unknown. This study examined the reproductive features of two Munidopsis species sampled from hydrothermal vent fields in the southern Okinawa Trough in February 2014. Three ovigerous females were collected: two Munidopsis ryukyuensis at Irabu Knoll (1661-1675 m depth) and one M. longispinosa at Hatoma Knoll (1482 m depth). Carapace sizes and egg volumes were measured and compared with those of other Munidopsis species. The ovigerous M. ryukyuensis specimens had postorbital carapace lengths of 10.3 and 11.8 mm, without the rostrum, and carapace widths of 8.6 and 9.7 mm. Mean egg volumes of M. ryukyuensis and M. longispinosa were ~4 mm3. These results are consistent with early sexual maturity in M. ryukyuensis and lecithotrophic development in both species, as described in other species of the genus. These life-history traits may enable these vent species to maximize their reproductive and dispersive potential.

  6. Soluble inhibitors generated during hydrothermal pretreatment of oil palm mesocarp fiber suppressed the catalytic activity of Acremonium cellulase.

    PubMed

    Zakaria, Mohd Rafein; Hirata, Satoshi; Fujimoto, Shinji; Ibrahim, Izzudin; Hassan, Mohd Ali

    2016-01-01

    Oil palm mesocarp fiber was subjected to hydrothermal pretreatment under isothermal and non-isothermal conditions. The pretreated slurries were separated by filtration, pretreated liquids and solids were characterized. An enzymatic digestibility study was performed for both pretreated slurries and solids to understand the effect of soluble inhibitors generated during the pretreatment process. The highest glucose yield obtained from pretreated slurries was 70.1%, and gradually decreased with higher pretreatment severities. The highest glucose yield obtained in pretreated solids was 100%, after pretreatment at 210°C for 20min. In order to study the inhibitory effects of compounds generated during pretreatment with cellulase, technical grade solutions that mimic the pretreated liquid were prepared and their effect on Acremonium cellulase activity was monitored using Avicel. Xylo-oligomers and tannic acid were identified as powerful inhibitors of Acremonium cellulase, and the lowest hydrolysis rate of Avicel of 0.18g/g-glucose released/L/h was obtained from tannic acid. PMID:26524253

  7. High-resolution magnetic signature of active hydrothermal systems in the back-arc spreading region of the southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Fujii, Masakazu; Okino, Kyoko; Honsho, Chie; Dyment, Jerome; Szitkar, Florent; Mochizuki, Nobutatsu; Asada, Miho

    2015-05-01

    High-resolution vector magnetic measurements were performed on five hydrothermal vent fields of the back-arc spreading region of the southern Mariana Trough using Shinkai 6500, a deep-sea manned submersible. A new 3-D forward scheme was applied that exploits the surrounding bathymetry and varying altitudes of the submersible to estimate absolute crustal magnetization. The results revealed that magnetic-anomaly-derived absolute magnetizations show a reasonable correlation with natural remanent magnetizations of rock samples collected from the seafloor of the same region. The distribution of magnetic-anomaly-derived absolute magnetization suggests that all five andesite-hosted hydrothermal fields are associated with a lack of magnetization, as is generally observed at basalt-hosted hydrothermal sites. Furthermore, both the Pika and Urashima sites were found to have their own distinct low-magnetization zones, which could not be distinguished in magnetic anomaly data collected at higher altitudes by autonomous underwater vehicle due to their limited extension. The spatial extent of the resulting low magnetization is approximately 10 times wider at off-axis sites than at on-axis sites, possibly reflecting larger accumulations of nonmagnetic sulfides, stockwork zones, and/or alteration zones at the off-axis sites.

  8. Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals.

    PubMed

    Sharma, Rishabh; Uma; Singh, Sonal; Verma, Ajit; Khanuja, Manika

    2016-09-01

    In the present work, monoclinic bismuth vanadate (m-BiVO4) nanostructures have been synthesized via simple hydrothermal method and employed for visible light driven antimicrobial and photocatalytic activity. Morphology (octahedral) and size (200-300nm) of the m-BiVO4 are studied using transmission electron microscopy (TEM). The crystal structure of m-BiVO4 (monoclinic scheelite structure) is confirmed by high resolution-TEM (HRTEM) and X-ray diffraction (XRD) studies. The band gap of m-BiVO4 was estimated to be ca. 2.42eV through Kubelka-Munk function F(R∞) using diffuse reflectance spectroscopy (DRS). Antimicrobial action of m-BiVO4 is anticipated by (i) shake flask method, (ii) MTT [3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide] assay for cytotoxicity. SEM analysis has been carried on Escherichia coli (E.coli) before and after treatment with nanostructure materials to reveal the mechanism underlying the antimicrobial action. Antimicrobial activity is studied as a function of m-BiVO4 concentration viz. 20, 40, 60 and 80ppm. The bacterial growth is decreased 80% to 96%, with the increase in m-BiVO4 concentration from 20ppm to 80ppm, respectively, in 2h. Photocatalytic activity and rate kinetics of m-BiVO4 nanostructures have been studied as a function of time on methylene blue (MB) dye degradation which is one of the waste products of textile industries and responsible for water pollution. PMID:27394009

