Science.gov

Sample records for active hydrothermal field

  1. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  2. Interactions Between Serpentinization, Hydrothermal Activity and Microbial Community at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Delacour, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Schaeffer, P.; Frank, M.; Gutjahr, M.; Kelley, D. S.

    2008-12-01

    Seafloor investigations of slow- and ultraslow-spreading ridges have reported many occurrences of exposed mantle peridotites and gabbroic rocks on the ocean floor. Along the Mid-Atlantic Ridge, these uplifted portions of oceanic crust host high-temperature black smoker-type hydrothermal systems (e.g., Rainbow, Logatchev, Saldanha), and the more distinct low-temperature Lost City Hydrothermal Field (LCHF). Built on a southern terrace of the Atlantis Massif, the LCHF is composed of carbonate-brucite chimneys that vent alkaline and low-temperature (40-90°C) hydrothermal fluids. These fluids are related to serpentinization of mantle peridotites, which together with minor gabbroic intrusions form the basement of the LCHF. Long-lived hydrothermal activity at Lost City led to extensive seawater-rock interaction in the basement rocks, as indicated by seawater-like Sr- and mantle to unradiogenic Nd-isotope compositions of the serpentinites. These high fluid fluxes in the southern part of the massif influenced the conditions of serpentinization and have obliterated the early chemical signatures in the serpentinites, especially those of carbon and sulfur. Compared to reducing conditions commonly formed during the first stages of serpentinization, serpentinization at Lost City is characterized by relatively oxidizing conditions resulting in a predominance of magnetite, the mobilization/dissolution and oxidation of igneous sulfides to secondary pyrite, and the incorporation of seawater sulfate, all leading to high bulk-rock S-isotope compositions. The Lost City hydrothermal fluids contain high concentrations in methane, hydrogen, and low-molecular weight hydrocarbons considered as being produced abiotically. In contrast, organic compounds in the serpentinites are dominated by the occurrences of isoprenoids (pristane, phytane, and squalane), polycyclic compounds (hopanes and steranes), and higher abundances of C16 to C20 n-alkanes indicative of a marine organic input. We

  3. The Sasquatch Hydrothermal Field: Linkages Between Seismic Activity, Hydrothermal Flow, and Geology

    NASA Astrophysics Data System (ADS)

    Glickson, D. A.; Kelley, D. S.; Delaney, J. R.

    2006-12-01

    The Sasquatch Hydrothermal Field is the most northern known vent field along the central Endeavour Segment of the Juan de Fuca Ridge, located 6 km north of the Main Endeavour Field (MEF) near 47° 59.8'N, 129° 4.0'W. It was discovered in 2000, after two large earthquake swarms in June 1999 and January 2000 caused increased venting temperatures in the MEF and significant changes in volatile composition along the entire axis [Johnson et al., 2000; Lilley et al., 2003; Proskurowski et al., 2004]. From 2004-2006, Sasquatch and the surrounding axial valley were comprehensively mapped with SM2000 multibeam sonar system and Imagenex scanning sonar at a resolution of 1-5 m. These data were combined with visual imagery from Alvin and ROV dives to define the eruptive, hydrothermal, and tectonic characteristics of the field and distal areas. Based on multibeam sonar results, bathymetric relief of the segment near Sasquatch is subdued. The broad axial valley is split by a central high that rises 30-40 m above the surrounding seafloor. Simple pattern analysis of the valley shows two fundamentally different regions, distinguished by low and high local variance. Areas of low variance correspond to a collapse/drainback landscape characterized by ropy sheet flow, basalt pillars, and bathtub rings capped by intact and drained lobate flows. Areas of high variance generally correspond to three types of ridge structures: 1) faulted basalt ridges composed of truncated pillow basalt, rare massive flows, and widespread pillow talus; 2) constructional basalt ridges composed of intact pillow flow fronts; and 3) extinct sulfide ridges covered by varying amounts of sulfide talus and oxidized hydrothermal sediment. Sasquatch is located in a depression among truncated pillow ridges, and is comprised of ~10, 1-6 m high, fragile sulfide chimneys that vent fluids up to 289°C. The active field extends only ~25 x 25 m, although a linear, N-S trending ridge of nearly continuous extinct sulfide

  4. Hydrothermal activity at the Trans-Atlantic Geotraverse Hydrothermal Field, Mid-Atlantic Ridge crest at 26°N

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Thompson, G.; Mottl, M. J.; Karson, J. A.; Jenkins, W. J.; Graham, D.; Mallette, M.; von Damm, K.; Edmond, J. M.

    1984-12-01

    The first submersible observations of the only known active submarine hydrothermal field on a slow-spreading oceanic ridge are incorporated with results of 10 prior years of investigation to derive an understanding of periodicity, duration, and varying intensity of hydrothermal activity at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge crest near latitude 26°N. Hydrothermal activity has persisted at this location for at least 1×106 years based on the distribution of hydrothermal and hydrogenous mineralization with respect to crustal age. The hydrothermal activity has been cyclic, multistage, and episodic. Prior high-temperature hydrothermal venting stages with a periodicity of the order of 1×104 years and duration of the order of 101 years are deduced from the estimated ages of discrete sedimentary layers anomalously enriched in Cu, Fe, and Zn and correspond with the independently determined periodicity of volcanic eruptive cycles on the Mid-Atlantic Ridge. The most recent episode of high-temperature venting is inferred to have ceased in the recent past based on metal enrichment (Cu, Fe, Zn) in the surficial sediment layer. Low-temperature hydrothermal venting stages with a duration of the order of 1×104 years intervene between the short high-temperature stages and produce stratiform deposits of layered and earthy manganese oxide, iron oxide, hydroxide, and silicate. Bivalve-like forms with the characteristics of vent clams in various stages of dissolution are identified on bottom photographs. The fresh appearance of intact tubules composed of iron hydroxide that acted as vents on relict deposits, conductive heat flow anomalies in the sediment column, and the record of temperature anomalies and excess 3He in the near-bottom water column, suggest that the low-temperature hydrothermal discharge is intermittent at individual vents on a time scale of years.

  5. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    In 2010, IODP Expedition 331 was conducted in the Iheya North Field, the Okinawa Trough and drilled several sites in hydrothermally active subseafloor. In addition, during the IODP Expedition 331, four new hydrothermal vents were created. These post-drilling artificial hydrothermal vents provide excellent opportunities to investigate the physical, chemical and microbiological characteristics of the previously unexplored subseafloor hydrothermal fluid reservoirs, and to monitor and estimate how the anthropogenic drilling behaviors affect the deep-sea hydrothermal vent ecosystem. We were very much interested in the difference of hydrothermal fluid chemistry between the natural hydrothermal vents and the artificial hydrothermal vents. The IODP porewater chemistry of the cores pointed to the density-driven stratification of the phase-separated hydrothermal fluids and the natural vent fluids were likely derived only from the shallower vapor-enriched phases. However, the artificial hydrothermal vents had deeper fluid sources in the subseafloor hydrothermal fluid reservoirs composed of vapor-lost (Cl-enriched) phases. The fluids from the artificial hydrothermal vents were sampled by ROV at 5, 12 and 18 months after the IODP expedition. The artificial hydrothermal vent fluids were slightly enriched with Cl as compared to the natural hydrothermal vent fluids. Thus, the artificial hydrothermal vents successfully entrained the previously unexplored subseafloor hydrothermal fluids. The newly created hydrothermal vents also hosted the very quickly grown, enormous chimney structures, of which mineral compositions were highly variable among the vents. However, the quickly grown C0016B and C0016D vent chimneys were found to be typical Kuroko ore even though the chimney growth rates in the artificial vents were extremely faster than those in the natural vents. In addition, the IODP drilling operation not only created new hydrothermal vents by deep drilling but also induced the

  6. Hydrothermal fluid-mineral interactions within volcanic sediment layer revealed by shallow drilling in active seafloor hydrothermal fields in the mid-Okinawa

    NASA Astrophysics Data System (ADS)

    Ishibashi, J.; Miyoshi, Y.; Tanaka, K.; Omori, E.; Takahashi, Y.; Furuzawa, Y.; Yamanaka, T.; Kawagucci, S.; Yoshizumi, R.; Urabe, T.

    2012-12-01

    TAIGA11 Expedition of R/V Hakurei-maru No.2 was conducted in June, 2011 to study subseafloor environment below active hydrothermal fields using a shallow drilling system (called as Benthic Multi-coring System, BMS). Three active hydrothermal fields at Iheya North Knoll (27 47'N, 126 54'E), at Izena Hole Jade site (27 16'N, 127 05'E) and at Izena Hole Hakurei site (27 15'N, 127 04'E) were selected as exploration targets, to focus on a hydrothermal fluid circulation system that develops in sediment consists of volcaniclastic and hemipelagic materials. In this presentation, we will report mineralogy of hydrothermal precipitates and altered clay minerals together with geochemistry of pore fluids, to discuss hydrothermal interactions beneath an active hydrothermal field. In the Iheya North Knoll hydrothermal field, the BMS drilling successfully attained to 453 cmbsf at the station 200 meters apart from the central mound area. The obtained core consisted almost entirely of grayish white altered mud that was identified as kaolinite by XRD. Pore fluid from the corresponding depth showed enrichment in major cations (Na, K, Ca and Mg) and Cl, which may be explained as a result of involvement of water into the kaolinite. Since kaolinite is considered as stable in rather acidic environment, its abundant occurrence beneath the seafloor would be attributed to a unique hydrothermal interaction. A possible scenario is intrusion of the vapor-rich hydrothermal component that has experienced phase separation. In the Jade hydrothermal fields in the Izena Hole, the BMS drilling successfully attained to 529 cmbsf at the marginal part of a hydrothermal field. The obtained core comprised grayish white hydrothermal altered mud below 370 cmbsf. Occurrence of native sulphur is also identified. Unfortunately, pore fluid could not be extracted from the intense alteration layer. In the Hakurei hydrothermal fields in the Izena Hole, the BMS drilling successfully attained to 610 cmbsf near one of

  7. 30,000 years of hydrothermal activity at the lost city vent field.

    PubMed

    Früh-Green, Gretchen L; Kelley, Deborah S; Bernasconi, Stefano M; Karson, Jeffrey A; Ludwig, Kristin A; Butterfield, David A; Boschi, Chiara; Proskurowski, Giora

    2003-07-25

    Strontium, carbon, and oxygen isotope data and radiocarbon ages document at least 30,000 years of hydrothermal activity driven by serpentinization reactions at Lost City. Serpentinization beneath this off-axis field is estimated to occur at a minimum rate of 1.2 x 10(-4) cubic kilometers per year. The access of seawater to relatively cool, fresh peridotite, coupled with faulting, volumetric expansion, and mass wasting processes, are crucial to sustain such systems. The amount of heat produced by serpentinization of peridotite massifs, typical of slow and ultraslow spreading environments, has the potential to drive Lost City-type systems for hundreds of thousands, possibly millions, of years.

  8. Aqueous Volatiles in Hydrothermal fluids from the Main Endeavour Vent Field: Temporal Variability Following Earthquake Activity

    NASA Astrophysics Data System (ADS)

    Seewald, J. S.; Cruse, A. M.; Saccocia, P. J.

    2001-12-01

    Volatile species play a critical role in a broad spectrum of physical, chemical, and biological processes associated with hydrothermal circulation at oceanic spreading centers. Earthquake activity at the Main Endeavour vent field, northern Juan de Fuca Ridge in June 1999 [1] provided and opportunity to assess factors that regulate the flux of volatile species from the oceanic crust to the water column following a rapid change in subsurface reaction zone conditions. High temperature vent fluids were collected in gas-tight samplers at the Main Endeavour field in September 1999, approximately four months after the earthquakes, and again in July 2000, and were analyzed for the abundance of aqueous volatile and non-volatile species. Measured concentrations of aqueous H2, H2S, and CO2 increased substantially in September 1999 relative to pre-earthquake values [2,3], and subsequently decreased in July 2000, while aqueous Cl concentrations initially decreased in 1999 and subsequently increased in 2000. Concentrations of Cl in all fluids were depleted relative to seawater values. Aqueous CH4 and NH3 concentrations decreased in both the 1999 and 2000 samples relative to pre- earthquake values. Variations in Cl concentration of Endeavour fluids reflect varying degrees of phase separation under near critical temperature and pressure conditions. Because volatile species efficiently partition into the vapor phase, variations in their abundance as a function of Cl concentration can be used to constrain conditions of phase separation and fluid-rock interaction. For example, concentrations of volatile species that are not readily incorporated into minerals (CH4 and NH3) correlated weakly with Cl suggesting phase separation was occurring under supercritical conditions after the earthquake activity. In contrast, compositional data for fluids prior to the earthquakes indicate a strong negative correlation between these species and Cl suggesting phase separation under subcritical

  9. Record of archaeal activity at the serpentinite-hosted Lost City Hydrothermal Field.

    PubMed

    Méhay, S; Früh-Green, G L; Lang, S Q; Bernasconi, S M; Brazelton, W J; Schrenk, M O; Schaeffer, P; Adam, P

    2013-11-01

    Samples of young, outer surfaces of brucite-carbonate deposits from the ultramafic-hosted Lost City hydrothermal field were analyzed for DNA and lipid biomarker distributions and for carbon and hydrogen stable isotope compositions of the lipids. Methane-cycling archaeal communities, notably the Lost City Methanosarcinales (LCMS) phylotype, are specifically addressed. Lost City is unlike all other hydrothermal systems known to date and is characterized by metal- and CO2 -poor, high pH fluids with high H2 and CH4 contents resulting from serpentinization processes at depth. The archaeal fraction of the microbial community varies widely within the Lost City chimneys, from 1-81% and covaries with concentrations of hydrogen within the fluids. Archaeal lipids include isoprenoid glycerol di- and tetraethers and C25 and C30 isoprenoid hydrocarbons (pentamethylicosane derivatives - PMIs - and squalenoids). In particular, unsaturated PMIs and squalenoids, attributed to the LCMS archaea, were identified for the first time in the carbonate deposits at Lost City and probably record processes exclusively occurring at the surface of the chimneys. The carbon isotope compositions of PMIs and squalenoids are remarkably heterogeneous across samples and show highly (13) C-enriched signatures reaching δ(13) C values of up to +24.6‰. Unlike other environments in which similar structural and isotopic lipid heterogeneity has been observed and attributed to diversity in the archaeal assemblage, the lipids here appear to be synthesized solely by the LCMS. Some of the variations in lipid isotope signatures may, in part, be due to unusual isotopic fractionation during biosynthesis under extreme conditions. However, we argue that the diversity in archaeal abundances, lipid structure and carbon isotope composition rather reflects the ability of the LCMS archaeal biofilms to adapt to chemical gradients in the hydrothermal chimneys and possibly to perform either methanotrophy or methanogenesis

  10. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  11. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  12. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  13. Ongoing hydrothermal activities within Enceladus.

    PubMed

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-12

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

  14. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng

    2016-11-01

    Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.

  15. Effects of hydrothermal alteration on Pb in the active PACMANUS hydrothermal field, ODP Leg 193, Manus Basin, Papua New Guinea: A LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Beaudoin, Yannick; Scott, Steven D.; Gorton, Michael P.; Zajacz, Zoltan; Halter, Werner

    2007-09-01

    The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350 °C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are

  16. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field.

    PubMed

    Takai, Ken; Gamo, Toshitaka; Tsunogai, Urumu; Nakayama, Noriko; Hirayama, Hisako; Nealson, Kenneth H; Horikoshi, Koki

    2004-08-01

    Subsurface microbial communities supported by geologically and abiologically derived hydrogen and carbon dioxide from the Earth's interior are of great interest, not only with regard to the nature of primitive life on Earth, but as potential analogs for extraterrestrial life. Here, for the first time, we present geochemical and microbiological evidence pointing to the existence of hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) dominated by hyperthermophilic methanogens beneath an active deep-sea hydrothermal field in the Central Indian Ridge. Geochemical and isotopic analyses of gaseous components in the hydrothermal fluids revealed heterogeneity of both concentration and carbon isotopic compositions of methane between the main hydrothermal vent (0.08 mM and -13.8 per thousand PDB, respectively) and the adjacent divergent vent site (0.2 mM and -18.5 per thousand PDB, respectively), representing potential subsurface microbial methanogenesis, at least in the divergent vent emitting more 13C-depleted methane. Extremely high abundance of magmatic energy sources such as hydrogen (2.5 mM) in the fluids also encourages a hydrogen-based, lithoautotrophic microbial activity. Both cultivation and cultivation-independent molecular analyses suggested the predominance of Methanococcales members in the superheated hydrothermal emissions and chimney interiors along with the other major microbial components of Thermococcales members. These results imply that a HyperSLiME, consisting of methanogens and fermenters, occurs in this tectonically active subsurface zone, strongly supporting the existence of hydrogen-driven subsurface microbial communities.

  17. Geologic evolution of the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.

    2016-02-01

    The Lost City Hydrothermal Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent system over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. Hydrothermal activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. Hydrothermal activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of hydrothermal flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current hydrothermal activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.

  18. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  19. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    SciTech Connect

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  20. High Temperature Hydrothermal Components in the Sediment Cover of the Saldanha Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Dias, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Mills, R. A.; Taylor, R. N.; Barriga, F. J.

    2006-12-01

    The Saldanha hydrothermal field is located at a non-transform offset (NTO5), between the FAMOUS and AMAR segments on the Mid-Atlantic Ridge (N36° 34'; W33° 26'). This field was discovered in 1998 during the Saldanha cruise (FCT, Portugal and IFREMER, France) and was revisited in 2001 during the Seahma cruise (FCT, Portugal) and in 2004 during the CD167 cruise (NOC, UK and FCT, Portugal). It is a serpentinite-hosted hydrothermal field and in situ observations revealed that hydrothermal vents are scarce and disseminated along the ocean floor over an area of approximately 400m2. Weakly venting fluids discharge through centimeter-sized orifices. Maximum fluid temperatures of 9° C were measured with the Victor ROV in 2001. Surface sediments have been collected from the Saldanha hydrothermal field in 1998, 2001 and 2004 and differences concerning mineralogy and geochemistry were recorded between these sediments. Mineralogy, whole sediment geochemistry and isotope ((δ 13C, δ 18O, Pb and Nd) data suggest geochemical variations in hydrothermal activity in this system. Hydrothermal activity is more strongly recorded in sediments collected in 2004, which are richer in sulfide mineralization and in hydrothermally- derived elements such as Cu, Zn, Fe, Co, Ni and S. In these sediments, rare earth elements (REE) patterns are characteristically derived from vent fluids, with enrichment in light REE and a pronounced positive Eu anomaly. The seawater-derived REE components in these sediments are low, as revealed by a small negative Ce anomaly. Lead isotopic ratios are typically less radiogenic in the youngest sediments when compared with the ones recorded in 1998 and 2001 sediments, demonstrating a negligible contribution of Pb from pelagic sediments. This is in agreement with neodymium isotope analyses indicating a smaller seawater contribution in the 2004 sediments. Oxygen isotope compositions (δ18OSMOW=6,59-11,63‰) of hydrothermal calcites present throughout the 2004

  1. Geology and hydrothermal evolution of the Mothra Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Glickson, Deborah A.; Kelley, Deborah S.; Delaney, John R.

    2007-06-01

    Detailed characterization of the Mothra Hydrothermal Field, the most southern and spatially extensive field on the Endeavour Segment of the Juan de Fuca Ridge, provides new insights into its geologic and hydrothermal development. Meter-scale bathymetry, side-scan sonar imagery, and direct dive observations show that Mothra is composed of six actively venting sulfide clusters spaced 40-200 m apart. Chimneys within each cluster have similar morphology and venting characteristics, and all clusters host a combination of active and extinct sulfide structures. Black smoker chimneys venting fluids above 300°C are rare, while more common lower-temperature, diffusely venting chimneys support dense colonies of macrofauna and bacterial mat. Hydrothermal sediment and extinct sulfide debris cover 10-15 m of the seafloor surrounding each vent cluster, obscuring the underlying basaltic substrate of light to moderately sedimented pillow, lobate, sheet, and chaotic flows, basalt talus, and collapse terrain. Extinct sulfide chimneys and debris between the clusters indicate that hydrothermal flow was once more widespread and that it has shifted spatially over time. The most prominent structural features in the axial valley at Mothra are regional (020°) trending faults and fissures and north-south trending collapse basins. The location of actively venting clusters within the field is controlled by (1) localization of fluid upflow along the western boundary fault zone, and diversion of these fluids by antithetic faults to feed vent clusters near the western valley wall, and (2) tapping of residual magmatic heat in the central part of the axial valley, which drives flow beneath vent clusters directly adjacent to the collapse basins 70-90 m east of the western valley wall. These processes form the basis for a model of axial valley and hydrothermal system development at Mothra, in which the field is initiated by an eruptive-diking episode and sustained through intense microseismicity

  2. Discovery of Nascent Vents and Recent Colonization Associated with(Re)activated Hydrothermal Vent Fields by the GALREX 2011 Expedition on the Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Holden, J. F.; Herrera, S.; Munro, C.; Muric, T.; Lin, J.; Stuart, L.

    2011-12-01

    GALREX 2011 was a NOAA OER telepresence cruise that explored the diverse habitats and geologic settings of the deep Galápagos region. The expedition made12 Little Hercules ROV dives in July 2011.Abundant corals and a strong depth zonation of species (including deepwater coral communities) were found near 500 m depth on Paramount Seamount, likely influenced by past low sea level states, wave-cut terrace processes, and the historical presence of shallow reef structures. At fresh lava flows with associated (flocculent) hydrothermal venting near 88° W, now known as Uka Pacha and Pegasus Vent Fields, rocks were coated with white microbial mat and lacked sessile fauna, with few mobile fauna (e.g., bythograeid crabs, alvinocarid shrimp, polynoid worms, zoarcid fish, and dirivultid copepods). This suggests a recent creation of hydrothermal habitats through volcanic eruptions and/or diking events, which may have taken place over a 15 km span separating the two vent fields. The Rosebud vent field at 86°W was not observed and may have been covered with lava since last visited in 2005. A hydrothermal vent field near 86°W was discovered that is one of the largest vent fields known on the Rift (120m by 40m). Low-temperature vent habitats were colonized by low numbers of tubeworms including Riftia, Oasisia, and a potential Tevnia species (the latter not previously observed on the Galapagos Rift). Patches of tubeworms were observed with individuals less than 2cm in length, and the relatively few large Riftia had tube lengths near 70cm long. Large numbers of small (< 3cm long) bathymodiolin mussels lined cracks and crevices throughout the active part of the field. Live clams, at least four species of gastropod limpets, three species of polynoid polychaetes, juvenile and adult alvinocarid shrimp, actinostolid anemones, and white microbial communities were observed on the underside and vertical surfaces of basalt rock surfaces. There were at least 13 species of vent-endemic fauna

  3. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    PubMed

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-04-05

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems.

  4. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-05-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  5. Arctic Ocean: hydrothermal activity on Gakkel Ridge.

    PubMed

    Jean-Baptiste, Philippe; Fourré, Elise

    2004-03-04

    In the hydrothermal circulation at mid-ocean ridges, sea water penetrates the fractured crust, becomes heated by its proximity to the hot magma, and returns to the sea floor as hot fluids enriched in various chemical elements. In contradiction to earlier results that predict diminishing hydrothermal activity with decreasing spreading rate, a survey of the ultra-slowly spreading Gakkel Ridge (Arctic Ocean) by Edmonds et al. and Michael et al. suggests that, instead of being rare, the hydrothermal activity is abundant--exceeding by at least a factor of two to three what would be expected by extrapolation from observation on faster spreading ridges. Here we use helium-3 (3He), a hydrothermal tracer, to show that this abundance of venting sites does not translate, as would be expected, into an anomalous hydrothermal 3He output from the ridge. Because of the wide implications of the submarine hydrothermal processes for mantle heat and mass fluxes to the ocean, these conflicting results call for clarification of the link between hydrothermal activity and crustal production at mid-ocean ridges.

  6. Using Hydrothermal Plumes and Their Chemical Composition to Identify and Understand Hydrothermal Activity at Explorer Ridge

    NASA Astrophysics Data System (ADS)

    Resing, J.; Lebon, G.; Baker, E.; Walker, S.; Nakamura, K.; Silvers, B.

    2002-12-01

    During June and July, 2002, an extensive survey of the hydrothermal systems of the Explorer Ridge was made aboard the R/V Thomas Thompson. This survey employed hydrocasts and the Autonomous Benthic Explorer (ABE) to locate and map hydrothermal vent fields. A total of 28 hydrocasts (17 verticals and 11 tow-yos) were used to search for hydrothermal activity from 49.5°N to 50.3°N on the Explorer Ridge. During the hydrocasts continuous measurements were made of conductivity, temperature, pressure, light backscatter, eH, Fe, Mn, and pH. Discrete samples were collected for total dissolved Fe and Mn, methane, pH, total CO2, and particulate matter. Most of the strong hydrothermal venting was near the Magic Mountain area of the Explorer Ridge at ~49.76° N, 130.26° W, where strong particulate backscatter signals (~0.130 NTUs) and moderate temperature anomalies (~ 0.05 °C) were detected. The particulate matter causing the backscatter was made up primarily of volatile particulate sulfur (PS) with little to no hydrothermal PFe. PS:PFe ratios exceeded 25 in the areas of most intense venting, . These PFe and PS data suggest that the hydrothermal Fe, if any, is deposited as sulfide minerals beneath the sea floor and that S is far in excess of Fe in the hydrothermal fluids. In the most intense plumes,total dissolvable Fe and Mn were between 20 and 30 nM, pH anomalies exceeded 0.025 pH units (indicating an increase of ~10uM CO2), and methane reached 16nM. These results suggest that the fluids exiting the sea floor are metal-poor and moderately gas-rich.

  7. Detection of active hydrothermal vent fields in the Pescadero Basin and on the Alarcon Rise using AUV multibeam and CTD data

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Troni, G.; Clague, D. A.; Paduan, J. B.; Martin, J. F.; Thomas, H. J.; Thompson, D.; Conlin, D.; Martin, E. J.; meneses-Quiroz, E.; Nieves-Cardoso, C.; Angel Santa Rosa del Rio, M.

    2015-12-01

    The MBARI AUV D. Allan B. collected high resolution bathymetry, sidescan, and subbottom profiles along the neovolcanic zone of the Alarcon Rise and across the southern Pescadero Basin during 2012 and 2015 MBARI expeditions to the Gulf of California (GOC). The combination of high resolution multibeam bathymetry and seawater temperature data has proven effective in identifying active high temperature vent fields, as validated by inspection and sampling during ROV dives. The AUV carries a 200 kHz multibeam sonar, 110 kHz chirp sidescan sonar, a 1-6 kHz chirp subbottom profiler, and a conductivity, temperature and depth (CTD) sensor for ~17-hour duration missions. Flying at 5.4 km/hr at 50 m altitude, the processed AUV bathymetry has a 0.1 m vertical precision and a 1 m lateral resolution. Chimneys taller than 1.5 m are sufficiently distinctive to allow provisional identification. The CTD temperature data have a nominal 0.002°C accuracy. Following calculation of potential temperature and correcting for average local variation of potential temperature with depth, anomalies greater than 0.05 °C can be reliably identified using a spike detection filter. MBARI AUV mapping surveys are typically planned using a 150 m survey line spacing, so the CTD data may be collected as much as 75 m away from any vent plume source. Five active high temperature vent fields were discovered in the southern GOC, with the Auka Field in the southern Pescadero Basin, and the Ja Sít, Pericú, Meyibó, and Tzab-ek Fields along the Alarcon Rise. In all five cases, hydrothermal vent chimneys are readily identifiable in the multibeam bathymetry, and temperature anomalies are observed above background variability. Other apparent hydrothermal chimneys were observed in the bathmetry that did not exhibit water temperature anomalies; most of these were visited during ROV dives and confirmed to be inactive sites. The maximum water column anomalies are 0.13°C observed above the Meyibó field and 0.25

  8. Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Lackschewitz, K. S.; Devey, C. W.; Stoffers, P.; Botz, R.; Eisenhauer, A.; Kummetz, M.; Schmidt, M.; Singer, A.

    2004-11-01

    During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite ± illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite ± mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite ± illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite ± chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ˜250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite ± chlorite alteration formed at ˜300°C; (2) chlorite ± illite alteration at 235°C; (3) chlorite ± illite and mixed layer clay alteration; and (4) chlorite ± illite alteration at 220°C. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly

  9. Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37 degrees N).

    PubMed

    Sarradin, Pierre-Marie; Waeles, Matthieu; Bernagout, Solène; Le Gall, Christian; Sarrazin, Jozée; Riso, Ricardo

    2009-01-01

    The objective of this study was to determine the concentrations of different fractions of dissolved copper (after filtration at 0.45 microm) along the cold part of the hydrothermal fluid-seawater mixing zone on the Tour Eiffel edifice (MAR). Dissolved copper was analyzed by stripping chronopotentiometry (SCP) after chromatographic C(18) extraction. Levels of total dissolved copper (0.03 to 5.15 microM) are much higher than those reported for deep-sea oceanic waters but in accordance with data previously obtained in this area. Speciation measurements show that the hydrophobic organic fraction (C(18)Cu) is very low (2+/-1%). Dissolved copper is present mainly as inorganic and hydrophilic organic complexes (nonC(18)Cu). The distribution of copper along the pH gradient shows the same pattern for each fraction. Copper concentrations increase from pH 5.6 to 6.5 and then remain relatively constant at pH>6.5. Concentrations of oxygen and total sulphides demonstrate that the copper anomaly corresponds to the transition between suboxic and oxic waters. The increase of dissolved copper should correspond to the oxidative redissolution of copper sulphide particles formed in the vicinity of the fluid exit. The presence of such a secondary dissolved copper source, associated with the accumulation of metal sulphide particles, could play a significant role in the distribution of fauna in the different habitats available at vents.

  10. Hydrothermal activity at the Arctic mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pedersen, Rolf B.; Thorseth, Ingunn H.; Nygård, Tor Eivind; Lilley, Marvin D.; Kelley, Deborah S.

    Over the last 10 years, hydrothermal activity has been shown to be abundant at the ultraslow spreading Arctic Mid-Ocean Ridges (AMOR). Approximately 20 active and extinct vent sites have been located either at the seafloor, as seawater anomalies, or by dredge sampling hydrothermal deposits. Decreasing spreading rates and decreasing influence of the Icelandic hot spot toward the north along the AMOR result in a north-south change from a shallow and magmatically robust to a deep and magmatically starved ridge system. This contrast gives rise to large variability in the ridge geology and in the nature of the associated hydrothermal systems. The known vent sites at the southern part of the ridge system are either low-temperature or white smoker fields. At the deep, northern parts of the ridge system, a large black smoker field has been located, and seawater anomalies and sulfide deposits suggest that black smoker-type venting is common. Several of these fields may be peridotite-hosted. The hydrothermal activity at parts of the AMOR exceeds by a factor of 2 to 3 what would be expected by extrapolating from observations on faster spreading ridges. Higher fracture/fault area relative to the magma volume extracted seems a likely explanation for this. Many of the vent fields at the AMOR are associated with axial volcanic ridges. Strong focusing of magma toward these ridges, deep rifting of the ridges, and subsequent formation of long-lived detachment faults that are rooted below the ridges may be the major geodynamic mechanisms causing the unexpectedly high hydrothermal activity.

  11. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  12. Pathways for abiotic organic synthesis at submarine hydrothermal fields

    PubMed Central

    McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.

    2015-01-01

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  13. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  14. Hydrothermal Alteration in the PACMANUS Hydrothermal Field: Implications From Secondary Mineral Assemblages and Mineral Chemistry, OPD Leg 193

    NASA Astrophysics Data System (ADS)

    Lackschewitz, K. S.; Kummetz, M.; Kummetz, M.; Ackermand, D.; Botz, R.; Devey, C. W.; Singer, A.; Stoffers, P.

    2001-12-01

    Leg 193 of the Ocean Drilling Program investigated the subsurface nature of the active PACMANUS hydrothermal field in the Manus backarc basin near Papua New Guinea. Drilling in different areas on the felsic neovolcanic Pual Ridge, including the high-temperature black smoker complex of Roman Ruins and the low-temperature Snowcap site with diffusive discharge yielded a complex alteration history with a regional primary alteration being overprinted by a secondary mineralogy. The intense hydrothermal alteration at both sites shows significant differences in the secondary mineralogy. At Roman Ruins, the upper 25 m of hydrothermally altered rocks are characterized by a rapid change from secondary cristobalite to quartz, implying a high temperature gradient. From 10 to 120 mbsf the clay mineralogy is dominated by illite and chlorite. The chlorite formation temperature calculated from oxygen isotope data lies at 250° C in 116 mbsf which is similar to the present fluid outflow temperatures of 240-250° C (Douville et al., 1999, Geochim. Cosmochim. Acta, 63, 627-643). Drilling in the Snowcap field recovered evidence for several stages of hydrothermal alteration. Between 50 and 150 mbsf, cristobalite and chlorite are the most abundant alteration minerals while hydrothermal pyrophyllite becomes abundant in some places At 67 mbsf, the isotopic composition of pyrophyllite gives a temperature for ist formation at 260° C whereas at 77 and 116 mbsf the pyrophyllite displays the highest temperatures of formation (>300° C). These temperatures are close to the maximum measured borehole temperatures of 313° C. The appearance of assemblages of chlorite, chlorite-vermiculite, chlorite-vermiculite-smectite and illite-smectite as well as the local development of corrensite below 150 mbsf suggests that the alteration at Snowcap may be more complex than that beneath Roman Ruins. Detailed geochemical studies of the authigenic clay mineral phases will provide further insights into the

  15. Impact cratering in H2O-bearing targets on Mars: Thermal field under craters as starting conditions for hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Ivanov, Boris A.; Pierazzo, Elisabetta

    2011-04-01

    We present a case modeling study of impact crater formation in H2O-bearing targets. The main goal of this work was to investigate the postimpact thermal state of the rock layers modified in the formation of hypervelocity impact craters. We present model results for a target consisting of a mixture of H2O-ice and rock, assuming an ice/water content variable with depth. Our model results, combined with results from previous work using dry targets, indicate that for craters larger than about 30 km in diameter, the onset of postimpact hydrothermal circulation is characterized by two stages: first, the formation of a mostly dry, hot central uplift followed by water beginning to flow in and circulate through the initially dry and hot uplifted crustal rocks. The postimpact thermal field in the periphery of the crater is dependent on crater size: in midsize craters, 30-50 km in diameter, crater walls are not strongly heated in the impact event, and even though ice present in the rock may initially be heated enough to melt, overall temperatures in the rock remain below melting, undermining the development of a crater-wide hydrothermal circulation. In large craters (with diameters more than 100 km or so), the region underneath the crater floor and walls is heated well above the melting point of ice, thus facilitating the onset of an extended hydrothermal circulation. These results provide preliminary constraints in characterizing the many water-related features, both morphologic and spectroscopic, that high-resolution images of Mars are now detecting within many Martian craters.

  16. Petrology and Geochemistry of Hydrothermally Altered Volcanic Rocks in the Iheya North Hydrothermal Field, Middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.

    2015-12-01

    The Iheya North hydrothermal field is located in the middle Okinawa Trough, a young and actively spreading back-arc basin extending behind the Ryukyu arc-trench system in the southeastern margin of the East China Sea. In this hydrothermal field, two scientific drilling expeditions (IODP Exp 331 and SIP CK14-04) were conducted using a deep-sea drilling vessel "Chikyu," and samples from a total of 27 holes were taken. Through these expeditions, Kuroko-type volcanogenic massive sulfide deposits (VMS), hydrothermally altered volcanic rocks, and pumiceous and pelagic sediments were recovered. The recovered core provided important information about the relationship between hydrothermal activity, alteration, and ore mineralization. Whole-rock major element composition and trace element (TE) patterns of pumices were very similar to those of rhyolites in the middle Okinawa Trough (RMO). However, pumices were relatively enriched in chalcophile elements Sr and Nb, which suggest incipient mineralization. Volcanic rock generally demonstrated strong silicification and was greenish pale gray in color. Regardless of severe alteration, some rock displayed major element composition broadly similar to the RMO. Alteration was evidenced by an increase in the content of SiO2 and MgO, and decrease in Al2O3, Na2O, and K2O content. The most striking geochemical feature of altered volcanic rock was the discordance between texture and the degree of modification of TEs. Some samples showed decussate texture occupied by petal-like quartz with severe silicification, but no prominent disturbance of concentration and patterns of TEs were observed. In contrast, samples with well-preserved igneous porphyritic texture showed very low TE content and modification of TE patterns. These results suggest that the modification of texture and composition of TEs, as well as silicification, do not occur by a uniform process, but several processes. This may reflect the differences in temperature and the

  17. Biology of the Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Lee Van Dover, Cindy; Desbruyères, Daniel; Segonzac, Michel; Comtet, Thierry; Saldanha, Luiz; Fiala-Medioni, Aline; Langmuir, Charles

    1996-09-01

    Newly discovered hydrothermal vent communities at Lucky Strike on the Mid-Atlantic Ridge (37°18'N, 32°16'W) are comprised of an invertebrate fauna sufficiently different from known vent faunas of TAG and Snake Pit to consider Lucky Strike part of a new biogeographic province. The dominant component of the fauna is a new species of mussel, and the most unusual feature of the fauna is an echinoid echinoderm, Echinus sp. An abundance of small mussels (< 5 mm) indicates a recent recruitment event at Lucky Strike, and modal analysis of length-frequency data indicate a discontinuous recruitment process in space and time.

  18. Hydrothermal Activity in the Northern Guaymas Basin

    NASA Astrophysics Data System (ADS)

    Berndt, C.; Hensen, C.; Mortera-Gutierrez, C. A.; Sarkar, S.; Geilert, S.; Schmidt, M.; Liebetrau, V.; Kipfer, R.; Scholz, F.; Doll, M.; Muff, S.; Karstens, J.; Böttner, C.; Chi, W. C.; Moser, M.; Behrendt, R.; Fiskal, A.; Evans, T.; Planke, S.; Lizarralde, D.; Lever, M. A.

    2015-12-01

    Rift-related magmatism in the Guaymas Basin, Gulf of California induces hydrothermal activity within the basin sediments. Mobilized fluids migrate to the seafloor where they are emitted into the water column changing ocean chemistry and fuelling chemosynthetic ecosystems. New seismic and geochemical data from the northern rift arm of the Guaymas Basin document the variety of fluid expulsion phenomena from large-scale subsurface sediment mobilization related to contact metamorphosis to focused small-scale structures. The geochemical composition of emitted fluids depends largely on the age of the fluid escape structures with respect to the underlying intrusions. Whereas, old structures are dominated by methane emission, young vent sites are characterized by hot fluids that carry a wide range of minerals in solution. The overall high geothermal gradient within the basin (mainly between 160 and 260 °C/km) leads to a thin gas hydrate stability zone. Thus, deep hydrothermal fluid advection affects the gas hydrate system and makes it more dynamic than in colder sedimentary basins.

  19. Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-12-01

    Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at hydrothermal activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline hydrothermal vents on Earth like the Lost City Hydrothermal Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been identified in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of hydrothermal activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).

  20. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  1. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    SciTech Connect

    Ridley, W.I.; Perfit, M.R.; Smith, M.F.; Jonasson, I.R.

    1994-06-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85{degree}49 feet W and 85{degree} 55 feet W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens` equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (<10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. 50 refs., 10 figs., 4 tabs.

  2. Metalliferous sediments adjacent to hydrothermal fields: Distribution and geochemistry

    SciTech Connect

    Cherkashev, G.A. )

    1990-06-01

    The study of metalliferous sediments located at small distances from their sources (10-15 km), such as modern or ancient hydrothermal fields, indicate essential differences in geochemistry compared with metalliferous sediments that occur at greater distances from geothermal fields. Thus, within areas of well-known metalliferous sediment, such as the TAG hydrothermal field, Galapagos Ridge, northern East Pacific Rise (near 13{degree}N), and triple junction zone in the Indian Ocean, are areas of sediment showing the following compositional features: (1) anomalously high concentrations of metals building up sulfide edifices in the central parts of hydrothermal fields (Fe, Cu, Zn, Pb); (2) high noble metal concentrations; (3) rare-earth element patterns characterized by a europium anomaly (Eu/Eu* >1) and with no negative cerium anomaly (Ce/Ce* {>=}1), the latter being a peculiar feature of rare-earth composition of normal metalliferous sediments. The first two features may not always be distinguished based on examination of the bulk rock. Metalliferous sediments of this type are commonly restricted to exposed igneous rocks that supply lithogenic material (volcanic glass, clastic basalt) to the sediments during subsea weathering. Most elemental concentrations (including nonferrous and noble metals) are diluted by this lithogenic material. The diluting effect can be eliminated by recalculation on a detrital-free basis using the concentration of titanium, the element enriched in the detrital component and depleted in hydrothermal sedimentary component. The geochemical anomalies are caused by genetic features, namely that the metals are derived from the oxidation of sulfide minerals either previously building up the hydrothermal body (and transported by bottom currents after oxidation) or incorporated into black smokers (suspension in fluids).

  3. Vein networks in hydrothermal systems provide constraints for the monitoring of active volcanoes.

    PubMed

    Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido

    2017-12-01

    Vein networks affect the hydrothermal systems of many volcanoes, and variations in their arrangement may precede hydrothermal and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the hydrothermal field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the hydrothermal processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 hydrothermal sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the hydrothermal source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in hydrothermal fields may reflect pressurization at depth potentially preceding hydrothermal explosions. This has significant implications for the long-term monitoring strategy of volcanoes.

  4. Hydrothermal Activity and Volcanism on the Southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Haase, K. M.; Scientific Party, M.

    2005-12-01

    In April 2005 four recently discovered different hydrothermal fields on the slow-spreading Mid-Atlantic Ridge (MAR) south of the Equator were studied and sampled using a remotely operated vehicle (ROV) during cruise METEOR 64/1. Three of these hydrothermally active fields (called Turtle Pits, Red Lion, and Wideawake) occur at about 3000 m water depth in the centre of a MAR segment at 4° 48'S which appears to be volcanically very active. The youngest lava flow partly covers the low-temperature, diffuse flow Wideawake mussel field and is thus probably only a few years old. The high-temperature Turtle Pits hydrothermal field with four active vent structures lies some 300 m west of the diffuse vent field and is characterized by boiling fluids with temperatures close to 400° C. The mineral assemblage recovered from inactive hydrothermal mounds includes massive magnetite+hematite+sulfate and differs from that of the presently active vents and indicates more oxidizing conditions during the earlier activity. The vent fluids at Turtle Pits contain relatively high contents of hydrogen which may have formed during iron oxidation processes when basaltic magmas crystallized. The high fluid temperatures, the change to more reducing conditions, and the relatively high hydrogen contents in the fluids are most likely due to the ascent of magmas from the mantle that fed the very recent eruption. The high-temperature Red Lion hydrothermal field lies some 2 km north of the Turtle Pits field and consists of at least four active black smokers surrounded by several inactive sulfide mounds. The composition of the Red Lion fluids differs significantly from the Turtle Pits fluids, possibly owing largely to a difference in the temperature of the two systems. The fourth hydrothermally active field on the southern MAR, the Liliput field, was discovered near 9° 33'S in a water depth of 1500 m and consists of several low-temperature vents. A shallow hydrothermal plume in the water column

  5. Seafloor Hydrothermal Activity in the Southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Lundsten, L.; Zierenberg, R. A.; Troni, G.; Wheat, C. G.; Spelz, R. M.

    2015-12-01

    Active hydrothermal venting was previously unknown between Guaymas Basin and 21°N on the East Pacific Rise. MBARI AUV surveys and ROV dives in 2012 and 2015 discovered 7 hydrothermal vent sites with diverse and varied vent communities within that gap. One field in the Pescadero Basin vents clear shimmering fluids at 3685 m depth and four vigorous black smoker fields and several extinct chimney fields are between 2225 and 2400 m depth on the Alarcón Rise. Low-temperature vent sites are present on both of the Pescadero and Tamayo Transforms. The chimneys were discovered in 1-m resolution AUV bathymetric data, with some indicated to be active based on temperature anomalies in the AUV CTD data and confirmed during later ROV dives. The low-temperature vent sites on the transform faults were found on ROV dives while exploring young lava flows and sediment hills uplifted by sill intrusions. Pescadero Basin is a deep extensional basin in the southern Gulf. The smooth, subtly faulted floor is filled with at least 150 m of sediment, as determined from sub-bottom profiles collected by the AUV. Three large chimneys (named Auka by our Mexican collaborators) and several broad mounds are located on the SW margin of the basin. Temperatures to 290°C were measured, the fluids are clear, neutral pH, and contain elevated Na. The chimneys are delicate, white, predominantly Ca-carbonate; barite, sparse sulfides, and some aromatic hydrocarbons are also present. Three active vent fields (Ja Sít, Pericú, and Meyibó) at Alarcón Rise are located near the eruptive fissure of an extensive young sheet flow. The fourth field (Tzab-ek) is 1.1 km NW of the axis on older pillow lavas. The largest chimneys are in the Tzab-ek field: 31 and 33 m tall, with flanges and upside-down waterfalls. They rise from a sulfide mound, suggesting a long-lived hydrothermal system, in contrast to the near-axis fields where the chimneys grow directly on basalt. The Alarcón chimneys are Zn and Cu-rich sulfides

  6. Major off-axis hydrothermal activity on the northern Gorda Ridge

    USGS Publications Warehouse

    Rona, Peter A.; Denlinger, Roger P.; Fisk, M. R.; Howard, K. J.; Taghon, G. L.; Klitgord, Kim D.; McClain, James S.; McMurray, G. R.; Wiltshire, J. C.

    1990-01-01

    The first hydrothermal field on the northern Gorda Ridge, the Sea Cliff hydrothermal field, was discovered and geologic controls of hydrothermal activity in the rift valley were investigated on a dive series using the DSV Sea Cliff. The Sea Cliff hydrothermal field was discovered where predicted at the intersection of axis-oblique and axis-parallel faults at the south end of a linear ridge at mid-depth (2700 m) on the east wall. Preliminary mapping and smpling of the field reveal: a setting nested on nearly sediment-free fault blocks 300 m above the rift valley floor 2.6 km from the axis; a spectrum of venting types from seeps to black smokers; high conductive heat flow estimated to be equivalent to the convective flux of multiple black smokers through areas of the sea floor sealed by a caprock of elastic breccia primarily derived from basalt with siliceous cement and barite pore fillings; and a vent biota with Juan de Fuca Ridge affinites. These findings demonstrate the importance of off-axis hydrothermal activity and the role of the intersection of tectonic lineations in controlling hydrothermal sites at sea-floor spreading centers.

  7. Hydrothermal activity on the Gorda Ridge

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    Near-bottom plumes of materials indicative of discharge of metal-rich hot springs were discovered at sites on the Gorda Ridge by a research team of government and university scientists on a cruise of the National Oceanic and Atmospheric Administration (NOAA) ship Surveyor during May 1985 as part of the NOAA Vents Program. The Gorda Ridge, off northern California and Oregon, is the only seafloor spreading center within the proclaimed 200-mile U.S. Exclusive Economic Zone (370 km wide) of the conterminous United States and is one of the last oceanic ridges to be explored for metal-rich hot springs. One reason for this neglect is that the Gorda Ridge is slow spreading, with half-rates ranging from 1.1 cm/yr in the southern portion to 2.2 cm/yr in the northern portion. Slow spreading centers have not been fully evaluated with regard to hydrothermal activity by many members of the research community, who have concentrated their attention on the faster spreading East Pacific Rise to the south and the Juan de Fuca Ridge to the north of the Gorda Ridge.

  8. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    SciTech Connect

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  9. Role of tectonic and volcanic activity in hydrothermal systems at the southern Mariana Trough: detailed bathymetric characteristics of the hydrothermal sites

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Okino, K.; Asada, M.; Nogi, Y.; Mochizuki, N.; Nakamura, K.

    2012-12-01

    We present the detailed bathymetric characterization of field-scale geological features associated with hydrothermal systems in the southern Mariana Trough near 12°57'N, 143°37'E, using near-bottom swath mapping data collected by the autonomous underwater vehicle (AUV) Urashima during cruise YK09-08 and dive observation data acquired by the submersible Shinkai6500 during cruise YK10-11. In the study area, two of the hydrothermal sites are located on the active backarc spreading axis (the Snail and Yamanaka sites), one is located at the eastern foot of the axial high (the Archean site), and two are located on an off-axis knoll about 5 km from the spreading axis (the Pika and Urashima sites). We examined 1) the nature of' tectonic and volcanic controls on the hydrothermal systems, and 2) the relationship between geomorphological characteristics and hydrothermal activity based on the survey results (Yoshikawa et al., 2012). The two on-axis hydrothermal sites are possibly locally developed on a 4th order spreading segment, in association with diking events (on the basis of comparisons with previously studied cases on the East Pacific Rise). The three off-axis sites (the Archean, Urashima, and Pika sites) appear to represent locations of sustained hydrothermal activity that has created relatively large-scale hydrothermal features compared with those in the on-axis area. The formation of off-axis hydrothermal sites is likely to be closely related to an off-axis magma upwelling system, as evidenced by the absence of fault systems and the undeformed morphology of the mound and knoll. The three off-axis hydrothermal sites are composed mainly of breccia assemblages that probably originated from hydrothermal activity with black smoker venting. These areas are characterized by numerous ridge lines (height, mainly 1-6 m), conical mounds (height: < 100 m, diameter: < 300 m), and bumpy seabed. Most of the ridge lines have formed as a result of collapse of the seafloor. The

  10. Fluid Flow and Sound Generation at Hydrothermal Vent Fields

    DTIC Science & Technology

    1988-04-01

    weeks or, the Ellen B. Scripps, to rendezvous with the Glomar Challenger and conduct the borehole seismic experiment south of the Costa Rica Rift in...H.P. Johnson, S.K. Juniper, J.L. Karsten, J.E. Lupton , S.D. Scott and V. Tunnicliffe. North caldera hydrothermal vent field, Axial Seamount, Juan de...Aikman, R. Embley, S. Hammond, A. Malahoff, and J. Lupton , The distribution of geothermal fields on the Juan de Fuca Ridge. J. Geophys, Res., 90, 727

  11. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor.

    PubMed

    Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-Ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2017-02-01

    Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ(13)C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.

  12. Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.

    2001-12-01

    Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were

  13. Bacterial and Archaeal Diversity in an Iron-Rich Coastal Hydrothermal Field in Yamagawa, Kagoshima, Japan

    PubMed Central

    Kawaichi, Satoshi; Ito, Norihiro; Yoshida, Takashi; Sako, Yoshihiko

    2013-01-01

    Physicochemical characteristics and archaeal and bacterial community structures in an iron-rich coastal hydrothermal field, where the temperature of the most active hot spot reaches above 100°C, were investigated to obtain fundamental information on microbes inhabiting a coastal hydrothermal field. The environmental settings of the coastal hydrothermal field were similar in some degree to those of deep-sea hydrothermal environments because of its emission of H2, CO2, and sulfide from the bottom of the hot spot. The results of clone analyses based on the 16S rRNA gene led us to speculate the presence of a chemo-synthetic microbial ecosystem, where chemolithoautotrophic thermophiles, primarily the bacterial order Aquificales, function as primary producers using H2 or sulfur compounds as their energy source and CO2 as their carbon source, and the organic compounds synthesized by them support the growth of chemoheterotrophic thermophiles, such as members of the order Thermales and the family Desulfurococcaceae. In addition, the dominance of members of the bacterial genus Herbaspirillum in the high temperature bottom layer led us to speculate the temporal formation of mesophilic zones where they can also function as primary producing or nitrogen-fixing bacteria. PMID:24256999

  14. Bacterial and archaeal diversity in an iron-rich coastal hydrothermal field in Yamagawa, Kagoshima, Japan.

    PubMed

    Kawaichi, Satoshi; Ito, Norihiro; Yoshida, Takashi; Sako, Yoshihiko

    2013-01-01

    Physicochemical characteristics and archaeal and bacterial community structures in an iron-rich coastal hydrothermal field, where the temperature of the most active hot spot reaches above 100 °C, were investigated to obtain fundamental information on microbes inhabiting a coastal hydrothermal field. The environmental settings of the coastal hydrothermal field were similar in some degree to those of deep-sea hydrothermal environments because of its emission of H2, CO2, and sulfide from the bottom of the hot spot. The results of clone analyses based on the 16S rRNA gene led us to speculate the presence of a chemo-synthetic microbial ecosystem, where chemolithoautotrophic thermophiles, primarily the bacterial order Aquificales, function as primary producers using H2 or sulfur compounds as their energy source and CO2 as their carbon source, and the organic compounds synthesized by them support the growth of chemoheterotrophic thermophiles, such as members of the order Thermales and the family Desulfurococcaceae. In addition, the dominance of members of the bacterial genus Herbaspirillum in the high temperature bottom layer led us to speculate the temporal formation of mesophilic zones where they can also function as primary producing or nitrogen-fixing bacteria.

  15. Tidal Evolution and Hydrothermal Activity in IcyWorlds

    NASA Astrophysics Data System (ADS)

    Vance, S.; Hussmann, H.

    2008-09-01

    The tidal heating that sustains a subsurface ocean in Europa likely varied in intensity through the moons history due to the exchange of orbital angular momentum with the innermost Galilean satellite, Io [1]. Tidal interactions elsewhere in the solar system — e.g. in Neptunes moon Triton, and in Kuiper belt systems such as Pluto-Charon and the 2003 EL61 system (Santa-Rudolph-Blitzen) — highlight the potential for vigorously heated subsurface oceans and thus the existence of hydrothermal systems in icy worlds. Understanding the extent and nature of hydrothermal activity in such systems is important for assessing the availability of essential elements and organic compounds necessary sustain and, possibly, originate life [2, 3, 4, 5, 6, 7]. During periods of low tidal heating in such systems, hydrothermalism driven by serpentinization (reaction of water with ultramafic rock) may be extensive, with implications for seafloor production of hydrogen, methane and other potential nutrients, and elements necessary to originate and support life in icy world oceans. For Enceladus, an anomalously dense satellite for its size, radiogenic heating and overburden pressure in the mantle are sufficiently low to permit fracturing of the entirety of the moons rocky interior on long time scales [8]. Estimates of methane production from serpentinization of Enceladus interior, based on measured fluxes from the Lost City Hydrothermal Field [9], are an order of magnitude greater than fluxes observed at Enceladuss south polar plume by the Cassini Ion Neutral Mass Spectrometer [10]. For the largest icy worlds in the Solar System — Titan, Ganymede and Callisto—pressures at and below the H2Orock interface are likely too high to permit the formation of microfractures, so an alternative explanation is required if methane is endogenous. Aqueous alteration may be augmented from the above estimates if altered crust is rejuvenated during periods of increased tidal dissipation. Crustal

  16. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  17. Diffuse-flow hydrothermal field in an oceanic fracture zone setting, Northeast Pacific: Deposit composition

    USGS Publications Warehouse

    Hein, J.R.; Koski, R.A.; Embley, R.W.; Reid, J.; Chang, S.-W.

    1999-01-01

    This is the first reported occurrence of an active hydrothermal field in an oceanic fracture zone setting. The hydrothermal field occurs in a pull-apart basin within the Blanco Fracture Zone (BFZ), which has four distinct mineral deposit types: (1) barite mounds and chimneys, (2) barite stockwork breccia, (3) silica-barite beds, and (4) silica, barite, and Fe-Mn oxyhydroxide in sediments. All deposit types contain minor amounts of sulfides. In barite stockwork, silica-barite beds, and mineralized sediment, Ba, Ph, Ag, S, Au, Zn, Cu, Hg, TI, As, Mo, Sb, U, Cd, and Cu are enriched relative to unmineralized rocks and sediments of the BFZ. Fe and Mn are not enriched in the barite stockwork or silica-barite beds, but along with P, Co, and Mg are enriched in the mineralized sediments. Silver contents in deposits of the hydrothermal field range up to 86 ppm, gold to 0.7 ppm, zinc to 3.2%, copper to 0.8%, and barium to 22%. Mineralization occurred by diffuse, low to intermediate temperature (mostly <250??C) discharge of hydrothermal fluids through pillow lavas and ponds of mixed volcaniclastic and biosiliceous sediments. Bacterial mats were mineralized by silica, barite, and minor Fe hydroxides, or less commonly, by Mn oxyhydroxides. Pervasive mineralization of bacterial mats resulted in formation of silica-barite beds. Silica precipitated from hydrothermal fluids by conductive cooling and mixing with seawater. Sulfate, U, and rare earth elements (REEs) in barite were derived from seawater, whereas the REE content of hydrothermal silica deposits and mineralized sediments is associated with the aluminosilicate detrital fraction. Fe-, Zn-, Cu-, Pb-, and Hg-sulfide minerals, Ba in barite, and Eu in all mineralized deposits were derived from hydrothermal fluids. Manganese oxides and associated elements (Co, Sb, Mo, W, Cl, and Cu) and Fe oxides and associated elements (Be, B, P, and Mo) precipitated as the result of mixing of hydrothermal fluids with seawater. ?? 2001 Canadian

  18. High-resolution near-bottom vector magnetic anomalies over Raven Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; Johnson, H. Paul; Salmi, Marie S.; Hutnak, Michael

    2014-10-01

    High-resolution, near-bottom vector magnetic data were collected by remotely operated vehicle Jason over the Raven hydrothermal vent field (47°57.3'N 129°5.75'W) located north of Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. The survey was part of a comprehensive heat flow study of the Raven site using innovative thermal blanket technology to map the heat flux and crustal fluid pathways around a solitary hydrothermal vent field. Raven hydrothermal activity is presently located along the western axial valley wall, while additional inactive hydrothermal deposits are found to the NW on the upper rift valley wall. Magnetic inversion results show discrete areas of reduced magnetization associated with both active and inactive hydrothermal vent deposits that also show high conductive heat flow. Higher spatial variability in the heat flow patterns compared to the magnetization is consistent with the heat flow reflecting the currently active but ephemeral thermal environment of fluid flow, while crustal magnetization is representative of the static time-averaged effect of hydrothermal alteration. A general NW to SE trend in reduced magnetization across the Raven area correlates closely with the distribution of hydrothermal deposits and heat flux patterns and suggests that the fluid circulation system at depth is likely controlled by local crustal structure and magma chamber geometry. Magnetic gradient tensor components computed from vector magnetic data improve the resolution of the magnetic anomaly source and indicate that the hydrothermally altered zone directly beneath the Raven site is approximately 15 × 106 m3 in volume.

  19. Hydrothermal Input into Volcaniclastic Sediments of the SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Bismarck Sea, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Hrischeva, E. H.; Scott, S. D.

    2005-05-01

    Short sediment cores were examined from the active SuSu Knolls hydrothermal field in the eastern Manus back-arc basin in order to understand the origin of the hydrothermal component in sediments surrounding volcanogenic massive sulfide deposits. Their mineralogical and geochemical composition displays various inputs of intra-basin volcaniclastic, hydrothermal, terrigenous and biogenic components. A 40 cm-thick sediment recovered from the base of a core proximal to the Suzette chimney site consists of blocky nonvesicular to elongate vesicular volcanic glass fragments at different stages of alteration intermixed with pyrite, chalcopyrite, barite, gypsum, atacamite, illite, Fe oxyhydroxide, quartz, cristobalite, plagioclase and alunite. The composition indicates that the sediment was derived from erosion of volcanic edifices and old oxidized chimneys. Geochemical indicators for the mass wasting event are the extremely high concentrations of Cu (up to 2.3%) and Au (up to 3.5 ppm), elevated concentrations of As, Ba, Zn and Fe, as well as a positive Eu anomaly. The strong Cu-Au positive correlation suggests that chalcopyrite and gold-rich chimneys of the Suzette site are the source of hydrothermal detritus. 14C dating of foraminifera points to an approximate age of the beginning of the strongest mass wasting event at about 2050 ybp. This event was interrupted by deposition of a widespread apron of volcaniclastic sediment overlying the SuSu Knolls volcanic rocks. The volcaniclastic sediment consists of dacite fragments with plagioclase and pyroxene microlites, angular grains of Ca-rich plagioclase and clino- and orthopyroxenes, glass shards, cristobalite, aggregates of Si-dominated amorphous material and illite, alunite, pyrite, magnetite and barite. Based on the compositional similarity between the components of the volcaniclastic sediment and plagioclase-pyroxene porphyric dacite lavas building the SuSu Knolls together with the products of their hydrothermal alteration

  20. Thermal and tectonic history in the steamboat hills geothermal field: Determination of the age of active hydrothermal activity by application of AFTA{sup {trademark}} (apatite fission track analysis)

    SciTech Connect

    Duddy, I.R.; Green, P.F.; Kamp, P.C. van de

    1995-12-31

    This study, in the Steamboat Hills area of the Carson segment of the northern Walker Lane Belt, was initiated to provide a regional thermal history framework and to investigate the age of the active local hydrothermal system. Seven outcrop samples, representing ?Cretaceous granodiorite and ?Triassic Peavine sequence metamorphosed volcanic flow and volcaniclastic rocks plus six samples of Peavine rocks in vertical sequence from an 0.8 km deep geothermal corehole have been analyzed using AFTA (apatite fission track analysis) and zircon fission track analysis.