  9. Morphology-dependent photocatalytic activity of octahedral anatase particles prepared by ultrasonication-hydrothermal reaction of titanates

    NASA Astrophysics Data System (ADS)

    Wei, Zhishun; Kowalska, Ewa; Verrett, Jonathan; Colbeau-Justin, Christophe; Remita, Hynd; Ohtani, Bunsho

    2015-07-01

    Octahedral anatase particles (OAPs) were prepared by an ultrasonication (US)-hydrothermal (HT) reaction of partially proton-exchanged potassium titanate nanowires (TNWs). The structural/physical properties of OAP-containing samples, including specific surface area, crystallinity, crystallite size, particle aspect ratio, composition and total OAP content, were analyzed. Photocatalytic activities of samples were measured under irradiation (>290 nm) for oxidative decomposition of acetic acid (CO2 system) and dehydrogenation of methanol (H2 system) under aerobic and deaerated conditions, respectively. Total density of electron traps (ETs) was measured by double-beam photoacoustic spectroscopy (DB-PAS). Mobility and lifetime of charge carriers (electrons) were investigated by the time-resolved microwave conductivity (TRMC) method. The effects of synthesis parameters, i.e., HT duration, HT temperature and US duration, on properties and photocatalytic activities of final products were examined in detail. The sample prepared with 1 h US duration and 6 h HT duration at 433 K using 267 mg of TNWs in 80 mL of Milli-Q water exhibited the highest photocatalytic activity. It was found that change in HT duration or HT temperature while keeping the other conditions the same resulted in changes in all properties and photocatalytic activity. On the other hand, duration of US treatment, before HT reaction, influenced the morphology of both the reagent (by TNWs breaking) and final products (change in total OAP content); samples prepared with various US durations exhibited almost the same structural/physical properties evaluated in this study but were different in morphology and photocatalytic activity. This enabled clarification of the correlation between morphology and photocatalytic activity, i.e., the higher the total OAP content was, the higher was the level of photocatalytic activity, especially in the CO2 system. Although the decay after maximum TRMC signal intensity (Imax) was

  10. Vapor Discharges On Nevado Del Ruiz During The Recent Activity: Clues On The Composition Of The Deep Hydrothermal System And Its Effects On Thermal Springs

    NASA Astrophysics Data System (ADS)

    Inguaggiato, S.; Federico, C.; Chacon, Z.; Londono, J. M.; Alzate, D. M.; Gil, E.

    2015-12-01

    The Nevado del ruiz volcano (NdR, 5321m asl), one of the most active in Colombia, threatens about 600,000 people. The existence of an ice cap and several streams channeling in some main rivers increase the risk of lahars and mudflows in case of unrest, as occurred during the November 1985 eruption, which caused 20,000 casualties. The involvement of the local hydrothermal system has also produced in the past phreatic and phreatomagmatic activity, as in 1985 and 1989. After more than 7 years of relative stability, since 2010, the still ongoing phase of unrest has produced two small eruption in 2012, and still maintains in high levels of seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and streamwater, located at 2600-5000 m asl, analyzed for water chemistry and stable isotopes. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of steam discharging in the different steam-heated springs. The composition of the hottest thermal spring (Botero Londoño) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250°C and low salinity (Cl ~1500 mg/l), which suggest a chiefly meteoric origin, as also confirmed by the isotope composition retrieved for the hydrothermal water. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesised to be separated from a high-temperature hyrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, as well as its pH and fO2. The vapour feeding Nereidas would separate from a byphasic hydrothermal system characterised by the follow parameters: t= 315°C, P=19 MPa, NaCl= 15 %, CO2 = 9%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, we obtain pH=2, fO2 fixed by FeO-Fe2O3 buffer, and [Cl]=12000 mg/l. Changes

  11. Controls on the geomorphic expression and evolution of gryphons, pools, and caldera features at hydrothermal seeps in the Salton Sea Geothermal Field, southern California

    NASA Astrophysics Data System (ADS)

    Onderdonk, Nathan; Mazzini, Adriano; Shafer, Luke; Svensen, Henrik

    2011-07-01

    In the Salton Sea Geothermal Field in southern California, expulsion of gas, sediment and water creates unique geomorphic features similar to those seen on the surface of dormant mud volcanoes. These include pools of water or highly fluid mud named “mud pots” and 0.5 to 2.5 m-tall gryphons. The features vary in size, shape, and type of eruptive activity and change form over time. To evaluate controls on the surface morphology and evolution of these features we used repeated differential GPS surveys, observations of eruptive activity, and measurements of erupted mud properties to document the physical characteristics and changes in the system over a 28-month period. We find that the morphology of the gryphons is primarily a function of the mud expulsion style. Taller (1.5 m to 2.4 m) gryphons form where narrower vents (5 cm to 15 cm diameter) expel mud to the surface in discrete Strombolian-type eruptions caused by individual gas bubbles pushing mud up through the gryphon conduit and exploding at the surface. Smaller (0.6 m to 1.5 m) gryphons form where wider vents allow a greater amount of gas to pass through, which creates 0.25 to 1 m diameter mud craters that bubble continuously, often from multiple points within the crater. Although viscous mud is required to create these positive topographic features, variations in erupted mud temperature (30 °C to 68.5 °C), density (1.44 g/cm3 to 1.59 g/cm3), and water content (36% to 44%) between different gryphons did not correlate with gryphon size. All the active gryphons experienced periods of growth and erosion over the study period due to changes in the degree of activity or small variations in the vent locations within the gryphons, but the net change in height distributions over time was negligible. Pools directly adjacent to gryphon clusters are surficial features whose water level depends on seasonal rainfall and temperature. Isolated pools are also present and do not show similar response to seasonal changes

  12. Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, J. W.; Clague, D. A.; Hannington, M. D.