  1. Fault inference and boundary recognition based on near-bottom magnetic data in the Longqi hydrothermal field

    NASA Astrophysics Data System (ADS)

    Tao, Chunhui; Wu, Tao; Liu, Cai; Li, Huaiming; Zhang, Jinhui

    2016-09-01

    Near-bottom magnetic prospecting, which provides useful information to study shallow geological structures, is an efficient method for investigating active and inactive hydrothermal fields and researching the structure of hydrothermal systems. We collected near-bottom magnetic data in the Longqi hydrothermal area on the Southwest Indian Ridge using the Autonomous Benthic Explorer in 2007 and set up a processing system for magnetic data calibration. By removing the influence of terrain on magnetic anomalies and using the intensity of the spatial differential vector (ISDV) method, we inferred the presence of an N-S-trending fault and estimated its crush zone to be about 120 m wide and >2 km long along the known hydrothermal vents. This inferred fault is consistent with the precise topography mapped during the ABE 201 dive. The fault may be connected to a known detachment fault and form part of a hydrothermal channel. We delineated the hydrothermal alteration zone using the ISDV method and conclude that demagnetization was induced by hydrothermal alteration.

  2. Discovery of Active Hydrothermal Sites Along the Mariana Volcanic Arc, Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Embley, R. W.; Resing, J. A.; Lupton, J. E.; Massoth, G. J.; de Ronde, C. E.; Nakamura, K.; Walker, S. L.

    2003-12-01

    thoroughly: 2550 km of intraoceanic arcs and 350 km of island arcs. Along the carefully studied intraoceanic arcs, 36 of 104 surveyed submarine volcanoes are hydrothermally active. Projecting these results along the unsurveyed intraoceanic arcs yields an expected total of an additional 54 active volcanoes. Island arcs will add additional sites, but are too poorly studied to admit a helpful estimate. For Pacific intraoceanic arcs, the predicted frequency of active volcanoes, about 1/66 km of arc length, is similar to the frequency of hydrothermal fields found along slow and ultra-slow MORs.

  3. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P.-M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment, to evaluate the distribution of hydrothermal activity. We have identified a new on-axis site with diffuse flow, Ewan, and an active vent structure ∼1.2 km from the axis, Capelinhos. These sites are minor relative to the Main field, and our total heatflux estimate for all active sites (200-1200 MW) is only slightly higher than previously published estimates. We also identify fossil sites W of the main Lucky Strike field. A circular feature ∼200 m in diameter located on the flanks of a rifted off-axis central volcano is likely a large and inactive hydrothermal edifice, named Grunnus. We find no indicator of focused hydrothermal activity elsewhere along the segment, suggesting that the enhanced melt supply and the associated melt lenses, required to form central volcanoes, also sustain hydrothermal circulation to form and maintain large and long-lived hydrothermal fields. Hydrothermal discharge to the seafloor occurs along fault traces, suggesting focusing of hydrothermal circulation in the shallow crust along permeable fault zones.

  4. Lipid biomarker and microbial community of 49.6°E hydrothermal field at Southwest Indian Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Lei, J.; Chu, F.; Yu, X.; Li, X.; Tao, C.

    2012-12-01

    In 2007, Chinese Research Cruises Discovered the First Active Hydrothermal Vent Field at the Ultraslow Spreading Southwest Indian Ridge. This study intent to get composition, evolution and origin information of lipid compounds in SWIR, and recognize the style of lipid biomarkers which have obviously indicative significance for community structure.Soluble organic matter were extracted from geological samples (including chimney sulfide, oxide, around hydrothermal vents) in Southwest Indian Ridge (SWIR), and divided into hydrocarbon, fatty acid component by column chromatography. GC, GC-MS, HPLC-MS were applied for composition and abundance analysis. Lipid in hydrothermal sulfide contains obvious isoprenoidal hydrocarbon biomarkers (Sq, IS40) and GDGTs (m/z=653) that associated with methanogenic archaea which belongs to Euryarchaeota, and iso /anti-iso fatty acid (iC15:0, aiC15:0, iC17:0, aiC17:0)which may originated from sulfate reducing bacteria (SRB).Lipids extracted from hydrothermal oxide lack isoprenoidal hydrocarbon, and Ph/C18 (0.57) is much lower than sulfide (1.22). Fatty acid compound of oxide include abundant saturated fatty (C16:0, C18:0) acid and mono-unsaturated fatty acids (C16:1n7, C18:1n7), but much less iso/anti-iso was detected. Lipid composition of hydrothermal oxide showed that archaea activity was seldom in hydrothermal oxide, and sulfur-oxidizing bacteria was the main microbial community.Study of Jaeschke (2010) showed that high temperature hydrothermal venting encompassed different microbial community from low temperature hydrothermal venting. Our study showed that in different stage of hydrothermal, microbial community structure may be distinct.

  5. A serpentinite-hosted ecosystem: the Lost City hydrothermal field.

    PubMed

    Kelley, Deborah S; Karson, Jeffrey A; Früh-Green, Gretchen L; Yoerger, Dana R; Shank, Timothy M; Butterfield, David A; Hayes, John M; Schrenk, Matthew O; Olson, Eric J; Proskurowski, Giora; Jakuba, Mike; Bradley, Al; Larson, Ben; Ludwig, Kristin; Glickson, Deborah; Buckman, Kate; Bradley, Alexander S; Brazelton, William J; Roe, Kevin; Elend, Mitch J; Delacour, Adélie; Bernasconi, Stefano M; Lilley, Marvin D; Baross, John A; Summons, Roger E; Sylva, Sean P

    2005-03-04

    The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from <40 degrees to 90 degrees C at pH 9 to 11, and carbonate chimneys 30 to 60 meters tall. A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems.

  6. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea

    USGS Publications Warehouse

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; Rosner, Martin

    2011-01-01

    Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 degrees C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 degrees C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 degrees C) fluid. All PACMANUS fluids are characterized by negative delta DH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 degrees C) values (~2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative delta 34SH2S values (down to -2.7 permille) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (-4.1 permille to -2.3 permille) than Vienna Woods (-5.2 permille to -5.7 permille), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus

  7. Temperature and volume estimation of under-seafloor fluid from the logging-while-drilling data beneath an active hydrothermal field

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.

    2015-12-01

    In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).

  8. Hydrothermal activity along the northern Mid-Atlantic Ridge and in the Bransfield Strait Backarc Basin, Antarctica

    NASA Astrophysics Data System (ADS)

    Chin, Carol S.

    1998-12-01

    Seafloor hydrothermal circulation through young oceanic crust results in the expulsion of fluids as both diffuse and focused flow in the form of hydrothermal venting. High-temperature hydrothermal fluids are enriched in reduced chemical species that rapidly oxidize upon interaction with ambient, oxygen-rich bottom waters, resulting in plumes that are detectable in the water column both by their dissolved chemical composition as well as by their particle concentration. This study employed a novel instrument package which detected both dissolved manganese and particle concentration in situ. This package also included a standard CTD (conductivity, temperature, depth) and rosette for the collection of water samples. Because hydrothermal plumes integrate the output from an entire vent field, measurements in plumes can be used to estimate vent field fluxes. Some geochemical tracers from hydrothermal vents can also be detected thousands of kilometers from their sources. Thus, plumes provide the means to prospect for undiscovered hydrothermal sites, and can also predict characteristics of the venting site. This work includes studies of hydrothermal plumes along the northern Mid-Atlantic Ridge and in the Bransfield Strait backarc basin, Antarctica. In recent years, the number of known hydrothermal sites on the Mid-Atlantic Ridge (MAR) has increased from two to seven, and most other segments between 12° and 41° N have shown evidence of high-temperature hydrothermal activity. Furthermore, it appears that as one approaches the Azores Plateau, the concentration of dissolved delta3He in the bottom water (originating from hydrothermal venting) increases, suggesting that hydrothermal activity increases toward the plateau. This is consistent with the significant tectonic extension and crustal fissuring observed near the Azores Platform, which is expected to support increased convection. The Bransfield Strait is a backarc basin between the Antarctic Peninsula and the South

  9. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.

    PubMed

    Singh, Satish C; Crawford, Wayne C; Carton, Hélène; Seher, Tim; Combier, Violaine; Cannat, Mathilde; Pablo Canales, Juan; Düsünür, Doga; Escartin, Javier; Miranda, J Miguel

    2006-08-31

    Crust at slow-spreading ridges is formed by a combination of magmatic and tectonic processes, with magmatic accretion possibly involving short-lived crustal magma chambers. The reflections of seismic waves from crustal magma chambers have been observed beneath intermediate and fast-spreading centres, but it has been difficult to image such magma chambers beneath slow-spreading centres, owing to rough seafloor topography and associated seafloor scattering. In the absence of any images of magma chambers or of subsurface near-axis faults, it has been difficult to characterize the interplay of magmatic and tectonic processes in crustal accretion and hydrothermal circulation at slow-spreading ridges. Here we report the presence of a crustal magma chamber beneath the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge. The reflection from the top of the magma chamber, centred beneath the Lucky Strike volcano and hydrothermal field, is approximately 3 km beneath the sea floor, 3-4 km wide and extends up to 7 km along-axis. We suggest that this magma chamber provides the heat for the active hydrothermal vent field above it. We also observe axial valley bounding faults that seem to penetrate down to the magma chamber depth as well as a set of inward-dipping faults cutting through the volcanic edifice, suggesting continuous interactions between tectonic and magmatic processes.

  10. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N.

    PubMed

    Kelley, D S; Karson, J A; Blackman, D K; Früh-Green, G L; Butterfield, D A; Lilley, M D; Olson, E J; Schrenk, M O; Roe, K K; Lebon, G T; Rivizzigno, P

    2001-07-12

    Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.

  11. Sulphur Cycling at the Mid-Atlantic Ridge: Isotopic Evidence From the Logatchev and Turtle Pits Hydrothermal Fields

    NASA Astrophysics Data System (ADS)

    Eickmann, B.; Strauss, H.; Koschinsky, A.; Kuhn, T.; Petersen, S.; Schmidt, K.

    2005-12-01

    Mid-ocean ridges and associated hydrothermal vent systems represent a unique scenario in which the interaction of hydrosphere, lithosphere and biosphere and the related element cycling can be studied. Sulphur participates in inorganic and microbially driven processes and plays, thus, an important role at these vent sites. The sulphur isotopic compositions of different sulphur-bearing minerals as well as dissolved sulphur compounds provide a tool for identifying the sulphur source and pertinent processes of sulphur cycling. Here, we present sulphur isotope data from an ongoing study of the Logatchev hydrothermal field at 14°45' N and the Turtle Pits hydrothermal field at 4°48' S. The former is located in 2900 to 3060 m water depth, hosted by ultramafic rocks, while the latter is situated in 2990 m water depth, hosted by basaltic rocks. Different metal sulphides (chalcopyrite, pyrite, pyrrhotite, various copper sulphides), either particles from the emanating hot fluid itself or pieces of active and inactive black smokers, display δ34S values between +2 and +9 ‰. So far, no significant difference is discernible between mineral precipitates from both hydrothermal fields. However, differences exist between different generations of sulphide precipitates. Based on respective data from other sites of hydrothermal activity at mid-ocean ridges, this sulphur isotope range suggests that sulphur in the hydrothermal fluid and mineral precipitates represents a mixture between mantle sulphur and reduced seawater sulphate. Anhydrite precipitates from hydrothermal chimneys, located inside sulphide conduits, and obvious late stage gypsum needles from voids, yielded sulphur isotope values between +17.5 and +20.0 ‰. This clearly identifies seawater sulphate as the principal sulphur source. Variable, but generally low abundances of sulphide and sulphate in differently altered mafic and ultramafic rocks point to a complex fluid-rock interaction. Sulphur isotope values for total

  12. Hydrothermal activity in Tertiary Icelandic crust: Implication for cooling processes along slow-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pałgan, D.; Devey, C. W.; Yeo, I. A.

    2015-12-01

    Known hydrothermal activity along the Mid-Atlantic Ridge is mostly high-temperature venting, controlled by volcano-tectonic processes confined to ridge axes and neotectonic zones ~15km wide on each side of the axis (e.g. TAG or Snake Pit). However, extensive exploration and discoveries of new hydrothermal fields in off-axis regions (e.g. Lost City, MAR) show that hydrothermalism may, in some areas, be dominated by off-axis venting. Little is known about nature of such systems, including whether low-temperature "diffuse" venting dominates rather than high-temperature black-smokers. This is particularly interesting since such systems may transport up to 90% of the hydrothermal heat to the oceans. In this study we use Icelandic hot springs as onshore analogues for off-shore hydrothermal activity along the MAR to better understand volcano-tectonic controls on their occurrence, along with processes supporting fluid circulation. Iceland is a unique laboratory to study how new oceanic crust cools and suggests that old crust may not be as inactive as previously thought. Our results show that Tertiary (>3.3 Myr) crust of Iceland (Westfjords) has widespread low-temperature hydrothermal activity. Lack of tectonism (indicated by lack of seismicity), along with field research suggest that faults in Westfjords are no longer active and that once sealed, can no longer support hydrothermal circulation, i.e. none of the hot springs in the area occur along faults. Instead, dyke margins provide open and permeable fluid migration pathways. Furthermore, we suggest that the Reykjanes Ridge (south of Iceland) may be similar to Westfjords with hydrothermalism dominated by off-axis venting. Using bathymetric data we infer dyke positions and suggest potential sites for future exploration located away from neotectonic zone. We also emphasise the importance of biological observations in seeking for low-temperature hydrothermal activity, since chemical or optical methods are not sufficient.

  13. On the global distribution of hydrothermal vent fields: One decade later

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with < 60 mm/yr full spreading rate. Discoveries at ultra-slow MORs in the past decade included the deepest known vent (Beebe at Mid-Cayman Rise) and high-temperature black smoker vents (e.g., Dragon at SWIR and Loki's Castle at Mohns Ridge), and the highest temperature vent was measured at the slow-spreading S MAR (Turtle Pits). Using a previously published equation for the linear relationship between the number of active vent fields per 100 km strike length (F_s) vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (< 40 mm/yr) and about 1/3 at intermediate rates (40-80 mm

  14. Long-Lived Serpentinization and Carbonate Precipitation at the Lost City Hydrothermal Vent Field

    NASA Astrophysics Data System (ADS)

    Frueh-Green, G. L.; Kelley, D. S.; Karson, J. A.; Bernasconi, S. M.; Proskurowski, G.; Ludwig, K. A.

    2003-12-01

    The discovery of spectacular, actively venting carbonate chimneys at the Lost City hydrothermal vent field (LCHF) on the Atlantis Massif (MAR 30oN) has stimulated great interest in the role of serpentinization in driving hydrothermal circulation in peridotite-hosted systems and in the biological communities that may be supported in these environments. The top of this fault-bounded, dome-like massif consists of variably deformed, talc-bearing serpentinites and gabbroic rocks ( ˜1.5 Ma), unconformably overlain by polymictic sedimentary breccias and bedded pelagic limestones or chalks that form a flat-lying carbonate cap. The limestones and matrix of the breccias consist of highly indurated foraminiferal sand with a well-preserved sub-tropical fauna, which were at least locally deposited before the last glacial maximum. Calcite and/or aragonite veins are abundant; fractures in the basement are filled by carbonate sediments and lithic fragments. Veining generally pre-dates sedimentary fracture-infilling. The youngest hydrothermal phases include the LCHF chimneys and carbonate precipitates on outcrop surfaces, in cavities, and as growths protruding from fissures that are locally venting fluids. Sr-, C- and O-isotope analyses and radiocarbon age-dating indicate that this system is the integrated effect of tectonic activity, serpentinization, and hydrothermal flow that has lasted at least 30,000 years. C- and O-isotope compositions indicate a range of precipitation temperatures from ambient conditions up to ˜ 250oC at depth and reflect mixing of seawater and serpentinization-derived hydrothermal fluids. Analyses of separated fractions of sedimentary and hydrothermal components define a sedimentary end-member composition of δ 13C = 1.3 +/- 0.3 and δ 18O = 1.5 +/- 0.5‰ (VPDB) and a hydrothermal end-member composition of δ 13C = 3.3 and δ 18O = 5‰ . Based on the present-day degree of serpentinization, the geophysical structure and age of the lithosphere at the

  15. On genesis of organic matter in bottom sediments of hydrothermal field Ashadze-1, 13° N MAR

    NASA Astrophysics Data System (ADS)

    Petrova, V. I.; Kursheva, A. V.; Litvinenko, I. V.; Morgunova, I. P.; Stepanova, T. V.; Cherkashev, G. A.

    2009-12-01

    Comparative study of genesis and structure of dispersed organic matter (DOM) from background pelagic bottom sediments and sediments inside an active hydrothermal field Ashadze-1 collected during the cruise of the R/V “Professor Logachev” in 2003 was carried out. The received results allow to speak about an essential originality of structure and distribution of DOM in bottom sediments of the field Ashadze-1, according to unique physical and chemical conditions and facial specificity of sedimentation in hydrothermal zones. At the same time, attributes of petroleum hydrocarbons abiogenic synthesis hasn’t been fixed. Opposite, the received data allow to consider the process of fast maturing of biogenic OM in hydrothermal systems as a major factor of HC formation.

  16. Multiple origins of methane at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Bradley, Alexander S.; Summons, Roger E.

    2010-08-01

    The high concentrations of methane in the vent fluids of the Lost City Hydrothermal Field represent the sum of abiotic and biological sources and sinks. Stable isotopes of carbon are of limited value in discriminating between the various sources of methane because the isotope effects associated with the multiple processes forming and consuming methane are each poorly constrained, and the products of these processes are pooled. Furthermore, reservoir effects complicate interpretation: the near quantitative reduction of inorganic carbon to methane under highly reducing conditions limits the isotope effects associated with methanogenesis. However, the carbon isotope compositions of lipids derived from anaerobic methanotrophs suggest that more than one isotopically distinct pool of methane exists at Lost City. In this analysis we integrate multiple lines of evidence to constrain the relative contribution of various processes at Lost City. The processes that we consider here include i) Fischer-Tropsch-type (FTT) abiotic synthesis of methane and other hydrocarbons, ii) the Sabatier process for the abiotic synthesis of methane alone, iii) biological methane production by Methanosarcinales, and iv) biological methane consumption by anaerobic and aerobic methanotrophs. This analysis suggests that abiotic processes, particularly the Sabatier reaction, are likely to be the dominant source of methane at Lost City. Biological methane is present in the vent fluids, but does not compose a high fraction of the total methane pool. These observations imply that ultramafic systems could have supplied abundant reduced carbon to the early Earth, even without biological catalysis.

  17. Relationships between lava types, seafloor morphology, and the occurrence of hydrothermal venting in the ASHES vent field of Axial Volcano. [Axial Seamount Hydrothermal Emission Study

    SciTech Connect

    Hammond, S.R. )

    1990-08-10

    Deep-towed and submersible photographic surveys within the caldera of Axial Volcano have been integrated with high-resolution bathmetry to produce a geological map of the most active vent field in the caldera. Locations for over 2,000 photographs in and near the vent field were determined using a seafloor transponder network. Then each photograph was described utilizing a classification system which provides detailed information concerning lava type, hydrothermal activity, sediment cover, geological structure, and biology. Resulting data were entered into a digital data base, and computer-generated maps were created that portray spatial relationships between selected geological variables. In general, the entire ASHES field is characterized by pervasive low-temperature venting. The most vigorous venting is concentrated in an approximately 80 m {times} 80 m area where there are several high-temperature vents including some which are producing high-temperature vapor-phase fluids derived from a boiling hydrothermal system. Lava types within the ASHES vent field are grouped into three distinct morphologies: (1) smooth (flat-surfaced, ropy, and whorled) sheet flows, (2) lobate flows, and (3) jumbled-sheet flows. The most intense hydrothermal venting is concentrated in the smooth sheet flows and the lobate flows. The location of the ASHES field is mainly attributable to faulting which defines the southwest caldera wall, but the concentration of intense venting appears to be related also to the spatial distribution of lava types in the vent field and their contrasting permeabilities. Other structural trends of faults and fissures within the field also influence the location of individual events.

  18. Hydrothermal regimes of the dry active layer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Mamoru; Zhang, Yinsheng; Kadota, Tsutomu; Ohata, Tetsuo

    2006-04-01

    Evaporation and condensation in the soil column clearly influence year-round nonconductive heat transfer dynamics in the dry active layer underlying semiarid permafrost regions. We deduced this from heat flux components quantified using state-of-the-art micrometeorological data sets obtained in dry and moist summers and in winters with various snow cover depths. Vapor moves easily through large pores, some of which connect to the atmosphere, allowing (1) considerable active layer warming driven by pipe-like snowmelt infiltration, and (2) direct vapor linkage between atmosphere and deeper soils. Because of strong adhesive forces, water in the dry active layer evaporates with great difficulty. The fraction of latent heat to total soil heat storage ranged from 26 to 45% in dry and moist summers, respectively. These values are not negligible, despite being smaller than those of arctic wet active layer, in which only freezing and thawing were considered.

  19. Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, S.; Sekine, Y.; Kempf, S.; Juhasz, A.; Horanyi, M.; Moragas-Klostermeyer, G.; Srama, R.

    2013-12-01

    Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor F. Postberg, H.-W. Hsu, Y. Sekine, S. Kempf, A. Juhasz, M. Horanyi, G. Moragas-Klostermeyer, R. Srama Silica serves as a unique indicator of hydrothermal activities on Earth as well as on Mars. Here we report the Cassini Cosmic Dust Analyser (CDA) observation of nanosilica particles from the Saturnian system. Based on their interaction with the solar wind electromagnetic fields, these charged nanosilica particles, so-called stream particles, are found to be originated in Saturn's E ring, indicating Enceladus being their ultimate source. CDA stream particle mass spectra reveal a metal-free but silicon-rich composition that is only plausible for nearly pure silica particles. The size range derived from our measurements confines the size of these particles to a radius of 2 - 8 nm. The unique properties of nano-grains with the observed composition and size are a well-known phenomenon on Earth and their formation requires specific hydrothermal rock-water interactions. The observation of Saturnian nanosilica particles thus serves as an evidence of hydrothermal activities at the interface of Enceladus subsurface ocean and its rocky core. Considering plasma erosion as the major mechanism of releasing embedded nanosilica particles from their carriers, the much larger E ring ice grains, our dynamical model and CDA observation provide a lower limit on the average nanosilica concentration in E ring grains. Together with dedicated hydrothermal experiments (Sekine at al., 2013) this can be translated into constraints on the hydrothermal activities on Enceladus. Measurements and experiments both point at dissolved silica concentrations at the ocean floor in the order of 1 - 3 mMol. The hydrothermal reactions likely take place with a pristine, chondritic rock composition at temperature higher than 130°C (Sekine at al. 2013). Colloidal nano-silica forms upon supersaturation during cooling of the

  20. Significant role of climatic trends on hydrothermal activity Coso Hot Springs, California

    SciTech Connect

    Lofgren, B.E. )

    1990-05-01

    The hydrothermal features of Coso Hot Springs have attracted visitors for 130 yr and scientific investigators for two decades. In 1978, anticipating effects of major geothermal developments nearby, the Naval Weapons Center (NWC) initiated a comprehensive monitoring program at a dozen hydrothermal sites in the Coso Hot Springs area. Nine years of monitoring preceded power production in the nearby Coso geothermal field in July 1987. During this period, steam was rising from numerous vents and gently boiling mud pots. Local rainfall caused increased boiling activity in several mud pots, with some overflowing during wet periods. Then in August 1988, a year after geothermal power production began major changes in hot spring activity commenced. Small mud pots and steamers started to grow and coalesce. In March 1989, mud-pot activity became more violent. Many buried wells failed causing surface activity in other areas to diminish. During ensuing months, large mud cones developed and much of the steam and boiling water occurred in a few major pots. Because the abrupt changes in hydrothermal activity followed so closely after nearby geothermal production began, the obvious cause has been attributed to geothermal developments. Studies of NWC baseline monitoring data indicate, however, that no effects of geothermal developments have been felt in the hot springs area. Rainfall and barometric effects account for most of the fluctuations in records of the past decade. Early accounts and field evidence suggest similar changes have occurred in the past.

  1. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  2. First Discovery and Investigation of a High-Temperature Hydrothermal Vent Field on the Ultra- Slow Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.

    2007-12-01

    Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.

  3. First Discovery and Investigation of a High-Temperature Hydrothermal Vent Field on the Ultra- Slow Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.

    2004-12-01

    Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.

  4. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    NASA Astrophysics Data System (ADS)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2016-02-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  5. Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; EscartíN, Javier; Gracias, Nuno; Olive, Jean-Arthur; Barreyre, Thibaut; Davaille, Anne; Cannat, Mathilde; Garcia, Rafael

    2012-04-01

    The relative heat carried by diffuse versus discrete venting of hydrothermal fluids at mid-ocean ridges is poorly constrained and likely varies among vent sites. Estimates of the proportion of heat carried by diffuse flow range from 0% to 100% of the total axial heat flux. Here, we present an approach that integrates imagery, video, and temperature measurements to accurately estimate this partitioning at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperatures, photographic mosaics of the vent site, and video sequences of fluid flow were acquired during the Bathyluck'09 cruise (Fall, 2009) and the Momarsat'10 cruise (Summer, 2010) to the Lucky Strike hydrothermal field by the ROV Victor6000 aboard the French research vessel the "Pourquoi Pas"? (IFREMER, France). We use two optical methods to calculate the velocities of imaged hydrothermal fluids: (1) for diffuse venting, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time, and (2) for discrete jets, Particle Image Velocimetry tracks eddies by cross-correlation of pixel intensities between subsequent images. To circumvent video blurring associated with rapid velocities at vent orifices, exit velocities at discrete vents are calculated from the best fit of the observed velocity field to a model of a steady state turbulent plume where we vary the model vent radius and fluid exit velocity. Our results yield vertical velocities of diffuse effluent between 0.9 cm s-1 and 11.1 cm s-1 for fluid temperatures between 3°C and 33.5°C above that of ambient seawater, and exit velocities of discrete jets between 22 cm s-1 and 119 cm s-1 for fluid temperatures between 200°C and 301°C above ambient seawater. Using the calculated fluid velocities, temperature measurements, and photo mosaics of the actively venting areas, we calculate a heat flux due to diffuse venting from thin fractures of 3.15 ± 2.22 MW, discrete venting of

  6. Reevaluation and comparison of energy source of chemosynthesis-based animals in each hydrothermal fields

    NASA Astrophysics Data System (ADS)

    Yamagami, S.; Fujikura, K.; Koito, T.; Inoue, K.; Yamanaka, T.

    2012-12-01

    Large biomass of dense benthic animals containing characteristic endemic species is often observed around seafloor cold seep and hydrothermal fluid vents. Parts of such animals rely on symbiotic microbes as their energy source. Those microbes are chemotrophic primary producer such as thioautotrophic and/or methanotrophic microbes. Therefore, it is commonly believed that those animals are supported only by geofluid that contains extremely high concentrations of reduced chemical species such as hydrogen sulfide and methane. However, geographical distribution of those animals is not limited nearby geofluid emitting area and is widely spreading around hydrothermal fields. Some communities are observed at an area where lack of detectable amount of reduced chemical species for sustaining the symbiotic animals. The purpose of this study, therefore, is reevaluation and comparison of the energy source quantitatively for chemotrophic primary production utilizing stable isotope signatures. We try to understand the origin of energy source for chemosynthesis-based benthic animals obtained from three areas, Okinawa Trough, Izu-Bonin Arc and Sagami Bay, where have different geological background and dominant animal species among each other. Samples of eight animal species were collected at the five geofluid fields, Iheya, Izena, Myojin, Suiyo and Sagami Bay, using RV/Natsushima and ROV/HyperDolphin during NT10-17 and NT11-09 cruise. In Okinawa Trough, the isotopic signature from the soft body parts of the thiotrophic animals who harbor sulfur-oxidizing microbes suggest that most of these animals assimilate not only originally geofluid-derived sulfide but also seawater-sulfate-derived sulfide through microbial sulfate-reducing activity. Furthermore, it seems that the methanotrophic species who harbor methane-oxidizing microbes do not rely only on their symbionts. It means that the animal species who harbor symbionts whether sulfur-oxidizing bacteria or methane-oxidizing bacteria

  7. Mineralogical-geochemical features of sulfide ores from the Broken Spur hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Bogdanov, Yu. A.; Lein, A. Yu.; Maslennikov, V. V.; Li, Syaoli; Ul'Yanov, A. A.

    2008-10-01

    A representative collection of hydrothermal sediments was sampled practically from all the hydrothermal mounds of the Broken Spur hydrothermal vent field from the Mir manned submersibles during three cruises of R/V Akademik Mstislav Keldysh. Mineral associations characteristic of different morphological types of sulfide ores from hydrothermal pipes, plates, and diffusers are assessed. Particular attention is paid to the distribution of minor elements and their distribution patterns determined by the mineralogical zonation. The measured isotopic value of the sulfur in the sulfide minerals appeared to vary from 0.4 to 5.2‰, which indicates their similarity with the ores from the Snake Pit vent field and is related to the dilution of hot ore-bearing solutions by seawater and reduction of the water sulfate ions to H2S with a heavy isotopic composition.

  8. Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice

    2016-06-01

    High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.

  9. A seismic anisotropy study of the Dragon Flag hydrothermal field (49°39'E ) on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhao, M.; Tong, V. C. H.; Qiu, X.

    2015-12-01

    Dragon Flag hydrothermal field located at 49°39'E on the Southwest Indian Ridge contains the active hydrothermal vents firstly discovered on the ultraslow spreading ridge (Tao et al, 2012). Anisotropic study in this area will provide important information tectonic activities. 65634 traveltime residuals from the three-dimensional isotropic inversion (Zhao et al., 2013), were divided into three groups, which correspond to quasi ocean crustal Layer 2 (qL2), quasi ocean crustal Layer 3 (qL3) and quasi uppermost mantle (qUM), respectively. Traveltime residuals at different depths show that there are obvious cosine relationships between traveltime residuals and azimuth of qL2, qL3 and qUM, indicating anisotropy existed in both crust and mantle beneath Dragon Flag hydrothermal field. The best fitted cosine curves indicate that the fast directions (negative traveltime residuals) corresponding to the general trend of ridge axis of N104°E. According to these results, we propose that there may be prevalent cracks penetrating into lower crust or even uppermost mantle. We argue that the hydrothermal convection of Dragon Flag hydrothermal field not only occurs perpendicular to ridge axis, but also occurs parallel to ridge axis. We reveal for the first time anisotropic characteristics of the ultraslow spreading ridge, which has profound scientific significance for the future research on global ocean lithospheric anisotropy. This research was granted by the Natural Science Foundation of China (91028002, 41176053, 91428204). Keywords: ultraslow spreading ridge, Southwest Indian Ridge, Dragon Flag hydrothermal field, P wave traveltime residuals, anisotropy References: Tao C H, Lin J, Guo S, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 2012, 40(1): 47~50. Zhao M H, Qiu X L, Li J B, et al. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39

  10. The sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Little, Sarah A.; Stolzenbach, Keith D.; Purdy, G. Michael

    1990-08-01

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the caldera wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 10-4Pa2/Hz was noticed on two records taken within 3 m of the Inferno black smoker. Hie frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities.

  11. Sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge. Technical report

    SciTech Connect

    Little, S.A.; Stolzenbach, K.D.; Purdy, G.M.

    1990-08-10

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the calders wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 0.0001 Pa sq/Hz was noticed on two records taken within 3 m of the Inferno black smoker. The frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities. Keywords: Seamounts; Flow noise; Underwater acoustics; Acoustic measurement; Geothermy/noise; Ocean ridges; Underwater sound signals; Reprints; North Pacific Ocean. (EDC).

  12. Effect of hydrothermal alteration on rock magnetic properties from basalts in the Krafla geothermal field, Iceland

    NASA Astrophysics Data System (ADS)

    Oliva-Urcia, B.; Kontny, A.; Vahle, C.; Schleicher, A. M.

    2007-12-01

    The high-temperature Krafla geothermal field is situated within the caldera of the Krafla central volcano in NE Iceland. The last fissure eruptions (Krafla fires) occurred between 1975 and 1984. Aeromagnetic surveys from this area indicate a magnetic high corresponding to Mt. Krafla, whereas the magnetic low coincides with the caldera bottom where the Krafla geothermal field is located. The geothermal fluids are meteoric in origin and the Sudurhlídar field is boiling from depth until the surface. The permeability is higher in vertical than in horizontal profiles and the production of secondary minerals suggests a depth zonal distribution related to the temperature. The study of the magnetic properties of volcanic rocks affected by hydrothermal alteration is significant to understand magnetic anomalies related to MORB and its tectonic implications. Our study focuses in an area where the hydrothermal alteration diminishes the Ti-magnetite content of fissure subaerial lavas. The samples were taken from KH1 (200 m depth) and KH3 (400 m depth) drill cores, from the rim of the caldera. In our study we aim to correlate both, c-T curves and textural observations from the magnetic phases with the degree of hydrothermal alteration. NRM, field dependence of susceptibility (Fd) and Koenigsberg ratios (Q) from the samples are very low: NRM is < 3.1 A/m, Fd values range between 0.2 and 7.9, and Q between 0 and 6. Magnetic susceptibility varies with the magnetic mineral content. Typical textural features are shrinkage cracks from maghemitization together with exsolved textures in Ti-magnetite from high temperature oxidation. This texture is present in the deeper part of both cores (177 m in KH1 and 380 m in KH3), but KH1 samples show abundant ghost structures of Ti-magnetite, altered to a network formed by clays and Ti-oxide. A high quantity of sulphide precipitation accompanies the ghost structures. The magnetic phases strongly alter depending on the porosity of the rocks, but

  13. Fluid flow and sound generation at hydrothermal vent fields. Doctoral thesis

    SciTech Connect

    Little, S.A.

    1988-04-01

    Several experiments in this thesis examine methods to measure and monitor fluid flow from hydrothermal vent fields. Simultaneous velocity temperature, and conductivity data were collected in the convective flow emanating from a hydrothermal vent field located on the East Pacific rise. The horizontal profiles obtained indicate that the flow field approaches an ideal plume in the temperature and velocity distribution. Such parameters as total heat flow and maximum plume height can be estimated using either the velocity or the temperature information. The results of these independent calculations are in close agreement, yielding a total heat capacity and volume changes slightly alter the calculations applied to obtain these values. In Guaymas Basin, a twelve day time series of temperature data was collected from a point three centimeters above a diffuse hydrothermal flow area. Using concurrent tidal gauge data from the town of Guaymas it is shown that the effects of tidal currents can be strong enough to dominate the time variability of a temperature signal at a fixed point in hydrothermal flow and are a plausible explanation for the variations seen in the Guaymas Basin temperature data. The increase in power due to convected flow inhomogeneities, however, was lower in the near field than expected. Indirect evidence of hydrothermal sound fields showing anomalous high power and low frequency noise associated with vents is due to processes other than jet noise.

  14. Hydrothermal Activity on the Southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    German, C. R.; Connelly, D. P.; Evans, A. J.; Parson, L. M.

    2002-12-01

    close to a vent-site because this plume is particle laden as well as containing significant TDMn anomalies. Equivalent signals from the Broken Spur or SnakePit hydrothermal plumes (29N and 23N, MAR respectively) are only observed within 2-5km of those active vent-sites (German et al., Deep Sea Res. 1999).

  15. Sustained volcanically-hosted venting at ultraslow ridges: Piccard Hydrothermal Field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Kinsey, James C.; German, Christopher R.

    2013-10-01

    At slow spreading mid-ocean ridges sustained submarine venting and the deposition of large seafloor massive sulfide deposits have previously been ascribed to tectonically-controlled hydrothermal circulation unrelated to young volcanic activity. Here, by contrast, we show that the Piccard Hydrothermal Field (PHF), on the ultraslow spreading Mid-Cayman Rise, represents a site of sustained fluid flow and sulfide formation hosted in a neovolcanic setting. The lateral extent and apparent longevity associated with the PHF are comparable to some of the largest tectonically-hosted vent sites known along the slow-spreading Mid-Atlantic Ridge. If such systems recur along all ultraslow ridges, which comprise ˜20% of the ˜55,000 km global ridge crest, potential implications would include (i) a higher probability of locating large, economically valuable, mineral deposits along ultraslow ridges together with (ii) larger fluxes than previously anticipated of chemicals released from high-temperature venting entering the oceans along the Atlantic-Indian Ocean sectors of the deep-ocean thermohaline conveyor.

  16. Evolution of the Mothra Hydrothermal Field, Endeavour Segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Glickson, D.; Kelley, D. S.; Delaney, J.

    2005-12-01

    The Mothra Hydrothermal Field (MHF) is a 600 m long, high-temperature hydrothermal field. It is located 2.7 km south of the Main Endeavour Field at the southern end of the central Endeavour Segment. Mothra is the most areally extensive field along the Endeavour Segment, composed of six active sulfide clusters that are 40-200 m apart. Each cluster contains rare black smokers (venting up to 319°C), numerous diffusely venting chimneys, and abundant extinct chimneys and sulfide talus. From north to south, these clusters include Cauldron, Twin Peaks, Faulty Towers, Crab Basin, Cuchalainn, and Stonehenge. As part of the Endeavour Integrated Study Site (ISS), the MHF is a site of intensive interdisciplinary studies focused on linkages among geology, geochemistry, fluid chemistry, seismology, and microbiology. Axial valley geology at MHF is structurally complex, consisting of lightly fissured flows that abut the walls and surround a core of extensively fissured, collapsed terrain. Fissure abundance and distribution indicates that tectonism has been the dominant process controlling growth of the axial graben. Past magmatic activity is shown by the 200 m long chain of collapse basins between Crab Basin and Stonehenge, which may have held at least ~7500 m3 of lava. Assuming a flow thickness of 0.5 m, this amount of lava could cover over half the valley floor during a single volcanic event. At a local scale, MHF clusters vary in size, activity, and underlying geology. They range in size from 400-1600 m2 and consist of isolated chimneys and/or coalesced cockscomb arrays atop ramps of sulfide talus. In the northern part of the field, Cauldron, Twin Peaks, Faulty Towers, and Crab Basin are located near the western valley wall, bounded by basalt talus and a combination of collapsed sheet flows, intermixed lobate and sulfide, disrupted terrain, and isolated pillow ridges. The southern clusters, Cuchalainn and Stonehenge, are associated with collapse basins in the central valley

  17. Age, Episodicity and Migration of Hydrothermal Activity within the Axial Valley, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, J. W.; Hannington, M. D.; Kelley, D. S.; Clague, D. A.; Holden, J. F.; Tivey, M. K.; Delaney, J. R.

    2011-12-01

    Hydrothermal sulfide deposits record the history of high-temperature venting along the Endeavour Segment. Active venting is currently located within five discreet vent fields, with minor diffuse venting occurring between the fields. However, inactive and/or extinct sulfide structures are found throughout the entire axial valley of the ridge segment, suggesting that hydrothermal activity has been more vigorous in the past or focused venting has migrated with time. Here, we present age constraints from U-series dating of 44 sulfide samples collected by manned submersible from between the Mothra Field in the south to Sasquatch in the north. Samples are dated using 226Ra/Ba ratios from hydrothermal barite that precipitates along with the sulfide minerals. Most samples have been collected from within or near the active vent fields. Fifteen samples from the Main Endeavour Field (MEF) show a spectrum of ages from present to 2,430 years old, indicating that this field has been continuously active for at least ~2,400 years. MEF appears to be oldest currently active field. This minimum value for the age of hydrothermal activity also provides a minimum age of the axial valley itself. Ages from thirteen samples from the High-Rise Field indicate continuous venting for at least the past ~1,250 years. These age data are used in conjunction with age constraints of the volcanic flows to develop an integrated volcanic, hydrothermal and tectonic history of the Endeavour Segment. The total volume of hydrothermal sulfide within the axial valley, determined from high-resolution bathymetry, is used in conjunction with the age constraints of the sulfide material to determine the mass accumulation rates of sulfide along the Endeavour Segment. These data can be used to calibrate the efficiency of sulfide deposition from the hydrothermal vents, and provide a time-integrated history of heat, fluid and chemical fluxes at the ridge-segment scale. The comparison of time-integrated rates with

  18. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    NASA Astrophysics Data System (ADS)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  19. Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field.

    PubMed

    Lang, S Q; Früh-Green, G L; Bernasconi, S M; Butterfield, D A

    2013-03-01

    The reaction of ultramafic rocks with water during serpentinization at moderate temperatures results in alkaline fluids with high concentrations of reduced chemical compounds such as hydrogen and methane. Such environments provide unique habitats for microbial communities capable of utilizing these reduced compounds in present-day and, possibly, early Earth environments. However, these systems present challenges to microbial communities as well, particularly due to high fluid pH and possibly the availability of essential nutrients such as nitrogen. Here we investigate the source and cycling of organic nitrogen at an oceanic serpentinizing environment, the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge). Total hydrolizable amino acid (THAA) concentrations in the fluids range from 736 to 2300 nm and constitute a large fraction of the dissolved organic carbon (2.5-15.1%). The amino acid distributions, and the relative concentrations of these compounds across the hydrothermal field, indicate they most likely derived from chemolithoautotrophic production. Previous studies have identified the presence of numerous nitrogen fixation genes in the fluids and the chimneys. Organic nitrogen in actively venting chimneys has δ(15) N values as low as 0.1‰ which is compatible with biological nitrogen fixation. Total hydrolizable amino acids in the chimneys are enriched in (13) C by 2-7‰ compared to bulk organic matter. The distribution and absolute δ(13) C(THAA) values are compatible with a chemolithoautotrophic source, an attribution also supported by molar organic C/N ratios in most active chimneys (4.1-5.5) which are similar to those expected for microbial communities. In total, these data indicate nitrogen is readily available to microbial communities at Lost City.

  20. Galapagos rift at 86 /sup 0/W: 4. Structure and morphology of hydrothermal fields and their relationship to the volcanic and tectonic processes of the rift valley

    SciTech Connect

    Crane, K.; Ballard, R.D.

    1980-03-10

    The Angus camera system is used to investigate the detailed structure and morphology of the active hydrothermal vent fields of the Galapagos Rift. Precision navigational data are combined with microtopographic information and detailed geological and biological observations obtained from an analysis of the color bottom pictures to create a series of three-dimensional models for each vent field.

  1. Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars

    USGS Publications Warehouse

    El Maarry, M.R.; Dohm, J.M.; Marzo, G.A.; Fergason, R.; Goetz, W.; Heggy, E.; Pack, A.; Markiewicz, W.J.

    2012-01-01

    A multidisciplinary approach involving various remote sensing instruments is used to investigate Apollinaris Mons, a prominent volcano on Mars, as well as the surrounding plains for signs of prolonged hydrologic and volcanic, and possibly hydrothermal activity. The main findings include (1) evidence from laser altimetry indicating the large thickness (1.5-2. km at some locations) of the fan deposits draping the southern flank contrary to previous estimates, coupled with possible layering which point to a significant emplacement phase at Apollinaris Mons, (2) corroboration of Robinson et al. (Robinson, M.S., Mouginis-Mark, P.J., Zimbelman, J.R., Wu, S.S.C., Ablin, K.K., Howington-Kraus, A.E. [1993]. Icarus 104, 301-323) hypothesis regarding the formation of incised valleys on the western flanks by density current erosion which would indicate magma-water interaction or, alternatively, volatile-rich magmas early in the volcano's history, (3) mounds of diverse geometric shapes, many of which display summit depressions and occur among faults and fractures, possibly marking venting, (4) strong indicators on the flanks of the volcano for lahar events, and possibly, a caldera lake, (5) ubiquitous presence of impact craters displaying fluidized ejecta in both shield-forming (flank and caldera) materials and materials that surround the volcano that are indicative of water-rich target materials at the time of impact, (6) long-term complex association in time among shield-forming materials and Medusae Fossae Formation.The findings point to a site of extensive volcanic and hydrologic activity with possibly a period of magma-water interaction and hydrothermal activity. Finally, we propose that the mound structures around Apollinaris should be prime targets for further in situ exploration and search for possible exobiological signatures. ?? 2011 Elsevier Inc..

  2. Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars

    USGS Publications Warehouse

    El Maarry, M. Ramy; Dohm, James M.; Marzo, Giuseppe A.; Fergason, Robin; Goetz, Walter; Heggy, Essam; Pack, Andreas; Markiewicz, Wojciech J.

    2012-01-01

    A multidisciplinary approach involving various remote sensing instruments is used to investigate Apollinaris Mons, a prominent volcano on Mars, as well as the surrounding plains for signs of prolonged hydrologic and volcanic, and possibly hydrothermal activity. The main findings include (1) evidence from laser altimetry indicating the large thickness (1.5–2 km at some locations) of the fan deposits draping the southern flank contrary to previous estimates, coupled with possible layering which point to a significant emplacement phase at Apollinaris Mons, (2) corroboration of Robinson et al. (Robinson, M.S., Mouginis-Mark, P.J., Zimbelman, J.R., Wu, S.S.C., Ablin, K.K., Howington-Kraus, A.E. [1993]. Icarus 104, 301–323) hypothesis regarding the formation of incised valleys on the western flanks by density current erosion which would indicate magma–water interaction or, alternatively, volatile-rich magmas early in the volcano’s history, (3) mounds of diverse geometric shapes, many of which display summit depressions and occur among faults and fractures, possibly marking venting, (4) strong indicators on the flanks of the volcano for lahar events, and possibly, a caldera lake, (5) ubiquitous presence of impact craters displaying fluidized ejecta in both shield-forming (flank and caldera) materials and materials that surround the volcano that are indicative of water-rich target materials at the time of impact, (6) long-term complex association in time among shield-forming materials and Medusae Fossae Formation. The findings point to a site of extensive volcanic and hydrologic activity with possibly a period of magma–water interaction and hydrothermal activity. Finally, we propose that the mound structures around Apollinaris should be prime targets for further in situ exploration and search for possible exobiological signatures.

  3. Geological and hydrothermal controls on the distribution of megafauna in Ashes Vent Field, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Arquit, Anne M.

    1990-08-01

    A computerized data base was constructed to aid in the interpretation of biological and geological observations recorded from 7662 photographs taken of Ashes vent field (located along the SW wall of the summit caldera of Axial Volcano, Juan de Fuca Ridge) during 1985-1986 using the Pisces IV submersible and a towed camera system. The transition region between the locus of high-temperature vents in Ashes vent field (i.e., Inferno, 326°C; Hell, 301°C; and Virgin Mound, 298°C) and more typical environmental conditions for the summit caldera of Axial Volcano as a whole is zoned spatially with respect to sediment type and organism assemblage. Three general ecological zones are identified within the vent field: (1) the central vent zone (within 100 m of a high-temperature vent), dominated by vent-associated organisms (vestimentiferan tube worms, clams, bacterial mats) and sedimentation (high-temperature, plume-derived and low-temperature, in situ deposits); (2) the distal vent zone (100-725 m from any high-temperature vent), characterized by extensive fields of iron oxide, iron silicate and silica chimneys and sediment (nontronite assemblage material), as well as maximum densities of most nonvent fauna; and (3) the nonvent impact zone (725-1300 m), indicated by elevated densities of nonvent organisms relative to regional (i.e., caldera-wide) values and maximum Bathydorus sp. sponge densities. The distribution of vestimentiferan tube worms is limited to within 90 m of known high-temperature venting (central vent zone); and anemones were observed only between 30 and 40 m from hot vents. Clams and microbial mats are concentrated in the central vent zone, as well, but occur sporadically up to 1250 m from the hot vents in association with hydrothermal nontronite that is probably precipitating in situ from <60°C vent fluid; thus megafaunal distributions are a useful indicator of poorly defined, often diffuse low-temperature hydrothermal activity on the seafloor. Maximum

  4. Hydrothermal mineralogy and fluid inclusions chemistry to understand the roots of active geothermal systems

    NASA Astrophysics Data System (ADS)

    Chambefort, I. S.; Dilles, J. H.; Heinrich, C.

    2013-12-01

    An integrated study to link magmatic textures, magmatic mineral compositions, hydrothermal alteration zoning, hydrothermal mineral chemistry, and fluid inclusion compositions has been undertaken to link an intrusive complex and its degassing alteration halo with their surface equivalent in an active geothermal system. Ngatamariki geothermal system, New Zealand, presents a unique feature in the Taupo Volcanic Zone (TVZ). Drilling intercepted an intrusive complex with a high temperature alteration halo similarly to what is observed in magmatic-derived ore deposits. Thus it presents the perfect opportunity to study the magmatic-hydrothermal transition of the TVZ by characterizing the nature of the deep magmatic fluids link to the heat source of the world known geothermal fields. The record of magmatic-hydrothermal fluid-rock interactions preserved at Ngatamariki may be analogous of processes presently occurring at depth beneath TVZ geothermal systems. The intrusive complex consists of over 5 km3 of tonalite, diorite, basalt and aplitic dykes. Evidence of undercooling subsolidus magmatic textures such as myrmekite and skeletal overgrowth are commonly observed and often linked to volatile loss. The fluids released during the crystallization of the intrusive complex are interpreted to be at the origin of the surrounding high temperature alteration halo. Advanced argillic to potassic alteration and high temperature acidic assemblage is associated with high-temperature quartz veining at depth and vuggy silica at the paleo-surface. Major element compositions of the white micas associated with the high temperature halo show a transition from, muscovite to phengite, muscovitic illite away from the intrusion, with a transition to pyrophyllite and/ or topaz, and andalusite characteristic of more acidic conditions. Abundant high-density (up to 59 wt% NaCl eq and homogenization temperatures of 550 degree Celsius and above) coexist with low-density vapor fluid inclusions. This

  5. Geophysical Images of the Shallow Hydrothermal Degassing at Solfatara (Phlegrean Fields, Italy)

    NASA Astrophysics Data System (ADS)

    Byrdina, S.; Vandemeulebrouck, J.; Cardellini, C.; Chiodini, G.; Legaz, A.; Camerlynck, C.; Lebourg, T.

    2014-12-01

    We present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, the most active crater of Phlegrean Fields. Solfatara is characterized by an intense carbon dioxide degassing, fumarole activity, and ground deformation. This ensemble of methods is applied to image the hydrothermal system of Solfatara, to understand the geometry of the fluid circulation, and to define the extension of the hydrothermal plume at a high enough resolution for a quantitative modeling. ERT inversion results show Solfatara as a globally conductive structure, with resistivity in the range 1-200 Ohmm. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of Bocca Grande suggests a significant downward flow of condensing liquid water. Comparison between spatial variations of resistivity and gas flux indicates that resistivity changes at depth are related to gas saturation and fluid temperature. These variations delineate two plume structures: a liquid-dominated conductive plume below Fangaia mud-pool and a gas-dominated plume below Bocca Grande fumarole. The geometry of the Fangaia liquid-saturated plume is also imaged by a high resolution 3-D resistivity model. In order to estimate the permeability, we propose a 2-D axis-symmetric numerical model coupling Richards's equation for fluid flow in conditions of partial saturation with the resistivity calculation as function of saturation only. Alternatively, we apply the Dupuit equation to estimate the permeability of the shallow layer. Using these two approaches, we obtain the permeability of the shallow layer below Fangaia which ranges between (2 - 4) 10-14 m 2.

  6. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    SciTech Connect

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  7. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Tao, Chunhui; Chen, Sheng; Baker, Edward T.; Li, Huaiming; Liang, Jin; Liao, Shili; Chen, Yongshun John; Deng, Xianming; Zhang, Guoyin; Gu, Chunhua; Wu, Jialin

    2016-06-01

    Seafloor hydrothermal polymetallic sulfide deposits are a new type of resource, with great potential economic value and good prospect development. This paper discusses turbidity, oxidation-reduction potential, and temperature anomalies of hydrothermal plumes from the Zouyu-1 and Zouyu-2 hydrothermal fields on the southern Mid-Atlantic Ridge. We use the known location of these vent fields and plume data collected in multiple years (2009, 2011, 2013) to demonstrate how real-time plume exploration can be used to locate active vent fields, and thus associated sulfide deposits. Turbidity anomalies can be detected 10 s of km from an active source, but the location precision is no better than a few kilometers because fine-grained particles are quasi-conservative over periods of many days. Temperature and oxidation-reduction potential anomalies provide location precision of a few hundred meters. Temperature anomalies are generally weak and difficult to reliably detect, except by chance encounters of a buoyant plume. Oxidation-reduction potential is highly sensitive (nmol concentrations of reduced hydrothermal chemicals) to discharges of all temperatures and responds immediately to a plume encounter. Real-time surveys using continuous tows of turbidity and oxidation-reduction potential sensors offer the most efficient and precise surface ship exploration presently possible.

  8. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    SciTech Connect

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    1996-01-24

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H2SO4 by atmospheric oxidation at the water table in a steam heated environment of H2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.

  9. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field, Baja, California, Mexico

    SciTech Connect

    Valette-Silver, J.N.; Esquer-Patino, I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    Surface emissions from the Cerro Prieto geothermal reservoir are restricted to a 100 km/sup 2/ area on the western side of the field, near the volcano Cerro Prieto and the lake Laguna Vulcano. Some 57 surface emissions, explored in 1979, were classified into hot springs, mud pots, pools, fumaroles and geysers (Valette and Esquer-Patino, 1979). A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180/sup 0/C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristics of the discharge from high intensity geothermal fields.

  10. Archaeal Diversity and Distribution along Thermal and Geochemical Gradients in Hydrothermal Sediments at the Yonaguni Knoll IV Hydrothermal Field in the Southern Okinawa Trough▿ †

    PubMed Central

    Nunoura, Takuro; Oida, Hanako; Nakaseama, Miwako; Kosaka, Ayako; Ohkubo, Satoru B.; Kikuchi, Toru; Kazama, Hiromi; Hosoi-Tanabe, Shoko; Nakamura, Ko-ichi; Kinoshita, Masataka; Hirayama, Hisako; Inagaki, Fumio; Tsunogai, Urumu; Ishibashi, Jun-ichiro; Takai, Ken

    2010-01-01

    A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90°C). A moderate temperature gradient extends both horizontally and vertically (5 to 69°C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts. PMID:20023079

  11. Characteristics of hydrothermal convection in inclined layers: implications for hydrothermal activity at slow-spreading axis.

    NASA Astrophysics Data System (ADS)

    Fontaine, F. J.; Cannat, M.; Escartin, J.; Dusunur, D.

    2006-12-01

    The thermal structure of segments along (slow-spreading) mid-ocean ridges is likely to be a key parameter controlling the distribution, dynamics and geometry of hydrothermal systems. It is usually considered that the depth of penetration of hydrothermal fluids at the ridge axis is a function of the depth to the brittle-ductile transition. At slow-spreading axis, it is likely that this depth varies both along- and across-axis, with a deepening of several kilometers from the segment center towards its ends [e.g., Hooft et al., 2000]. This geometry is a consequence of focused melt supply to the segment center, resulting in the episodic and localized injection of magma bodies in the crust, as observed at the Lucky Strike segment of the Mid-Atlantic ridge [Singh et al., 2005]. In order to study the effect of such slopes of the basal temperature on the dynamics of slow-spreading axis hydrothermal systems, we ran a series of two-dimensional numerical models of hydrothermal convection. As a first approximation and following previous studies [e.g., Rabinowicz et al., 1999], we assume that these systems can be represented as rectangular and inclined permeable layers. The models are single-phase and incorporate realistic fluid properties and permeabilities. We have explored the cases of slopes ranging from 0 to 15°, aspect ratios from 1 to 16, and permeabilities up to 10^{-14} m2. The basal slope controls the number of convective cells. As the slope increases, the ratio of the size of the downflow and upflow areas increases. Above a critical slope the circulation is uni-cellular and composed of a broad recharge zone and a focused discharge zone, and encompassing the whole length of the segment. We will present the implication of our models for the distribution of vent sites along slow-spreading ridge segments. The segment-scale circulation and focused outflow obtained could also explain the elevated heat flux at some of the main sites found along slow-spreading ridges like

  12. Field-based tests of geochemical modeling codes: New Zealand hydrothermal systems

    SciTech Connect

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions.

  13. Field-based tests of geochemical modeling codes using New Zealand hydrothermal systems

    SciTech Connect

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1994-06-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions.

  14. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits

    PubMed Central

    Frank, Kiana L.; Rogers, Karyn L.; Rogers, Daniel R.; Johnston, David T.; Girguis, Peter R.

    2015-01-01

    Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, SO42−, DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits. PMID:26733984

  15. Post-Impact Hydrothermal Activity at the Haughton Impact Structure, Devon Island, Nunavut, Canada

    NASA Technical Reports Server (NTRS)

    Osinski, G. R.; Spray, J. G.; Bunch, T. E.; Grieve, R. A. F.; Schutt, J. W.; Lee, P.

    2000-01-01

    Evidence for impact-generated hydrothermal activity is reported from the Haughton crater, Canada. Two distinct settings have been found: (1) pipe structures with marcasite, pyrite and minor chalcopyrite; (2) cavity and fracture fillings with marcasite predominant.

  16. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  17. Conditions of Formation of Secondary Quartz in Hydrothermally Altered, Subsurface Dacite beneath the Deep-Sea PACMANUS Hydrothermal Field, Manus Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Vanko, D. A.; Wicker, S. G.; Binns, R. A.

    2006-05-01

    New fluid inclusion (FI) data from secondary quartz within the altered felsic rocks underlying the PACMANUS hydrothermal field provide additional constraints on the thermal conditions and fluid salinities accompanying hydrothermal alteration. PACMANUS, at a water depth of about 1650 to 1700 m on the summit of the neovolcanic Pual Ridge in the eastern part of the Manus backarc basin, is an active seafloor system situated in a felsic volcanic setting at a convergent plate boundary. Two sites of active venting - Roman Ruins, with high-temperature (220-276° C) sulfide chimneys, and Snowcap, which is an area of lower-temperature (6- 65° C) diffuse flow - were cored during Ocean Drilling Program Leg 193. Drilling reached sub-seafloor depths of 387 m at Snowcap and 206 m at Roman Ruins. At both Snowcap and Roman Ruins, fresh dacite/rhyodacite is underlain by highly to completely altered rocks with clays (illite, illite-smectite, chlorite, and mixed layer clays), disseminated pyrite, silica and late stage anhydrite. At shallow depths the silica is mostly cristobalite, whereas quartz is the polymorph at depth. Secondary quartz occurs in amygdules, alone or with accessory anhydrite and pyrite; in cm-scale granular nodules; and as tiny grains forming an open mosaic with interstitial clays and pore space. Scarce FI in secondary quartz are small (10-20μ), irregular, and contain liquid (L) plus vapor. Only a few are arrayed along healed fractures, and most are interpreted as primary. FI from Snowcap homogenize to L between 290° C and 390° C. Ice melting temperatures vary between about -10° C and -0.4° C, with most ice melting near -2.0° C. Thus, while most FI have near-seawater salinities, a significant number are much more saline, while others are much less saline, approaching fresh water. FI from Roman Ruins homogenize between 257° C and 370° C, and ice melting temperatures vary from about -14° C to -1.2° C. These data are best explained if the hydrothermal

  18. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre.