    2014-06-01

    Hydrothermal sulfide deposits that form on the seafloor are often located by the detection of hydrothermal plumes in the water column, followed by exploration with deep-towed cameras, side-scan sonar imaging, and finally by visual surveys using remotely-operated vehicle or occupied submersible. Hydrothermal plume detection, however, is ineffective for finding hydrothermally-inactive sulfide deposits, which may represent a significant amount of the total sulfide accumulation on the seafloor, even in hydrothermally active settings. Here, we present results from recent high-resolution, autonomous underwater vehicle-based mapping of the hydrothermally-active Endeavour Segment of the Juan de Fuca Ridge, in the Northeast Pacific Ocean. Analysis of the ridge bathymetry resulted in the location of 581 individual sulfide deposits along 24 km of ridge length. Hydrothermal deposits were distinguished from volcanic and tectonic features based on the characteristics of their surface morphology, such as shape and slope angles. Volume calculations for each deposit results in a total volume of 372,500 m3 of hydrothermal sulfide-sulfate-silica material, for an equivalent mass of ∼1.2 Mt of hydrothermal material on the seafloor within the ridge's axial valley, assuming a density of 3.1 g/cm3. Much of this total volume is from previously undocumented inactive deposits outside the main active vent fields. Based on minimum ages of sulfide deposition, the deposits accumulated at a maximum rate of ∼400 t/yr, with a depositional efficiency (proportion of hydrothermal material that accumulates on the seafloor to the total amount hydrothermally mobilized and transported to the seafloor) of ∼5%. The calculated sulfide tonnage represents a four-fold increase over previous sulfide estimates for the Endeavour Segment that were based largely on accumulations from within the active fields. These results suggest that recent global seafloor sulfide resource estimates, which were based mostly

  13. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Shakiba, Ali; Vahedi, Khodadad

    2016-03-01

    This study attempts to numerically investigate the hydro-thermal characteristics of a ferrofluid (water and 4 vol% Fe3O4) in a counter-current horizontal double pipe heat exchanger, which is exposed to a non-uniform transverse magnetic field with different intensities. The magnetic field is generated by an electric current going through a wire located parallel to the inner tube and between two pipes. The single phase model and the control volume technique have been used to study the flow. The effects of magnetic field have been added to momentum equation by applying C++ codes in Ansys Fluent 14. The results show that applying this kind of magnetic field causes kelvin force to be produced perpendicular to the ferrofluid flow, changing axial velocity profile and creating a pair of vortices which leads to an increase in Nusselt number, friction factor and pressure drop. Comparing the enhancement percentage of Nusselt number, friction factor and pressure drop demonstrates that the optimum value of magnetic number for Reff=50 is between Mn=1.33×106 and Mn=2.37×106. So applying non-uniform transverse magnetic field can control the flow of ferrofluid and improve heat transfer process of double pipe heat exchanger.

  14. The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.

    2007-12-01

    Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries

  15. Extreme Hydrothermal Conditions Near an Active Geological Fault, DFDP-2B Borehole, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Sutherland, R.; Townend, J.; Toy, V.; Allen, M.; Baratin, L. M.; Barth, N. C.; Beacroft, L.; Benson, A.; Boese, C. M.; Boles, A.; Boulton, C. J.; Capova, L.; Carpenter, B. M.; Celerier, B. P.; Chamberlain, C. J.; Conze, R.; Cooper, A.; Coussens, J.; Coutts, A.; Cox, S.; Craw, L.; Doan, M. L.; Eccles, J. D.; Faulkner, D.; Grieve, J.; Grochowski, J.; Gulley, A.; Henry, G.; Howarth, J. D.; Jacobs, K. M.; Jeppson, T.; Kato, N.; Keys, S.; Kirilova, M.; Kometani, Y.; Lukács, A.; Langridge, R.; Lin, W.; Little, T.; Mallyon, D.; Mariani, E.; Marx, R.; Massiot, C.; Mathewson, L.; Melosh, B.; Menzies, C. D.; Moore, J.; Morales, L. F. G.; Morgan, C.; Mori, H.; Niemeijer, A. R.; Nishikawa, O.; Nitsch, O.; Paris Cavailhes, J.; Pooley, B.; Prior, D. J.; Pyne, A.; Sauer, K. M.; Savage, M. K.; Schleicher, A.; Schmitt, D. R.; Shigematsu, N.; Taylor-Offord, S.; Tobin, H. J.; Upton, P.; Valdez, R. D.; Weaver, K.; Wiersberg, T.; Williams, J. N.; Yeo, S.; Zimmer, M.; Broderick, N.

    2015-12-01

    The DFDP-2B borehole sampled rocks above and within the upper part of the Alpine Fault, New Zealand, to a depth of 893 m in late 2014. The experiment was the first to drill a major geological fault zone that is active and late in its earthquake cycle. We determined ambient fluid pressures 8-10% above hydrostatic and a geothermal gradient of 130-150 °C/km in rocks above the fault. These unusual ambient conditions can be explained by a combination of: rock advection that transports heat from depth by uplift and oblique slip on the fault; and fluid advection through fractured rock, driven by topographic forcing, which concentrates heat and causes fluid over-pressure in the valley. Highly-anomalous ambient conditions can exist in the vicinity of active faults, and earthquake and mineralization processes occur within these zones.

  16. Acoustic stratigraphy and hydrothermal activity within Epi Submarine Caldera, Vanuatu, New Hebrides Arc

    USGS Publications Warehouse

    Greene, H. Gary; Exon, N.F.

    1988-01-01

    Geological and geophysical surveys of active submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an active submarine volcano off the southeastern tip of Epi) lavas. ?? 1988 Springer-Verlag New York Inc.

  17. Synthesis of nanostructured and microstructured ZnO and Zn(OH)2 on activated carbon cloth by hydrothermal and microwave-assisted chemical bath deposition methods

    NASA Astrophysics Data System (ADS)

    Mosayebi, Elham; Azizian, Saeid; Hajian, Ali

    2015-05-01

    Nanostructured and microstructured ZnO and Zn(OH)2 loaded on activated carbon cloth were synthesized by microwave-assisted chemical bath deposition and hydrothermal methods. By hydrothermal method the deposited sample on carbon fiber is pure ZnO with dandelion-like nanostructures. By microwave-assisted chemical bath method the structure and composition of deposited sample depends on solution pH. At pH = 9.8 the deposited sample on carbon fiber is pure ZnO with flower-like microstructure; but at pH = 10.8 the sample is a mixture of ZnO and Zn(OH)2 with flower-like and rhombic microstructures, respectively. The mechanism of crystal grow by microwave-assisted chemical bath method was investigated by SEM method at both pH.

  18. Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Mohsen; Bandpy, Mofid Gorji; Ashorynejad, Hamid Reza

    2015-08-01

    In this study, Lattice Boltzmann Method is applied in order to simulate the magnetic field effect on nanofluid flow and convective heat transfer in a cubic cavity. The enclosure is filled with ​Al2O3-water nanofluid. Koo-Kleinstreuer-Li correlation is applied to calculate the effective viscosity and thermal conductivity of nanofluid. The effects of active parameters such as Hartmann number, nanoparticle volume fraction and Rayleigh number on flow and heat transfer have been examined. Results indicate that enhancement in heat transfer has direct relationship with Hartmann number while it has inverse relationship with Rayleigh number. Nusselt number increases with increase of nanoparticle volume fraction and Rayleigh number while it decreases with increase of Hartmann number.

  19. Current California legislative and regulatory activity impacting geothermal hydrothermal commercialization: a monitoring report. Report No. 1017

    SciTech Connect

    Not Available

    1980-01-20

    Four key geothermal-impacting bills presently before the California legislature are described. Two deal with state financial backing for geothermal projects. The third relates to the use of the state's share of the BLM geothermal revenues and the fourth to the protection of sensitive hot springs. The current regulatory activities of the California Energy Commission, the California Division of Oil and Gas, and the counties are discussed. (MHR)

  20. Sources of organic carbon for Rimicaris hybisae: Tracing individual fatty acids at two hydrothermal vent fields in the Mid-Cayman rise

    NASA Astrophysics Data System (ADS)

    Streit, Kathrin; Bennett, Sarah A.; Van Dover, Cindy L.; Coleman, Max

    2015-06-01

    Hydrothermal vents harbor ecosystems mostly decoupled from organic carbon synthesized with the energy of sunlight (photosynthetic carbon source) but fueled instead by oxidation of reduced compounds to generate a chemosynthetic carbon source. Our study aimed to disentangle photosynthetic and chemosynthetic organic carbon sources for the shrimp species Rimicaris hybisae, a primary consumer presumed to obtain its organic carbon mainly from ectosymbiotic chemoautotrophic bacteria living on its gill cover membrane. To provide ectosymbionts with ideal conditions for chemosynthesis, these shrimp live in dense clusters around vent chimneys; they are, however, also found sparsely distributed adjacent to diffuse vent flows, where they might depend on alternative food sources. Densely and sparsely distributed shrimp were sampled and dissected into abdominal tissue and gill cover membrane, covered with ectosymbiotic bacteria, at two hydrothermal vent fields in the Mid-Cayman rise that differ in vent chemistry. Fatty acids (FA) were extracted from shrimp tissues and their carbon isotopic compositions assessed. The FA data indicate that adult R. hybisae predominantly rely on bacteria for their organic carbon needs. Their FA composition is dominated by common bacterial FA of the n7 family (~41%). Bacterial FA of the n4 FA family are also abundant and found to constitute good biomarkers for gill ectosymbionts. Sparsely distributed shrimp contain fractions of n4 FA in gill cover membranes ~4% lower than densely packed ones (~18%) and much higher fractions of photosynthetic FA in abdominal tissues, ~4% more (compared with 1.6%), suggesting replacement of ectosymbionts along with exoskeletons (molt), while they take up alternative diets of partly photosynthetic organic carbon. Abdominal tissues also contain photosynthetic FA from a second source taken up presumably during an early dispersal phase and still present to c. 3% in adult shrimp. The contribution of photosynthetic carbon to