    PubMed

    Connelly, Douglas P; Copley, Jonathan T; Murton, Bramley J; Stansfield, Kate; Tyler, Paul A; German, Christopher R; Van Dover, Cindy L; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-Ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B; Plouviez, Sophie; Sands, Carla; Searle, Roger C; Stevenson, Peter; Taws, Sarah; Wilcox, Sally

    2012-01-10

    The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.

  19. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre

    PubMed Central

    Connelly, Douglas P.; Copley, Jonathan T.; Murton, Bramley J.; Stansfield, Kate; Tyler, Paul A.; German, Christopher R.; Van Dover, Cindy L.; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B.; Plouviez, Sophie; Sands, Carla; Searle, Roger C.; Stevenson, Peter; Taws, Sarah; Wilcox, Sally

    2012-01-01

    The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents. PMID:22233630

  20. Discovery of hydrothermally active and extinct talc mounds on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Hodgkinson, M.; Murton, B. J.; Roberts, S.

    2013-12-01

    Since 1977, hydrothermal vents have been the subject of intense scientific interest due to their role in cooling the oceanic crust and global geochemical cycles. Until now, two types of hydrothermal system have been identified: one, driven by magmatic heat extruding ';black smoker' fluids; and another, involving serpentinisation of ultramafic rocks and the precipitation of carbonate/brucite chimneys. Here, we present details of a new, off-axis type of hydrothermal system consisting of mounds of predominately botryoidal talc (a magnesium-silicate) with accessory silica and copper sulphides, and chimneys exhaling fluids of moderate temperature and pH. Discovered on the Mid-Cayman Rise (MCR) in 2010, the Von Damm Vent Field (VDVF) features a NNW-ESE-trending line of four overlapping cones, the largest of which is 75 m high by 150 m in diameter. The VDVF is hosted in the gabbroic footwall of the Mount Dent Oceanic Core Complex (MDOCC), which includes serpentinised peridotite at depth. The largest cone vents clear fluids from two main orifices at its summit, with primary temperatures of 215°C. Elsewhere, both focussed and diffuse flow areas emit fluids with temperatures of up to 150°C. The surrounding ~1 m thick pelagic sediment contains abundant pockmarks that emit methane-rich fluids at temperatures of less than 10°C. During the return to the MCR in early 2013, several other talc mounds were discovered within a kilometre of the active VDVF. These inactive mounds also comprise an assemblage of botryoidal talc, silica, disseminated sulphides (including chalcopyrite) and sulphates. One of these mounds (Mystic Mount) is double the volume of the active VDVF. The unique dominance of talc as the major mineral forming the hydrothermal structures indicates unusual vent fluid compositions that are able to carry both copper (at high-temperatures) and precipitate magnesium silicate. Thermodynamic modelling indicates that talc precipitates on mixing a moderately acidic, silica

  1. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Flores, Gilberto E.; Campbell, James H.; Kirshtein, Julie D.; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I.; Seewald, Jeffrey S.; Tivey, Margaret Kingston; Voytek, Mary A.; Yang, Zamin K.; Reysenbach, Anna-Louise

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  2. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    SciTech Connect

    Flores, Gilberto E; Campbell, James H; Kirshtein, Julie D; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua; Seewald, Jeffrey S; Tivey, Margaret Kingston; Voytek, Mary A; Reysenbach, Anna-Louise; Yang, Zamin Koo

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37 17'N, 32 16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36 13'N, 33 54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  3. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36°N)

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Lein, Alla Yu.; Peresypkin, V. I.; Osipov, G. A.

    2004-05-01

    The lipid components in hydrothermal sulfide deposits from the Rainbow vent field (Mid-Atlantic Ridge at 36°N) were studied by gas chromatography/mass spectrometry. The Rainbow vent field is one of two known active hydrothermal systems related to abyssal circulation, where high-temperature fluids are formed during serpentinization of ultrabasic crustal rocks. The major amount of the extractable organic matter from the sulfides consists of normal and branched alkanes, UCM, PAHs, terpenoids, and fatty acids. The branched alkanes are comprised of unique gem-diethylalkane series, possibly from sulfide oxidizing bacteria, and biphytanes from archaea. The characteristic lipid and biomarker compounds found in the hydrothermal samples support a predominantly biological origin of the bitumens from the thermal transformation of the biomass of microorganisms (bacteria and archea) and minor macrofauna of this vent field. A search for molecular evidence for abiogenic thermocatalytic synthesis of organic compounds was negative. However, methane in the hydrothermal fluids and possibly a minor amount of the alkanes in the sulfides may be of an abiogenic origin in the Rainbow vent field.

  4. Origin of Magnetic High at Basalt-Ultramafic Hosted Hydrothermal Vent Field in the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Sato, T.; Sato, H.; Nakamura, K.

    2014-12-01

    Hydrothermal alteration processes can change crustal magnetization by destruction and creation of magnetic minerals. In the Yokoniwa hydrothermal vent field (YHVF), located at the NTO-massif in the Central Indian Ridge, a high magnetization zone (with ~12 A/m in ~200 m-scale) was discovered by previous deepsea AUV survey. Basalts and ultramafic rocks were found around the YHVF, however the origin of magnetic high and its relationship with hydrothermal activity are remains to be investigated. Therefore, we conducted additional magnetic field measurement, rock sampling, and geological observation using submersible Shinkai 6500 during the YK09-13 and YK13-03 cruises. Vector geomagnetic field were obtained along the dive tracks at an altitude of ~ 10 m. The crustal absolute magnetization is estimated using the 2D and 3D forward modeling technique. The values of magnetization show ~10 A/m just around the YHVF. This value is consistent with that of equivalent magnetization deduced from AUV data. Rock magnetic characters were measured for 8 basalts, 4 dolerites, 5 sulfides, and 30 serpentinized peridotites (SPs). The measurements of NRM, magnetic susceptibility, magnetic hysteresis, low (6-300K) and high (50-700°C) temperature magnetization curves were performed. The estimated magnetization values are 0.1-6 A/m in basalts, 0.2-0.6 A/m in dolerites, and <0.1 A/m in sulfides. The SPs show strong magnetization of 0.4-11 A/m. The magnetic grain sizes ranges over single domain to pseudo-single domain. The temperature-magnetization curves clearly show the Verway transition and Currie temperature of 580 °C, therefore magnetic carrier of SPs is supposed as pure magnetite, which is created during serpentinization process. Serpentinization degree (Sd) was also estimated by grain density measurement based on empirical formula from Oufi et al., 2002. Amount of magnetite was also estimated from saturation magnetization. The results show that the values of Sd vary in a range from 17

  5. Off-axis Submarine Massive Sulfide accumulation at the fault-controlled Logatchev 1 hydrothermal field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Andersen, Christine; Theissen-Krah, Sonja; Hannington, Mark

    2016-04-01

    The largest Submarine Massive Sulfide (SMS) deposits in Mid-ocean ridge settings are found along slow-spreading ridges, where tectonic processes dominate and long-lived faults control the circulation of hydrothermal fluids through the oceanic crust. Here we combine results from 2D fluid flow simulations of the off-axis (8km), fault-controlled, high-T Logatchev 1 hydrothermal field (LHF1) at the Mid-Atlantic Ridge with data on vent fluid chemistry and the associated SMS deposit, which give insights about its accumulation history. Modeled high vent temperatures of 360°C, as measured at the active LHF1, result in a total integrated mass-flow rate through the seafloor of ~36 kg/sec scaled to 28 vent orifices of 10x10cm, located in the 7 known high-T sites at the LHF1. About 42% of the vent fluids are hotter than 350°C, the minimum temperature required for efficient metal transport, with a mass-flow rate of 13 kg/sec. This corresponds to ~400 kilotons of potentially SMS-forming hydrothermal fluids leaving the vent field per year. Combined with a total H2S-SiO2-metal (Zn+Cu+Fe) concentration of 732 ppm, measured in the LHF1 vent fluids, this makes a flux of ~300 t of hydrothermal precipitates per year. The SMS deposit at LHF1 has been dated to 58.200 years and has an estimated tonnage of 135 kilotons. Applying the above modeled annual discharge rate over the dated time period, results in an SMS accumulation efficiency of ~0.8% for the SMS deposit at the Logatchev 1 field, which fits the range of estimated global average for MORs between <0.3% and 3%. Our predicted depositional efficiency is based on numerical modeling, which simulates continuous and ideal venting. Realistically, venting at LHF1 might well have been fluctuating, including periods of low temperature discharge, where metal transport is insufficient or periods of inactivity, compensated by periods with a higher depositional efficiency than 0.8%. Such fluctuations could have been caused by variations in

  6. Differentiating biotic from abiotic methane genesis in hydrothermally active planetary surfaces

    PubMed Central

    Oze, Christopher; Jones, L. Camille; Goldsmith, Jonas I.; Rosenbauer, Robert J.

    2012-01-01

    Molecular hydrogen (H2) is derived from the hydrothermal alteration of olivine-rich planetary crust. Abiotic and biotic processes consume H2 to produce methane (CH4); however, the extent of either process is unknown. Here, we assess the temporal dependence and limit of abiotic CH4 related to the presence and formation of mineral catalysts during olivine hydrolysis (i.e., serpentinization) at 200 °C and 0.03 gigapascal. Results indicate that the rate of CH4 production increases to a maximum value related to magnetite catalyzation. By identifying the dynamics of CH4 production, we kinetically model how the H2 to CH4 ratio may be used to assess the origin of CH4 in deep subsurface serpentinization systems on Earth and Mars. Based on our model and available field data, low H2/CH4 ratios (less than approximately 40) indicate that life is likely present and active. PMID:22679287

  7. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  8. Morphology of cone-fields in SW Elysium Planitia - Traces of hydrothermal venting on Mars?

    NASA Astrophysics Data System (ADS)

    Lanz, J. K.; Saric, M. B.

    2008-09-01

    Introduction Small cone-shaped features with summit pits can be found in several regions on Mars; mainly in Isidis Planitia; Elysium Planitia; Amazonis Planitia; Acidalia Planitia; in the Cydonia Region; in Cerberus Planum; the Phlegra Montes and on several volcanic flanks. They vary greatly in size and morphology and have been compared to terrestrial features of various origins; namely (1) cinder cones (e.g. [1]), (2) tuff cones or tuff rings (e.g. [2]), (3) rootless cones (pseudocraters) (e.g. [3], [4]), (4) pingos (e.g. [5], [6]) and (5) mud volcanoes (e.g. [7]). They are often found near volcanic centers and large lava fields or cluster in regions where the volatile content of the Martian regolith was/is supposedly high. This has led to the assumption that (ground-) water or ground ice was a trigger or driving force of cone formation. They could therefore, be an important indicator of the history of water on the planet. We have studied an area in western Elysium Planitia, bordering the Aeolis Planum plateau, which exhibits a large number of pitted cones, ridges and dome-like structures. Their distribution and morphology differs strongly from pitted cones elsewhere in Elysium Planitia, which have mainly been interpreted as hydrovolcanic rootless cones, and from other regions on Mars. Based on our observations, we present an alternative model for cone formation in the study area that might hint towards hydrothermal processes in the Aeolis Planum region and possibly young igneous activity. Aeolis Planum Cones The Aeolis Planum pitted cones (referred to as APCs from now on) cluster along the southern edges of the broad shallow valley that borders the Aeolis Planum Formation (APF) to the north. Cones along the northern edges of the valley are rare and can only be found in association with APF remnants where they strongly resemble the cones in the south. Along the southern border the cone coverage is almost continuous, describing a narrow band approximately 2 to 3 km

  9. Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the PACMANUS hydrothermal field, Manus Basin, PNG

    NASA Astrophysics Data System (ADS)

    Price, Roy E.; Breuer, Christian; Reeves, Eoghan; Bach, Wolfgang; Pichler, Thomas

    2016-11-01

    Hydrothermal vents are often enriched in arsenic, and organisms living in these environments may accumulate high concentrations of this and other trace elements. However, very little research to date has focused on understanding arsenic bioaccumulation and biotransformation in marine organisms at deep-sea vent areas; none to date have focused organisms from back-arc spreading centers. We present for the first time concentration and speciation data for As in vent biota from several hydrothermal vent fields in the eastern Manus basin, a back-arc basin vent field located in the Bismark Sea, western Pacific Ocean. The gastropods Alviniconcha hessleri and Ifremeria nautilei, and the mussel Bathymodiolus manusensis were collected from diffuse venting areas where pH was slightly lower (6.2-6.8), and temperature (26.8-10.5 °C) and arsenic concentrations (169.5-44.0 nM) were higher than seawater. In the tissues of these organisms, the highest total measured As concentrations were in the gills of A. hessleri (5580 mg kg-1), with 721 mg kg-1 and 43 mg kg-1 in digestive gland and muscle, respectively. I. nautilei contained 118 mg kg-1 in the gill, 108 mg kg-1 in the digestive gland and 22 mg kg-1 in the muscle. B. manusensis contained 15.7 mg kg-1 in the digestive gland, followed by 9.8 mg kg-1 and 4.5 mg kg-1 in its gill and muscle tissue, respectively. We interpret the decreasing overall total concentrations in each organism as a function of distance from the source of hydrothermally derived As. The high concentration of arsenic in A. hessleri gills may be associated with elemental sulfur known to occur in this organism as a result of symbiotic microorganisms. Arsenic extracted from freeze-dried A. hessleri tissue was dominated by AsIII and AsV in the digestive gland (82% and 16%, respectively) and gills (97% AsIII, 2.3% AsV), with only 1.8% and 0.2% arsenobetaine (As-Bet) in the digestive gland and gills, respectively. However, the muscle contained substantial amounts of

  10. Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough

    NASA Astrophysics Data System (ADS)

    Webber, Alexander P.; Roberts, Stephen; Murton, Bramley J.; Hodgkinson, Matthew R. S.

    2015-09-01

    The Beebe Vent Field (BVF) is the world's deepest known hydrothermal system, at 4960 m below sea level. Located on the Mid-Cayman Spreading Centre, Caribbean, the BVF hosts high temperature (˜401°C) "black smoker" vents that build Cu, Zn and Au-rich sulfide mounds and chimneys. The BVF is highly gold-rich, with Au values up to 93 ppm and an average Au:Ag ratio of 0.15. Gold precipitation is directly associated with diffuse flow through "beehive" chimneys. Significant mass-wasting of sulfide material at the BVF, accompanied by changes in metal content, results in metaliferous talus and sediment deposits. Situated on very thin (2-3 km thick) oceanic crust, at an ultraslow spreading centre, the hydrothermal system circulates fluids to a depth of ˜1.8 km in a basement that is likely to include a mixture of both mafic and ultramafic lithologies. We suggest hydrothermal interaction with chalcophile-bearing sulfides in the mantle rocks, together with precipitation of Au in beehive chimney structures, has resulted in the formation of a Au-rich volcanogenic massive sulfide (VMS) deposit. With its spatial distribution of deposit materials and metal contents, the BVF represents a modern day analogue for basalt hosted, Au-rich VMS systems.

  11. Temperature variation records at diffuse and focused outflow in Lucky Strike hydrothermal field: toward a characterization of the outflow dynamic

    NASA Astrophysics Data System (ADS)

    Barreyre, T.; Escartin, J.; Sohn, R. A.; Cannat, M.; Ballu, V.

    2012-12-01

    Hydrothermal activity along mid-ocean ridges accounts for a large proportion of the Earth's heat loss, but the space-time variation of both heat and chemical fluxes of venting at individual sites remains largely unconstrained. As part of the MOMAR experiment to monitor hydrothermal activity, we used an ROV to deploy autonomous temperatures sensors at black smoker chimneys, cracks, and diffuse flow areas throughout the Lucky Strike hydrothermal field (Mid-Atlantic Ridge, ~37°17'N) between summer 2009 and summer 2012. We deployed a set of high- and low-temperature thermal probes (<350°C and <125°C respectively) sampling at intervals that varied from <1 min to 24 min. Microseismicity and bottom pressure was also recorded with an ocean bottom seismometer network and a pressure gauge. We place particular emphasis on temporal variability at semi-diurnal tidal periods, and use poroelastic theory to constrain hydrologic parameters of the sub-surface circulation system. We identify two main types of temporal variability in the temperature records : (1) episodic variability with rapid temperature changes of ~5-150°C over time periods of few hours to several days, and (2) systematic variability at tidal periods with amplitudes ranging from a few tens of a degree to a few degrees, depending largely on mean outflow temperature. The episodic variability is stochastic (i.e., typically not correlated between mutitple probes among vents at the scale of the site), and does not appear to be correlated with local nor regional seismicity. The episodic events are observed primarily in diffuse flow records. The lack of spatial and temporal correlation of these events among probes, even at distances of <5 m within the same mound, suggests that they represent episodes of seawater mixing within the shallowmost crust underlying individual vents, or within the hydrothermal edifice itself. Most temperature records display systematic tide-related variability, with the strongest signal at

  12. Permeability-control on volcanic hydrothermal system: case study for Mt. Tokachidake, Japan, based on numerical simulation and field observation

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryo; Hashimoto, Takeshi; Matsushima, Nobuo; Ishido, Tsuneo

    2017-03-01

    We investigate a volcanic hydrothermal system by using numerical simulation with three key observables as reference: the magnetic total field, vent temperature, and heat flux. We model the shallow hydrothermal system of Mt. Tokachidake, central Hokkaido, Japan, as a case study. At this volcano, continuous demagnetization has been observed since at least 2008, suggesting heat accumulation beneath the active crater area. The surficial thermal manifestation has been waning since 2000. We perform numerical simulations of heat and mass flow within a modeled edifice at various conditions and calculate associated magnetic total field changes due to the thermomagnetic effect. We focus on the system's response for up to a decade after permeability is reduced at a certain depth in the modeled conduit. Our numerical simulations reveal that (1) conduit obstruction (i.e., permeability reduction in the conduit) tends to bring about a decrease in vent temperature and heat flux, as well as heat accumulation below the level of the obstruction, (2) the recorded changes cannot be consistently explained by changing heat supply from depth, and (3) caprock structure plays a key role in controlling the location of heating and pressurization. Although conduit obstruction may be caused by either physical or chemical processes in general, the latter seems more likely in the case of Mt. Tokachidake.[Figure not available: see fulltext.

  13. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Yanagawa, Katsunori; Sunamura, Michinari; Takano, Yoshinori; Ishibashi, Jun-ichiro; Kakegawa, Takeshi; Utsumi, Motoo; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Kobayashi, Kensei; Moroi, Arimichi; Kimura, Hiroyuki; Kawarabayasi, Yutaka; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2009-12-01

    To extend knowledge of subseafloor microbial communities within the oceanic crust, the abundance, diversity and composition of microbial communities in crustal fluids at back-arc hydrothermal fields of the Southern Mariana Trough (SMT) were investigated using culture-independent molecular techniques based on 16S rRNA gene sequences. Seafloor drilling was carried out at two hydrothermal fields, on- and off-ridge of the back-arc spreading centre of the SMT. 16S rRNA gene clone libraries for bacterial and archaeal communities were constructed from the fluid samples collected from the boreholes. Phylotypes related to Thiomicrospira in the Gammaproteobacteria (putative sulfide-oxidizers) and Mariprofundus in the Zetaproteobacteria (putative iron-oxidizers) were recovered from the fluid samples. A number of unique archaeal phylotypes were also recovered. Fluorescence in situ hybridization (FISH) analysis indicated the presence of active bacterial and archaeal populations in the fluids. The Zetaproteobacteria accounted for up to 32% of the total prokaryotic cell number as shown by FISH analysis using a specific probe designed in this study. Our results lead to the hypothesis that the Zetaproteobacteria play a role in iron oxidation within the oceanic crust.

  14. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  15. Evaluation of microbial community in hydrothermal field by direct DNA sequencing

    NASA Astrophysics Data System (ADS)

    Kawarabayasi, Y.; Maruyama, A.

    2002-12-01

    Many extremophiles have been discovered from terrestrial and marine hydrothermal fields. Some thermophiles can grow beyond 90°C in culture, while direct microscopic analysis occasionally indicates that microbes may survive in much hotter hydrothermal fluids. However, it is very difficult to isolate and cultivate such microbes from the environments, i.e., over 99% of total microbes remains undiscovered. Based on experiences of entire microbial genome analysis (Y.K.) and microbial community analysis (A.M.), we started to find out unique microbes/genes in hydrothermal fields through direct sequencing of environmental DNA fragments. At first, shotgun plasmid libraries were directly constructed with the DNA molecules prepared from mixed microbes collected by an in situ filtration system from low-temperature fluids at RM24 in the Southern East Pacific Rise (S-EPR). A gene amplification (PCR) technique was not used for preventing mutation in the process. The nucleotide sequences of 285 clones indicated that no sequence had identical data in public databases. Among 27 clones determined entire sequences, no ORF was identified on 14 clones like intron in Eukaryote. On four clones, tetra-nucleotide-long multiple tandem repetitive sequences were identified. This type of sequence was identified in some familiar disease in human. The result indicates that living/dead materials with eukaryotic features may exist in this low temperature field. Secondly, shotgun plasmid libraries were constructed from the environmental DNA prepared from Beppu hot springs. In randomly-selected 143 clones used for sequencing, no known sequence was identified. Unlike the clones in S-EPR library, clear ORFs were identified on all nine clones determined the entire sequence. It was found that one clone, H4052, contained the complete Aspartyl-tRNA synthetase. Phylogenetic analysis using amino acid sequences of this gene indicated that this gene was separated from other Euryarchaea before the

  16. Tracking Stress and Hydrothermal Activity Along Oceanic Spreading Centers Using Tomographic Images of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Dunn, R. A.; Conder, J. A.; Canales, J. P.

    2014-12-01

    Marine controlled-source seismic tomography experiments now utilize 50+ ocean-bottom seismographs and source grids consisting of many tens of seismic lines with <500 m shot spacing. These dense experiments focus on the upper 10 km of the lithosphere over areas approaching 9000 sq-km. Because of the dense sampling and large azimuthal coverage of ray paths (200,000+ travel time measurements possible), it is now feasible to solve for 3-D images of P-wave azimuthal anisotropy with resolving lengths approaching 1km. Recent examples include the L-SCAN and MARINER experiments, performed at the Eastern Lau Spreading Center and Mid-Atlantic Ridge (36N), respectively. In each case, background anisotropy of ~4% is found in the upper 3-4 km of lithosphere and is consistent with pervasive stress-aligned cracks and microcracks. The fast axes are generally oriented parallel to the trend of the spreading center, as expected for cracks that form in association with seafloor spreading. Three-dimensional images of anisotropy magnitude and orientation reveal variations interpreted as arising from changes in the ambient stress field. Near the ends of ridge segments, where the ridge axis jumps from one spreading center to the next, anisotropy is high with orientations that are out of alignment relative to the background trend. This agrees with numerical models and seafloor morphology that suggest tensile stress concentration and brittle crack formation in these areas. Anisotropy also increases in areas along the ridges where the underlying magma supply and hydrothermal output are greater. This is opposite the trend expected if simple tectonic stress models govern anisotropy. Increased hydrothermal activity, due to increased magma supply, can explain higher anisotropy via increased pore pressure and hydrofracturing. These studies provide the first evidence that images of seismic anisotropy can be used to map variations in hydrologic activity along the crests of oceanic spreading centers.

  17. Present-day submarine hydrothermal activity in the Taupo-Rotorua Zone (Bay of Plenty, New Zealand)

    SciTech Connect

    Osipenko, A.B.; Egorov, Yu.O.; Fazlullin, S.M.; Gavrilenko, G.M.; Shul`kin, V.I.; Chertkova, L.V.

    1994-09-01

    We made detailed descriptions of the structure and material composition of sedimentary and water columns in the vicinity of active submarine hydrothermal activity in the southern part of the Bay of Plenty (North Island, New Zealand). Geophysical methods revealed that the hydrothermal system is confined to a tectonically distinct zone with a sedimentary cover characterized by complex structure. Chemical and mineralogical investigations confirmed that the activity of underwater vents exerts no substantial regional influence on the composition and features of ore mineralization in these formations. It is shown that essentially hydrothermal formations distinguishable within areas of otherwise monotypic sediments directly coincide with zones of hydrothermal discharge in the ocean floor. The absence of pronounced hydrothermal anomalies, together with the presence of {open_quotes}tongues{close_quotes} of anomalous concentrations of water-soluble gases suggests that the discharges are primarily hydrothermal in character.

  18. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields

    NASA Astrophysics Data System (ADS)

    Johannessen, Karen C.; Vander Roost, Jan; Dahle, Håkon; Dundas, Siv H.; Pedersen, Rolf B.; Thorseth, Ingunn H.

    2017-04-01

    Diffuse low-temperature hydrothermal vents on the seafloor host neutrophilic microaerophilic Fe-oxidizing bacteria that utilize the Fe(II) supplied by hydrothermal fluids and produce intricate twisted and branching extracellular stalks. The growth behavior of Fe-oxidizing bacteria in strongly opposing gradients of Fe(II) and O2 have been thoroughly investigated in laboratory settings to assess whether extracellular stalks and aligned biomineralized fabrics may serve as biosignatures of Fe-oxidizing bacteria and indications of palaeo-redox conditions in the rock record. However, the processes controlling the growth of biogenic Fe-oxyhydroxide deposits in natural, modern hydrothermal systems are still not well constrained. In this study, we aimed to establish how variations in the texture of stratified hydrothermal Fe-oxyhydroxide deposits are linked to the physicochemical conditions of the hydrothermal environment. We conducted 16S rRNA gene analyses, microscopy and geochemical analyses of laminated siliceous Fe-mounds from the Jan Mayen Vent Fields at the Arctic Mid-Ocean Ridge. Chemical analyses of low- and high-temperature hydrothermal fluids were performed to characterize the hydrothermal system in which the Fe-deposits form. Our results reveal synchronous inter-laminar variations in texture and major and trace element geochemistry. The Fe-deposits are composed of alternating porous laminae of mineralized twisted stalks and branching tubes, Mn-rich horizons with abundant detrital sediment, domal internal cavities and thin P- and REE-enriched lamina characterized by networks of ≪1 μm wide fibers. Zetaproteobacteria constitute one third of the microbial community in the surface layer of actively forming mounds, indicating that microbial Fe-oxidation is contributing to mound accretion. We suggest that Mn-oxide precipitation and detrital sediment accumulation take place during periodically low hydrothermal fluid discharge conditions. The elevated concentrations

  19. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center

    NASA Astrophysics Data System (ADS)

    Johnson, Kenneth S.; Childress, James J.; Hessler, Robert R.; Sakamoto-Arnold, Carole M.; Beehler, Carl L.

    1988-10-01

    The concentrations of a suite of redox reactive chemicals were measured in the Rose Garden hydrothermal vent field of the Galapagos spreading center. Sulfide, silicate, oxygen and temperature distributions were measured in situ with a submersible chemical analyser. In addition, 15 chemical species were measured in discrete samples. Variability in the slope of the temperature-silicate plots indicates that heat is lost from these relatively low temperatures (<15°C) solutions by conduction to the solid phase. Consumption of oxygen, sulfide and nitrate from the hydrothermal solution as it flows past the vent animals is apparent from the distributions measured in situ and in the discrete samples. The fraction of sulfide and nitrate removed from the solution by consumption appears to have increased between 1979-1985. Sulfide and oxygen appear to be consumed under different conditions: sulfide is removed primarily from the warmest solutions, and oxygen is consumed only from the cold seawater. This separation may be driven primarily by the increased gradients of each chemical under these conditions. There is no evidence for the consumption of significant amounts of manganese(II) by the vent organisms. The analysis of other data sets from this vent field indicate no significant consumption of methane by the vent organisms, as well.

  20. ESR dating of submarine hydrothermal activities using barite in sulfide deposition

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.

    2012-12-01

    The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). Determining the ages of the hydrothermal deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine hydrothermal deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine hydrothermal sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine hydrothermal area where the radiation level is much

  1. 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt—Paleoarchean crust in cold environments

    PubMed Central

    de Wit, Maarten J.; Furnes, Harald

    2016-01-01

    Estimates of ocean temperatures on Earth 3.5 billion years ago (Ga) range between 26° and 85°C. We present new data from 3.47- to 3.43-Ga volcanic rocks and cherts in South Africa suggesting that these temperatures reflect mixing of hot hydrothermal fluids with cold marine and terrestrial waters. We describe fossil hydrothermal pipes that formed at ~200°C on the sea floor >2 km below sea level. This ocean floor was uplifted tectonically to sea level where a subaerial hydrothermal system was active at 30° to 270°C. We also describe shallow-water glacial diamictites and diagenetic sulfate mineral growth in abyssal muds. These new observations reveal that both hydrothermal systems operated in relatively cold environments and that Earth’s surface temperatures in the early Archean were similar to those in more recent times. PMID:26933677

  2. 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt-Paleoarchean crust in cold environments.

    PubMed

    de Wit, Maarten J; Furnes, Harald

    2016-02-01

    Estimates of ocean temperatures on Earth 3.5 billion years ago (Ga) range between 26° and 85°C. We present new data from 3.47- to 3.43-Ga volcanic rocks and cherts in South Africa suggesting that these temperatures reflect mixing of hot hydrothermal fluids with cold marine and terrestrial waters. We describe fossil hydrothermal pipes that formed at ~200°C on the sea floor >2 km below sea level. This ocean floor was uplifted tectonically to sea level where a subaerial hydrothermal system was active at 30° to 270°C. We also describe shallow-water glacial diamictites and diagenetic sulfate mineral growth in abyssal muds. These new observations reveal that both hydrothermal systems operated in relatively cold environments and that Earth's surface temperatures in the early Archean were similar to those in more recent times.

  3. A variety of Microbial Mats cover the Chimney Walls of the Loki's Castle Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Dahle, H.; Roalkvam, I.; Jørgensen, S. L.; Stokke, R.; Thorseth, I. H.; Pedersen, R.; Steen, I.

    2010-12-01

    Active vent chimneys of the Loki’s castle hydrothermal field at 73°N are the most northerly black smokers ever located. Vent fluids reach temperatures of >300°C, have a pH of around 5.5 and high concentrations of reduced compounds representing important energy sources for microbial life. Particularly they are extremely rich in methane (13.5 mM) and hydrogen (4.9 mM) while hydrogen sulphide concentrations are more typical for black smoker fluids (4.1 mM). Another characteristic of Loki’s castle is the unusually high abundance of microbial mats on the exterior of the chimneys. During a cruise in 2009 we used a ROV equipped with a hydraulic sampling cylinder (biosyringe) to collect samples of five mats varying in color and texture. Pyrosequencing of amplified 16S rRNA gene sequences yielded 9000 - 25000 reads per sample. Although all mats were dominated by a relatively low number of OTUs, we observed large differences in microbial composition, richness, and evenness of the mats. Also, the most dominating metabolic process occurring in each mat seemed to vary considerably. Two of the mats were largely dominated (60-90% of the reads) by relatives of mesophilic sulfur oxidizing ɛ-Proteobacteria (e.g. Sulfurovum) while another mat was dominated (48 % of the reads) by organisms affiliated with methanotrophic Methylococcales. In the last two mats we found a high abundance ( >20% - >40% of the reads) of organisms clustering among thermophilic organisms such as Thermodesulfobacteriales, Archaeoglobales, Thermococcales, Thermotogales, and Aquificales. The observed variation of the microbial composition between the different mats is possibly linked to variations in temperature and chemistry of fluids diffusely venting from the chimney. The study was supplemented by pyrosequencing of environmental cDNA from three of the samples (totally 1 100 000 reads). This dataset, which is currently being analyzed, will provide more information about the most active phylotypes in the

  4. Exploring an active hydrothermal system - An analogue study from the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Egli, Daniel; Herwegh, Marco; Berger, Alfons; Baron, Ludovic

    2016-04-01

    Understanding the detailed flow paths in hydrothermal reservoirs is crucial for successful exploration of naturally porous and permeable rock masses for energy production. However, due to the common inaccessibility of active hydrothermal systems of suitable depth, e.g. in the northern Alpine foreland of the European Alps, direct observations are normally impossible and the knowledge about such systems is still insufficient. For that reason, a known fault-bound hydrothermal system in the crystalline basement of the Aar Massif serves as an analogue for potential geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland. During summer 2015, a 125 m hole has been drilled across this active hydrothermal zone on the Grimsel Pass for in-situ characterization of its structural, petrophysical, mechanical as well as geophysical parameters. With this information, this project aims at improving the knowledge of natural hydrothermal systems as a potentially exploitable energy source. The investigated system is characterized by a central breccia zone surrounded by different types of cataclasites and localized high strain zones. The surrounding includes different altered and deformed granitoid host rocks. In this study, we focus on the ductile and brittle deformation (shear zones, fractures, joints) that provides the main fluid pathways. Their spatial distribution around a central water-bearing breccia zone as well as their continuity and permeability provide constraints on the water flow paths in such structurally controlled hydrothermal systems. The aim will be the connection of detailed structural data with petrophysical parameters such as porosities and permeabilities. The drillcore shows the high variability of deformation structures and related fluid pathways at different scales (millimeter-decameter) demonstrating the urgent need for an improved understanding of the link between mechanical evolution, associated deformation structures as well

  5. Hydrothermal flow at Main Endeavour Field imaged and measured with Cable Operated Vent Imaging Sonar

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Bemis, K. G.; Xu, G.; Jackson, D. R.; Jones, C. D.

    2011-12-01

    Initial acoustic monitoring of hydrothermal flow in the Main Endeavour Field (MEF) captures the spatial distribution of diffuse and focused discharge and shows potential for flux determinations. Our Cabled Observatory Vent Imaging Sonar (COVIS) was connected to the NEPTUNE Canada Endeavour Observatory in September 2010. Using a customized Reson 7125 multi-beam sonar, COVIS acquired a 29 day time series of black smoker plume and associated diffuse hydrothermal flow from Grotto, a 30 m diameter vent cluster in the MEF, Juan de Fuca Ridge. Detection of the spatial patterns of diffuse flow utilizes phase decorrelation of the acoustic signal (200kHz) by buoyancy-driven turbulence (acoustic scintillation) to produce a time series of maps. Substantial fluctuation in the detected diffuse flow area (0.1 - 18 m^2) was observed over the 29 days of observation, although position remained stable. Acoustic imaging of focused flow (400 kHz) utilizes high volume backscatter (attributed to particles and turbulent sound speed fluctuations) to image in 3D the initial tens of meters of rise of buoyant plumes. Spectral analysis of bending inclination of a strong plume from multiple fast smokers on the NW end of Grotto (north tower) indicates that the dominant modes correspond with the ambient mixed semi-diurnal tide (based on current meter data at a mooring 2.9 km to the north and on a tidal model), with at least one secondary mode attributable to sub-inertial flow related to inflow to the axial valley. A weaker plume from several slower smokers is present on the NE end of Grotto. On first analysis, the bending inclination of the weaker plume appears to be affected by the stronger plume. Quantification of flow velocity and volume flux of plumes begins with measuring the Doppler phase shift through plume cross-sections beginning at 5 m above source vents where discharge merges. The volume flux measurements enable calculation of entrainment coefficients, which prior work on the same

  6. Hydrogeological and geochemical modeling of hydrothermal fluids circulation in active ultramafic-hosted systems under CAST3M

    NASA Astrophysics Data System (ADS)

    Perez, F.; Mugler, C.; Jean-Baptiste, P.; Charlou, J. L.; Donval, J.; Vidal, O.; Marcailloux, C.; Munoz, M.

    2010-12-01

    Hydrothermal circulation at mid-ocean ridges is a fundamental process that impacts the transfer of energy and water from the interior of the Earth to the Crust, Hydrosphere and biosphere. Along the Mid-Atlantic Ridge (MAR), at precisely located ultramafic-hosted systems, important fluxes of heat, hydrogen and Iron are observed (Charlou et al., 2010 AGU Monograph series). It is now demonstrated that high and low-temperature hydrothermal activity and mantle degassing are indicators of ongoing serpentinization process. For a real understanding of this process and to estimate heat and hydrogen fluxes, numerical modeling leant on field data and laboratory experiments can yield results of interest. We thus developed a thermo-hydrogeological numerical model using a Finite Volume method to simulate heat driven fluid flows in geological layers, encoded under CAST3M, and presented here. For homogeneous medias, we successfully obtained exiting fluid temperatures that natural hydrothermal fluids usually reach. Considering laboratory experiments, we coupled, under CAST3M, our thermo-hydrogeological model to a geochemical model of serpentinization reaction. This last model is based on a reaction front velocity model calibrated by laboratory experiments. Primary results are presented here.

  7. Synthesis and Enhanced Photocatalytic Activity of Ce-Doped Zinc Oxide Nanorods by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Aisah, N.; Gustiono, D.; Fauzia, V.; Sugihartono, I.; Nuryadi, R.

    2017-02-01

    Zinc oxide (ZnO) is a n-type semiconductor material which has a wide direct band gap energy of ∼ 3.3 eV, and other interesting optical properties, hence it’s potentially applied to various fields such as electronics, optoelectronics, sensors, photonic devices, and also photocatalyst. Dopant in ZnO nanostructures is an effective way to improve ZnO’s structural properties in various applications. In this study, undoped and Ce doped ZnO nanorods were synthesized on ITO coated glass substrates by ultrasonic spray pyrolysis for seeding deposition and hydrothermal methods at a temperature of 95 0C for 2 hours for growth. X-ray diffraction, field emission scanning electron microscopy (FESEM), UV-VIS and Photoluminescence spectroscopy were used to characterize the crystal structure, surface morphology and optical properties of ZnO nanorods and the photocatalytic activity test for methylene blue degradation. The experimental results showed that 3% Cerium dopant has produced hexagonal morphology ZnO nanorod growing more uniform on (002) crystal planes, increased the intensity of ultraviolet absorbance thereby increase the degradation speed of methylene blue.

  8. The Fauna Of Two New Discovered Hydrothermal Fields At 5°S And 9°33'S On The Mid-Atlantic-Ridge

    NASA Astrophysics Data System (ADS)

    Stecher, J. E.

    2005-12-01

    Before April 2005 there was a zoogeographical puzzle to solve: Are there any hydrothermal vent communities south of the equator the Atlantic Ocean, and if so, what will be their characteristics? Are they similar with those of the northern Atlantic Ocean or will they differ? Before the cruise 169 of the British "Charles Darwin" research vessel started, no vent site was discovered on the southern Atlantic Ridge. Using an autonomous underwater vehicle from WHOI, the first hydrothermal active vent site was found at 5°S in April 2005. With the support by British and American colleagues(Chris German and Tim Shank) the scientific crew of Meteor cruise M64/1 sampled this site at 5° first with the ROV "Quest 4000" from Marum, University Bremen. But far in excess of this success one more vent site was discovered and investigated by the Meteor cruise M64/1: the Lilliput Field at 9°33S on the Mid-Atlantic-Ridge. Our first results indicate that the identified taxa of the hydrothermal fields at 5°S and 9°33S resemble the northern Logatchev community (Gebruk et al. 2000) in most elements. Remarkable is the missing of following typical hydrothermal taxa: Decapods of the families Alvinocaridae, like Chorocaris, and Galatheidae, echinoderms like Ophiuridae and Ventfishes of the family Zoarcidae. Obviously the Romanch Fracture Zone act only partly as a physical barrier between vent fauna assemblages of the North and South Atlantic Oceans (see Shank 2004). Gebruk, A.V., Chevaldonne, P., Shank, T., Lutz, R.A. & Vrijenhoek, R.C. (2000): Deep-sea hydrothermal vent communities of the Logatchev area (14°45'N, Mid-Atlantic Ridge): diverse biotopes and high biomass. J. Mar. Biol. Assoc. U. K. 80: 383-393. Shank, T. (2004): The evolutionary puzzle of seafloor life. - Oceanus Magazine Vol. 42, No.2 http://oceanusmag.whoi.edu/v42n2/shank.html.

  9. Iron-based microbial ecosystem on and below the seafloor: a case study of hydrothermal fields of the southern mariana trough.

    PubMed

    Kato, Shingo; Nakamura, Kentaro; Toki, Tomohiro; Ishibashi, Jun-Ichiro; Tsunogai, Urumu; Hirota, Akinori; Ohkuma, Moriya; Yamagishi, Akihiko

    2012-01-01

    Microbial community structures in deep-sea hydrothermal vents fields are constrained by available energy yields provided by inorganic redox reactions, which are in turn controlled by chemical composition of hydrothermal fluids. In the past two decades, geochemical and microbiological studies have been conducted in deep-sea hydrothermal vents at three geographically different areas of the Southern Mariana Trough (SMT). A variety of geochemical data of hydrothermal fluids and an unparalleled microbiological dataset of various samples (i.e., sulfide structures of active vents, iron-rich mats, borehole fluids, and ambient seawater) are available for comparative analyses. Here, we summarize the geochemical and microbiological characteristics in the SMT and assess the relationship between the microbial community structures and the fluid geochemistry in the SMT by thermodynamic modeling. In the high temperature vent fluids, aerobic sulfide-oxidation has the potential to yield large amounts of bioavailable energy in the vent fluids, which is consistent with the detection of species related to sulfide-oxidizing bacteria (such as Thiomicrospira in the Gammaproteobacteria and Sulfurimonas in the Epsilonproteobacteria). Conversely, the bioavailable energy yield from aerobic iron-oxidation reactions in the low-temperature fluids collected from man-made boreholes and several natural vents were comparable to or higher than those from sulfide-oxidation. This is also consistent with the detection of species related to iron-oxidizing bacteria (Mariprofundus in the Zetaproteobacteria) in such low-temperature samples. The results of combination of microbiological, geochemical, and thermodynamic analyses in the SMT provide novel insights into the presence and significance of iron-based microbial ecosystems in deep-sea hydrothermal fields.

  10. Iron-Based Microbial Ecosystem on and Below the Seafloor: A Case Study of Hydrothermal Fields of the Southern Mariana Trough

    PubMed Central

    Kato, Shingo; Nakamura, Kentaro; Toki, Tomohiro; Ishibashi, Jun-ichiro; Tsunogai, Urumu; Hirota, Akinori; Ohkuma, Moriya; Yamagishi, Akihiko

    2012-01-01

    Microbial community structures in deep-sea hydrothermal vents fields are constrained by available energy yields provided by inorganic redox reactions, which are in turn controlled by chemical composition of hydrothermal fluids. In the past two decades, geochemical and microbiological studies have been conducted in deep-sea hydrothermal vents at three geographically different areas of the Southern Mariana Trough (SMT). A variety of geochemical data of hydrothermal fluids and an unparalleled microbiological dataset of various samples (i.e., sulfide structures of active vents, iron-rich mats, borehole fluids, and ambient seawater) are available for comparative analyses. Here, we summarize the geochemical and microbiological characteristics in the SMT and assess the relationship between the microbial community structures and the fluid geochemistry in the SMT by thermodynamic modeling. In the high temperature vent fluids, aerobic sulfide-oxidation has the potential to yield large amounts of bioavailable energy in the vent fluids, which is consistent with the detection of species related to sulfide-oxidizing bacteria (such as Thiomicrospira in the Gammaproteobacteria and Sulfurimonas in the Epsilonproteobacteria). Conversely, the bioavailable energy yield from aerobic iron-oxidation reactions in the low-temperature fluids collected from man-made boreholes and several natural vents were comparable to or higher than those from sulfide-oxidation. This is also consistent with the detection of species related to iron-oxidizing bacteria (Mariprofundus in the Zetaproteobacteria) in such low-temperature samples. The results of combination of microbiological, geochemical, and thermodynamic analyses in the SMT provide novel insights into the presence and significance of iron-based microbial ecosystems in deep-sea hydrothermal fields. PMID:22435065

  11. Formation of Hydrothermal nontronite associated with microbial activity at the South Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Ta, Kaiwen; Peng, Xiaotong; Chen, Shun; Xu, Hengchao; Li, Jiwei; Jiang, Lei; Du, Mengran

    2015-04-01

    Nontronite is an ubiquitous clay minerals in marine sediments, microbial mediation of hydrothermal nontronite have been increasing. The deposits collected from Southern Atlantic Ridge were very friable with an obvious laminated to stromatolitic to highly porous structure, varying from red, black to light yellow indicate redox condition may undergo range from micro-oxidizing to reducing. Although microbial activity are revealed to play an important role in the formation of clay minerals in sediment, little is currently known about microbial communities that reside in nontronite associated with hydrothermal activity. Here, we used Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), nano secondary ion mass spectrometer (nanoSIMS) and molecular techniques to focus on potential mediation role of microbial in the nontronite formation of low-temperature hydrothermal deposits in South Atlantic Mid-ocean ridge. Our data suggest that the presences of abundant lamellar nontronite structures, as well as microbe-like mineralized morphologies similar to consistent with a biogenic origin. Nontronite in the lower zone of Fe-Mn oxyhydroxides are inferred to have been suboxic environment and their formation appear to be significantly controlled by the locus of redox conditions. Keywords: Nontronite, Microbial activity, Hydrothermal deposits, Biogenic origin.

  12. Loki's Castle: A sediment-influenced hydrothermal vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Baumberger, T.; Frueh-Green, G. L.; Pedersen, R.; Thorseth, I. H.; Lilley, M. D.; Moeller, K.

    2010-12-01

    The chemical composition as well as the stable and radiogenic isotope signatures of hydrothermal fluids from the Loki’s Castle vent field, located at the Mohns-Knipovich bend in the Norwegian-Greenland Sea (73°N), are substantially different from sediment-starved mid-ocean ridge hydrothermal systems. Geochemical studies of the hydrothermal vent fluids and the adjacent rift valley sediments provide insights into the influence of sediments on the hydrothermal fluid composition and provide constraints on acting redox conditions. Additionally, they reflect the degree of fluid-rock-sediment interaction at this arctic hydrothermal vent field. Here we present an overview of the geochemical characteristics of the hydrothermal and sedimentary components at Loki’s Castle, obtained during expeditions in 2008, 2009 and 2010, with emphasis on the stable and radiogenic isotope signatures. We compare these data with other sediment-influenced and sediment-starved mid-ocean ridge hydrothermal systems. The hydrothermal vent fluids are characterized by a pH of ˜ 5.5 and by elevated concentrations of methane, hydrogen and ammonia, which reflect a sedimentary contribution. δ13CDIC (dissolved inorganic carbon) are depleted relative to mantle carbon values, consistent with an organic carbon input. The δ18OH2O values of the vents fluids are enriched compared to background bottom seawater, whereas the δD values are not. 87Sr/86Sr ratios are more radiogenic than those characteristic of un-sedimented mid-ocean ridge vent fluids. S-isotope data reflect mixing of a MORB source with sulphide derived from reduced seawater sulphate. To document the background sediment input of the ridge system, short gravity cores and up to 18 m long piston cores were recovered from various localities in the rift valley. The pore-fluid isotope chemistries of the sediments show vertical gradients that primarily reflect diagenesis and degradation of organic matter. The vertical gradient is locally enhanced

  13. [Field Learning Activities].

    ERIC Educational Resources Information Center

    Nolde Forest Environmental Education Center, Reading, PA.

    Seventy field activities, pertinent to outdoor, environmental studies, are described in this compilation. Designed for elementary and junior high school students, the activities cover many discipline areas--science, social studies, language arts, health, history, mathematics, and art--and many are multidisciplinary in use. Topics range from soil…

  14. Noble Gas geochemistry of the newly discovered hydrothermal fields in the Gulf of California: preliminary He-isotope ratios from the Alarcon Rise and Pescadero basin vent sites

    NASA Astrophysics Data System (ADS)

    Spelz, R. M.; Lupton, J. E.; Evans, L. J.; Zierenberg, R. A.; Clague, D. A.; Neumann, F.; Paduan, J. B.

    2015-12-01

    Numerous submarine deep-sea hydrothermal vents related to volcanic activity of the East Pacific Rise (EPR) are situated along the Pacific margins of Mexico. Until recently, active hydrothermal venting was unknown between the Guaymas Basin and 21°N on the EPR. MBARI's recent oceanographic surveys have added 7 new active vent sites. In this study, we aimed to sample the high-temperature hydrothermal fluids emanating from two distinct vent sites, named Meyibo and Auka, located in the Alarcon Rise and Pescadero Basin, respectively. Mantle-derived He have long been identified in hydrothermal fluid releases. The presence of He in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA, where RA = air He or 1.4 x 10-6) indicates the presence of mantle-derived melts. Preliminary analyses of He-isotope ratios derived from the newly discovered Meyibo and Auka hydrothermal fields show high 3He/4He ratios (~8RA), typical of MORB's. Auka vent field, characterized by chimneys composed of light carbonate minerals and oil-like hydrocarbons, and temperatures between 250-290oC, show average values of ~7.87RA. In contrast, the black-smokers at the Meyibo field, composed of dark sulfide minerals and temperatures over 350oC, yielded a higher He ratio of ~8.24RA. Recently, it has become clear that regional maximum mantle He values correlate with the velocity structure in the mantle, therefore, He has the potential to map regions of the underlying mantle that are undergoing partial melting. Seismic records could then be compared with the geochemical He ratio signal and supply information regarding tectonics and other processes involved in the generation of these gases. The data presented here will be completing a totally new inventory of He results from hydrothermal vents in the EPR and fault-termination basins distributed along the P-NA plate boundary in the Gulf of California. The results will be further coupled with the analysis of other geochemical

  15. Hydrothermal activity recorded in post Noachian-aged impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Turner, Stuart M. R.; Bridges, John C.; Grebby, Stephen; Ehlmann, Bethany L.

    2016-04-01

    Hydrothermal systems have previously been reported in ancient Noachian and Hesperian-aged craters on Mars using CRISM but not in Amazonian-aged impact craters. However, the nakhlite meteorites do provide evidence of Amazonian hydrothermal activity. This study uses CRISM data of 144 impact craters of ≥7 km diameter and 14 smaller craters (3-7 km diameter) within terrain mapped as Amazonian to search for minerals that may have formed as a result of impact-induced hydrothermal alteration or show excavation of ancient altered crust. No evidence indicating the presence of hydrated minerals was found in the 3-7 km impact craters. Hydrated minerals were identified in three complex impact craters, located at 52.42°N, 39.86°E in the Ismenius Lacus quadrangle, at 8.93°N, 141.28°E in Elysium, and within the previously studied Stokes crater. These three craters have diameters 20 km, 62 km, and 51 km. The locations of the hydrated mineral outcrops and their associated morphology indicate that two of these three impact craters—the unnamed Ismenius Lacus Crater and Stokes Crater—possibly hosted impact-induced hydrothermal systems, as they contain alteration assemblages on their central uplifts that are not apparent in their ejecta. Chlorite and Fe serpentine are identified within alluvial fans in the central uplift and rim of the Ismenius Lacus crater, whereas Stokes crater contains a host of Fe/Mg/Al phyllosilicates. However, excavation origin cannot be precluded. Our work suggests that impact-induced hydrothermalism was rare in the Amazonian and/or that impact-induced hydrothermal alteration was not sufficiently pervasive or spatially widespread for detection by CRISM.

  16. PGE fractionation in seafloor hydrothermal systems: examples from mafic- and ultramafic-hosted hydrothermal fields at the slow-spreading Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Pašava, Jan; Vymazalová, Anna; Petersen, Sven

    2007-04-01

    The distribution of platinum group elements (PGEs) in massive sulfides and hematite-magnetite±pyrite assemblages from the recently discovered basalt-hosted Turtle Pits hydrothermal field and in massive sulfides from the ultramafic-hosted Logatchev vent field both on the Mid-Atlantic Ridge was studied and compared to that from selected ancient volcanic-hosted massive sulfide (VHMS) deposits. Cu-rich samples from black smoker chimneys of both vent fields are enriched in Pd and Rh (Pd up to 227 ppb and Rh up to 149 ppb) when compared to hematite-magnetite-rich samples from Turtle Pits (Pd up to 10 ppb, Rh up to 1.9 ppb). A significant positive correlation was established between Cu and Rh in sulfide samples from Turtle Pits. PGE chondrite-normalized patterns (with a positive Rh anomaly and Pd and Au enrichment), Pd/Pt and Pd/Au ratios close to global MORB, and high values of Pd/Ir and Pt/Ir ratios indicate mafic source rock and seawater involvement in the hydrothermal system at Turtle Pits. Similarly shaped PGE chondrite-normalized patterns and high values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides at Logatchev likely reflect a similar mechanism of PGE enrichment but with involvement of ultramafic source rocks.

  17. Hydrothermal characteristics of the well A-29 at the Los Azufres geothermal field, Mexico

    SciTech Connect

    Viggiano-Guerra, J.C.; Gutierrez-Negrin, L.C.A.

    1995-12-31

    Three distinct hydrothermal zones can be identified in the well A-29, located at the northeastern border of the Los Azufres, Mexico, geothermal field. They are the zeolite, epidote and amphibole-gamet zones. High temperatures (over 300{degrees}C) were measured, but the well did not produce mass flow. This can be explained by a self-sealing process as a result of three trends recognized in the evolution of geothermal fluids: boiling, boiling and gas losses, and dilution. A certain cooling of at least 25{degrees}C seems to be happening in the well, especially in the epidote zone and in the upper portions of the amphibole-gamet zone.

  18. Hydrothermal Alteration Minerals of the Geysers Steam Field, California and their Potential Use in Exploration

    SciTech Connect

    Moore, Diane

    1980-12-16

    Little information has been published on the hydrothermal alteration minerals occurring at depth in the Geysers steam field, California. Steiner (1958) reported the occurrence of wairakite from a well; McNitt (1964) identified pyrite, sericite, calcite, quartz, siderite, apatite and chlorite in cores of Franciscan graywacke and greenstone. Recently, Union Oil Geothermal Division furnished a set of well cores from the cap rock overlying the steam reservoir for geophysical studies (Lockner -e t -a l . , 1980). Cores of metagraywacke and greenstone from 4 wells were compared to unaltered Franciscan metagraywacke from surface exposures. Several previously unreported alteration minerals were found in the cored rocks, including epidote, tremolite-actinolite, prehnite and tourmaline. This note describes the observed alteration minerals and some of the factors that controlled their growth.

  19. Hydrothermally grown ZnO nanorods on self-source substrate and their field emission

    NASA Astrophysics Data System (ADS)

    Liu, J. P.; Xu, C. X.; Zhu, G. P.; Li, X.; Cui, Y. P.; Yang, Y.; Sun, X. W.

    2007-04-01

    Vertically aligned zinc oxide nanorod arrays were grown directly using a zinc foil as both source and substrate in pure water at low temperature by a simple hydrothermal reaction. The morphology and crystal structure of the ZnO nanorod arrays were examined by scanning electron microscopy, transmission electron microscopy and x-ray diffraction, respectively. The nanorods grew along the [0 0 0 1] direction and were 80 nm in diameter and almost 2 µm in length. Directly employing the zinc foil substrate as cathode, the field emission (FE) of the ZnO nanorods presented a two-stage slope behaviour in a ln(J/E2)-1/E plot according to the Fowler-Nordheim equation. The FE behaviour was investigated by considering the action of the defects in ZnO nanorods based on the measurement of the photoluminescence.

  20. Replacive sulfide formation in anhydrite chimneys from the Pacmanus hydrothermal field, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Los, Catharina; Bach, Wolfgang; Plümper, Oliver

    2016-04-01

    Hydrothermal flow within the oceanic crust is an important process for the exchange of energy and mass between the lithosphere, hydrosphere and biosphere. Infiltrated seawater heats up and interacts with wall rock, causing mineral replacement reactions. These play a large role in the formation of ore deposits; at the discharge zone, a hot, acidic and metal-rich potential ore fluid exits the crust. It mixes with seawater and forms chimneys, built up of sulfate minerals such as anhydrite (CaSO4), which are subsequently replaced by sulfide minerals. Sulfide formation is related to fluid pathways, defined by cracks and pores in the sulfate chimney. Over time, these systems might develop into massive sulfide deposits. The big question is then: how is sulfate-sulfide replacement related to the evolution of rock porosity? To address this question, sulfide-bearing anhydrite chimneys from the Pacmanus hydrothermal field (Manus Basin, Papua New Guinea) were studied using X-ray tomography, EMPA, FIB-SEM and -TEM. The apparently massive anhydrite turns out highly porous on the micro scale, with sulfide minerals in anhydrite cleavage planes and along grain boundaries. The size of the sulfide grains relates to the pores they grew into, suggesting a tight coupling between dissolution (porosity generation) and growth of replacive minerals. Some of the sulfide grains are hollow and apparently used the dissolving anhydrite as a substrate to start growth in a pore. Another mode of sulfide development is aggregates of euhedral pyrite cores surrounded by colloform chalcopyrite. This occurrence implies that fluid pathways have remained open for some time to allow several stages of precipitation during fluid evolution. To start the replacement and to keep it going, porosity generation is crucial. Our samples show that dissolution of anhydrite occurred along pathways where fluid could enter, such as cleavage planes and grain boundaries. It appears that fluids ascending within the inner

  1. Detailed Observations and Sampling of the Sea Cliff Hydrothermal Field (GR-14) on the Northern Gorda Ridge

    NASA Astrophysics Data System (ADS)

    McClain, J. S.; Zierenberg, R.; Clague, D. A.; Von Damm, K. L.; Davis, A.; Goffredi, S.; Mayer, N.; Orphan, V.; Olsen, E.; Ross, S. L.

    2001-12-01

    During the summer of 2000, on a research cruise of the MBARI research ship, Western Flyer, we deployed the ROV Tiburon for a series of dives at the Sea Cliff Hydrothermal site on the northern Gorda Ridge. The Sea Cliff site is near the top of a terrace on the west facing rift valley wall (fault), about 300 meters above, and 3 km east of the ridge axis. The 1996 Gorda Ridge eruption occurred on axis in the region west and south of the vent site. The vents were first predicted on the basis of water column anomalies and seafloor structure, and the field was discovered in 1988 during dives of the Sea Cliff submersible. In 2000, we made 4 dives at the site and collected a suite of rock and vent fluid samples. The high temperature water vents from as many as 10 individual chimneys. Measured vent temperatures at several of the chimneys fall in a narrow range of around 304\\deg C. The chimneys are arrayed along two low ridges that are oriented roughly perpendicular to the strike of the rift valley. Venting fluids have low salinity indicating subsurface phase separation. The waters are isotopically enriched (\\delta 18O = 1.9%), suggesting extensive water-rock interaction. The chimneys themselves are primarily anhydrite and a pale green Mg-rich clay with minor amounts of amorphous silica, pyrrhotite, wurtzite, and isocubanite. The chimneys are delicate and are surrounded by aprons (5 -10 m) of collapsed chimney material. As a result, no macro fauna were observed colonizing the high temperature vents. Silica-rich hydrothermal crust and talus cover the fault slope. A broad region of diffuse venting surrounds the active chimneys and locally supports a rich biological community that includes blue ciliate mats near the vents, that give way to tube worm fields and low tube worm mounds formed on massive barite. The Sea Cliff Hydrothermal site is unusual in that it lies off axis and above the rift valley floor. Faulting must play a role in its location and perhaps geometry, and the

  2. Dissolved Carbon Species in Diffuse and Focused Flow Hydrothermal Vents at the Main Endeavour Field, Northern Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Foustoukos, D. I.; Seyfried, W. E.; Ding, K.; Pester, N. J.