  1. Diffuse venting at the ASHES hydrothermal field: Heat flux and tidally modulated flow variability derived from in situ time-series measurements

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Fornari, Daniel J.; Crone, Timothy J.; Kinsey, James; Kelley, Deborah; Elend, Mitch

    2016-04-01

    Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES hydrothermal field located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ˜12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ˜6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m-2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES field is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse hydrothermal venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.

  2. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  3. Mercury accumulation in hydrothermal vent mollusks from the southern Tonga Arc, southwestern Pacific Ocean.

    PubMed

    Lee, Seyong; Kim, Se-Joo; Ju, Se-Jong; Pak, Sang-Joon; Son, Seung-Kyu; Yang, Jisook; Han, Seunghee

    2015-05-01

    We provide the mercury (Hg) and monomethylmercury (MMHg) levels of the plume water, sulfide ore, sediment, and mollusks located at the hydrothermal vent fields of the southern Tonga Arc, where active volcanism and intense seismic activity occur frequently. Our objectives were: (1) to address the potential release of Hg from hydrothermal fluids and (2) to examine the distribution of Hg and MMHg levels in hydrothermal mollusks (mussels and snails) harboring chemotrophic bacteria. While high concentrations of Hg in the sediment and Hg, As, and Sb in the sulfide ore indicates that their source is likely hydrothermal fluids, the MMHg concentration in the sediment was orders of magnitude lower than the Hg (<0.001%). It suggests that Hg methylation may have not been favorable in the vent field sediment. In addition, Hg concentrations in the mollusks were much higher (10-100 times) than in other hydrothermal vent environments, indicating that organisms located at the Tonga Arc are exposed to exceedingly high Hg levels. While Hg concentration was higher in the gills and digestive glands than in the mantles and residues of snails and mussels, the MMHg concentrations in the gills and digestive glands were orders of magnitude lower (0.004-0.04%) than Hg concentrations. In summary, our results suggest that the release of Hg from the hydrothermal vent fields of the Tonga Arc and subsequent bioaccumulation are substantial, but not for MMHg. PMID:25748345

  4. Synthesis of large surface area nano-sized BiVO{sub 4} by an EDTA-modified hydrothermal process and its enhanced visible photocatalytic activity

    SciTech Connect

    Sun Wanting; Xie Mingzheng; Jing Liqiang; Luan Yunbo; Fu Honggang

    2011-11-15

    In this work, monoclinic scheelite-type BiVO{sub 4} nanoparticle with large surface area has been successfully synthesized, using Bi(NO{sub 3}){sub 3} and NH{sub 4}VO{sub 3} as raw materials, through a hydrothermal process in the presence of ethylene diamine tetraacetic acid (EDTA). It is demonstrated that the nanoparticle size of as-prepared BiVO{sub 4} becomes small by decreasing hydrothermal temperature, shortening hydrothermal reaction time and increasing EDTA amount used. The resulting BiVO{sub 4} nanoparticle with large surface area exhibits a good photocatalytic performance for degrading phenol solution as a model organic pollutant under visible illumination. The key of this method is the chelating role of EDTA group in the synthetic process that it can greatly control the concentration of Bi{sup 3+}, leading to the growth inhibition of BiVO{sub 4} crystallite. The work provides a route for the synthesis of Bi-containing nano-sized composite oxides with large surface area. - Graphical abstract: High visible active nano-sized BiVO{sub 4} photocatalyst with large surface area is successfully synthesized, which is attributed to the chelating role of EDTA group inhibiting the growth of BiVO{sub 4} crystallites. Highlights: > Monoclinic scheelite-type BiVO{sub 4} nanoparticle with large surface area has been synthesized by a hydrothermal process. > Key of this method is the chelating role of EDTA group inhibiting the growth of BiVO{sub 4} crystallites. > Resulting nano-sized BiVO{sub 4} exhibits a good photocatalytic activity for degrading phenol under visible illumination.

  5. A discussion of 'Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?'

    NASA Technical Reports Server (NTRS)

    Roedder, Edwin

    1990-01-01

    This paper presents arguments against the statement made by Koeberl et al. (1989) to the effect that various differences between the quartz of the three quartz pebbles from the Roter Kamm impact crater (Namibia) and the quartz of the pegmatites present in the basement rocks of this crater can be best interpreted as evidence that the pebbles were formed (or 'recrystallized') by a post-impact hydrothermal system. Arguments are presented that suggest that the three quartz pebbles are, most likely, fragments of a preimpact vein quartz of hydrothermal origin.

  6. A discussion of 'Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?'

    NASA Astrophysics Data System (ADS)

    Roedder, Edwin

    1990-11-01

    This paper presents arguments against the statement made by Koeberl et al. (1989) to the effect that various differences between the quartz of the three quartz pebbles from the Roter Kamm impact crater (Namibia) and the quartz of the pegmatites present in the basement rocks of this crater can be best interpreted as evidence that the pebbles were formed (or 'recrystallized') by a post-impact hydrothermal system. Arguments are presented that suggest that the three quartz pebbles are, most likely, fragments of a preimpact vein quartz of hydrothermal origin.

  7. Morphology-dependent low macroscopic field emission properties of titania/titanate nanorods synthesized by alkali-controlled hydrothermal treatment of a metallic Ti surface

    NASA Astrophysics Data System (ADS)

    Anitha, V. C.; Narayan Banerjee, Arghya; Joo, Sang Woo; Min, Bong Ki

    2015-09-01

    One-dimensional (1D) and two-dimensional (2D) titania/titanate nanostructures are fabricated directly on a self-source metallic titanium (Ti) surface via in situ surface re-construction of a Ti substrate using potassium hydroxide (KOH) under a hydrothermal (HT) condition. The effect of temperature and the concentration of KOH on the variations in morphology and titania-to-titanate phase changes are studied and explained in detail. A growth model is proposed for the formation process of the platelet-to-nanorod conversion mechanism. The field emission (FE) properties of titania/titanate nanostructures are studied, and the effects of the morphologies (such as 1D nanorods, 2D nanoplatelets, and a mixture of 1D nanorods and 2D platelets) on the FE properties of the samples are investigated. The samples depict a reasonable low turn-on field and emission stability. The FE mechanism is observed to follow standard Fowler-Nordheim (FN) electron tunneling. The geometrical field enhancement factor (β) is measured to be very high, and is compared with theoretical values calculated from various existing models to explore the feasibility of these models. The surface modification of metallic Ti by a simple non-lithographic bottom-up method and the low-macroscopic FE properties can provide a potential alternative to field emission displays for low-power panel technology.

  8. Response to"Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky

    SciTech Connect

    Houseworth, J.E.; Hardin, E.

    2008-11-17

    This paper presents a rebuttal to Dublyansky (2007), which misrepresents technical issues associated with hydrothermal activity at the proposed Yucca Mountain nuclear waste repository and their importance to the long-term performance of the repository. In this paper, questions associated with hydrothermal activity are reviewed and the justification for exclusion of hydrothermal activity from performance assessment is presented. The hypothesis that hydrothermal upwelling into the present-day unsaturated zone has occurred at Yucca Mountain is refuted by the unambiguous evidence that secondary minerals and fluid inclusions in the unsaturated zone formed in an unsaturated environment from downward percolating meteoric waters. The thermal history at Yucca Mountain, inferred from fluid inclusion and isotopic data, is explained in terms of the tectonic extensional environment and associated silicic magmatism. The waning of tectonic extension over millions of years has led to the present-day heat flux in the Yucca Mountain region that is below average for the Great Basin. The long time scales of tectonic processes are such that any effects of a resumption of extension or silicic magmatism on hydrothermal activity at Yucca Mountain over the 10,000-year regulatory period would be negligible. The conclusion that hydrothermal activity was incorrectly excluded from performance assessment as asserted in Dublyansky (2007) is contradicted by the available technical and regulatory information.

  9. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  10. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kavithaa, Krishnamoorthy; Paulpandi, Manickam; Ponraj, Thondhi; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni

    2016-03-01

    Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as

  11. The nature of faults and hydrothermal veins in corehole SB-15-D, The Geysers Steam Field, California

    SciTech Connect

    Hulen, J.B.; Nielson, D.L.

    1995-12-31

    Porosity in The Geysers Coring Project corehole SB-15-D is concentrated along vuggy, steeply-dipping, hydrothermal calcite-quartz {plus_minus} adularia veins. There is little difference in the texture and abundance of these veins between the upper two thirds of the core, interpreted as caprock, and the lower two-thirds, in which two, vein-controlled, fluid-loss zones (probable steam entries) were encountered. However, vugs in the caprock veins are locally choked with mixed-layer clay, whereas those in the deeper steam-reservoir veins generally lack this clay but contain calc-silicate minerals. Steeply-dipping, concordant faults concentrated in argillite throughout the core show predominantly strike-slip displacement. Although movement was predominantly along argillites, the lithology appears to have deformed in a ductile manner, and porosity development was minimal. High-angle dilational fractures were developed contemporaneously in the graywackes. These fractures in the graywacke were only partially filled by secondary minerals, and are potential steam conduits in the vapor-dominated geothermal system.