    2006-12-01

    The magmatic and tectonic event of 1999 had a significant impact on the chemical composition of vent fluids issuing from the Main Endeavour Field (MEF), Juan de Fuca Ridge. Here, we report dissolved concentrations of H2, CO2, CO and C1-C3 alkanes measured in low and high-temperature hydrothermal fluids collected in August 2005 during an RV Atlantis/DSV Alvin expedition at MEF. In comparison with time series data, temperatures of the 2005 vent fluids were slightly lower than those recorded in the aftermaths of the tectonic event of 1999. The possible cooling of the hydrothermal subseafloor reaction zone is consistent with the observed increase in dissolved Cl to pre-1999 values. Converging compositional trends to pre-1999 conditions are also suggested for dissolved CO2 concentrations (~20 mmol/kg) in Puffer, Sully, Bastille and S&M vent fluids. In these focused flow and high-temperature vent fluids, dissolved CO2 is in thermodynamic equilibrium with CO(aq). The systematics of organic species in diffuse flow fluids, however, appears to be closely related to processes occurring within the near-seafloor environment. For example, excess CO(aq) observed in the diffuse flow fluids at Easter Island is attributed to sluggish CO- CO2(aq) equilibria at low temperatures, suggesting hydrothermal circulation of short-residence times. Short-lived hydrothermal circulation is further supported by the nearly identical C1/(C2+C3) ratios between focused and diffuse flow fluids. Furthermore, alkane distribution in the MEF diffuse flow fluids suggests direct mixing between seawater and hydrothermal fluid with minimal biological inputs, in contrast with the greater effect of microbial methanogenesis proposed in other ridge-crest hydrothermal environments. Thus, the coupling of CO2(aq)-CO(aq) redox equilibrium with dissolved carbon species in low- temperature vent fluids could provide a better understanding of the effect of subsurface microbial communities upon the composition of mid

  3. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research.

  4. The study of active submarine volcanoes and hydrothermal vents in the Southernmost Part of Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tsai, C.; Lee, C.

    2004-12-01

    The study area is located in the Southernmost Part of Okinawa Trough (SPOT), which is a back-arc basin formed by extension of Eurasian plate. Previous research indicated two extensional stages in SPOT area. Many normal-fault structures were come into existence during both extensional processes. The SPOT is presently in an activity tectonic episode. Therefore, the area becomes a frequent earthquake and abundant magmatism. The purpose of this study is to discuss which relationship between tectonics, submarine volcanoes and hydrothermal vents in SPOT area. The investigations are continued from 1998 to 2004, we have found at least twelve active hydrothermal vents in study area. Compare the locations hydrothermal vents with fault systems, we find both of them have highly correlated. We can distinguish them into two shapes, pyramidal shape and non-pyramidal shape. According to plumes height, we are able to divide these vents into two groups near east longitude 122.5° . East of this longitude, the hydrothermal plumes are more powerful and west of it are the weaker. This is closely related to the present extensional axis (N80° E) of the southern part of the Okinawa Trough. This can be explained the reason of why the more powerful vents coming out of the east group. The east group is associated with the present back-arc spreading system. West of 122.5° , the spreading system are in a primary stage. The andesitic volcanic island, the Turtle Island, is a result of N60° E extensional tectonism with a lot of faults. Besides the pyramidal shape, this can be proved indirectly. The vents located in the west side were occurred from previous extensional faults and are weaker than the eastern. Therefore, we suggest that if last the extension keeps going on, the hydrothermal vents located at the west side of the longitude 122.5° will be intensified.

  5. Coastal submarine hydrothermal activity of Northern Baja California 2. Evolutionary history and isotope geochemistry

    SciTech Connect

    Vidal, V.M.V.; Vidal, F.V.; Isaacs, J.D.

    1981-10-10

    A geochemical model of the Punta Banda submarine hydrothermal system (PBSHS) and Ensenada quadrangle subaerial hot springs is developed using /sup 18/O//sup 16/O, D/H, /sup 34/S//sup 32/S, /sup 3/H, water and gas chemistry. The PBSHS water is a primary high temperature, acid, reducing fluid of old seawater origin which has been titrated by cold, alkaline groundwater of meteoric origin. The final exiting solutions represent a 1:1 mixture of the two primary mixing components. In contrast, the subaerial hot spring waters are of unmixed meteoric origin. The subaerial hot spring gas is predominantly atmospheric N/sub 2/, while the PBSHS contains large amounts of CH/sub 4/ and N/sub 2/ derived from trapped marine sediments of Cretaceous age, deltaS/sup 34/ values of sampled hydrothermal waters are similar to Cretaceous marine sulfate values and suggest that the waters contacted Cretaceous marine sedimentary strata. The presence of the Alisitos and Rosario marine sedimentary formations of Cretaceous age within the Ensenada-Punta Banda quadrangel renders support to the above hypothesis. The data also demonstrate the pyrite mineralization and deposition in submarine hydrothermal environments result from the complexing of ferrous iron with elemental sulfur and sulfide and that submarine hydrothermal activity acts as a major source of silica, Ca/sup 2 +/, and trace metals and as a major sink for seawater Mg/sup 2 +/ and SO/sub 4//sup 2 -/.

  6. Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact hydrothermal activity?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Fredriksson, Kurt; Goetzinger, Michael; Reimold, Wolf Uwe

    1989-01-01

    Quartz pebbles from the Roter Kamm impact crater (the Namib Desert, SWA/Namibia) were examined for evidence of impact-induced hydrothermal activity, using results from microprobe analyses, neutron activation analyses, transmission IR spectroscopy, and X-ray diffractometry. It was found that the pebbles consisted of pure quartz, which contains three different types of fluid inclusions. These were identified as primary inclusions (5-10 microns) that record the formation conditions of the quartz, very small (less than 1 micron) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. It is concluded that the quartz and the primary inclusions may provide evidence for a postimpact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  7. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Resing, Joseph A.; Haymon, Rachel M.; Tunnicliffe, Verena; Lavelle, J. William; Martinez, Fernando; Ferrini, Vicki; Walker, Sharon L.; Nakamura, Koichi

    2016-09-01

    Decades of exploration for venting sites along spreading ridge crests have produced global datasets that yield estimated mean site spacings of ∼ 12- 220 km. This conclusion demands that sites where hydrothermal fluid leaks from the seafloor are improbably rare along the 66 000 km global ridge system, despite the high bulk permeability of ridge crest axes. However, to date, exploration methods have neither reliably detected plumes from isolated low-temperature, particle-poor, diffuse sources, nor differentiated individual, closely spaced (clustered within a few kilometers) sites of any kind. Here we describe a much lower mean discharge spacing of 3-20 km, revealed by towing real-time oxidation-reduction-potential and optical sensors continuously along four fast- and intermediate-rate (>55 mm/yr) spreading ridge sections totaling 1470 km length. This closer spacing reflects both discovery of isolated sites discharging particle-poor plumes (25% of all sites) and improved discrimination (at a spatial resolution of ∼1 km) among clustered discrete and diffuse sources. Consequently, the number of active vent sites on fast- and intermediate-rate spreading ridges may be at least a factor of 3-6 higher than now presumed. This increase provides new quantitative constraints for models of seafloor processes such as dispersal of fauna among seafloor and crustal chemosynthetic habitats, biogeochemical impacts of diffuse venting, and spatial patterns of hydrothermal discharge.

  8. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with

  9. Investigating microbial colonization in actively forming hydrothermal deposits using thermocouple arrays

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.; Reysenbach, A. L.; Hirsch, M.; Steinberg, J.; Flores, G. E.

    2010-12-01

    Investigations of microbial colonization of very young hydrothermal deposits were carried out in 2009 at hydrothermal vents in the Lau Basin (SW Pacific), and in Guaymas Basin, Gulf of California, with a test deployment at the Rainbow vent field on the Mid-Atlantic Ridge in 2008. Our method entailed razing active chimneys and placing arrays of temperature probes (8 titanium-encased probes with their tips placed within a titanium cage) over the active flow. The chimneys that grew back through each array, encasing the temperature probe tips, were recovered after 2 to 15 days, along with temperature records. Molecular phylogenetic methods are being used to reveal the members of the microbial communities that developed in each chimney of known age and thermal history. A total of 15 array deployments were made at 10 vents in 6 different vent fields. Similar morphology beehives (with porous fine-grained interiors and steep temperature gradients across the outermost more-consolidated “wall”) formed at 2 of the 3 vents in Guaymas Basin (in 2 and 5 days at one vent and 3 and 15 days at a second), and at one vent each in the Kilo Moana (in 3 days), Tahi Moana (in 2.5 days), and Tui Malila (in 3 and 8 days) vent fields in the Lau Basin. In contrast, open conduit, thin walled chimneys grew within arrays at the Mariner vent field, Lau Basin, at 3 different vents (in 3 days at one vent, in 3 and 11 days at a second vent, and in 13 days at a third vent). A lower temperature (<280C) diffuser/spire with a filamentous biofilm formed in 15 days in an array at a hydrocarbon-rich vent in the Guaymas Basin. A similar biofilm formed after 6 days within an array placed earlier at this same vent, with little mineralization. Preliminary diversity data from the 6 and 15 day Guaymas deployments show an increased diversity of bacteria with time with initial colonizers being primarily sulfur-oxidizing Epsilonproteobacteria, with members of the Aquificales and Deltaproteobacteria appearing

  10. Hydrothermally Processed Photosensitive Field-Effect Transistor Based on ZnO Nanorod Networks

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Bhargava, Kshitij; Dixit, Tejendra; Palani, I. A.; Singh, Vipul

    2016-11-01

    Formation of a stable, reproducible zinc oxide (ZnO) nanorod-network-based photosensitive field-effect transistor using a hydrothermal process at low temperature has been demonstrated. K2Cr2O7 additive was used to improve adhesion and facilitate growth of the ZnO nanorod network over the SiO2/Si substrate. Transistor characteristics obtained in the dark resemble those of the n-channel-mode field-effect transistor (FET). The devices showed I on/ I off ratio above 8 × 102 under dark condition, field-effect mobility of 4.49 cm2 V-1 s-1, and threshold voltage of -12 V. Further, under ultraviolet (UV) illumination, the FET exhibited sensitivity of 2.7 × 102 in off-state (-10 V) versus 1.4 in on-state (+9.7 V) of operation. FETs based on such nanorod networks showed good photoresponse, which is attributed to the large surface area of the nanorod network. The growth temperature for ZnO nanorod networks was kept at 110°C, enabling a low-temperature, cost-effective, simple approach for high-performance ZnO-based FETs for large-scale production. The role of network interfaces in the FET performance is also discussed.

  11. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean.

    PubMed

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F; McWilliams, James C

    2016-03-15

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth.

  12. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean

    PubMed Central

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F.; McWilliams, James C.

    2016-01-01

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth. PMID:26929376

  13. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy

  14. Microbial anaerobic methane cycling in the subseafloor at the Von Damm hydrothermal vent field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Reveillaud, J. C.; Stepanauskas, R.; McDermott, J. M.; Sylva, S. P.; Seewald, J.

    2013-12-01

    The Mid-Cayman Rise (MCR) is Earth's deepest and slowest spreading mid-ocean ridge located in the western Caribbean. With an axial rift valley floor at a depth of ~4200-6500 m, it represents one of the deepest sections of ridge crest worldwide. In 2009, the world's deepest hydrothermal vents (Piccard at 4960 m) and an ultramafic-influenced system only 20 km away on top of an oceanic core complex (Von Damm at 2350 m) were discovered along the MCR. Each site is hosted in a distinct geologic setting with different thermal and chemical regimes. The Von Damm site is a particularly interesting location to examine chemolithoautotrophic subseafloor microbial communities due to the abundant hydrogen, methane, and organic compounds in the venting fluids. Here, we used a combination of stable isotope tracing, next-generation sequencing, and single cell techniques to determine the identity, activity, and genomic repertoire of subseafloor anaerobic archaea involved in methane cycling in hydrothermal fluids venting at the Von Damm site. Molecular sequencing of phylogenetic marker genes revealed the presence of diverse archaea that both generate and consume methane across a geochemical and thermal spectrum of vents. Stable isotope tracing experiments were used to detect biological utilization of formate and dissolved inorganic carbon, and methane generation at 70 °C under anaerobic conditions. Results indicate that methanogenesis with formate as a substrate is occurring at 70 °C at two Von Damm sites, Ginger Castle and the Main Orifice. The results are consistent with thermodynamic predictions for carbon speciation at the temperatures encountered at the ultramafic-hosted Von Damm, where formate is predicted to be thermodynamically stable, and may thus serve as a an important source of carbon. Diverse thermophilic methanogenic archaea belonging to the genera Methanothermococcus were detected at all vent sites with both 16S rRNA tag sequencing and single cell sorting. Other

  15. Hydrothermal Petroleum in Active Continental Rift: Lake Chapala, Western Mexico, Initial Results.

    NASA Astrophysics Data System (ADS)

    Zarate-del Valle, P. F.; Simoneit, B. R.; Ramirez-Sanchez, H. U.

    2003-12-01

    Lake Chapala in western Mexico is located partially in the Citala Rift, which belongs to the well-known neotectonic Jalisco continental triple junction. The region is characterized by active volcanism (Ceboruco, Volcan de Fuego), tectonic (1995 earthquake, M=8, 40-50 mm to SW) and hydrothermal (San Juan Cosala & Villa Corona spas and La Calera sinter deposit) activities. Hydrothermal petroleum has been described in active continental rift (East African Rift) and marine spreading zones (Guaymas Basin, Gulf of California). In 1868 the Mexican local press reported that manifestations of bitumen were appearing in front of the Columba Cap on the mid south shore of Lake Chapala. This bitumen is linked to the lake bottom and when the water level decreases sufficiently it is possible to access these tar bodies as islands. Because of these manifestations the Mexican oil company (PEMEX) drilled an exploration well (2,348m) at Tizapan El Alto without success. Hydrothermal activity is evident in the tar island zone as three in-shore thermal springs (26.8 m depth, 48.5° C, pH 7.8 and oriented N-S). The preliminary analyses by GC-MS of the tar from these islands indicate hydrothermal petroleum derived from lake sedimentary organic matter, generated at low temperatures (150° -200° C). The tars contain no n-alkanes, no PAH or other aromatics, but a major UCM of branched and cyclic hydrocarbons and mature biomarkers derived from lacustrine biota. The biomarkers consist of mainly 17α (H),21β (H)-hopanes ranging from C27 to C34 (no C28), gammacerane, tricyclic terpanes (C20-C26), carotane and its cracking products, and drimanes (C14-C16). The biomarker composition indicates an organic matter source from bacteria and algae, typical of lacustrine ecosystems. 14C dating of samples from two tar islands yielded ages exceeding 40 kyrs, i.e., old carbon from hydrothermal/tectonic remobilization of bitumen from deeper horizons to the surface. The occurrence of hydrothermal petroleum in

  16. Volcanic and Tectonic Setting of Hydrothermal Activity on the Southern Mid-Atlantic Ridge, 4° - 11°S

    NASA Astrophysics Data System (ADS)

    Melchert, B.; Devey, C. W.; German, C. R.; Haase, K. M.; Koschinsky, A.; Lackschewitz, K.; Yoerger, D. R.

    2006-12-01

    The recurrence rate of volcanism at mid-ocean ridges should drop with spreading rate. Although the southern Mid-Atlantic Ridge, with a spreading full rate of ~3.6 cm/yr, might therefore be expected to show only sporadic magmatic activity, we present information on recently-discovered volcanically, tectonically and hydrothermally active areas south of the equator (at 4°48'S and 9°33'S, see also German et al. 2005; Haase et al. 2005 EOS Trans. AGU 86 (52) Fall Meet. Suppl. Abstr. OS21C-04 & -05). Around the 4°48'S area the median valley floor forms a ~10 km wide, hour-glass shaped, plateau with water depths of around 3000 m. Four closely-spaced vent fields (the high-temperature sites Turtle Pits, Red Lion and Comfortless Cove and the diffuse low-temperature Wideawake site) occur along a flat (total relief 50 m), volcanically and tectonically active 2 km section of this plateau (see German et al. 2005, Haase et al. 2005 op. cit. also Koschinsky et al. this meeting). The Turtle Pits site lies within a small depression associated with a fracture marked by aligned collapse pits. This central depression is surrounded by laminated sheet flows to the north and northwest, whereas jumbled flows are more prevalent to the east. Comfortless Cove is also associated with young volcanics and shows strong tectonic influence on vent location. Red Lion in contrast shows no clear tectonic control - it is characterised by four active chimneys which sit directly on a pillow lava floor. The 9°33'S area is situated on 11 km-thick crust (Bruguier et al. 2003 JGR 108 2093) at 1490 m water depth and is marked by fresh pillow lavas, sheet flows, lava lakes and collapse structures. Low- temperature, diffuse hydrothermal activity is abundant in the area (Haase et al. 2005; Koschinsky et al. 2006 op. cit.) as are larger extinct hydrothermal mounds suggesting more vigourous hydrothermalism in the past. All sites are located east of a large NNW trending escarpment flanking horst and graben

  17. Seafloor hydrothermal activity and spreading rates - The Eocene carbon dioxide greenhouse revisited

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Eocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  18. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  19. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted.

    PubMed

    Kasting, J F; Richardson, S M

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  20. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs

  1. Intra-field variability in microbial community associated with phase-separation-controlled hydrothermal fluid chemistry in the Mariner field, the southern Lau Basin

    NASA Astrophysics Data System (ADS)

    Takai, K.; Ishibashi, J.; Lupton, J.; Ueno, Y.; Nunoura, T.; Hirayama, H.; Horikoshi, K.; Suzuki, R.; Hamasaki, H.; Suzuki, Y.

    2006-12-01

    A newly discovered hydrothermal field called the Mariner field at the northernmost central Valu Fa Ridge (VFR) in the Lau Basin was explored and characterized by geochemical and microbiological surveys. The hydrothermal fluid (max. 365 u^C) emitting from the most vigorous vent site (Snow chimney) was boiling just beneath the seafloor at a water depth of 1908 m and two end-members of hydrothermal fluid were identified. Mineral and fluid chemistry of typical brine-rich (Snow chimney and Monk chimney) and vapor-rich (Crab Restaurant chimney) hydrothermal fluids and the host chimney structures were analyzed. Microbial community structures in three chimney structures were also investigated by culture-dependent and - independent analyses. The 16S rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities at the chimney surface zones were different among three chimneys. The bacterial and archaeal rRNA gene communities of the Snow chimney surface were very similar with those in the dead chimneys, suggesting concurrence of metal sulfide deposition at the inside and weathering at the surface potentially due to its large structure and size. Cultivation analysis demonstrated the significant variation in culturability of various microbial components, particularly of thermophilic H2- and/or S-oxidizing chemolithoautotrophs such as the genera Aquifex and Persephonella, among the chimney sites. The culturability of these chemolithoautotrophs might be associated with the input of gaseous energy and carbon sources like H2S, H2 and CH4 from the hydrothermal fluids, and might be affected by phase-separation- controlled fluid chemistry. In addition, inter-fields comparison of microbial community structures determined by cultivation analysis revealed novel characteristics of the microbial communities in the Mariner field of the Lau Basin among the global deep-sea hydrothermal systems.

  2. Mineralogy and Acid-Extractable Geochemistry from the Loki's Castle Hydrothermal Field, Norwegian Sea at 74 degrees N (South Knipovich Ridge)

    NASA Astrophysics Data System (ADS)

    Barriga, F. J.; Fonseca, R.; Dias, S.; Cruz, I.; Carvalho, C.; Relvas, J. M.; Pedersen, R.

    2010-12-01

    The Loki’s Castle hydrothermal vent field was discovered in the summer of 2008 during a cruise led by the Centre of Geobiology of the University of Bergen, integrated in the H2Deep Project (Eurocores, ESF; see Pedersen et al., 2010, AGU Fall Meeting, Session OS26). Fresh volcanic glasses analyzed by EPMA are basalts. The vent site is composed of several active, over 10 m tall chimneys, producing up to 320 C fluid, at the top of a very large sulfide mound (estimated diameter 200 m). Mineralogy: The main sulfide assemblage in chimneys consists of sphalerite (Sp), pyrite (Py) and pyrrhotite, with lesser chalcopyrite (Ccp). Sulphide-poor selected samples collected at the base of chimneys are mostly composed of anhydrite (Anh), gypsum and talc (Tlc). Association of quartz, anhydrite, gypsum and barite were also found in some of the samples. The sulphide-poor samples from the base of the chimneys denote seawater interaction with the hydrothermal fluid and consequent decrease in temperature, precipitating sulfates. Sphalerite compositions are Zn(0.61-0.70)Fe(0.39-0.30)S. The variations in Fe content are consistent with those of hot, reduced hydrothermal fluids. The observed sulfide assemblage is consistent with the temperature of 320C measured in Loki’s Castle vents. Compositional zonation in sphalerites suggests different pulses of activity of the hydrothermal system, with higher contents of Zn in the center of the crystals. Geochemistry: Here we report preliminary data part of a major analytical task of sequential extraction of metals from sediments in the vicinity of Loki’s Castle, in an attempt to detect correlations with microbial populations and/or subseafloor mineralized intervals. The abundances of Cu, Pb, Ni, Cr, Zn, Fe, Mn and Co in sediments were determined by aqua regia extraction on subsamples from 7 gravity cores. Several anomalous intervals were sampled, in which Cu<707ppm, Ni shows many weak peaks (<50ppm), Cr shows 6 peaks (<121ppm), Zn shows 4 well

  3. Discovery of new hydrothermal activity and chemosynthetic fauna on the Central Indian Ridge at 18°-20° S.

    PubMed

    Nakamura, Kentaro; Watanabe, Hiromi; Miyazaki, Junichi; Takai, Ken; Kawagucci, Shinsuke; Noguchi, Takuro; Nemoto, Suguru; Watsuji, Tomo-o; Matsuzaki, Takuya; Shibuya, Takazo; Okamura, Kei; Mochizuki, Masashi; Orihashi, Yuji; Ura, Tamaki; Asada, Akira; Marie, Daniel; Koonjul, Meera; Singh, Manvendra; Beedessee, Girish; Bhikajee, Mitrasen; Tamaki, Kensaku

    2012-01-01

    Indian Ocean hydrothermal vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean hydrothermal systems. In particular, since its discovery in 2001, much attention has been paid to a so-called 'scaly-foot' gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean hydrothermal vents, only two hydrothermal vent fields have been investigated in the Indian Ocean. Here we report two newly discovered hydrothermal vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR hydrothermal environments to date, and even identified previously unreported taxa. Moreover, a new morphotype of 'scaly-foot' gastropod has been found at the Solitaire field. The newly discovered 'scaly-foot' gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of 'scaly-foot' gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to 'scaly-foot' gastropods. Our new findings at the two newly discovered hydrothermal vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean.

  4. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization

    NASA Technical Reports Server (NTRS)

    Mautner, M. N.; Leonard, R. L.; Deamer, D. W.

    1995-01-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350 degrees C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 x 10(-3) N m-1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120 degrees C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of microorganisms to metabolize extraterrestrial organics.

  5. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.; Leonard, Robert L.; Deamer, David W.

    1995-02-01

    Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350°C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 × 10 -3 N m -1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120°C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of micro-organisms to metabolize extraterrestrial organics.

  6. Holocene carbonate record of Lake Kivu reflects the history of hydrothermal activity.

    PubMed

    Votava, Jillian E; Johnson, Thomas C; Hecky, Robert E

    2017-01-10

    The sediment record of Lake Kivu reveals a complex volcanogenic and climatic Holocene history. Investigation of the inorganic carbonate record dates the onset of carbonate deposition in the mid-Holocene in Kivu's deep northern and eastern basins and identifies conditions enabling deposition. The magnitude and timing of carbonate-rich sedimentation is not so much controlled by climate but, instead, linked strongly to hydrothermal activity in the basin. Sublacustrine springs supply the vast majority of the calcium and carbonate ions required for supersaturation with respect to aragonite. This major hydrothermal activity that permanently stratifies Lake Kivu today was initiated ∼3,100 y before present (3.1 ka), when carbonate-rich sediments first appeared in the Holocene record. Aragonite is the dominant CaCO3 mineral present in the lake deposits. Both δ(13)C and δ(18)O of the aragonite are enriched above the expected kinetic fractionation of meteoric waters, suggesting a volcanogenic influence on the formation waters. Repeated major fluctuations in the carbonate record after 3.1 ka therefore most likely reflect the historical variation in hydrothermal inputs.

  7. Holocene carbonate record of Lake Kivu reflects the history of hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Votava, Jillian E.; Johnson, Thomas C.; Hecky, Robert E.

    2017-01-01

    The sediment record of Lake Kivu reveals a complex volcanogenic and climatic Holocene history. Investigation of the inorganic carbonate record dates the onset of carbonate deposition in the mid-Holocene in Kivu’s deep northern and eastern basins and identifies conditions enabling deposition. The magnitude and timing of carbonate-rich sedimentation is not so much controlled by climate but, instead, linked strongly to hydrothermal activity in the basin. Sublacustrine springs supply the vast majority of the calcium and carbonate ions required for supersaturation with respect to aragonite. This major hydrothermal activity that permanently stratifies Lake Kivu today was initiated ˜3,100 y before present (3.1 ka), when carbonate-rich sediments first appeared in the Holocene record. Aragonite is the dominant CaCO3 mineral present in the lake deposits. Both δ13C and δ18O of the aragonite are enriched above the expected kinetic fractionation of meteoric waters, suggesting a volcanogenic influence on the formation waters. Repeated major fluctuations in the carbonate record after 3.1 ka therefore most likely reflect the historical variation in hydrothermal inputs.

  8. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Martins, Inês; Romão, Célia V; Goulart, Joana; Cerqueira, Teresa; Santos, Ricardo S; Bettencourt, Raul

    2016-03-01

    Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism.

  9. Morphological, structural and field emission characterization of hydrothermally synthesized MoS2-RGO nanocomposite

    NASA Astrophysics Data System (ADS)

    Bansode, Sanjeewani R.; Harpale, Kashmira; Khare, Ruchita T.; Walke, Pravin S.; More, Mahendra A.

    2016-11-01

    A few layered MoS2-RGO nanocomposite has been synthesized employing a facile hydrothermal synthesis route. The morphological and structural analysis performed using SEM, TEM, HRTEM and Raman spectroscopy clearly reveal formation of vertically aligned a few layer thick MoS2 sheets on RGO surface. Attempts have been made to reveal the influence of graphite oxide (GO) percentage on morphology of the nanocomposite. Furthermore, field emission (FE) investigations of as-synthesied MoS2-RGO nanocomposite are observed to be superior to the pristine MoS2 emitter. The values of turn-on field, defined at emission current density of 10 μA cm-2, are found to be 2.6 and 4.7 V μm-1 for the MoS2-RGO (5%) nanocomposite and pristine MoS2 emitters, respectively. The value of threshold field, defined at emission current density of 100 μA cm-2, is found to be 3.1 V μm-1 for MoS2-RGO nanocomposite. The emission current stability at the pre-set value of 1 μA over 3 h duration is found to be fairly good, characterized by current fluctuation within ±18% of the average value. The enhanced FE behavior for MoS2-RGO nanocomposite is attributed to a high enhancement factor (β) of 4128 and modulation of the electronic properties. The facile approach adopted herein can be extended to enhance various functionalities of other nanocomposites.

  10. Arsenic speciation in sinter mineralization from a hydrothermal channel of El Tatio geothermal field, Chile

    NASA Astrophysics Data System (ADS)

    Alsina, Marco A.; Zanella, Luciana; Hoel, Cathleen; Pizarro, Gonzalo E.; Gaillard, Jean-François; Pasten, Pablo A.

    2014-10-01

    El Tatio geothermal field is the principal natural source of arsenic for the Loa River, the main surface water resource in the hyper-arid Atacama Desert (Antofagasta Region, Northern Chile). Prior investigations by bulk X-ray absorption spectroscopy have identified hydrous ferric oxides as the principal arsenic-containing phase in sinter material from El Tatio, suggesting sorption as the main mechanism for arsenic scavenging by the solid phases of these hot spring environments. Here we examine siliceous sinter material sampled from a hydrothermal channel using synchrotron based X-ray micro-probe techniques, including As and Fe Kα X-ray fluorescence (μ-XRF), As K-edge X-ray absorption near edge structure (μ-XANES), and X-ray diffraction (μ-XRD). Least-squares linear fitting of μ-XANES spectra shows that arsenic is predominantly present as arsenate sorbed on hydrous ferric oxides (63% molar proportion), but we also identify nodular arsenide micro-mineralizations (37% molar proportion) similar to loellingite (FeAs2), not previously detected during bulk-scale analysis of the sinter material. Presence of arsenide mineralizations indicates development of anoxic environments on the surface of the siliceous sinter, and suggests a more complex biogeochemistry for arsenic than previously observed for circum-neutral pH brine hot spring environments.

  11. Temporal and spatial variation in temperature experienced by macrofauna at Main Endeavour hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Lee, Raymond W.; Robert, Katleen; Matabos, Marjolaine; Bates, Amanda E.; Juniper, S. Kim

    2015-12-01

    A significant focus of hydrothermal vent ecological studies has been to understand how species cope with various stressors through physiological tolerance and biochemical resistance. Yet, the environmental conditions experienced by vent species have not been well characterized. This objective requires continuous observations over time intervals that can capture environmental variability at scales that are relevant to animals. We used autonomous temperature logger arrays (four roughly parallel linear arrays of 12 loggers spaced every 10-12 cm) to study spatial and temporal variations in the thermal regime experienced by hydrothermal vent macrofauna at a diffuse flow vent. Hourly temperatures were recorded over eight months from 2010 to 2011 at Grotto vent in the Main Endeavour vent field on the Juan de Fuca Ridge, a focus area of the Ocean Networks Canada cabled observatory. The conspicuous animal assemblages in video footage contained Ridgeia piscesae tubeworms, gastropods (primarily Lepetodrilus fucensis), and polychaetes (polynoid scaleworms and the palm worm Paralvinella palmiformis). Two dimensional spatial gradients in temperature were generally stable over the deployment period. The average temperature recorded by all arrays, and in some individual loggers, revealed distinctive fluctuations in temperature that often corresponded with the tidal cycle. We postulate that this may be related to changes in bottom currents or fluctuations in vent discharge. A marked transient temperature increase lasting over a period of days was observed in April 2011. While the distributions and behavior of Juan de Fuca Ridge vent invertebrates may be partially constrained by environmental temperature and temperature tolerance, except for the one transient high-temperature event, observed fluid temperatures were generally similar to the thermal preferences for some species, and typically well below lethal temperatures for all species. Average temperatures of the four arrays

  12. Stable isotope fractionation at a glacial hydrothermal field: implications for biogeochemistry and biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Cousins, C.; Bowden, R.; Fogel, M.; Cockell, C.; Crawford, I.; Gunn, M.; Karlsson, M. T.; Thorsteinsson, T.

    2012-12-01

    Hydrothermal environments that arise through the interaction between volcanogenic heat and glacial ice are ideal sites for understanding microbial biogeochemical processes on Earth, and also potentially on Mars where similar volcano-cryosphere interactions are thought to have occurred in the past. The Kverkfjöll subglacial basaltic volcano in central Iceland is geographically isolated, with little influence from flora, fauna, and human activity. Major environmental inputs include geothermal heat, meltwater from ice and snow, and outgassing of CO2, H2S, and SO2. Large physiochemical gradients exist, from steaming fumaroles and boiling hydrothermal pools, to frozen geothermal ground and glacial ice. Stable isotope measurements of total organic carbon, total sulphur, and total nitrogen were coupled with metagenomic analysis of the residing microbial communities, with the aim to identify biogeochemical relationships and processes operating within the Kverkfjöll geothermal environment, and also to identify any isotopic biosignatures that could be preserved within geothermal sediments. This study focused on a variety of samples taken along a hot spring stream that fed into a large ice-confined geothermal lake. Samples analysed range from unconsolidated hot spring sediments, well-developed microbial mats, and dissolved sulphate from hot spring fluids. From the anoxic spring source, the stream water increases in dissolved oxygen, decreases in temperature, yet maintains a pH of ~4. The spring environment is dominated by dissolved sulphate (~2.3 mM), with lower levels of nitrate (~50 μM), phosphorus (~5μM), and ammonium (~1.5 μM). Stable S isotope analysis reveals a fractionation of ~3.2 ‰ between sediment sulphide (as pyrite; δ34S ~0‰), and dissolved water sulphate (δ34S ~3.2 ‰) consistently along the hot spring stream, indicating the presence of an active sulphur cycle, although not one dominated by sulphate reduction (e.g. very negative sulphide δ34S). This

  13. Geochemical characteristics of sinking particles in the Tonga arc hydrothermal vent field, southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jeek; Kim, Jonguk; Pak, Sang Joon; Ju, Se-Jong; Yoo, Chan Min; Kim, Hyun Sub; Lee, Kyeong Yong; Hwang, Jeomshik

    2016-10-01

    Studies of sinking particles associated with hydrothermal vent fluids may help us to quantify mass transformation processes between hydrothermal vent plumes and deposits. Such studies may also help us understand how various types of hydrothermal systems influence particle flux and composition. However, the nature of particle precipitation out of hydrothermal vent plumes in the volcanic arcs of convergent plate boundaries has not been well studied, nor have the characteristics of such particles been compared with the characteristics of sinking particles at divergent boundaries. We examined sinking particles collected by sediment traps for about 10 days at two sites, each within 200 m of identified hydrothermal vents in the south Tonga arc of the southwestern Pacific. The total mass flux was several-fold higher than in the non-hydrothermal southwest tropical Pacific. The contribution of non-biogenic materials was dominant (over 72%) and the contribution of metals such as Fe, Mn, Cu, and Zn was very high compared to their average levels in the upper continental crust. The particle flux and composition indicate that hydrothermal authigenic particles are the dominant source of the collected sinking particles. Overall, our elemental ratios are similar to observations of particles at the divergent plate boundary in the East Pacific Rise (EPR). Thus, the nature of the hydrothermal particles collected in the south Tonga arc is probably not drastically different from particles in the EPR region. However, we observed consistent differences between the two sites within the Tonga arc, in terms of the contribution of non-biogenic material, the radiocarbon content of sinking particulate organic carbon, the ratios of iron to other metals (e.g. Cu/Fe and Zn/Fe), and plume maturity indices (e.g. S/Fe). This heterogeneity within the Tonga arc is likely caused by differences in physical environment such as water depth, phase separation due to subcritical boiling and associated sub

  14. Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12°50′N core complex (Mid-Atlantic ridge): a new ultramafic-hosted seafloor hydrothermal deposit?

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Billstrom, Kjell; Kamenov, George D.; Shanks, Wayne C.; Stummeyer, Jens

    2011-01-01

    Dredging along the west wall of the core complex at 12°50′N Mid-Atlantic Ridge sampled a number of black oxyhydroxide crusts and breccias cemented by black and dark brown oxyhydroxide matrix. Black crusts found on top of basalt clasts (rubble) are mainly composed of Mn-oxides (birnessite, 10-Å manganates) with thin films of nontronite and X-ray amorphous FeOOH on their surfaces. Their chemical composition (low trace- and rare earth-element contents, high Li and Ag concentrations, rare earth element distribution patterns with negative both Ce and Eu anomalies), Sr–Nd–Pb-isotope systematic and O-isotope data suggest low-temperature (~ 20 °C) hydrothermal deposition from a diffuse vent area on the seafloor. Mineralogical, petrographic and geochemical investigations of the breccias showed the rock clasts were hydrothermally altered fragments of MORBs. Despite the substantial mineralogical changes caused by the alteration the Sr–Nd–Pb-isotope ratios have not been significantly affected by this process. The basalt clasts are cemented by dark brown and black matrix. Dark brown cement exhibits geochemical features (very low trace- and rare earth- element contents, high U concentration, rare earth element distribution pattern with high positive Eu anomaly) and Nd–Pb-isotope systematics (similar to that of MORB) suggesting that the precursor was a primary, high-temperature Fe-sulfide, which was eventually altered to goethite at ambient seawater conditions. The data presented in this work points towards the possible existence of high- and low-temperature hydrothermal activity at the west wall of the core complex at 12°50′N Mid-Atlantic Ridge. Tectonic setting at the site implies that the proposed hydrothermal field is possibly ultramafic-hosted.

  15. Volcanic and Hydrothermal Activity of the North Su Volcano: New Insights from Repeated Bathymetric Surveys and ROV Observations

    NASA Astrophysics Data System (ADS)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.

    2013-12-01

    Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places

  16. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass.

    PubMed

    Hao, Wenming; Björkman, Eva; Yun, Yifeng; Lilliestråle, Malte; Hedin, Niklas

    2014-03-01

    Particles of iron oxide (Fe3O4 ; 20–40 nm) were embedded within activated carbons during the activation of hydrothermally carbonized (HTC) biomasses in a flow of CO2. Four different HTC biomass samples (horse manure, grass cuttings, beer production waste, and biosludge) were used as precursors for the activated carbons. Nanoparticles of iron oxide formed from iron catalyst included in the HTC biomasses. After systematic optimization, the activated carbons had specific surface areas of about 800 m2g1. The pore size distributions of the activated carbons depended strongly on the degree of carbonization of the precursors. Activated carbons prepared from highly carbonized precursors had mainly micropores, whereas those prepared from less carbonized precursors contained mainly mesopores. Given the strong magnetism of the activated carbon–nano-Fe3O4 composites, they could be particularly useful for water purification.

  17. Hydrothermal Activity on the Southern Mid-Atlantic Ridge: Tectonically- and Volcanically-Hosted High Temperature Venting at 2-7 Degrees S

    NASA Astrophysics Data System (ADS)

    German, C. R.; Parson, L. M.; Murton, B. J.; Bennett, S. A.; Connelly, D. P.; Evans, A. J.; Prien, R. D.; Ramirez-Llodra, E. Z.; Shank, T. M.; Yoerger, D. R.; Jakuba, M.; Bradley, A. M.; Baker, E. T.; Nakamura, K.

    2005-12-01

    We have conducted a systematic investigation for hydrothermal activity along the southern Mid-Atlantic Ridge, 2°30-6°50 S. Our initial approach was to use a combination of multi-beam swath mapping, deep-tow sidescan sonar imaging and water column plume-detection using MAPRs and CTD-rosette system to locate new sites of hydrothermal activity immediately south of the Romanche and Chain Fracture zones. We wanted to test whether these geologic features represent a significant barrier to gene-flow along-axis away from northern MAR vent ecosystems. During the first leg of our research cruise (RRS Charles Darwin cruise CD169, Feb-Mar 2005) we used this approach to identify two hydrothermally active regions, one in a non-transform discontinuity near 4°S and the other in a segment centre characterised by very fresh sheet-flows near 5°S. During Leg 2 we returned to the second of these areas and deployed ABE, WHOI's autonomous underwater vehicle, in a three-phase strategy to prospect for, locate, and image new hydrothermal fields. During Phase 1 two discrete target areas were located ca. 1km apart along strike within the segment centre. During Phase 2 these two areas were each mapped in detail using an SM2000 system while in situ optical back scatter, Eh, temperature, Mn and Fe(II) sensors were used to confirm the interception of buoyant hydrothermal plumes rising from the seafloor. Finally we redeployed ABE (Phase 3) to collect photo-mosaics of each of two new vent-areas whilst simultaneously sampling their buoyant plumes by CTD-rosette for TDMn, Fe and CH4 analyses.

  18. Hydrothermal Alteration in Submarine Basaltic Rocks from the Reykjanes Geothermal Field, Iceland. (Invited)

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Schiffman, P.; Fowler, A. P.; Marks, N.; Fridleifsson, G.; Elders, W. A.

    2013-12-01

    The Iceland Deep Drilling Project (IDDP) is preparing to drill to 4-5 km in the Reykjanes Geothermal Field to sample geothermal fluids at supercritical temperature and pressure for power generation. The Reykjanes geothermal field is the on-land extension of the Reykjanes Ridge spreading center. The upper 1-2 kilometers drilled at Reykjanes are submarine basalts and basaltic sediments, hyalloclastites, and breccias, with an increasing proportion of basaltic intrusive rocks below 2 km depth. Geothermal fluids are evolved seawater with a composition similar to mid-ocean ridge hydrothermal systems. Zn- and Cu-rich sulfide scale, locally enriched in Au and Ag, are deposited in production pipes. The sulfide deposits are compositionally and isotopically similar to seafloor massive sulfides. In anticipation of deeper drilling, we have investigated the mineralogy and geochemistry of drill cuttings from a 3 km deep well (RN-17). The depth zoning of alteration minerals is similar to that described from other Icelandic geothermal fields, and is comparable to observed seafloor metamorphic gradients in ODP drill holes and ophiolites. Chlorite-epidote alteration occurs at depths >400 m and passes downhole through epidote-actinolite alteration and into amphibole facies (hornblende-calcic plagioclase) alteration below 2.5 km. Local zones of high temperature (>800°C), granoblastic-textured, pyroxene hornfels, are interpreted to form by contact metamorphism during dike/sill emplacement. Similar granoblasically altered basalts were recovered from the base of the sheeted dikes in IODP Hole 1256D. Downhole compositional variations of drill cuttings, collected every 50 m, suggest that rocks below ~ 2 km are little altered. Whole-rock oxygen isotope profiles are consistent with low water/rock ratios, but suggest that early stages of hydrothermal alteration included meteoric water-derived fluids. Strontium isotope profiles indicate more extensive exchange with seawater-derived fluids

  19. Ammonium sulfide-assisted hydrothermal activation of palygorskite for enhanced adsorption of methyl violet.

    PubMed

    Tian, Guangyan; Wang, Wenbo; Kang, Yuru; Wang, Aiqin

    2016-03-01

    Herein, palygorskite (PAL) was activated via a simple hydrothermal process in the presence of ammonium sulfide, and the effects of activation on the microstructure, physico-chemical feature and adsorption behaviors of PAL were intensively investigated. The hydrothermal process evidently improved the dispersion of PAL crystal bundles, increased surface negative charges and built more active -Si-O(-) groups served as the new "adsorption sites". The adsorption property of the activated PAL for Methyl Violet (MV) was systematically investigated by optimizing the adsorption variables, including pH, ionic strength, contact time and initial MV concentration. The activated PAL exhibited a superior adsorption capability to the raw PAL for the removal of MV (from 156.05 to 218.11mg/g). The kinetics for MV adsorption followed pseudo second-order kinetic models, while the isotherm and thermodynamics results showed that the adsorption pattern well followed the Langmuir model. The structure analysis of PAL before and after adsorption demonstrated that electrostatic interaction and chemical association of -X-O(-) are the prominent driving forces for the adsorption process.

  20. Estimating the Heat and Mass Flux at the ASHES Hydrothermal Vent Field with the Sentry Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Kinsey, J. C.; Crone, T. J.; Mittelstaedt, E. L.; Medagoda, L.; Fourie, D.; Nakamura, K.

    2014-12-01

    Hydrothermal venting influences ocean chemistry, the thermal and chemical structure of the oceanic crust, the style of accretion at mid-ocean ridges, and the evolution of unique and diverse chemosynthetic ecosystems. Surprisingly, only a few studies have attempted to constrain the volume and heat flux of entire hydrothermal vent fields given that axially-hosted hydrothermal systems are estimated to be responsible for ~20-25% of the total heat flux out of the Earth's interior, as well as potentially playing a large role in global and local biogeochemical cycles. However, same-site estimates can vary greatly, such as at the Lucky Strike Field where estimates range from 100 MW to 3800 MW. We report a July 2014 field program with the Sentry AUV that obtains the water velocity and heat measurements necessary to estimate the total heat and mass flux emanating from the ASHES hydrothermal vent field. We equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV) with an inertial measurement unit attached, two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, to measure the temperature and water velocity. This sensing suite provided more accurate measurements than previous AUV based studies. A control volume approach was employed in which Sentry was pre-programmed to survey a 150m by 150m box centered over the vent field flying a "mowing the lawn" pattern at 5m trackline spacing followed by a survey of the perimeter. During a 40 hour survey, the pattern was repeated 9 times allowing us to obtain observations over multiple tidal cycles. Concurrent lowered ADCP (LADCP) measurements were also obtained. Water velocity data obtained with Sentry was corrected for platform motion and then combined with the temperature measurements to estimate heat flux. Analysis of this data is on-going, however these experiments permit us to quantify the heat and mass exiting the control volume, and potentially provide the most accurate and highest resolution heat

  1. Subaqueous cryptodome eruption, hydrothermal activity and related seafloor morphologies on the andesitic North Su volcano

    NASA Astrophysics Data System (ADS)

    Thal, Janis; Tivey, Maurice; Yoerger, Dana R.; Bach, Wolfgang

    2016-09-01

    North Su is a double-peaked active andesite submarine volcano located in the eastern Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous and varied hydrothermal system with black and white smoker vents along with several areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV observations from 2006 and 2011 combined with morphologic features identified from repeated bathymetric surveys in 2002 and 2011 documents the emplacement of a volcanic cryptodome between 2006 and 2011. We use our observations and rock analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An intense fragmentation process produced abundant blocky clasts of a heterogeneous magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts next, variably (1-100%) altered clasts, hydrothermal precipitates and crystal fragments. The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. fluidal shape or chilled margin, were not applicable to distinguish between pre-existing non-altered clasts and juvenile clasts. This deposit is updomed during further injection of magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts to develop variably rounded shapes. An abundance of blocky clasts and the lack of clasts typical for the contact of liquid lava with water is interpreted to be the result of a cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The high viscosity allows the lava to form blocky and short lobes. The pervasive volcaniclastic cover on North Su is

  2. Microbial Diversity of Carbonate Chimneys at the Lost City Hydrothermal Field: Implications for Life-Sustaining Systems in Peridotite Seafloor Environments

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Cimino, P.; Kelley, D. S.; Baross, J. A.

    2002-12-01

    The Lost City Hydrothermal Field (LCHF) is a novel peridotite-hosted vent environment discovered in Dec. 2000 at 30 N near the Mid-Atlantic Ridge. This field contains multiple large (up to 60 m), carbonate chimneys venting high pH (9-10), moderate temperature (45-75 C) fluids. The LCHF is unusual in that it is located on 1.5 my-old oceanic crust, 15 km from the nearest spreading axis. Hydrothermal flow in this system is believed to be driven by exothermic serpentinization reactions involving iron-bearing minerals in the underlying seafloor. The conditions created by such reactions, which include significant quantities of dissolved methane and hydrogen, create habitats for microbial communities specifically adapted to this unusual vent environment. Ultramafic, reducing hydrothermal environments like the LCHF may be analogous to geologic settings present on the early Earth, which have been suggested to be important for the emergence of life. Additionally, the existence of hydrothermal environments far away from an active spreading center expands the range of potential life-supporting environments elsewhere in the solar system. To study the abundance and diversity of microbial communities inhabiting the environments that characterize the LCHF, carbonate chimney samples were analyzed by microscopic and molecular methods. Cell densities of between 105 and 107 cells/g were observed within various samples collected from the chimneys. Interestingly, 4-11% of the microbial population in direct contact with vent fluids fluoresced with Flavin-420, a key coenzyme involved in methanogenesis. Enrichment culturing from chimney material under aerobic and anaerobic conditions yielded microorganisms in the thermophilic and mesophilic temperature regimes in media designed for methanogenesis, methane-oxidation, and heterotrophy. PCR analysis of chimney material indicated the presence of both Archaea and Eubacteria in the carbonate samples. SSU rDNA clone libraries constructed from the

  3. Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies

    USGS Publications Warehouse

    Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.

    2008-01-01

    controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite-smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite-smectite are hydrothermal alteration products of the background turbiditic sediment. ?? 2007 Elsevier B.V. All rights reserved.

  4. On the Interaction of a Vigorous Hydrothermal System with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.

    2009-12-01

    The extent of the interaction between hydrothermal systems and active magma chambers has long been of fundamental interest to the development of ore deposits, cooling of magma chambers, and dehydration of the subducting lithosphere. As volatiles build up in the residual magma in the trailing edge of magmatic solidification fronts, is it possible that volatiles are transferred from the active magma to the hydrothermal system and vice versa? Does the external fracture front associated with vigorous hydrothermal systems sometimes propagate into the solidification front, facilitating volatile exchange? Or is the magma always sealed at temperatures above some critical level related to rock strength and overpressure? The degree of hydrothermal interaction in igneous systems is generally gauged in post mortem studies of δ18O and δD, where it has been assumed that a fracture front develops about the magma collapsing inward with cooling. H.P. Taylor and D. Norton's (1979; J. Petrol.)seminal work inferred that rocks are sealed with approach to the solidus and there is little to no direct interaction with external volatiles in the active magma. In active lava lakes a fracture front develops in response to thermal contraction of the newly formed rock once the temperature drops to ~950°C (Peck and Kinoshita,1976;USGS PP935A); rainfall driven hydrothermal systems flash to steam near the 100 °C isotherm in the solidified lake and have little effect on the cooling history (Peck et al., 1977; AJS). Lava lakes are fully degassed magmas and until the recent discovery of the Puna Magma Chamber (Teplow et al., 2008; AGU) no active magma was known at sufficiently great pressure to contain original volatiles. During the course of routine drilling of an injection well at the Puna Geothermal Venture (PGV) well-field, Big Island, Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m, continued drilling to 2488 m encountered a melt

  5. Microearthquakes beneath the Hydrothermal Vent Fields on the Endeavour Segment of the Juan de Fuca Ridge: Results from the Keck Seismic/Hydrothermal Observatory

    NASA Astrophysics Data System (ADS)

    Bowman, D.; Parker, J.; Wilcock, W.; Hooft, E.; Barclay, A.; Toomey, D.; McGill, P.; Stakes, D.; Schmidt, C.; Patel, H.

    2005-12-01

    The W.M. Keck Foundation is supporting the operation of a small seismic network in the vicinity of the hydrothermal vent fields on the central portion of the Endeavour Segment of the Juan de Fuca Ridge. This is part of a program to conduct prototype seafloor observatory experiments to monitor the relationships between episodic deformation, fluid venting and microbial productivity at oceanic plate boundaries. The Endeavour seismic network was installed in the summer of 2003 and comprises seven GEOSense three-component short-period corehole seismometers and one buried Guralp CMG-1T broadband seismometer. A preliminary analysis of the first year of data was undertaken as part of an undergraduate research apprenticeship class taught at the University of Washington's Friday Harbor Laboratories and additional analysis has since been completed by two of the apprentices and by two IRIS undergraduate interns. Over 12,000 earthquakes were located along the ridge-axis of the Endeavour, of which ~3,000 occur within or near the network and appear to be associated with the hydrothermal systems. The levels of seismicity are strongly correlated with the intensity of venting with particularly high rates of seismicity beneath the Main and High Rise Fields and substantially lower rates to the north beneath the relatively inactive Salty Dawg and Sasquatch fields. We have used both HYPOINVERSE and a grid search algorithm to investigate the distribution of focal depths assuming a variety of one-dimensional velocity models. The preliminary results show that the majority of earthquakes occur within a narrow depth range and may represent an intense zone of seismicity within a reaction overlying the axial magma chamber at ~2.5 km depth. However, the mean focal depth is strongly dependent on the relative weights assigned to the S arrivals. We infer from the inspection of residuals that no combination of the P- and S-wave velocity models we have so far investigated are fully consistent with

  6. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  7. Hydrothermal Synthesis of Ultrasmall Pt Nanoparticles as Highly Active Electrocatalysts for Methanol Oxidation

    PubMed Central

    Ji, Wenhai; Qi, Weihong; Tang, Shasha; Peng, Hongcheng; Li, Siqi

    2015-01-01

    Ultrasmall nanoparticles, with sizes in the 1–3 nm range, exhibit unique properties distinct from those of free molecules and larger-sized nanoparticles. Demonstrating that the hydrothermal method can serve as a facile method for the synthesis of platinum nanoparticles, we successfully synthesized ultrasmall Pt nanoparticles with an average size of 2.45 nm, with the aid of poly(vinyl pyrrolidone) (PVP) as reducing agents and capping agents. Because of the size effect, these ultrasmall Pt nanoparticles exhibit a high activity toward the methanol oxidation reaction.

  8. Pontibacter amylolyticus sp. nov., isolated from a deep-sea sediment hydrothermal vent field.

    PubMed

    Wu, Yue-Hong; Zhou, Peng; Jian, Shu-Ling; Liu, Zhen-Sheng; Wang, Chun-Sheng; Oren, Aharon; Xu, Xue-Wei

    2016-04-01

    A Gram-stain-negative, short rod-shaped bacterium, designated 9-2T, was isolated from a sediment sample collected from a hydrothermal vent field on the south-west Indian Ridge. It formed red colonies, produced carotenoid-like pigments and did not produce bacteriochlorophyll a. Strain 9-2T was positive for hydrolysis of DNA, gelatin and starch, but negative for hydrolysis of aesculin and Tween 60. The sole respiratory quinone was menaquinone-7 (MK-7). The main polar lipids consisted of phosphatidylethanolamine, one unidentified phospholipid and two unidentified polar lipids. The principal fatty acids (>5%) were summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B), iso-C15:0 and iso-C17:0 3-OH. The genomic DNA G+C content was 49.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 9-2T should be assigned to the genus Pontibacter. Levels of 16S rRNA gene sequence similarity between the new isolate and the type strains of Pontibacter species with validly published names were in the range 94.0-96.5%. On the basis of phenotypic and genotypic data, strain 9-2T represents a novel species of the genus Pontibacter, for which the name Pontibacter amylolyticus sp. nov. is proposed. The type strain is 9-2T (=CGMCC 1.12749T=JCM 19653T=MCCC 1K00278T).

  9. Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Kobayashi, Chiyori; Kakegawa, Takeshi; Yamagishi, Akihiko

    2009-08-01

    The abundance, diversity and composition of bacterial and archaeal communities in the microbial mats at deep-sea hydrothermal fields were investigated, using culture-independent 16S rRNA and functional gene analyses combined with mineralogical analysis. Microbial mats were collected at two hydrothermal areas on the ridge of the back-arc spreading centre in the Southern Mariana Trough. Scanning electron microscope and energy dispersive X-ray spectroscopic (SEM-EDS) analyses revealed that the mats were mainly composed of amorphous silica and contained numerous filamentous structures of iron hydroxides. Direct cell counting with SYBR Green I staining showed that the prokaryotic cell densities were more than 10(8) cells g(-1). Quantitative polymerase chain reaction (Q-PCR) analysis revealed that Bacteria are more abundant than Archaea in the microbial communities. Furthermore, zetaproteobacterial cells accounted for 6% and 22% of the prokaryotic cells in each mat estimated by Q-PCR with newly designed primers and TaqMan probe. Phylotypes related to iron-oxidizers, methanotrophs/methylotrophs, ammonia-oxidizers and sulfate-reducers were found in the 16S rRNA gene clone libraries constructed from each mat sample. A variety of unique archaeal 16S rRNA gene phylotypes, several pmoA, dsrAB and archaeal amoA gene phylotypes were also recovered from the microbial mats. Our results provide insights into the diversity and abundance of microbial communities within microbial mats in deep-sea hydrothermal fields.

  10. Hydrothermal activity and subsurface soil complexity: implication for outgassing processes at Solfatara crater, Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Mayer, Klaus; Scheu, Bettina; Isaia, Roberto; Mangiacapra, Annarita; Gresse, Marceau; Vandemeulebrouck, Jean; Moretti, Roberto; Dingwell, Donald B.

    2016-04-01

    The Solfatara area and its fumaroles are the main surface phenomena of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. The existing fault system appears to have a major control on outgassing which in turn leads to a strong alteration of the volcanic products. Moreover the maar-nature of the crater, and its filling by more recent volcanic deposits, resulted in a complex fractured and multilayered cap to the rising gases. As a consequence the hydrothermal alteration differently affects the rocks within the crater, including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias and lavas. The induced changes in both original microstructure and physical and mechanical properties of the rocks control the outgassing behavior. Here, we report results from a measurement survey conducted in July 2015, and aimed to characterize the in-situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties. The survey also included a mapping of the surficial hydrothermal features and their distributions. Chemical analyses and laboratory measurements (porosity, granulometry) of selected samples were additionally performed. Results show that the crater floor area comprises very different kinds of soils, from fine grained, thin laminated deposits around the two bubbling Fangaia mud pools, to crusted hummock formations along the SE and NE border of the crater. Dry and solid alunite-rich deposits are present in the western and southern part. Furthermore we observed evidences of a beginning of crust formation within the central part of the crater. A large range of surface temperatures, from boiling point to ambient temperature, were measured throughout the surveyed area. Outgassing occurs mainly along the crack system, which has also generated the crusted hummocks. Elsewhere the fluid circulation in the subsoil is favored by the presence of coarse and highly porous sulfur-hardened levels, whereas

  11. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  12. Older Shallow Hydrothermal Activity Along the North Edge of the Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Larson, P. B.; Cosca, M.; Takeuchi, A.; Yano, R.

    2006-12-01

    The Grand Canyon of the Yellowstone River, Yellowstone Park, is incised into more than 300 vertical meters of hydrothermally altered post-caldera rhyolites (Tuff of Sulfur Creek and Canyon Flow, 480 ka). The alteration was produced by older hydrothermal activity that predates cutting of the canyon (latest Pleistocene?), not by the modern hot springs. The Seven Mile Hole area, in the canyon about 5 km below the lower falls of the Yellowstone River and located along the north edge of the caldera, is pervasively altered in the canyon walls north of the river. Two alteration assemblages have been found along and just below the modern rim that was very near the paleo-surface and exposes paleo-hot spring sinter, 1. Illite-silica (quartz and/or opal)-pyrite, and, 2. kaolinite-alunite-silica (quartz and/or opal)-pyrite. Quartz-sulfide veins and quartz and/or opal space fillings crosscut both assemblages. The alteration grades downward to pervasive vuggy silicification (quartz) with illite and disseminated pyrite, about 100 to 200 m below the canyon rim. One alunite sample yields an Ar-Ar age of 138 ka. Preliminary O isotope ratios for silica (quartz) space fillings associated with the alunite alteration range from 2.0 to -2.2 per mil. The mineral assemblages indicate that both acid-sulfate and alkali-chloride hydrothermal fluids altered the rocks in the Seven Mile Hole area. The silica O ratios suggest that the near- surface fluid had an O ratio less than -15 per mil. Projecting this fluid to depth along the hydrostatic boiling curve, accounting for batch steam separation, and ignoring near-surface mixing with shallow local meteoric groundwater, suggest a deep reservoir fluid O ratio less than -20 per mil. The Ar-Ar age shows that the hydrothermal system in this area of the Yellowstone caldera, located near and along the northern caldera wall, has been active for at least 138 ka, and may extend as far back as the age of the Tuff of Sulfur Creek at 480 ka.

  13. Enhanced hydrothermal activity along the East Pacific Rise during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.

    2015-12-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Scaling estimates [1-2] and model results [3-4] indicate that glacial-interglacial changes in sea level should modulate melt production at mid-ocean ridges, an idea that has been confirmed with detailed surveys of ridge bathymetry [4-5]. The nature and timing of associated changes in hydrothermal activity have remained unknown, however, precluding a clear understanding of whether ridge magmatism can act as a negative feedback on ice sheet size. Here we present multiple records of hydrothermal sedimentation spanning 1300 km of the East Pacific Rise (EPR). At each location, the flux of Fe, Mn, and As increased beginning at ~25 kyr BP, reached maximum values by 15 kyr BP, and then decreased into the Holocene. Lateral sediment focusing is an unlikely explanation given the similar signal in multiple cores and the lack of evidence for anomalous horizontal transport in 3He-based focusing factors. Coherent variations in Fe, Mn, and As suggest that diagenetic overprinting is not the primary driver of the down core signal. Elevated metal fluxes also occur during Termination II. The time series of hydrothermal sedimentation bear a strong resemblance to a record of seafloor bathymetry from 17ºS [5], suggesting that both have a common driver. The simplest explanation is glacial-interglacial variations in sea level, which apparently modulates sub-ridge melting, seafloor bathymetry, and hydrothermal activity at the EPR. Our results imply that geothermal heat flux from ridges increases during the last two glacial terminations, which should act to erode the deep ocean stratification, enhance the abyssal circulation, and transmit excess heat to the Southern Ocean, thereby setting the stage for deglaciation. [1] Lund and Asimow (2008) AGU Fall Meeting, Abstract #PP11D-08. [2] Huybers and Langmuir (2009) Earth and Planetary Science Letters 286, 479-491. [3] Lund and Asimow (2011

  14. Extensive hydrothermal activity revealed by multi-tracer survey in the Wallis and Futuna region (SW Pacific)

    NASA Astrophysics Data System (ADS)

    Konn, C.; Fourré, E.; Jean-Baptiste, P.; Donval, J. P.; Guyader, V.; Birot, D.; Alix, A. S.; Gaillot, A.; Perez, F.; Dapoigny, A.; Pelleter, E.; Resing, J. A.; Charlou, J. L.; Fouquet, Y.