  12. The latest on hydrothermal activity on Enceladus from Cassini and Laboratory work

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-10-01

    Various observations from the Cassini spacecraft [1,2,3], suggest the existence of subsurface water beneath the south polar region of Saturn's geologically active icy moon Enceladus. They provide information on the composition and physical conditions of water reservoirs occurring at shallow depth from which the plumes emerge [1,2,4], and about the dimensions of the south polar ocean beneath the ice crust at a depth of about 50km [3]. However, constraints on the physical and chemical conditions at the interface of the rocky core and the deep ocean are sparse. We report in situ measurements of tiny grains, so called stream particles, by Cassini's Cosmic Dust Analyser (CDA) in the Saturnian system. CDA data shows that these nano-particles are composed of silica that were initially embedded in larger μm-sized icy grains emitted from Enceladus subsurface waters and released by sputter erosion in Saturn's E ring. Comprehensive long- term laboratory experiments and model calculations were carried out to investigate the reaction conditions at the bottom of Enceladus' ocean.

  13. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough

    USGS Publications Warehouse

    Ishibashi, J.-I.; Sato, M.; Sano, Y.; Wakita, H.; Gamo, T.; Shanks, Wayne C., III

    2002-01-01

    Ocean Drilling Program (ODP) Leg 169, which was conducted in 1996 provided an opportunity to study the gas geochemistry in the deeper part of the sediment-rich hydrothermal system in Escanaba Trough. Gas void samples obtained from the core liner were analyzed and their results were compared with analytical data of vent fluid samples collected by a submersible dive program in 1988. The gas geochemistry of the pore fluids consisted mostly of a hydrothermal component and was basically the same as that of the vent fluids. The He isotope ratios (R/RA = 5.6-6.6) indicated a significant mantle He contribution and the C isotopic compositions of the hydrocarbons [??13C(CH4) = -43???, ??13C(C2H6) = -20???] were characterized as a thermogenic origin caused by hydrothermal activity. On the other hand, the pore fluids in sedimentary layers away from the hydrothermal fields showed profiles which reflected lateral migration of the hydrothermal hydrocarbons and abundant biogenic CH4. Helium and C isotope systematics were shown to represent a hydrothermal component and useful as indicators for their distribution beneath the seafloor. Similarities in He and hydrocarbon signatures to that of the Escanaba Trough hydrothermal system were found in some terrestrial natural gases, which suggested that seafloor hydrothermal activity in sediment-rich environments would be one of the possible petroleum hydrocarbon generation scenarios in unconventional geological settings. ?? 2002 Elsevier Science Ltd. All rights reserved.

  14. Metagenome and Metatranscriptome Revealed a Highly Active and Intensive Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin.

    PubMed

    He, Ying; Feng, Xiaoyuan; Fang, Jing; Zhang, Yu; Xiao, Xiang

    2015-01-01

    The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well-recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an integrated metagenomic and metatranscriptomic analysis on a chimney sample from Guaymas Basin to achieve a comprehensive study of each sulfur metabolic pathway and its hosting microorganisms and constructed the microbial sulfur cycle that occurs in the site. Our results clearly illustrated the stratified sulfur oxidation and sulfate reduction at the chimney wall. Besides, sulfur metabolizing is closely interacting with carbon cycles, especially the hydrocarbon degradation process in Guaymas Basin. This work supports that the internal sulfur cycling is intensive and the net sulfur budget is low in the hydrothermal ecosystem. PMID:26617579

  15. Metagenome and Metatranscriptome Revealed a Highly Active and Intensive Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin

    PubMed Central

    He, Ying; Feng, Xiaoyuan; Fang, Jing; Zhang, Yu; Xiao, Xiang

    2015-01-01

    The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well-recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an integrated metagenomic and metatranscriptomic analysis on a chimney sample from Guaymas Basin to achieve a comprehensive study of each sulfur metabolic pathway and its hosting microorganisms and constructed the microbial sulfur cycle that occurs in the site. Our results clearly illustrated the stratified sulfur oxidation and sulfate reduction at the chimney wall. Besides, sulfur metabolizing is closely interacting with carbon cycles, especially the hydrocarbon degradation process in Guaymas Basin. This work supports that the internal sulfur cycling is intensive and the net sulfur budget is low in the hydrothermal ecosystem. PMID:26617579

  16. Molecular Diversity and Activity of Methanogens in the Subseafloor at Deep-Sea Hydrothermal Vents of the Pacific Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Merkel, A.; Holden, J. F.; Lilley, M. D.; Butterfield, D. A.