    2016-10-01

    The study area is close to the Wallis and Futuna Islands in the French EEZ. It exists on the western boundary of the fastest tectonic area in the world at the junction of the Lau and North-Fiji basins. At this place, the unstable back-arc accommodates the plate motion in three ways: (i) the north Fiji transform fault, (ii) numerous unstable spreading ridges, and (iii) large areas of recent volcanic activity. This instability creates bountiful opportunity for hydrothermal discharge to occur. Based on geochemical (CH4, TDM, 3He) and geophysical (nephelometry) tracer surveys: (1) no hydrothermal activity could be found on the Futuna Spreading Centre (FSC) which sets the western limit of hydrothermal activity; (2) four distinct hydrothermal active areas were identified: Kulo Lasi Caldera, Amanaki Volcano, Fatu Kapa and Tasi Tulo areas; (3) extensive and diverse hydrothermal manifestations were observed and especially a 2D distribution of the sources. At Kulo Lasi, our data and especially tracer ratios (CH4/3He 50×106 and CH4/TDM 4.5) reveal a transient CH4 input, with elevated levels of CH4 measured in 2010, that had vanished in 2011, most likely caused by an eruptive magmatic event. By contrast at Amanaki, vertical tracer profiles and tracer ratios point to typical seawater/basalt interactions. Fatu Kapa is characterised by a substantial spatial variability of the hydrothermal water column anomalies, most likely due to widespread focused and diffuse hydrothermal discharge in the area. In the Tasi Tulo zone, the hydrothermal signal is characterised by a total lack of turbidity, although other tracer anomalies are in the same range as in nearby Fatu Kapa. The background data set revealed the presence of a Mn and 3He chronic plume due to the extensive and cumulative venting over the entire area. To that respect, we believe that the joined domain composed of our active area and the nearby active area discovered in the East by Lupton et al. (2012) highly contribute to the

  15. Combination of AUV high resolution mapping and submersible visual observations on the Guaymas Hydrothermal Fields (Southern Trough Ridge)

    NASA Astrophysics Data System (ADS)

    Ondreas, H.; Fouquet, Y.; Normand, A.; Rouxel, O.; Godfroy, A.

    2011-12-01

    The BIG cruise -leg I- was carried out on the Guaymas basin in June 2010 on board the French research vessel L'Atalante. An AUV high-resolution survey was made on the southern trough ridge to gather fine-scale bathymetry and acoustic imagery data. The results of the high resolution survey were used, the next days, to explore the vent's area during several Nautile dives. The southern trough hydrothermal fields of the Guaymas basin have often been studied. However, the local geological context was not really well-defined. During the AUV surveys, maps at 70 m above the seafloor were done over the hydrothermal area. The data were gridded at 2 m spacing. During the same cruise, Nautile dives help us to compare the field observations and the geological features revealed by the high resolution mapping and to investigate the fine-scale relationships between the vents and their geological environment. Integration of these data is made easier by the use of the GIS software technology. It helps us perpetuate data, undertake comparisons, combine different types of data, realize fine-scale geological mapping. Even if some problems are recurrent (precision of positioning, integration of old data...), such combinations of high resolution mapping and visual observations and sampling have changed our vision of hydrothermal geological context. In the Guaymas sedimented spreading axis, our new data show that major hydrothermal sites, in the south part of the southern trough only, are located inside or at the border of 100 to 250 m long, 60 to 150 m wide, 6 to 12 m deep small collapsed sub-circular depressions. The direction of the collapse is variable. Curved faults at the outer border of these depressions control the largest and mature edifices. Smaller, possibly younger, immature chimneys are located at the centre of some depressions. The mature hydrothermal structures appear as mounds up to 80 m in diameter, 20 m in high, each hydrothermal edifice being very-well identified on the

  16. Microearthquakes in the black smoker hydrothermal field, East Pacific Rise at 21/sup 0/N

    SciTech Connect

    Riedesel, M.; Orcutt, J.A.; MacDonald, K.C.; McClain, J.S.

    1982-12-10

    In July and August 1980, an array of five ocean bottom seismographs was deployed within 3 km of the 350 /sup 0/C hydrothermal vents at the Rivera submersible experiment (RISE) site at 21/sup 0/N, on the East Pacific Rise. Two of these instruments were placed within 600 m of the vents, using a transponder navigation network. The array detected four basic types of events. The first type consisted of local, very small microearthquakes. Locations obtained for 11 of these events place three within 1 km of the vents, with the others elsewhere along the rise crest. They appear to originate either from movement on the faults in the area or from the hydrothermal system beneath this area. A study of the S-P times of this type indicates a maximum hypocentral depth of 2-3 km, implying a similar limit to the depth of hydrothermal circulation and brittle fracturing in the vicinity of the vents. The second type of event found consisted of emergent earthquakes that have many of the characteristics of volcanic harmonic tremor. The frequency of these events falls in the 1-5 Hz range and are similar in appearance to those seen at Mount St. Helens prior to and during its May 1980 eruption. They may be either hydrothermal or volcanic in origin. The third type of event produced a very monochromatic, high-frequency seismogram, with the energy concentrated at 20 Hz. These events also appear to have a local origin.

  17. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been

  18. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  19. Shallow water submarine hydrothermal activity - A case study in the assessment of ocean acidification and fertilization

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yoshida, K.; Hagiwara, T.; Nagao, K.; Kusakabe, M.; Wang, B.; Chen, C. A.

    2012-12-01

    Most natural Shallow Water submarine Hydrothermal activates (SWH) along coastlines are related to hydrothermal eruptions involving heating of groundwater with the volcanic gas. These SWHs supply nutrients such as phosphorus and micro nutrients like iron to the euphotic zone, contributing to the overall natural fertility and primary productivity of coastal waters. However, SWHs also have a negative effect, dispersing toxic materials such as mercury and arsenic, and affecting the acidification of the surrounding waters. In this study, we evaluate the impact of "iron supply" and "ocean acidification" on the primary production in a coastal marine environment, at a SWH area discovered off Gueshandao Island, northeast Taiwan. In the past three years, expeditions were conducted and observations made around this SWH site. Divers, small boats and a research vessel (R/V OR1, Ocean University National Taiwan) were used to survey successively larger areas around the site. Some of the results obtained are as follows. Hydrothermal vents are located in a hilly terrain rich with hot spring water with gas erupting intermittently. There are two types of vents, roughly divided by color, yellow hot spring water with higher temperature >110 degC ejected from sulfur chimneys of various sizes, and colorless water with lower temperature ~80 degC ejected directly from the crevices of the andesitic bedrock. Natural sulfur solidifying in the mouth of a small chimney was captured by a video camera, and explosions were also observed at intervals of a few minutes. Sediment, sand and particles of sulfur were deposited on the sides to a radius of about 50 m condensing around the chimney. The bottom type changes from sand/particles to outcrop/rock away from the vents. Moreover, gas samples were collected from the vents; the ratios of gas concentrations (N2/Ar) and isotopic composition of noble gas (3He/4He) suggest that these volcanic gases are mantle-derived. Hydrothermal fluid with high p

  20. Ferrous iron- and ammonium-rich diffuse vents support habitat-specific communities in a shallow hydrothermal field off the Basiluzzo Islet (Aeolian Volcanic Archipelago).

    PubMed

    Bortoluzzi, G; Romeo, T; La Cono, V; La Spada, G; Smedile, F; Esposito, V; Sabatino, G; Di Bella, M; Canese, S; Scotti, G; Bo, M; Giuliano, L; Jones, D; Golyshin, P N; Yakimov, M M; Andaloro, F

    2017-04-06

    Ammonium- and Fe(II)-rich fluid flows, known from deep-sea hydrothermal systems, have been extensively studied in the last decades and are considered as sites with high microbial diversity and activity. Their shallow-submarine counterparts, despite their easier accessibility, have so far been under-investigated, and as a consequence, much less is known about microbial communities inhabiting these ecosystems. A field of shallow expulsion of hydrothermal fluids has been discovered at depths of 170-400 meters off the base of the Basiluzzo Islet (Aeolian Volcanic Archipelago, Southern Tyrrhenian Sea). This area consists predominantly of both actively diffusing and inactive 1-3 meters-high structures in the form of vertical pinnacles, steeples and mounds covered by a thick orange to brown crust deposits hosting rich benthic fauna. Integrated morphological, mineralogical, and geochemical analyses revealed that, above all, these crusts are formed by ferrihydrite-type Fe(3+) oxyhydroxides. Two cruises in 2013 allowed us to monitor and sampled this novel ecosystem, certainly interesting in terms of shallow-water iron-rich site. The main objective of this work was to characterize the composition of extant communities of iron microbial mats in relation to the environmental setting and the observed patterns of macrofaunal colonization. We demonstrated that iron-rich deposits contain complex and stratified microbial communities with a high proportion of prokaryotes akin to ammonium- and iron-oxidizing chemoautotrophs, belonging to Thaumarchaeota, Nitrospira, and Zetaproteobacteria. Colonizers of iron-rich mounds, while composed of the common macrobenthic grazers, predators, filter-feeders, and tube-dwellers with no representatives of vent endemic fauna, differed from the surrounding populations. Thus, it is very likely that reduced electron donors (Fe(2+) and NH4(+) ) are important energy sources in supporting primary production in microbial mats, which form a habitat

  1. Activity and hydrothermal stability of CeO₂-ZrO₂-WO₃ for the selective catalytic reduction of NOx with NH₃.

    PubMed

    Song, Zhongxian; Ning, Ping; Zhang, Qiulin; Li, Hao; Zhang, Jinhui; Wang, Yancai; Liu, Xin; Huang, Zhenzhen

    2016-04-01

    A series of CeO2-ZrO2-WO3 (CZW) catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction (SCR) of NO with NH3 over a wide temperature of 150-550°C. The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O. The fresh catalyst showed above 90% NOx conversion at 201-459°C, which is applicable to diesel exhaust NOx purification (200-440°C). The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures (below 300°C), while the activity was notably enhanced at high temperature (above 450°C). The aged CZW catalyst (hydrothermal aging at 700°C for 8 hr) showed almost 80% NOx conversion at 229-550°C, while the V2O5-WO3/TiO2 catalyst presented above 80% NOx conversion at 308-370°C. The effect of structural changes, acidity, and redox properties of CZW on the SCR activity was investigated. The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2-ZrO2 solid solution, amorphous WO3 phase and optimal acidity. In addition, the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased, resulting in the collapse of structure, which could further affect the acidity and redox properties.

  2. Sonar backscatter differentiation of dominant macrohabitat types in a hydrothermal vent field.

    PubMed

    Durand, Sébastien; Legendre, Pierre; Juniper, S Kim

    2006-08-01

    Over the past 20 years, sonar remote sensing has opened ways of acquiring new spatial information on seafloor habitat and ecosystem properties. While some researchers are presently working to improve sonar methods so that broad-scale high-definition surveys can be effectively conducted for management purposes, others are trying to use these surveying techniques in more local areas. Because ecosystem management is scale-dependent, there is a need to acquire spatiotemporal knowledge over various scales to bridge the gap between already-acquired point-source data and information available at broader scales. Using a 675-kHz single-pencil-beam sonar mounted on the remotely operated vehicle ROPOS, 2200 m deep on the Juan de Fuca Ridge, East Pacific Rise, five dominant habitat types located in a hydrothermal vent field were identified and characterized by their sonar signatures. The data, collected at different altitudes from 1 to 10 m above the seafloor, were depth-normalized. We compared three ways of handling the echoes embedded in the backscatters to detect and differentiate the five habitat types; we examined the influence of footprint size on the discrimination capacity of the three methods; and we identified key variables, derived from echoes that characterize each habitat type. The first method used a set of variables describing echo shapes, and the second method used as variables the power intensity values found within the echoes, whereas the last method combined all these variables. Canonical discriminant analysis was used to discriminate among the five habitat types using the three methods. The discriminant models were constructed using 70% of the data while the remaining 30% were used for validation. The results showed that footprints 20-30 cm in diameter included a sufficient amount of spatial variation to make the sonar signatures sensitive to the habitat types, producing on average 82% correct classification. Smaller footprints produced lower percentages of

  3. Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year timescales

    PubMed Central

    Dyl, Kathryn A.; Bischoff, Addi; Ziegler, Karen; Young, Edward D.; Wimmer, Karl; Bland, Phil A.

    2012-01-01

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water–rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water–rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water–rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H2O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa-1Al-1 exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1–10 y. This result has wide-ranging implications for the geological history of chondritic asteroids. PMID:23093668

  4. Early Solar System hydrothermal activity in chondritic asteroids on 1-10-year timescales.

    PubMed

    Dyl, Kathryn A; Bischoff, Addi; Ziegler, Karen; Young, Edward D; Wimmer, Karl; Bland, Phil A

    2012-11-06

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water-rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water-rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water-rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H(2)O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa(-1)Al(-1) exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1-10 y. This result has wide-ranging implications for the geological history of chondritic asteroids.

  5. Debris flow evolution and the activation of an explosive hydrothermal system; Te Maari, Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Procter, J. N.; Cronin, S. J.; Zernack, A. V.; Lube, G.; Stewart, R. B.; Nemeth, K.; Keys, H.

    2014-10-01

    Analysis of the pre- and post-eruption topography, together with observations of the avalanche deposition sequence, yields a triggering mechanism for the 6 August 2012 eruption of Upper Te Maari. The avalanche was composed of a wedge of c. 683 000-774 000 m3 of coarse breccia, spatter and clay-rich tuffs and diamictons which slid from the western flanks of the Upper Te Maari Crater, the failure plane is considered to be a hydrothermally altered clay layer. This landslide led to a pressure drop of up to 0.5 MPa, enough to generate an explosive eruption from the hydrothermal system below, which had been activated over the months earlier by additional heat and gas from a shallow intrusion. The landslide transformed after c. 700 m into a clay-rich cohesive debris flow, eroding soils from steep, narrow stretches of channel, before depositing on intermediate broad flatter reaches. After each erosive reach, the debris flow contained greater clay and mud contents and became more mobile. At c. 2 km flow distance, however, the unsaturated flow stopped, due to a lack of excess pore pressure. This volume controlled flow deposited thick, steep sided lobes behind an outer levee, accreting inward and upward to form a series of curved surface ridges.

  6. Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study.

    PubMed

    Liu, Zhiguo; Wang, Yuanlin; Zu, Yuangang; Fu, Yujie; Li, Na; Guo, Na; Liu, Ruisi; Zhang, Yiming

    2014-09-01

    In this study, we report a facile, one-step hydrothermal method to synthesize PEI-functionalized Ag nanoparticles in which no extra reducing agent is needed and PEI serves as a reducing agent and a stabilizing agent. The obtained Ag colloids have been characterized by TEM, UV absorption spectra and laser particle size analyzer. We found that the size of Ag nanoparticles can be tuned through the alteration of the temperature and growth mode. Under an acidic condition, PEI-functionalized Ag nanoparticles are positively charged. More importantly, the Ag colloids exhibited stronger antibacterial activity in the bactericidal test. Its bactericidal efficiency exceeds the commonly used antibacterial agents such as Erythromycin, chloramphenicol and penicillin as well as AgNO3 solution. These results prove that our synthesis method is very efficient to produce a stable PEI-functionalized Ag colloid with excellent antibacterial activity.

  7. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions.

  8. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    PubMed Central

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  9. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  10. Hydrothermal systems in two areas of the Jemez volcanic field: Sulphur Springs and the Cochiti mining district

    SciTech Connect

    WoldeGabriel, G.

    1989-03-01

    K/Ar dates and oxygen isotope data were obtained on 13 clay separates (<2 ..mu..m) of thermally altered mafic and silicic rocks from the Cochiti mining district (SE Jemez Mountains) and Continental Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, Valles caldera). Illite with K/sub 2/O contents of 6.68%--10.04% is the dominant clay in the silicic rocks, whereas interstratified illite/smectites containing 1.4%--5.74% K/sub 2/O constitute the altered andesites. Two hydrothermal alteration events are recognized at the Cochiti area (8.07 m.y., n = 1, and 6.5--5.6 m.y., n = 6). The older event correlates with the waning stages of Paliza Canyon Formation andesite volcanism (greater than or equal to13 to less than or equal to8.5 m.y.), whereas the younger event correlates with intrusions and gold- and silver-bearing quartz veins associated with the Bearhead Rhyolite (7.54--5.8 m.y.). The majority of K/Ar dates in the hydrothermally altered, caldera-fill rocks of core hole VC-2A (0.83--0.66 m.y., n = 4) indicate that hydrothermal alteration developed contemporaneously with resurgence and ring fracture Valles Rhyolite domes (0.89--0.54 m.y.). One date of 0 +- 0.10 m.y. in acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole probably correlates with Holocene hydrothermal activity possibly associated with the final phases of the Valles Rhyolite (0.13 m.y.).

  11. Geophysical imaging of shallow degassing in a Yellowstone hydrothermal system

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Holbrook, W. S.; Carr, B. J.; Sims, K. W. W.

    2016-12-01

    The Yellowstone Plateau Volcanic Field, which hosts over 10,000 thermal features, is the world's largest active continental hydrothermal system, yet very little is known about the shallow "plumbing" system connecting hydrothermal reservoirs to surface features. Here we present the results of geophysical investigations of shallow hydrothermal degassing in Yellowstone. We measured electrical resistivity, compressional-wave velocity from refraction data, and shear wave velocity from surface-wave analysis to image shallow hydrothermal degassing to depths of 15-30 m. We find that resistivity helps identify fluid pathways and that Poisson's ratio shows good sensitivity to saturation variations, highlighting gas-saturated areas and the local water table. Porosity and saturation predicted from rock physics modeling provide critical insight to estimate the fluid phase separation depth and understand the structure of hydrothermal systems. Finally, our results show that Poisson's ratio can effectively discriminate gas- from water-saturated zones in hydrothermal systems.

  12. Distribution and composition of hydrothermal plume particles from the ASHES Vent Field at Axial Volcano, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Feely, R. A.; Geiselman, T. L.; Baker, E. T.; Massoth, G. J.; Hammond, S. R.

    1990-08-01

    In 1986 and 1987, buoyant and neutrally buoyant hydrothermal plume particles from the ASHES vent field within Axial Volcano were sampled to study their variations in composition with height above the seafloor. Individual mineral phases were identified using standard X ray diffraction procedures. Elemental composition and particle morphologies were determined by X ray fluorescence spectrometry and scanning electron microscopy/X ray energy spectrometry techniques. The vent particles were primarily composed of sphalerite, anhydrite, pyrite, pyrrhotite, chalcopyrite, barite, hydrous iron oxides, and amorphous silica. Grain size analyses of buoyant plume particles showed rapid particle growth in the first few centimeters above the vent orifice, followed by differential sedimentation of the larger sulfide and sulfate minerals out of the buoyant plume. The neutrally buoyant plume consisted of a lower plume, which was highly enriched in Fe, S, Zn, and Cu, and an upper plume, which was highly enriched in Fe and Mn. The upper plume was enriched in Fe and Mn oxyhydroxide particles, and the lower plume was enriched in suspended sulfide particles in addition to the Fe and Mn oxyhydroxide particles. The chemical data for the water column particles indicate that chemical scavenging and differential sedimentation processes are major factors controlling the composition of the dispersing hydrothermal particles. Short-term sediment trap experiments indicate that the fallout from the ASHES vent field is not as large as some of the other vent fields on the Juan de Fuca Ridge.

  13. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  14. Study of hydrothermal channels based on near-bottom magnetic prospecting: Application to Longqi hydrothermal area

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.

    2014-12-01

    Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.

  15. Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Morales-Gallardo, M. V.; Ayala, A. M.; Pal, Mou; Cortes Jacome, M. A.; Toledo Antonio, J. A.; Mathews, N. R.

    2016-09-01

    In this work, FeS2 nanorods were synthetized by hydrothermal method. The advantages of our process were the high yield, simplicity and reproducibility. The material was studied in detail using different experimental tools such as XRD, SEM, HRTEM, EDXS, XPS, Raman, and UV-vis reflectance. XRD pattern and Raman data revealed good crystalline quality for the as synthesized pyrite FeS2. SEM analysis displayed the rod-like morphologies of FeS2 which seemed to grow radially from a center giving a flower-like appearance. From TEM images the approximate length and diameter of nano-rods were determined as 275 and 15 nm respectively. The material showed excellent photocatalytic activity which was assessed from the degradation of the methlyene blue.

  16. Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dublyansky, Y. V.

    2012-11-01

    A unique conceptual model envisaging conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE not to consider hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. Evaluation shows that validation of the model by computational modeling and by observations at a natural analog site was unsuccessful. Due to the lack of validation, the reliance on this model must be discontinued and the scientific defensibility of decisions which rely on this model must be re-evaluated.

  17. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations.

    PubMed

    Lund, D C; Asimow, P D; Farley, K A; Rooney, T O; Seeley, E; Jackson, E W; Durham, Z M

    2016-01-29

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  18. Amino acids assisted hydrothermal synthesis of hierarchically structured ZnO with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Guo, Yanxia; Lin, Siwen; Li, Xuan; Liu, Yuping

    2016-10-01

    Novel hierarchically structured ZnO, including rose-like, dandelion-like and flower-like, have been synthesized through a simple hydrothermal process using different amino acids (glutamine, histidine and glycine) as structure-directing agents and urea as deposition agent, followed by subsequent calcination. Amino acids played a crucial role in the formation of hierarchically structured ZnO, and different amino acids could induce different exquisite shapes and assembly ways, as well as more oxygen defects. The prepared hierarchically structured ZnO exhibited excellent photocatalytic activities for the photodegradation of Rhodamine B, which was associated with their special hierarchical structures, large BET surface area and the existence of more oxygen defects. Amino acid-assisted growth mechanism of hierarchically structured ZnO was also discussed.

  19. ESR dating of barite in sulphide deposits formed by the sea-floor hydrothermal activities.

    PubMed

    Toyoda, Shin; Fujiwara, Taisei; Uchida, Ai; Ishibashi, Jun-ichiro; Nakai, Shun'ichi; Takamasa, Asako

    2014-06-01

    Barite is a mineral newly found to be practically useful for electron spin resonance (ESR) dating of sulphide deposits formed by the sea-floor hydrothermal activities. The recent studies for the properties of the ESR dating signal in barite are summarised in the present paper as well as the formulas for corrections for accurate dose-rate estimation are developed including the dose-rate conversion factors, shape correction for gamma-ray dose and decay of (226)Ra. Although development of the techniques for ESR dating of barite has been completed, further comparative studies with other dating techniques such as U-Th and (226)Ra-(210)Pb dating are necessary for the technique to be widely used.

  20. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.

    2016-01-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  1. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    USGS Publications Warehouse

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  2. Hydrothermal systematics, alteration, and mineralization in the Grant Canyon, Bacon Flat, and Blackburn Oil Fields, Nevada - Intriguing Parallels with Carlin-Type gold deposits

    SciTech Connect

    Hulen, J.B.; Nielson, D.L. )

    1993-08-01

    Nevada's three known thermally active oil reservoirs-Blackburn, Bacon Flat, and Grand Canyon-share a surprisingly long list of essential attributes with the Carlin-type, low-grade, sediment-hosted gold deposits, particularly those of the Alligator Ridge mining district. Like these rich precious-metal ore bodies, the three fields (1) are hosted by Paleozoic carbonate and calcareous silici-clastic strata; (2) occur in structural or structural/stratigraphic traps sealed beneath shales or hydrothermally argillized and silicified tuffs and epiclastic debris, (3) have undergone intense fracturing and brecciation, as well as massive hydrothermal decalcification as major porosity-creating processes; (4) occupy rocks partly altered to or veined by the secondary-mineral assemblage quartz-kaolin-barite-pyrite-marcasite; (5) have a direct geothermal connection; (6) are enriched in the elements arsenic, antimony, mercury, thallium, and even contain significant traces of gold-up 50 ppb in altered Mississippian Chainmain Shale in the Blackburn field. Moreover, measured temperatures, as well as late-stage, fluid-inclusion homogenization temperatures (T[sub h]) at the fields-all in the range 100-135[degrees]C-fall within the fluid-inclusion T[sub h] span of 90-165[degrees]C recorded for multiple Alligator Ridge deposits. Fracture-controlled live oil and oil-bearing fluid inclusions in some of the Alligator Ridge ores provide further evidence of genetic similarities with the oil reservoirs. The authors suggest that the three oil fields could represent either weakly mineralized analogs of the gold deposits or an incipient phase in their evolution ultimately leading to ore mineralization.

  3. METEORIC-HYDROTHERMAL SYSTEMS.

    USGS Publications Warehouse

    Criss, Robert E.; Taylor, Hugh P.

    1986-01-01

    This paper summarizes the salient characteristics of meteoric-hydrothermal systems, emphasing the isotopic systematics. Discussions of permeable-medium fluid dynamics and the geology and geochemistry of modern geothermal systems are also provided, because they are essential to any understanding of hydrothermal circulation. The main focus of the paper is on regions of ancient meteoric-hydrothermal activity, which give us information about the presently inaccessible, deep-level parts of modern geothermal systems. It is shown oxygen and hydrogen isotopes provide a powerful method to discover and map fossil hydrothermal systems and to investigate diverse associated aspects of rock alteration and ore deposition.

  4. Characteristics of microbial communities in crustal fluids in a deep-sea hydrothermal field of the suiyo seamount.

    PubMed

    Kato, Shingo; Nakawake, Michiyuki; Kita, Junko; Yamanaka, Toshiro; Utsumi, Motoo; Okamura, Kei; Ishibashi, Jun-Ichiro; Ohkuma, Moriya; Yamagishi, Akihiko

    2013-01-01

    To directly access the sub-seafloor microbial communities, seafloor drilling has been done in a deep-sea hydrothermal field of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. In the present study, crustal fluids were collected from the boreholes, and the bacterial and archaeal communities in the fluids were investigated by culture-independent molecular analysis based on 16S rRNA gene sequences. Bottom seawater, sands, rocks, sulfide mound, and chimneys were also collected around the boreholes and analyzed for comparisons. Comprehensive analysis revealed the characteristics of the microbial community composition in the crustal fluids. Phylotypes closely related to cultured species, e.g., Alteromonas, Halomonas, Marinobacter, were relatively abundant in some crustal fluid samples, whereas the phylotypes related to Pelagibacter and the SUP05-group were relatively abundant in the seawater samples. Phylotypes related to other uncultured environmental clones in Alphaproteobacteria and Gammaproteobacteria were relatively abundant in the sand, rock, sulfide mound, and chimney samples. Furthermore, comparative analysis with previous studies of the Suiyo Seamount crustal fluids indicates the change in the microbial community composition for 3 years. Our results provide novel insights into the characteristics of the microbial communities in crustal fluids beneath a deep-sea hydrothermal field.

  5. Diversity of Active Seafloor Hydrothermal Mineralization in the Manus Back-Arc Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Gena, K.; Chiba, H.

    2004-12-01

    sulfidation mineralization is considered to be a product of magmatic degassing and is a typical example of an acid-sulphate type of hydrothermal activity developing on the seafloor.

  6. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    hydrocarbon species characteristic of these metalliferous sediments. These systems are also characterized by sharp physicochemical gradients that have been shown to have a pronounced effect on microbial ecology and activity. Sediments were collected from a Middle Valley field with relatively high concentrations of short-chain alkanes and incubated in anaerobic batch reactors with each individual alkane (C1, C2, C3 and C4, respectively) at a range of temperatures (25, 55 and 75 °C) to mimic environmental physico-chemical conditions in a closed system. Stable carbon isotope ratios and radiotracer incubations provide clear evidence for C2-C4 alkane oxidation in the sediments over time. Upon identifying sediments with anaerobic alkane oxidation activity, microbial communities were screened via 16S rRNA pyrosequencing, and key phylotypes were then quantified using both molecular and microscopic methods. There were shifts in overall community composition and putative alkane-oxidizing phylotypes after the incubation period with the alkane substrates. These are the first evidence to date indicating that anaerobic C2-C4 alkane oxidation occurs across a broad range of temperatures in metalliferous sediments.

  7. Compositional spatial zonation and 2005-2013 temporal evolution of the hydrothermal-magmatic fluids from the submarine fumarolic field at Panarea Island (Aeolian Archipelago, southern Italy)

    NASA Astrophysics Data System (ADS)

    Tassi, Franco; Capaccioni, Bruno; Vaselli, Orlando

    2014-05-01

    next future, a hypothesis that is supported by the strong ongoing degassing activity at the surface notwithstanding a decrease of temperatures at depth. A geochemical, seismological and ground deformation monitoring of the Panarea submarine fumarolic field is highly recommended to obtain precursory signals of new strong degassing phenomena.

  8. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems.

    PubMed

    Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q; Pelletier, Bernard; Payri, Claude E; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte

    2017-01-01

    Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that

  9. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems

    PubMed Central

    Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q.; Pelletier, Bernard; Payri, Claude E.; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte

    2017-01-01

    Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that

  10. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  11. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires.

    PubMed

    Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Daumont, Christophe; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas

    2015-09-04

    The production of large quantities of single crystalline semiconducting ZnO nanowires (NWs) at low cost can offer practical solutions to realizing several novel electronic/optoelectronic and sensor applications on an industrial scale. The present work demonstrates high-density single crystalline NWs synthesized by a multiple cycle hydrothermal process at ∼100 °C. The high carrier concentration in such ZnO NWs is greatly suppressed by a simple low cost thermal annealing step in ambient air at ∼450 °C. Single ZnO NW FETs incorporating these modified NWs are characterized, revealing strong metal work function-dependent charge transport, unobtainable with as-grown hydrothermal ZnO NWs. Single ZnO NW FETs with Al as source and drain (s/d) contacts show excellent performance metrics, including low off-state currents (fA range), high on/off ratio (10(5)-10(7)), steep subthreshold slope (<600 mV/dec) and excellent field-effect carrier mobility (5-11 cm(2)/V-s). Modified ZnO NWs with platinum s/d contacts demonstrate excellent Schottky transport characteristics, markedly different from a reference ZnO NW device with Al contacts. This included abrupt reverse bias current-voltage saturation characteristics and positive temperature coefficient (∼0.18 eV to 0.13 eV). This work is envisaged to benefit many areas of hydrothermal ZnO NW research, such as NW FETs, piezoelectric energy recovery, piezotronics and Schottky diodes.

  12. Effect of reaction parameters on photoluminescence and photocatalytic activity of zinc sulfide nanosphere synthesized by hydrothermal route

    NASA Astrophysics Data System (ADS)

    Chanu, T. Inakhunbi; Samanta, Dhrubajyoti; Tiwari, Archana; Chatterjee, Somenath

    2017-01-01

    Zinc Sulfide (ZnS) nanospheres have been synthesized using amino acid, L-Histidine as a capping agent by hydrothermal method. The as prepared ZnS have been characterised using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Photoluminescence (PL), Fourier Transform Infra-Red spectroscopy (FTIR), UV-vis absorption spectroscopy and X-ray Photo Electron Spectroscopy (XPS). Effect of reaction parameters on particle size has been investigated. The morphology and size of the ZnS can be tuned based on the reaction parameters. ZnS nanosphere with a particle size of 5 nm is obtained when the reaction parameters are kept at 120 °C for 3 h. The PL of ZnS shows multiple defect emissions arising from interstitials/vacancies. Particle size of ZnS nanoparticles plays an important role in determining the photo catalytic activity. A chronological study on synthesis of ZnS nanosphere and its photo catalytic activity under the sunlight are discussed here, which reveals the photo degradation of Rhodamine B (RhB) upto 87% as observed with ZnS nanosphere having a particle size of 5 nm.

  13. Post-Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea Hydrothermal System, the Iheya North Field, Okinawa Trough

    PubMed Central

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area

  14. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough.

    PubMed

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has

  15. Numerical models for the hydrothermal field at the Galapagos Spreading Center

    SciTech Connect

    Fehn, U.; Green, K.E.; Von Herzen, R.P.; Cathles, L.M.

    1983-02-10

    The heat flow distribution at the Galapagos Spreading Center is compared to results of two-dimensional numerical models for the hydrothermal convection through oceanic crust. The model calculations are based on the equations for fluid flow through porous media adapted for the situation at spreading oceanic ridges. The temperature- and pressure-dependent thermodynamic characteristics of water were used in the fluid flow equations. Models with average permeabilities of approximately 5 x 10/sup -15/ m/sup 2/ and penetration depths between 2 and 5 km produce heat flow distributions compatible with the observations at the Galapagos Spreading Center. Because of the convective heat loss, temperatures within the hydrothermal layer are significantly lower than for conductively cooling crust. Two different types of convection cells develop. The one or two cells closest to the ridge axis are fixed in location with respect to the ridge axis. Convection there is characterized by high temperatures (>300 /sup 0/C), rapid flow rates, and low water to rock ratios (approx.1). These cells remove most of the heat associated with the intrusion process at the ridge axis. Cells farther away from the ridge axis move with the moving plate and serve to prevent the oceanic crust from reheating. Temperatures there typically are moderate to low (<200 /sup 0/C), and flow velocities are lower than those in the axial cell, but water to rock ratios can be very high in these cells.

  16. Disseminated sulphides in basalts from the northern Central Indian Ridge: implications on late-stage hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Banerjee, Ranadip; Ray, Dwijesh

    2015-04-01

    This study examined the mineralogy and mineral chemistry of disseminated sulphides (mainly chalcopyrite-pyrite) in partly altered basalts from the northern Central Indian Ridge, Indian Ocean in order to understand the role of hydrothermal alterations and infer possible sulphide formation history. Pyrite and chalcopyrite are dominant sulphide minerals and generally associated with the oxide phases including magnetite and often ilmenite. Close association of sulphide and oxide minerals suggests that they are paragenetically related. Sulphides also occur as late impregnated veins cutting through the basaltic hosts. The chemical compositions of pyrite (avg. Fe 46.3 wt%, S 53.7 wt%) and chalcopyrite (avg. Cu 34.4 wt%, Fe 30.7 wt%, S 34.7 wt%) are almost uniform, while the secondary ilmenite often shows MnO enrichment (up to 3.0-3.4 wt%). The associated altered minerals typically resemble the greenschist facies mineral assemblages—e.g. chlorite±epidote. Evidence of albitisation and silicification suggests low-temperature hydrothermal alteration processes. This is supported by the bulk Au content (up to 60 ppb) of host-altered basalts with pyrite mineralisation. Au is usually associated with late-stage pyrites and thus related with low-temperature hydrothermal activity. Close to the dredge location, tectonic activity around the Vityaz megamullion might have promoted hydrothermal circulation and subsequent alteration of the mineral constituents in basalts, eventually inducing the formation of late-stage disseminated sulphide minerals in these rocks.

  17. Spatial distribution of microbial communities in the shallow submarine alkaline hydrothermal field of the Prony Bay, New Caledonia.

    PubMed

    Quéméneur, Marianne; Bes, Méline; Postec, Anne; Mei, Nan; Hamelin, Jérôme; Monnin, Christophe; Chavagnac, Valérie; Payri, Claude; Pelletier, Bernard; Guentas-Dombrowsky, Linda; Gérard, Martine; Pisapia, Céline; Gérard, Emmanuelle; Ménez, Bénédicte; Ollivier, Bernard; Erauso, Gaël

    2014-12-01

    The shallow submarine hydrothermal field of the Prony Bay (New Caledonia) discharges hydrogen- and methane-rich fluids with low salinity, temperature (< 40°C) and high pH (11) produced by the serpentinization reactions of the ultramafic basement into the lagoon seawater. They are responsible for the formation of carbonate chimneys at the lagoon seafloor. Capillary electrophoresis single-strand conformation polymorphism fingerprinting, quantitative polymerase chain reaction and sequence analysis of 16S rRNA genes revealed changes in microbial community structure, abundance and diversity depending on the location, water depth, and structure of the carbonate chimneys. The low archaeal diversity was dominated by few uncultured Methanosarcinales similar to those found in other serpentinization-driven submarine and subterrestrial ecosystems (e.g. Lost City, The Cedars). The most abundant and diverse bacterial communities were mainly composed of Chloroflexi, Deinococcus-Thermus, Firmicutes and Proteobacteria. Functional gene analysis revealed similar abundance and diversity of both Methanosarcinales methanoarchaea, and Desulfovibrionales and Desulfobacterales sulfate-reducers in the studied sites. Molecular studies suggest that redox reactions involving hydrogen, methane and sulfur compounds (e.g. sulfate) are the energy driving forces of the microbial communities inhabiting the Prony hydrothermal system.

  18. Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field - a multidisciplinary deep-sea observatory approach.

    PubMed

    Cuvelier, Daphne; Legendre, Pierre; Laes, Agathe; Sarradin, Pierre-Marie; Sarrazin, Jozée

    2014-01-01

    The NEPTUNE cabled observatory network hosts an ecological module called TEMPO-mini that focuses on hydrothermal vent ecology and time series, granting us real-time access to data originating from the deep sea. In 2011-2012, during TEMPO-mini's first deployment on the NEPTUNE network, the module recorded high-resolution imagery, temperature, iron (Fe) and oxygen on a hydrothermal assemblage at 2186 m depth at Main Endeavour Field (North East Pacific). 23 days of continuous imagery were analysed with an hourly frequency. Community dynamics were analysed in detail for Ridgeia piscesae tubeworms, Polynoidae, Pycnogonida and Buccinidae, documenting faunal variations, natural change and biotic interactions in the filmed tubeworm assemblage as well as links with the local environment. Semi-diurnal and diurnal periods were identified both in fauna and environment, revealing the influence of tidal cycles. Species interactions were described and distribution patterns were indicative of possible microhabitat preference. The importance of high-resolution frequencies (<1 h) to fully comprehend rhythms in fauna and environment was emphasised, as well as the need for the development of automated or semi-automated imagery analysis tools.

  19. Constraints on biotic and abiotic role in the formation of Fe-Si oxides from the PACMANUS hydrothermal field

    NASA Astrophysics Data System (ADS)

    Yang, Baoju; Zeng, Zhigang; Qi, Haiyan; Wang, Xiaoyuan; Ma, Yao; Rong, Kunbo

    2015-12-01

    Fe-Si oxide deposits were recovered from the PACMANUS (Papua New Guinea-Australia-Canada-Manus) hydrothermal field in Eastern Manus basin. Samples were loose and fragile. Optical and scanning electron microscopy showed that the samples had abundant rod-like or twisted filamentous and granular structures. Electron probe microanalysis revealed that these filaments and grains were mainly composed of Fe and Si. The presence of spherical grains on the surface of the filaments suggests the intergrowth of biotic and abiotic reactions. Biotic and abiotic kinetics competition always exists in the redox gradient. Based on the physico-chemical conditions of PACMANUS hydrothermal fluids, we calculated a strict abiotic oxidation rate of Fe2+ to Fe3+, which is approximately 0.0123 g/min. If the fluids had been erupting consistently and the concentration of Fe2+ was constant, 3.232 kg per year of Fe would be deposited in this vent. The amount of Fe oxides around the studied vent was larger than the amount determined by strict abiotic kinetic calculation. Bacteria may also play an important role in Fe oxidation. A mesh-like microenvironment constructed by biogenic filaments ensured adequate Fe2+ and low oxygen content for the growth of bacteria. Moreover, this structure promoted the deposition of abiotic Fe-Si oxides.

  20. Preliminary results of trace elements mobility in soils and plants from the active hydrothermal area of Nisyros island (Greece)

    NASA Astrophysics Data System (ADS)

    Daskalopoulou, Kyriaki; Calabrese, Sergio; Milazzo, Silvia; Brusca, Lorenzo; D'Alessandro, Walter; Kyriakopoulos, Konstantinos; Tassi, Franco; Parello, Francesco

    2014-05-01

    Trace elements, i.e. chemical constituents of rocks with concentration <1000 ppm, play a structural role in the organisms and use proteins as a carrier to their target site. Their toxicity depends on their concentration, speciation and reactions with other elements. In volcanic environments, significant amounts of trace elements discharged from gas emissions, contribute to produce air particulate. Nisyros Island is a stratovolcano located at the South Aegean active Volcanic Arc. Intense hydrothermal activity characterise the Lakki caldera. In particular, the fumaroles located in the craters of Stefanos, Kaminakia, Lofos Dome and the area comprising Phlegeton, Polyvotes Micros and Polyvotes Megalos discharge hydrothermal fluids rich in H2O (91- 99%), SO2 and H2S. Their temperatures are almost 100o C and H2S is highly abundant accounting for 8-26 % of the released dry gas phase. On June 2013, during a multidisciplinary field trip on Nisyros island, 39 samples of top soils and 31 of endemic plants (Cistus Creticus and Salvifolius and Erica Arborea and Manipuliflora) were collected in the caldera area, with the aim to investigate the distribution of concentrations of trace elements related to the contribution of deep originated fluids. Moreover, one sample of plant and soil was collected outside the caldera as local background, for comparison. All the soil samples were powdered avoiding metal contamination and they were extracted twice, using HNO3 + HCl for one extraction (closed microwave digestion) and ultrapure de- ionized water for the other one (leaching extraction). The leaves of plants were gently isolated, dried and powdered for acid microwave extraction (HNO3 + H2O2). All the solutions were analysed for major and trace elements contents by using ionic chromatography (IC) and inductively plasma spectrometry (ICP-MS and ICP-OES). The preliminary results showed high enrichment of many trace elements both in plant and soils respect to the local background, in

  1. Hydrothermal Processing

    SciTech Connect

    Elliott, Douglas C.

    2011-03-11

    This chapter is a contribution to a book on Thermochemical Conversion of Biomass being edited by Prof. Robert Brown of Iowa State University. It describes both hydrothermal liquefaction and hydrothermal gasification of biomass to fuels.

  2. Seawater bicarbonate removal during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  3. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  4. Detoxification mechanisms in shrimp: comparative approach between hydrothermal vent fields and estuarine environments.

    PubMed

    Gonzalez-Rey, Maria; Serafim, Angela; Company, Rui; Gomes, Tânia; Bebianno, Maria João

    2008-07-01

    Hydrothermal vents are extreme deep-sea habitats that, due to their singular features, still intrigue scientific communities. Swift growth rates and profuse biomass of biological communities can be observed, despite of their inherently unstable physical-chemical and toxic conditions, indicating that organisms inhabiting this environment must be well adapted to these inhospitable conditions. The caridean shrimp, Chorocaris chacei, Mirocaris fortunata and Rimicaris exoculata, together with bathymodiolid mussels, dominate the vent fauna along the Mid-Atlantic Ridge (MAR). Crustacean species are widely used as biological indicators of environmental alterations, since they play a key ecological role as planktivorous grazers, epibenthic scavengers or as prey species. The biological consequences of the hydrothermal metal-rich environment in shrimp species are still largely unknown. Therefore, the aim of this study was the determination of the metal levels (Ag, Cd, Cu, Fe, Mn and Zn), metallothioneins (MT) and lipid peroxidation (LPO) in shrimp species collected in Rainbow, Lucky Strike and Menez-Gwen vent sites, in order to evaluate their different adaptation strategies toward metals when compared with two common coastal shrimp species (Palaemon elegans and Palaemonetes varians) from a fairly unpolluted estuarine system in south Portugal (Ria Formosa). Results show significant differences in metal concentrations, MT levels and lipid peroxidation between vent and coastal shrimp and also between shrimp species from the same site. This indicates that biochemical responses in both vent and coastal shrimp are affected not only by the environmental characteristics but also by inter-specific differences. Nevertheless, these responses apparently grant a successful adaptation for the survival in a metal-extreme environment.

  5. Abundance of volatile and organic species in intermediate temperature fluids from the Von Damm and Piccard deep sea hydrothermal fields, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; Reeves, E. P.; German, C. R.; Sylva, S. P.; Klein, F.

    2012-12-01

    Two recently discovered submarine hydrothermal systems at the ultra-slow spreading Mid-Cayman Rise provide a unique opportunity to investigate how mixing and cooling influence hydrothermal fluid chemistry at the deepest-yet discovered, basalt-hosted Piccard vent field (4960m) and at the Von Damm vent field (2300m), postulated to be ultramafic-hosted. Vent fluids were collected in January 2012 during R/V Atlantis cruise AT18-16 with gas-tight samplers deployed by the ROV Jason II, allowing the characterization and quantification of redox-reactive volatile species and organic compounds. Von Damm vent fluids ranged in temperature from 21 to 226°C, whereas Piccard fluids ranged from 45 to 398°C. A key feature of these systems is the variety of fluids that were actively venting from the seafloor at 100 to 200°C, substantially cooler than the hottest fluids observed at either site. The lower temperatures reflect subsurface seawater mixing and/or conductive heat loss. Fluids venting within this temperature range have rarely been sampled at other systems, and the Cayman fluids thus present an excellent opportunity to study the effect of cooling and mixing processes on enriched volatile species such as H2, H2S, CO2 and CH4. Three dominant processes are thought to affect volatile and organic species in intermediate temperature fluids. These include microbial consumption or production, thermal alteration of biomass, and abiotic reactions. The effect of these processes on fluid compositions carries implications for carbon utilization and metabolic activity of modern microbial populations hosted within hydrothermal mineral deposits and ascending plumes, carbon cycling within hydrothermal systems, and net geochemical fluxes to the ocean. Endmember CO2 concentrations at Von Damm range from slightly enriched relative to seawater in the highest temperature fluids, to measurably depleted in the cooler fluids. Such CO2 depletions have not been previously observed in other acidic

  6. Hydrothermal synthesis of ZTO/graphene nanocomposite with excellent photocatalytic activity under visible light irradiation.

    PubMed

    Ben Ali, Monaam; Yolcu, Haci Hasan; Elhouichet, Habib; Sieber, Brigitte; Addad, Ahmed; Boussekey, Luc; Moreau, Myriam; Férid, Mokhtar; Szunerits, Sabine; Boukherroub, Rabah

    2016-07-01

    A facile and efficient one-step hydrothermal approach for the synthesis of Zn2SnO4 nanoparticles/reduced graphene oxide (ZTO/rGO) nanocomposites using zinc acetate, tin chloride and graphene oxide (GO) as precursors, and sodium hydroxide as reducing agent has been developed. This approach allows simultaneous reduction of GO and growth of spinel ZTO nanoparticles (NPs) on the rGO sheets. The morphology and microstructure characterizations of ZTO/rGO nanocomposites revealed that this method leads to close interfacial contact of ZTO NPs and rGO and efficient dispersion of ZTO NPs on the surface of rGO sheets. The photocatalytic activity of the ZTO/rGO nanocomposite was investigated for the reduction of rhodamine B under visible light irradiation. Compared to pure ZTO NPs, ZTO/rGO nanocomposite exhibited superior photocatalytic activity with a full degradation of rhodamine B within 15min. The enhanced photocatalytic performance of ZTO/rGO was mainly attributed to excellent electron trapping and effective adsorption properties of rGO.

  7. Anomalous quartz from the Roter Kamm impact crater, Namibia: Evidence for post-impact hydrothermal activity

    SciTech Connect

    Koeberl, C. Univ. of Vienna ); Fredriksson, K. ); Goetzinger, M. ); Reimold, W.U. )

    1989-08-01

    Centimeter-sized quartz pebbles have been found on the rim of the Roter Kamm impact crater. The Roter Kamm crater has a diameter of about 2.5 km and is situated in the Namib Desert, SWA/Namibia. Because of the sand coverage, impact products are exposed exclusively in the form of ejecta on the crater rim. The quartz pebbles were found close to the main deposits of the impact breccias and show signs of wind abrasion. Thin sections revealed that the pebbles consist of individual quartz domains that are up to 1 mm in size. Under crossed nicols (polarized light), all individual domains show extinction almost simultaneously within {plus minus}2{degree}, which is a rare phenomenon. Microprobe studies, neutron activation analyses, and X-ray diffractometry confirmed that the material consists of pure quartz. The quartz contains three different types of fluid inclusions: primary inclusions that record the formation conditions of the quartz, very small (<1 {mu}m) secondary inclusions associated with the grain boundaries, and late inclusions of irregular size. Freezing point depression measurements of the primary inclusions indicate fluid salinities between 18.3 and 19.6 wt% NaCl. Homogenization temperatures (T{sub h}) for the primary inclusions range from 165 to 250{degree}C. The quartz and the primary inclusions may provide evidence for a post-impact phase of extensive hydrothermal activity, generated by the residual heat from the kinetic energy of the impact.

  8. Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities.

    PubMed

    Chen, Ping; Xiao, Tian-Yuan; Li, Hui-Hui; Yang, Jing-Jing; Wang, Zheng; Yao, Hong-Bin; Yu, Shu-Hong

    2012-01-24

    Nitrogen-doped graphene (GN) has great potential applications in many fields because doping with nitrogen can alter the electrical properties of graphene. It is still a challenge to develop a convenient method for synthesis of GN sheets. In this paper, we first report the synthesis of a nitrogen-doped graphene/ZnSe nanocomposite (GN-ZnSe) by a one-pot hydrothermal process at low temperature using graphene oxide nanosheets and [ZnSe](DETA)(0.5) nanobelts as precursors. ZnSe nanorods composed of ZnSe nanoparticles were found to deposit on the surface of the GN sheets. The results demonstrated that [ZnSe](DETA)(0.5) nanobelts were used not only as the source of ZnSe nanoparticles but also as the nitrogen source. Interestingly, it was found that the as-prepared nanocomposites exhibit remarkably enhanced electrochemical performance for oxygen reduction reaction and photocatalytic activities for the bleaching of methyl orange dye under visible-light irradiation. This facile and catalyst-free approach for depositing ZnSe nanoparticles onto the graphene sheets may provide an alternative way for preparation of other nanocomposites based on GN sheets under mild conditions, which show their potential applications in wastewater treatment, fuel cells, energy storage, nanodevices, and so on.

  9. Relations between electrical resistivity, carbon dioxide flux, and self-potential in the shallow hydrothermal system of Solfatara (Phlegrean Fields, Italy)

    NASA Astrophysics Data System (ADS)

    Byrdina, S.; Vandemeulebrouck, J.; Cardellini, C.; Legaz, A.; Camerlynck, C.; Chiodini, G.; Lebourg, T.; Gresse, M.; Bascou, P.; Motos, G.; Carrier, A.; Caliro, S.

    2014-08-01

    We present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, the most active crater of Phlegrean Fields. Solfatara is characterized by an intense carbon dioxide degassing, fumarole activity, and ground deformation. This ensemble of methods is applied to image the hydrothermal system of Solfatara, to understand the geometry of the fluid circulation, and to define the extension of the hydrothermal plume at a high enough resolution for a quantitative modeling. ERT inversion results show Solfatara as a globally conductive structure, with resistivity in the range 1-200 Ω m. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of Bocca Grande suggests a significant downward flow of condensing liquid water. Comparison between spatial variations of resistivity and gas flux indicates that resistivity changes at depth are related to gas saturation and fluid temperature. These variations delineate two plume structures: a liquid-dominated conductive plume below Fangaia mud-pool and a gas-dominated plume below Bocca Grande fumarole. The geometry of the Fangaia liquid-saturated plume is also imaged by a high resolution 3-D resistivity model. In order to estimate the permeability, we propose a 2-D axis-symmetric numerical model coupling Richards equation for fluid flow in conditions of partial saturation with the resistivity calculation as function of saturation only. Alternatively, we apply the Dupuit equation to estimate the permeability of the shallow layer. Using these two approaches we obtain the permeability of the shallow layer below Fangaia which ranges between (2-4) × 10- 14 m2.

  10. The use of photo-mosaics, bathymetry and sensor data into geographic information system for site description and faunal distribution analysis at the Menez Gwen Hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Marcon, Y.; Sahling, H.; Bohrmann, G.

    2012-04-01

    The Menez Gwen hydrothermal vent is located on the Mid-Atlantic Ridge at a depth of about 800m. Although it has been the focus of several expeditions and studies, the sites of active venting at Menez Gwen are still under described, and it is not possible to get a global picture of the sites from the published data. Exploration of deep-sea environments is commonly performed using remotely operated vehicles (ROV) equipped with sensors, cameras and powerful lights. But strong attenuation of light in the deep-sea constrains visual surveys to be carried out from a few meters only above the seafloor, thus limiting the extent of the field of view. Moreover, ROV-mounted positioning systems usually lack accuracy and cannot be relied on for accurate relative positioning of sensor measurements, samplings, and features of interest. Such limitations are hindrances for many applications. In particular, site description or mapping of deep-sea benthic fauna over an area of study usually requires lengthy surveys, and reliability of navigation data becomes a major issue. Also, studying small-scale spatial variations of a physicochemical parameter needs positions of sensor measurements or samplings to be known precisely. To overcome this problem, maps of the seafloor can be generated in the form of geo-referenced video- or photo-mosaics. Mosaics are constructed by assembling overlapping images together into a larger image of the scene. To reduce the effects of drift in the navigation data, the construction of the mosaics uses robust feature detection and mapping capabilities to precisely relate consecutive images together. After geo-referencing in a Geographic Information System (GIS), points of measurements and sampling can be accurately pinpointed onto the mosaics to allow for spatial analyses. During cruise M82/3 to the Menez Gwen hydrothermal vent system, high-resolution photo-mosaics of several sites of hydrothermal activity were constructed and geo-referenced into GIS systems

  11. State of the hydrothermal activity of Soufrière of Guadeloupe volcano inferred by VLF surveys

    NASA Astrophysics Data System (ADS)

    Zlotnicki, J.; Vargemezis, G.; Mille, A.; Bruère, F.; Hammouya, G.

    2006-04-01

    La Soufrière (1467 m) is the active island arc volcano of Guadeloupe Island in the Lesser Antilles arc. Its historical eruptions are more or less violent phreatic outbursts the last of which, in 1976-1977, led to the evacuation of nearly 70 000 persons. The subsurface structure of the volcano consists of calderas, craters, and avalanche amphitheatres nested within the composite pile of eruptive products. Since the last magmatic eruption, dated ca. 1440 AD, the four phreatic eruptions have developed radial fractures on Soufrière dome favouring the development of a huge active hydrothermal system emphasized by a tropical environment. After the eruptions, the thermal state and the stable ground water flow are completely disorganised during several years during which the slow mineralization of rocks is becoming again preponderant. Sealing of fractures and decay of rocks permeability act as a cap for upward thermal transfers. Therefore Soufrière dome operates as a valve, resealing the hydrothermal system underlying the volcano thus providing over pressurization that could lead to the next phreatic eruption. In 1992 new small seismic swarms have appeared. Several of them are recorded every year while the emission of acid gas slowly increases. In order to recognise the superficial electrical resistive and conductive zones (less than 100 m depth) as well as the cavities on Soufrière volcano, we have made Very Low Frequency (VLF) surveys in 2000. Electrical conductive zones are clearly associated with major radial faults starting from the summit in which the hydrothermal activity takes place. In the continuation of these active hydrothermal fractures hot springs are located down slope. Conversely some of the resistive zones are associated with inactive clayed and sealed or opened faults. The distribution of the conductive zones allows detailing the state of the superficial part of the hydrothermal system of La Soufrière. The distribution of vertical clayed zones

  12. Improving Morphological Quality and Uniformity of Hydrothermally Grown ZnO Nanowires by Surface Activation of Catalyst Layer

    NASA Astrophysics Data System (ADS)

    Murillo, Gonzalo; Lozano, Helena; Cases-Utrera, Joana; Lee, Minbaek; Esteve, Jaume

    2017-01-01

    This paper presents a study about the dependence of the hydrothermal growth of ZnO nanowires (NWs) with the passivation level of the active surface of the Au catalyst layer. The hydrothermal method has many potential applications because of its low processing temperature, feasibility, and low cost. However, when a gold thin film is utilized as the seed material, the grown NWs often lack morphological homogeneity; their distribution is not uniform and the reproducibility of the growth is low. We hypothesize that the state or condition of the active surface of the Au catalyst layer has a critical effect on the uniformity of the NWs. Inspired by traditional electrochemistry experiments, in which Au electrodes are typically activated before the measurements, we demonstrate that such activation is a simple way to effectively assist and enhance NW growth. In addition, several cleaning processes are examined to find one that yields NWs with optimal quality, density, and vertical alignment. We find cyclic voltammetry measurements to be a reliable indicator of the seed-layer quality for subsequent NW growth. Therefore, we propose the use of this technique as a standard procedure prior to the hydrothermal synthesis of ZnO NWs to control the growth reproducibility and to allow high-yield wafer-level processing.

  13. Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dublyansky, Y. V.

    2014-08-01

    A unique conceptual model describing the conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE to keep from considering hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. The evaluation presented in this paper shows that no computational modeling results have yet produced a satisfactory match with the empirical benchmark data, specifically with age and fluid inclusion data that indicate high temperatures (up to ca. 80 °C) in the unsaturated zone of Yucca Mountain. Auxiliary sub-models complementing the DOE model, as well as observations at a natural analog site, have also been evaluated. Summarily, the model cannot be considered as validated. Due to the lack of validation, the reliance on this model must be discontinued and the appropriateness of decisions which rely on this model must be re-evaluated.

  14. Identification and characterization of the active hydrothermal deposits in Okinawa Trough, SW Japan: Estimates from logging-while-drilling

    NASA Astrophysics Data System (ADS)

    Saito, S.; Sanada, Y.; Moe, K.; Kido, Y. N.; Hamada, Y.; Kumagai, H.; Nozaki, T.; Takai, K.; Suzuki, K.

    2015-12-01

    A scientific drilling expedition was conducted at an active hydrothermal field on the Iheya-North Knoll by D/V Chikyu in 2014 (Expedition 907) as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program. During the expedition logging while drilling (LWD) was deployed to constrain the area of the fluid reservoir beneath seafloor followed by three coring holes down to 150 meter below the seafloor (mbsf). The LWD system is composed of arcVISION for resistivity and natural gamma ray measurement and TeleScope for real-time transmission of drilling parameters and arcVISION data. Five sites (C9011-15) at the Iheya-North Original Site and one site (C9016) at Aki Site were drilled with LWD. At C9012 and C9016, the arcVISION detected temperature anomaly up to 84℃ at 234 mbsf and up to 39℃ at 80 mbsf, respectively. The temperature quickly increases at that depth and it would reflect the existence of high-temperature heat source along borehole. Due to the continuous fluid circulation during drilling, the measured temperature does not indicate in-situ temperature, but it reflects the heat disturbed by the cold circulated water instead. High quality resistivity and natural gamma ray data were acquired at six sites. The log curves at Site C9016 show characteristic response; the natural gamma ray log exhibits extremely high radiation (>500 gAPI) at 7-13 and 23-31 mbsf (Zone A). In the underlying interval of 31-40 mbsf, the resistivity log exhibits extremely low value (<0.2 ohm-m) (Zone B). Then the resistivity log exhibits higher value (~10 ohm-m) and the natural gamma ray log shows very low radiation (<50 gAPI) at the interval of 41-48 mbsf (Zone C). The log characteristics in Zone A, B, and C can be interpreted as a series of K-rich alteration zone, sulfide zone, and low-K hard (silicified) sediments, respectively. The LWD-based lithological interpretation was confirmed by the following core description

  15. Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African Rift

    SciTech Connect

    Tiercelin, J.J.; Mondeguer, A. ); Thouin, C. ); Kalala, T. )

    1989-11-01

    Massive sulfides and carbonate mineral deposits associated with sublacustrine thermal springs were recently discovered along the Zaire side of the north Tanganyika trough, western branch of the East African Rift. This hydrothermal activity, investigated by scuba diving at a maximum depth of 20 m, is located at the intersection of major north-south normal faults and northwest-southeast faults belonging to the Tanganyika-Rukwa-Malawi (TRM) strike-slip fault zone. The preliminary results presented here come from analyses of sulfide deposits, hydrothermal fluids, and associated hydrocarbons that result from geothermal activity in this part of the East African Rift filled by a thick pile of sediment, the north Tanganyika trough.