    2009-12-01

    Methanogenesis is thought to represent one of the most ancient metabolic pathways on Earth, and methanogens may serve as important primary producers in warm crustal habitats at deep-sea hydrothermal vents. Many of these obligate chemolithoautotrophs depend solely on geochemically-derived energy and carbon sources and grow at high temperatures under strictly anaerobic conditions. A combined geochemical and microbiological approach was used to determine the distribution and molecular diversity of methanogens in low temperature diffuse vent fluids from the Endeavour Segment R2K ISS site, as well as Axial Seamount and volcanoes of the Mariana Arc. Geochemical data from hot and adjacent warm diffuse vent fluids provided chemical indicators to guide sample selection for detailed polymerase chain reaction (PCR)-based analysis of the key enzyme for methane formation, methyl-coenzyme M reductase (mcrA), as well as archaeal 16S rRNA genes. At most Endeavour vent sites, hydrogen concentrations were too low to support hydrogenotrophic methanogensis directly and only one diffuse site, Easter Island, had a positive signal for the mcrA gene. These sequences were most closely related to members of the order Methanococcales, as well as anaerobic methane oxidizers (ANME-1). The presence of ANME, which are rarely found in non-sedimented marine environments, is another line of evidence supporting the occurrence of buried sediments at Endeavour. At Axial, a number of diffuse vents have strong chemical indicators of methanogenesis. Methanogenic communities were detected at 3 sites on the southeast side of the caldera: the northern end of the 1998 lava flow, the International District, and on the pre-1987 lava flow. Time series work at Marker 113 showed that in 4 different years over the last 6 years methanogenic communities are active and abundant, suggesting a stable anaerobic, warm subseafloor habitat. Results show that members of the order Methanococcales dominate at this site

  17. Shallow submarine hydrothermal activity with significant contribution of magmatic water producing talc chimneys in the Wakamiko Crater of Kagoshima Bay, southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Yamanaka, Toshiro; Maeto, Kotaro; Akashi, Hironori; Ishibashi, Jun-Ichiro; Miyoshi, Youko; Okamura, Kei; Noguchi, Takuroh; Kuwahara, Yoshihiro; Toki, Tomohiro; Tsunogai, Urumu; Ura, Tamaki; Nakatani, Takeshi; Maki, Toshihiro; Kubokawa, Kaoru; Chiba, Hitoshi

    2013-05-01

    Active hydrothermal venting from shallow seafloor (200-m depth) with talc chimneys has been discovered at the Wakamiko Crater floor in the Aira Caldera, southern Kyushu, Japan. The major chemical composition of the fluids suggests that the fluids are supplied from a single reservoir. The fluid is characterized by a low chloride concentration, low δD value, and a high δ18O value, suggesting that the endmember hydrothermal fluid is a mixture of seawater and andesitic water and possibly contribution of meteoric water and/or phase separation. Such noticeable magmatic input may be supported by high helium isotopic ratio (6.77 RA) of fumarolic gas discharging from the crater. Silica and alkaline geothermometers indicate that the fluid-rock interaction in the reservoir occurs in the temperature range of 230 to 250 °C. The high alkalinity and high ammonium and dissolved organic matter concentrations in the fluid indicate interaction of the fluid with organic matter in sedimentary layers. At least three hydrothermal vents have been observed in the crater. Two of these have similar cone-shaped chimneys. The chimneys have a unique mineralogy and consist dominantly of talc (kerolite and hydrated talc) with lesser amounts of carbonate (dolomite and magnesite), anhydrite, amorphous silica, and stibnite. The precipitation temperature estimated from δ18O values of talc was almost consistent with the observed fluid temperature. Geochemical modeling calculations also support the formation of talc and carbonate upon mixing of the endmember hydrothermal fluid with seawater and suggest that the talc chimneys are currently growing from venting fluid.

  18. Geochemistry of Phosphorus and Nitrogen in Volcanic Rocks Altered by Submarine Hydrothermal Activities at the Suiyo Seamount in Japan

    NASA Astrophysics Data System (ADS)

    Noda, M.; Kakegawa, T.; Naraoka, H.; Marumo, K.; Urabe, T.

    2002-12-01

    Phosphorus and nitrogen are essential major elements for all microorganisms. In order to understand the ecological conditions of subvent microorganisms and thermophilic microorganisms on ocean floor, it is necessary to understand the behavior of bio-essential elements not only in hydrothermal fluids but also in the subvent environment. Nine sites of hydrothermal discharging area were drilled in the Suiyo volcanic caldera, Izu-Ogasawara (Bonin) island-arc, western Pacific. Approximately 2 to 10 m deep drill core samples were recovered in the last two years. Chemical compositions and hydrothermal mineral assemblages in the drilled core samples were determined by XRF, ICP-MS, and XRD. Morphology of phosphorous-bearing minerals and their chemistry were examined by electron microprobe. Nitrogen isotopes were measured by the EA-IRMS system. Primary igneous-rock texture (such as euhedral plagioclase phenocryst) is found in the less altered rocks. They often associated with montmorillonite. Highly altered rocks are divided into two groups. First group is characterized by extensive (up to 90%) replacement of primary igneous mineral assemblage by chlorite, mica and sulfide. Second group is cemented with large amounts of sulfates with sulfide (mainly pyrite). It is found in a few drill core sections that hydrothermal hydrous silicate minerals change with depth from montmorillonite to chlorite and mica through mixed layer of chlorite/montmorillonite. This may suggest the more extensive and higher temperature alteration in deeper zones in a certain area. Electron microprobe analyses and bulk chemical composition indicate that the depletion of phosphorous in altered rocks (below 0.1 wt%) but enrichment of phosphorous in sulfide zones. This suggests that phosphorous was easily dissolved from igneous rocks by hydrothermal process, but readily precipitated with sulfides. The reason for co-precipitation of phosphates with sulfides is not certain, but such co-precipitation mechanism

  19. Biogeochemistry of hydrothermally and adjacent non-altered soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...