  16. P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method

    NASA Astrophysics Data System (ADS)

    Niu, Jinfen; Lu, Pan; Kang, Mei; Deng, Kunfa; Yao, Binghua; Yu, Xiaojiao; Zhang, Qian

    2014-11-01

    Phosphorous-doped anatase TiO2 powders (P-TiO2) were prepared by rapid microwave hydrothermal method. The resulting materials were characterized by XRD, SEM, XPS, DRS and N2 adsorption. P-doping decreased the band gap and enlarged the surface area of P-doped samples than that of undoped TiO2 samples. Therefore, the photocatalytic degradation of methyl blue (MB) and tetracycline hydrochloride (Tc) experiments showed that the P-TiO2 catalysts, especially the two-steps-controlling products P-TiO2-2, exhibited higher degradation efficiency than the undoped TiO2 and commercial P25 under visible-light irradiation. Hydroxyl radicals (rad OH) have been confirmed to be the active species during the photocatalytic oxidation reaction. The microwave hydrothermal method confirms to be very suitable for the synthesis of superior visible-light activity P-doped samples.

  17. Recent Investigation of In-Situ pH in Hydrothermal Vent Fluids at Main Endeavour Field (MEF) and ASHES Vent Field (ASHES): Implications for Dynamic Changes in Subseafloor Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Ding, K.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.

    2014-12-01

    In-situ pH is among the key factors affecting chemical reactions involved with fluid-rock interaction and metal transport in hydrothermal systems. A small variation in pH will often result in a large difference in dissolved metal concentrations. For instance, at 400oC, a decrease of ~0.15 pH unit will cause dissolved Fe concentration to double in fluid coexisting with a Fe-bearing mineral assemblage. This parameter also offers us an opportunity to better understand processes controlling the temporal evolution of hydrothermal vent fluid chemistry at mid-ocean ridges. During our recent cruise AT 26-17 with newly upgraded DSV2 Alvin, in-situ measurements of pH were carried out along with gas-tight sampling of vent fluids. Our efforts were focused at MEF and ASHES on the Juan de Fuca Ridge. These hydrothermal systems have been shown to be particularly responsive to subseafloor seismic and magmatic events. The measured fluid temperature was approximately 333˚C and 300˚C at Dante vent orifice of MEF and Inferno vent orifice of ASHES, respectively. The corresponding measured in-situ pH values for both vents are: 4.94 and 4.88, respectively. Dissolved gases and other species were also measured from gas-tight fluid samples providing a means of comparison with the in-situ data. As we have known the earthquake and magmatic activity often places the system at higher temperature and more reducing conditions in connection with a new evolutionary cycle. Comparing these relatively low in-situ pH values with those measured in the past, especially with the ones obtained at MEF in 1999 after an intense swarm of earthquakes, we see the system trending towards more acidic conditions along with decreasing temperature and dissolved H2 and H2S. Taking an example from Dante vent site, in-situ pH value of 5.15 was recorded with a measured temperature of 363oC two month after the event in 1999, which gives 0.2 pH unit greater than the more recent data. Measured dissolved H2 and H2S

  18. Relations between electrical resistivity, carbon dioxide flux, and self-potential in the shallow hydrothermal system of Solfatara (Phlegrean Fields, Italy).

    NASA Astrophysics Data System (ADS)

    Byrdina, Svetlana; Vandemeulebrouck, Jean; Cardellini, Carlo; Legaz, Aurelie; Camerlynck, Christian; Chiodini, Giovanni; Lebourg, Thomas; Letort, Jean; Motos, Ghislan; Carrier, Aurore; Bascou, Pascale

    2014-05-01

    In the frame of the Geo-Supersite Med-Suv project, we present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, Phlegrean Fields, Italy. This ensemble of methods aims to image the hydrothermal system of Solfatara, understand the geometry of the fluid circulation, and precise the extension of the hydrothermal plume evidenced by Bruno et al. (2007). Solfatara is the most active crater of Phlegrean Fields, characterized by an intense carbon dioxide degassing, about 1500 T/day (Chiodini et al, 2005). Its main structures are Bocca Grande fumarole and several lesser fumaroles aligned along two normal faults, and Fangaia mud pool where the aquifer reaches the surface. Solfatara appears as a globally conductive structure, with resistivity in the range 1 - 100 Ohmm. Comparison between spatial variations of resistivity and gas flux rate indicates that resistivity changes at depth are related to gas ratio content and the fluid temperature. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of the Bocca Grande suggests a significant downward flow of condensing liquid water. Our results delineate several distinct zones: 1) a vegetation-covered area, relatively undisturbed by a hydrothermal activity and characterized by a high resistivity (up to 100 Ohm-m) of the shallow layer (vadose zone), and low carbon dioxide flux. In this area, self-potential takes zero or positive values with little spatial variations. 2) In the central part, below a superficial vadose zone, a resistive layer (20 - 100 Ohm-m), between 30 - 100 m depth, interpreted as a gas-saturated body, is systematically overlain by a conductive aquifer (1 - 5 Ohm-m). In this area, the self-potential displays a negative anomaly with an average value of -100 mV and the carbon dioxide flux is > 1000 g m-2day-1. 3) Close to Bocca Grande fumarole, the

  19. Microearthquakes at the active Trans-Atlantic Geotraverse (TAG) hydrothermal mound, Mid-Atlantic Ridge, 26°08'N

    NASA Astrophysics Data System (ADS)

    Pontbriand, C.; Reves-Sohn, R. A.

    2010-12-01

    A small 200 m aperture network of five ocean bottom seismometers around the periphery the active TAG hydrothermal mound on the Mid-Atlantic Ridge (26°08’N) detected microearthquake events that may be associated with the subsurface hydraulics of the massive hydrothermal deposit. Seismic data were sampled at 100 Hz for a period of eight months spanning June, 2003 to February, 2004, during which time 24,191 locatable events were detected. Microearthquake hypocenters are concentrated within a 300 m radius of the sulfide mound in the top 250 m of crust, and exhibit a conical shape with the deepest events beneath the mound center. Event rates are steady at 180 events per day at the beginning of the study period and decline slightly to 116 events per day after whale calls elevate background noise levels about 2/3 of the way through the deployment. The mean local magnitude of events is -1.2 with a range of -2.9≦ML≦0.3. We suggest that events may be largely due to hydraulic fracturing of clogged flow conduits in the mineral deposit, which provides the possibility of using the microearthquake data to constrain subsurface flow parameters and the permeability structure of the active TAG deposit. Figure: A bathymetric map of the TAG area depicts a small aperture network of 5 ocean bottom seismometers (white triangles) around the periphery of the active TAG hydrothermal mound. High resolution bathymetry is from Roman and Singh, 2005.

  20. A Fluorescein Tracer Release Experiment in the Hydrothermally Active Crater of Vailulu'u Volcano, Samoa

    NASA Astrophysics Data System (ADS)

    Hart, S. R.; Staudigel, H.; Workman, R.; Koppers, A.; Girard, A.

    2001-12-01

    Vailulu'u (Rockne) volcano marks the active end of the Samoa hotspot chain. The volcano is 4400 meters high, with a summit crater 2000 meters wide by 400 meters deep and summit peaks reaching to within 600 meters of the sea surface. The crater is hydrothermally active, as witnessed by intense particulate concentrations in the water column (values to 1.4 NTU's), a particulate smog ``halo'' surrounding the summit and extending out many kilometers, high Mn concentrations and 3He/4He ratios (values to 3.8 ppb and 8.6 Ra, respectively), and bottom-water temperature anomalies of 0.5oC. Basalts from the crater have been dated in the range 5-50 years, and likely reflect eruptions associated with a 1995 earthquake swarm. On April 3, 2001, we released a 20 kg point-source charge of fluorescein dye 30 meters above the 975m deep crater floor. The dye was dissolved in a 180 liter mixture of propanol and water, adjusted to a density 1.3 per mil heavier than the ambient water at the release depth. Released from a rubberized bag by means of a galvanic link. First detection of the released dye was 39 hours after the deployment; the dye was in a 50 meter thick layer, with a concentration peak at 900 meters (relative to the release depth of 945m). Tracking was carried out by a CTD-based fluorometer operated in tow-yo mode from the U.S.C.G. Icebreaker Polar Sea. The detection limit was 25 picograms/gram, and the maximum detected concentration was 18,000 pg/g (if evenly dispersed in the lower 150 meters of water in the crater, the expected concentration would be approx. 130 pg/g). While the dye pool was only surveyed for 4 days due to ship-transit constraints, significant horizontal and vertical dispersion was apparent. Vertical dispersion velocities were typically 0.05 cm/sec; horizontal velocities were typically higher by a factor of 10. An approximate diapycnal or eddy diffusivity, K, can be calculated from the rate of vertical spreading of the dye layer: K = Z2/2(t-t0), where Z is

  1. Older Hydrothermal Activity along the Northern Yellowstone Caldera Margin at Sulphur Creek, Yellowstone Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Manion, J. L.; Larson, P.

    2008-12-01

    The Tuff of Sulphur Creek (480 ka) is well exposed in the Seven Mile Hole area of the Grand Canyon of the Yellowstone River, Yellowstone National Park, Wyoming. The rhyolitic tuff erupted after the collapse of the Yellowstone Caldera (640 ka) and hosts more than 350 vertical meters of hydrothermal alteration. Two epithermal alteration assemblages with different mineral associations have been identified in the area: an illite-silica-pyrite phase and a kaolinite-alunite-silica-pyrite phase. Kaolinite and opal occur along the canyon rim, montmorillonite and other smectites are found at intermediate depths, and illite and sulfides (pyrite) are found deepest in the section. Our work on the north side of the Sevenmile Hole altered area has found a complex system of veining. The veins are concentrated in the eastern portion of the canyon and are less frequent to the west. Brecciated cross-cutting veins ranging from 2 to 30cm wide are found at the base of the canyon. Moving vertically up the canyons walls, the veining style becomes less complex. These veins are about 1 to 1.5cm wide and are not brecciated, occurring less frequently than the brecciated veins. The canyon walls and the canyon rim mainly contain millimeter-scale cross-cutting silica veinlets. These stockwork-like veinlets are the most abundant fracture filling that we find throughout the canyon walls. Veins at the base of the system, found in the stream bed, contain abundant sulfides (mainly pyrite). Sulfides are present in three forms: disseminated in a silica matrix, as massive pyrite in healed fractures, and encrusting clays and silica. The latter is the least common. Disseminated and massive sulfides are typically associated with the matrix in the brecciated veins. Breccias include angular clasts of altered tuff with argillized feldspar phenocrysts and fragments of earlier vein-filling opal. Sulfides are most abundant in the bottom of the canyon and in the western part of the field area. Hydrothermal

  2. Seismic structure and seismicity at the southern Mariana Trough with hydrothermal activities

    NASA Astrophysics Data System (ADS)

    Sato, T.; Mizuno, M.; Takada, H.; Yamada, T.; Isse, T.; Shinohara, M.

    2012-12-01

    The Southern Mariana Trough back-arc spreading system shows asymmetry spreading, and has high relief at spreading axes, which infers abundant melt supply. Furthermore, five hydrothermal vents that extrude different water contents, exist within 5 km near the spreading axis. To investigate upper mantle structure, crustal structure and hypocenter distribution provide important constraint on following four main points to understand the back-arc spreading system; 1) imaging melt delivery to the spreading axis and off axis seamount including volcanic arc, 2) production and character of the crust, 3) relationship between melt supply and crustal formation, and 4) pathway and heat source for hydrothermal circulation with related to its formation. We conducted a seismic reflection/refraction survey and seismicity observation at the hydrothermal area in the Southern Mariana Trough from August to November in 2010. We used 9 ocean bottom seismometers, an air gun (GI gun) and a single channel streamer cable. We took 7 parallel lines and 7 perpendicular lines to the spreading center. Line length was 15 km each, and line interval was 2.5 km. From the survey and observation, we obtained very low seismicity at the hydrothermal area in the 3 month's observation. The reflection survey shows that some reflectors exist under the hydrothermal area. In this presentation, we will also show seismic velocity structures from the refraction survey.

  3. Enceladus and Europa: How Does Hydrothermal Activity Begin at the Surface?

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    The question of how the surface hydrothermal activity (e.g., eruptive plumes and heat flow) is initiated can be addressed within the frame-work of our "Perrier Ocean" model. This model delivers the necessary heat and chemicals to support the heat flow and plumes observed by Cassini in Enceladus' South Polar Region. The model employs closed-loop circulation of water from a sub-surface ocean. The ocean is the main reservoir of heat and chemicals, including dissolved gases. As ocean water moves up toward the surface, pressure is re-duced and gases exsolve forming bubbles. This bub-bly mixture is less dense than the icy crust and the buoyant ocean-water mixture rises toward the surface. Near the surface, heat and chemicals, including some volatiles, are delivered to the chambers in which plumes form and also to shallow reservoirs that keep the surface ice "warm". (Plume operations, per se, are as described by Schmidt et al. and Postberg et al. and are adopted by us.) After transferring heat, the water cools, bubbles contract and dissolve, and the mixture is now relatively dense. It descends through cracks in the crust and returns to the ocean. Once the closed-loop circulation has started it is self-sustaining. Loss of water via the erupting plumes is relatively negligible compared to the amount needed to maintain the heat flow.We note that the activity described herein for the the "Perrier-Ocean" model could, a priori, apply to all small icy bodies that sheltered an interior ocean at some point in their history.

  4. Discovery of New Hydrothermal Activity and Chemosynthetic Fauna on the Central Indian Ridge at 18°–20°S

    PubMed Central

    Nakamura, Kentaro; Watanabe, Hiromi; Miyazaki, Junichi; Takai, Ken; Kawagucci, Shinsuke; Noguchi, Takuro; Nemoto, Suguru; Watsuji, Tomo-o; Matsuzaki, Takuya; Shibuya, Takazo; Okamura, Kei; Mochizuki, Masashi; Orihashi, Yuji; Ura, Tamaki; Asada, Akira; Marie, Daniel; Koonjul, Meera; Singh, Manvendra; Beedessee, Girish; Bhikajee, Mitrasen; Tamaki, Kensaku

    2012-01-01

    Indian Ocean hydrothermal vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean hydrothermal systems. In particular, since its discovery in 2001, much attention has been paid to a so-called ‘scaly-foot’ gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean hydrothermal vents, only two hydrothermal vent fields have been investigated in the Indian Ocean. Here we report two newly discovered hydrothermal vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR hydrothermal environments to date, and even identified previously unreported taxa. Moreover, a new morphotype of ‘scaly-foot’ gastropod has been found at the Solitaire field. The newly discovered ‘scaly-foot’ gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of ‘scaly-foot’ gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to ‘scaly-foot’ gastropods. Our new findings at the two newly discovered hydrothermal vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean. PMID:22431990

  5. Photocatalytic activity of tungsten-doped TiO2 with hydrothermal treatment under blue light irradiation.

    PubMed

    Putta, Thapanan; Lu, Ming-Chun; Anotai, Jin

    2011-09-01

    Tungsten doping and hydrothermal treatment were found to significantly improve the visible-light photoactivity of TiO(2) synthesized by the sol-gel method. It was observed that TiO(2) doped with a 0.5% W:Ti mole ratio and treated with 4 h of hydrothermal curing showed photoactivity under blue light irradiation equal to 74% of the commercial Degussa P-25 under UV irradiation, i.e., 0.01 mM 2-chlorophenol was completely removed in 120 and 90 min, respectively. Light absorptivity and photocatalytic activity under blue light irradiation were not dependent on the crystallite structure of the TiO(2). The oxidation kinetics under blue light irradiation can be effectively explained by the Langmuir-Hinshelwood model with an apparent reaction rate constant and a Langmuir constant of 3.60 × 10(-4) mM min(-1) and 206.53 mM(-1), respectively.

  6. Novel Barite Chimneys at the Loki's Castle Vent Field Shed Light on Key Factors Shaping Microbial Communities and Functions in Hydrothermal Systems

    PubMed Central

    Steen, Ida H.; Dahle, Håkon; Stokke, Runar; Roalkvam, Irene; Daae, Frida-Lise; Rapp, Hans Tore; Pedersen, Rolf B.; Thorseth, Ingunn H.

    2016-01-01

    In order to fully understand the cycling of elements in hydrothermal systems it is critical to understand intra-field variations in geochemical and microbiological processes in both focused, high-temperature and diffuse, low-temperature areas. To reveal important causes and effects of this variation, we performed an extensive chemical and microbiological characterization of a low-temperature venting area in the Loki's Castle Vent Field (LCVF). This area, located at the flank of the large sulfide mound, is characterized by numerous chimney-like barite (BaSO4) structures (≤ 1 m high) covered with white cotton-like microbial mats. Results from geochemical analyses, microscopy (FISH, SEM), 16S rRNA gene amplicon-sequencing and metatranscriptomics were compared to results from previous analyses of biofilms growing on black smoker chimneys at LCVF. Based on our results, we constructed a conceptual model involving the geochemistry and microbiology in the LCVF. The model suggests that CH4 and H2S are important electron donors for microorganisms in both high-temperature and low-temperature areas, whereas the utilization of H2 seems restricted to high-temperature areas. This further implies that sub-seafloor processes can affect energy-landscapes, elemental cycling, and the metabolic activity of primary producers on the seafloor. In the cotton-like microbial mats on top of the active barite chimneys, a unique network of single cells of Epsilonproteobacteria interconnected by threads of extracellular polymeric substances (EPS) was seen, differing significantly from the long filamentous Sulfurovum filaments observed in biofilms on the black smokers. This network also induced nucleation of barite crystals and is suggested to play an essential role in the formation of the microbial mats and the chimneys. Furthermore, it illustrates variations in how different genera of Epsilonproteobacteria colonize and position cells in different vent fluid mixing zones within a vent field

  7. Novel Barite Chimneys at the Loki's Castle Vent Field Shed Light on Key Factors Shaping Microbial Communities and Functions in Hydrothermal Systems.

    PubMed

    Steen, Ida H; Dahle, Håkon; Stokke, Runar; Roalkvam, Irene; Daae, Frida-Lise; Rapp, Hans Tore; Pedersen, Rolf B; Thorseth, Ingunn H

    2015-01-01

    In order to fully understand the cycling of elements in hydrothermal systems it is critical to understand intra-field variations in geochemical and microbiological processes in both focused, high-temperature and diffuse, low-temperature areas. To reveal important causes and effects of this variation, we performed an extensive chemical and microbiological characterization of a low-temperature venting area in the Loki's Castle Vent Field (LCVF). This area, located at the flank of the large sulfide mound, is characterized by numerous chimney-like barite (BaSO4) structures (≤ 1 m high) covered with white cotton-like microbial mats. Results from geochemical analyses, microscopy (FISH, SEM), 16S rRNA gene amplicon-sequencing and metatranscriptomics were compared to results from previous analyses of biofilms growing on black smoker chimneys at LCVF. Based on our results, we constructed a conceptual model involving the geochemistry and microbiology in the LCVF. The model suggests that CH4 and H2S are important electron donors for microorganisms in both high-temperature and low-temperature areas, whereas the utilization of H2 seems restricted to high-temperature areas. This further implies that sub-seafloor processes can affect energy-landscapes, elemental cycling, and the metabolic activity of primary producers on the seafloor. In the cotton-like microbial mats on top of the active barite chimneys, a unique network of single cells of Epsilonproteobacteria interconnected by threads of extracellular polymeric substances (EPS) was seen, differing significantly from the long filamentous Sulfurovum filaments observed in biofilms on the black smokers. This network also induced nucleation of barite crystals and is suggested to play an essential role in the formation of the microbial mats and the chimneys. Furthermore, it illustrates variations in how different genera of Epsilonproteobacteria colonize and position cells in different vent fluid mixing zones within a vent field

  8. Recent uplift and hydrothermal activity at Tangkuban Parahu volcano, west Java, Indonesia

    USGS Publications Warehouse

    Dvorak, J.; Matahelumual, J.; Okamura, A.T.; Said, H.; Casadevall, T.J.; Mulyadi, D.

    1990-01-01

    Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40-50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very

  9. Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: generation of a transient, warm, wet oasis

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Spray, John G.

    2001-05-01

    Field studies and analytical scanning electron microscopy indicate that a hydrothermal system was created by the interaction of water with hot, impact-generated rocks following formation of the 24 km-diameter, 23 Ma Haughton impact structure. Hydrothermal alteration is recognized in two settings: within polymict impact breccias overlying the central portion of the structure, and within localized pipes in impact-generated concentric fault systems. The intra-breccia alteration comprises three varieties of cavity and fracture filling: (a) sulfide with carbonate, (b) sulfate, and (c) carbonate. These are accompanied by subordinate celestite, barite, fluorite, quartz and marcasite. Selenite is also developed, particularly in the lower levels of the impact breccia sheet. The fault-related hydrothermal alteration occurs in 1-7 m diameter subvertical pipes that are exposed for lengths of up 20 m. The pipes are defined by a monomict quartz-carbonate breccia showing pronounced Fe-hydroxide alteration. Associated sulfides include marcasite, pyrite and chalcopyrite. We propose three distinct stages in the evolution of the hydrothermal system: (1) Early Stage (>200 degC), with the precipitation of quartz (vapour phase dominated); (2) Main Stage (200-100 deg C), with the development of a two phase (vapour plus liquid) zone, leading to calcite, celestite, barite, marcasite and fluorite precipitation, and (3) Late Stage (<100 degC), with selenite and fibroferrite development through liquid phase-dominanted precipitation. We estimate that it took several tens of thousands of years to cool below 50 deg C following impact. During this time, Haughton supported a 14 km diameter crater lake and subsurface water system, providing a warmer, wetter niche relative to the surrounding terrain. The results also reveal how understanding the internal structure of impact craters is necessary in order to determine their plumbing and cooling systems.

  10. High-resolution surveys along the hot spot-affected Gálapagos Spreading Center: 3. Black smoker discoveries and the implications for geological controls on hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Haymon, Rachel M.; White, Scott M.; Baker, Edward T.; Anderson, Peter G.; MacDonald, Ken C.; Resing, Joseph A.

    2008-12-01

    To explore effects of hot spots on mid-ocean ridge hydrothermal systems, we conducted nested sonar, hydrothermal plume, and near-bottom photographic surveys along the portion of the Galápagos Spreading Center (GSC) influenced by the Galápagos hot spot, from longitude 95°-89.5°W. We report the first active high-temperature black smokers to be found on the GSC, at longitudes 94°4.5'W and 91°56.2'-54.3'W; describe two areas of recently inactive smokers, at longitudes 91°23.4'-23.7'W and 91°13.8'W; and document an older inactive site, at longitude 90°33.4'W. All imaged vents issue either from dike-induced fissures along linear axial volcanic ridges and collapses or from a caldera. Magmatic control of hydrothermal systems also is revealed by spatial clustering of plumes within the topographically elevated middles of volcanic ridge segments with inferred centralized melt supply. In searched areas, smokers are more typical than diffuse flow vents, but total GSC plume incidence is half of that expected from the spreading rate. Why? Dike-fed fissures provide permeable pathways for efficient hydrothermal extraction of magmatic heat, but cones without calderas do not. Among many point-source cones surveyed, only the two with calderas had detectable plumes. Possibly, dominance of point-source over linear-source melt delivery on the GSC decreases plume incidence. Also, similar maturities of observed vents and their host lava flows indicate that hydrothermally active volcanic segments along the western GSC are contemporaneously in a waning phase of volcanic-hydrothermal activity. Perhaps ridge/hot spot interaction produces melt pulses that drive near-synchronous volcanic-hydrothermal activity on the volcanic segments spanning the hot spot. During active periods, hydrothermally active dike-fed fissures and calderas may be more abundant than we currently observe.

  11. Metal concentrations in the shell of Bathymodiolus azoricus from contrasting hydrothermal vent fields on the Mid-Atlantic Ridge.

    PubMed

    Cravo, A; Foster, P; Almeida, C; Bebianno, M J; Company, R

    2008-05-01

    Specimens of Bathymodiolus azoricus were sampled along the Mid-Atlantic Ridge at the Menez Gwen, Lucky Strike and Rainbow hydrothermal fields. Individual shells (n = 51), through the weight range 0.62 to 15.70 g, were analyzed for their magnesium, strontium, iron, manganese, copper, zinc and cadmium concentrations. Amongst the marine molluscs the shell of B. azoricus is confirmed as being particularly impoverished in strontium (mean 943 microg g(-1)). Trace metal concentrations in the shells decreased in the order Fe> Mn> Zn> Cu> Cd. Despite originating from trace metal rich environments mean concentrations were low (37.9, 13.2, 10.7, 1.1 and 0.7 microg g(-1), respectively). Irrespective of geographical origin magnesium, strontium and copper concentrations were primarily dictated by shell weight. In contrast cadmium concentrations were elevated in shells from the Rainbow field and ambient seawater chemistry imparted site specific chemical fingerprints to the shells with respect to the iron to manganese ratio.

  12. Correlation of wireline log characteristics with hydrothermal alteration and other reservoir properties of the Salton Sea and Westmorland geothermal fields, Imperial Valley, California, USA

    SciTech Connect

    Muramoto, F.S.; Elders, W.A.

    1984-05-01

    A detailed study of wireline logs from 11 wells in the Salton Sea and Westmorland geothermal systems was undertaken in order to determine the effects of hydrothermal alteration on the response of electrical and gamma-gamma density well logs. For the Salton Sea geothermal field, definite correspondence between log responses and hydrothermal mineralogy is evident, which in turn is related to the physical properties of the rocks. Three hydrothermal and one unaltered zone can be identified from log data on shales. These are: (1) the unaltered montmorillonite zone (<100/sup 0/ to 190/sup 0/C); (2) the illite zone (100/sup 0/ to 190/sup 0/C to 230/sup 0/ to 250/sup 0/C); (3) the chlorite zone (230/sup 0/ to 250/sup 0/C to 290/sup 0/ to 300/sup 0/C); and (4) the feldspar zone (>290/sup 0/ to 300/sup 0/C). The characteristic responses on well logs by which these zones are identified result primarily from changes in clay mineralogy of the shales and increases in density with progressive hydrothermal metamorphism. In the Westmorland geothermal field, differentiating mineral zones from log responses was only partially successful. However, analyses of both well log and petrologic data for wells Landers 1 and Kalin Farms 1 suggest that the former is heating up and the latter is cooling.

  13. Geochemistry of fluid phases and sediments: Relevance to hydrothermal circulation in Middle Valley, ODP Legs 139 and 169

    USGS Publications Warehouse

    Gieskes, J.M.; Simoneit, B.R.T.; Shanks, Wayne C.; Goodfellow, W.D.; James, R.H.; Baker, P.A.; Ishibashi, J.-I.

    2002-01-01

    Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill hydrothermal sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the hydrothermal systems reflect non-steady state conditions, the data allow an assessment of the history of the hydrothermal processes. Sediment K/A1 ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog hydrothermal field has been, and still is, active. In contrast, similar data in the Bent Hill hydrothermal field indicate a waning of hydrothermal activity. Pore fluid and hydrothermal vent data in the Dead Dog hydrothermal field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of hydrothermal activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of hydrothermal fluids at greater depths in this area. This suggests the origin of the hydrothermal fluids found to be emanating from Hole 1035F, which constitutes one of the first man made hydrothermal vents in the Middle Valley hydrothermal system. Similarly, CORKed Hole 858G, because of seal failures, has acted as a hydrothermal vent, with sulfide deposits forming inside the CORK. ?? 2002 Elsevier Science Ltd. All rights reserved.

  14. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  15. 400°C hot Boiling Fluids From a Hydrothermal Field at 5°S on the Mid-Atlantic Ridge: Results of Meteor Cruise M64/1

    NASA Astrophysics Data System (ADS)

    Koschinsky, A.; Garbe-Schoenberg, D.; Seifert, R.; Strauss, H.; Weber, S.; Marbler, H.

    2005-12-01

    Until recently, hydrothermal activity was unknown from the Mid-Atlantic Ridge (MAR) south of the Equator where the MAR is offset by several 100 km at the St. Paul's and Romanche fracture zones. During the British cruise CD 169 in Feb./March 2005, an active hydrothermal vent field was discovered on the southern MAR at 5°S. During the German follow-up cruise M64/1 in April 2005, the first samples from this vent field were recovered with the ROV QUEST (Univ. Bremen). The high-temperature vent field is situated in a water depth of 2990 m within a large basaltic sheet flow. A diffuse, low-temperature field occurs in few hundred meters to the east. Here we show for the first time that boiling fluids of 400°C are emanating at a depth of about 3000 m at a slow-spreading MAR segment. Although this segment is composed of thick basaltic crust, these fluids are dominated by hydrogen relative to methane, similar to ultramafic-hosted systems. The samples have significantly reduced chloride concentrations with a calculated endmember value of 254 mmol/l Cl compared to a background seawater value of 560 mmol/l Cl. This indicates that the fluids are phase-separated and that the samples collected represent the vapor-type phase of the boiling fluids. Fluids from the neighbouring diffuse vent field lie on the same mixing line of seawater and hydrothermal endmember chlorinity, indicating the same fluid source. The fluids of an additional vent field found only 3 km distant in a similar setting do not show any signs of phase separation but higher metal concentrations and a much lower Fe/Mn ratio compared to the hot vapor-type fluids. Apparently, the temperature conditions in a hydrothermal vent system in combination with phase separation processes may be more important for the fluid composition than the leached rock type. We hypothesize that a very recent intrusion and/or eruption event at the vent field where the hot phase-separated fluids were sampled causes the high heat, gas and Fe

  16. Tectonic and magmatic control of hydrothermal activity along the slow-spreading Central Indian Ridge, 8°S-17°S

    NASA Astrophysics Data System (ADS)

    Son, Juwon; Pak, Sang-Joon; Kim, Jonguk; Baker, Edward T.; You, Ok-Rye; Son, Seung-Kyu; Moon, Jai-Woon

    2014-05-01

    complex geology and expansive axial valleys typical of slow-spreading ridges makes evaluating their hydrothermal activity a challenge. This challenge has gone largely unmet, as the most undersampled MOR type for hydrothermal activity is slow spreading (20-55 mm/yr). Here we report the first systematic hydrothermal plume survey conducted on the Central Indian Ridge (CIR, 8°S-17°S), the most extensive such survey yet conducted on a slow-spreading ridge. Using a combined CTD/Miniature Autonomous Plume Recorder (MAPR) package, we used 118 vertical casts along seven segments of the CIR (˜700 km of ridge length) to estimate the frequency of hydrothermal activity. Evidence for hydrothermal activity (particle and methane plumes) was found on each of the seven spreading segments, with most plumes found between 3000 and 3500 m, generally <1000 m above bottom. We most commonly found plumes on asymmetric ridge sections where ultramafic massifs formed along one ridge flank near ridge-transform intersections or nontransform offsets. The estimated plume incidence (ph) for axial and wall casts (ph=0.30, 35 of 118 casts) is consistent with the existing global trend, indicating that the long-term magmatic budget on the CIR is the primary control on the spatial frequency of hydrothermal venting. Our results show that the tectonic fabric of the CIR strongly determines where hydrothermal venting is expressed, and that using only near-axial sampling might underestimate hydrothermal activity along slow-spreading and ultraslow-spreading ridges. Serpentinization is a minor contributor to the plume inventory, based on 15 profiles with methane anomalies only, predominantly at depths above the local valley walls.

  17. Investigation of hydrothermal activity at Campi Flegrei caldera using 3D numerical simulations: Extension to high temperature processes

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Costa, Antonio; Chiodini, Giovanni

    2015-06-01

    Hydrothermal activity at Campi Flegrei caldera is simulated by using the multiphase code MUFITS. We first provide a brief description of the simulator covering the mathematical formulation and its applicability at elevated supercritical temperatures. Then we apply, for the first time, the code to hydrothermal systems investigating the Campi Flegrei caldera case. We consider both shallow subcritical regions and deep supercritical regions of the hydrothermal system. We impose sophisticated boundary conditions at the surface to provide a better description of the reservoir interactions with the atmosphere and the sea. Finally we carry out a parametric study and compare the simulation results with gas temperature and composition, gas and heat fluxes, and temperature measurements in the wells of that area. Results of the parametric study show that flow rate, composition, and temperature of the hot gas mixture injected at depth, and the initial geothermal gradient strongly control parameters monitored at Solfatara. The results suggest that the best guesses conditions for the gas mixture injected at 5 km depth correspond to a temperature of ~ 700 °C, a fluid mass flow rate of about 50-100 kg/s, and an initial geothermal gradient of ~ 120 °C/km.

  18. Product change of molecule-magnetic material synthesis induced by magnetic field in hydrothermal system

    NASA Astrophysics Data System (ADS)

    Niu, Helin; Chen, Jitang; Niu, Qiong; Gao, Yuanhao; Song, Jiming; Mao, Changjie; Zhang, Shengyi; Chen, Qianwang

    2011-08-01

    4-(imidazol-1-yl) benzoic acid (HL, L=C 10H 7N 2O 2), Copper sulfate, and sodium azide were selected as precursors, an interesting case of magnetic field-induced change in the final product of molecule-magnetic materials was observed. Without external magnetic field, the only green single crystal G [Cu 5(C 10H 7N 2O 2) 4 (N 3) 2(SO 4) 2] n was prepared, but under 0.2 T external magnetic field, the other blue violet single crystal B [Cu(C 10H 7N 2O 2) 2] n was found beside the green single crystal G. The product prepared under magnetic field comprises ca 34% B and 66% G. It indicates that the magnetic field induction is a dominating factor to the final product of self-assembly reaction for the metal-organic complex. The experiments have suggested a kind of effective control means to fabricate new molecule-magnetic materials under mild magnetic field induction.

  19. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity

    PubMed Central

    Wu, Shuisheng; Dai, Weili

    2017-01-01

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs. PMID:28336888

  20. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    PubMed

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  1. Magnetic fields over active tectonic zones in ocean

    USGS Publications Warehouse

    Kopytenko, Yu. A.; Serebrianaya, P.M.; Nikitina, L.V.; Green, A.W.

    2002-01-01

    The aim of our work is to estimate the electromagnetic effects that can be detected in the submarine zones with hydrothermal activity. It is known that meso-scale flows appear in the regions over underwater volcanoes or hot rocks. Their origin is connected with heat flux and hot jets released from underwater volcanoes or faults in a sea bottom. Values of mean velocities and turbulent velocities in plumes were estimated. Quasiconstant magnetic fields induced by a hot jet and a vortex over a plume top are about 1-40 nT. Variable magnetic fields are about 0.1-1 nT. These magnetic disturbances in the sea medium create an additional natural electromagnetic background that must be considered when making detailed magnetic surveys. ?? 2002 Elsevier Science Ltd. All rights reserved.

  2. Observations of Flatfish "Spas" From Three Hydrothermally Active Seamounts in the Mariana Arc

    NASA Astrophysics Data System (ADS)

    Dower, J.; Tunnicliffe, V.; Tyler, J.; Juniper, K.; Stevens, C.; Kouris, A.; Takano, B.

    2006-12-01

    During a cruise to the Mariana Islands in spring 2004, dense aggregations of small flatfish were recorded from areas of diffuse flow on two hydrothermally active seamounts known as Kasuga-2 and Daikoku. This is quite novel, as flatfish are not known to be part of vent faunas elsewhere. Based on a single specimen, it was determined to be a new species of tonguefish in the genus Symphurus, and is currently under description. In October 2005, we returned to the Mariana Arc and collected about 60 specimens from Kasuga-2, Daikoku, and a third site, Nikko Seamount. Interestingly, the Nikko specimens were about twice as large as the flatfish from Kasuga-2 and Daikoku. Current molecular work (using the Barcode of Life Data System) will determine the relationship among these populations, and verify whether they are the same species. Under the microscope, the sandy sediments from the flatfish habitat were found to be full of tiny nematodes and polychaete worms. Our current hypothesis is that the fish are feeding on both and, thus, are ultimately supported by chemosynthesis, since the worms likely feed on bacteria in the sediments. However, during our most recent cruise in May 2006, we also observed several instances in which dead (or nearly dead) mid-water fish and shrimp fell out of the water column onto the bottom, after which they were almost immediately fed upon by the flatfish. This suggests that there may also be an additional energy subsidy to the seamount benthos from the water column. We hypothesize that sulfite (or some other toxic chemical) in the plume overlying these active volcanoes either kills or anesthetizes small pelagics that get advected over the seamount summit while feeding in near-surface waters at night. Stable isotope and lipid analysis of samples from these "fish spas" are currently underway to establish trophic relationships. We hope to use otolith microstructure analyses to quantify individual growth trajectories and population age structure of

  3. Seismic structure at the Kairei Hydrothermal vent field near the Rodriguez Triple Junction in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Takata, H.; Sato, T.; Imai, Y.; Mori, T.; Noguchi, Y.; Kono, A.; Yamada, T.; Shinohara, M.

    2014-12-01

    Central Indian Ridge is located at the north of the Rodriguez Triple Junction and shows slow-intermediate spreading rate. The Kairei hydrothermal Field (KHF) was discovered in the first segment of Central Indian Ridge near the Rodriguez Triple Junction. The vent fluid which is extruding at the KHF has higher H2 content compared with other hydrothermal vent fluid in the world. Although The KHF itself exists above a basaltic rock massif, gabbro and mafic rocks were discovered on the seafloor around the KHF. These deep-seated rocks may contribute to the high H2concentration of the Kairei vent fluid .To understand how gabbro and mafic rocks are uplifted and exhumed on the seafloor, we conducted a seismic refraction/reflection survey using ocean bottom seismograms (OBSs). We conducted the seismic refraction/reflection survey from January 27 to March 19 in 2013 using S/V Yokosuka of Jamstec. In the experiment, we used 21 OBSs, an air gun (G.I.gun) and a single channel steamer cable. We obtained 5 survey lines NNW-SSE direction parallel to the ridge axis, 5 lines E-W direction and 5 lines NNE-SSW direction. In addition to these lines, we acquired other 5 lines passing through the point above the KHF or Yokoniwa Rise, which is the north of the KHF. In analysis of refraction data, firstly, we estimated 2D velocity model under survey lines, which are parallel to the ridge axis, using the progressive model development method developed by Sato and Kennett (2000). Then, we constructed a 3D initial model and run the 3D tomographic method developed by Zelt and Barton (1998). The 1D velocity profile of the KHF seems to be similar to that of mid ocean ridges such as Mid Atlantic Ridge, East Pacific Rise. Seismic velocities under the KHF and Yokoniwa Rise reach about 6km/s at depth of 1~2 km below seafloor, probably indicating uplift of deep-seated rocks. In this presentation we will show 3D seismic structure of this area.

  4. The influence of vent fluid chemistry on trophic structure at two deep-sea hydrothermal vent fields on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah; Van Dover, Cindy; Coleman, Max

    2014-05-01

    The two known deep-sea hydrothermal vent fields along the Mid-Cayman Rise are separated by a distance of only 21 km, yet their chemistry and faunal diversity are distinct. The deeper of the two vent fields, Piccard (with active venting from Beebe Vents, Beebe Woods and Beebe Sea), at 4980 m is basalt hosted. The shallower vent field, Von Damm, at 2300 m appears to have an ultramafic influence. The Von Damm vent field can be separated into two sites: The Spire and The Tubeworm Field. The dominant vent fluids at the Tubeworm Field are distinct from those at the Spire, as a result of fluid modification in the sub-surface. Von Damm and Piccard vent fields support abundant invertebrates, sharing the same biomass-dominant shrimp species, Rimicaris hybisae. Although there are some other shared species (squat lobsters (Munidopsis sp.) and gastropods (Provanna sp. and Iheyaspira sp.)) between the vent fields, they are much more abundant at one site than the other. In this study we have examined the bulk carbon, nitrogen and sulfur isotope composition of microbes and fauna at each vent field. With these data we have deduced the trophic structure of the communities and the influence of vent fluid chemistry. From stable isotope data and end-member vent fluid chemistry, we infer that the basis of the trophic structure at Piccard is dominated by sulfur, iron, and hydrogen-oxidizing microbial communities. In comparison, the basis of the Von Damm trophic structure is dominated by microbial communities of sulfur and hydrogen oxidizers, sulfate reducers and methanotrophs. This microbial diversity at the base of the trophic structure is a result of chemical variations in vent fluids and processes in the sub-surface that alter the vent fluid chemistry. These differences influence higher trophic levels and can be used to explain some of the variability as well as similarity in fauna at the vent sites. Part of this work was performed at the Jet Propulsion Laboratory, California

  5. Constraints on Alpine hydrothermal activity and deformation from U-Th-Pb dating of cleft monazite and xenotime (Western Alps)

    NASA Astrophysics Data System (ADS)

    Grand'Homme, Alexis; Janots, Emilie; Bosse, Valerie; Seydoux-Guillaume, Anne-Magali; De Ascencao, Roger

    2016-04-01

    In this large-scale regional study, age of hydrothermal monazite (and xenotime) precipitation has been investigated through in-situ U-Th-Pb dating of crystals collected in 11 clefts (veins) taken in the internal and external massifs (Western Alps). The investigated clefts are composed of quartz, chlorite (± epidote), albite and millimetric accessory minerals (monazite, apatite, xenotime, anatase, rutile). Prior to dating, cleft monazite composition was thoroughly studied to reveal potential zoning. In-situ dating through different compositional domains of single monazite crystal yields well-resolved Th-Pb ages (typically with 0.1-0.3 Ma resolution) indicating for growth episodes with short duration. Comparison of U-Pb and Th-Pb dating indicates that the U-Pb systematics appears successful to date cleft monazite with low Th/U ratio (typically <30). In one cleft, in which monazite and xenotime coexist, xenotime was dated using the monazite analytical protocol. Hydrothermal xenotime has remarkably high Th/U ratio and U-Pb dating shows evidence of 206Pb excess. In comparison, Th-Pb dating gives robust ages (35.2 ± 0.8 Ma) that are close but higher than the monazite date obtained in the same cleft (32.3 ± 0.3 Ma). Brief episodic monazite crystallization is likely attributed to enhanced hydrothermal activity during periods of higher tectonic activity. Correlation with other geochronological data suggests that it occurs in a host-rock that already cooled down at temperature close or below to the zircon fission track. In the Belledonne massif, the new monazite ages confirm for two periods of hydrothermal activity at around 11-13 Ma and 8-6 Ma, respectively. Only one vertical cleft monazite was investigated in the Mont-Blanc massif but it gives an age that is similar to the early population of the Belledonne massif (11.1 ± 0.2 Ma). Monazite dating therefore suggests for similar late-stage tectonic activity from Belledonne up to the Aar massifs, likely due to dextral

  6. Changes in thermal activity in the Rotorua geothermal field

    SciTech Connect

    Cody, A.D. ); Lumb, J.T. )

    1992-04-01

    During a period when geothermal fluid was being withdrawn for energy use at an increasing rate, the level of natural hydrothermal activity in the Rotorua geothermal field declined in an all-time low in the mid 1980s. total heatflow from a major hot-spring area fell by almost 50 percent, springs ceased their flow, and geysers displayed abnormal behavior consistent with a low aquifer pressure. since the enforced closure of bores within 1.5 km of Pohutu Geyser, sings of recovery, including a return to normal behavior of Pohutu and Waikorohihi Geysers, a resumption of activity at Kereru Geyser, and an increase in water flow from some springs are presented in this paper.

  7. Stratigraphic development and hydrothermal activity in the central western Cascade Range, Oregon

    SciTech Connect

    Cummings, M.L.; Bull, M.K. ); Pollock, J.M. ); Thompson, G.D. )

    1990-11-10

    Two volcanic sequences bounded by erosional unconformities compose the stratigraphy of the North Santiam mining district, Western Cascade Range, Oregon. Diorite, grandodiorite, and leucocratic quartz porphyry dikes, stocks, and sills intrude the breccias, flows, and tuffs of a volcanic center in the older Sardine Formation. Tourmaline-bearing breccia pipes are associated with the porphyritic granodiorite intrusions. An erosional unconformity separates the Sardine Formation from the overlying Elk Lake formation. The alteration patterns in the two formations are consistent with the development of hydrothermal systems during the eruption of each formation. However, the development of the two hydrothermal systems is separated by a period of erosion of the older volcanic pile. Early formation of mineralization that resembles porphyry copper deposits occurred within the Sardine Formation, and later, after eruption of the Elk Lake formation, epithermal veins and alteration developed along faults, fractures, and the margins of dikes in the Sardine Formation.

  8. Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method

    SciTech Connect

    Jitputti, Jaturong; Pavasupree, Sorapong; Suzuki, Yoshikazu; Yoshikawa, Susumu

    2007-05-15

    Nanocrystalline mesoporous TiO{sub 2} was synthesized by hydrothermal method using titanium butoxide as starting material. XRD, SEM, and TEM analyses revealed that the synthesized TiO{sub 2} had anatase structure with crystalline size of about 8 nm. Moreover, the synthesized titania possessed a narrow pore size distribution with average pore diameter and high specific surface area of 215 m{sup 2}/g. The photocatalytic activity of synthesized TiO{sub 2} was evaluated with photocatalytic H{sub 2} production from water-splitting reaction. The photocatalytic activity of synthesized TiO{sub 2} treated with appropriate calcination temperature was considerably higher than that of commercial TiO{sub 2} (Ishihara ST-01). The utilization of mesoporous TiO{sub 2} photocatalyst with high crystallinity of anatase phase promoted great H{sub 2} production. Furthermore, the reaction temperature significantly influences the water-splitting reaction. - Graphical abstract: Nanocrystalline mesoporous TiO{sub 2} was synthesized by hydrothermal method. The physical properties of the synthesized TiO{sub 2} were thoroughly studied in relation to its photocatalytic activity for H{sub 2} evolution from water-splitting reaction. It was found that the photocatalytic activity of synthesized TiO{sub 2} treated with appropriate calcination temperature was considerably higher than that of commercial TiO{sub 2} (Ishihara ST-01)

  9. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent

    PubMed Central

    Fortunato, Caroline S; Huber, Julie A

    2016-01-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched 13C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  10. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    PubMed

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent.

  11. Photocatalytic activity of BiFeO{sub 3} nanoparticles synthesized through hydrothermal method

    SciTech Connect

    Dhanalakshmi, Radhalayam; Muneeswaran, M.; Vanga, Pradeep Reddy; Ashok, M.; Giridharan, N. V.

    2015-06-24

    Multiferroic BiFeO{sub 3} (BFO) nanoparticles (Nps) were synthesized using hydrothermal method. From the X-Ray diffraction analysis (XRD), the synthesized Nps were found to having rhombohedral structure with R3c space group confirmed by Rietveld analysis. Fourier transform infrared spectroscopy (FTIR) analysis was carried out to identify the chemical bonds present in the BFO Nps. Photocatalytic properties of synthesized Nps were studied for the degradation of Methylene Blue (MB) dye under visible light of 150W.

  12. Comparing Carbonate-Depositing Hydrothermal Systems Along the Mid-Atlantic Ridge at Lost City Hydrothermal Field and Along the Rio Grande rift in the Southwestern US: Geochemistry, Geomicrobiology and Mineralogy

    NASA Astrophysics Data System (ADS)

    Cron, B. R.; Crossey, L.; Hall, J.; Takacs-Vesbach, C.; Dahm, K.; Northup, D.; Karlstrom, K.

    2008-12-01

    Both continental and marine rift settings are characterized by hydrothermal vents (smokers) that include important components of mantle-derived "endogenic" fluids. These fluids ascend along extensional faults and provide unique biologic settings. We hypothesize that deep crustal processes support near-surface metabolic strategies by delivering chemically reduced constituents to partially oxidized surface environments. Lost City hydrothermal field, a marine vent system located 15 km west of the Mid-Atlantic ridge, exhibits a range of temperatures (40 to 75°C), pH (9-9.8), and mineral compositions (carbonate rather than sulfide-dominated) that were originally thought to be non-existent in marine vent systems. Travertine depositing CO2 springs within the Rio Grande rift, NM exhibit striking similarities in many respects to vents in Lost City. Previous research has already determined the importance of methanogenic and sulfur metabolizing microorganisms in carbonate structures at Lost City. Phylogenetic analysis of 16S rRNA genes from a terrestrial CO2 spring was performed. In addition, cells from bacteria and fungi were also cultured with oligotrophic media. Both archaeal phylotypes from the terrestrial spring grouped within Marine Group I of the Crenarchaeota, a clade dominated by sequences from hydrothermal marine vents, including some from Lost City. We will report comparative analyses of sequences from Lost City and both cultured and environmental clone libraries from the terrestrial spring using UniFrac. Geochemical modeling of data (water and gas chemistry from both locations) is used to rank the energy available for dozens of metabolic reactions. SEM and microprobe data are presented to compare mineral compositions. Our results will be discussed in respect to the tectonic setting, microbial community distributions, and the geochemical composition and textural properties of the carbonates that are precipitated in each of these systems.

  13. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Field activities. 4100.3 Section...) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities. The Corporation conducts its field activities from district and field offices around the country. District...

  14. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Field activities. 4100.3 Section...) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities. The Corporation conducts its field activities from district and field offices around the country. District...

  15. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Field activities. 4100.3 Section...) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities. The Corporation conducts its field activities from district and field offices around the country. District...

  16. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Field activities. 4100.3 Section...) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities. The Corporation conducts its field activities from district and field offices around the country. District...

  17. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Field activities. 4100.3 Section...) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities. The Corporation conducts its field activities from district and field offices around the country. District...

  18. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.

    2012-01-01

    Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (<1%) to pre-production CO 2

  19. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    White, S. M.; Lee, A. J.; Rubin, K. H.

    2015-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  20. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    West, A. J.; Torres, M. A.; Nealson, K. H.

    2014-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  1. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  2. Rapid variations in fluid chemistry constrain hydrothermal phase separation at the Main Endeavour Field

    NASA Astrophysics Data System (ADS)

    Love, Brooke; Lilley, Marvin; Butterfield, David; Olson, Eric; Larson, Benjamin

    2017-02-01

    Previous work at the Main Endeavour Field (MEF) has shown that chloride concentration in high-temperature vent fluids has not exceeded 510 mmol/kg (94% of seawater), which is consistent with brine condensation and loss at depth, followed by upward flow of a vapor phase toward the seafloor. Magmatic and seismic events have been shown to affect fluid temperature and composition and these effects help narrow the possibilities for sub-surface processes. However, chloride-temperature data alone are insufficient to determine details of phase separation in the upflow zone. Here we use variation in chloride and gas content in a set of fluid samples collected over several days from one sulfide chimney structure in the MEF to constrain processes of mixing and phase separation. The combination of gas (primarily magmatic CO2 and seawater-derived Ar) and chloride data, indicate that neither variation in the amount of brine lost, nor mixing of the vapor phase produced at depth with variable quantities of (i) brine or (ii) altered gas rich seawater that has not undergone phase separation, can explain the co-variation of gas and chloride content. The gas-chloride data require additional phase separation of the ascending vapor-like fluid. Mixing and gas partitioning calculations show that near-critical temperature and pressure conditions can produce the fluid compositions observed at Sully vent as a vapor-liquid conjugate pair or as vapor-liquid pair with some remixing, and that the gas partition coefficients implied agree with theoretically predicted values.Plain Language SummaryWhen the chemistry of fluids from deep sea hot springs changes over a short time span, it allows us to narrow down the conditions and processes that created those fluids. This gives us a better idea what is happening under the seafloor where the water is interacting with hot rocks and minerals, boiling, and taking on the character it will have when it emerges at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS41B..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS41B..04M"><span>Time Series Measurements of Diffuse <span class="hlt">Hydrothermal</span> Flow at the ASHES Vent <span class="hlt">Field</span> Reveal Tidally Modulated Heat and Volume Flux</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mittelstaedt, E. L.; Fornari, D. J.; Crone, T. J.</p> <p>2015-12-01</p> <p>Existing time-series measurements of temperature and velocity of diffuse <span class="hlt">hydrothermal</span> fluids exhibit variability over a range of periods from seconds to days. Frequency analysis of these measurements reveals differences between studies and <span class="hlt">field</span> locations including nearly white spectra, as well as spectra with peaks at tidal and inertial periods. Based upon these results, previous authors have suggested several processes that may control diffuse flow rates, including tidally induced currents and 'tidal pumping', and have also suggested that there are no systematic controls. To further investigate the processes that control variability in diffuse flow, we use data from a new, deep-sea camera and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), deployed during the July, 2014 cruise of the R/V Atlantis. The DEMS was deployed with DSV Alvin above a fracture network at the Phoenix vent within the ASHES vent <span class="hlt">field</span> (Axial Seamount, 1541 mbsl). The system collected 20 seconds of imagery at 20 Hz and 24 seconds of temperature measurements at 1 Hz each hour over the period between July 22 and August 2nd. Velocities of the upwelling fluids were calculated using Diffuse Fluid Velocimetry (DFV; Mittelstaedt et al., 2010). DFV is a cross correlation technique that tracks moving index of refraction anomalies (i.e., hot parcels of fluid) through time. Over the ~12 day deployment, median flow rates ranged from 0.5 cm/s to 6 cm/s and mean fluid temperature anomalies from 0°C up to ~6.5°C, yielding an average heat flux density of 0.23 MW/m2. Spectral analysis of both the measured temperatures and calculated velocities yield a peak in normalized power at the semi-diurnal lunar period (M2, 12.4hrs), but no other spectral peaks above the 95% confidence level. Here, we present these results and discuss their implications for the tidal current and tidal pressure models of diffuse flow variability at the ASHES vent <span class="hlt">field</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70017161','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70017161"><span>Mass transfer constraints on the chemical evolution of an <span class="hlt">active</span> <span class="hlt">hydrothermal</span> system, Valles caldera, New Mexico</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>White, A.F.; Chuma, N.J.; Goff, F.</p> <p>1992-01-01</p> <p>Partial equilibrium conditions occur between fluids and secondary minerals in the Valles <span class="hlt">hydrothermal</span> system, contained principally in the Tertiary rhyolitic Bandelier Tuff. The mass transfer processes are governed by reactive phase compositions, surface areas, water-rock ratios, reaction rates, and fluid residence times. Experimental dissolution of the vitric phase of the tuff was congruent with respect to Cl in the solid and produced reaction rates which obeyed a general Arrhenius release rate between 250 and 300??C. The 18O differences between reacted and unreacted rock and fluids, and mass balances calculations involving Cl in the glass phase, produced comparable water-rock ratios of unity, confirming the importance of irreversible reaction of the vitric tuff. A fluid residence time of approximately 2 ?? 103 years, determined from fluid reservoir volume and discharge rates, is less than 0.2% of the total age of the <span class="hlt">hydrothermal</span> system and denotes a geochemically and isotopically open system. Mass transfer calculations generally replicated observed reservoir pH, Pco2, and PO2 conditions, cation concentrations, and the secondary mineral assemblage between 250 and 300??C. The only extraneous component required to maintain observed calcite saturation and high Pco2 pressures was carbon presumably derived from underlying Paleozoic limestones. Phase rule constraints indicate that Cl was the only incompatible aqueous component not controlled by mineral equilibrium. Concentrations of Cl in the reservoir directly reflect mass transport rates as evidenced by correlations between anomalously high Cl concentrations in the fluids and tuff in the Valles caldera relative to other <span class="hlt">hydrothermal</span> systems in rhyolitic rocks. ?? 1992.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MinDe..49..535D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MinDe..49..535D"><span>Timing and duration of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> at the Los Bronces porphyry cluster: an update</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deckart, K.; Silva, W.; Spröhnle, C.; Vela, I.</p> <p>2014-06-01</p> <p>New geochronological data from the Los Bronces cluster of the Río Blanco-Los Bronces mega-porphyry Cu-Mo district establish a wide range of magmatism, <span class="hlt">hydrothermal</span> alteration, and mineralization ages, both in terms of areal extent and time. The northern El Plomo and southernmost Los Piches exploration areas contain the oldest barren porphyritic intrusions with U-Pb ages of 10.8 ± 0.1 Ma and 13.4 ± 0.1 Ma, respectively. A hypabyssal barren intrusion adjacent northwesterly to the main pit area yields a slightly younger age of 10.2 ± 0.3 Ma (San Manuel sector, U-Pb), whereas in the Los Bronces (LB) open-pit area, the present day mineral extraction zone, porphyries range from 8.49 to 6.02 Ma (U-Pb). <span class="hlt">Hydrothermal</span> biotite and sericite ages are up to 0.5 Ma younger but consistent with the cooling of the corresponding intrusion events of each area. Two quartz-molybdenite B-type veins from the LB open pit have Re-Os molybdenite ages of 5.65 ± 0.03 Ma and 5.35 ± 0.03 Ma consistent with published data for the contiguous Río Blanco cluster. The San Manuel exploration area within the Los Bronces cluster, located about 1.5-2 km southeast of the open-pit extraction zone, shows both the oldest <span class="hlt">hydrothermal</span> biotite (7.70 ± 0.07 Ma; 40Ar/39Ar) and breccia cement molybdenite ages (8.36 ± 0.06 Ma; Re-Os) registered in the entire Río Blanco-Los Bronces district. These are also older than those reported from the El Teniente porphyry Cu(-Mo) deposit, suggesting that mineralization in the late Miocene to early Pliocene porphyry belt of Central Chile commenced 2 Ma before the previously accepted age of 6.3 Ma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V13B2850J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V13B2850J"><span>The <span class="hlt">Hydrothermal</span> System at the Grand Canyon of the Yellowstone River: Exposed and Hidden</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaworowski, C.; Heasler, H. P.; Susong, D. D.; Neale, C. M.; Sivarajan, S.; Masih, A.</p> <p>2012-12-01</p> <p>Combining calibrated and corrected night-time, airborne thermal infrared imaging with <span class="hlt">field</span> information from the 2008 drilling of the Canyon borehole strainmeter (B206) in Yellowstone National Park emphasizes the extensive nature of Yellowstone's <span class="hlt">hydrothermal</span> system. Both studies contributed to an understanding of the vertical and horizontal flow of heat and fluids through the bedrock in this area. Night-time, airborne thermal infrared imagery, corrected for emissivity and atmosphere clearly shows north-trending faults and fractures transmitting heat and fluids through the rhyolitic bedrock and into the overlying glacial sediments near the Canyon borehole. Along the Grand Canyon of the Yellowstone, the Clear Lake <span class="hlt">hydrothermal</span> area is an example of <span class="hlt">hydrothermal</span> alteration at the ground surface. The numerous <span class="hlt">hydrothermal</span> features exposed in the nearby Grand Canyon of the Yellowstone River and its <span class="hlt">hydrothermally</span> altered walls are clear evidence of the exposed <span class="hlt">hydrothermal</span> system. The bedrock geology, geologic processes, and <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> combined to form the dramatic Grand Canyon of the Yellowstone. The night-time thermal infrared imagery provides a new view of this exposed <span class="hlt">hydrothermal</span> system for scientists and visitors. Scientists and Yellowstone Park managers carefully sited the Canyon borehole strainmeter in a green, grassy meadow to insure successful completion of the borehole in a non-<span class="hlt">hydrothermal</span> area. The closest <span class="hlt">hydrothermal</span> feature to the drilling site was about 2.5 km to the east. Although excellent exposures of <span class="hlt">hydrothermal</span> altered bedrock are present about 1.5 km east at the Lower Falls and the Grand Canyon of the Yellowstone River, the connection between exposed <span class="hlt">hydrothermal</span> areas and the borehole site was not obvious. After drilling through 9 m of brown-gray muds and 113 m of rock, a bottom hole temperature of 81.2 degrees Celsius precluded drilling the hole any deeper than 122 m. The post-drilling data collected from B206 and the airborne</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JEMat..45.4215H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JEMat..45.4215H"><span>Enhanced Visible-Light Photocatalytic <span class="hlt">Activity</span> of C/Ce-Codoped ZnO Nanoellipsoids Synthesized by <span class="hlt">Hydrothermal</span> Method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ha, Luu Thi Viet; Dai, Luu Minh; Nhiem, Dao Ngoc; Van Cuong, Nguyen</p> <p>2016-08-01</p> <p>C/Ce-codoped ZnO nanomaterial has been synthesized by a <span class="hlt">hydrothermal</span> method and its physical properties and characterization investigated using thermogravimetric and differential thermal analysis (TG-DTA), x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive x-ray (EDX) spectroscopy, UV-Vis diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic <span class="hlt">activity</span> of the nanomaterial was examined using methylene blue as organic dye under visible-light source. The results show that the C/Ce-codoped ZnO nanomaterial exhibited higher photocatalytic <span class="hlt">activity</span> under visible-light irradiation compared with undoped ZnO, Ce-doped ZnO or C-doped ZnO nanomaterials. Such enhancement of the photocatalytic <span class="hlt">activity</span> of C/Ce-codoped ZnO under visible-light irradiation suggests that these nanoparticles might have good applications in optoelectronics and wastewater treatment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......174G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......174G"><span>The formation, oxidation and distribution of pyrite nanoparticles emitted from <span class="hlt">hydrothermal</span> vents: A laboratory and <span class="hlt">field</span> based approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gartman, Amy</p> <p></p> <p>Recent research identified the presence of nanoparticulate pyrite in <span class="hlt">hydrothermal</span> vent black smoker emissions, and suggested that these nanoparticles may be a transport pathway for iron from <span class="hlt">hydrothermal</span> vents to the larger ocean basin. Here, nanoparticulate pyrite was synthesized via a <span class="hlt">hydrothermal</span> method and oxidized in air- saturated seawater, in order to explore how <span class="hlt">hydrothermally</span> emitted pyrite forms, and may behave in oxic seawater. Additionally, <span class="hlt">hydrothermal</span> emissions from the Mid- Atlantic Ridge were investigated for iron and sulfide speciation and reactions relating to pyrite formation. Pyrite was synthesized via both the Fe(II) + S(0) and the FeS + H 2S pathways of pyrite formation, and factors including surfactant and synthesis time were varied in order to modify morphology. The FeS + H 2S formation pathway, which is likely the pathway of pyrite formation occurring at <span class="hlt">hydrothermal</span> sites, reproduces the pyrite nano and sub- micron particles found in black smoker emissions most closely. The oxidation of these pyrite particles results in an initial oxidation rate that is first order with respect to both the pyrite and oxygen concentration in seawater. This work is unique to previous studies on pyrite oxidation in that it uses synthesized, rather than ground and sieved pyrite, and uses seawater as the medium of oxidation. Along with the rate data, this study also demonstrates that the initial oxide formed from pyrite oxidation under these conditions is poorly crystalline and contains Fe(II) and Fe(III). Pyrite nanoparticles were identified at each of the three sites investigated at the Mid-Atlantic Ridge (Rainbow, TAG and Snakepit), and their presence at these sites, when combined with previous data from Lau Basin and EPR 9 °N demonstrates that they are likely to be a ubiquitous component of black- smoker <span class="hlt">hydrothermal</span> emissions. The Rainbow site exhibited the highest concentration of nanoparticulate pyrite measured anywhere to date (1.15 mM). The potential</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMOS41A0449G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMOS41A0449G"><span>Geochemical Evidence for Submarine <span class="hlt">Hydrothermal</span> <span class="hlt">Activity</span> in the Gulf of Aden, Northwestern Indian Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gamo, T.; Hasumoto, H.; Okamura, K.; Hatanaka, H.; Mori, M.; Chinen, M.; Tanaka, J.; Komatsu, D.; Tamaki, K.; Fujimoto, H.; Tsunogai, U.; Kouzuma, F.; Hirota, A.</p> <p>2001-12-01</p> <p>We searched for <span class="hlt">hydrothermal</span> plumes along spreading axes in the Gulf of Aden, between 45\\deg36'E and 52\\deg42'E, using a CTD multi-water sampling system, mapping water column distributions of light transmission and chemical tracers (Mn, Fe, CH4 etc.) in December 2000 and January 2001. In addition to water sampling for chemical analysis, an in-situ chemical analyzer GAMOS was attached to the CTD-system to conduct tow-yo observations. We found typical <span class="hlt">hydrothermal</span> plumes (anomalies of light transmission and chemical tracers) at 600-800 m depth over twin peak seamounts (60 miles southeast of Aden) which may be hot spot volcanoes associated with the Afar mantle plume. Strong light transmission anomalies imply the existence of black smoker fluids. The maximum concentrations of Mn, Fe, and CH4 are 46 nM, 251 nM, and 15 nM, respectively. An estimated \\delta13C(CH4) value for an endmember fluid of approximately -15\\permil indicates magmatic CH4 with little contribution of CH4 from organic material decomposition in sediments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS21A1477G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS21A1477G"><span>Magnesium-hydroxide-sulfate-hydrate formation at 200°C: Implications for sulfur fixation at the Lost City <span class="hlt">hydrothermal</span> <span class="hlt">field</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grozeva, N. G.; Syverson, D. D.; Seyfried, W. E.</p> <p>2010-12-01</p> <p>Serpentinization reactions at ultramafic-hosted <span class="hlt">hydrothermal</span> systems have been shown to be important sinks for sulfur in the oceanic crust. Indeed, the high sulfate content of serpentinized peridotites beneath the Lost City <span class="hlt">hydrothermal</span> <span class="hlt">field</span> and moderately low dissolved sulfate concentrations of the vent fluids suggest a sulfate mineral may precipitate at depth during seawater entrainment into the <span class="hlt">hydrothermal</span> system. While it has long been proposed that anhydrite provides the primary control on partitioning of SO42- between fluid and rock, other sulfate removal mechanisms need to be considered. This is especially true in light of the high pH fluids and magnesium-rich protolith at Lost City. Examining the stability of alternative sulfate phases, such as magnesium-hydroxide-sulfate-hydrate (MHSH), would therefore yield a better understanding of sulfur fixation in the oceanic crust and the influence of <span class="hlt">hydrothermal</span> circulation on the global sulfur cycle. <span class="hlt">Hydrothermal</span> experiments were conducted to investigate the potential for MHSH formation at inferred reaction zone temperatures for Lost City (150-250°C). An evolved seawater solution containing MgSO4 was heated to 200°C at steam saturation pressure, and its fluid chemistry was analyzed by IC and ICP-OES upon quenching. Results suggest removal of SO42- and B with precipitation of Mg(OH)2 from solution. Thermodynamic calculations, however, indicate that precipitation of the previously characterized MHSH(0.75) and MHSH(0.625) is unfavorable under the reaction conditions. Observed incorporation of SO42- into the Mg(OH)2 structure thus demonstrates the formation of MHSH of different stoichiometry and points to the occurrence of a more extensive solid solution between Mg(OH)2 and MgSO4 than previously thought. Experiments have also examined the uptake of SO42- and B by serpentine, a product of olivine hydrolysis. Findings suggest no incorporation of sulfate occurs either within the serpentine structure or as an adsorbed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27629497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27629497"><span>Muon dynamic radiography of density changes induced by <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> at the La Soufrière of Guadeloupe volcano.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Komorowski, Jean-Christophe</p> <p>2016-09-15</p> <p>Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow <span class="hlt">hydrothermal</span> systems of low-energy <span class="hlt">active</span> volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 10(6) m(3) to 7 × 10(6) m(3). However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [-0.8;-0.4] × 10(9) kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 10(9) kg). We attribute the negative mass changes to the formation of steam in shallow <span class="hlt">hydrothermal</span> reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5024310','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5024310"><span>Muon dynamic radiography of density changes induced by <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> at the La Soufrière of Guadeloupe volcano</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d’Ars, Jean; Komorowski, Jean-Christophe</p> <p>2016-01-01</p> <p>Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow <span class="hlt">hydrothermal</span> systems of low-energy <span class="hlt">active</span> volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [−0.8;−0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow <span class="hlt">hydrothermal</span> reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir. PMID:27629497</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...633406J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...633406J"><span>Muon dynamic radiography of density changes induced by <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> at the La Soufrière of Guadeloupe volcano</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond D’Ars, Jean; Komorowski, Jean-Christophe</p> <p>2016-09-01</p> <p>Imaging geological structures through cosmic muon radiography is a newly developed technique which shows a great potential in volcanology. Here we demonstrate that muon radiography permits to detect and characterize mass movements in shallow <span class="hlt">hydrothermal</span> systems of low-energy <span class="hlt">active</span> volcanoes like the La Soufrière lava dome. We present an experiment conducted on this volcano during the Summer 2014 and bring evidence that very important density changes occurred in three domains of the lava dome. Depending on their position and on the medium porosity the volumes of these domains vary from 1 × 106 m3 to 7 × 106 m3. However, the total mass budget remains approximately constant : two domains show a mass loss (Δm∈ [‑0.8‑0.4] × 109 kg) and the third one a mass gain (Δm∈ [1.5; 2.5] × 109 kg). We attribute the negative mass changes to the formation of steam in shallow <span class="hlt">hydrothermal</span> reservoir previously partly filled with liquid water. This coincides with the emergence of new fumaroles on top of the volcano. The positive mass change is synchronized with the negative mass changes indicating that liquid water probably flowed from the two reservoirs invaded by steam toward the third reservoir.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/7164178','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/7164178"><span>A national drilling program to study the roots of <span class="hlt">active</span> <span class="hlt">hydrothermal</span> systems related to young magmatic intrusions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Not Available</p> <p>1984-01-01</p> <p>The importance of studies of <span class="hlt">active</span> <span class="hlt">hydrothermal</span>-magma systems as part of a national continental scientific drilling program has been emphasized in numerous workshops and symposia. The present report, prepared by the Panel on Thermal Regimes of the Continental Scientific Drilling Committee, both reinforces and expands on earlier recommendations. The US Geodynamics Committee 1979 report of the Los Almos workshop, Continental Scientific Drilling Program, placed major emphasis on maximizing the scientific value of current and planned drilling by industry and government, supplementing these efforts with holes drilled solely for scientific purposes. Although the present report notes the importance of opportunities for scientific investigations that may be added on to current, mission-oriented drilling <span class="hlt">activities</span>, the Panel on Thermal Regimes recognizes that such opportunities are limited and thus focused its study on holes dedicated to broad scientific objectives. 16 refs., 2 figs., 4 tabs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70023707','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70023707"><span><span class="hlt">Hydrothermal</span> minerals and microstructures in the Silangkitang geothermal <span class="hlt">field</span> along the Great Sumatran fault zone, Sumatra, Indonesia</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Diane E.; Hickman, S.; Lockner, D.A.; Dobson, P.F.</p> <p>2001-01-01</p> <p>Detailed study of core samples of silicic tuff recovered from three geothermal wells along the strike-slip Great Sumatran fault zone near Silangkitang, North Sumatra, supports a model for enhanced <span class="hlt">hydrothermal</span> circulation adjacent to this major plate-boundary fault. Two wells (A and C) were drilled nearly vertically ??1 km southwest of the eastern (i.e., the principal) fault trace, and the third, directional well (B) was drilled eastward from the site of well A to within ??100 m of the principal fault trace. The examined core samples come from depths of 1650-2120 m at measured well temperatures of 180-320 ??C. The samples collected near the principal fault trace have the highest temperatures, the largest amount of secondary pore space that correlates with high secondary permeability, and the most extensive <span class="hlt">hydrothermal</span> mineral development. Secondary permeability and the degree of <span class="hlt">hydrothermal</span> alteration decrease toward the southwestern margin of the fault zone. These features indicate episodic, localized flow of hot, possibly CO2-rich fluids within the fault zone. The microstructure populations identified in the core samples correlate to the subsidiary fault patterns typical of strike-slip faults. The geothermal reservoir appears to be centered on the fault zone, with the principal fault strands and adjoining, highly fractured and <span class="hlt">hydrothermally</span> altered rock serving as the main conduits for vertical fluid flow and advective heat transport from deeper magmatic sources.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16820492','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16820492"><span>Anaerobic respiration on tellurate and other metalloids in bacteria from <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> in the eastern Pacific Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir</p> <p>2006-07-01</p> <p>This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) <span class="hlt">hydrothermal</span> vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean <span class="hlt">hydrothermal</span> vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with <span class="hlt">hydrothermal</span> vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at <span class="hlt">hydrothermal</span> vents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/6218741','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/6218741"><span>Pore water chemistry of the mounds <span class="hlt">hydrothermal</span> <span class="hlt">field</span>, Galapagos Spreading Center: Results from Glomar Challenger piston coring</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Bender, M.L.</p> <p>1983-02-10</p> <p>On DSDP Leg 70, Glomar Challenger piston cored <span class="hlt">hydrothermal</span> MnO/sub 2/-encrusted nontronite mounds and adjacent pelagic sediments through to basement. Pore waters were collected by centrifuging, squeezing, and in situ sampling: analyses are presented here for Ca, Mg, Si, NH/sub 3/, Mn, and Fe. Our results confirm Maris and Bender's (1982) conclusions that <span class="hlt">hydrothermal</span> solutions enriched in Ca by 1-2 mM and depleted in Mg by approx.2 mM are upwelling through the mounds and the surrounding pelagic sediments. Si, NH/sub 3/, and Mn/sup 2 +/ concentrations generally increase upcore, reflecting addition of products of metabolic reactions to upwelling <span class="hlt">hydrothermal</span> solutions. Pore water iron concentrations decrease upcore, probably as a result of oxidation and precipitation of upwelling <span class="hlt">hydrothermal</span> iron. The formation of nontronite (Fe(III)/sub 4/Si/sub 8/O/sub 20/(OH)/sub 4/) involves oxidation of dissolved Fe/sup 2 +/. Several models, constrained by the electron balance, are proposed to explain the process of nontronite formation. The stratigraphy of the mounds (thick nontronite covered by a thin MnO/sub 2/ crust) may be explained by postulating Fe/sup 2 +/ oxidation by MnO/sub 2/ and replacement of MnO/sub 2/ by nontronite at the base of the MnO/sub 2/ crust, followed by upward migration of Mn/sup 2 +/ and precipitation of MnO/sub 2/ at the sediment water interface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003MinDe..38...67M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003MinDe..38...67M"><span>Sericitic alteration at the La Crocetta deposit (Elba Island, Italy): interplay between magmatism, tectonics and <span class="hlt">hydrothermal</span> <span class="hlt">activity</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maineri, Cinzia; Benvenuti, Marco; Costagliola, Pilar; Dini, Andrea; Lattanzi, Pierfranco; Ruggieri, Giovanni; Villa, Igor M.</p> <p>2003-01-01</p> <p>The La Crocetta mine near Porto Azzurro (Elba Island, Tuscany, Italy) is an important producer of raw material for the ceramic industry. Exploitation focuses on a pervasively sericitized porphyritic aplite of the Tuscan Magmatic Province, locally known as "eurite", which underwent significant potassium enrichment during sericitic alteration. Eurites are located along the hanging wall of the Elba Centrale Fault, a low-angle extensional lineament of regional significance. A later carbonatization stage, apparently associated with high-angle extensional tectonics, locally overprinted the sericitized facies. It is expressed by carbonate ± pyrite ± quartz veins, with adverse effects on ore quality. Sericitization was accompanied by addition of potassium, and loss of Na (± Ca, Fe). Rubidium was not enriched along with potassium during sericitization, contrary to what would be expected for interaction with late-magmatic fluids. New 40Ar-39Ar data from eurites provide an isochron age of about 6.7 Ma for the sericitization, whereas the age of the unaltered protolith is ca. 8.8 Ma. <span class="hlt">Field</span> evidence indicates the Elba Centrale Fault to be the main channel for the <span class="hlt">hydrothermal</span> fluids. On the other hand, the involvement of heat and/or fluids contributed by the Porto Azzurro pluton, which crops out in the La Crocetta area, is ruled out by <span class="hlt">field</span>, geochemical and geochronological data (40Ar-39Ar age of Porto Azzurro =5.9 Ma, i.e. significantly younger than the sericitization event). Fluid inclusion studies suggest that sericitization was associated with a low-temperature (<250 °C) <span class="hlt">hydrothermal</span> system. Fluids were locally boiling, of variable salinity (4-17 wt% NaCl equiv.), and contained some CO2 ( XCO2≤0.027). Their ultimate source is not unequivocally constrained; meteoric and/or magmatic contributions may be possible. Low-salinity (≤2.6 wt% NaCl equiv.), low-temperature (<250 °C) fluids are associated with the late carbonate veining. They are considered to be of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EnMan..50..766V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EnMan..50..766V"><span>An Assessment of Changes in Kunzea ericoides var . microflora and Other <span class="hlt">Hydrothermal</span> Vegetation at the Wairakei-Tauhara Geothermal <span class="hlt">Field</span>, New Zealand</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Manen, Saskia M.; Reeves, Robert</p> <p>2012-10-01</p> <p><span class="hlt">Hydrothermal</span> ecosystems are of high conservation and scientific value, but they are sensitive to external perturbations that result from development. This study examines the composition of vegetation at four plots at the Wairakei-Tauhara geothermal <span class="hlt">field</span>, New Zealand, using the Scott height-frequency method, ground temperatures at 0.1- and 1-m depth, soil pH, and photographic surveys. It highlights the response of plant communities, in particular that of Kunzea ericoides var. microflora, in terms of composition, structure, and biomass index values, measures changes in ground temperature, as well as provides baseline data against which to compare future changes. It was found that optimal growing conditions for K. ericoides var. microflora are at temperatures above background conditions with a slightly acidic pH. Plots with cooler, less acidic conditions support more diverse plant communities, which also promote the establishment of invasive species. This suggests that the largest threats to thermotolerant vegetation in New Zealand, including K. ericoides var. microflora, are further decreases in ground temperature because the establishment of invasive species may result in thermolerant vegetation being out-competed in <span class="hlt">hydrothermal</span> ecosystems. Recognising and understanding the ecological diversity and dynamics of <span class="hlt">hydrothermal</span> ecosystems, as well as acknowledging the competing interests between development and conservation, is key to the management and protection of these areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22814544','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22814544"><span>An assessment of changes in Kunzea ericoides var. microflora and other <span class="hlt">hydrothermal</span> vegetation at the Wairakei-Tauhara geothermal <span class="hlt">field</span>, New Zealand.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Manen, Saskia M; Reeves, Robert</p> <p>2012-10-01</p> <p><span class="hlt">Hydrothermal</span> ecosystems are of high conservation and scientific value, but they are sensitive to external perturbations that result from development. This study examines the composition of vegetation at four plots at the Wairakei-Tauhara geothermal <span class="hlt">field</span>, New Zealand, using the Scott height-frequency method, ground temperatures at 0.1- and 1-m depth, soil pH, and photographic surveys. It highlights the response of plant communities, in particular that of Kunzea ericoides var. microflora, in terms of composition, structure, and biomass index values, measures changes in ground temperature, as well as provides baseline data against which to compare future changes. It was found that optimal growing conditions for K. ericoides var. microflora are at temperatures above background conditions with a slightly acidic pH. Plots with cooler, less acidic conditions support more diverse plant communities, which also promote the establishment of invasive species. This suggests that the largest threats to thermotolerant vegetation in New Zealand, including K. ericoides var. microflora, are further decreases in ground temperature because the establishment of invasive species may result in thermolerant vegetation being out-competed in <span class="hlt">hydrothermal</span> ecosystems. Recognising and understanding the ecological diversity and dynamics of <span class="hlt">hydrothermal</span> ecosystems, as well as acknowledging the competing interests between development and conservation, is key to the management and protection of these areas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20597983','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20597983"><span>Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of <span class="hlt">hydrothermal</span> vents of the Logatchev <span class="hlt">field</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hügler, Michael; Gärtner, Andrea; Imhoff, Johannes F</p> <p>2010-09-01</p> <p>Life at deep-sea <span class="hlt">hydrothermal</span> vents depends on chemolithoautotrophic microorganisms as primary producers mediating the transfer of energy from <span class="hlt">hydrothermal</span> fluids to higher trophic levels. A comprehensive molecular survey was performed with microbial communities in a mussel patch at the Irina II site of the Logatchev <span class="hlt">hydrothermal</span> <span class="hlt">field</span> by combining the analysis of 16S rRNA gene sequences with studies of functional key genes involved in biochemical pathways of sulfur oxidation-reduction (soxB, aprA) and autotrophic carbon fixation (aclB, cbbM, cbbL). Most significantly, major groups of chemoautotrophic sulfur oxidizers in the diffuse fluids differed in their biosynthetic pathways of both carbon fixation and sulfur oxidation. One important component of the community, the Epsilonproteobacteria, has the potential to grow chemoautotrophically by means of the reductive tricarboxylic acid cycle and to gain energy through the oxidation of reduced sulfur compounds using the Sox pathway. The majority of soxB and all retrieved aclB gene sequences were assigned to this group. Another important group in this habitat, the Gammaproteobacteria, may use the adenosine 5'-phosphosulfate pathway and the Calvin-Benson-Bassham cycle, deduced from the presence of aprA and cbbM genes. Hence, two important groups of primary producers at the investigated site might use different pathways for sulfur oxidation and carbon fixation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23171403','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23171403"><span>In situ chemistry and microbial community compositions in five deep-sea <span class="hlt">hydrothermal</span> fluid samples from Irina II in the Logatchev <span class="hlt">field</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perner, Mirjam; Gonnella, Giorgio; Hourdez, Stephane; Böhnke, Stefanie; Kurtz, Stefan; Girguis, Peter</p> <p>2013-05-01</p> <p>We present data on the co-registered geochemistry (in situ mass spectrometry) and microbiology (pyrosequencing of 16S rRNA genes; V1, V2, V3 regions) in five fluid samples from Irina II in the Logatchev <span class="hlt">hydrothermal</span> <span class="hlt">field</span>. Two samples were collected over 24 min from the same spot and further three samples were from spatially distinct locations (20 cm, 3 m and the overlaying plume). Four low-temperature <span class="hlt">hydrothermal</span> fluids from the Irina II are composed of the same core bacterial community, namely specific Gammaproteobacteria and Epsilonproteobacteria, which, however, differs in the relative abundance. The microbial composition of the fifth sample (plume) is considerably different. Although a significant correlation between sulfide enrichment and proportions of Sulfurovum (Epsilonproteobacteria) was found, no other significant linkages between abiotic factors, i.e. temperature, hydrogen, methane, sulfide and oxygen, and bacterial lineages were evident. Intriguingly, bacterial community compositions of some time series samples from the same spot were significantly more similar to a sample collected 20 cm away than to each other. Although this finding is based on three single samples only, it provides first hints that single <span class="hlt">hydrothermal</span> fluid samples collected on a small spatial scale may also reflect unrecognized temporal variability. However, further studies are required to support this hypothesis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3356187','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3356187"><span>Hierarchically nanostructured hydroxyapatite: <span class="hlt">hydrothermal</span> synthesis, morphology control, growth mechanism, and biological <span class="hlt">activity</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ma, Ming-Guo</p> <p>2012-01-01</p> <p>Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a <span class="hlt">hydrothermal</span> method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple <span class="hlt">hydrothermal</span> approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable <span class="hlt">hydrothermal</span> route had been developed for the synthesis of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS21B..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS21B..07B"><span>Dispersal of <span class="hlt">hydrothermal</span> plumes in the near <span class="hlt">field</span> of natural CO2 seeps in the Okinawa Trough using primordial helium-3</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buss, A.; Walter, M.; Mertens, C.; Sültenfuss, J.; Nakamura, K.; Rehder, G. J.; Rhein, M.</p> <p>2011-12-01</p> <p>The Okinawa Trough back-arc basin in the west Pacific Ocean is one of the two known <span class="hlt">hydrothermal</span> <span class="hlt">active</span> areas where venting of liquid CO2 bubbles has been observed. During the RV Sonne cruise SO-196 in March 2008 two <span class="hlt">hydrothermal</span> vent sites in the southern Okinawa Trough were investigated: Hatoma Knoll and Yonaguni Knoll IV. Data were collected to characterise the dispersal of the <span class="hlt">hydrothermal</span> plume and hence the spreading of CO2 in the water column. The data set consists of CTD casts with additional sensors for redox potential and pH as well as velocity measurements with a lowered acoustic Doppler current profiler (LADCP) and water samples to determine helium isotope concentrations. The dispersal of the <span class="hlt">hydrothermal</span> plumes at the two vent sites was analysed using primordial helium as a conservative tracer for <span class="hlt">hydrothermal</span> venting and anomalies in the redox potential and pH as an indicator of plume characteristics. The relation between the measured decrease in pH and δ3He showed a good correlation in the density ranges of the plumes at Hatoma Knoll as well as at Yonaguni Knoll IV. The heat fluxes from both vent sites were estimated through the maximum rise height of the plume and the background stratification. The vent site Hatoma Knoll lies in the middle of the caldera of a submarine volcano. One non-buoyant plume with a maximum rise height of 140 m above the seafloor has been identified. The vent site emitted a total heat flux of about 80 MW. The excess of δ3He in the water column agrees well with the maximum rise height of the plume, thus indicating a plume that had risen almost undisturbed. The vent site Yonaguni Knoll IV is located in a valley between a group of seamounts. Two non-buoyant plumes have been identified, with maximum rise heights of 230 m and 270 m above the seafloor. The total heat flux from the vent site was about 540 MW. An excess of δ3He has been found up to 600 m above the seafloor which could be caused by strong vertical mixing, but also</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984ESRv...20....1R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984ESRv...20....1R"><span><span class="hlt">Hydrothermal</span> mineralization at seafloor spreading centers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rona, Peter A.</p> <p>1984-01-01</p> <p> zones of <span class="hlt">active</span> extension) common to all spreading centers, regional tectonic setting determined by stage (early, advanced), and rate (slow, intermediate-to-fast) of opening of an ocean basin about a spreading center, and local tectonic sub-setting that incorporates anomalous structural and thermal conditions conducive to mineral concentration (thermal gradient, permeability, system geometry, leaky versus tight <span class="hlt">hydrothermal</span> systems). Temporal frames of reference comprise the relation between mineral concentration and timing of regional plutonic, volcanic and tectonic cycles and of episodic local physical and chemical events (transient stress, fluctuating heat transfer, intrusion-extrusion, fracturing, sealing, etc.). Types of <span class="hlt">hydrothermal</span> deposits are not uniquely associated with specific tectonic settings and subsettings. Similar types of <span class="hlt">hydrothermal</span> deposits may occur in different tectonic settings as a consequence of convergence of physical and chemical processes of concentration. Local tectonic sub-settings with conditions conducive to <span class="hlt">hydrothermal</span> mineralization at slow-spreading centers (half rate ≤ 2cm y -1; length c. 28,000 km), characterized by an estimated average convective heat transfer of 15.1·10 8 cal. cm -2, deep-level ( > 3 km), relative narrow (< 5 km wide at base) magma chambers, and high topographic relief (1-5 km) are: (1) basins along linear sections of the axial zone of volcanic extrusion near transform faults at an early stage of opening, represented by a large stratiform sulfide deposit (estimated 32.5·10 6 metric tons) of the Atlantis II Deep of the Red Sea; (2) the wall along linear sections of the rift valley in the marginal zone of <span class="hlt">active</span> extension at an advanced stage of opening, represented by encrustations and layered deposits of manganese and iron oxides, hydroxides and silicates inferred to be underlain by stockwork sulfides at the TAG <span class="hlt">Hydrothermal</span> <span class="hlt">Field</span> at latitude 26°C on the Mid-Atlantic Ridge; (3) transform faults, especially</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/6014454','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/6014454"><span>Evidence of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> on Marsili Seamount, Tyrrhenian Basin. Technical report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Uchupi, E.; Ballard, R.D.</p> <p>1989-01-01</p> <p>In this paper we describe the finding of what appears to be an extensive <span class="hlt">hydrothermal</span> mineral deposit on the crest of Marsili Seamount in the Tyrrhenian Basin, western Mediterranean Sea. The deposit on the seamount was discovered during a study of the geology of the Tyrrhenian Basin with the Argo video system (HARRIS and BALLARD, 1986) aboard the R.V. Starella during June 1988. Mounted on the vehicle were three Silicon Intensified target (SIT) cameras, a digital charge Couple Device (CCD) camera and a 35 mm camera with a 16 mm lens. The site was revisited in mid August aboard the R.V. Knorr during a cruise to test the dynamic position system on the Knorr.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.B11B1030I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.B11B1030I"><span>Microbial Community in a Sediment-Hosted CO2 Lake of the Southern Okinawa Trough <span class="hlt">Hydrothermal</span> <span class="hlt">Field</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inagaki, F.; Kuypers, M. M.; Tsunogai, U.; Ishibashi, J.; Nakamura, K.; Treude, T.; Ohkubo, S.; Nakaseama, M.; Gena, K.; Chiba, H.; Hirayama, H.; Nunoura, T.; Takai, K.; Jorgensen, B. B.; Horikoshi, K.; Boetius, A.</p> <p>2006-12-01</p> <p>One-carbon assimilating (micro-)organisms play an important role for global carbon cycling; however, the increasing level of anthropogenic CO2 in the atmosphere has exceeded the capacity of natural biological feedback, hence as greenhouse gasses it is expected to cause climacteric change with negative effects on the earth's ecosystems and human society. To reduce CO2 emissions into the atmosphere, a variety of options have been discussed, including a disposal of CO2 into the deep ocean. However, the impact of CO2 disposal on deep-sea ecosystems as well as of the consequent microbiological feedback remains largely unknown. At the Yonaguni Knoll IV <span class="hlt">hydrothermal</span> <span class="hlt">field</span>, southern Okinawa Trough, we observed a natural liquid CO2 lake in sediments overlying elemental sulfur and CO2 hydrates at a water depth of 1380m. The liquid CO2 droplets were composed of 85% CO2 and 14% methane with hydrogen below the detection limit. We found high abundances (>109 cm-3) of microbial cells in sediment pavements above the CO2 lake, decreasing to strikingly low cell numbers (10&^{7} cm-3) at the liquid CO2/CO2-hydrate interface. Molecular ecological study based on the sequences of 16S rRNA genes showed that the key groups in these sediments were: (i) the anaerobic methanotrophic archaea ANME-2c and the Eel-2 group of Deltaproteobacteria, and (ii) sulfur-metabolizing chemolithotrophs within the Gamma- and Epsilonproteobacteria. The detection of functional genes (mcrA, cbbL) related to one- carbon assimilation as well as the presence of highly 13C-depleted archaeal and bacterial lipid biomarkers suggest that microorganisms assimilating CO2 and/or methane dominate the liquid CO2 and CO2-hydrate-bearing sediments. We propose that the Yonaguni Knoll is an exceptional natural laboratory for the study of consequences of CO2 disposal as well as of natural CO2 reservoirs as potential microbial habitats on early Earth and other celestial bodies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.B11D..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.B11D..02S"><span><span class="hlt">Hydrothermal</span> Biogeochemistry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shock, E.; Havig, J.; Windman, T.; Meyer-Dombard, D.; Michaud, A.; Hartnett, H.</p> <p>2006-12-01</p> <p>Life in hot spring ecosystems is confronted with diverse challenges, and the responses to those challenges have dynamic biogeochemical consequences over narrow spatial and temporal scales. Within meters along hot spring outflow channels at Yellowstone, temperatures drop from boiling, and the near-boiling conditions of hot chemolithotrophic communities, to those that permit photosynthesis and on down to conditions where nematodes and insects graze on the edges of photosynthetic mats. Many major and trace element concentrations change only mildly in the water that flows through the entire ecosystem, while concentrations of other dissolved constituents (oxygen, sulfide, ammonia, total organic carbon) increase or decrease dramatically. Concentrations of metals and micronutrients range from toxic to inadequate for enzyme synthesis depending on the choice of hot spring. Precipitation of minerals may provide continuous growth of microbial niches, while dissolution and turbulent flow sweeps them away. Consequently, microbial communities change at the meter scale, and even more abruptly at the photosynthetic fringe. Isotopic compositions of carbon and nitrogen in microbial biomass reflect dramatic and continuous changes in metabolic strategies throughout the system. Chemical energy sources that support chemolithotrophic communities can persist at abundant or useless levels, or change dramatically owing to microbial <span class="hlt">activity</span>. The rate of temporal change depends on the selection of hot spring systems for study. Some have changed little since our studies began in 1999. Others have shifted by two or more units in pH over several years, with corresponding changes in other chemical constituents. Some go through daily or seasonal desiccation cycles, and still others exhibit pulses of changing temperature (up to 40°C) within minutes. Taken together, <span class="hlt">hydrothermal</span> ecosystems provide highly manageable opportunities for testing how biogeochemical processes respond to the scale of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/1203906','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/1203906"><span>Catalytic <span class="hlt">Hydrothermal</span> Gasification</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Elliott, Douglas C.</p> <p>2015-05-31</p> <p>The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical <span class="hlt">hydrothermal</span> processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. <span class="hlt">Hydrothermal</span> gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the <span class="hlt">hydrothermal</span> liquefaction mechanisms that begin at the lowest <span class="hlt">hydrothermal</span> conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, <span class="hlt">hydrothermal</span> gasification requires an <span class="hlt">active</span> catalyst to accomplish reasonable rates of gas formation from biomass.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS21A1471M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS21A1471M"><span>Observation of <span class="hlt">hydrothermal</span> flows with acoustic video camera</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mochizuki, M.; Asada, A.; Tamaki, K.; Scientific Team Of Yk09-13 Leg 1</p> <p>2010-12-01</p> <p>To evaluate <span class="hlt">hydrothermal</span> discharging and its diffusion process along the ocean ridge is necessary for understanding balance of mass and flux in the ocean, ecosystem around <span class="hlt">hydrothermal</span> <span class="hlt">fields</span> and so on. However, it has been difficult for us to measure <span class="hlt">hydrothermal</span> <span class="hlt">activities</span> without disturbance caused by observation platform ( submersible, ROV, AUV ). We wanted to have some observational method to observe <span class="hlt">hydrothermal</span> discharging behavior as it was. DIDSON (Dual-Frequency IDentification SONar) is acoustic lens-based sonar. It has sufficiently high resolution and rapid refresh rate that it can substitute for optical system in turbid or dark water where optical systems fail. DIDSON operates at two frequencies, 1.8MHz or 1.1MHz, and forms 96 beams spaced 0.3° apart or 48 beams spaced 0.6° apart respectively. It images out to 12m at 1.8MHz and 40m at 1.1MHz. The transmit and receive beams are formed with acoustic lenses with rectangular apertures and made of polymethylpentene plastic and FC-70 liquid. This physical beam forming allows DIDSON to consume only 30W of power. DIDSON updates its image between 20 to 1 frames/s depending on the operating frequency and the maximum range imaged. It communicates its host using Ethernet. Institute of Industrial Science, University of Tokyo ( IIS ) has understood DIDSON’s superior performance and tried to find new method for utilization of it. The observation systems that IIS has ever developed based on DIDSON are waterside surveillance system, automatic measurement system for fish length, automatic system for fish counting, diagnosis system for deterioration of underwater structure and so on. A next challenge is to develop an observation method based on DIDSON for <span class="hlt">hydrothermal</span> discharging from seafloor vent. We expected DIDSON to reveal whole image of <span class="hlt">hydrothermal</span> plume as well as detail inside the plume. In October 2009, we conducted seafloor reconnaissance using a manned deep-sea submersible Shinkai6500 in Central Indian</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5075710','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5075710"><span>Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a <span class="hlt">hydrothermal</span> method and their synergistic antibacterial <span class="hlt">activity</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Phromviyo, Nutthakritta; Boueroy, Parichart; Chompoosor, Apiwat</p> <p>2016-01-01</p> <p>Background There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial <span class="hlt">activity</span>, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial <span class="hlt">activity</span>. Methods AgNPs were prepared by an eco-friendly <span class="hlt">hydrothermal</span> method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial <span class="hlt">activity</span>. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial <span class="hlt">activity</span> was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17472634','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17472634"><span>Microbial CO(2) fixation and sulfur cycling associated with low-temperature emissions at the Lilliput <span class="hlt">hydrothermal</span> <span class="hlt">field</span>, southern Mid-Atlantic Ridge (9 degrees S).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perner, Mirjam; Seifert, Richard; Weber, Stefan; Koschinsky, Andrea; Schmidt, Katja; Strauss, Harald; Peters, Marc; Haase, Karsten; Imhoff, Johannes F</p> <p>2007-05-01</p> <p>Lilliput was discovered in 2005 as the southernmost known <span class="hlt">hydrothermal</span> <span class="hlt">field</span> along the Mid-Atlantic Ridge. It is exceptional in that it lacks high-temperature venting probably because of a thickened crust. The absence of thermophilic and hyperthermophilic prokaryotes in emissions supports the argument against the presence of a hot subsurface at Lilliput, as is typically suggested for diffuse emissions from areas of high-temperature venting. The high phylogenetic diversity and novelty of bacteria observed could be because of the low-temperature influence, the distinct location of the <span class="hlt">hydrothermal</span> <span class="hlt">field</span> or the Bathymodiolus assemblages covering the sites of discharge. The low-temperature fluids at the Lilliput are characterized by lowered pH and slightly elevated hydrogen (16 nM) and methane ( approximately 2.6 microM) contents compared with ambient seawater. No typical hydrogen and methane oxidizing prokaryotes were detected. The higher diversity of reverse tricarboxylic acid genes and the form II RubisCO genes of the Calvin Benson-Bassham (CBB) cycle compared with the form I RubisCO genes of the CBB cycle suggests that the chemoautotrophic community is better adapted to low oxygen concentrations. Thiomicrospira spp. and Epsilonproteobacteria dominated the autotrophic community. Sulfide is the most abundant inorganic energy source (0.5 mM). Diverse bacteria were associated with sulfur cycling, including Gamma-, Delta- and Epsilonproteobacteria, with the latter being the most abundant bacteria according to fluorescence in situ hybridization. With members of various Candidate Divisions constituting for 25% of clone library sequences we suggest that their role in vent ecosystems might be more important than previously assumed and propose potential mechanisms they might be involved in at the Lilliput <span class="hlt">hydrothermal</span> <span class="hlt">field</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SSSci..64...62H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SSSci..64...62H"><span>Solgel-<span class="hlt">hydrothermal</span> synthesis of Tb/Tourmaline/TiO2 nano tubes and enhanced photocatalytic <span class="hlt">activity</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Fengping; Guo, Yuyu; Wang, Shuai; Zhang, Shuang; Cui, Mengli</p> <p>2017-02-01</p> <p>In this study, we synthesized Tb/Tourmaline/TiO2 nano tubes (NTs) through a solgel-<span class="hlt">hydrothermal</span> method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectromicroscope, scanning electron microscopy, transmission electron microscopy and UV-vis diffuse reflectance spectroscopy. The resulting Tb/Tourmaline/TiO2 NTs exhibited higher photocatalytic <span class="hlt">activity</span> than pure TiO2 and TiO2 nano particles (NPs) in the degradation of menthyl orange under UV-light. Results revealed that doping rare earth element Tb could narrow the wide band gap of TiO2 and tourmaline could trap the photogenerated electron of TiO2 to inhibit the recombination of photogenerated electron-hole pairs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26617579','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26617579"><span>Metagenome and Metatranscriptome Revealed a Highly <span class="hlt">Active</span> and Intensive Sulfur Cycle in an Oil-Immersed <span class="hlt">Hydrothermal</span> Chimney in Guaymas Basin.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Ying; Feng, Xiaoyuan; Fang, Jing; Zhang, Yu; Xiao, Xiang</p> <p>2015-01-01</p> <p>The <span class="hlt">hydrothermal</span> vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well-recognized that the inorganic sulfur compounds are abundant and <span class="hlt">actively</span> converted through chemosynthetic pathways, the sulfur budget in a <span class="hlt">hydrothermal</span> vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an integrated metagenomic and metatranscriptomic analysis on a chimney sample from Guaymas Basin to achieve a comprehensive study of each sulfur metabolic pathway and its hosting microorganisms and constructed the microbial sulfur cycle that occurs in the site. Our results clearly illustrated the stratified sulfur oxidation and sulfate reduction at the chimney wall. Besides, sulfur metabolizing is closely interacting with carbon cycles, especially the hydrocarbon degradation process in Guaymas Basin. This work supports that the internal sulfur cycling is intensive and the net sulfur budget is low in the <span class="hlt">hydrothermal</span> ecosystem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22581559','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22581559"><span>Photocatalytic <span class="hlt">activity</span> of Li-doped TiO{sub 2} nanoparticles: Synthesis via ionic liquid-assisted <span class="hlt">hydrothermal</span> route</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ravishankar, T.N.; Nagaraju, G.; Dupont, Jairton</p> <p>2016-06-15</p> <p>Highlights: • TiO{sub 2}: Li nanoparticles were synthesized via an ionic liquid-assisted <span class="hlt">hydrothermal</span> method. • The doping of Li to anatase TiO{sub 2} affects the properties of the resultant product. • TiO{sub 2}: Li nanoparticles were used as a photocatalyst for the degradation of dye. • TiO{sub 2}: Li nanoparticles were used as sensor, and antibacterial agent. • TiO{sub 2}: Li were used as reducing agent for the reduction of Cr{sup 6+} to Cr{sup 3+}. - Abstract: We have proposed a simple one pot synthesis of lithium-doped TiO{sub 2} nanoparticles (TiO{sub 2}:Li) via an ionic liquid-assisted <span class="hlt">hydrothermal</span> method and their potential use as a photocatalyst for the degradation of organic dye, as well as the reduction of toxic Cr{sup 6+} to non toxic Cr{sup 3+}. The structure of TiO{sub 2}:Li nanoparticles was examined by XRD, FTIR, XPS, Raman, UV–vis, Photoluminescence spectroscopy and morphology by SEM and TEM. The incorporation of Li into anatase-phase TiO{sub 2} affected the optical properties of the resultant TiO{sub 2} nanoparticles. The photocatalytic <span class="hlt">activity</span> of the TiO{sub 2}:Li nanoparticles was determined by degradation of trypan blue. Degradation studies showed improved photocatalytic <span class="hlt">activity</span> of TiO{sub 2}:Li nanoparticles compared to TiO{sub 2} nanoparticles and bulk TiO{sub 2}. TiO{sub 2}:Li nanoparticles also functioned as a detoxification agent which was confirmed by the reduction of Cr{sup 6+} to Cr{sup 3+}.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRB..121.4085H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRB..121.4085H"><span>Postcaldera volcanism and <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Honsho, Chie; Ura, Tamaki; Kim, Kangsoo; Asada, Akira</p> <p>2016-06-01</p> <p>Myojin Knoll caldera, one of the submarine silicic calderas lying on the volcanic front of the northern Izu-Ogasawara arc, has attracted increasing attention since the discovery of a large <span class="hlt">hydrothermal</span> <span class="hlt">field</span> called the Sunrise deposit. Although numerous submersible surveys have been conducted in Myojin Knoll caldera, they have not sufficiently explored areas to produce a complete picture of the caldera and understand the origin of the Sunrise deposit. We conducted comprehensive deep-sea surveys using an autonomous underwater vehicle and obtained high-resolution bathymetric and magnetic data and sonar images from ~70% of the caldera. The detailed bathymetric map revealed that faulting and magma eruptions, possibly associated with an inflation-deflation cycle of the magma reservoir during postcaldera volcanism, had generally occurred in the caldera wall. The main dome of the central cone was covered with lava flows and exhibits exogenous growth, which is unusual for rhyolitic domes. The magnetization distribution in the central cone indicates preferential magma intrusion along a NW-SE direction. It is presumed that magma migrated along this direction and formed a rhyolite dome at the foot of the southeastern caldera wall, where the Sunrise deposit occurs. The Sunrise deposit is composed mainly of three ridges extending in slope directions and covers ~400 × ~400 m. Magnetization reduction in the deposit area is small, indicating that the alteration zone beneath the Sunrise deposit is slanting rather than vertical. It is presumed that several slanting and near-vertical volcanic vents serve as pathways of <span class="hlt">hydrothermal</span> fluid in Myojin Knoll caldera.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25714902','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25714902"><span>An in situ vapour phase <span class="hlt">hydrothermal</span> surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped <span class="hlt">active</span> surface.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun</p> <p>2015-04-04</p> <p>A facile in situ vapour phase <span class="hlt">hydrothermal</span> (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface <span class="hlt">active</span> sites for other metal oxide electrocatalysts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70013982','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70013982"><span>Castro ring zone: a 4,500-km2 fossil <span class="hlt">hydrothermal</span> system in the Challis volcanic <span class="hlt">field</span>, central Idaho.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Criss, R.E.; Ekren, E.B.; Hardyman, R.F.</p> <p>1984-01-01</p> <p>The largest fossil <span class="hlt">hydrothermal</span> system occupying a 4500 km2 area in central Idaho is revealed by delta 18O studies. The remains of this meteoric-<span class="hlt">hydrothermal</span> system are preserved within a sharply bounded, 15 km wide, 70-km-diameter annulus of low delta 18O rock (+2.0 to -8.8per mille) termed the Castro ring zone. The zone is centred on a less depleted (+4.5) core zone consisting of granitic rocks of the Castro pluton. This 700-km2 Eocene subvolcanic batholith has intruded, domed, and <span class="hlt">hydrothermally</span> metamorphosed a thick sequence of Challis Volcanics, the stratigraphically low rocks in the 2000-km2 Van Horn Peak and the 1000-km2 Thunder Mountain cauldron complexes being most strongly altered. Less extreme 18O depletions occur in the youngest major ash-flow sheets of these complexes, indicating a vertical 18O gradient. Water/rock ratios of geothermal systems are surprisingly insensitive to the circulation scale.-L.-di H.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24358117','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24358117"><span>High connectivity of animal populations in deep-sea <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> in the Central Indian Ridge relevant to its geological setting.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beedessee, Girish; Watanabe, Hiromi; Ogura, Tomomi; Nemoto, Suguru; Yahagi, Takuya; Nakagawa, Satoshi; Nakamura, Kentaro; Takai, Ken; Koonjul, Meera; Marie, Daniel E P</p> <p>2013-01-01</p> <p>Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea <span class="hlt">hydrothermal</span> vent environments. On the basis of population genetic analyses in the eastern Pacific vent <span class="hlt">fields</span>, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> (the Kairei and Edmond <span class="hlt">fields</span> near the Rodriguez Triple Junction, and the Dodo and Solitaire <span class="hlt">fields</span> in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent <span class="hlt">fields</span> by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent <span class="hlt">fields</span> located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent <span class="hlt">fields</span>, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS43A2025L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS43A2025L"><span>Fluid Geochemistry of the Capelinhos Vent Site. A Key to Understand the Lucky Strike <span class="hlt">Hydrothermal</span> Vent <span class="hlt">Field</span> (37°N, MAR).</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leleu, T.; Chavagnac, V.; Cannat, M.; Ceuleneer, G.; Castillo, A.; Menjot, L.</p> <p>2015-12-01</p> <p>The Lucky Strike <span class="hlt">hydrothermal</span> <span class="hlt">field</span> is situated at the mid-Atlantic ridge, south of the Azores, on top of a central volcano within the axial valley. The volcano is composed of a fossil lava lake surrounded by three volcanic cones. An Axial Magma Chamber (AMC) is reported 3.4km below the seafloor. The <span class="hlt">active</span> venting sites are situated around the fossil lava lake and are directly linked to the heat supplied by the AMC. High temperature fluids from the Lucky Strike <span class="hlt">field</span> were sampled in 2013, 2014 and 2015 in order to document the depth of the reaction zone, subsurface mixing, geographical control and magmatic degassing. A new <span class="hlt">active</span> site named Capelinhos was discovered approximately 1.5km eastward from the lava lake, during exploration by ROV Victor6000 - MoMARsat cruise, 2013. It is composed of 10m-high chimneys discharging black smoker-type fluid. Fluid temperatures were 328°C in 2013 and decreased to 318°C in 2014 and 2015. Capelinhos fluids are Cl-depleted by 55% compared to seawater indicating phase separation at depth. In comparison, the other sites range from 6% enrichment (2608/Y3 site) to 22% depletion (Eiffel tower site). Si geothermobarometry of Y3 site estimates quartz equilibration at P=300 bars and T=360-380°C, coherent with Fe/Mn geothermometer (T=370±10°C). For Capelinhos, Fe/Mn suggests 398°C (±10°C) which is close to the critical point of seawater (P=300 bars and T=407°C). Other geothermobarometer uses Si/Cl vapor-like fluid to constrain depth of the top of reaction zone and predicts significant bias due to mixing along the up-flow zone. Application gives P=~370 bars, T=~435°C at Capelinhos and P=~390 bars, T=~440°C at Eiffel tower. This is further sustained by end-member 87Sr/86Sr=0.7038, which indicates little interaction of Capelinhos vent fluids with seawater-derived fluid, compared to other vapor-like sites with 87Sr/86Sr=0.7043. Because of its external location, Capelinhos site isn't influenced by the complex tectonic context of the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24725254','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24725254"><span>Barite in <span class="hlt">hydrothermal</span> environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent <span class="hlt">field</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eickmann, B; Thorseth, I H; Peters, M; Strauss, H; Bröcker, M; Pedersen, R B</p> <p>2014-07-01</p> <p>Barite chimneys are known to form in <span class="hlt">hydrothermal</span> systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ∆36S) of barite to identify microbial sulfate reduction in a <span class="hlt">hydrothermal</span> system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki's Castle black smoker <span class="hlt">field</span> at the ultraslow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite <span class="hlt">field</span> identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86 Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the <span class="hlt">hydrothermal</span> sediments in the barite <span class="hlt">field</span>, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2- and CH4-rich high-temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low-temperature precipitates in <span class="hlt">hydrothermal</span> systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DSRII.121..202B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DSRII.121..202B"><span>Where are the undiscovered <span class="hlt">hydrothermal</span> vents on oceanic spreading ridges?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.</p> <p>2015-11-01</p> <p>In nearly four decades since the discovery of deep-sea vents, one-third of the length of global oceanic spreading ridges has been surveyed for <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>. <span class="hlt">Active</span> submarine vent <span class="hlt">fields</span> are now known along the boundaries of 46 out of 52 recognized tectonic plates. <span class="hlt">Hydrothermal</span> survey efforts over the most recent decade were sparked by national and commercial interests in the mineral resource potential of seafloor <span class="hlt">hydrothermal</span> deposits, as well as by academic research. Here we incorporate recent data for back-arc spreading centers and ultraslow- and slow-spreading mid-ocean ridges (MORs) to revise a linear equation relating the frequency of vent <span class="hlt">fields</span> along oceanic spreading ridges to spreading rate. We apply this equation globally to predict a total number of vent <span class="hlt">fields</span> on spreading ridges, which suggests that ~900 vent <span class="hlt">fields</span> remain to be discovered. Almost half of these undiscovered vent <span class="hlt">fields</span> (comparable to the total of all vent <span class="hlt">fields</span> discovered during 35 years of research) are likely to occur at MORs with full spreading rates less than 60 mm/yr. We then apply the equation regionally to predict where these <span class="hlt">hydrothermal</span> vents may be discovered with respect to plate boundaries and national jurisdiction, with the majority expected to occur outside of states' exclusive economic zones. We hope that these predictions will prove useful to the community in the future, in helping to shape continuing ridge-crest exploration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70013393','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70013393"><span>Crater lake and post-eruption <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>, El Chichón Volcano, Mexico</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Casadevall, Thomas J.; de la Cruz-Reyna, Servando; Rose, William I.; Bagley, Susan; Finnegan, David L.; Zoller, William H.</p> <p>1984-01-01</p> <p>Explosive eruptions of Volcán El Chichón in Chiapas, Mexico on March 28 and April 3–4, 1982 removed 0.2 km3 of rock to form a 1-km-wide 300-m-deep summit crater. By late April 1982 a lake had begun to form on the crater floor, and by November 1982 it attained a maximum surface area of 1.4 × 105 m2 and a volume of 5 × 106 m3. Accumulation of 4–5 m of rainfall between July and October 1982 largely formed the lake. In January 1983, temperatures of fumaroles on the crater floor and lower crater walls ranged from 98 to 115°C; by October 1983 the maximum temperature of fumarole emissions was 99°C. In January 1983 fumarole gas emissions were greater than 99 vol. % H2O with traces of CO2, SO2, and H2S. The water of the lake was a hot (T = 52–58°C), acidic (pH = 0.5), dilute solution (34,046 mg L−1 dissolved solids; Cl/S = 20.5). Sediment from the lake contains the same silicate minerals as the rocks of the 1982 pyroclastic deposits, together with less than 1% of elemental sulfur. The composition and temperature of the lake water is attributed to: (1) solution of fumarole emissions; (2) reaction of lake water with hot rocks beneath the lake level; (3) sediments washed into the lake from the crater walls; (4) <span class="hlt">hydrothermal</span> fluids leaching sediments and formational waters in sedimentary rocks of the basement; (5) evaporation; and (6) precipitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED119988.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED119988.pdf"><span><span class="hlt">Field</span> Agent <span class="hlt">Activities</span>: Level 1.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gussett, James</p> <p></p> <p>One of a series of monographs providing information about the Delaware Model: A Systems Approach to Science Education (Del Mod System), this monograph describes the role of <span class="hlt">field</span> agents. These agents are responsible for individual teachers who express a desire for involvement in improving teacher effectiveness and to be involved in the teaching of…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003GGG.....4.9103G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003GGG.....4.9103G"><span><span class="hlt">Hydrothermal</span> <span class="hlt">activity</span> on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>German, Christopher R.</p> <p></p> <p>Evidence for <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> on the eastern SWIR has been reported previously in the form of optical-backscatter anomalies interpreted to indicate the presence of <span class="hlt">hydrothermal</span> plumes. Here, I report on a brief reconnaissance analysis of the geochemical composition of core-top samples collected from sites both beneath and away from those previously-reported plume signals to determine whether evidence for fall-out of <span class="hlt">hydrothermal</span> plume material is discernible. Samples used for this study were collected using the deep-diving submersible SHINKAI 6500 in 1998 and from the tallow-coatings applied to lead sounding lines, 111 years earlier, aboard HMS Egeria. The data indicate <span class="hlt">hydrothermal</span> input to all but one of eight SHINKAI 6500 cores along the length of the eastern SWIR rift-valley, including the site of strongest previously reported plume anomalies. Comparison with a recent MAR study suggests that the cores analyzed here, however, may predominantly lie distant from any current or recently-<span class="hlt">active</span> source of venting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003GGG.....4.9102G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003GGG.....4.9102G"><span><span class="hlt">Hydrothermal</span> <span class="hlt">activity</span> on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>German, Christopher R.</p> <p>2003-07-01</p> <p>Evidence for <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> on the eastern SWIR has been reported previously in the form of optical-backscatter anomalies interpreted to indicate the presence of <span class="hlt">hydrothermal</span> plumes. Here, I report on a brief reconnaissance analysis of the geochemical composition of core-top samples collected from sites both beneath and away from those previously-reported plume signals to determine whether evidence for fall-out of <span class="hlt">hydrothermal</span> plume material is discernible. Samples used for this study were collected using the deep-diving submersible SHINKAI 6500 in 1998 and from the tallow-coatings applied to lead sounding lines, 111 years earlier, aboard HMS Egeria. The data indicate <span class="hlt">hydrothermal</span> input to all but one of eight SHINKAI 6500 cores along the length of the eastern SWIR rift-valley, including the site of strongest previously reported plume anomalies. Comparison with a recent MAR study suggests that the cores analyzed here, however, may predominantly lie distant from any current or recently-<span class="hlt">active</span> source of venting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27699714','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27699714"><span>Investigating the Effect of Line Dipole Magnetic <span class="hlt">Field</span> on <span class="hlt">Hydrothermal</span> Characteristics of a Temperature-Sensitive Magnetic Nanofluid Using Two-Phase Simulation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bahiraei, Mehdi; Hangi, Morteza</p> <p>2016-12-01</p> <p><span class="hlt">Hydrothermal</span> characteristics of a temperature-sensitive magnetic nanofluid between two parallel plates are investigated in the presence of magnetic <span class="hlt">field</span> produced by one or multiple line dipole(s) using the two-phase mixture model. As the nanofluid reaches the region where the magnetic <span class="hlt">field</span> is applied, a rotation is developed due to the dependency of magnetization on temperature. This can lead to mixing in the flow and more uniform distribution of temperature due to the disturbance caused in the boundary layer, and consequently, enhancement in convective heat transfer. The results indicate that the disturbance in boundary layer adjacent to the lower wall is more significant than the upper wall. By application of the magnetic <span class="hlt">field</span>, the convective heat transfer increases locally for both walls. Due to the intensified mixing, a sudden pressure drop occurs when the fluid reaches the region where the magnetic <span class="hlt">field</span> is applied. For greater magnetic <span class="hlt">field</span> strengths and lower Reynolds numbers, the improvement in convective heat transfer is more significant. For small magnetic <span class="hlt">field</span> strengths, the effect of applying magnetic <span class="hlt">field</span> on the upper wall is much smaller than that on the lower wall; however, this effect becomes almost the same for both walls at great magnetic <span class="hlt">field</span> strengths.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NRL....10..361J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NRL....10..361J"><span>Comparative study of photocatalytic <span class="hlt">activities</span> of <span class="hlt">hydrothermally</span> grown ZnO nanorod on Si(001) wafer and FTO glass substrates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeon, Eun Hee; Yang, Sena; Kim, Yeonwoo; Kim, Namdong; Shin, Hyun-Joon; Baik, Jaeyoon; Kim, Hyun Sung; Lee, Hangil</p> <p>2015-09-01</p> <p>ZnO nanorods have been grown on Si(001) wafer and fluorine-doped tin oxide (FTO) glass substrates for 1 and 4 h with the <span class="hlt">hydrothermal</span> methods. The morphologies and photocatalytic <span class="hlt">activities</span> of the ZnO nanorods were found to depend on the substrates. We investigated their properties by using spectroscopic analysis and demonstrated that the shape of nanorod and the ratios of external defects can be controlled by varying the substrates. Our experiments revealed that the nanorods grown on Si(001) have a single-crystalline wurtzite structure with (002) facets and that the number of surface oxygen defects increases with their length as the growth time increases. The nanorods grown on Si(001) have different facets, in particular wider (002) facets, and a higher ratio of the oxygen defect than the nanorods on FTO glass substrate. Moreover, the photocatalytic <span class="hlt">activities</span> with respect to 2-aminothiophenol (2-ATP) of these nanorods were investigated with high-resolution photoemission spectroscopy (HRPES). We demonstrated that their photocatalytic <span class="hlt">activity</span> is influenced by the ratios of surface oxygen defects, which varies with the substrate surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713809B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713809B"><span>Microbial bio-mineralization processes in <span class="hlt">hydrothermal</span> travertine: the case study of two <span class="hlt">active</span> travertine systems (Tuscany, Italy).</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barilaro, Federica; Bontognali, Tomaso R. R.; Mc Kenzie, Judith A.; Vasconcelos, Crisogono</p> <p>2015-04-01</p> <p>Modern <span class="hlt">hydrothermal</span> travertine deposits, occurring today at Bagni San Filippo (Radicofani Basin) and at Bagni di Saturnia (Albegna Valley) in Tuscany, Central Italy, have been investigated with the main purpose to improve the understanding of the processes that control calcium carbonate precipitation in <span class="hlt">hydrothermal</span>-spring settings. Present-day thermal <span class="hlt">activity</span> at Bagni di Saturnia is characterized by a 37.5°C thermal spring with a rate of about 800 l/s, with a pH of ca. 6.4. Thermal water discharges at Bagni San Filippo reach a rate of 20 litres per second at a maximum temperature of 50°C and a pH of ca. 7. The springs expel water enriched in H2S-CO2-SO42- and HCO3- and divalent cations (Ca and Mg). In the studied areas, travertine precipitation occurs in association with living microbial mats and biofilms, composed of a heterogeneous community of green algae, filamentous cyanobacteria and other types of prokaryotes, anoxygenic photosynthetic bacteria and heterotrophic heat-tolerant bacteria, with a variable amount of extracellular polymeric substances (EPS). Nine categories of fabric types, dominantly calcite and aragonite in composition, showing a wide range of macro- and micro-porosity, have been identified. High magnification analysis of dendritic and laminated boundstone, crystalline crust cementstone, raft boundstone, coated bubble boundstone, micrite mudstone and coated reed boundstone fabric types, suggests that precipitation occurs in association with organic matter. Diatoms, cyanobacteria filaments and other bacteria are then associated with the EPS and often appear totally or partially entombed (passively or <span class="hlt">actively</span>) in it. Organic extracellular polymeric substances (EPS) and often the external surface of cyanobacterial sheaths are the location where the calcite minerals nucleate and grow. Precipitation begins with organomineral nano-globules consisting of nanometre-size, from sub-spherical to globular-like, raised structures (5 to 80 nm diameter</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P31C3996G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P31C3996G"><span>Cooked Volatiles and the Origin of Titan's Atmosphere: Evidence of Deep <span class="hlt">Hydrothermal</span> <span class="hlt">Activity</span>?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glein, C. R.</p> <p>2014-12-01</p> <p>As on the terrestrial planets, key clues to the origin of Titan's enigmatic atmosphere are contained in the abundances of noble gases and stable isotopes in the atmosphere. The Huygens GCMS measured the abundances of 40Ar, 36Ar, and 22Ne (tentatively); as well as the nitrogen and carbon isotopic compositions of atmospheric N2 and CH4, respectively. No isotopes of Kr or Xe were detected (<10 ppbv). Cassini CIRS has provided us with the D/H ratio in CH4. Here, I attempt to explain these data by developing the hypothesis that the noble gases, nitrogen, and methane originated in the rocky core of Titan [1]. The presence of 40Ar demonstrates that volatile species can be delivered from the deep interior to the atmosphere. Consistent with [2], I find that Titan's primordial core should have contained sufficient 36Ar and 22Ne to explain their reported abundances. By extrapolating this model, I provide a new explanation for why the GCMS failed to detect Kr or Xe, as the predicted mixing ratios of 84Kr and 132Xe are ~0.2 ppbv and ~0.01 ppbv, respectively. I find that nitrogen should be outgassed similarly to argon, while krypton can serve as a geochemical proxy for methane, given the similar volatilities of these pairs of substances. This allows me to deduce that geochemical reactions in Titan's core could have generated enough N2 and CH4 from accreted NH3 and CO2, respectively. A <span class="hlt">hydrothermal</span> origin of atmospheric nitrogen is also supported by the similarity in N isotopes between Titan's N2 and cometary NH3 [3]. I find that the isotopic ratios in methane can be explained by low-temperature (~300 K) equilibria with liquid water and the alteration mineral calcite. Looking toward the future, this model predicts 12C/13C ≈ 84 in dry ice, and D/H ≈ 170 ppm in water ice on Titan's surface. References: [1] Glein C.R. (2014) Icarus, submitted; [2] Tobie G., et al. (2012) ApJ 752, 125; [3] Mandt K.E., et al. (2014) ApJ Lett. 788, L24.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22275859','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22275859"><span>Synthesis of ZnO nanorod–nanosheet composite via facile <span class="hlt">hydrothermal</span> method and their photocatalytic <span class="hlt">activities</span> under visible-light irradiation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Tan, Wai Kian; Abdul Razak, Khairunisak; Lockman, Zainovia; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori</p> <p>2014-03-15</p> <p>ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature <span class="hlt">hydrothermal</span> processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to <span class="hlt">hydrothermal</span> growth. The size of the grain formed after pre-heat treatment was ∼40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature <span class="hlt">hydrothermal</span> step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic <span class="hlt">activity</span> during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by <span class="hlt">hydrothermal</span> at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single <span class="hlt">hydrothermal</span> step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic <span class="hlt">activity</span> under visible</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPS...251..287D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPS...251..287D"><span>Sodium dodecyl sulfate-assisted <span class="hlt">hydrothermal</span> synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic <span class="hlt">activity</span> for methanol electrooxidation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu</p> <p>2014-04-01</p> <p>Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile <span class="hlt">hydrothermal</span> strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic <span class="hlt">activity</span> is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic <span class="hlt">activity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptMa..53..134K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptMa..53..134K"><span>Effects of optical band gap energy, band tail energy and particle shape on photocatalytic <span class="hlt">activities</span> of different ZnO nanostructures prepared by a <span class="hlt">hydrothermal</span> method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klubnuan, Sarunya; Suwanboon, Sumetha; Amornpitoksuk, Pongsaton</p> <p>2016-03-01</p> <p>The dependence of the crystallite size and the band tail energy on the optical properties, particle shape and oxygen vacancy of different ZnO nanostructures to catalyse photocatalytic degradation was investigated. The ZnO nanoplatelets and mesh-like ZnO lamellae were synthesized from the PEO19-b-PPO3 modified zinc acetate dihydrate using aqueous KOH and CO(NH2)2 solutions, respectively via a <span class="hlt">hydrothermal</span> method. The band tail energy of the ZnO nanostructures had more influence on the band gap energy than the crystallite size. The photocatalytic degradation of methylene blue increased as a function of the irradiation time, the amount of oxygen vacancy and the intensity of the (0 0 0 2) plane. The ZnO nanoplatelets exhibited a better photocatalytic degradation of methylene blue than the mesh-like ZnO lamellae due to the migration of the photoelectrons and holes to the (0 0 0 1) and (0 0 0 -1) planes, respectively under the internal electric <span class="hlt">field</span>, that resulted in the enhancement of the photocatalytic <span class="hlt">activities</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/5281083','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/5281083"><span><span class="hlt">Hydrothermal</span> processes at seafloor spreading centers,</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Rona, P.A.; Bostrom, K.; Laubier, L.; Smith, K.L.</p> <p>1983-01-01</p> <p>This book examines research on the description and interpretation of <span class="hlt">hydrothermal</span> and associated phenomena at seafloor spreading centers. An interdisciplinary overview of the subject is presented, including geological, geophysical, geochemical, and biological discoveries. The implications of the discoveries for understanding the earth's heat transfer, geochemical mass balances and cycles, mineralization, and biological adaptation are discussed. Topics considered include geologic setting (e.g., the four dimensions of the spreading axis, geological processes of the mid-ocean ridge), <span class="hlt">hydrothermal</span> convection (e.g., oxygen and hydrogen isotope studies, the basic physics of water penetration into hot rock), Iceland and oceanic ridges (e.g., chemical evidence from Icelandic geothermal systems, the physical environment of <span class="hlt">hydrothermal</span> systems), mass balances and cycles (e.g., reduced gases and bacteria in <span class="hlt">hydrothermal</span> fluids, the effects of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> on sedimentary organic matter), ferromanganese deposits, <span class="hlt">hydrothermal</span> mineralization, and the biology of <span class="hlt">hydrothermal</span> vents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4014580','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4014580"><span>Rhythms and Community Dynamics of a <span class="hlt">Hydrothermal</span> Tubeworm Assemblage at Main Endeavour <span class="hlt">Field</span> – A Multidisciplinary Deep-Sea Observatory Approach</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cuvelier, Daphne; Legendre, Pierre; Laes, Agathe; Sarradin, Pierre-Marie; Sarrazin, Jozée</p> <p>2014-01-01</p> <p>The NEPTUNE cabled observatory network hosts an ecological module called TEMPO-mini that focuses on <span class="hlt">hydrothermal</span> vent ecology and time series, granting us real-time access to data originating from the deep sea. In 2011–2012, during TEMPO-mini’s first deployment on the NEPTUNE network, the module recorded high-resolution imagery, temperature, iron (Fe) and oxygen on a <span class="hlt">hydrothermal</span> assemblage at 2186 m depth at Main Endeavour <span class="hlt">Field</span> (North East Pacific). 23 days of continuous imagery were analysed with an hourly frequency. Community dynamics were analysed in detail for Ridgeia piscesae tubeworms, Polynoidae, Pycnogonida and Buccinidae, documenting faunal variations, natural change and biotic interactions in the filmed tubeworm assemblage as well as links with the local environment. Semi-diurnal and diurnal periods were identified both in fauna and environment, revealing the influence of tidal cycles. Species interactions were described and distribution patterns were indicative of possible microhabitat preference. The importance of high-resolution frequencies (<1 h) to fully comprehend rhythms in fauna and environment was emphasised, as well as the need for the development of automated or semi-automated imagery analysis tools. PMID:24810603</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DSRI..100...48N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DSRI..100...48N"><span>Insights into life-history traits of Munidopsis spp. (Anomura: Munidopsidae) from <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> in the Okinawa Trough, in comparison with the existing data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, Masako; Chen, Chong; Mitarai, Satoshi</p> <p>2015-06-01</p> <p>Squat lobsters in the genus Munidopsis are commonly found at, and near, <span class="hlt">hydrothermal</span> vents. However, the reproductive traits of most Munidopsis spp. are unknown. This study examined the reproductive features of two Munidopsis species sampled from <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> in the southern Okinawa Trough in February 2014. Three ovigerous females were collected: two Munidopsis ryukyuensis at Irabu Knoll (1661-1675 m depth) and one M. longispinosa at Hatoma Knoll (1482 m depth). Carapace sizes and egg volumes were measured and compared with those of other Munidopsis species. The ovigerous M. ryukyuensis specimens had postorbital carapace lengths of 10.3 and 11.8 mm, without the rostrum, and carapace widths of 8.6 and 9.7 mm. Mean egg volumes of M. ryukyuensis and M. longispinosa were ~4 mm3. These results are consistent with early sexual maturity in M. ryukyuensis and lecithotrophic development in both species, as described in other species of the genus. These life-history traits may enable these vent species to maximize their reproductive and dispersive potential.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRB..119.2595B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRB..119.2595B"><span>Distribution of buried <span class="hlt">hydrothermal</span> alteration deduced from high-resolution magnetic surveys in Yellowstone National Park</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.</p> <p>2014-04-01</p> <p>Yellowstone National Park (YNP) displays numerous and extensive <span class="hlt">hydrothermal</span> features. Although <span class="hlt">hydrothermal</span> alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of <span class="hlt">field</span> and drill core samples to provide constraints on the geometry of <span class="hlt">hydrothermal</span> alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that <span class="hlt">hydrothermal</span> zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by <span class="hlt">hydrothermal</span> alteration processes. Such demagnetization is confirmed by measurements of rock samples from <span class="hlt">hydrothermal</span> areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in <span class="hlt">hydrothermal</span> areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> and mapped alteration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005E%26PSL.229..193T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005E%26PSL.229..193T"><span>Evidence of sub-vent biosphere: enzymatic <span class="hlt">activities</span> in 308 °C deep-sea <span class="hlt">hydrothermal</span> systems at Suiyo seamount, Izu Bonin Arc, Western Pacific Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takano, Yoshinori; Edazawa, Yae; Kobayashi, Kensei; Urabe, Tetsuro; Marumo, Katsumi</p> <p>2005-01-01</p> <p>A high-temperature deep-sea <span class="hlt">hydrothermal</span> system related to dacitic arc-volcanism was drilled using a tethered, submarine rock-drill system as a part of the Archaean Park Project. The benthic multi-coring system (BMS) employed allowed for direct sampling of microorganisms, rocks and fluids beneath <span class="hlt">hydrothermal</span> vents. The samples examined in this study were from sites APSK 05 and APSK 07 on the Suiyo Seamount of the Izu-Bonin Arc in the Pacific Ocean. Based on the vertical distribution of samples derived from this vigorous sub-vent environment, a model of deep-sea subterranean chemistry and biology was determined detailing optimal microbial <span class="hlt">activities</span>. Deep-sea <span class="hlt">hydrothermal</span> sub-vent core samples of dacitic arc-volcanism obtained at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific Ocean were analyzed for acid and alkaline phosphatase enzymatic <span class="hlt">activities</span>. Useful biomarkers of acid phosphatase (ACP) and alkaline phosphatase (ALP) enzymatic <span class="hlt">activities</span> were positively correlated against each other and was greatest at the partial middle core sequences; ACP and ALP <span class="hlt">activities</span> determined were as high as 5.10 and 6.80 nmol/min/g rock, respectively. Biochemical indicators of ACP and ALP were consistent with the origin of biogenic amino acids occupied in the sub-vent region and microbial cell number in the fluid. The significant enzymatic <span class="hlt">activities</span> demonstrated in this study provides crucial evidence that sub-vent regions represent part of the previously unknown extreme-environment biosphere, extending the known subterranean habitable spaces of, for example, extremophilic microbes. This boring trial was first example of discharging high temperature <span class="hlt">hydrothermal</span> <span class="hlt">activities</span> at the frontal arc volcanoes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.minsocam.org/MSA/AmMin/TOC/2016/index.html?issue_number=02','USGSPUBS'); return false;" href="http://www.minsocam.org/MSA/AmMin/TOC/2016/index.html?issue_number=02"><span>The Lassen <span class="hlt">hydrothermal</span> system</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.</p> <p>2016-01-01</p> <p>The <span class="hlt">active</span> Lassen <span class="hlt">hydrothermal</span> system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest <span class="hlt">hydrothermal</span> system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature <span class="hlt">hydrothermal</span> heat discharge in the U.S. Cascades (140/400 MW). <span class="hlt">Hydrothermal</span> heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the <span class="hlt">hydrothermal</span> system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length <50 m. Observational records of <span class="hlt">hydrothermal</span> discharge are likely too short to document long-term transients, whether they are intrinsic to the system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent <span class="hlt">hydrothermal</span> measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23647923','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23647923"><span>Linking geology, fluid chemistry, and microbial <span class="hlt">activity</span> of basalt- and ultramafic-hosted deep-sea <span class="hlt">hydrothermal</span> vent environments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S</p> <p>2013-07-01</p> <p><span class="hlt">Hydrothermal</span> fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct <span class="hlt">hydrothermal</span> fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) <span class="hlt">hydrothermal</span> fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether <span class="hlt">hydrothermal</span> fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested <span class="hlt">hydrothermal</span> fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct <span class="hlt">hydrothermal</span> vent biotopes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMOS43A0992O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMOS43A0992O"><span>Diversity of Microorganisms Associated With low Temperature Iron Deposits at the 71°N <span class="hlt">Hydrothermal</span> Vent <span class="hlt">Field</span> Along the Arctic Mid-Ocean Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ovreas, L.; Johannessen, T.; Jorgensen, S.; Thorseth, I. H.; Pedersen, R. B.</p> <p>2007-12-01</p> <p>Rust coloured mounds and chimney-like deposits of the newly discovered71°N <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> at the south-western part of the Mohns Ridge have been investigated. Iron is the fourth most abundant element in the Earth's crust and thus represents one of the most abundant redox <span class="hlt">active</span> metals widely available for microbial energy generation. Microbial Fe-oxidation is a widespread process in the deep-sea environments, but only recently have studies begun to elucidate these processes and describe the phylogenetic and physiological diversity of the microbial communities that mediate them. Therefore studying the process by which iron is oxidised and how this influence these cold deep-sea communities is of significant importance. We have studied the microbial communities present in these low-temperature rust coloured deposits in order to elucidate the phylogenetic and physiological diversity of the microbial populations inhabiting these deep-sea environments. Polyphasic characterisations by using geochemical and biological analyses have been performed. The deposited material has a highly porous microtexture of branching, twisted filaments resembling stalks of the iron- oxidising Gallionella sp, but numerous other unidentified filamentous structures were also found to be present. Phylogenetic analysis of clone libraries has so far demonstrated that the bacterial community is dominated by members of the Proteobacteria, Planctomycetes and Chloroflexi. The archaeal community consists of both Crenarchaeota and Euryarchaeota. The Crenarchaeota sequences affiliates with other reported uncultivated Deep-Sea archaeal sequences. To further investigate the ecological impact of these iron mounds and their interaction with microorganisms cultivation experiments have been applied. We are specifically focusing on enrichment of iron oxidizing bacteria. Preliminary results indicates that iron oxidizers related to the newly described Mariprofundus ferrooxidans as well as iron reducers</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS12A..04F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS12A..04F"><span>Physical inter-relationships between <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>, faulting and magmatic processes at the center of a slow-spreading, magma-rich mid-ocean ridge segment: A case study of the Lucky Strike segment (MAR, 37°03'-37‧N)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fontaine, F. J.; Cannat, M.; Escartin, J.; Crawford, W. C.; Singh, S. C.</p> <p>2012-12-01</p> <p>The modalities and efficiency of <span class="hlt">hydrothermal</span> heat evacuation at mid-ocean ridges (25% of the global heat loss) are controlled by the lithosphere thermal and permeability structures for which we had robust constraints only for fast/intermediate spreading axis until the last past few years during which integrated geophysical, geological and geochemical studies focused on some <span class="hlt">hydrothermal</span> sites at slow-spreading ridges. At the Lucky Strike vent <span class="hlt">field</span> of the mid-atlantic ridge - a <span class="hlt">hydrothermal</span> complex composed of high-temperature (maximum T=340°C), smoker-like vents and associated diffuse flow and extracting a few hundreds MW from the oceanic lithosphere - a seafloor observatory which installation started in 2005 highlights local interactions between <span class="hlt">hydrothermal</span>, tectonic and magmatic processes. Detailed geophysical and geological investigations stress the role of the local axial fault system on localizing high- and low-temperature ventings around the faulted rim of a paleo lava lake. Microseismic studies bring constraints on the subseafloor hydrology and suggest an along-axis flow pattern, with a privileged recharge area located about a kilometer north off the <span class="hlt">active</span> discharges. Seismic reflection studies image a central magma chamber fueling the <span class="hlt">hydrothermal</span> sites and also reveal its along-axis depth variations likely influencing <span class="hlt">hydrothermal</span> cell organization and flow focusing. Such linkages among <span class="hlt">hydrothermal</span> dynamics, heat source and crustal permeability geometries usually lack quantitative constraints at mid-ocean ridges in general, and the Lucky Strike segment settings offers a unique opportunity to couple high-resolution geophysical data to hydrodynamic model. Here we develop a series of original two- and three-dimensional numerical and physical models of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>, tailored to this slow-spreading environment. Our results highlight physical linkages among magmatism, tectonics and crustal hydrology stressing the key role of faulting and magma</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25093943','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25093943"><span><span class="hlt">Hydrothermal</span> synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic <span class="hlt">activity</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xing, Chaosheng; Wu, Zhudong; Jiang, Deli; Chen, Min</p> <p>2014-11-01</p> <p>Graphitic carbon nitride (g-C3N4) was hybridized by In2S3 to form a novel In2S3/g-C3N4 heterojunction photocatalyst via a <span class="hlt">hydrothermal</span> method. TEM and HRTEM results reveal that In2S3 nanoparticles and g-C3N4 closely contact with each other to form an intimate interface. The as-obtained In2S3/g-C3N4 heterojunctions exhibit higher photocatalytic <span class="hlt">activity</span> than those of pure g-C3N4 and In2S3 for the photodegradation of rhodamine B (RhB) under visible light irradiation. The enhanced photocatalytic performance of In2S3/g-C3N4 heterojunctions could be attributed to its wide absorption in the visible region and efficient electron-hole separation. On the basis of radical scavenger experiments, superoxide radicals and holes are suggested to play a critical role in RhB degradation over In2S3/g-C3N4 heterojunctions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26524253','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26524253"><span>Soluble inhibitors generated during <span class="hlt">hydrothermal</span> pretreatment of oil palm mesocarp fiber suppressed the catalytic <span class="hlt">activity</span> of Acremonium cellulase.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zakaria, Mohd Rafein; Hirata, Satoshi; Fujimoto, Shinji; Ibrahim, Izzudin; Hassan, Mohd Ali</p> <p>2016-01-01</p> <p>Oil palm mesocarp fiber was subjected to <span class="hlt">hydrothermal</span> pretreatment under isothermal and non-isothermal conditions. The pretreated slurries were separated by filtration, pretreated liquids and solids were characterized. An enzymatic digestibility study was performed for both pretreated slurries and solids to understand the effect of soluble inhibitors generated during the pretreatment process. The highest glucose yield obtained from pretreated slurries was 70.1%, and gradually decreased with higher pretreatment severities. The highest glucose yield obtained in pretreated solids was 100%, after pretreatment at 210°C for 20min. In order to study the inhibitory effects of compounds generated during pretreatment with cellulase, technical grade solutions that mimic the pretreated liquid were prepared and their effect on Acremonium cellulase <span class="hlt">activity</span> was monitored using Avicel. Xylo-oligomers and tannic acid were identified as powerful inhibitors of Acremonium cellulase, and the lowest hydrolysis rate of Avicel of 0.18g/g-glucose released/L/h was obtained from tannic acid.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRB..120.2821F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRB..120.2821F"><span>High-resolution magnetic signature of <span class="hlt">active</span> <span class="hlt">hydrothermal</span> systems in the back-arc spreading region of the southern Mariana Trough</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujii, Masakazu; Okino, Kyoko; Honsho, Chie; Dyment, Jerome; Szitkar, Florent; Mochizuki, Nobutatsu; Asada, Miho</p> <p>2015-05-01</p> <p>High-resolution vector magnetic measurements were performed on five <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> of the back-arc spreading region of the southern Mariana Trough using Shinkai 6500, a deep-sea manned submersible. A new 3-D forward scheme was applied that exploits the surrounding bathymetry and varying altitudes of the submersible to estimate absolute crustal magnetization. The results revealed that magnetic-anomaly-derived absolute magnetizations show a reasonable correlation with natural remanent magnetizations of rock samples collected from the seafloor of the same region. The distribution of magnetic-anomaly-derived absolute magnetization suggests that all five andesite-hosted <span class="hlt">hydrothermal</span> <span class="hlt">fields</span> are associated with a lack of magnetization, as is generally observed at basalt-hosted <span class="hlt">hydrothermal</span> sites. Furthermore, both the Pika and Urashima sites were found to have their own distinct low-magnetization zones, which could not be distinguished in magnetic anomaly data collected at higher altitudes by autonomous underwater vehicle due to their limited extension. The spatial extent of the resulting low magnetization is approximately 10 times wider at off-axis sites than at on-axis sites, possibly reflecting larger accumulations of nonmagnetic sulfides, stockwork zones, and/or alteration zones at the off-axis sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMMM..402..131S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMMM..402..131S"><span>Numerical analysis of magnetic <span class="hlt">field</span> effects on <span class="hlt">hydro-thermal</span> behavior of a magnetic nanofluid in a double pipe heat exchanger</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shakiba, Ali; Vahedi, Khodadad</p> <p>2016-03-01</p> <p>This study attempts to numerically investigate the <span class="hlt">hydro-thermal</span> characteristics of a ferrofluid (water and 4 vol% Fe3O4) in a counter-current horizontal double pipe heat exchanger, which is exposed to a non-uniform transverse magnetic <span class="hlt">field</span> with different intensities. The magnetic <span class="hlt">field</span> is generated by an electric current going through a wire located parallel to the inner tube and between two pipes. The single phase model and the control volume technique have been used to study the flow. The effects of magnetic <span class="hlt">field</span> have been added to momentum equation by applying C++ codes in Ansys Fluent 14. The results show that applying this kind of magnetic <span class="hlt">field</span> causes kelvin force to be produced perpendicular to the ferrofluid flow, changing axial velocity profile and creating a pair of vortices which leads to an increase in Nusselt number, friction factor and pressure drop. Comparing the enhancement percentage of Nusselt number, friction factor and pressure drop demonstrates that the optimum value of magnetic number for Reff=50 is between Mn=1.33×106 and Mn=2.37×106. So applying non-uniform transverse magnetic <span class="hlt">field</span> can control the flow of ferrofluid and improve heat transfer process of double pipe heat exchanger.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP22A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP22A..01S"><span>Revisiting Near-Seafloor Magnetics on the TAG <span class="hlt">Hydrothermal</span> Site (26°N, MAR): Tectonic and <span class="hlt">Hydrothermal</span> Implications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szitkar, F.; Dyment, J.</p> <p>2014-12-01</p> <p>We revisit the near seafloor magnetic anomaly for the TAG <span class="hlt">hydrothermal</span> site presented by Tivey et al. (1993) taking advantage of more recent geological constraints from ODP Leg 158 drill holes across the <span class="hlt">hydrothermal</span> mounds and high-resolution bathymetry. The dipolar magnetic anomaly associated with the site is better reduced to the pole assuming an inclination of 10° (instead of 44° expected at 26°N) for the magnetization vector. Such an observation suggests that basalt surrounding the site, which belongs to a strongly "faulted and fissured zone" (FFZ), has been rotated by ~53° along a N30°E horizontal axis (parallel to the MAR axis in this area) as a probable consequence of the detachment tectonics inferred in this area. The FFZ faults, together with the deeper detachment, focus and guide the hot ascending <span class="hlt">hydrothermal</span> fluid. Magnetic forward modeling of the site shows that, although insufficient to explain the whole observed negative anomaly, the <span class="hlt">hydrothermal</span> material - and more specifically the stockwork zone - is a significant cause of missing magnetization that contributes to about a third of the observed anomaly. The rest of the anomaly is accounted for by a deeper source possibly related to thermal demagnetization of an ascending <span class="hlt">hydrothermal</span> pipe beneath the <span class="hlt">active</span> part of the site. The significant contribution of the stockwork zone to the magnetic signature of TAG confirms that it is a common character of all type of <span class="hlt">hydrothermal</span> sites, of potential interest for deep-sea mineral exploration. Tivey, M.A., Rona, P.A., and Schouten H., 1993, Reduced crustal magnetization beneath the <span class="hlt">active</span> mound, TAG <span class="hlt">hydrothermal</span> <span class="hlt">field</span>, Mid-Atlantic Ridge, at 26°N: Earth and Planetary Science Letters, v. 115, p. 101-115, doi:10.1016/0012-821X(93)90216-V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002MarGR..23...81B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002MarGR..23...81B"><span>A comparison of black smoker <span class="hlt">hydrothermal</span> plume behavior at Monolith Vent and at Clam Acres Vent <span class="hlt">Field</span>: Dependence on source configuration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bemis, Karen G.; Rona, Peter A.; Jackson, Darrell; Jones, Christopher; Silver, Deborah; Mitsuzawa, Kyohiko</p> <p></p> <p>Quantitative visualization of acoustic images is used to compare the properties and behavior of high temperature <span class="hlt">hydrothermal</span> plumes at two sites with different source configurations, increasing our understanding of how plume behavior reflects source configuration. Acoustic imaging experiments were conducted at the Clam Acres area of the Southwest Vent <span class="hlt">Field</span>, 21°N East Pacific Rise and at Monolith Vent, North Cleft segment, Juan de Fuca Ridge. At Clam Acres, black smokers discharge from two adjacent chimneys which act as point sources, whereas multiple vents at Monolith Vent define a distributed elliptical source. Both plumes exhibit consistent dilution patterns, reasonable fits to the expected power law increase in centerline dilution with height, and simple bending of plume centerlines in response to ambient currents. Our data suggest that point source vents are associated with ordered plume structure, normal entrainment rates, and initial expansion of isosurfaces while distributed source vents are associated with disorganized plume structure, variable entrainment rates, and initial contraction of isosurfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.P52A..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.P52A..02R"><span>The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea <span class="hlt">Hydrothermal</span> Vent <span class="hlt">Fields</span> Under the Arctic Ice Cap</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.</p> <p>2007-12-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">fields</span> on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study <span class="hlt">hydrothermal</span> processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent <span class="hlt">fields</span>. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent <span class="hlt">fields</span> beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of <span class="hlt">hydrothermal</span> venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent <span class="hlt">fields</span>. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27394009','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27394009"><span>Visible light induced bactericidal and photocatalytic <span class="hlt">activity</span> of <span class="hlt">hydrothermally</span> synthesized BiVO4 nano-octahedrals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sharma, Rishabh; Uma; Singh, Sonal; Verma, Ajit; Khanuja, Manika</p> <p>2016-09-01</p> <p>In the present work, monoclinic bismuth vanadate (m-BiVO4) nanostructures have been synthesized via simple <span class="hlt">hydrothermal</span> method and employed for visible light driven antimicrobial and photocatalytic <span class="hlt">activity</span>. Morphology (octahedral) and size (200-300nm) of the m-BiVO4 are studied using transmission electron microscopy (TEM). The crystal structure of m-BiVO4 (monoclinic scheelite structure) is confirmed by high resolution-TEM (HRTEM) and X-ray diffraction (XRD) studies. The band gap of m-BiVO4 was estimated to be ca. 2.42eV through Kubelka-Munk function F(R∞) using diffuse reflectance spectroscopy (DRS). Antimicrobial action of m-BiVO4 is anticipated by (i) shake flask method, (ii) MTT [3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide] assay for cytotoxicity. SEM analysis has been carried on Escherichia coli (E.coli) before and after treatment with nanostructure materials to reveal the mechanism underlying the antimicrobial action. Antimicrobial <span class="hlt">activity</span> is studied as a function of m-BiVO4 concentration viz. 20, 40, 60 and 80ppm. The bacterial growth is decreased 80% to 96%, with the increase in m-BiVO4 concentration from 20ppm to 80ppm, respectively, in 2h. Photocatalytic <span class="hlt">activity</span> and rate kinetics of m-BiVO4 nanostructures have been studied as a function of time on methylene blue (MB) dye degradation which is one of the waste products of textile industries and responsible for water pollution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21818470','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21818470"><span>(Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for <span class="hlt">field</span> emission displays: <span class="hlt">hydrothermal</span> synthesis and luminescence properties.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shang, Mengmeng; Li, Guogang; Yang, Dongmei; Kang, Xiaojiao; Peng, Chong; Cheng, Ziyong; Lin, Jun</p> <p>2011-10-07</p> <p>(Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile <span class="hlt">hydrothermal</span> process. X-Ray diffraction (XRD), <span class="hlt">field</span> emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by <span class="hlt">hydrothermal</span> process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in <span class="hlt">field</span>-emission displays.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GGG....17.1435M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GGG....17.1435M"><span>Diffuse venting at the ASHES <span class="hlt">hydrothermal</span> <span class="hlt">field</span>: Heat flux and tidally modulated flow variability derived from in situ time-series measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mittelstaedt, Eric; Fornari, Daniel J.; Crone, Timothy J.; Kinsey, James; Kelley, Deborah; Elend, Mitch</p> <p>2016-04-01</p> <p>Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES <span class="hlt">hydrothermal</span> <span class="hlt">field</span> located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ˜12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ˜6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m-2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES <span class="hlt">field</span> is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse <span class="hlt">hydrothermal</span> venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DSRI..100...13S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DSRI..100...13S"><span>Sources of organic carbon for Rimicaris hybisae: Tracing individual fatty acids at two <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> in the Mid-Cayman rise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Streit, Kathrin; Bennett, Sarah A.; Van Dover, Cindy L.; Coleman, Max</p> <p>2015-06-01</p> <p><span class="hlt">Hydrothermal</span> vents harbor ecosystems mostly decoupled from organic carbon synthesized with the energy of sunlight (photosynthetic carbon source) but fueled instead by oxidation of reduced compounds to generate a chemosynthetic carbon source. Our study aimed to disentangle photosynthetic and chemosynthetic organic carbon sources for the shrimp species Rimicaris hybisae, a primary consumer presumed to obtain its organic carbon mainly from ectosymbiotic chemoautotrophic bacteria living on its gill cover membrane. To provide ectosymbionts with ideal conditions for chemosynthesis, these shrimp live in dense clusters around vent chimneys; they are, however, also found sparsely distributed adjacent to diffuse vent flows, where they might depend on alternative food sources. Densely and sparsely distributed shrimp were sampled and dissected into abdominal tissue and gill cover membrane, covered with ectosymbiotic bacteria, at two <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> in the Mid-Cayman rise that differ in vent chemistry. Fatty acids (FA) were extracted from shrimp tissues and their carbon isotopic compositions assessed. The FA data indicate that adult R. hybisae predominantly rely on bacteria for their organic carbon needs. Their FA composition is dominated by common bacterial FA of the n7 family (~41%). Bacterial FA of the n4 FA family are also abundant and found to constitute good biomarkers for gill ectosymbionts. Sparsely distributed shrimp contain fractions of n4 FA in gill cover membranes ~4% lower than densely packed ones (~18%) and much higher fractions of photosynthetic FA in abdominal tissues, ~4% more (compared with 1.6%), suggesting replacement of ectosymbionts along with exoskeletons (molt), while they take up alternative diets of partly photosynthetic organic carbon. Abdominal tissues also contain photosynthetic FA from a second source taken up presumably during an early dispersal phase and still present to c. 3% in adult shrimp. The contribution of photosynthetic carbon to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26PSL.395..136J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26PSL.395..136J"><span><span class="hlt">Hydrothermal</span> sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jamieson, J. W.; Clague, D. A.; Hannington, M. D.</p> <p>2014-06-01</p> <p><span class="hlt">Hydrothermal</span> sulfide deposits that form on the seafloor are often located by the detection of <span class="hlt">hydrothermal</span> plumes in the water column, followed by exploration with deep-towed cameras, side-scan sonar imaging, and finally by visual surveys using remotely-operated vehicle or occupied submersible. <span class="hlt">Hydrothermal</span> plume detection, however, is ineffective for finding <span class="hlt">hydrothermally</span>-inactive sulfide deposits, which may represent a significant amount of the total sulfide accumulation on the seafloor, even in <span class="hlt">hydrothermally</span> <span class="hlt">active</span> settings. Here, we present results from recent high-resolution, autonomous underwater vehicle-based mapping of the <span class="hlt">hydrothermally-active</span> Endeavour Segment of the Juan de Fuca Ridge, in the Northeast Pacific Ocean. Analysis of the ridge bathymetry resulted in the location of 581 individual sulfide deposits along 24 km of ridge length. <span class="hlt">Hydrothermal</span> deposits were distinguished from volcanic and tectonic features based on the characteristics of their surface morphology, such as shape and slope angles. Volume calculations for each deposit results in a total volume of 372,500 m3 of <span class="hlt">hydrothermal</span> sulfide-sulfate-silica material, for an equivalent mass of ∼1.2 Mt of <span class="hlt">hydrothermal</span> material on the seafloor within the ridge's axial valley, assuming a density of 3.1 g/cm3. Much of this total volume is from previously undocumented inactive deposits outside the main <span class="hlt">active</span> vent <span class="hlt">fields</span>. Based on minimum ages of sulfide deposition, the deposits accumulated at a maximum rate of ∼400 t/yr, with a depositional efficiency (proportion of <span class="hlt">hydrothermal</span> material that accumulates on the seafloor to the total amount <span class="hlt">hydrothermally</span> mobilized and transported to the seafloor) of ∼5%. The calculated sulfide tonnage represents a four-fold increase over previous sulfide estimates for the Endeavour Segment that were based largely on accumulations from within the <span class="hlt">active</span> <span class="hlt">fields</span>. These results suggest that recent global seafloor sulfide resource estimates, which were based mostly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010shcg.book..599B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010shcg.book..599B"><span><span class="hlt">Hydrothermal</span> Growth of Polyscale Crystals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrappa, Kullaiah</p> <p></p> <p>In this chapter, the importance of the <span class="hlt">hydrothermal</span> technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the <span class="hlt">hydrothermal</span> technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine <span class="hlt">hydrothermal</span> research, including the continuous production of nanosize crystals, are discussed. The latest trends in the <span class="hlt">hydrothermal</span> growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the <span class="hlt">hydrothermal</span> technique, required to meet the challenges of fast-growing demand for materials in various technological <span class="hlt">fields</span>, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the <span class="hlt">hydrothermal</span> technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009CPL...482..134C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009CPL...482..134C"><span><span class="hlt">Active</span> anatase (0 0 1)-like surface of <span class="hlt">hydrothermally</span> synthesized titania nanotubes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Qiang; Mogilevsky, Gregory; Wagner, George W.; Forstater, Jacob; Kleinhammes, Alfred; Wu, Yue</p> <p>2009-11-01</p> <p>Using 31P and 13C NMR with DFT calculations we demonstrate the exposed surface of titania nanotubes (TiNTs) is a stable, unterminated anatase (0 0 1)-like surface and is catalytically <span class="hlt">active</span> under ambient conditions. We find that methanol dissociatively adsorbs on the surface of TiNTs agreeing with the predicted <span class="hlt">activity</span> of surface dissociation of organic molecules on the crystalline (0 0 1)-anatase surface. We further examined the catalytic <span class="hlt">activity</span> of anatase power, TiNT, and nanosheets in catalytic hydrolysis of S-[2-(diisopropylamino)ethyl]- O-ethyl methylphosphonothioate (VX) via 31P NMR and demonstrate that titanate-like nanosheets are inactive in the reaction owing to their hydroxylated (0 0 1) surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V13C3140I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V13C3140I"><span>Vapor Discharges On Nevado Del Ruiz During The Recent <span class="hlt">Activity</span>: Clues On The Composition Of The Deep <span class="hlt">Hydrothermal</span> System And Its Effects On Thermal Springs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inguaggiato, S.; Federico, C.; Chacon, Z.; Londono, J. M.; Alzate, D. M.; Gil, E.</p> <p>2015-12-01</p> <p>The Nevado del ruiz volcano (NdR, 5321m asl), one of the most <span class="hlt">active</span> in Colombia, threatens about 600,000 people. The existence of an ice cap and several streams channeling in some main rivers increase the risk of lahars and mudflows in case of unrest, as occurred during the November 1985 eruption, which caused 20,000 casualties. The involvement of the local <span class="hlt">hydrothermal</span> system has also produced in the past phreatic and phreatomagmatic <span class="hlt">activity</span>, as in 1985 and 1989. After more than 7 years of relative stability, since 2010, the still ongoing phase of unrest has produced two small eruption in 2012, and still maintains in high levels of seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and streamwater, located at 2600-5000 m asl, analyzed for water chemistry and stable isotopes. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of steam discharging in the different steam-heated springs. The composition of the hottest thermal spring (Botero Londoño) is probably representative of a marginal part of the <span class="hlt">hydrothermal</span> system, having a temperature of 250°C and low salinity (Cl ~1500 mg/l), which suggest a chiefly meteoric origin, as also confirmed by the isotope composition retrieved for the <span class="hlt">hydrothermal</span> water. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesised to be separated from a high-temperature hyrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep <span class="hlt">hydrothermal</span> system, as well as its pH and fO2. The vapour feeding Nereidas would separate from a byphasic <span class="hlt">hydrothermal</span> system characterised by the follow parameters: t= 315°C, P=19 MPa, NaCl= 15 %, CO2 = 9%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, we obtain pH=2, fO2 fixed by FeO-Fe2O3 buffer, and [Cl]=12000 mg/l. Changes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25748345','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25748345"><span>Mercury accumulation in <span class="hlt">hydrothermal</span> vent mollusks from the southern Tonga Arc, southwestern Pacific Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Seyong; Kim, Se-Joo; Ju, Se-Jong; Pak, Sang-Joon; Son, Seung-Kyu; Yang, Jisook; Han, Seunghee</p> <p>2015-05-01</p> <p>We provide the mercury (Hg) and monomethylmercury (MMHg) levels of the plume water, sulfide ore, sediment, and mollusks located at the <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> of the southern Tonga Arc, where <span class="hlt">active</span> volcanism and intense seismic <span class="hlt">activity</span> occur frequently. Our objectives were: (1) to address the potential release of Hg from <span class="hlt">hydrothermal</span> fluids and (2) to examine the distribution of Hg and MMHg levels in <span class="hlt">hydrothermal</span> mollusks (mussels and snails) harboring chemotrophic bacteria. While high concentrations of Hg in the sediment and Hg, As, and Sb in the sulfide ore indicates that their source is likely <span class="hlt">hydrothermal</span> fluids, the MMHg concentration in the sediment was orders of magnitude lower than the Hg (<0.001%). It suggests that Hg methylation may have not been favorable in the vent <span class="hlt">field</span> sediment. In addition, Hg concentrations in the mollusks were much higher (10-100 times) than in other <span class="hlt">hydrothermal</span> vent environments, indicating that organisms located at the Tonga Arc are exposed to exceedingly high Hg levels. While Hg concentration was higher in the gills and digestive glands than in the mantles and residues of snails and mussels, the MMHg concentrations in the gills and digestive glands were orders of magnitude lower (0.004-0.04%) than Hg concentrations. In summary, our results suggest that the release of Hg from the <span class="hlt">hydrothermal</span> vent <span class="hlt">fields</span> of the Tonga Arc and subsequent bioaccumulation are substantial, but not for MMHg.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70013764','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70013764"><span>Acoustic stratigraphy and <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> within Epi Submarine Caldera, Vanuatu, New Hebrides Arc</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Greene, H. Gary; Exon, N.F.</p> <p>1988-01-01</p> <p>Geological and geophysical surveys of <span class="hlt">active</span> submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an <span class="hlt">active</span> submarine volcano off the southeastern tip of Epi) lavas. ?? 1988 Springer-Verlag New York Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T11G..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T11G..03S"><span>Extreme <span class="hlt">Hydrothermal</span> Conditions Near an <span class="hlt">Active</span> Geological Fault, DFDP-2B Borehole, Alpine Fault, New Zealand</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutherland, R.; Townend, J.; Toy, V.; Allen, M.; Baratin, L. M.; Barth, N. C.; Beacroft, L.; Benson, A.; Boese, C. M.; Boles, A.; Boulton, C. J.; Capova, L.; Carpenter, B. M.; Celerier, B. P.; Chamberlain, C. J.; Conze, R.; Cooper, A.; Coussens, J.; Coutts, A.; Cox, S.; Craw, L.; Doan, M. L.; Eccles, J. D.; Faulkner, D.; Grieve, J.; Grochowski, J.; Gulley, A.; Henry, G.; Howarth, J. D.; Jacobs, K. M.; Jeppson, T.; Kato, N.; Keys, S.; Kirilova, M.; Kometani, Y.; Lukács, A.; Langridge, R.; Lin, W.; Little, T.; Mallyon, D.; Mariani, E.; Marx, R.; Massiot, C.; Mathewson, L.; Melosh, B.; Menzies, C. D.; Moore, J.; Morales, L. F. G.; Morgan, C.; Mori, H.; Niemeijer, A. R.; Nishikawa, O.; Nitsch, O.; Paris Cavailhes, J.; Pooley, B.; Prior, D. J.; Pyne, A.; Sauer, K. M.; Savage, M. K.; Schleicher, A.; Schmitt, D. R.; Shigematsu, N.; Taylor-Offord, S.; Tobin, H. J.; Upton, P.; Valdez, R. D.; Weaver, K.; Wiersberg, T.; Williams, J. N.; Yeo, S.; Zimmer, M.; Broderick, N.</p> <p>2015-12-01</p> <p>The DFDP-2B borehole sampled rocks above and within the upper part of the Alpine Fault, New Zealand, to a depth of 893 m in late 2014. The experiment was the first to drill a major geological fault zone that is <span class="hlt">active</span> and late in its earthquake cycle. We determined ambient fluid pressures 8-10% above hydrostatic and a geothermal gradient of 130-150 °C/km in rocks above the fault. These unusual ambient conditions can be explained by a combination of: rock advection that transports heat from depth by uplift and oblique slip on the fault; and fluid advection through fractured rock, driven by topographic forcing, which concentrates heat and causes fluid over-pressure in the valley. Highly-anomalous ambient conditions can exist in the vicinity of <span class="hlt">active</span> faults, and earthquake and mineralization processes occur within these zones.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/175622','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/175622"><span>The nature of faults and <span class="hlt">hydrothermal</span> veins in corehole SB-15-D, The Geysers Steam <span class="hlt">Field</span>, California</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Hulen, J.B.; Nielson, D.L.</p> <p>1995-12-31</p> <p>Porosity in The Geysers Coring Project corehole SB-15-D is concentrated along vuggy, steeply-dipping, <span class="hlt">hydrothermal</span> calcite-quartz {plus_minus} adularia veins. There is little difference in the texture and abundance of these veins between the upper two thirds of the core, interpreted as caprock, and the lower two-thirds, in which two, vein-controlled, fluid-loss zones (probable steam entries) were encountered. However, vugs in the caprock veins are locally choked with mixed-layer clay, whereas those in the deeper steam-reservoir veins generally lack this clay but contain calc-silicate minerals. Steeply-dipping, concordant faults concentrated in argillite throughout the core show predominantly strike-slip displacement. Although movement was predominantly along argillites, the lithology appears to have deformed in a ductile manner, and porosity development was minimal. High-angle dilational fractures were developed contemporaneously in the graywackes. These fractures in the graywacke were only partially filled by secondary minerals, and are potential steam conduits in the vapor-dominated geothermal system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/21580075','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/21580075"><span>Synthesis of large surface area nano-sized BiVO{sub 4} by an EDTA-modified <span class="hlt">hydrothermal</span> process and its enhanced visible photocatalytic <span class="hlt">activity</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Sun Wanting; Xie Mingzheng; Jing Liqiang; Luan Yunbo; Fu Honggang</p> <p>2011-11-15</p> <p>In this work, monoclinic scheelite-type BiVO{sub 4} nanoparticle with large surface area has been successfully synthesized, using Bi(NO{sub 3}){sub 3} and NH{sub 4}VO{sub 3} as raw materials, through a <span class="hlt">hydrothermal</span> process in the presence of ethylene diamine tetraacetic acid (EDTA). It is demonstrated that the nanoparticle size of as-prepared BiVO{sub 4} becomes small by decreasing <span class="hlt">hydrothermal</span> temperature, shortening <span class="hlt">hydrothermal</span> reaction time and increasing EDTA amount used. The resulting BiVO{sub 4} nanoparticle with large surface area exhibits a good photocatalytic performance for degrading phenol solution as a model organic pollutant under visible illumination. The key of this method is the chelating role of EDTA group in the synthetic process that it can greatly control the concentration of Bi{sup 3+}, leading to the growth inhibition of BiVO{sub 4} crystallite. The work provides a route for the synthesis of Bi-containing nano-sized composite oxides with large surface area. - Graphical abstract: High visible <span class="hlt">active</span> nano-sized BiVO{sub 4} photocatalyst with large surface area is successfully synthesized, which is attributed to the chelating role of EDTA group inhibiting the growth of BiVO{sub 4} crystallites. Highlights: > Monoclinic scheelite-type BiVO{sub 4} nanoparticle with large surface area has been synthesized by a <span class="hlt">hydrothermal</span> process. > Key of this method is the chelating role of EDTA group inhibiting the growth of BiVO{sub 4} crystallites. > Resulting nano-sized BiVO{sub 4} exhibits a good photocatalytic <span class="hlt">activity</span> for degrading phenol under visible illumination.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JGR....98.9693W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JGR....98.9693W"><span>Chemosynthetic microbial <span class="hlt">activity</span> at Mid-Atlantic Ridge <span class="hlt">hydrothermal</span> vent sites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wirsen, Carl O.; Jannasch, Holger W.; Molyneaux, Stephen J.</p> <p>1993-06-01</p> <p>Chemosynthetic production of microbial biomass, determined by 14CO2 fixation and enzymatic (RuBisCo) <span class="hlt">activity</span>, at the Mid-Atlantic Ridge (MAR) 23° and 26°N vent sites was found in various niches: warm water emissions, loosely rock-attached flocculent material, dense morphologically diverse bacterial mats covering the surfaces of polymetal sulfide deposits, and filamentous microbes on the carapaces of shrimp (Rimicaris exoculata). The bacterial mats on polymetal sulfide surfaces contained unicellular and filamentous bacteria which appeared to use as their chemolithotrophic electron or energy source either dissolved reduced minerals from vent emissions, mainly sulfur compounds, or solid metal sulfide deposits, mainly pyrite. Moderately thermophilic Chemosynthetic <span class="hlt">activity</span> was observed in carbon dioxide fixation experiments and in enrichments, but no thermophilic aerobic sulfur oxidizers could be isolated. Both obligate and facultative chemoautotrophs growing at mesophilic temperatures were isolated from all chemosynthetically <span class="hlt">active</span> surface scrapings. The obligate autotrophs could oxidize sterilized MAR natural sulfide deposits as well as technical pyrite at near neutral pH, in addition to dissolved reduced sulfur compounds. While the grazing by shrimp on the surface mats of MAR metal sulfide deposits was observed and deemed important, the animals' primary occurrence in dense swarms near vent emissions suggests that they were feeding at these sites, where conditions for Chemosynthetic growth of their filamentous microbial epiflora were optimal. The data show that the transformation of geothermal energy at the massive polymetal sulfide deposits of the MAR is based on the lithoautotrophic oxidation of soluble sulfides and pyrites into microbial biomass.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998ApPhL..73..478X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998ApPhL..73..478X"><span>Luminescence characteristics of impurities-<span class="hlt">activated</span> ZnS nanocrystals prepared in microemulsion with <span class="hlt">hydrothermal</span> treatment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, S. J.; Chua, S. J.; Liu, B.; Gan, L. M.; Chew, C. H.; Xu, G. Q.</p> <p>1998-07-01</p> <p>Cu-, Eu-, or Mn-doped ZnS nanocrystalline phosphors were prepared at room temperature using a chemical synthesis method. Transmission electron microscopy observation shows that the size of the ZnS clusters is in the 3-18 nm range. New luminescence characteristics such as strong and stable visible-light emissions with different colors were observed from the doped ZnS nanocrystals at room temperature. These results strongly suggest that impurities, especially transition metals and rare-earth metals-<span class="hlt">activated</span> ZnS nanoclusters form a new class of luminescent materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/6972496','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/6972496"><span>U/Th geochronology of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> in Long Valley caldera: Little Hot Creek and the Blue Chert</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Sturchio, N.C.; Binz, C.M.; Sorey, M.L.</p> <p>1986-01-01</p> <p>To better define the evolution of the Long Valley <span class="hlt">hydrothermal</span> system, we have embarked on a program of U/Th age determinations of <span class="hlt">hydrothermal</span> products from outcrops and drill cores within the caldera. The U/Th system is appropriate for determining ages less than about 350 Ka in suitable materials. Results presented are from dense chalcedonic silica veins, collected from base to top of the outcrop beginning 40 m N of hot spring LHC-1 in Little Hot Creek canyon, and from samples of the Blue Chert.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031951&hterms=Quartz&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DQuartz','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031951&hterms=Quartz&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DQuartz"><span>A discussion of 'Anomalous quartz from the Roter Kamm impact crater, Namibia - Evidence for post-impact <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>?'</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roedder, Edwin</p> <p>1990-01-01</p> <p>This paper presents arguments against the statement made by Koeberl et al. (1989) to the effect that various differences between the quartz of the three quartz pebbles from the Roter Kamm impact crater (Namibia) and the quartz of the pegmatites present in the basement rocks of this crater can be best interpreted as evidence that the pebbles were formed (or 'recrystallized') by a post-impact <span class="hlt">hydrothermal</span> system. Arguments are presented that suggest that the three quartz pebbles are, most likely, fragments of a preimpact vein quartz of <span class="hlt">hydrothermal</span> origin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SSRv..tmp...70P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SSRv..tmp...70P"><span>Polar <span class="hlt">Field</span> Reversals and <span class="hlt">Active</span> Region Decay</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrie, Gordon; Ettinger, Sophie</p> <p>2015-07-01</p> <p>We study the relationship between polar <span class="hlt">field</span> reversals and decayed <span class="hlt">active</span> region magnetic flux. Photospheric <span class="hlt">active</span> region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying <span class="hlt">active</span> region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed <span class="hlt">active</span> region flux to high latitudes and changes in the polar <span class="hlt">field</span> strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar <span class="hlt">field</span> changes. In the most abrupt cases of polar <span class="hlt">field</span> reversal, a few <span class="hlt">activity</span> complexes (systems of <span class="hlt">active</span> regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar <span class="hlt">field</span> changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The <span class="hlt">activity</span> complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar <span class="hlt">field</span> changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of <span class="hlt">activity</span> complexes are key to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22413285','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22413285"><span>Fluctuating magnetic <span class="hlt">field</span> induced resonant <span class="hlt">activation</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra</p> <p>2014-12-14</p> <p>In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic <span class="hlt">field</span>. Time dependence of the <span class="hlt">field</span> makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic <span class="hlt">field</span>. It also depends on the correlation time of the fluctuating magnetic <span class="hlt">field</span>. Our another observation is that the random magnetic <span class="hlt">field</span> can induce the resonant <span class="hlt">activation</span> phenomenon. Here correlation time is increased under the fixed variance of the fluctuating <span class="hlt">field</span>. But if the correlation time (τ) increases under the fixed <span class="hlt">field</span> strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic <span class="hlt">field</span> even for very weak fluctuating magnetic <span class="hlt">field</span>. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic <span class="hlt">field</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70178381','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70178381"><span>Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> and lithologic diversity in the Martian crust</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCubbin, Francis M.; Boyce, Jeremy W.; Novak-Szabo, Timea; Santos, Alison; Tartese, Romain; Muttik, Nele; Domokos, Gabor; Vazquez, Jorge A.; Keller, Lindsay P.; Moser, Desmond E.; Jerolmack, Douglas J.; Shearer, Charles K.; Steele, Andrew; Elardo, Stephen M.; Rahman, Zia; Anand, Mahesh; Delhaye, Thomas; Agee, Carl B.</p> <p>2016-01-01</p> <p>The timing and mode of deposition for Martian regolith breccia Northwest Africa (NWA) 7034 were determined by combining petrography, shape analysis, and thermochronology. NWA 7034 is composed of igneous, impact, and brecciated clasts within a thermally annealed submicron matrix of pulverized crustal rocks and devitrified impact/volcanic glass. The brecciated clasts are likely lithified portions of Martian regolith with some evidence of past <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>. Represented lithologies are primarily ancient crustal materials with crystallization ages as old as 4.4 Ga. One ancient zircon was hosted by an alkali-rich basalt clast, confirming that alkalic volcanism occurred on Mars very early. NWA 7034 is composed of fragmented particles that do not exhibit evidence of having undergone bed load transport by wind or water. The clast size distribution is similar to terrestrial pyroclastic deposits. We infer that the clasts were deposited by atmospheric rainout subsequent to a pyroclastic eruption(s) and/or impact event(s), although the ancient ages of igneous components favor mobilization by impact(s). Despite ancient components, the breccia has undergone a single pervasive thermal event at 500–800°C, evident by groundmass texture and concordance of ~1.5 Ga dates for bulk rock K-Ar, U-Pb in apatite, and U-Pb in metamict zircons. The 1.5 Ga age is likely a thermal event that coincides with rainout/breccia lithification. We infer that the episodic process of regolith lithification dominated sedimentary processes during the Amazonian Epoch. The absence of pre-Amazonian high-temperature metamorphic events recorded in ancient zircons indicates source domains of static southern highland crust punctuated by episodic impact modification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRE..121.2120M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRE..121.2120M"><span>Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> and lithologic diversity in the Martian crust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCubbin, Francis M.; Boyce, Jeremy W.; Novák-Szabó, Tímea; Santos, Alison R.; Tartèse, Romain; Muttik, Nele; Domokos, Gabor; Vazquez, Jorge; Keller, Lindsay P.; Moser, Desmond E.; Jerolmack, Douglas J.; Shearer, Charles K.; Steele, Andrew; Elardo, Stephen M.; Rahman, Zia; Anand, Mahesh; Delhaye, Thomas; Agee, Carl B.</p> <p>2016-10-01</p> <p>The timing and mode of deposition for Martian regolith breccia Northwest Africa (NWA) 7034 were determined by combining petrography, shape analysis, and thermochronology. NWA 7034 is composed of igneous, impact, and brecciated clasts within a thermally annealed submicron matrix of pulverized crustal rocks and devitrified impact/volcanic glass. The brecciated clasts are likely lithified portions of Martian regolith with some evidence of past <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>. Represented lithologies are primarily ancient crustal materials with crystallization ages as old as 4.4 Ga. One ancient zircon was hosted by an alkali-rich basalt clast, confirming that alkalic volcanism occurred on Mars very early. NWA 7034 is composed of fragmented particles that do not exhibit evidence of having undergone bed load transport by wind or water. The clast size distribution is similar to terrestrial pyroclastic deposits. We infer that the clasts were deposited by atmospheric rainout subsequent to a pyroclastic eruption(s) and/or impact event(s), although the ancient ages of igneous components favor mobilization by impact(s). Despite ancient components, the breccia has undergone a single pervasive thermal event at 500-800°C, evident by groundmass texture and concordance of 1.5 Ga dates for bulk rock K-Ar, U-Pb in apatite, and U-Pb in metamict zircons. The 1.5 Ga age is likely a thermal event that coincides with rainout/breccia lithification. We infer that the episodic process of regolith lithification dominated sedimentary processes during the Amazonian Epoch. The absence of pre-Amazonian high-temperature metamorphic events recorded in ancient zircons indicates source domains of static southern highland crust punctuated by episodic impact modification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TESS....111103P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TESS....111103P"><span>Polar <span class="hlt">Field</span> Reversals and <span class="hlt">Active</span> Region Decay</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrie, Gordon; Ettinger, Sophie</p> <p>2015-04-01</p> <p>We study the relationship between polar <span class="hlt">field</span> reversals and decayed <span class="hlt">active</span> region magnetic flux. Photospheric <span class="hlt">active</span> region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. Using NSO Kitt Peak synoptic magnetograms, we investigate in detail the relationship between the transport of decayed <span class="hlt">active</span> region flux to high latitudes and changes in the polar <span class="hlt">field</span> strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar <span class="hlt">field</span> changes. In the most abrupt cases of polar <span class="hlt">field</span> reversal, a few <span class="hlt">activity</span> complexes (systems of <span class="hlt">active</span> regions) are identified as the main cause. The poleward transport of large quantities of decayed lagging-polarity flux from these complexes is found to correlate well in time with the abrupt polar <span class="hlt">field</span> changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with lagging-polarity flux located poleward of leading-polarity flux. This work is carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/993489','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/993489"><span>Response to"Analysis of the Treatment, by the U.S. Department of Energy, of the FEP <span class="hlt">Hydrothermal</span> <span class="hlt">Activity</span> in the Yucca Mountain Performance Assessment" by Yuri Dublyansky</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Houseworth, J.E.; Hardin, E.</p> <p>2008-11-17</p> <p>This paper presents a rebuttal to Dublyansky (2007), which misrepresents technical issues associated with <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> at the proposed Yucca Mountain nuclear waste repository and their importance to the long-term performance of the repository. In this paper, questions associated with <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> are reviewed and the justification for exclusion of <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> from performance assessment is presented. The hypothesis that <span class="hlt">hydrothermal</span> upwelling into the present-day unsaturated zone has occurred at Yucca Mountain is refuted by the unambiguous evidence that secondary minerals and fluid inclusions in the unsaturated zone formed in an unsaturated environment from downward percolating meteoric waters. The thermal history at Yucca Mountain, inferred from fluid inclusion and isotopic data, is explained in terms of the tectonic extensional environment and associated silicic magmatism. The waning of tectonic extension over millions of years has led to the present-day heat flux in the Yucca Mountain region that is below average for the Great Basin. The long time scales of tectonic processes are such that any effects of a resumption of extension or silicic magmatism on <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> at Yucca Mountain over the 10,000-year regulatory period would be negligible. The conclusion that <span class="hlt">hydrothermal</span> <span class="hlt">activity</span> was incorrectly excluded from performance assessment as asserted in Dublyansky (2007) is contradicted by the available technical and regulatory information.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70024124','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70024124"><span>Helium and carbon gas geochemistry of pore fluids from the sediment-rich <span class="hlt">hydrothermal</span> system in Escanaba Trough</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ishibashi, J.-I.; Sato, M.; Sano, Y.; Wakita, H.; Gamo, T.; Shanks, Wayne C.</p> <p>2002-01-01</p> <p>Ocean Drilling Program (ODP) Leg 169, which was conducted in 1996 provided an opportunity to study the gas geochemistry in the deeper part of the sediment-rich <span class="hlt">hydrothermal</span> system in Escanaba Trough. Gas void samples obtained from the core liner were analyzed and their results were compared with analytical data of vent fluid samples collected by a submersible dive program in 1988. The gas geochemistry of the pore fluids consisted mostly of a <span class="hlt">hydrothermal</span> component and was basically the same as that of the vent fluids. The He isotope ratios (R/RA = 5.6-6.6) indicated a significant mantle He contribution and the C isotopic compositions of the hydrocarbons [??13C(CH4) = -43???, ??13C(C2H6) = -20???] were characterized as a thermogenic origin caused by <span class="hlt">hydrothermal</span> <span class="hlt">activity</span>. On the other hand, the pore fluids in sedimentary layers away from the <span class="hlt">hydrothermal</span> <span class="hlt">fields</span> showed profiles which reflected lat